28 research outputs found

    InSAR Deformation Analysis with Distributed Scatterers: A Review Complemented by New Advances

    Get PDF
    Interferometric Synthetic Aperture Radar (InSAR) is a powerful remote sensing technique able to measure deformation of the earth’s surface over large areas. InSAR deformation analysis uses two main categories of backscatter: Persistent Scatterers (PS) and Distributed Scatterers (DS). While PS are characterized by a high signal-to-noise ratio and predominantly occur as single pixels, DS possess a medium or low signal-to-noise ratio and can only be exploited if they form homogeneous groups of pixels that are large enough to allow for statistical analysis. Although DS have been used by InSAR since its beginnings for different purposes, new methods developed during the last decade have advanced the field significantly. Preprocessing of DS with spatio-temporal filtering allows today the use of DS in PS algorithms as if they were PS, thereby enlarging spatial coverage and stabilizing algorithms. This review explores the relations between different lines of research and discusses open questions regarding DS preprocessing for deformation analysis. The review is complemented with an experiment that demonstrates that significantly improved results can be achieved for preprocessed DS during parameter estimation if their statistical properties are used

    Nonlocal noise reduction method based on fringe frequency compensation for SAR interferogram

    Get PDF
    Phase noise reduction is one of the key steps for synthetic aperture radar interferometry data processing. In this article, a novel phase filtering method is proposed. The main innovation and contribution of this research is to 1) incorporate local fringe frequency (LFF) compensation technique into the nonlocal phase filtering method to include more independent and identically distributed samples for filtering; 2) modify the nonlocal phase filter from three aspects: 1) executing nonlocal filtering in the complex domain of the residual phase to avoid gray jumps in phase, 2) adaptively calculating the smoothing parameter based on the LFF and the coherence coefficient, and 3) using the integral image in similarity calculation to improve the efficiency; 3) perform Goldstein filter in high coherence areas to reduce the computation expense. Experiments based on both simulated and real data have shown that the proposed method has achieved a better performance in terms of both noise reduction and edge preservation than some existing phase filtering methods

    Développements algorithmiques pour l’amélioration des résultats de l’interférométrie RADAR en milieu urbain

    Full text link
    Le suivi des espaces urbanisés et de leurs dynamiques spatio-temporelles représente un enjeu important pour la population urbaine, autant sur le plan environnemental, économique et social. Avec le lancement des satellites portant des radars à synthèse d’ouverture de la nouvelle génération (TerraSAR-X, COSMO-SkyMed, ALOS, RADARSAT-2,Sentinel-1, Constellation RADARSAT), il est possible d’obtenir des séries temporelles d’images avec des résolutions spatiales et temporelles fines. Ces données multitemporelles aident à mieux analyser et décrire les structures urbaines et leurs variations dans l’espace et dans le temps. L’interférométrie par satellite est effectuée en comparant les phases des images RSO prises à différents passages du satellite au-dessus du même territoire. En optant pour des positions du satellite séparées d’une longue ligne de base, l’InSAR mène à la création des modèles numériques d’altitude (MNA). Si cette ligne de base est courte et à la limite nulle, nous avons le cas de l’interférométrie différentielle (DInSAR) qui mène à l’estimation du mouvement possible du terrain entre les deux acquisitions. Pour toutes les deux applications de l’InSAR, deux opérations sont importantes qui garantissent la génération des interférogrammes de qualité. La première est le filtrage du bruit omniprésent dans les phases interférométriques et la deuxième est le déroulement des phases. Ces deux opérations deviennent particulièrement complexes en milieu urbain où au bruit des phases s’ajoutent des fréquents sauts et discontinuités des phases dus à la présence des bâtiments et d’autres structures surélevées. L’objectif de cette recherche est le développement des nouveaux algorithmes de filtrage et de déroulement de phase qui puissent mieux performer que les algorithmes considérés comme référence dans ce domaine. Le but est d’arriver à générer des produits InSAR de qualité en milieu urbain. Concernant le filtrage, nous avons établi un algorithme qui est une nouvelle formulation du filtre Gaussien anisotrope adaptatif. Quant à l’algorithme de déroulement de phase, il est fondé sur la minimisation de l’énergie par un algorithme génétique ayant recours à une modélisation contextuelle du champ de phase. Différents tests ont été effectués avec des images RSO simulées et réelles qui démontrent le potentiel de nos algorithmes qui dépasse à maints égards celui des algorithmes standard. Enfin, pour atteindre le but de notre recherche, nous avons intégré nos algorithmes dans l’environnement du logiciel SNAP et appliqué l’ensemble de la procédure pour générer un MNA avec des images RADARSAT-2 de haute résolution d’un secteur de la Ville de Montréal (Canada) ainsi que des cartes des mouvements du terrain dans la région de la Ville de Mexico (Mexique) avec des images de Sentinel-1 de résolution plutôt moyenne. La comparaison des résultats obtenus avec des données provenant des sources externes de qualité a aussi démontré le fort potentiel de nos algorithmes.The monitoring of urban areas and their spatiotemporal dynamics is an important issue for the urban population, at the environmental, economic, as well as social level. With the launch of satellites carrying next-generation synthetic aperture radars (TerraSAR-X, COSMO-SkyMed, ALOS, RADARSAT-2, Sentinel-1, Constellation RADARSAT), it is possible to obtain time series of images with fine temporal and spatial resolutions. These multitemporal data help to better analyze and describe urban structures, and their variations in space and time. Satellite interferometry is performed by comparing the phases of SAR images taken at different satellite passes over the same territory. By opt-ing for satellite positions separated by a long baseline, InSAR leads to the creation of digital elevation models (DEM). If this baseline is short and, at the limit zero, we have the case of differential interferometry (DInSAR) which leads to the estimation of the possible movement of the land between the two acquisitions. In both InSAR applica-tions, two operations are important that ensure the generation of quality interferograms. The first is the filtering of ubiquitous noise in the interferometric phases and the second is the unwrapping of the phases. These two operations become particularly complex in urban areas where the phase noise is added to the frequent jumps and discontinuities of phases due to the presence of buildings and other raised structures. The objective of this research is the development of new filtering and phase unwrap-ping algorithms that can perform better than algorithms considered as reference in this field. The goal is to generate quality InSAR products in urban areas. Regarding filtering, we have established an algorithm that is a new formulation of the adaptive anisotropic Gaussian filter. As for the phase unwrapping algorithm, it is based on the minimization of energy by a genetic algorithm using contextual modelling of the phase field. Various tests have been carried out with simulated and real SAR images that demonstrated the potential of our algorithms that in many respects exceeds that of standard algorithms. Finally, to achieve the goal of our research, we integrated our algorithms into the SNAP software environment and applied the entire procedure to generate a DEM with high-resolution RADARSAT-2 images from an area of the City of Montreal (Canada) as well as maps of land movement in the Mexico City region (Mexico) with relatively medium-resolution Sentinel-1 images. Comparison of the results with data from external quality sources also demonstrated the strong potential of our algorithms

    An interferometric phase noise reduction method based on modified denoising convolutional neural network

    Get PDF
    Traditional interferometric synthetic aperture radar (InSAR) denoising methods normally try to estimate the phase fringes directly from the noisy interferogram. Since the statistics of phase noise are more stable than the phase corresponding to complex terrain, it could be easier to estimate the phase noise. In this paper, phase noises rather than phase fringes are estimated first, and then they are subtracted from the noisy interferometric phase for denoising. The denoising convolutional neural network (DnCNN) is introduced to estimate phase noise and then a modified network called IPDnCNN is constructed for the problem. Based on the IPDnCNN, a novel interferometric phase noise reduction algorithm is proposed, which can reduce phase noise while protecting fringe edges and avoid the use of filter windows. Experimental results using simulated and real data are provided to demonstrate the effectiveness of the proposed method

    Ground-based synthetic aperture radar (GBSAR) interferometry for deformation monitoring

    Get PDF
    Ph. D ThesisGround-based synthetic aperture radar (GBSAR), together with interferometry, represents a powerful tool for deformation monitoring. GBSAR has inherent flexibility, allowing data to be collected with adjustable temporal resolutions through either continuous or discontinuous mode. The goal of this research is to develop a framework to effectively utilise GBSAR for deformation monitoring in both modes, with the emphasis on accuracy, robustness, and real-time capability. To achieve this goal, advanced Interferometric SAR (InSAR) processing algorithms have been proposed to address existing issues in conventional interferometry for GBSAR deformation monitoring. The proposed interferometric algorithms include a new non-local method for the accurate estimation of coherence and interferometric phase, a new approach to selecting coherent pixels with the aim of maximising the density of selected pixels and optimizing the reliability of time series analysis, and a rigorous model for the correction of atmospheric and repositioning errors. On the basis of these algorithms, two complete interferometric processing chains have been developed: one for continuous and the other for discontinuous GBSAR deformation monitoring. The continuous chain is able to process infinite incoming images in real time and extract the evolution of surface movements through temporally coherent pixels. The discontinuous chain integrates additional automatic coregistration of images and correction of repositioning errors between different campaigns. Successful deformation monitoring applications have been completed, including three continuous (a dune, a bridge, and a coastal cliff) and one discontinuous (a hillside), which have demonstrated the feasibility and effectiveness of the presented algorithms and chains for high-accuracy GBSAR interferometric measurement. Significant deformation signals were detected from the three continuous applications and no deformation from the discontinuous. The achieved results are justified quantitatively via a defined precision indicator for the time series estimation and validated qualitatively via a priori knowledge of these observing sites.China Scholarship Council (CSC), Newcastle Universit

    Advanced pixel selection and optimization algorithms for Persistent Scatterer Interferometry (PSI)

    Get PDF
    Tesi amb diferents seccions retallades per dret de l'editorPremi Extraordinari de Doctorat, promoció 2018-2019. Àmbit de les TICGround deformation measurements can provide valuable information for minimization of associated loss and damage caused by natural and environmental hazards. As a kind of remote sensing technique, Persistent Scatterer Interferometry (PSI) SAR is able to measure ground deformation with high spatial resolution, efficiently. Moreover, the ground deformation monitoring accuracy of PSI techniques can reach up to millimeter level. However, low coherence could hinderthe exploitation of SAR data, and high-accuracy deformation monitoring can only be achieved by PSI for high quality pixels. Therefore, pixel optimization and identification of coherent pixels are crucial for PSI techniques. In this thesis, advanced pixel selection and optimization algorithms have been investigated. Firstly, a full-resolution pixel selection method based on the Temporal Phase Coherence (TPC) has been proposed. This method first estimates noise phase term of each pixel at interferogram level. Then, for each pixel, its noise phase terms of all interferograms are used to assess this pixel’s temporal phase quality (i.e., TPC). In the next, based on the relationship between TPC and phase Standard Deviation (STD), a threshold can be posed on TPC to identify high phase quality pixels. This pixel selection method can work with both Deterministic Scatterers (PSs) and Distributed Scatterers (DSs). To valid the effectiveness of the developed method, it has been used to monitor the Canillo (Andorra) landslide. The results show that the TPC method can obtained highest density of valid pixels among the employed three approaches in this challenging area with X-band SAR data. Second, to balance the polarimetric DInSAR phase optimization effect and the computation cost, a new PolPSI algorithm is developed. This proposed PolPSI algorithm is based on the Coherency Matrix Decomposition result to determine the optimal scattering mechanism of each pixel, thus it is named as CMD-PolPSI. CMDPolPSI need not to search for solution within the full space of solution, it is therefore much computationally faster than the classical Equal Scattering Mechanism (ESM) method, but with lower optimization performance. On the other hand, its optimization performance outperforms the less computational costly BEST method. Third, an adaptive algorithm SMF-POLOPT has been proposed to adaptive filtering and optimizing PolSAR pixels for PolPSI applications. This proposed algorithm is based on PolSAR classification results to firstly identify Polarimetric Homogeneous Pixels (PHPs) for each pixel, and at the same time classify PS and DS pixels. After that, DS pixels are filtered by their associated PHPs, and then optimized based on the coherence stability phase quality metric; PS pixels are unfiltered and directly optimized based on the DA phase quality metric. SMF-POLOPT can simultaneously reduce speckle noise and retain structures’ details. Meanwhile, SMF-POLOPT is able to obtain much higher density of valid pixels for deformation monitoring than the ESM method. To conclude, one pixel selection method has been developed and tested, two PolPSI algorithms have been proposed in this thesis. This work make contributions to the research of “Advanced Pixel Selection and Optimization Algorithms for Persistent Scatterer InterferometryLes mesures de deformació del sòl poden proporcionar informació valuosa per minimitzar les pèrdues i els danys associats causats pels riscos naturals i ambientals. Com a tècnica de teledetecció, la interferometria de dispersors persistents (Persistent Scatter Interferometry, PSI) SAR és capaç de mesurar de forma eficient la deformació del terreny amb una alta resolució espacial. A més, la precisió de monitorització de la deformació del sòl de les tècniques PSI pot arribar a arribar a nivells del mil·límetre. No obstant això, una baixa coherència pot dificultar l’explotació de dades SAR i el control de deformació d’alta precisió només es pot aconseguir mitjançant PSI per a píxels d’alta qualitat. Per tant, l’optimització de píxels i la identificació de píxels coherents són crucials en les tècniques PSI. En aquesta tesi s¿han investigat algorismes avançats de selecció i optimització de píxels. En primer lloc, s'ha proposat un mètode de selecció de píxels de resolució completa basat en la coherència temporal de fase (Temporal Phase Coherence, TPC). Aquest mètode estima per primera vegada el terme de fase de soroll de cada píxel a nivell d’interferograma. A continuació, per a cada píxel, s'utilitzen els termes de la fase de soroll de tots els interferogrames per avaluar la qualitat de fase temporal d'aquest píxel (és a dir, TPC). A la següent, basant-se en la relació entre el TPC i la desviació estàndard de fase (STD), es pot plantejar un llindar de TPC per identificar píxels de qualitat de fase alta. Aquest mètode de selecció de píxels es capaç de detectar tant els dispersors deterministes (PS) com els distribuïts (DS). Per validar l’eficàcia del mètode desenvolupat, s’ha utilitzat per controlar l’esllavissada de Canillo (Andorra). Els resultats mostren que el mètode TPC pot obtenir la major densitat de píxels vàlids, comparat amb els mètodes clàssics de selecció, en aquesta àrea difícil amb dades de SAR de banda X. En segon lloc, per equilibrar l’efecte d’optimització de fase DInSAR polarimètrica i el cost de càlcul, es desenvolupa un nou algorisme de PolPSI. Aquest algorisme proposat de PolPSI es basa en el resultat de la descomposició de la matriu de coherència per determinar el mecanisme de dispersió òptim de cada píxel, de manera que es denomina CMD-PolPSI. CMDPolPSI no necessita buscar solucions dins de l’espai complet de la solució, per tant, és molt més eficient computacionalment que el mètode clàssic de mecanismes d’igualtat de dispersió (Equal Scattering Mechanism, ESM), però amb un efecte d’optimització no tant òptim. D'altra banda, el seu efecte d'optimització supera el mètode BEST, el que te un menor cost computacional. En tercer lloc, s'ha proposat un algoritme adaptatiu SMF-POLOPT per al filtratge adaptatiu i l'optimització de píxels PolSAR per a aplicacions PolPSI. Aquest algorisme proposat es basa en els resultats de classificació PolSAR per identificar primer els píxels homogenis polarimètrics (PHP) per a cada píxel i, alhora, classificar els píxels PS i DS. Després d'això, els píxels DS es filtren pels seus PHP associats i, a continuació, s'optimitzen en funció de la mètrica de qualitat de la fase d'estabilitat de coherència; els píxels classificats com PS no es filtren i s'optimitzen directament en funció de la mètrica de qualitat de la fase DA. SMF-POLOPT pot reduir simultàniament el soroll de la fase interferomètrica i conservar els detalls de les estructures. Mentrestant, SMF-POLOPT aconsegueix obtenir una densitat molt més alta de píxels vàlids per al seguiment de la deformació que el mètode ESM. Per concloure, en aquesta tesi s’ha desenvolupat i provat un mètode de selecció de píxels, i s’han proposat dos algoritmes PolPSI. Aquest treball contribueix a la recerca en "Advanced Pixel Selection and Optimization Algorithms for Persistent Scatterer Interferometry"Postprint (published version

    Robust and Flexible Persistent Scatterer Interferometry for Long-Term and Large-Scale Displacement Monitoring

    Get PDF
    Die Persistent Scatterer Interferometrie (PSI) ist eine Methode zur Überwachung von Verschiebungen der Erdoberfläche aus dem Weltraum. Sie basiert auf der Identifizierung und Analyse von stabilen Punktstreuern (sog. Persistent Scatterer, PS) durch die Anwendung von Ansätzen der Zeitreihenanalyse auf Stapel von SAR-Interferogrammen. PS Punkte dominieren die Rückstreuung der Auflösungszellen, in denen sie sich befinden, und werden durch geringfügige Dekorrelation charakterisiert. Verschiebungen solcher PS Punkte können mit einer potenziellen Submillimetergenauigkeit überwacht werden, wenn Störquellen effektiv minimiert werden. Im Laufe der Zeit hat sich die PSI in bestimmten Anwendungen zu einer operationellen Technologie entwickelt. Es gibt jedoch immer noch herausfordernde Anwendungen für die Methode. Physische Veränderungen der Landoberfläche und Änderungen in der Aufnahmegeometrie können dazu führen, dass PS Punkte im Laufe der Zeit erscheinen oder verschwinden. Die Anzahl der kontinuierlich kohärenten PS Punkte nimmt mit zunehmender Länge der Zeitreihen ab, während die Anzahl der TPS Punkte zunimmt, die nur während eines oder mehrerer getrennter Segmente der analysierten Zeitreihe kohärent sind. Daher ist es wünschenswert, die Analyse solcher TPS Punkte in die PSI zu integrieren, um ein flexibles PSI-System zu entwickeln, das in der Lage ist mit dynamischen Veränderungen der Landoberfläche umzugehen und somit ein kontinuierliches Verschiebungsmonitoring ermöglicht. Eine weitere Herausforderung der PSI besteht darin, großflächiges Monitoring in Regionen mit komplexen atmosphärischen Bedingungen durchzuführen. Letztere führen zu hoher Unsicherheit in den Verschiebungszeitreihen bei großen Abständen zur räumlichen Referenz. Diese Arbeit befasst sich mit Modifikationen und Erweiterungen, die auf der Grund lage eines bestehenden PSI-Algorithmus realisiert wurden, um einen robusten und flexiblen PSI-Ansatz zu entwickeln, der mit den oben genannten Herausforderungen umgehen kann. Als erster Hauptbeitrag wird eine Methode präsentiert, die TPS Punkte vollständig in die PSI integriert. In Evaluierungsstudien mit echten SAR Daten wird gezeigt, dass die Integration von TPS Punkten tatsächlich die Bewältigung dynamischer Veränderungen der Landoberfläche ermöglicht und mit zunehmender Zeitreihenlänge zunehmende Relevanz für PSI-basierte Beobachtungsnetzwerke hat. Der zweite Hauptbeitrag ist die Vorstellung einer Methode zur kovarianzbasierten Referenzintegration in großflächige PSI-Anwendungen zur Schätzung von räumlich korreliertem Rauschen. Die Methode basiert auf der Abtastung des Rauschens an Referenzpixeln mit bekannten Verschiebungszeitreihen und anschließender Interpolation auf die restlichen PS Pixel unter Berücksichtigung der räumlichen Statistik des Rauschens. Es wird in einer Simulationsstudie sowie einer Studie mit realen Daten gezeigt, dass die Methode überlegene Leistung im Vergleich zu alternativen Methoden zur Reduktion von räumlich korreliertem Rauschen in Interferogrammen mittels Referenzintegration zeigt. Die entwickelte PSI-Methode wird schließlich zur Untersuchung von Landsenkung im Vietnamesischen Teil des Mekong Deltas eingesetzt, das seit einigen Jahrzehnten von Landsenkung und verschiedenen anderen Umweltproblemen betroffen ist. Die geschätzten Landsenkungsraten zeigen eine hohe Variabilität auf kurzen sowie großen räumlichen Skalen. Die höchsten Senkungsraten von bis zu 6 cm pro Jahr treten hauptsächlich in städtischen Gebieten auf. Es kann gezeigt werden, dass der größte Teil der Landsenkung ihren Ursprung im oberflächennahen Untergrund hat. Die präsentierte Methode zur Reduzierung von räumlich korreliertem Rauschen verbessert die Ergebnisse signifikant, wenn eine angemessene räumliche Verteilung von Referenzgebieten verfügbar ist. In diesem Fall wird das Rauschen effektiv reduziert und unabhängige Ergebnisse von zwei Interferogrammstapeln, die aus unterschiedlichen Orbits aufgenommen wurden, zeigen große Übereinstimmung. Die Integration von TPS Punkten führt für die analysierte Zeitreihe von sechs Jahren zu einer deutlich größeren Anzahl an identifizierten TPS als PS Punkten im gesamten Untersuchungsgebiet und verbessert damit das Beobachtungsnetzwerk erheblich. Ein spezieller Anwendungsfall der TPS Integration wird vorgestellt, der auf der Clusterung von TPS Punkten basiert, die innerhalb der analysierten Zeitreihe erschienen, um neue Konstruktionen systematisch zu identifizieren und ihre anfängliche Bewegungszeitreihen zu analysieren

    Extraction d'informations de changement à partir des séries temporelles d'images radar à synthèse d'ouverture

    Get PDF
    A large number of successfully launched and operated Synthetic Aperture Radar (SAR) satellites has regularly provided multitemporal SAR and polarimetric SAR (PolSAR) images with high and very high spatial resolution over immense areas of the Earth surface. SAR system is appropriate for monitoring tasks thanks to the advantage of operating in all-time and all-weather conditions. With multitemporal data, both spatial and temporal information can simultaneously be exploited to improve the results of researche works. Change detection of specific features within a certain time interval has to deal with a complex processing of SAR data and the so-called speckle which affects the backscattered signal as multiplicative noise.The aim of this thesis is to provide a methodology for simplifying the analysis of multitemporal SAR data. Such methodology can benefit from the advantages of repetitive SAR acquisitions and be able to process different kinds of SAR data (i.e. single, multipolarization SAR, etc.) for various applications. In this thesis, we first propose a general framework based on a spatio-temporal information matrix called emph{Change Detection Matrix} (CDM). This matrix contains temporal neighborhoods which are adaptive to changed and unchanged areas thanks to similarity cross tests. Then, the proposed method is used to perform three different tasks:1) multitemporal change detection with different kinds of changes, which allows the combination of multitemporal pair-wise change maps to improve the performance of change detection result;2) analysis of change dynamics in the observed area, which allows the investigation of temporal evolution of objects of interest;3) nonlocal temporal mean filtering of SAR/PolSAR image time series, which allows us to avoid smoothing change information in the time series during the filtering process.In order to illustrate the relevancy of the proposed method, the experimental works of the thesis is performed on four datasets over two test-sites: Chamonix Mont-Blanc, France and Merapi volcano, Indonesia, with different types of changes (i.e., seasonal evolution, glaciers, volcanic eruption, etc.). Observations of these test-sites are performed on four SAR images time series from single polarization to full polarization, from medium to high, very high spatial resolution: Sentinel-1, ALOS-PALSAR, RADARSAT-2 and TerraSAR-X time series.La réussite du lancement d'un grand nombre des satellites Radar à Synthèse d'Ouverture (RSO - SAR) de nouvelle génération a fourni régulièrement des images SAR et SAR polarimétrique (PolSAR) multitemporelles à haute et très haute résolution spatiale sur de larges régions de la surface de la Terre. Le système SAR est approprié pour des tâches de surveillance continue ou il offre l'avantage d'être indépendant de l'éclairement solaire et de la couverture nuageuse. Avec des données multitemporelles, l'information spatiale et temporelle peut être exploitée simultanément pour rendre plus concise, l'extraction d'information à partir des données. La détection de changement de structures spécifiques dans un certain intervalle de temps nécessite un traitement complexe des données SAR et la présence du chatoiement (speckle) qui affecte la rétrodiffusion comme un bruit multiplicatif. Le but de cette thèse est de fournir une méthodologie pour simplifier l'analyse des données multitemporelles SAR. Cette méthodologie doit bénéficier des avantages d'acquisitions SAR répétitives et être capable de traiter différents types de données SAR (images SAR mono-, multi- composantes, etc.) pour diverses applications. Au cours de cette thèse, nous proposons tout d'abord une méthode générale basée sur une matrice d'information spatio-temporelle appelée Matrice de détection de changement (CDM). Cette matrice contient des informations de changements obtenus à partir de tests croisés de similarité sur des voisinages adaptatifs. La méthode proposée est ensuite exploitée pour réaliser trois tâches différentes: 1) la détection de changement multitemporel avec différents types de changements, ce qui permet la combinaison des cartes de changement entre des paires d'images pour améliorer la performance de résultat de détection de changement; 2) l'analyse de la dynamicité de changement de la zone observée, ce qui permet l'étude de l'évolution temporelle des objets d'intérêt; 3) le filtrage nonlocal temporel des séries temporelles d'images SAR/PolSAR, ce qui permet d'éviter le lissage des informations de changement dans des séries pendant le processus de filtrage.Afin d'illustrer la pertinence de la méthode proposée, la partie expérimentale de la thèse est effectuée sur deux sites d'étude: Chamonix Mont-Blanc, France et le volcan Merapi, Indonésie, avec différents types de changements (i.e. évolution saisonnière, glaciers, éruption volcanique, etc.). Les observations de ces sites d'étude sont acquises sur quatre séries temporelles d'images SAR monocomposantes et multicomposantes de moyenne à haute et très haute résolution: des séries temporelles d'images Sentinel-1, ALOS-PALSAR, RADARSAT-2 et TerraSAR-X

    Geodetic monitoring of complex shaped infrastructures using Ground-Based InSAR

    Get PDF
    In the context of climate change, alternatives to fossil energies need to be used as much as possible to produce electricity. Hydroelectric power generation through the utilisation of dams stands out as an exemplar of highly effective methodologies in this endeavour. Various monitoring sensors can be installed with different characteristics w.r.t. spatial resolution, temporal resolution and accuracy to assess their safe usage. Among the array of techniques available, it is noteworthy that ground-based synthetic aperture radar (GB-SAR) has not yet been widely adopted for this purpose. Despite its remarkable equilibrium between the aforementioned attributes, its sensitivity to atmospheric disruptions, specific acquisition geometry, and the requisite for phase unwrapping collectively contribute to constraining its usage. Several processing strategies are developed in this thesis to capitalise on all the opportunities of GB-SAR systems, such as continuous, flexible and autonomous observation combined with high resolutions and accuracy. The first challenge that needs to be solved is to accurately localise and estimate the azimuth of the GB-SAR to improve the geocoding of the image in the subsequent step. A ray tracing algorithm and tomographic techniques are used to recover these external parameters of the sensors. The introduction of corner reflectors for validation purposes confirms a significant error reduction. However, for the subsequent geocoding, challenges persist in scenarios involving vertical structures due to foreshortening and layover, which notably compromise the geocoding quality of the observed points. These issues arise when multiple points at varying elevations are encapsulated within a singular resolution cell, posing difficulties in pinpointing the precise location of the scattering point responsible for signal return. To surmount these hurdles, a Bayesian approach grounded in intensity models is formulated, offering a tool to enhance the accuracy of the geocoding process. The validation is assessed on a dam in the black forest in Germany, characterised by a very specific structure. The second part of this thesis is focused on the feasibility of using GB-SAR systems for long-term geodetic monitoring of large structures. A first assessment is made by testing large temporal baselines between acquisitions for epoch-wise monitoring. Due to large displacements, the phase unwrapping can not recover all the information. An improvement is made by adapting the geometry of the signal processing with the principal component analysis. The main case study consists of several campaigns from different stations at Enguri Dam in Georgia. The consistency of the estimated displacement map is assessed by comparing it to a numerical model calibrated on the plumblines data. It exhibits a strong agreement between the two results and comforts the usage of GB-SAR for epoch-wise monitoring, as it can measure several thousand points on the dam. It also exhibits the possibility of detecting local anomalies in the numerical model. Finally, the instrument has been installed for continuous monitoring for over two years at Enguri Dam. An adequate flowchart is developed to eliminate the drift happening with classical interferometric algorithms to achieve the accuracy required for geodetic monitoring. The analysis of the obtained time series confirms a very plausible result with classical parametric models of dam deformations. Moreover, the results of this processing strategy are also confronted with the numerical model and demonstrate a high consistency. The final comforting result is the comparison of the GB-SAR time series with the output from four GNSS stations installed on the dam crest. The developed algorithms and methods increase the capabilities of the GB-SAR for dam monitoring in different configurations. It can be a valuable and precious supplement to other classical sensors for long-term geodetic observation purposes as well as short-term monitoring in cases of particular dam operations
    corecore