116 research outputs found

    Heuristic algorithms for solving a class of multiobjective zero-one programming problems

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Generation of the exact Pareto set in multi-objective traveling salesman and set covering problems

    Get PDF
    The calculation of the exact set in Multi-Objective Combinatorial Optimization (MOCO) problems is one of the most computationally demanding tasks as most of the problems are NP-hard. In the present work we use AUGMECON2 a Multi-Objective Mathematical Programming (MOMP) method which is capable of generating the exact Pareto set in Multi-Objective Integer Programming (MOIP) problems for producing all the Pareto optimal solutions in two popular MOCO problems: The Multi-Objective Traveling Salesman Problem (MOTSP) and the Multi-Objective Set Covering problem (MOSCP). The computational experiment is confined to two-objective problems that are found in the literature. The performance of the algorithm is slightly better to what is already found from previous works and it goes one step further generating the exact Pareto set to till now unsolved problems. The results are provided in a dedicated site and can be useful for benchmarking with other MOMP methods or even Multi-Objective Meta-Heuristics (MOMH) that can check the performance of their approximate solution against the exact solution in MOTSP and MOSCP problems

    Multiobjective Simulation Optimization Using Enhanced Evolutionary Algorithm Approaches

    Get PDF
    In today\u27s competitive business environment, a firm\u27s ability to make the correct, critical decisions can be translated into a great competitive advantage. Most of these critical real-world decisions involve the optimization not only of multiple objectives simultaneously, but also conflicting objectives, where improving one objective may degrade the performance of one or more of the other objectives. Traditional approaches for solving multiobjective optimization problems typically try to scalarize the multiple objectives into a single objective. This transforms the original multiple optimization problem formulation into a single objective optimization problem with a single solution. However, the drawbacks to these traditional approaches have motivated researchers and practitioners to seek alternative techniques that yield a set of Pareto optimal solutions rather than only a single solution. The problem becomes much more complicated in stochastic environments when the objectives take on uncertain (or noisy ) values due to random influences within the system being optimized, which is the case in real-world environments. Moreover, in stochastic environments, a solution approach should be sufficiently robust and/or capable of handling the uncertainty of the objective values. This makes the development of effective solution techniques that generate Pareto optimal solutions within these problem environments even more challenging than in their deterministic counterparts. Furthermore, many real-world problems involve complicated, black-box objective functions making a large number of solution evaluations computationally- and/or financially-prohibitive. This is often the case when complex computer simulation models are used to repeatedly evaluate possible solutions in search of the best solution (or set of solutions). Therefore, multiobjective optimization approaches capable of rapidly finding a diverse set of Pareto optimal solutions would be greatly beneficial. This research proposes two new multiobjective evolutionary algorithms (MOEAs), called fast Pareto genetic algorithm (FPGA) and stochastic Pareto genetic algorithm (SPGA), for optimization problems with multiple deterministic objectives and stochastic objectives, respectively. New search operators are introduced and employed to enhance the algorithms\u27 performance in terms of converging fast to the true Pareto optimal frontier while maintaining a diverse set of nondominated solutions along the Pareto optimal front. New concepts of solution dominance are defined for better discrimination among competing solutions in stochastic environments. SPGA uses a solution ranking strategy based on these new concepts. Computational results for a suite of published test problems indicate that both FPGA and SPGA are promising approaches. The results show that both FPGA and SPGA outperform the improved nondominated sorting genetic algorithm (NSGA-II), widely-considered benchmark in the MOEA research community, in terms of fast convergence to the true Pareto optimal frontier and diversity among the solutions along the front. The results also show that FPGA and SPGA require far fewer solution evaluations than NSGA-II, which is crucial in computationally-expensive simulation modeling applications

    Generation of the exact Pareto set in multi-objective traveling salesman and set covering problems

    Get PDF
    The calculation of the exact set in Multi-Objective Combinatorial Optimization (MOCO) problems is one of the most computationally demanding tasks as most of the problems are NP-hard. In the present work we use AUGMECON2 a Multi-Objective Mathematical Programming (MOMP) method which is capable of generating the exact Pareto set in Multi-Objective Integer Programming (MOIP) problems for producing all the Pareto optimal solutions in two popular MOCO problems: The Multi-Objective Traveling Salesman Problem (MOTSP) and the Multi-Objective Set Covering problem (MOSCP). The computational experiment is confined to two-objective problems that are found in the literature. The performance of the algorithm is slightly better to what is already found from previous works and it goes one step further generating the exact Pareto set to till now unsolved problems. The results are provided in a dedicated site and can be useful for benchmarking with other MOMP methods or even Multi-Objective Meta-Heuristics (MOMH) that can check the performance of their approximate solution against the exact solution in MOTSP and MOSCP problems

    On the optimization of green multimodal transportation: A case study of the West German canal system

    Get PDF
    In this study, we address a biobjective multimodal routing problem that consists of selecting transportation modes and their respective quantities, optimizing transshipment locations, and allocating port orders. In the objective functions, we minimize total transportation costs and use the EcoTransit methodology to minimize total greenhouse gas emissions. The optimization model selects the transportation mode and transshipment port where quantities are transshipped from one mode to another. We compare inland waterway transportation and trucks encountering infrastructure failures that require rerouting or modal shifting in a real-life case study on the supply of goods for the chemical industry in the West German canal system. We propose a population-based heuristic to solve large instances in a reasonable computation time. A sensitivity analysis of demand, of varying lock times, and of infrastructure failure scenarios was conducted. We show that compared with inland waterway transportation, multimodal transportation reduces costs by 23% because of longer lock times. Our analysis shows that the use of inland waterway transportation only during infrastructure failures imposes nearly 28% higher costs per day depending on the failure location compared to that of the case of no failures. We also show that the use of a multimodal transportation system helps to reduce this cost increase in lock failure scenarios

    Solving the waste collection problem from a multiobjective perspective: New methodologies and case studies

    Get PDF
    Fecha de lectura Tesis Doctoral: 19 de marzo de 2018.Economía Aplicada ( Matemáticas) Resumen tesis: El tratamiento de residuos es un tema de estudio por parte de las administraciones locales a nivel mundial. Distintos factores han de tenerse en cuenta para realizar un servicio eficiente. En este trabajo se desarrolla una herramienta para analizar y resolver el problema de la recogida de residuos sólidos en Málaga. Tras un análisis exhaustivo de los datos, se aborda el problema real como un problema de rutas multiobjetivo con capacidad limitada. Para los problemas multiobjetivo, no suele existir una única solución óptima, sino un conjunto de soluciones eficientes de Pareto. Las características del problema hacen inviable su resolución de forma exacta, por lo que se aplican distintas estrategias metaheurísticas para obtener una buena aproximación. En particular, se combinan las técnicas de GRASP, Path Relinking y Variable Neighborhood Search, que son adaptadas a la perspectiva multicriterio. Se trata de una aproximación en dos fases: una primera aproximación de la frontera eficiente se genera mediante un GRASP multiobjetivo. Tres son los métodos propuestos para la primera aproximación, dos de ellos derivados de la publicación de Martí et al. (2015) y el último se apoya en la función escalarizada de logro de Wierzbicki (Wierzbicki, 1980) para distintas combinaciones de pesos. A continuación, esta aproximación es mejorada con una versión de Path Relinking o Variable Neighborhood Search, con un punto de referencia diseñado para problemas multiobjetivo. Una vez generada la aproximación de la frontera eficiente, el proceso de obtención de la solución que más se adecúa a las preferencias de los gestores se basa en el desarrollo de un método interactivo sin trade – off, derivado de la filosofía NAUTILUS (Miettinen et al. 2010). Para evitar gastos de cómputo extensos, esta metodología se apoya en una pre - computación de los elementos de la frontera eficiente

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms
    corecore