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An Interferometric Phase Noise Reduction
Method Based on Modified Denoising

Convolutional Neural Network
ShuoLi, Huaping Xu, Shuai Gao, Wei Liu, Chunsheng Li &mfdng Liu

Abstract—Traditional interferometric synthetic apertureradar
(INSAR) denoising methods normally try to estimate the phase
fringes directly from the noisy interferogram. Since the statistics
of phase noise are more stable than the phase corresponding to
complex terrain, it could be easier to estimate the phase noise. In
this paper, phase noises rather than phase fringes are estimated
first, and then they are subtracted from the noisy interferometric
phase for denoising. The denoising convolutional neural network
(DNCNN) is introduced to estimate phase noise and then a
modified network called IPDNCNN isconstructed for the problem.
Based on the IPDNCNN, a novel interferometric phase noise
reduction algorithm is proposed, which can reduce phase noise
while protecting fringe edges and avoid the use of filter windows.
Experimental results using simulated and real data are provided
to demonstrate the effectiveness of the proposed method.

Index Terms—Interferometric synthetic aperture radar, Phase

noise reduction; Denoising convolutional neural network.

I. INTRODUCTION
YNTHETIC Aperture Radar InterferometynSAR) is an

algorithms proposed in []7] are based on the noise subspace
and the projection of the signal subspdde subspace of noise

is obtained from a local window after coamsregistration,

and the window size may influence its performance. Meanwhile,
it is difficult to estimate the signal subspace dimension in
regions with low coherence. The complex-valued Markov
random field filter (MRF) is employed in [8],[9] to estimate the
noise-free phase term by minimizing the energy function in a
local window. The energy function is further developed in [10]
based on a joint probability and the phase value is computed
with a genetic algorithm. Nevertheless, some complicated areas
could be over-smoothed due to the fixed local window folRVIR
methods. A common issue with these local phase estimation
methods is that they have difficulty in adapting to different
features with the fixed window size.

The Lee filter is designed to achieve a balance between
residual noise and detail information loss [5], where a window
with the adjustable size and direction is employed according to
the local gradient of the interferogram. However, this method
only calculates 16 discrete orientations, which brings distortion

all-time and all-weather remote-sensing technique and cgy\curved fringes. Following the Lee filter, the Intensity-Driven

be used for generating digital elevation models (DEMS) g{gaptive-Neighborhood (IDAN) method carries out a complex
detecting surface deformation [1P]. However, phase noise mij-look operation on an adaptive neighborhood [11], where
cannot be avoided _due to th_e existence O_f thermal_ NOI%fre adaptive-window filters can achieve a tradeoff between
temporal = decorrelation, spatial decorrelatioand mis- noise reduction and detail preservation. However, noise

coregistration, etc., which increases the difficulty of phas.?eduction is not effective becsethe adjacent pixels are limited
unwrapping and reduces the accuracy of DEM and deformatlo“hin the local window

reconstruction [3]. Consequently, noise reduction is crucial for

improving the quality of SAR interferograms before phase To overcome the limitation of estimating the phase in a local
unwrapping [4]. window, non-local phase estimation is proposed [12],,[13]

Traditional phase noise reduction approaches are usudlfffich suppresses noise while preserving textures utilizing
divided into two categories: spatial-domain filtering andveighted averaging of similar pixels, with phase similarity
transform-domain filtering. In spatial-domain filtering, localc@lculated by a matching window. In [14], a refined non-local
phase estimation methods are widely used. Classic box&f" is proposed, which measures the similarity between the
filters estimate the parameters over a rectangular slidifgntral pixel and the remaining pixels in the matching window

window and require the samples to be homogeneous [5]. a normalized probability density func.tio.n. Howeyer, non-
local methods cannot provide accurate similarity estimation in

highly sloped terrains becauaéixed-size matching window is
used to capture the varied fringe curvature [15].

On the other hand, the transform domain filtering approach
mainly includes the wavelet transform and the frequency
transform. In [16], a complex wavelet interferometric phase
filter (WINPF) is implemented utilizing the discrete wavelet
packet transform decomposition to extract and amplify the
useful signal in the interferogram. There are several adapted
versions of the WInPF, such as those studied in [17], [18]
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where by employing the Wiener filter or simultaneous detection In recent years, convolutional neural networks (CNhes)
and estimation techniques, better performance is achievedbien developing rapidly and widely applieo image noise
filtering complicated areas. The phase information and noiseduction [31] CNNs havea powerful mapping approximation
can be more easily separated in the wavelet domain, but ttapability and can extract the noise characteristics from
wavelet domain filters greatly depend on the scales of wavelaassive training data [32], [33]. For noise reduction in optical
decomposition and the threshold of wavelet coefficients images, a large-scale multi-layer perceptron model is adopted
For the frequency domain methods, the Goldstein filtan [34] with superior performance to traditional methods such
suppresses phase noise by enhancing the main frequeasyblock-matching and 3-D filtering (BM3D) in image detail
components, but its performance is affected by the window siestention [35]. The denoising convolutional neural network
and filter parameter [19A modification is proposed in [20] to (DNCNN) proposedn [36] can quickly and steadily remove
construct a filtering parameter dependent on the coherermgtical image noises. In addition, sparse encoding, [37]
value to keep more texture details in the interferograntrainable Nonlinear Reaction Diffusion (TNRD) [38], and self-
However, a biased coherence estimation result usually leadstmler [39] have achieved good results in optical image
an inaccurate estimation of the filtering parameter. To solve thdgnoising through phase training. Among these methods,
problem, the filtering parameter is modified using an optim@nCNN is more effective in removing Gaussian noise from
nonlinear model with homogenous regions and a bootstrappiogtical images.
technique [21], or using a combination of correlation and multi- In this paper, a new approach to remove the interferometric
look factors [22], [23]. Thee extended Goldstein filters phase noise via a modified DnCNN is presented. The original
preserve phase fringes well, but frequency domain filtering stlinCNN is modified to adapt to interferometric phase noise
suppresses high-frequency components of fringes, resultingestimation and the denoised phase is obtained by removing the
the loss of fringe details. estimated noise from the original noisy interferogrémthe
In order to further enhance the fringe edge-preserving abilitgroposed method, the number of samples used for noise training,
E. Trouve proposed a local frequency compensation filterirBD0000 here, is huge and all pixels of noisy interfenogaee
algorithm [24]. The local fringe frequency (LFF) is removed irexploited in phase noise estimation with the well-trained
each local window, and then the residual phase is smoothedtwork. Thereforejt can effectively suppress noise while
Finally, the removed fringe frequency is added to the filterggreserving phase fringe edges.
residual phase to generate the filtered interferogram [25]. InThe remainder of this paper is organized as follows. The
[26], an adaptive multiresolution technique was proposed ioterferometric phase denoising method based on the modified
modify the LFF estimation by setting a threshold to eliminatBnCNN is proposed in Sectidh. Experimental results based
the “bad LFF values” which have a large difference compared  on both simulatd and real SAR data are presented in Section
to its neighboring pixels. It provides better protection for phadd , where the results are compared with those of slope adaptive
fringes, but it is still hard to estimate the fringe frequency fdiltering and improved Goldstein filtering algorithms
highly sloped terrain. In [27], multi-frequency data is used t@onclusions are drawn in Sectibh.
achieve an accurate LFF in abruptly changing terrain and the
Goldstein filter is applied to the residual phase. In [28], the locdl. PRINCIPLE OFMODIFIED INTERFEROMETRICPHASE NOISE
fringe frequency is removed before Goldstein filtering and the REDUCTIONMETHOD

filter parameters are then optimized, which improves edge Traditional denoising methods normally estimate the
preservation. Nevertheless, the performance of local frequengyerferometric fringes directly from the noisy interferogram
compensation filters relies on frequency estimation accuraGyith the pixels in a window. However, it is difficult to extract
which isheavily influenced by phase noise and window size. )| of the fringes accurately especially focomplicated terrain
Window size selection is an important issue for traditionghterferogram with low coherena® low signalto-noise ratio
noise reduction methoda.large window denoises better at the.SNR). As mentioned earlier, a new strategy is adopted in this
cost of losing details such as edges, vice versa [29]. HoweMggrk, where noise is estimated first and then removed from the
it is difficult to select a suitable window for all pixels of thejmage Given the strong mapping approximation ability of CNN,
interferogram due to the diversity of terrain. Although th js suitable for processing low-SNR interferograms with heavy

adaptive-window filter can be used according to the coherenggase noise. Therefore, estimation of noise is achieved by
or other criterionsijt only reaches a tradeoff betweanise  modifyinga DnCNN in this paper.

reduction and edge preservation. So the performance o

improvement from adaptive window is limited for complicated® DPNCNN Denoising Network [36]

terrains. Fortunately, the phase noise statistics are more stablPnCNN is modified from the VGG network [40] for image

than the phase fringes since noise is almost from the same tyflegoising. VGG is a typical CNN architecture proposed by the

of error sources, and thus estimation of phase noise could\ieual Geometry Group of Oxford at ILSVRC 2014 based on

easier than estimating phase fringes in areas with complicatbé Alexnet network. Compared with the Alexnet network,

terrains [30]. Therefore, in this work, we intetodestimate the VGG uses several groups of small convolution filters with a

phase noise first and then subtract it from the noisy phasesiee of 3X 3 instead of larger convolution filters. Under the

obtain thedenoised one. condition of the same receptive field, the network expression
capability is improved by increasing the network depth.
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Fig. 1 The structure of DnCNN.

)
=
(%2}
g L = =
S o) [}
o] o x
04 Es 2= >
i z z =
L —l@m > > @ [—» o
c R Ry @)
BiEpIHl 8 g g
F’ /o) o
Iritefferogram E S S
wn
17 layers

Fig. 2. The structure of IPDNnCNN.

DnCNN removes all of the pooling layers in a VGG networkyhere ¢ is the trainable parameters to be learnet and y©
learns the noise distribution, and combines batch normalization

(BN) for fast training and better denoising. It sets the depth ot° thi)el_.th clean. |magfa and no_|sy |m§ge,. respectively, and
the network according to the patch size used in the moSu(¥") is the noise trained by thieth noisy image.

advanced denoising algorithms [3&he network structure of B. Interferometric Phase Denoising Network Based on
DnCNN is shown in Fig. 1. Assuming that the original imagtf)'nCNN

size isNxNxc, the corresponding output is noise with the ) . _ .
Interferometric noiseis consideredas additive complex

Zir;f: j:zgeiﬁ Isotlr;? zzgzbe{ho; (;?;enr;?fr;;%):vgu%irsr{ (f:i?t: i Gaussian in complex interferogram,[®&hich makes it suitable
) . . Sfor denoising with the residual learning strategy [B&jwever,
3x3, .the _numper of feature maps is 64, and the size of tIg?gnificant errors occur when DnCNN, the classic optical image
receptive field is(2d +1)x (2d+ 1) for a depth ofd . denoising network, is directly used to process the
Denote the noisy image by, the clean image bx, and the interferometric phase. By modifying DnCNN, an

noise byn . Then, the input of the DNCNN model js= x+n. interferometric phase denoising network (IPDNnCNN) is
Unlike most denoising networks, suchnasiti-layer perceptron d€signed to suppress phase noise in a more robust way. The

(MLP) [34], which trains the mapping functioR(y) = X to network_structure of IPDNCNN is shown in F_lg. 2, where sine
. . . . .and cosine values of phase are used as the input of the network
estimate the clean image directly, the DnCNN uses the re&dgﬂld two more layers are added. Due to the wrapping

learning method to estimate noise by training the Mapping,, acteristic of the interferometric phase, if we use the
function G(y) = n, and then obtain a clean image by applyingyierferometric phase value as the input of the network directly,
X=y-G(y). The loss function in the DnCNN is the mearthe fringe edge tends to be judged as noise, which leads to

squared error of the noise unstable network training and poor denoising reJidtavoid
1 N ) b dne the instability of the fringe edge on network trainilRDNCNN
J(0) = NZ(G’Q( ¥ (¥ =) (1) uses sine and cosine values of the interferometric phase as input
i=1

to the networkFig. 3 displays a cross-section of several fringes



together with its sine and cosine values. As can be seen, phasaoving the estimated noise from the noisy images, and finally
jumps appear in the fringe edges. These jumps are stmtle  the denoised interferometric phageis calculated according to
characteristics of phase noise. Meanwhile, sine and cosijgs
values are continuous even at fringe edges; thus, they won't be ) o
confused with the noise in network training. C. Interferometric Phase Denoising Based on IPDnCNN
Based on IPDNnCNN, an interferometric phase denoising
method is proposed. The phase noise is predlibly the
network and then removed from the noisy phase to obtain the
latent clean phase. As shown in Fig. 4, IPDnCNN is mainly
composed of three steps: firstly, a large amount of training data
with different noise intensity is preparetien, the network is
trained many epochs, including adjustment of parameters and
other experiments; finally, the denoising network is tested with
both simulated and real data.

Value

3 Phase value
Sine value

- ==+ Cosine value . . .
15 20 25 30 35 40 Interferometric phase data
Range(pixels) simulation

Fig. 3. Inputs of DnCNN and IPDnCNN.

. . . . . Traini Testi
Therefore, with the introduction of sine and cosine values of 5:{2'3”3 dif;ggt
the interferometric phase, the number of channels becomes two
in the proposed IPDNCNN, i.ec,=2. Assuming noisen, and Interferometric phase denoising Noisy interferometric
n, are outputs of the IPDNCNN, the interferometric phase network phase
is calculated by .
, Y Phase noise
@ =angldcos(Xx )+ j(sin(X )- 1 )] )
. Denoised

where j—\/ﬁ. and interferometric phase

sin(x')=sinfy )-n, 3) Fig.4. The flowchart of IPDNCNN.

cos(X' )=cosy )} n, 1) Data preparation

Datasets are particularly critical for deep learning.
easonable training data of IPDnCNN is produced through
simulation The training datasets are generated according to the

The loss function of IPDNCNN is adopted to learn th%
residual mapping for predictn, which is changeds

J'(0) :ii(rfi) —(sin(y")—sin(’ )Y observation geometry pf InS_AR using the real [_?EM data in
2N = ) Lanzhou, China. The simulation parameters arediist Table
13 i i i 1
+m2(n§)— (cosg” ¥ cost” ) TABLE |
_ = Simulation Parameters
where n” and n{’ are obtained through the mapping Parameters Value
Gé(sin(y(i)),cos@(i) ): Baseline 600m
For general optical image denoising tasks, DnCNN typically
. . . ' . Wavelength 0.05666m
sets depth as 17 with a reception field3&x 35. Since the g )
interferometric phase usually hatow SNR, a larger receptive 'Near range 630km
field is needed ot capture enough spatial information for Baseline obliquity angle 10°
denoising. In order to balance efficiency and performance, the Slant range resolution im
depth of IPDnCNN in this work is increased to 19 with a view angle 30°

receptive field sizef 39x 39. Simulation experiments show
further increase in net\{vork depth WI!| increase computational The process of data preparation is shown in Figirstly,
cost, but without clear improvement in denoising performance : _ ) )
[36]. The first layer is a convolution layer with 64 filters of sizéhe _s_Iant distancar is calculated with DEMs and the sate.lllte
3x 3x 2. 64 feature maps are obtained andrtheified linear position. The clean wrapped phase can be expressed as:

units (Relu) activation is applied for nonlinearity. 64 filters of Q= mod(zmAr , sz—ﬁ (5)

size 3x3x 64 are utilized for convolution from the second A

layer to the 18th layer, and the batch normalization techniqudere 1 is wavelengthmod( ) operator retains the principal
(BN) is used for 64 feature maps to accelerate convergencevalue, and the actual phase is wrapped within the period
these 17 layers where Relu activation works. The last layer usesr, 7] .

two filters of size 3x 3x 64 to reconstruct two noisy images.  Tg train the network for denoising with different noise leyels
Then, denoised sine and cosine images are obtained rAsidom complex Gaussian noise is added during SAR image




simulation [42]. Then, the noisy interferometric phase iprevent overfitting, the BN and residual learning strategy are
obtained througha complex conjugate cross-product of twoemployed to stabilize and enhance the training performance

SAR images. [36]. The initial value of the network weight matrix in SGD also
has a significant impact on the training process. For multi-layer
DEM Sateliite position networks, the initial values should be random while ensuring

| | that the input and output of each hidden layer have the same
statistical characteristics [41]. In order to speed up the

cal(zililflfzh:gnczrznge Ca‘°”'a§'.?3ﬁ?§.§ﬁf°a“e"”g convergence, the mini-batch size is set as 32, which means that
v ;l 32 int_erferometric phases are randomly fed into the network
Cleannon-fuzzy SAR Qomplgx image L Complex _ each time.
phase simulation Gaussian noise During the training process, the value of the loss function
v i given in (4) is observed. The network is said to have converged
ISR WEIRG inteﬁﬁﬁ,,;";ﬁﬁepair if the value of loss function gradually becomes smaller and
finally stabilizes. The DnCNN method requires a GPU that is
Clean wrapped Noisy wrapped able to accommodate the computational loBdsed on the
phase . phase Hardware Environment of DnCNN, all the experiments are

implemented on a PC with Intel(R) Core(TM) i5-
5200U@2.2GHz CPU and a Quadro P4000 GPU. The trginin
in this experiment took about 3 days.

Fig. 5. Process of training data generation. 3) NetWOI'kteS.'[Ing _
Following the steps above, 6000 groups of clean and noisy USing the trained network, the simulated phase data, not
wrapped phases of siZ891x 591are generated. To reduce'nVOIVed in the training, are used to test the generality of

overfitting issues during the training process, sufficient traininI 5?‘?“';]- Tthg S'gggngl\flgst'ae valhutes of ;he nclnsy pgirs]e are
data is needed. Augmentation techniques [43] includig® 'Mt© the trained—bin rough two channeis, and then

horizontal flip, vertical flip, rotation, and so on, are used t e noise is obtained at the output. The interferometric phase

expand the training set. The patch size of the DNCNN @‘ter denoisin_g is reconstructed according to (2)_ and (3)_. The
40x 40. It is increased t@0x 80in our method to capture performance is evaluated by phase MSE and residual points.

more context information since the interferometric phas Totest the generalization abiley the trained network, extra
) Phasfo groups of data simulated for different occasions are used to
usually hasalow SNR. After these stepmore image patches

are produced. In this work00000groupsof phase patches areevaluate its ability to handle unknown phase noise. The

O bsi coherence value of simulated data is randomly set from 0.03 to
usedastr_alnlng _data and 30000 groups are LEE@sting data 0.97. Four groups of noisy phases and denoised results are
Four typical training samples are shown in Fig. 6.

o provided in Fig. 7. The evaluation results are shown in TABLE
2) Network training . .
. . o . Il After phase denoising using IPDNnCNN, the average number
The sine and cosine values of the noisy interferometric ph

are input to the network. The output is obtained by subtractirlg)gg ?gisreéguﬁgrﬁ 2 i(igtgeongll;?e ir:rg?\ﬁlgslz Ifsrolrr: plr%/?g from
sine and cosine values of the clean interferometric phase fr%|1134 It éhows that .the traiﬁed network performs well in
those of the noisy interferometric phase. h. ndling more general cases

Some network parameters are set according to the DnCNﬁ TABI_.E 0
network to learn the residual map for predicting phase nélise EVALUATION RESULT

epochs are trained using the stochastic gradient descent (SGD]J

Training data

method. The learning rate is maryahdjused based on Iterferogram Residues EPI MSE
empirical value according to the DnCNN netwoFke learning Noisy phase 1528 4.119 1.338
rate of the first 30 epochs is set as 0.001 to speed up thepgngised phase 13 0.957 0.134

convergence. The learning rate in the last 10 epochs is 0.006%
to reduce the final error. Instead of setting a dropout rate to




@ (b) (© (d)

Fig. 6. Different training samples of clean/noisy interferometric fringe.

(b)

Fig. 7. Four groups of noisy interferometric fringe and denoisedt.resu

Clearly, the fringes in Fi@ (d) contain less noise than those
Ill. RESULTS ANDANALYSIS in Fig. 9 (a)(c), especially in the region with dense

In this section, both simulated and real interferograms aterferometric fringes. In Fig. 9(a), the slope adaptive filter can
used to demonstrate the performance of the proposed phB&ect fringe edges better, but leaving more phase residues. In
denoising method. The training data sets are the same as tHo8e 9(b), the improved Goldstein filter has excessive filtering
in Section Il, which is simulated according to the observatiosirength in dense fringe areas, leading to broken fringes. In Fig.
geometry of INSAR and the real DEM data. The simulatioB(c), for the phasesinput DnCNN methogsignificant errors
parameters are shown in Table 1. The slope adaptive filter [2¥gve resulted in fringe edges because of misjudging the phase
and improved Goldstein filter [28] are used for comparison. jumps as noise. Itis obvious that there are too many errors when
DnCNN is applied directly to the interferometric phase. So the
) . ) modifications in IPDNCNN are necessary.

_ SAR complex images of mountains, in Lanzhou, China, are ¢y mparing the result of the IPDRCNN method in Fig)9(d
simulated with the method in [42] and noisy interferometriG, ihe existing filters, the noise reduction effect is significant,
phase with 591 x 591 pixels is produced. The noise-free phaggy the fringes are much better preserved. From the phase error

is created with the same steps as in Section II. Clean and nQigyy o ms it is clear that the IPDNCNN method performs better
phases are respectively shown in Fig. 8(a) and (b). As can{R&n, the other filters.

seen in Fig. 8(b), the phase fringes are submerged by noisg
because of low coherence. .
Slope adaptive filter, improved Goldstein filter, DnCNN and g

the proposed IPDNCNN are applied to this simulated datas
The window size for the former two filters is setas 11 x 11 an u""-'

32 x 32 whereas the DNCNN and IPDNnCNN methods do I("-::_':-ihq.:l-'l i

A. Basic experiments

need a filter window. The results are shown in Fig. 9. In eac .4-'-,-.="-'-|-:-- et

group, the left image is the denoised phase, and the right one ggrae o
the phase difference between denoised and clean phases, as V¥

(b)

@
Fig. 8. Simulated data: (a) clean phase, (b) noisy phase.




used as the criteria [28]. MS&to measure the deviation of the
denoised phase from the clean one, given by

0 MSE:ZIarQ(exriico( h; ¥ i PaaniCi ) ©

where ¢(i, j) represents the denoised phagg, (i, ) is the

clean phase, anM is the number of pixels.

EPI is calculatedy
o ep 2ol +Li) et i)-e(i +3)

Z(|¢clean(i!j)_¢clear‘(i +1lj )|+|¢ clear@ J )_¢ clea(n j + ])|)

(7
which is an indicator for performance in fringe and edge
preservation and a value closer to 1 means a better edge
preservation result.

Residues are the pixels where the gradient integral of
adjacent pixels in a certain direction is not zero. More residues
bring more difficulties in phase unwrapping, and thus reducing

Fig. 9. Denoised phase and phase error: (a) slope adtiptive  residues is one of the main purposes for phase denoising.
with window size 11 x 11, (b) improved Goldstein filter witldow The evaluation results are presented in TABLE Ill. In this

size 11 x 11, (c) the DNCNN method, (d) the IPDNCNN method. dense area, traditional filters using a small filtering window (11

X11) perform better than using a large wind@2X 32). In

Fig. 10 displays a cross-section through the denoised phdé&sms of residues in the interferogram, the slope adaptive filter
and phase error map in region A. As clearly shown, in this lo11X11), improved Goldstein filter (1X11) and the DnCNN
coherence area, the result of the IPDNCNN method is masethod have produced reductions of 90.12.15% and
consistent with the original clean phase data. 84.61%, respectively, while by the IPDNCNN methibds
99.95%. The phase EPI for the IPDNnCNN method is closer to 1
compared with the other methods, which means that it has a
better performance in fringe preservation. Moreover, the MSE
of the IPDNCNN methods the smallest due to an excellent
phase smoothing performance.

TABLE Il
EVALUATION RESULTS OFSIMULATED DATA

-

Wrapped phase(rad)
~ o

1 élm pha; Iterferogram Residues EPI MSE
2 ___.Zz;lytphase Clean phase 0 1 0
=] Noisy phase 103767  2.3598  2.3416
4 - . Slope adaptive filter (1% 11) 10253  1.1548  0.4103
Rafzge)(pixcls) Slope adaptive filter (32 32) 4910 12024 0.4636
a
4 : : Improved Goldstein filter (1X 11) 2954 1.0402  0.9302
3t 1 Improved Goldstein filter (3% 32) 2261 1.0614  0.9600
DnCNN method 15970 0.7744  0.6453
g IPDNCNN method 48 09998  0.0793
: :
§ Cloan phase ™ \ ;’ “\\ .' 1 B. Adaptability experiments
; Xi Y . .
2 ----igfpytphase " \ i 1 In order to compare the adaptability of different methods
3| I oen K v ] under different noise level80 additional interferograms with
L=—DnenN || , different coherence values from 0.38 to 0.83 are tested and the
15 20 A 25 30 MSE of different methods are shown in Fid.. It can be seen
Ra‘zfs(p‘xels) that the proposed method always has the lowest MSE.

Considering the better MSE amaller window for traditional

Fig. 10. Cross-sections: (a) denoised phase, (b) phase error. filters, the 11 x 11 window size is used in them.

In order to quantitatively evaluate the results, mean square
error (MSE), edge preservation index (EPI) and residues are



62 By Fig.11. MSE under different coherence values.
0.8+

Goldstein ||
IPDnCNN|

Foradetailed comparison, we present the denoised results of
| a low-coherence interferogram (coherenc8$Pand a high-
coherence interferogram (coherencé&4).as shown in Figl2.
The proposed method suppresses noise effectively even for the
low coherence case while the conditional filters are worse.
The evaluation results are shown in TABLE IV. According
to the results above, the proposed method has the best

s
<04}
03}
0.2}
01 performance on noise reduction (smallest MSE and least

0t Residues) as well as fringe preservation (EPI closest to 1).

045 _5 0.55 ()(‘ 065 07

Coherence coefficient

(b) (d)
Fig. 12. Noisy and denoised phase (top: low coherence, bottom: highecwieg: (a) noisy phase, (b) slope adaptive filter, (c) improved
Goldstein filter, (d) the IPDNCNN method.

TABLE.Re. IV
Evaluation Results of Simulated Data

Interferogram with low coherence Interferogram with high coherence

Interferogram - -
Residues EPI MSE Residues EPI MSE
Clean phase 0 1 0 0 1 0
Noisy phase 1068 2.484 2.048 128 1.591 0.476
Slope adaptive filter 488 1.103 0.307 0 0.976 0.082
Improved Goldstein filter 92 1.033 0.765 0 0.990 0.601
IPDNnCNN method 0 1.005 0.069 0 1.003 0.014

C. Experiments with real data
1) ERS SAR data

ERS SAR images over the ENTA Volcano in September ang
October 2000 are used as test data. The interferometric phaj
image of size 400 x 400 has dense fringes, and the meg
coherence value is only 0.537. The interferometric phase ar

the coherence value are shown in Hig.

(@ ()
Fig. 13. ERS Interferogram: (a) interferometric phase, (b)
coherence coefficient



coherence value of 0.419. It can be seen that the IPDnCNN

The denoised results by the three methods are shown in Rigethod has reduced noise significantly while preserving the

14. Each group contains the denoised phase, the enlarged adge, whereas the slope adaptive filter and the improved

in the red rectangle, and the residue distribution. TH8oldstein filter are less capable of denoising the interferometric
interferometric fringes in the enlarged area are densealdth  phase.

(a) | (b) (@)
Fig. 14. Denoised results of different methods: (a) slope adaptive filter, (b) imgr@oldstein filter, (c) the IPDNnCNN method.

To further verify the improvement produced by thelenoised results. Due to the lack of clean phase, only the
IPDNnCNN method, a cross-section is extracted in region B. Awimber of residuals and the residual phase standard deviation
shown in Fig.15, the phase obtained from the IRCNN (RPSD) are calculated. The RPSD is carried out after removal
method is relatively continuous, while those obtained from thef the local fringe frequency from the initial interferometric
other three still show some abnormality caused by residues aitase, and it reflects the smoothness of the residual phase. A
edge blur. smaller RPSD means a smoother phase with less noise. It is

calculated using the following equation

4 .. — 2
| 2o ()= (0.0))
RPSD=4|-N 8)
T 2t N-1
3 A where g (i, j) is the residual phase obtained by removing the
§~ : LFF from denoised phase, (i, j) is the lineaphase ramp in a
o (A
§ moving window of size X 3, andN is the number of pixelg
= ! the whole image.
2} - -égg’:tejn To reduce the possible effect of artifacts, we only evaluated
3 ——TIPDnCNN the denoising performance in the yellow rectangle.

50 55 60 65 70 75 8 85 90
Range(pixels)
Fig. 15. Cross-sections through the denoised phase of real data.

A quantitative evaluation is also performed to compare the
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TABLE V left side of this area is the reservoir. The slope of the reservoir

EVALUATION RESULTS OFREAL DATA dam is large, resulting in phase overlap. The amplitude image,
Iterferogram Residues RPSD coherence coefficient, interferometric fringes and denoised

; results are shown in Fid®6.
Noisy ph,ase, 1a6t 16586 Since the airborne dgta has high SNR and sparse stripes, all
Slope adaptive filter 8 1.1230 three methods have achievagood noise reduction effect. In

Improved Goldstein filter 19 1.0936 the low coherence region marked with the red box, the result of
IPDNCNN method 0 1.0694 the IPDnCNN method, as shown in Fig. 16(g), contains less

noise than that of the other two shown in Fig. 16(e) ~ (). Fig.
As shown in Table V, all methods can significantly reducé? shows a cross-section of the tangent C. It is obvious that the
the number of residual points. Residues of the slope adaptf@noised phase from the IPDNCNN method is the cleanest and
filter, improved Goldstein filter and the IPDNCNN method hav8'0st continuous one, while those from the slope adaptive and
been reduced by 94.6%, 98.7% d@f% respectively. Again, improved Goldstein filters still show many unwanted phase

the IPDNCNN method gives the best result. For the RPIBMPS.
results, we have a similar observation. Since the signain the water region is too weak to form

2) NSAR data coherent fringes, this region is excluded during quantitative
The interferograms obtained from a reservoir region igvaluation, and the evaluation results are given in Teble

Shanxi, China, recorded by the NSAR system developed by thénilar to the results of ERS data, the proposed method has

Nanjing Research Institute of Electronics Technology in Mardioduced the lest residues and smallest RPSD. It not only

2017, are chosen to conduct another experiment. The size of figdluces the phase noise more effectively, but also preserves

observation area isf 775 x 775 pixels, and the terrain featuredocal fringe better.

are significantly different from that in the mountain area. The

Fig. 16. NSAR data and the results: (a) optical image; (b) SAR amplituaigeinc) coherence coefficient, (d) interferometric phase, and
denoised phase with the (e) slope adaptive filter, (f) improveds@atdfilter, (g) IPDNCNN methods.



Wrapped phase(rad)

—;'Adﬂpl
Goldstein

) ) ) . |——1PDnCNN

240 260 280 300 320 340 360
Range(pixels)

-4 s L
180 200 220

11

values of the interferometric phase are used as the input to the
network so that it can avoid misjudgment of phase fringesdge
in noise detection. The loss function is redesigned and network
training parameters are modified to deal with the phase noise
reduction problem Moreover the proposed IPDnCNN
increases the patch size and two convolution layers to utilize the
phase information more effectively. As demonstrated by
experimental results using both simekhtind real SAR data,

the proposed method has achieved the best performance in
noise reduction while preserving fringe eddake other deep
learning methods, the data training process is time-consuming,
but a well-trained network can effectively improve the

Fig. 17. Cross-sections through denoised phase of airborne datS.ﬁiCienCy of data processing.

TABLE VI
EVALUATION RESULTS OFAIRBORNEDATA
Iterferogram Residues RPSD
Noisy phase 33627 1.1860
Slope adaptive filter 263 0.3436
Improved Goldstein filter 74 0.3407
IPDNnCNN method 22 0.3258

In the current work, phase noise and clean phase are used as
training samples. As part of our future work, we will try to
improve the IBPnNDNN model to divide the InSAR
interferogram into trip point, noise point, overlap mask point,
shadow point, and so on, so that the overlap and shadow areas
can be detected in advante improve the quality of the
denoised phase.
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For traditional filtering methods, the phase denoising\e
performance is greatly affected by the filter window, whicQ3
cannot make full use of the information contained in the entire
image. IPDnCNN extracts image features by training massive

data through a non-linear network structure and estimate phase

noise with the entire image’s pixels. IPDNCNN not only

describes the noise more precisely but also makes full use of& e

entire image, so it achievesclear improvement in residual
reduction and edge preservation. 2]

To compare computational costs for the three methods, Ta@
VI shows the running time of each experiment in this section
using different methods on a computer with Intel(R) Core(TM[)4]
i5-5200U@2.2GHz CPU.

(5]
TABLE VI
RUNNING TIME (S) ]
Simulated ERS data Airborn
Method

data data
Slope adaptive filter 383 322 317 [71

Improved Goldstein filter 479 0.368 466
IPDNnCNN method 85 48 125 (8]

As shown, although data training takes a lot of time, once the
network is well-trained, the proposed IPDnCNN is morgy,
efficient than traditional methods.

CONCLUSIONS [10]

In this paperthe convolutional neural network is introduced
to INSAR phase denoising. In contrast to the existing ph ?]
denoising methods which directly predict the complex phase

rospace Science and Technology Innovation Fund under
rant SAST201926.

IV. REFERENCES

E. Rodriguez and J. M. Martin, "Theory and design tefrfierometric
synthetic aperture radars," IEE Proceedings F - RadaSigndl
Processing, vol. 139, no. 2, pp. 147-159, Apr. 1992.

R. Bamler, P. Hartl, "Synthetic aperture radar fetemetry", Inverse
Probl., vol. 14, no. 4, pp. R1-R54, 1998.

F D.C. Ghiglia and L.A. Romero. "Minimum Lp-norm two-dimensab

phase unwrapping.” Journal of the Optical Socie#yoérica A, vol.
13, no. 10, pp. 1992013, 1996.

P.A. Rosen et al., "Synthetic aperture radar intenfietry,”

in Proceedings of the IEEE, vol. 88, no. 3, pp. 333;38ar. 2000.
J.S. Lee, K. P. Papathanassiou, T. L. Ainsworth, M. Rn&and A.
Reigber, "A new technique for noise filtering of SARerferometric
phase images," IEEE Transactions on Geoscience and Remote.
Z. Li, Z. Bao, H. Li and G. Liao, "Image autocoregasion and INSAR
interferogram estimation using joint subspace projegtiGEE
Transactions on Geoscience and Remote Sensing, volo43, pp.
288-297, Feb. 2006.

S. Zhang, J. Tang, M. Chen, S. Zhu and H. Yang, "Image
Autocoregistration and Interferogram Estimation UsingeBded
COMET-EXIP Method," IEEE Transactions on GeoscienceRemote
Sensing, vol. 48, no. 12, pp. 4204-4218, Dec. 2010.

L. Denis, F. Tupin, J. Darbon and M. Sigelle, "Joing&arization of
Phase and Amplitude of INSAR Data: Application tB 3-
Reconstruction," IEEE Transactions on Geoscience andteem
Sensing, vol. 47, no. 11, pp. 3774-3785, Nov. 2009.

H. Li et al., "A Madification to the Complex-ValuedRF Modeling
Filter of Interferometric SAR Phase," IEEE Geoscience Remote
Sensing Letters, vol. 12, no. 3, pp. 681-685, MatL52

W. Ben Abdallah and R. Abdelfattah, "A Joint Mark®andom Field
Approach for SAR Interferogram Filtering and Unwrappl' IEEE
Journal of Selected Topics in Applied Earth Observatamd Remote
Sensing, vol. 9, no. 7, pp. 3016-3025, Jul. 2016.

G. Vasile, E. Trouve, Jong-Sen Lee and V. Buzuloitetisity-driven
adaptive-neighborhood technique for polarimetric emerferometric

fringes, the proposed method estimates phase noise first and SAR parameters estimation,” IEEE Transactions on Geosaente

then removes them from the noisy interferogram. The proposed
IPDNnCNN is constructed based on DnCNN. Sine and cosine

Remote Sensing, vol. 44, no. 6, pp. 1609-1621, 2006.



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

C. A. Deledalle, L. Denis and F. Tupin, "NL-InSAR: Nocal
Interferogram Estimation," IEEE Transactions on Geosciende an
Remote Sensing, vol. 49, no. 4, pp. 1441-1452, 2pt1.

G. Poggi, F. Sica, L. Verdoliva, G. Fornaro, D. Reend S. Verde,
"Non-local methods for filtering interferometric SAR datase2§12
Tyrrhenian Workshop on Advances in Radar and ReSetsing
(TYWRRS), Naples, 2012, pp. 136-139.

J. Li, Z. Li, Z. Bao, Y. Hou and Z. Suo, "Noise Filteg of High-
Resolution Interferograms Over Vegetation and Urbaa#iWith a
Refined Nonlocal Filter," IEEE Geoscience and Remetesifig Letters,
vol. 12, no. 1, pp. 77-81, Jan. 201

C.-A. Deledalle, V. Duval, and J. Salmon, “Non-local Methods with
Shape-Adaptive Patches (NLMAP),” J. Math. Imag. Vis., vol. 43, no.
2, pp. 103120, Jun. 2012.

C. Lopez-Martinez and X. Fabregas, "Modeling and cédn of SAR
interferometric phase noise in the wavelet domain," IEEEh3actions
on Geoscience and Remote Sensing, vol. 40, nopl255%3-2566, Dec
2002.

X. Zha, R. Fu, Z. Dai and B. Liu, "Noise Reductionterferograms
Using the Wavelet Packet Transform and Wiener FikgtiifEEE
Geoscience and Remote Sensing Letters, vol. 5, pp. 3,04-408, Jul.
2008.

Y. Bian and B. Mercer, "Interferometric SAR Phaséefihg in the
Wavelet Domain Using Simultaneous Detection and EstimAti&EE
Transactions on Geoscience and Remote Sensing, volo48, pp.
1396-1416, Apr. 2011.

R. M. Goldstein and C. L. WernéiRadar interferogram filtering for
geophysical applications,” Geophys. Res. Lett., vol. 25, no. 21, pp.
4035- 4038, Nov. 1998.

M. Jiang et al., "The Improvement for Baran PhaserFberived From
Unbiased INSAR Coherence," IEEE Journal of SelecteicSap
Applied Earth Observations and Remote Sensing, vab.77, pp. 3002-
3010, Jul. 2014.

M. Jiang et al., "A hybrid method for optimizatiohtbe adaptive
Goldstein filter." ISPRS Journal of Photogrammetng &emote
Sensingg, vol. 98, pp. 29-43, De€12.

I. Baran, M. P. Stewart, B. M. Kampes, Z. Perski antdily, "A
maodification to the Goldstein radar interferogram fitégEEE
Transactions on Geoscience and Remote Sensing, valo49, pp.
2114-2118, Sept. 2003.

Z. Li et al., "Improved filtering parameter deterntina for the
Goldstein radar interferogram filter." Isprs Journal of ®8goammetry
& Remote Sensing, vol. 63, no. 6, pp. 6234, Nov. 2008.

E. Trouve, J. M. Nicolas and H. Maitre, "Improving phasemapping
techniques by the use of local frequency estimates," IEEEsdctions
on Geoscience and Remote Sensing, vol. 36, no.. 8.968-1972, Nov
1998.

Y. Wang, X. Zhu and R. Bamler, "Retrieval of phasstdry parameters
from distributed scatterers in urban areas using very eiggiution
SAR data", ISPRS J. Photogramm. Remote Sens., vabp789-99,
Sep. 2012.

Z. Suo, Z. Li and Z. Bao, "A New Strategy to Estimabeal Fringe
Frequencies for INSAR Phase Noise Reduction," IEEE Gewsiénd
Remote Sensing Letters, vol. 7, no. 4, pp. 771-0&%, 2010.

[27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

(35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

12

Z. Ding, Z. Wang, S. Lin, T. Liu, Q. Zhang and Tarlg, "Local Fringe
Frequency Estimation Based on Multifrequency INSARPoase-Noise
Reduction in Highly Sloped Terrain," IEEE Geosciencd Remote
Sensing Letters, vol. 14, no. 9, pp. 1527-1531, .38t7.

Q. Feng, H.Xu, Z.Wu, Y.You, W.Liu and S.Ge, "Imprdv@oldstein
Interferogram Filter Based on Local Fringe Frequencinizsion,"
Sensors, 2016.

H. A. Zebker and K. Chen, "Accurate estimation of elation in INSAR
observations," IEEE Geoscience and Remote Sensing Letbérg, no.
2, pp. 124-127, Apr. 2005.

J. S. Lee, K. W. Hoppel, S. A. Mango and A. R. Mjlléntensity and
phase statistics of multilook polarimetric and intenfeetric SAR
imagery," IEEE Transactions on Geoscience and Remote §ewsin
32, no. 5, pp. 1017-1028, Sept. 1994.

K. Isogawa, T. Ida, T. Shiodera and T. Takeguchee Shrinkage
Convolutional Neural Network for Adaptive Noise Retlon," IEEE
Signal Processing Letters, vol. 25, no. 2, pp. 228-£2b. 2018.
A.Suksmono and A. Hirose. "InSAR image restoration bygusin
stochastic complex-valued neural network." Kes 2002.

Saba, Tanzila, A. Rehman, and G. Sulong. "An iigietit approach to
image denoising." Journal of Theoretical & Appliedbhmation
Technology, vol. 7, no. 1, pp3-6, 2010.

H. C. Burger, C. J. Schuler and S. Harmeling, "Imagreoting: Can
plain neural networks compete with BM3D?" IEEE Confersean
Computer Mision and Pattern Recognition, ProvideRig2012, pp.
2392-2399.

K. Dabov, A. Foi, V. Katkovnik, K. O. Egiazarianpiage denoising by
sparse 3-d transform-domain collaborative filtering", IEE&ns. Image
Process., vol. 16, no. 8, pp. 80-2095, Aug. 2007.

K. Zhang, W. Zuo, Y. Chen, D. Meng and L. ZhangeyBnd a
Gaussian Denoiser: Residual Learning of Deep CNN forémag
Denoising," IEEE Transactions on Image Processing, vph@67, pp.
3142-3155, Jul. 2017.

A. Qayyum et al. "Scene classification for aerial imagesetd on CNN
using sparse coding technique." International JoushBemote
Sensing, vol38, no. 840, pp. 2662-2685, Mar.2017.

Y. Chen and T. Pock, "Trainable Nonlinear Reacbiffusion: A
Flexible Framework for Fast and Effective Image Restumdt769-776
Transactions on Pattern Analysis and Machine In@ilig, vol. 39, no.
6, pp. 1256-1272, Jun. 2017.

V. Jain and H. S. Seung, "Natural image denoising edtivolutional
networks." International Conference on Neural InfaioraProcessing
Systems, pp. 769-776, 2008.

K. Simonyan, A. Zisserman, "Very deep convolutional roeks for
large-scale image recognition”, Int. Conf. on LearrRegresentations
2015.

K. He, X. Zhang, S. Ren and J. Sun, "Delving deépriectifiers:
Surpassing human-level performance on ImageNet classificafroc.
IEEE Int. Conf. Comput. Vis., pp. 1026-1034, Dec. 2015

G. Franceschetti, A. lodice, M. Migliaccio and D. &@; "A novel
across-track SAR interferometry simulator," IEEE Transastin
Geoscience and Remote Sensing, vol. 36, no. 3, Pp963, May 1998
A. Krizhevsky, I. Sutskever, G. E. Hinton, "ImageNetsiéication with
deep convolutional neural networks", Proc. Adv. Néimf. Process.
Syst., vol. 25, pp. 1097-1105, 2012.



