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Abstract—Phase noise reduction is one of the key steps for 

InSAR data processing. In this paper, a novel phase filtering 

method is proposed. The main innovation and contribution of this 

research is to, (1) incorporate local fringe frequency (LFF) 

compensation technique into the non-local phase filtering method 

to include more independent and identically distributed (i.i.d.) 

samples for filtering; (2) modify the non-local phase filter from 

three aspects: 1) executing non-local filtering in the complex 

domain of the residual phase to avoid gray jumps in phase, 2) 

adaptively calculating the smoothing parameter based on the LFF 

and the coherence coefficient, and 3) using the integral image in 

similarity calculation to improve the efficiency; (3) perform 

Goldstein filter in high coherence areas to reduce the computation 

expense. Experiments based on both simulated and real data have 

shown that the proposed method has achieved a better 

performance in terms of both noise reduction and edge 

preservation than some existing phase filtering methods.  

 
Keywords—Phase noise reduction; Nonlocal filtering; Fringe 

frequency estimation. 

 

I. INTRODUCTION 

YNTHETIC Aperture Radar Interferometry (InSAR) is an 
important technique for obtaining high-precision Digital 

Elevation Model (DEM) and surface deformation of a wide area 
[1]. However, the existence of thermal noise, decorrelation, 
undersampling, and other factors will lead to various phase 
noise. The residual points caused by phase noise will reduce the 
success rate of phase unwrapping, and further affect the 
estimation accuracy of elevation and deformation. Therefore, 
how to effectively suppress the phase noise before phase 
unwrapping has been a focus of study in InSAR processing [2]. 

Phase filtering is the basic method to reduce phase noise, and 
its performance mainly depends on the number of pixels 

involved in the filtering window. A larger filtering window has a 
better noise reduction effect when the pixels are independent 
and identically distributed (i.i.d) [3], otherwise, a large filtering 
window will lead to a serious loss of fringe details [4]. It is 
difficult to select an appropriate window size for steep terrain 
with dense and changeable fringes. Up to now, there are mainly 
two kinds of improved phase filtering methods for rough areas: 
adaptive window methods and local fringe compensation 
methods. 

To balance the effects of noise reduction and fringe edge 
preservation, the adaptive window methods adjust the size, 
direction, or shape of the filtering window according to fringe 
density. When it is firstly presented in [5], eight predefined 
directional windows are used to match the phase fringes. The 
limited direction may mismatch the local fringe and lead to 
discontinuity in the filtered fringes. To match the filtering 
directional window with the fringes more accurately, in [6], the 
local tangents of the fringe edge are calculated first, and then the 
linear window along the tangential direction is interpolated to 
carry out low-pass filtering. The angle of the directional window 
can be chosen arbitrarily. However, for fringes with strong 
curvatures, the linear filtering window will cause some 
distortion to the curve fringe and make the phase fringe 
discontinuous. In [7], the directional filtering window consistent 
with the fringe direction is derived by tracking the tangential 
direction of the fringes, and the window size can be adjusted 
adaptively according to the stripe width. This method can keep 
the strong curvature fringes. However, the discontinuous fringe 
will affect the estimation of the direction and width of the 
filtering window. The intensity-driven adaptive-neighborhood 
(IDNA) method obtains similar pixels by using the 
intensity-driven region-growth technique, and constructs a 
neighborhood with variable shape and size as the filtering 
window [8]. Irregular contour filtering windows can effectively 
improve their adaptability to steep terrain, but the limited 
number of neighborhood pixels will affect the performance of 
noise reduction. 

Adaptive window filters can reduce the conflict between 
noise reduction and detail preservation to some extent. But it is 
very difficult to adjust the window size in an appropriate way, 
especially in rough areas with variable fringes. Another way to 
suppress phase noise in steep terrain is to reduce fringe density 
with local-fringe-compensation before noise filtering. A method 
proposed in [9] removes the local fringe frequency (LFF) and 
filters the residual phase in a local window, and finally adds 
back the removed fringes to the filtered residual phase. It can 
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effectively reduce the fringe density and improve the 
edge-preserving ability. To improve the LFF estimation 
accuracy, a statistical threshold is used to avoid sudden LFF 
changes in [10], while a further improved method is proposed in 
[11] by fusing multi-frequency interferograms to improve the 
LFF-estimation accuracy. In [12], a complexity factor is 
introduced by combining the coherence coefficient, LFF, and 
residual point distribution, then the local fringe estimation 
window size is adaptively selected based on the complexity 
factor; as the residual phase is filtered by the Goldstein filter 
after removing the local fringe, the phase noise is effectively 
suppressed. The two-stage filtering method [13] separates the 
noisy phase into a smooth part and a detail part, where the 
smooth part is extracted from the filtered result in the first stage 
and the detail component is filtered in the second stage and then 
added to the smooth part to obtain the final result. These 
methods can protect the fringes while performing effective 
denoising, but their denoising performances are still limited 
because local neighborhood filtering windows are used. 

Generally speaking, the more similar pixels used in phase 
filtering, the more accurate the phase estimation result. For 
those local filtering methods described above, their filtering 
windows can not be too large; otherwise, it risks destroying 
phase details in the fringe-dense area and reducing the clarity of 
interferometric fringes; the estimation reliability is low when the 
noise level is high in the neighborhood filtering window. To 
overcome this issue, the nonlocal means filter (NLM) has been 
proposed for image denoising in recent years [14] [15]. NLM 
methods rely on the similarity of pixels rather than spatial 
proximity, so they can make use of similar pixels outside the 
neighborhood area to obtain a more accurate estimation value. 
To improve the reliability of similarity matching, the NLM 
determines the similarity of central pixels by matching their 
neighborhood patch (similarity window). The NL-InSAR 
method applies the NLM principle to interferometric phase 
processing [16]. It calculates the similarity based on the 
probability distribution of the interferometric phase, finds 
similar central pixels in the interferogram, and reduces noise by 
an averaging operation. It overcomes the restriction that the 
filtering window must cover a consecutive neighborhood. By 
making full use of similar pixels, it can maintain more detailed 
features after phase denoising. Although nonlocal filtering 
methods can use pixels in the whole image, the process is very 
time-consuming. Generally, a large local window (search 
window) is selected to reduce the computation load, and good 
denoising performance can be obtained as well [17]. 

For nonlocal filtering methods, the filtering effect is affected 
by the size of the similarity window. The phase difference of 
complex scenes is considered in the nonlocal-SAR filter for 
well-performing altitude map generation (NL-SWAG) [18], and 
the patch size is adaptively selected based on the heterogeneity 
of local scenes. The more intense the phase change in the 
searching window, the smaller the similarity window to be used. 
In [19], structure similarity (SSIM) and threshold are used to 
select similar pixels nonlocally to form the phase tensor from 
the interferogram, and then the Wiener filter is applied to reduce 
noise based on high-order singular value decomposition 
(HOSVD). An interferometric phase denoising method is 
proposed by combining local sparsity of wavelet coefficients 
and nonlocally patch similarity in [20]. These methods improve 

the accuracy of similarity estimation by improving the similarity 
measurement method or adjusting the similarity window, so as 
to improve noise reduction. However, in steep terrain areas, the 
interferometric fringes are dense and vary greatly, which makes 
it difficult to select similar pixels and in turn limits its ability for 
noise reduction. 

To reduce the adverse effects of phase fringes on similarity 
matching in steep terrains, a nonlocal filtering method based on 
LFF compensation is proposed in this paper. Firstly, the LFF is 
estimated and removed from the original phase to reduce fringe 
density in the search window; secondly, the residual phase is 
filtered by an improved nonlocal method; finally, the denoised 
phase is obtained by combining the filtered residual phase and 
the removed local fringe. The proposed method improves 
nonlocal filtering in the following aspects: (1) noise reduction is 
carried out in the complex domain to further reduce the 
influence of interferometric fringes on the calculation of 
similarity weight; (2) the smoothing parameter is adaptively 
chosen on the LFF and the coherence coefficient of residual 
phase to preserve the fringes better; (3) the integral image is 
used in similarity calculation to improve operation efficiency. 

The paper is structured as follows. The principle and 
implementation process of nonlocal phase noise reduction based 
on fringe frequency compensation are presented in Section II. In 
Section III, results based on both simulated and real data are 
provided using the proposed method, in comparison with some 
existing local and nonlocal phase filtering methods. Conclusions 
are drawn in Section IV. 

II. NONLOCAL NOISE REDUCTION METHOD BASED ON LOCAL 

FRINGE COMPENSATION  

The filtering process of the nonlocal method involves more 
consistent pixels in a larger range. Compared with the local 
filters, it can suppress noise more effectively with less loss of 
fringe details. However, the dense and varied fringes reduce the 
number of similar pixels in steep terrain, which affects 
similarity matching and limits the noise suppressing ability. To 
reduce the influence of fringe on the matching of similar 
patches, we propose to compensate for the local fringe before 
nonlocal filtering and present the improved nonlocal filtering 
for the residual phase. 

A. Nonlocal Filtering Principle 

Through similarity matching, nonlocal filters can find more 
similar pixels for noise reduction. The procedure of similarity 
matching is shown in Fig. 1. By sliding the similarity window 
pixel by pixel in the search window, the similarity between 
patch x and patch y  is calculated to determine the filtering 
weights of pixels in the search window. The filtered phase of 
NLM can be expressed as the weighted average of the pixels in 
the search window S , given by: 

       ,
y S

NL v x w x y v y


    (1) 

where   |v v x x I   represents the phase of pixel x , and 

   , 0,1w x y  is the weight depending on the similarity 
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between surrounding patches around x and y with

 , 1
y S

w x y


 . 

In Fig. 2, pixels in red rectangles have similar structural 
features as those to be reconstructed. In the filtering process, 
the center pixels of these patches will have larger weights. 

 

 

 

x

y
y

y
y

 
Fig. 1.  The procedure of similarity matching. Fig. 2.  Schematic diagram of similar patches. 

 

   
(a) (b) (c) 

Fig. 3. The effect of LFF compensation: (a) original phase; (b) prominent fringe phase; (c) residual phase. 
 

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig. 4.  Similarity changes before and after removing local fringes: (a) original phase; (b) similarity map of original phase; (c) histogram 
of original phase similarity; (d) residual phase; (e) similarity map of residual phase; (f) histogram of residual phase similarity. For better 

presentation, the similarity value is normalized. 
 

B. Principle of Local Fringe Frequency Compensation 

The interferometric phase noise is assumed to be additive 
[19], and the noisy phase can be expressed as 

 0+
n c r

n     (2) 

where 
c

 is the prominent fringe phase which represents the 

basic topography，
r

  is the residual terrain phase and 0n is 

phase noise. 
c

  represents the outline of terrain, which is the 

prominent component of the phase value. Therefore, the 
interferometric fringe density could be reduced by removing 

c
 , and the residual phase 

res
 , containing residual terrain and 

noise, can be represented as: 

Similarity 

window

Search 

window

y
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 res n c
     (3) 

The prominent fringe phase 
c

  can be obtained by 

estimating the LFF.  

      
1

, arg 2 , 1,exp
g

c i xi yi

i

m n C j mf nf g G 


       
  (4) 

where 
i

C  is the amplitude of the frequency component

 ,
xi yi

f f and G is the number of vectors. The LFF 

compensation effect is shown in Fig. 3. As can be seen, after 

removing the prominent fringe phase, the phase noise remains 

in the residual phase, and the fringe density in the residual 

phase is effectively reduced. 

C. Nonlocal Noise Reduction Based on Fringe Frequency 

Compensation 

1) Fringe frequency removal 

To increase the number of similar pixels, it is proposed that 
the prominent fringe phase which causes significant fringes is 
removed from the noisy phase in the search window to reduce 
fringe density, and fringe frequency compensation is realized in 
the complex image, which is: 

      , ,, exp
res c

I I m n j m nm n      (5) 

where,  ,I m n is the complex form of the noisy phase, 
c

  is 

estimated firstly, and then phase compensation is implemented 
by (5). 

The phase values and similarities in a search window before 
and after removing LFF are shown in Fig. 4. From the 
similarities given in Fig. 4(b), 4(c), and 4(e), 4(f), it can be seen 
that the residual phase has sparser fringes, and more pixels with 
high similarity are obtained in the search window after 
removing the local fringes. With more similar pixels, phase 
estimation will become more accurate. Therefore, nonlocally 
filtering the residual phase is more reliable than directly dealing 
with the original phase. 

2) Adaptive selection of smoothing parameter for nonlocal 

noise reduction 

After removing local fringes, the residual phase is filtered 
using the improved nonlocal method. To further reduce the 
effect of the fringe boundary in the residual phase, all filtering 
operations are carried out in the complex domain. Euclidean 
distance has a good effect on patch matching in the case of 
additive Gaussian noise [20], so it is more suitable for 
measuring the similarity of interferometric phase in the 
complex domain than directly applying to the phase value 
under the assumption that the distribution of phase noise is 
complex Gaussian [21]. 

In the NL-InSAR method, the size of the search window and 
similarity window will affect the noise reduction performance. 
With the increase of search window size, the performance first 
becomes better and then worse [22]. This is because a larger 
neighborhood window contains more similar pixels, but as the 
window size continues to grow, the proportion of dissimilar 
pixels will increase. As to the similarity window, a smaller 
window has a better reduction effect on steep terrain, while a 
larger window has a better performance on flat terrain. In [22], 

the window size is optimized through iterative experiments, 
and finally the search window and the similarity window are set 
to 17 ×17 and 7 ×7, respectively. In our method, the size of the 
search window is adjusted to 21 × 21 because the fringes 
become sparser and the number of similar pixels increases after 
removing local fringes.  

The value of the center pixel x  after filtering is given as: 

 

   
 

   
 

Re Re
Re

Im Im
Im

,

,

res

res

y I

y I

I w x y v y

I w x y v y





  



 





 (6) 

where  Re
res

I  and  Im
res

I  are the real and imaginary parts 

of the complex residual phase 
res

I . The weights  Re ,w x y and 

 Im ,w x y  are determined by the Euclidean distance and 

smoothing parameters between the pixel patches centered on x  
and y . 

 
 

    
    

   

2 2
2,

Re,Im 2 2
2,

exp || || /
, ,  

exp || || /

, , ImRe

a

a

y

res res

V x V y h
w x y

V x V y h

x y I I

 


 



  (7) 

where 2
2,|| ||

a
  is the Gaussian weighted Euclidean distance, and 

the Gaussian kernel is 

  
2

2 2

1
exp

2 2

x
G x

 
 

   
 

 (8) 

where 0  is the standard deviation of the Gaussian kernel. 
x  represents the distance between the pixel in the similarity 

block and its center pixel, which highlights the contribution of 
the center pixel of the similarity block to the similarity 
calculation. h  is the smoothing parameter, which controls the 
attenuation speed of the weight function. The larger the value of 
h , the more obvious the smoothing effect of phase filtering. 

In the smooth region, the number of similar pixels is large, 
and a larger h  is required, which gives a small range of weights 
and suppresses the noise well. On the contrary, in the rugged 
region, the number of similar pixels is small, a smaller h is 
needed to increase the weights difference so that similar pixels 
would have larger weights to preserve the detailed textures. In 
literature, the smoothing parameter h  is mostly determined 
according to the noise distribution and the size of the search 
window. In [20], the value of h is directly proportional to the 

standard deviation of noise 
n

 , with 10
n

h  , while it is 

found that better noise reduction is achieved when the value of 

h is within the range 2 20.4 ~ 0.6
n n

   in [23]. These methods 

only consider the distribution of noise in the search window. 
For the interferometric phase, both noise statistics and fringe 
density should be considered. In our method, the adaptive 
smoothing parameter h  is chosen adaptively as  

   1/22 210 1
n x y

h f f 


        (9) 

where  is the coherence value,  ,
x y

f f  is the dominant 

frequency of the residual phase. The value range of
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  1/22 21
x y

f f


     is within  0,1 . 
n

  is the standard 

deviation of phase noise in the search window. 
The variance of phase noise can be expressed as a function 

of coherence   [24]: 

 

 

 

2

22
0

22
2

2

0 0

( )
arcsin arcsin , 1

3 2

 ( ; , , ) , 2

n

i

E

L
L

pdf L d L





  

    

     


   


   
 
  



 (10) 

where,  
2i

L   represents the Euler logarithm with base 2, and L  

is the number of observations.  
3) Method implementation 

The implementation of the proposed nonlocal phase noise 
reduction method based on local fringe compensation is shown 
in Fig. 5.  

 

Start

Pre-filtering in search window

Estimate the fringe frequency

Remove local fringe frequency

Residual noisy phase

Add fringe frequency to filtered 
residual phase

End

Filtered phase

Imaginary part

Similarity 
matching

NLM filtering

Remove local fringes

Adaptive filtering based on 
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Superimpose  
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matching
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Combine real and imaginary 
parts of filtered phase

Reduce the size 
of window

Goldstein 
filtering

thr  
yes no

  
Fig. 5.  Flowchart of the proposed phase filtering method. 

 
Step1: Remove local fringes 
In a search window, the LFF can be estimated with different 

methods. For example, the linear fringe estimation with the 
autocorrelation function method, the maximum likelihood 
method (ML) [25], or the modified multiple-signal 
classification (MUSIC) method [26], and the non-linear fringe 
estimation with prominent spectrum extraction method [27]. 

Given the stability of the ML method, it is used to estimate the 
LFF here. After the interferometric phase is transformed into 
the frequency domain by 2-D fast Fourier transform (FFT2), 
the LFF is derived by detecting the amplitude peak position of 
the two-dimensional signal spectrum.  

 
 

   
ˆ ˆ,

exp , 2max exp
x y

n x y
f f

k p l q

x k p y l q

j m n j mf nf 
 

   

 
         

 
   (11) 

To reduce the error caused by the quantization of FFT, the 
Chip-Z transform [28][29] is used to further improve the 
accuracy of fringe frequency estimation. The frequency 
estimation offset is obtained by 32 times sampling of Chip-Z 
transform to correct the frequency estimation result. Then the 
linear prominent fringe phase is expressed as 

    1
ˆ ˆ, 2

c x y
m n mf nf    (12) 

In areas with large fringe curvature, it is difficult to use 
linear fringes to compensate for the fringes in the search 
window. In this case, we use the prominent spectrum extraction 
method to estimate the prominent fringe. According to (4), a 
certain number of vectors with larger weight 

i
C are selected to 

form the main phase component, and the residual phase vector 
reflects terrain details and phase noise.  

The prominent frequency spectrum can be obtained by the 
following rule: 

  
   

 
, , ,

,
0,         ,

S u v S u v b
S u v

S u v b

   


 (13) 

where    , ,
n

S u v I m n    is the phase spectrum of the 

search window. b is the spectrum amplitude threshold. In this 

paper, b  is determined by the lower bound of the first 3% 
maximum spectrum amplitude. In comparison with the half 
power point threshold given in [27], the proposed adaptive 
spectrum amplitude threshold is beneficial to estimate the main 
fringes more precisely. Fig. 6 shows the phase fringes extracted 
by different thresholds. In each group of images, the left one is 
the interferometric phase and the right one is the corresponding 
spectrum. It can be seen from Fig. 6(b) that the threshold set 
according to the half power point is too high, and only a small 
amount of useful spectrums is extracted and detail information 
is lost. The result by the proposed method shown in Fig. 6(c) 
retains the prominent spectrum sequence according to the 
number of points in the FFT window, which can avoid the 
influence of extreme spectrum amplitude on threshold selection 
and extract the prominent fringe more effectively. 

 

  
(a) 
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(b) 

  
(c) 

Fig. 6.  Prominent fringes extracted by different thresholds: (a) original 
noisy phase, (b) half power point as the threshold, (c) retaining 3% of 

the maximum amplitude spectrum. 
 
Then the nonlinear prominent fringe phase is expressed as 

     1
2 , arg ,

c
m n S u v       (14) 

The residual phase in the complex domain is obtained by (5). 
The nonlinear method can remove the local fringe better, but 

the estimation result is susceptible to phase noise. Therefore, 
when the distribution phase fringes is simple, the linear fringe 
estimation method can be used to compensate for the local 
phase. On the other hand, it is more suitable to compensate for 
nonlinear fringes using method 2, when the curvature of phase 
fringe is large and the phase noise is not too heavy. 

Step2: Adaptive filtering based on phase coherence 
In a region with high coherence, the traditional local filtering 

method can also obtain good filtering results. To improve the 
operation efficiency, nonlocal filtering is only applied in the 
low coherence region, while the local filtering method, 
Goldstein filtering method used in this paper, is applied in the 
high coherence region. The coherence  can be calculated by 

the following formula [2]: 
*

1 2

2 2

1 2

E S S

E S E S


  

   
   

 (15) 

where, 1S  and 2S  are the main and slave SAR complex images, 

respectively, and  E   is the mathematical expectation. Set the 

local filtering window size to 1/2 of the search window and 
perform Goldstein filtering when the average coherence in the 
search window is higher than the threshold value. (threshold is 
set as 0.7 in this paper); otherwise, the residual phase in the 
search window is filtered nonlocally. The nonlocal filtering 
process is carried out in the complex domain of the phase. The 
residual phase is filtered using the similarity of the real part and 
the imaginary part, separately, and the filtered residual phase is 
obtained by combining the filtered real and imaginary parts. 

The integral image method proposed in [30] is employed to 
calculate the similarity to reduce the operation cost. The value 
of each point in the integral image is the sum of all the pixel 

values in the upper left corner of the original image. The sum of 
all pixels in the similarity window can be quickly calculated by 
searching through the integral image four times. The 
complexity of the algorithm for calculating Euclidean distance 

has been reduced from  2 2
O ND d  to  2

O ND  for an image 

with N  pixels, where D  is the size of the search window and 

d  is that of the similarity window. 
Step 3: Superimpose local fringe 
After residual phase filtering, the filtered phase is obtained 

by combining the removed local fringe with the filtered residual 
phase. 

     ,, arg exp
res c

I j m nm n       (16) 

Specifically, the local fringe is added back to the complex 
domain. Then, the interferometric phase is obtained by taking 
the angle of the complex value. 

 

III. RESULTS AND ANALYSIS  

In this section, both simulated and real data are filtered with 
different methods and the results are evaluated. Two local 
filtering methods, including the slope adaptive method and the 
Goldstein filtering method, and two nonlocal filtering methods, 
including the NL-InSAR [16] and the NL-SWAG [18] methods, 
are used as comparisons. All the experiments are implemented 
on a PC with Intel(R) Core(TM) i5-5200U@2.2GHz CPU and 
a 32-GB memory. 

A. Simulated data 

The simulated SAR image is generated using real DEM in 
Xi'an, China, and the main parameters are listed in Table I. 

TABLE I 
PARAMETERS FOR SIMULATED DATA 

Parameter Value 

Baseline 600m 

Wavelength 0.0313m 

Near range 630km 

Baseline obliquity angle 10° 

Slant range resolution 2.3m 

View angle 30° 

The clean wrapped phase can be expressed as 

2
mod ,  2

r  

   

 
 (17) 

where   is the wavelength, r is the range difference 

calculated by DEM and satellite position, and  mod ,2  

denotes the residue value after dividing by 2 .  

A pair of SAR complex images are simulated with the 
method in [31] while random phase noise and complex 
Gaussian noise are added. The noisy wrapped phase is obtained 
by conjugate cross-product of main and slave complex images. 
The simulated results are shown in Fig. 7, and the image size is 
290×200 pixels.  
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(a) (b) 

  
(c) (d) 

Fig. 7.  Simulated data: (a) SAR image; (b) coherence map; (c) 
interferometric phase; (d) clean wrapped phase. 

 
The local filtering methods used in the test are slope adaptive 

filter and Goldstein filter, and the filtering window size is 13 
×13. The filtering parameter of Goldstein filter is set as 1 
[35]. Nonlocal filtering methods are the NL-InSAR method, 
NL-SWAG method and the proposed method with a search 
window of 21 × 21 and a similarity window of 7 × 7. The 
proposed method1 uses the ML method to estimate linear 
fringes, while the proposed method2 uses spectrum amplitude 
extraction method to estimate prominent fringes. The results of 
the different filtering methods are shown in Fig. 8, where the 
left image is the filtered result, and the right one shows the 
phase estimation error and the distribution of residual points, 
with purple dots representing positive residuals and cyan ones 
negative residuals. 

 

  
(a) 

  
(b) 

  
(c) 

  
(d) 

  
(e) 

  
(f) 

Fig.8.  Filtered phase and phase error: (a) slope adaptive filtering; (b) 
Goldstein filtering; (c) NL-InSAR; (d) NL-SWAG;(e) proposed 

method1; (f) proposed method2. 

As can be seen from the figures above, in Fig.8(a), the slope 
adaptive filter performs well in fringe-sparse areas, but it 
generates more residual points in fringe-dense areas. In Fig. 
8(b), the Goldstein filter blurs fringe boundary and introduces 
phase distortion. In Fig. 8(c), there are obvious fringe ruptures 
that will lead to severe error in the following phase unwrapping 
operation. Intuitively, both the NL-SWAG method and the 
proposed method shown in Fig. 8(d), Fig. 8(e) and Fig. 8(f) can 
effectively suppress the phase noise. It can be seen from the 
phase error diagrams that the error and residual points of the 
proposed method2 are less than other methods not only in areas 
with sparse fringes but also in areas with dense fringes. In order 
to compare the denoising performance of different methods, the 
phase error profiles of different filtering results in area A and 
area B are shown in Fig. 9. 
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(a) 

 
(b) 

Fig. 9.  Cross-sections of phase error: (a) area A; (b) area B. 

 
As can be seen from Fig. 9, in area A with dense fringes, the 

two local filtering methods, i.e., slope adaptive filtering and 
Goldstein filtering, have a large phase error. This shows that the 
local filtering window cannot effectively suppress the phase 
noise because only a limited number of pixels are used for 
phase estimation. The three nonlocal methods, i.e., NL-InSAR, 
NL-SWAG and the proposed method, have better noise 
reduction effects. This is because nonlocal filters use more 
information in a larger search window, thereby having a more 
stable noise reduction performance. In area B with sparse 
fringes, most methods have achieved good noise reduction 
results, while the Goldstein filter has larger phase errors. 
Goldstein filtering in the frequency domain tends to remove the 
high-frequency information as noise and has poor ability in 
preserving phase details. Compared with the proposed method, 
the similarity matching of NL-InSAR is interfered by phase 
fringes, resulting in a reduction in the number of similar pixels, 
and therefore its noise reduction effect is not significantly 
improved. The NL-SWAG method adaptively selects the size 
of the matching window. The window is small where the 
fringes are dense and the similarity estimation is less reliable 
because the small window is sensitive to phase noise. The 
proposed methods can use a larger similarity window after 
removing local fringes, and can select similar pixels more 
accurately. It is obvious from Fig. 9 that in areas with dense 

fringes or changeable fringes, more improvement is achieved 
by the proposed method than that in areas with sparse fringe. 

To quantitatively compare the filtering results of different 
methods, phase root mean square error (RMSE), 
edge-preserving index (EPI), the number of residual points and 
filtering time, are introduced to evaluate the filtered phases. 
Their definition can be found in [32]. 

The evaluation results are shown in Table II. It can be seen 
from the results that the slope adaptive filter has smaller phase 
RMSE and its EPI is close to 1, which is because the LFF 
compensation operation can protect the fringe edge and reduce 
the phase error. Non-local methods can use more similar pixels 
to suppress noise so that they have fewer residues. The 
proposed methods have the advantages of both LFF 
compensation and non-local filtering, so they have not only 
have better noise suppression ability, but also better edge 
preservation ability. However, one disadvantage of the 
proposed method is that due to the high computational 
complexity in similarity matching, the running time increases 
significantly. To show the filter performance more intuitively, 
according to the height ambiguity of the system, the elevation 
accuracy of the DEM inverted by different interferometric 
phase is derived [2] and shown in the fourth column of Table II. 
Since nonlinear frequency estimation can compensate the local 
fringes more effectively, the filtered result of the proposed 
method2 has the minimum phase error. It is worth noting that 
the proposed method2 is more efficient than proposed method1 
because chip-z transformation is not needed in nonlinear fringe 
estimation. 

TABLE II 
EVALUATION RESULTS OF SIMULATED DATA 

Interferogram Residues EPI 
Phase 
RMSE 
(rad) 

Elevati
on 

RMSE(
m) 

Time 
(s) 

Noisy phase 12595 2.985 1.301 3.25 / 

Slope adaptive filter 432 1.064 0.396 0.99 170 

Goldstein filter 445 1.159 0.842 2.11 71 

NL-InSAR 342 1.061 0.564 1.41 45 

NL-SWAG 119 1.013 0.459 1.15 96 

Proposed method1  105 0.997 0.373 0.93 191 

Proposed method2 12 1.003 0.193 0.48 124 

 

B. Real data 

1) ERS SAR data 

The real SAR image data is from the ERS satellite recording 
in September 2000 and October 2000 at the Enta volcano in 
Italy. The selected area has 400×220 pixels. The fringe pattern 
and coherence map are shown in Fig. 10. Due to volume 
scattering decorrelation and temporal decorrelation caused by 
vegetation growth, the average coherence coefficient of the 
selected region is only 0.537. 
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(a) (b) 

Fig. 10.  Real data: (a) interferometric phase; (b) coherence map.  
 

Slope adaptive filtering, Goldstein filtering, NL-InSAR, 
NL-SWAG and the proposed method are used to filter the 
phase in Fig.10(a). The filter parameters are the same as those 
in Section III-A. The filtering results of different methods are 
shown in Fig. 11. In each row, the left image is the denoised 
phase, and the right one is the distribution map of residual 
points. In the right figures, the purple dots represent positive 
residual points, while the cyan points represent negative ones. 
Since the phase error cannot be calculated using real data, the 
denoised phase is used as the gray background in the right 
image to show the position of residual points. 

 

  
(a) 

  
(b) 

  
(c) 

  
(d) 

  
(e) 

  
(f) 

Fig. 11.  Filtered phase and residues distribution: (a) slope adaptive 
filtering; (b) Goldstein filtering; (c) NL-InSAR; (d) NL-SWAG; (e) 

proposed method1; (f) proposed method2. 

 
The low coherence in this vegetation coverage area makes it 

difficult to obtain a large number of i.i.d. samples in a local 
window for interferometric noise suppression [33]. The 
proposed methods employ LFF compensation and non-local 
strategy to look for more i.i.d. pixels in a larger range and 
reduce the weight of heterogeneous pixels to improve 
denoising performance. In Fig. 11(a), many residual points are 
left in the result of the slope adaptive filtering method. In Fig. 
11(b), the Goldstein filtering method produces phase ambiguity 
when the filtering intensity is too high. In Fig. 11(c), there are 
some fringe breaks and distortions in the results of the 
NL-InSAR method. In Fig. 11(d), the result of the NL-SWAG 
method has more residual points than the proposed methods. In 
Fig. 11(e), the proposed method can use a larger matching 
window after removing local fringes and has better noise 
reduction and fringes preservation compared with the 
NL-SWAG method. As shown in Fig. 11 (f), the fringes are 
most complete and clear, and the edge information and details 
are preserved best. Similarly, SAR interferograms in urban 
areas are more heterogeneous and the proposed methods also 
perform better for them. 

Due to the lack of noiseless real data, MSE and EPI of the 
filtered phase cannot be calculated. Thus, the performance of 
the filtering results is evaluated with the number of residual 
points, residual phase deviation (RPSD) and filtering time. The 
RPSD is calculated after removing the local fringes, whose 
definition and calculation formula can be found in [32].  

The evaluation results are shown in Table III. The empirical 
conclusion is similar to that of the simulated data. Slope 
adaptive filtering and NL-InSAR have more residual points. 
Goldstein filter has better noise reduction ability but cannot 
keep the edge and detailed information well. The proposed 
method has the least residues and RPSD, so it has achieved the 
best results in both residual point reduction and fringe 
preservation, which facilitates better the following phase 
unwrapping and elevation inversion. But the proposed method 
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spends more running time because both LFF compensation and 
similarity matching have a large amount of calculation. 

 
TABLE III 

EVALUATION RESULTS OF ERS DATA 

Interferogram Residues RPSD Time(s) 

Noisy phase 15170 1.532 / 
Slope adaptive filter 869 0.597 213 

Goldstein filter 169 0.626 91 
NL-InSAR 722 0.749 87 
NL-SWAG 97 0.782 172 

Proposed method1  88 0.358 339 
Proposed method2 29 0.281 248 

 
2) NSAR data 

Another set of airborne data over a mountain area in Weinan, 
Shaanxi Province recorded by N-SAR system in January 2021, 
is selected to demonstrate the effectiveness of the proposed 
method. NSAR is an airborne SAR/InSAR system developed 
by Nanjing Research Institute of Electronic Technology [34]. 
The main parameters of NSAR systems are shown in Table IV. 
The amplitude image, interferometric fringes, coherence map 
of size 300 × 300 pixels are shown in Fig. 12 (a)-(c). At the 
center of the scene, the slope of a gully area is large, resulting in 
obvious shadows. Shadow areas lack useful information and 
have a low correlation coefficient. They are detected and 
labeled as Fig. 12(d).  

TABLE RE. IV 
SYSTEM PARAMETERS OF N-SAR 

Parameters Value 

Baseline 3.7m 

Wavelength 0.0312m 

Near range 10.2km 

Baseline obliquity angle 0.005° 

Slant range resolution 0.3m 

Azimuth resolution 0.5m 

Flight height 8.0km 

Platform speed 117.6m/s 

 

  
(a) (b) 

  
(c) (d) 

Fig. 12. NSAR data: (a) SAR amplitude image; (b) interferometric 
phase; (c) coherence map; (d) shadow label. 

 
The results of different filtering methods are shown in Fig. 

13. Since the airborne data has sparse stripes, all filtering 
methods have achieved good noise reduction effects. Among 
them, the results of NL-SWAG and the proposed method are 
slightly better than the other three methods. In Fig. 13(d), pixels 
in the shadow area are over-filtered by the NL-SWAG method, 
leading to artifacts, which will fail to reflect the real terrain in 
the final height estimation result. The proposed method 
improves the accuracy of similarity calculation after frequency 
compensation, and therefore can suppress noise well in the 
normal area and retain the shadow boundary. By examining the 
bottom area of the filtered phase, it can be found that among the 
five filtering methods, only the proposed one can keep the 
fringes intact, while the other four more or less cause some 
defects of phase detail and fringe breaks. Quantitative 
evaluation results are given in Table V. The areas affected by 
shadows are not included in the evaluation. Similar to the 
results of ERS data, the proposed method has demonstrated the 
least residues and the smallest RPSD. Compared with local 
filtering methods, pixels in a larger range are used in nonlocal 
filters, which is beneficial to noise reduction; compared with 
other nonlocal filtering methods, after LFF compensation, the 
residual phase of the proposed method has sparser fringes, 
which helps with edge protection. Therefore, the proposed 
methods not only reduce the phase noise more effectively but 
also preserves the local fringe better. 

  
(a) 

  
(b) 

  
(c) 
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(d) 

  
(e) 

  
(f) 

Fig. 13.  Filtered phase and residues distribution: (a) slope adaptive 
filtering; (b) Goldstein filtering; (c) NL-InSAR; (d) NL-SWAG; (e) 

proposed method1; (f) proposed method2.  

 
TABLE V 

EVALUATION RESULTS OF NSAR DATA 

Interferogram Residues RPSD Time(s) 

Noisy phase 14230 1.384 / 
Slope adaptive filter 268 0.578 168 

Goldstein filter 58 0.570 87 
NL-InSAR 172 0.701 66 
NL-SWAG 68 0.593 112 

Proposed method1  38 0.508 226 
Proposed method2 4 0.431 154 

 

CONCLUSIONS 

To improve the similarity matching ability of traditional 
NL-InSAR in areas with dense fringe, a new nonlocal noise 
suppression method has been proposed, which consists of three 
main steps. First, the local fringe compensation technique is 
employed to reduce fringe density; then, nonlocal filtering is 
implemented in the complex domain of the residual phase; 
finally, the denoised phase is obtained by combining the local 
fringes with the filtered residual phase. In addition, the 
smoothing parameter is improved based on statistical 
characteristics of the interferometric phase. As shown by 
filtering results using both simulated and real data, in the 
complex region, existing filtering methods suffer from different 
degrees of residual noise and loss of fringe detailed information, 
while the proposed one has achieved the best denoising and 
fringe preserving result. 

Nonlocal filtering can find similar pixels in a larger range to 
suppress noise. However, the larger the search window, the 
more difficult to accurately estimate the LFF. One possible 
direction for future research is to realize the adaptive selection 
of similarity window and search window according to the 
fringe distribution of the residual phase, so as to further 
improve the adaptability of this method to steep terrains. 
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