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ABSTRACT 

In today’s competitive business environment, a firm’s ability to make the correct, 

critical decisions can be translated into a great competitive advantage. Most of these 

critical real-world decisions involve the optimization not only of multiple objectives 

simultaneously, but also conflicting objectives, where improving one objective may 

degrade the performance of one or more of the other objectives.  Traditional approaches 

for solving multiobjective optimization problems typically try to scalarize the multiple 

objectives into a single objective. This transforms the original multiple optimization 

problem formulation into a single objective optimization problem with a single solution. 

However, the drawbacks to these traditional approaches have motivated researchers and 

practitioners to seek alternative techniques that yield a set of Pareto optimal solutions 

rather than only a single solution. 

The problem becomes much more complicated in stochastic environments when 

the objectives take on uncertain (or “noisy”) values due to random influences within the 

system being optimized, which is the case in real-world environments. Moreover, in 

stochastic environments, a solution approach should be sufficiently robust and/or capable 

of handling the uncertainty of the objective values. This makes the development of 

effective solution techniques that generate Pareto optimal solutions within these problem 

environments even more challenging than in their deterministic counterparts. 

Furthermore, many real-world problems involve complicated, “black-box” objective 

functions making a large number of solution evaluations computationally- and/or 

financially-prohibitive. This is often the case when complex computer simulation models 

are used to repeatedly evaluate possible solutions in search of the best solution (or set of 
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solutions). Therefore, multiobjective optimization approaches capable of rapidly finding 

a diverse set of Pareto optimal solutions would be greatly beneficial. 

This research proposes two new multiobjective evolutionary algorithms 

(MOEAs), called fast Pareto genetic algorithm (FPGA) and stochastic Pareto genetic 

algorithm (SPGA), for optimization problems with multiple deterministic objectives and 

stochastic objectives, respectively. New search operators are introduced and employed to 

enhance the algorithms’ performance in terms of converging fast to the true Pareto 

optimal frontier while maintaining a diverse set of nondominated solutions along the 

Pareto optimal front. New concepts of solution dominance are defined for better 

discrimination among competing solutions in stochastic environments. SPGA uses a 

solution ranking strategy based on these new concepts. Computational results for a suite 

of published test problems indicate that both FPGA and SPGA are promising approaches. 

The results show that both FPGA and SPGA outperform the improved nondominated 

sorting genetic algorithm (NSGA-II), widely-considered benchmark in the MOEA 

research community, in terms of fast convergence to the true Pareto optimal frontier and 

diversity among the solutions along the front. The results also show that FPGA and 

SPGA require far fewer solution evaluations than NSGA-II, which is crucial in 

computationally-expensive simulation modeling applications. 
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CHAPTER 1: INTRODUCTION 

1.1. Multiobjective Optimization 

In today’s competitive global business environment, a firm’s ability to make the 

most appropriate critical decisions can be translated into a great competitive advantage. 

Most of these critical decisions are multiple objective problems in which management 

should be able to handle the challenges of conflicting objectives. For example, in supply 

chain management, the objective of reducing total costs typically opposes the objective of 

decreasing lead times, and improving product quality. These conflicting objectives are 

also encountered in other problem settings including job shop scheduling, inventory 

control, facility location, portfolio management and project management.  In recent years, 

multiple objective problems have begun to draw the attention of practitioners and 

academicians alike. 

Several methods exist that one could use to solve problems involving multiple 

objectives (Szidarovszky et al., 1986; Mollaghasemi and Pet-Edwards, 1992). A naïve 

way is to select the most important performance objective and ignore the other less 

important objectives. This treatment of neglecting some objectives will undoubtedly 

result in poor solutions. Another method is to select a single objective for optimization 

and constrain the values of the other objectives to be within certain levels. The main 

drawback of this method is that the constrained objectives usually restrict the feasible 

solution space resulting in no feasible solution being found. 
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Other more traditional approaches for solving multiobjective optimization 

problems (MOPs) typically try to scalarize the multiple objectives into a single objective. 

This transforms the original multiple objective optimization problem formulation into a 

single objective optimization problem with a single solution. The major drawbacks of 

traditional methods that serve as motivation for using these alternative techniques 

include: 

 The priority (or weight) vector used in the scalarization process greatly influences 

the final solution; 

 Alternative solutions will not be available to decision-makers without at least 

changing some parameters such as the priority vector; 

 Some optimal solutions may never be found if the objective space is not convex 

for minimization problems (Szidarovszky et al., 1986 pp. 34-39); real-world 

problems are seldom convex (Silva and Biscaia, 2003); 

 There are implications in the homogenization of different performance measures 

(such as cost, quality of products, and cycle times) to a common unit of measure; 

and 

 Traditional approaches may not work effectively if objectives are noisy or have 

discontinuous variable space. 

For example, consider the first drawback. A small perturbation in the priority 

vector values can greatly influence the obtained solution. Each certain pair of weights w1 

and w2 (w2 = 1 – w1 for biobjective problem) results in single nondominated point in the 

tradeoff curve.  However, the drawbacks of this class of approaches have motivated 

researchers and practitioners to seek alternative techniques to find a set of Pareto optimal 
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(nondominated) solutions rather than just a single solution (e.g., Srinivas and Deb 1994; 

Deb, 2001; Coello et al., 2002; Silva and Biscaia 2003). A solution is Pareto optimal if 

there exists no feasible solution for which an improvement in one objective does not lead 

to a simultaneous degradation in one or more of the remaining objectives. 

1.2. Solution Dominance in Multiobjective (Deterministic) Problem Environments 

In deterministic problem environments, most multiobjective optimization applications are 

gravitating towards using the nondomination-based approaches due to the limitations of 

traditional multiobjective methods. Assume that fi(A) and fi(B) are the values of objective 

function i (i ∈ {1, …, m}) for two solutions A and B, where A and B are p-dimensional 

vectors of the decision variables. The desire is to minimize each objective function. In a 

deterministic problem domain, solution A strictly dominates (is better than) solution B if 

fi(A) is less than fi(B) for each objective function i. Figure  1.1 illustrates the concept of 

strict dominance graphically for an optimization problem in which m = 2 and the goal is 

to minimize both functions f1 and f2. In the figure, it can be seen that solution A strictly 

dominates all solutions in the shaded region, including solution B. It must be noted that in 

stochastic problem environments where the objective function values are uncertain, the 

definition of strict solution dominance must be modified.  Nondomination considers all 

possible tradeoffs of the priorities of the given objectives, as shown in Figure  1.2, which 

shows the problem of minimizing two objectives. 
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Figure  1.1: Illustration of strict dominance in a deterministic problem domain. 

 

f2

f1

Nondomination-based Approach
f2

f1

Classical Approach

Nondominated curveNondominated curve

 
 

Figure  1.2: Illustration of the classical approach and nondomination-based approach for 
minimization problem with two objectives (Deb, 2001). 
 

1.3. Systems Simulation Modeling 

Due to the complexities and uncertainties existing in real-world problems, it is 

very difficult to solve single objective problems, let alone multiobjective problems, 

exactly using traditional analytical models. As an alternative to analytical methods, 
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computer simulation is an effective approach that can be used to model the complexities 

and uncertainties of the real-world problems without the limiting assumptions. 

Simulation can estimate the measures of the system performance.  This is accomplished 

by performing n simulation replications. It is appropriate to note here that a known 

drawback of using simulation is that it can be computationally-expensive and time-

consuming. When simulating realistic, large-scale stochastic systems, even a single 

replication can be computationally-prohibitive. Each replication is one sample 

observation (point estimate) for the performance measure. Then, the arithmetic mean of 

the n independent and identically distributed sample observations is used as an unbiased 

point estimate of the true population mean. Due to the randomness in the simulation 

model, a confidence interval is usually constructed for each system performance measure 

of interest. The analyst asserts that this confidence interval contains the true mean with a 

certain level of confidence. In most simulation studies, confidence intervals are employed 

in the output analysis of the model in addition to the sample means. 

However, simulation modeling facilitates policy evaluation of a system and “what 

if” analyses. It alone lacks optimizing ability, and thus, should be combined with other 

analysis techniques to become most effective for optimization problems. The general 

approach to address this problem is the integration of an optimization subroutine or 

module with the simulation model. 

1.4. Optimization via Simulation 

In general, simulation optimization is the process of searching for the best set of 

model specifications, i.e., input parameters and structural assumptions, where the 

objective value is the output performance of simulation model for the underlying system 
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(Olafsson and Kim, 2002). Figure  1.3 shows the general process of optimization via 

simulation. The optimization module uses the numerical values of the performance 

measures estimated by a simulation model (or set of models) to make decisions regarding 

the next set of candidate solutions. Thereafter, the optimization algorithm generates new 

model specifications through perturbations of existing solutions that are fed to the 

simulation model. This search continues until a user-specified stopping criterion is 

satisfied. 

 

Simulation 
Model 

Optimization 
Module 

(Solution 
Perturbations)

Stopping 
criterion 

met?

Initial Problem 
Settings 

No

Yes

Performance 
Measures New Model 

Specifications 

Best 
Solution(s)

Optimization 
Module Parameter 

Settings 

Figure  1.3: General process of simulation optimization. 

 

Several simulation optimization approaches have been proposed by researchers. 

They differ primarily based on the problem settings and characteristics. Such settings and 

characteristics for simulation optimization problems include the nature of the solution 

space (continuous or discrete decision parameters), number of feasible solutions 

(relatively small, large but finite, or countably infinite), number of the performance 

measures (single objective or multiple objectives) (Andradóttir, 1998b; Azadivar, 1999; 

Swisher et al., 2000; Olafsson and Kim, 2002). . It is also worthy to note that there is a 
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considerable gap between the approaches proposed in the research literature and those 

that are employed by commercial software packages for practical use. 

Since evaluation of the measures of the system performance is performed by 

executing simulation runs that are often computationally-expensive and time-consuming, 

it is very important that an optimization algorithm be able to find optimal or near-optimal 

solutions in the early stages of the search process. The optimization algorithm should also 

be capable of effectively balancing the tradeoff between solution space exploration and 

solution space exploitation. In other words, an intelligent algorithm should search the 

feasible solution space thoroughly, and evaluate the regions around the local optima 

carefully in order to possibly find global optimal solution, which may be in another 

region. On the other hand, an optimization algorithm should be robust enough to handle 

the challenges of randomness and uncertainty involved in the estimated objective 

functions of the simulated model. In this case, the existing uncertainty and noise might 

hinder the optimization algorithm trying to move into improving directions. 

1.5. Simulation Optimization of Multiple Stochastic Objectives 

An issue that should be considered in the stochastic optimization context is the 

randomness effect of conflicting performance measures in the simulation models caused 

by the uncertain nature of different processes of the underlying system. The randomness 

effect of the performance measures plays an important role in the quality of the obtained 

results; thus, inefficient methods may lead to incorrect conclusions and improper 

decisions. The stochastic nature of simulation models together with costly simulation 

experimental runs makes the efficiency of the optimization methodology critical. 
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Due to the complexity and difficulty of dealing with these kinds of problems, few 

attempts have been made in multiobjective simulation optimization. The majority of these 

works focus on utility theory, interactive approaches, response surface methodology and 

goal programming (Mollaghasemi, 1994; Boyle and Shin, 1996; Lee et al., 1996; Baesler 

and Sepulveda, 2000). To the best of the author’s knowledge, the existing literature does 

not support an efficient approach for multiobjective simulation optimization to find 

Pareto optimal solutions. 

1.6. Objectives of This Research 

The primary objective of this study is to provide a modeling framework that 

integrates simulation models and nondomination-based multiobjective optimization 

methods. More specifically, in many applications of simulation modeling, the time to 

perform a single solution evaluation (replication) is of the order of minutes to hours, 

restricting the total number of solution evaluations needed for statistical precision. 

Additionally, many real-world problems often involve complicated stochastic (or noisy) 

multiple objective functions making a large number of the necessary replications 

computationally-prohibitive. Therefore, a multiobjective optimization algorithm capable 

of finding diverse Pareto optimal solutions and handling the uncertainty of stochastic 

multiple objective functions would be greatly beneficial. The purpose of this research is 

to propose such a stochastic multiobjective optimization methodology that finds evenly-

distributed Pareto optimal solutions in a computationally-efficient manner. 

1.7. Contributions of This Research 

The contributions of this research are summarized in the following: 
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 This research proposes two new multiobjective evolutionary algorithms 

(MOEAs), called fast Pareto genetic algorithm (FPGA) and stochastic Pareto 

genetic algorithm (SPGA), for optimization problems with multiple deterministic 

objectives and stochastic objectives, respectively.  

 New concepts of solution dominance are defined for better discrimination among 

competing solutions in stochastic environments. SPGA uses a solution ranking 

strategy based on these new concepts.  

 New genetic operators are introduced to enhance both algorithms’ performance in 

finding Pareto optimal solutions while minimizing computational effort. An 

elitism operator with high intensity is employed to ensure the quick propagation 

of the nondominated solutions, and a dynamic regulation operator to dynamically 

adapt the population size.  

 In addition to distance and hypervolume ratio metrics, two new metrics, called 

diversity and delineation, are suggested to better discriminate among the MOEAs. 

 New stopping criterion is introduced in which different numbers of solution 

evaluations are used for different test problems depending on the complexity of 

the problem. 

1.8. Organization of This Dissertation 

The remainder of this document is organized as follows.  CHAPTER 2 briefly a 

reviews the existing literature in the area of simulation optimization.  CHAPTER 3 

presents the proposed framework for solving multiobjective simulation optimization 

problems. After introducing new solution dominance concepts for stochastic problem 

environments and a new solution ranking scheme, the logic of the proposed methodology, 
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which uses an evolutionary algorithm, is discussed.  CHAPTER 4 summarizes the 

performance of the proposed framework for deterministic problem environments.  It first 

discusses the experimental design followed by the computational results, including the 

comparison of the proposed methodology with another state-of-the-art algorithm to assess 

its performance.  CHAPTER 5 discusses an enhancement of the proposed framework that 

makes it appropriate for stochastic problem environments. New dominance concepts are 

presented. Experimental results show the enhanced approach’s competitiveness against a 

well-known state-of-the-art algorithm. This dissertation is concluded in  CHAPTER 6 

with a summary of the research and proposed directions for future study. 
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CHAPTER 2: OVERVIEW OF SIMULATION OPTIMIZATION THEORY AND 

APPROACHES 

2.1. Introduction 

In general, simulation optimization is the process of finding the best values of a 

set of decision variables, where the objective value is the output performance of 

simulation model for the underlying system. More specifically, in simulation 

optimization, one tries to find the best system design or solution to optimize the objective 

function 

( )min / max f
θ∈Θ

θ ,  2.1 

where θ denotes a k-dimensional vector of decision variables of the system, Θ represents 

the constraint set on θ (feasible region), and f(θ) is the real objective function, 

representing the expected system performance. There is no explicit analytical expression 

for the objective function f when f is stochastic, or it is very complicated if available 

(Law and Kelton, 2000, p. 646). Typically, this objective function is estimated using a 

function of the stochastic output X(θ), which might be an unbiased estimate for f(θ); that 

is, f(θ) = E[X(θ)] (Olafsson and Kim, 2002). There are other ways of formulating the 

simulation optimization problem.  They can be found in Azadivar (1999). 

Sections  2.2 and  2.3 present a brief review and several advantages, disadvantages, 

and applications of several simulation optimization techniques. Figure  2.1 shows the 

most popular simulation optimization approaches as categorized in this literature study. 

There are other ways to categorize simulation optimization approaches based on the 
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nature of the search space, e.g., continuous decision variables versus discrete decision 

variables. Further material in this regard can be found in Fu (1994), Andradóttir (1998a), 

Andradóttir (1998b), Azadivar (1999), Swisher et al. (2000), April et al. (2001), Olafsson 

and Kim (2002), Fu (2002), and April et al. (2003). 
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2.2. Classical Approaches for Simulation Optimization 

Fu (2002) reports that research of classical approaches for simulation optimization 

includes five different categories: 

1) stochastic approximation (i.e., gradient-based approaches); 

2) sample path optimization (also known as stochastic counterpart); 

3) (sequential) response surface methodologies; 

4) random search; and 

5) statistical selection approaches (ranking and selection, multiple pairwise 

comparison). 

2.2.1. Stochastic Approximation 

Stochastic approximation (SA) is an iterative process that attempts to mimic the 

gradient search method used in deterministic optimization. The best known stochastic 

approximation algorithms are first introduced by Robbins and Monro (1951) and Keifer 

and Wolfowitz (1952). The general stochastic approximation methodology is based on 

the equality 

( )( )1
ˆ

n n na f+ = Π − ∇θθ θ θn ,  2.2 

where  is the estimate of the gradient, ( )ˆ
nf∇ θ Πθ  denotes some projection back into the 

feasible region and an is the step size at iteration n. Under certain conditions, when the 

step size approaches zero with an slow enough rate, the asymptotic convergence of the 

SA algorithm can be guaranteed, i.e., limn→∞ an = 0, and ∑n an = ∞ according to the 

harmonic series an = a / n, where a is a positive scalar. 
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SA-based algorithms are generally used in simulation optimization problems with 

continuous decision variables. However, SA has also been applied to discrete variable 

problems (see, for example, Gerencser (1999)). Some of the major drawbacks of this 

approach are its slow convergence rate, its lack of an appropriate stopping rule and its 

difficulty in handling constraints (Shapiro, 1996). It has been found that, in practice, the 

performance of a SA-based algorithm strongly depends on the choice of the step size (Fu, 

2002). Another disadvantage of this method is that it might find local optima, since it is 

based on gradient search method. 

Many gradient estimation techniques have been developed to estimate the 

gradient in Eq.  2.2. One way for estimating the gradient in this equation is using either 

the naïve one-sided finite differences (FD) or two-sided symmetric differences (SD) 

given as 

( ) ( ) ( )ˆ ˆ
ˆ n n i n

i n
f c e f

g
c

+ −
=

θ θ
θ , and  2.3 

( ) ( ) ( )ˆ ˆ
ˆ

2
n n i n n i

i n
f c e f c e

g
c

+ − −
=

θ θ
θ ,  2.4 

respectively, where ei denotes the unit vector in the ith direction and cn represents a small 

change in each decision variable. One-sided finite differences and two-sided symmetric 

differences need k+1 and 2k simulation replications (k is the dimension of the vector θ) 

respectively, which require considerable computational effort. Spall (1992) proposes the 

simultaneous perturbations (SP) technique in order to increase computational efficiency. 

This technique, which perturbs the solution in all directions simultaneously, requires only 

two simulation replications regardless of the dimension of the search space. Spall (1992) 
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shows that the asymptotic convergence rate of the simultaneous perturbations is the same 

as that of the FD technique. 

In order to improve the computational effort and convergence rate of the SA 

technique, many researchers focus on the direct estimation of the gradient. The best 

known techniques for direct gradient estimation are perturbation analysis (PA) 

(Glasserman, 1991; Ho and Cao, 1991) and likelihood ratio (LR) (Rubinstein, 1991; 

Rubinstein and Shapiro, 1993). Infinitesimal perturbation analysis (IPA) is a widely-used 

variant of the PA techniques. Kapuscinski and Taylor (1999) report that they successfully 

use IPA for optimization of capacitated production inventory systems. Fu (2002) 

summarizes the advantages and disadvantages of the main gradient estimation 

techniques, as shown in Table  2.1. 

Table  2.1: Gradient estimation techniques for stochastic approximation (summarized 
from Fu (2002)). 

Technique Number of 
Simulations Advantages Disadvantages 

IPA 1 Highly efficient, easy to implement Limited applicability 

Other PA Usually > 1 Model specific implementation Difficult to apply 

LR 1 Requires only model input distributions Possibly high variance 

SD 2k Widely applicable, model free Generally noisier 

FD k+1 Widely applicable, model free Generally noisier 

SP 2 Widely applicable, model free Generally noisier 

2.2.2. Sample Path Optimization 

Sample path optimization includes methods that attempt to approximate the 

original simulation optimization problem with a set of deterministic continuous 

optimization problems. To demonstrate the framework, suppose that Y1, …, YN are N 
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independent random variables, where N is the size of the sample path (simulation 

replication), and a function h such that Xi(θ) = h(θ,Yi) has the cumulative distribution 

function Fθ for i = 1, …, N. Then, the objective function is approximated by the sample 

mean over the N sample paths as ( )
1

1ˆ ( , ), for all 
N

N i
i

f h Y
N =

= ∈∑θ θ θ Θ . If each of the 

h(θ,Yi) are independent and identically-distributed (IID) unbiased estimates of f(θ), then, 

for a sufficiently large N, the deterministic objective function  approximates the 

expected objective function  of the original simulation problem (Andradóttir, 

1998b). In the simulation context, the common random numbers (CRNs) variance 

reduction technique provides the same sample path to calculate  over different 

values of θ. 

( )ˆ
Nf θ

( )ˆ
Nf θ

( )ˆ
Nf θ

The main advantage of the sample path optimization methodology relative to 

gradient-based methods is that it is capable of handling optimization problems with 

complicated constraints (Fu, 2002). Rubinstein and Shapiro (1993) introduce the 

stochastic counterpart (SC) method, a variant of the sample path optimization method, to 

overcome the slow convergence rate, lack of robust stopping rule, and difficulties for 

handling constraints characteristic of SA-based methodologies. In this approach, f(θ) is 

approximated using the likelihood ratio method. 

2.2.3. Response Surface Methodology 

Generally, response surface methodology (RSM) is based on the principle of 

building metamodels that attempt to obtain an approximate functional relationship 

between the input decision variables and output objective function. RSM attempts to fit a 
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polynomial of appropriate degree to the response surface formed by different input 

decision variables. There is a variety of metamodeling approaches, and the two best 

known approaches are regression models and neural networks. Other metamodeling 

approaches include multivariate adaptive regression splines, radial basis functions, 

frequency domain approximations, spatial correlation models, and interpolative models 

known as kriging. Detailed discussions of these types of metamodels can be found in 

Barton (1998). 

In the most recent research literature, metamodeling is performed in a more 

localized way called sequential response surface methodology, or sequential 

metamodeling. Sequential RSM procedures avoid exploring the entire search space, 

which can be costly and often impractical. Rather, it employs linear polynomials to 

approximate the response surface in small sub-regions of the feasible region. Thereafter, 

the gradient estimation and steepest decent method is used to move to a new sub-region. 

This exploration process continues until the linear model becomes inadequate as 

indicated by the approximated response surface with slope of zero. This implies that the 

sub-region includes the optimal point and higher order of response surface is required for 

appropriate fitness. Canonical and ridge analysis is usually employed to examine this 

sub-region thoroughly with regression models. 

Safizadeh (2002) shows that, under certain conditions, the smaller size of the 

RSM sub-region reduces both the bias and variance of the gradient estimate. He provides 

guidelines for manipulating the size of the sub-region. In the study, a strong assumption 

is made that the positive correlation between the performance measures of two simulation 

17 



replications decreases when the difference of the values of input decision variables 

increases. 

Keys and Rees (2004) propose a new sequential metamodeling strategy based on 

the nonparametric thin-plate splines. In their proposed procedure, the exploration starts 

with a uniform grid of points, and then the location of next system design point is found 

from the solution of a mathematical programming model. This solution is based on the 

distribution of the quantiles of estimated second derivatives of the response function. 

It is worthy to note that even sequential RSMs require a substantial amount of 

computational effort, particularly when the number of decision variables is large. If the 

response surface of any sub-region has multiple optima, then the linear polynomial is not 

necessarily a good approximate. To obtain a better approximate, replications with a 

smaller sub-region is required to provide more accurate information. This problem makes 

the search for optimal solutions dramatically slow and increases the computational time. 

2.2.4. Random Search Method 

Random search method typically involves an iterative process in which the search 

moves successively from the current solution to a randomly-selected new (possibly 

better) solution in the neighborhood of that solution. This implies that the neighborhood 

structure must be well-connected in a certain precise mathematical sense so that the 

search may converge for all initial solutions (Andradóttir, 1998b). Random search 

methods have been mainly used for discrete variable optimization problems, though there 

is no particular theoretical reason that prevents applying them to continuous optimization 

problems. Random search methods are of special appeal for their generality and existence 
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of theoretical convergence proofs (Fu, 2002). The general random search, also 

summarized by Olaffson and Kim (2002), is as follows: 

(0)  Set iteration index i = 0; Select an initial solution θi and perform the simulation to 

obtain expected value X(θi). 

(1)  Select a candidate solution θc from the neighborhood of the current solution N(θi) 

according to some pre-specified probability distribution and perform the 

simulation to obtain expected value X(θc). 

(2)  If the candidate satisfies the acceptance criterion based on the simulated 

performance, then θi+1 = θc; otherwise θi+1 = θi. 

(3)  If the termination criterion is satisfied, then terminate the search; otherwise i = 

i+1 and go back to Step 1. 

Different random search methods found in the literature primarily vary in the 

choice of the neighborhood structure, the method of candidate selection, the acceptance 

and termination criteria (Olafsson and Kim, 2002). The best known variants of the 

random search methods are the stochastic ruler algorithms, originally proposed by Yan 

and Mukai (1992), and those based on the simulated annealing approach. Detailed 

discussions on random search methods can be found in Andradóttir (1998b). 

2.2.5. Statistical Selection Procedures 

Statistical selection procedures are designed to distinguish the best solution(s) 

from among a given finite set of feasible solutions, that is { }1 2, , , nθ θ θ=Θ K , where n is 

relatively small. In the simulation context, statistical analysis is required to evaluate each 

feasible solution and compare their performance measure in order to consider uncertainty 
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surrounding the stochastic output. Several statistical procedures have been developed 

including ranking and selection (R&S) procedures and multiple pairwise comparison 

(MPC) procedures to address this problem. The primary difference between these two 

classes of procedures is that R&S procedures ensure the correct selection of the best 

solutions thar are within user-specified confidence and precision levels.  MPC procedures 

make certain pairwise comparisons among feasible solutions in order to provide some 

inferences in the form of confidence intervals. In other words, R&S procedures help the 

analyst make a decision, whereas the latter only provide some statistical inferences for 

system performance between each pair of system design alternatives. A brief review of 

commonly used statistical selection procedures is now given. 

2.2.5.1. Ranking and Selection 

Ranking and selection is a practical tool for selecting the best solutions among a 

given set of competing solutions. The most popular R&S method is indifference zone 

ranking and selection. Assuming that decision-makers are indifferent to performance 

measure differences less than precision level δ > 0, one can follow a procedure to make 

the right selection with a certain probability of correct selection, P*. In other words, with 

at least a certain probability P* the performance of the selected solution θ’ is within the δ 

interval of the performance of the best solution θ* 

( ) ( )( )' *Prob | * |f f Pδ− < ≥θ θ .  2.5 

The precision level δ is called the indifference zone and probability of correct 

selection P* is actually confidence level (1-α), and both should be pre-specified by the 

user. The two-stage procedure developed by Dudewicz and Dalal (1975) estimates the 
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appropriate number of simulation replications in order to guarantee the desired 

confidence of correct selection. In the first stage of sampling, the means and variances of 

each of the n feasible solutions are evaluated using r0 ≥ 2 replications. Then, the 

variances obtained in the first stage are used to determine the number of additional 

replications required for each solution in the second stage, say ri (i = 1, …, n). 

Specifically, 

( )2 2
0

0 2max 1, i
i

h S r
r r

δ

⎧ ⎫⎡ ⎤⎪ ⎪= +⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥⎩ ⎭

,  2.6 

where x⎡ ⎤⎢ ⎥  is the smallest integer that is greater than or equal to the real number x, and h 

is a constant that depends on r, P*, and δ, which can be found in a given table. Finally, 

the weighted sample means is estimated and the best solution is selected. Intuitively, the 

higher confidence level P*, or the more precision level (the smaller δ), the more 

replications is required which corresponds to Eq.  2.6. Values for P* and δ should be 

selected depending on the goal of study and the system of interest (Law and Kelton, 

2000). The initial number of replications r0 plays an important role in determining the 

required computational time of the underlying system. It is advised that r0 be at least 20 

so that poor first stage variances are minimized, which usually results in a large number 

of required additional replications. 

Ranking and selection procedures are easy to implement and interpret. This makes 

them popular when the number of system design alternatives n are relatively small, i.e., 2 

to 20. However, when the number of design alternatives is quite large, these procedures 

are inefficient and even impractical in terms of computation time. The reason is: (1) in 

Eq.  2.6, the constant h is an increasing function of n, and (2) Eq.  2.6 is derived based on 
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the worse case scenario, which means that the best design is exactly δ better than the 

other (n-1) system designs, which are all viewed as the second best designs. Thus, when 

the number of alternatives is large, a great amount of computational effort is required for 

the inferior alternatives making the analysis quite time-consuming and maybe 

computationally-prohibitive. Nelson et al. (2001) address this problem by proposing 

procedures for selecting the best design alternative, and they argue that these procedures 

are statistically more efficient than conventional procedures. They use the data provided 

in the first stage sampling to screen out the inferior alternatives, and the second stage 

sampling, which usually requires more computational effort, only includes the superior 

alternatives. 

Another R&S procedure called subset selection attempts to find a subset of 

alternatives containing the best system design to screen out the inferior alternatives. This 

approach is useful when specification of several good alternatives is desired in the sense 

that the best alternative might be rejected for any reason. The first subset selection 

procedure is suggested by Gupta (1956) in which a random size subset containing the 

best design alternative is selected with user specified correct selection P*, and without 

any indifference zone specification, i.e., δ = 0. This original procedure requires the 

assumptions of normality and equal and known variances among alternatives that are 

rarely satisfied in simulation optimization problems. Koenig and Law (1985) develop the 

indifference zone procedure, suggested earlier by Dudewicz and Dalal (1975), for R&S 

problems in application of selecting a subset of the given size m containing the best of n 

alternatives. The only difference between these two is that the indifference zone subset 

selection procedure takes on different values of h depending on m, n, δ, and P*. However, 
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it is reported in the literature that the goal of most simulation studies is to specify the best 

system design rather than produce a subset of designs containing the best (Swisher and 

Jacobson, 1999). 

2.2.5.2. Multiple Pairwise Comparisons 

The main goal of the multiple pairwise comparison (MPC) procedures is to gain 

some statistical insight in the form of confidence intervals about the differences of each 

pair of design alternatives without guaranteeing any decision. There are several types of 

MPC procedures, including paired-t, Bonferroni, all-pairwise comparisons, all-pairwise 

multiple comparison (MCA), multiple comparison with a control (MCC), and multiple 

comparison with the best (MCB) (Swisher and Jacobson, 1999). 

In paired-t, Bonferroni and all-pairwise multiple comparison (also called brute 

force), all possible pairwise comparison are performed constructing confidence interval 

for n system design alternatives. Using the Bonferroni approach, n(n-1)/2 confidence 

intervals are constructed at the confidence level of ( )( )1 1n nα 2⎡ ⎤− −⎣ ⎦  in order to 

provide the overall confidence level of (1-α) for all intervals simultaneously. This 

method is useful when the number of alternatives is quite small; otherwise, individual 

confidence intervals become wide and do not provide useful inferences. MCA methods 

are similar to the brute force approach except it constructs a simultaneous set of 

confidence intervals with the same half-width at an overall confidence level of (1-α). 

MCC techniques are typically used in the case when the analyst wishes to compare a set 

of design alternatives to a pre-specified system design such as to an existing design. The 

MCB approach is the most popular MPC procedure that attempts to identify the best 
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design from a set of alternatives. It requires constructing only n-1 simultaneous 

confidence intervals as minμ μ
≠

−i i j j  for i = 1, 2, …, n, which is significantly less than 

those of the brute force approach. 

Applying MCA, MCC, or MCB procedures requires IID with (approximately) 

normal distributions as well as equal variances. Yang and Nelson (1991) consider this 

requirement and modify MCA, MCC, and MCB procedures by incorporating two 

variance reduction techniques – common random numbers and control variates. They 

report that using variance reduction techniques achieves better statistical precision and 

ensures more confident decisions. 

2.3. Metaheuristic Search Approaches for Simulation Optimization 

Metaheuristic approaches have drawn considerable attention from many 

researchers in the last decade. The most popular metaheuristics are simulated annealing, 

tabu search, evolutionary algorithms, scatter search and neural networks. Each of these 

search heuristics has its own set of search features that makes them capable of escaping 

local optima. These approaches are all considered global search strategies in that they are 

capable of find optimal or near-optimal solutions in relatively short amounts of time. 

Originally designed for combinatorial optimization problems in the deterministic 

environment, these methods have been adapted for the stochastic environment associated 

with discrete simulation optimization, and they have been successfully applied to many 

real-world simulation problems. 

It is important to note that several commercial software implementations currently 

incorporate these metaheuristic approaches. Although classical approaches for simulation 
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optimization account for a substantial amount of the research literature, none of them 

have been used in optimization modules embedded in the available commercial 

simulation software packages. Law and Kelton (2000) summarize the optimization 

methodologies utilized in the more popular commercial packages. This summary is given 

in Table  2.2. A brief discussion of the three best known metaheuristics follow. These are 

simulated annealing, tabu search and evolutionary algorithms. 

Table  2.2. Commercial implementation of metaheuristic search strategies for simulation 
optimization (obtained from Law and Kelton (2000)). 
Optimizer Vendor Simulation Software Optimization Technique(s)

AutoStat AutoSimulation, Inc. AutoMod, AutoSched Evolution Strategies, 
Genetic Algorithms 

OptQuest Optimization 
Technologies, Inc. 

Arena, Micro Saint, Quest, 
Taylor Enterprise 

Scatter Search, Tabu 
Search, Neural Networks

OPTIMIZ Visual Thinking  
International, Ltd. SIMUL8 Neural Networks 

Sim Runner2 ProModel Corp. MedModel, ProModel, Service 
Model 

Evolution Strategies, 
Genetic Algorithms 

Witness 
Optimizer Lanner Group, Inc. Witness Simulated Annealing, 

Tabu Search 

2.3.1. Simulated Annealing 

Simulated annealing is a random local search technique that mimics the physical 

annealing process for crystalline solids. In this process, the molten solid is cooled very 

slowly from a high temperature until it reaches the ground temperature with a low energy 

state. If the cooling process occurs too quickly, the crystal is trapped in a much higher 

energy state than that of perfect crystal. In this analogy, state, energy, ground state, rapid 

quenching, temperature and careful annealing in the physical system correspond to 

feasible solution, evaluation function, optimal solution, local search, control temperature 

parameter and simulated annealing in the optimization problem (Michalewicz and Fogel, 

2000). 
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In this method, search starts from an initial solution and moves from one solution 

to the candidate solution from its neighborhood, which is randomly selected. In order to 

overcome being trapped at local optima, simulated annealing allows acceptance (with 

certain probability) of inferior candidate solutions, or (for minimization problem) 

( )
( ) ( )

( ) ( )

1, if
Prob Accept

, otherwise
C i

i

C i

X XC
T

X X

e
−

<⎧
⎪= ⎨
⎪⎩

θ θ

θ θ
θ ,  2.7 

where Ti is the temperature parameter at iteration i that usually decreases during the run. 

This means that the candidate solution is certainly accepted if it is superior to the current 

solution. Otherwise, it is accepted with certain probability at which higher difference in 

their performance makes it less likely of accepting new solution. Simulated annealing is 

generally different from stochastic hill climbing only in temperature parameter, which is 

kept fixed in the latter method (Michalewicz and Fogel, 2000). The search usually starts 

with high values of T, and then it gradually decreases when the search progresses 

according to a function commonly referred to as the cooling, or annealing, schedule. This 

implies that the procedure starts with purely random search and ends in ordinary hill 

climbing approach with the hope of not being trapped at a local optimum and converging 

to the global optimum. Various cooling schedules have been proposed in the literature, 

including monotonic schedules, geometric schedules, and adaptive schedules. Alrefaei 

and Andradóttir (1999) report that they successfully use a constant temperature parameter 

in a specific simulation optimization problem. 

The main advantage of simulated annealing relative to other metaheuristic 

approaches is that it has been shown to guarantee convergence in many settings (Jeon and 

Kim, 2004). On the other hand, it requires excessive computation time in practice, and it 
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is relatively slow in converging to good solutions in comparison to other metaheuristic 

approaches. Further, simulated annealing cannot perform intensification and 

diversification in an efficient manner (Jeon and Kim, 2004). Intensification reinforces 

attributes historically found good in order to return towards attractive regions to explore 

them carefully, while diversification drives the search into perhaps more promising 

regions. 

Many different variants of simulated annealing have been suggested within the 

last decade in order to improve the drawbacks of the conventional version. For example, 

Azizi and Zolfagari (2004) propose two variations of the simulated annealing algorithm 

and successfully use them to minimize the makespan of a set of n jobs in the job shop 

scheduling problem. They note in their work that if some local optima are located at the 

relatively low temperature towards the end of the search, the search becomes trapped at a 

local optimum and the global optimal solution cannot be obtained. In their first approach, 

called adaptive simulated annealing, they consider the characteristics of the search 

trajectory in which adaptive cooling schedule is used that adjusts the temperature 

dynamically based on the number of consecutive improving moves. In this adaptive 

cooling schedule, the temperature is controlled by a single function at which temperature 

is kept above a minimum level. The temperature increases when any uphill move occurs. 

Such an improvement addresses the limitation of the traditional simulated annealing 

algorithm of having significantly low transition probability toward the end of the search.  

2.3.2. Tabu Search 

Tabu search is a metaheuristic first introduced by Glover (1997). It is a memory-

based search strategy to guide the local search and avoid entrapment at local optima by 
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forbidding (or penalizing) moves that take a solution located in the previously visited 

region of the search space. The main idea of tabu search is that the memory enforces the 

search to deeply explore new areas of the search space within a single execution. The 

search keeps track of the sequence of recent moves or visited solutions in a memory list. 

A standard form of tabu list records the solutions that have been visited in the n last 

moves, where n is the tabu tenure. The best solution located in the neighborhood of the 

current solution is selected as the candidate solution if this move is not forbidden (i.e., not 

in the tabu list). If this move is forbidden, the next best candidate solution from the 

neighborhood is selected that is not classified as tabu.  However, in order to avoid not 

selecting a superior tabu solution found during the search, the tabu classification can be 

overridden when a predetermined aspiration criterion is satisfied. One popular aspiration 

criterion is to select the tabu move if it is the best ever solution found in the search that 

has not been visited before (Ho and Haugland, 2004). Finally, as with all metaheuristic 

search techniques, a stopping criterion determines when the search process halts. Usually, 

the search stops when a prespecified number of iterations has been completed, or when 

the current best solution has not been improved above a specified percentage within a 

certain number of consecutive iterations. 

The type of memory described above is called short-term memory, or recency-

based memory. Another type of memory, called frequency-based memory, or long-term 

memory, encourages moves that have led to solutions whose attribute have rarely been 

seen before (diversification). It also encourages moves that have historically led to 

improvements by reinforcing the consideration of special attributes of previously found 

good solutions in the remaining exploration (intensification) (Glover et al., 1999). For 
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instance, long-term memory may allow the search to restart from a previously seen good 

solution with a different tabu list that guides the search in another direction from the good 

initial solution (Olafsson and Kim, 2002). One popular approach for long-term memory 

implementation is to measure the absolute frequency of a selected move during the 

search. An efficient implementation of long-term memory can balance between the 

diversification and intensification functions and increase the performance of the 

algorithm considerably. 

Tabu search is a deterministic search approach and cannot guarantee the 

convergence. However, exploitation of the adaptive memory strategy is the unique 

feature of this search method that distinguishes it from other metaheuristic approaches. 

Many researchers have recently incorporated the adaptive memory feature of tabu 

method in their proposed metaheuristic algorithms. For example, Azizi and Zolfaghari 

(2004) incorporate a tabu list to their adaptive simulated annealing algorithm in order to 

improve the performance of their methodology by taking advantage of the tabu memory 

structure in order to keep track of recently visited solutions and prevent cycling. It has 

been reported that the combination of the tabu method with the complementary 

population-based approach of scatter search is a considerably powerful tool for 

simulation optimization problems (Glover et al., 1999). Factors that affect the 

performance of tabu search include proper appropriate selection of the neighbor of a 

solution, the number of moves classified as tabu in the memory list, proper combination 

and management of the short-term and long-term memory, and efficient implementation 

of the intensification and diversification mechanisms (Jeon and Kim, 2004). 
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Tabu search has been widely used in a variety of applications ranging from job 

shop scheduling to power systems. For instance, Ho and Haugland (2004) use a tabu 

search algorithm to solve the vehicle routing problem with time windows and split 

deliveries. Time windows means that each customer has their own time interval in which 

to receive the service, and split deliveries means that the demand of a customer may be 

met by more than one vehicle, when the demand size exceeds the vehicle capacity. They 

apply tabu search successfully to minimize the number of vehicles, and the total distance 

traveled. They use a unique neighborhood structure that is defined by a union of four 

move operators including relocate, exchange, 2-opt, and relocate split operators. 

2.3.3. Evolutionary Algorithms 

Evolutionary algorithms are nature-inspired heuristics based on the Darwinian 

evolution theory on survival of the fittest (Holland, 1975; Goldberg, 1989; Mitchell, 

1996). The main idea behind this family of algorithms is a population of individuals 

(solutions) with certain attributes is exposed to an environment. Some of the individuals 

are better suited to satisfy the requirement of the environment (i.e., survive) and thus 

have more chance to be selected for populating the next generation of solutions.  Their 

attributes are inherited by their offspring in the next generation. As a consequence, over 

several generations, inferior individuals with undesired attributes are gradually eliminated 

and the superior individuals evolve and eventually dominate the population. Such 

evolution is accomplished through different biological reproduction operations on the 

current individuals (parents) to generate the offspring for the new population. The most 

common operators include crossover and mutation. The crossover operator typically 

selects two individuals from the current population (usually superior individuals have 
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more chance to be selected) and combine them to make two new individuals. Thereafter, 

the mutation operator takes each individual and changes it slightly. 

Evolutionary algorithms have many advantages over classical optimization 

approaches. One of the main advantages is that it is a population-based approach, which 

implies that if an optimization problem has multiple optimal solutions, an evolutionary 

algorithm is capable of finding multiple optimal solutions in its final population, whereas 

a classical optimization approach may find only a single optimal solution. 

Another advantage of evolutionary approaches over those based on the locally 

searching the neighborhood of each single solution is their capability of more thoroughly 

exploring the feasible solution space in an efficient manner in terms of computational 

time (April et al., 2003). The performance of the local search approaches based on the 

neighborhood sampling strongly depends on the distance of the optimal solution from the 

starting point as well as the appropriate definition of neighborhood because move 

operations can direct the search towards the optimal solution. Given the fact that in the 

stochastic simulation optimization context the fitness functions are estimated by running 

the expensive simulation models, finding a near-optimal or even good solution in an 

acceptable short period is considerably preferential. 

Lacksonen (2001) performs an empirical study to compare the Hooke-Jeeve 

pattern search, Nelder-Mead simplex, simulated annealing, and genetic algorithm 

optimization approaches on variations of four industrial case study simulation models 

with 25 different test problems. Combinations of real variables, integer variables, non-

numeric variables, deterministic constraints, and stochastic constraints are considered in 

the test problems. Based upon the general results regarding solution quality, the 
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decreasing order of the optimization approaches in terms of robustness of performance is 

genetic algorithms, pattern search, simulated annealing and simplex method. Genetic 

algorithms are found to be the most robust approach, since it finds near optimal solutions 

for all 25 test problems. The pattern search appears to be robust for small and medium 

size problems (less than 12 variables) with numeric variables. Simulated annealing and 

the simplex method are not found to be very robust approaches. However, it is important 

to note that these results are based on only 25 test problems in four application areas, and 

the performance of the approaches might be different on other test problems. 

2.4. Evolutionary Algorithms for Multiobjective Optimization 

As previously mentioned, evolutionary algorithms (EAs) are population-based 

search algorithms inspired by Darwinian evolutionary theory. It has been shown that EAs 

are intelligent optimization algorithms that are able to balance exploration and 

exploitation of the solution search space (Goldberg, 1989; Mitchell, 1996). In recent 

years, several variations of multi-objective evolutionary algorithms (MOEAs) have been 

developed to handle MOPs (Deb, 2001; Coello et al., 2002). Many of the suggested 

MOEAs have been employed in a variety of real-world applications (Coello and Lamont, 

2004). Some major advantages of using EAs for multiple objective optimization 

problems include the following: 

 EA-based approaches are capable of finding a set of good solutions rather than a 

single solution (Srinivas and Deb, 1994; Deb, 2001). 

 EA-based approaches are capable of exploring the search space more thoroughly 

with the smaller number function evaluations than other point-to-point local 
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search procedures such as simulated annealing and tabu search (April et al., 

2003). 

 EA-based approaches are less dependent on the selection of the starting solutions, 

and they do not require neighborhood definition (April et al., 2003). 

2.4.1. Vector Evaluated Genetic Algorithm 

The first multiobjective GA developed by Schaffer (1984) is called Vector 

Evaluated Genetic Algorithm (VEGA). Schaffer expands Grefenstette’s GENESIS 

program in order to make it applicable for the problems with multiple objective functions 

by modifying the conventional selection method. VEGA is only different from the simple 

Genetic Algorithm (SGA) in the way selection procedure is implemented. In VEGA, 

assuming the population size is N, the population at each generation is divided into M 

equal sub-populations of size N/M. M is the number of the objective functions. The 

individuals are randomly placed in a sub-population. Then, individuals in each sub-

population are assigned fitness according to a particular objective function. In this way, 

all M objective functions are considered in the selection operation of the whole 

population. Schaffer uses a fitness-proportionate selection operator. It should be noted 

that the entire population should be shuffled completely together before applying the 

usual crossover and mutation operations. Despite its simple implementation, this 

algorithm has a problem of biasedness towards some champion individuals and regions, 

as found by Schaffer (1984). This phenomenon, in genetics, is known as speciation, 

which means “…the evolutionary formation of new species among solutions that excels 

in some respect…” (Coello, 1999). VEGA works well during early generations. 

However, during later generations, the entire population usually converges towards some 
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regions that may not be the Pareto optimal front. This problem arises because particular 

solutions with better individual objective function values are emphasized without 

considering compromised solutions with average performance for each objective 

functions. Schaffer (1985) suggests two heuristics to resolve the speciation problem – the 

nondomination selection heuristic and the mate selection heuristic. It is worth mentioning 

that Schaffer found that his algorithm had a better performance in comparison to the 

adaptive random search method. The computational complexity of VEGA is the same as 

that of SGA because the selection operation is just repeated for each individual objective. 

Tamaki et al. (1996) suggest a new algorithm called the Pareto reservation 

strategy in which they incorporate VEGA with the Pareto optimality concept. In this 

strategy, nondominated individuals in the current population are reserved and transferred 

to the next population so as to minimize the influence of the particular solutions with 

good individual objective function values. They also use a sharing technique to preserve 

diversity among solutions in the Pareto front. 

2.4.2. Multiple Objective Genetic Algorithm 

The first multiobjective GA based on the nondominated classification of the 

individuals, called Multiple Objective Genetic Algorithm (MOGA), is proposed by 

Fonseca and Fleming (1993). In this approach, the rank of each individual, say i, is 

determined by one plus the number of individuals in the current population that 

dominates it, i.e., ri = 1+ni. Individuals are sorted in ascending order based on their rank. 

Thereafter, fitness values are assigned to individuals by using usually (but not 

necessarily) a linear mapping function. Then, their fitness values are averaged to ensure 

that the same rank individuals have identical fitness. In MOGA, the sharing function uses 
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the objective function values, instead of parameter values, which implies that the 

coverage quality of individuals’ density in the search space might be poor. It is worth 

mentioning that no requirement in the approach enforces using the sharing function on 

the objective values. However, Coello (1996) reports that this is a theoretical problem 

and the algorithm works practically well. Fonseca and Fleming (1993) suggest a good 

method for updating the sharing parameter σshare dynamically. This dramatically increases 

the performance of the algorithm. The overall computational complexity of MOGA is 

O(MN2). 

MOGA has been used by many researchers in a variety of applications, 

particularly in control systems design. For example, Fonseca and Fleming (1998) apply 

MOGA using a multiple constraint handling strategy to solve a design problem for the 

low pressure spool speed governor of a Pegasus gas turbine engine. They consider several 

real nonlinear objective functions in their design including maximization of the stability 

of the closed-loop system, gain and phase margins, and minimization of the output error, 

while maintaining the rise time, settling time and overshoot in their desired levels. 

Oyama and Liou (2001) and in their follow-up work Oyama and Liou (2002) use MOGA 

for the design of cryogenic rocket engine turbopumps. They use this approach using 

floating-point representation, instead of binary representation, to optimize a single-stage 

centrifugal pump design as well as multi-stage pump design. 

2.4.3. Nondominated Sorting Genetic Algorithm 

Srinivas and Deb (1994) propose an interesting approach called Nondominated 

Sorting Genetic Algorithm (NSGA). This approach classifies the population into a 

number of layers of nondominated fronts. The first layer of nondominated individuals is 

35 



assigned the highest fitness value. Before identifying the second layer of nondominated 

individuals, sharing is done among the first front individuals to ensure a better spread of 

the individuals. This process is repeated for the remaining individuals until all individuals 

in the population belong to one front. For better understanding, the flowchart of NSGA is 

given in the Figure  2.2. Assigning a higher fitness value to individuals in the frontier 

layer increases convergence pressure on the population. This helps the layer move 

towards the true Pareto front. NSGA can be used for problems with any number of 

objectives as well as for maximization and minimization objectives (Srinivas and Deb, 

1994). This approach uses a sharing function on the parameter values resulting in a 

noticeable uniform spread of individuals over the Pareto front. The overall computational 

complexity of NSGA is the maximum of the O(MN2) and O(nN2) which might be more 

than that of MOGA, O(MN2).  The value n is the number of input parameters. It has been 

reported that NSGA is less efficient in finding the Pareto front in terms of quality of 

solutions and more sensitive to the sharing parameter σshare than MOGA (Coello, 1996; 

Van Veldhuizen, 1999). 
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Figure  2.2. Flow diagram of NSGA (obtained from Srinivas and Deb (1994)). 

 

NSGA has been used to obtain Pareto optimal solutions in a variety of 

applications. For example, Michielssen and Weile (1995) use NSGA for the design of an 

electromagnetic system. The NSGA is used by Vedarajan et al. (1997) for portfolio 

investment optimization. Mitra et al. (1998) use NSGA to solve biobjective optimization 

problems for three grades of Nylon 6 being produced in an industrial semi-batch reactor 

in which the total reaction time and the concentration of an undesirable cyclic dimmer in 

the product are to be minimized. NSGA has also been used by others to solve flowshop 
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and job shop scheduling problems (e.g., Bagchi, 2001; Talbi et al., 2001). Bagchi (2001) 

introduces an enhanced version of NSGA, called Elitist Nondominated Sorting GA 

(ENGA), which statistically improves the convergence speed to find out Pareto front by 

elitist selection pressure. Yee et al. (2003) solve several MOPs for both adiabatic and 

steam-injected styrene reactors successfully using NSGA with appropriate values for its 

parameters through several trials. 

2.4.4. Niched Pareto Genetic Algorithm 

Horn and Nafpliotis (1993) propose Niched Pareto Genetic Algorithm (NPGA), a 

multiobjective GA based on Pareto dominance using binary tournament selection, unlike 

VEGA, NSGA and MOGA that use fitness proportionate selection. In this scheme, two 

individuals i and j compete with respect to the number of individuals in a sub-population 

of size tdom from the parent population that dominate them. If both individuals i and j are 

either dominated by at least one individual or not dominated by any individual, the 

tournament result will be determined through the calculation of their niche counts. The 

overall computational complexity of NPGA is the larger of O(MNtdom) or O(N2). Dealing 

with problems with high number of objectives, if the sub-population size of comparison 

set tdom is kept much smaller than N, then NPGA is much more efficient than other 

methods. But, if the sub-population size tdom is equal to N, its overall complexity is the 

same as that of MOGA, i.e., O(MN2). One of the attractive features of NSGA is that there 

is no need for fitness assignments unlike other methods (e.g., VEGA, NSGA and 

MOGA) that particular fitness value should be assigned to each individual. NPGA uses 

tournament selection, which has better growth and convergence properties in comparison 

to fitness proportionate selection (Goldberg and Deb, 1991). However, NPGA requires 
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not only an appropriate selection of the sharing factor σshare but also a good choice of the 

sub-population size tdom. Moreover, the performance of NPGA is more sensitive to the 

right value of σshare than NSGA, because in NPGA, unlike NSGA, the niche count of 

individual i is calculated when the individuals are located within the distance of σshare 

regardless of how far they are from an individual i (Deb, 2001). 

Schott (1995) uses NPGA for the design of a fault tolerant system to minimize 

objectives, unavailability and purchase cost. He compares NSGA with the ε-constraint 

method where he reports the superiority of NSGA. Abido (2003) uses the traditional 

NPGA with some basic modifications to solve the nonlinear constrained multiobjective 

environmental/economic dispatch problem. The problem is formulated to minimize fuel 

cost and emission, while satisfying the generation capacity, power balance and security 

constraints. He implements a real-coded GA with a blend crossover operator and a non-

uniform mutation operator in order to overcome the difficulties of binary representation 

for large dimensioned problems with continuous search space (Herrera et al., 1998). In 

this study, an average linkage-based hierarchical clustering algorithm is employed to 

reduce the size of nondominated set to provide the decision-maker with the manageable 

Pareto optimal set. 

2.5. Multiobjective Evolutionary Algorithms under Uncertainty 

A review of the literature reveals that only a few attempts have been made in the 

area of multiobjective evolutionary algorithms in stochastic environments. This 

undoubtedly is due to the existing uncertainties and complexities involved in the nature 

of the problems within this context. Moreover, to the best of our knowledge, no 
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multiobjective evolutionary algorithm exists that is capable of effectively dealing with 

uncertain and noisy objective functions that has been extensively tested. 

Hughes (2001) presents a new approach for probabilistic ranking and selection for 

both single objective and multiobjective optimization problems accounting for 

uncertainties and noise present in the objective functions. Unlike the conventional 

ranking processes, his approach provides a statistical basis for addressing uncertainties 

and noise in the ranking and selection process. He experiments how the noise affects the 

assigned ranks within a population of solutions of an EA and finds that the probabilistic 

ranking process outperforms the ranking processes of MOGA and NSGA in the presence 

of high levels of noise. Further research to employ the suggested probabilistic ranking 

approach in evolutionary algorithms has not been found. 

Teich (2001) introduces the concept of probabilistic dominance in multiobjective 

evolutionary algorithms when the objective values are uncertain but constrained within 

certain intervals. This is an extension to the definition of Pareto-based dominance. He 

modifies strength Pareto EA (SPEA) by updating the external set in order to handle 

estimated objective values bounded by intervals. Teich (2001) applies the modified 

strength Pareto EA (or SPEA2) to a hardware/software partitioning problem in order to 

minimize execution time and cost. 

A large body of MOEA research focuses on algorithms that are modifications of 

NSGA-II. This is largely due to the influence of the exceptional work of Deb et al. 

(2002). Singh et al. (2001), for instance, propose a number of modifications to GAs to 

tackle some of the problems in noisy MOPs. They suggest improving the performance of 

original NSGA-II in noisy environments by modifying the ranking, selection and 
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diversity preservation schemes. Their suggested modifications are tested on a continuous, 

multi-modal problem that has more than one local Pareto optimal front. Noise is 

considered in the objective, decision and parameter space. However, they find that the 

performance of the modified NSGA-II is not significantly improved, particularly for 

solution diversity preservation. Babbar et al. (2003) suggest several modifications to the 

original NSGA-II ranking scheme to improve the performance of the algorithm in noisy 

environments. They test the modified NSGA-II on two test problems. It is worth 

mentioning that, in order to make a fairer comparison, only real nondominated solutions 

rather than rank-1 frontiers at the final generation should be benchmarked. Poles et al. 

(2003) propose a new EA for multiobjective optimization, called MOGA-II, which is 

different from the MOGA of Fonseca and Fleming (1993). They test the robustness of 

MOGA-II on noisy single-objective problems and compare its performance to that of two 

other algorithms. 

In noisy genetic algorithms, Goldberg et al. (1992) find that, when dealing with 

noisy and uncertain objective functions, a large population size should be considered. 

This helps to prevent premature convergence in noisy and stochastic environments. 

Miller (1997) suggests that, under certain assumptions, there is a good approximation to 

estimate population size depending on the noise level. He also proposes some 

approximations to estimate the lower and upper bounds of the appropriate number of 

samplings for each solution. 

2.6. Multiobjective Simulation Optimization 

Due to the uncertainties existing in the nature of stochastic simulation problems, 

considering the additional complexity of dealing optimizing multiple objectives makes 
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solving this type of problem very challenging. Most likely, this is the main reason that 

only limited works have been done in this research area compared to using stochastic 

simulation for the optimization of a single objective. It is worth mentioning that most of 

these attempts use response surface methodologies, goal programming, and/or interactive 

multiobjective algorithms that the decision-maker uses to direct the search. These 

methods typically suffer from local optimality, absence of pre-knowledge on underlying 

system and individual objective ranges, and lack of an automated search process. 

Additionally, most of these methods disregard the stochastic nature of the output 

responses and perform the search deterministically. 

Mollaghasemi et al. (1991) propose an approach in which they integrate the 

gradient search method and multiple attribute value function. Evans et al. (1991) review 

some of the best-known multiobjective optimization techniques categorized based on the 

three types of approaches: prior, progressive, and posterior articulation preferences that 

can be used for stochastic simulation models. They describe some important problem 

characteristics that should be considered in the selection of an appropriate multiobjective 

optimization technique for integration with simulation models. Mollaghasemi and Evans 

(1994) introduce an interactive approach based on the multiobjective optimization 

approach, called STEP method. Briefly, the STEP method is a multiobjective 

programming algorithm which attempts to minimize the maximum deviation of 

objectives from the ideal solution using relative weight of deviations. The decision-maker 

is then provided with the obtained solution, and asked to identify the satisfactory and 

unsatisfactory objectives in order to direct the search for accomplishing improvement. 

Mollaghasemi and Evans (1994) modify the STEP method for applications to simulation 
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models by using gradient search for each objective to find an ideal solution. A job shop 

model is used for application of the proposed interactive algorithm with six decision 

variables, the number of machines at each of six job stations, and four objectives 

including average time in system for three different part types and average machine 

utilization for all machine groups. 

Baesler and Sepulveda (2000) suggest a new approach for multiobjective 

simulation optimization by using the GA within goal programming. This approach, 

unlike previous approaches that disregard the stochastic nature of output responses, 

employs the variances of the responses in order to perform the search stochastically 

towards the solution with the minimum weighted deviation from the target levels. They 

use a statistical grouping procedure based on Tukey’s method to cluster the individuals in 

a population where there is a statistical difference between individuals of two different 

groups, but not between individuals within a group. A fitness-proportionate scheme is 

used to select a group from which an individual is randomly chosen. They implement a 

real coded-GA using blend crossover and uniform mutation operators. The same authors 

apply their proposed methodology to design a cancer treatment center facility. The 

decision variables of the underlying system include the number of treatment chairs at 

ambulatory treatment center, number of blood nurses, laboratory capacity, and pharmacy 

capacity. In this study, they consider four measures of system performance including 

minimization of patient’s waiting time and closing time as well as maximization of nurse 

utilization and chair utilization. They show that the configurations found using the 

proposed methodology are all better than the existing configuration ranging from 18 to 25 

percent improvement. 
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Joines et al. (2002) introduce a GA-based multiobjective simulation optimization 

approach using a modified version of the original NSGA-II. They apply their 

methodology to a real-world supply chain optimization problem with two objectives, 

gross margin return on investment and customer service level. They find Pareto optimal 

solutions for different levels of customer service, which provide valuable information for 

the decision-maker. In single objective simulation optimization, Hedlund and 

Mollaghasemi (2001) develop an optimization framework by incorporating an 

indifference zone ranking and selection procedure into a GA and using common random 

numbers to reduce the disturbance caused by the effect of noise. 

2.7. Summary 

This chapter provides a review of the existing relevant literature in the area of 

multiobjective optimization. We then discuss simulation optimization and applications of 

genetic algorithms for multiobjective optimization. Table  2.3 summarizes the key 

features of the best known simulation optimization approaches. 

At the time of writing this dissertation document, no commercial simulation 

software uses classical optimization approaches, because they usually require not only a 

considerable amount of computational effort but also a great deal of technical 

sophistication on the part of the user (Andradóttir, 1998b; April et al., 2003). Leading 

commercial simulation software employ metaheuristic approaches in their optimization 

modules. Moreover, there is a significant trend into population-based evolutionary 

approaches including genetic algorithm and scatter search (or hybrid approaches). These 

advantages include finding a set of good solutions rather than a single solution (Deb, 

2001), exploring the search space more thoroughly with the smaller number function 
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evaluations, being less dependent on the selection of the starting solutions, and not 

requiring neighborhood definition (April et al., 2003). 

 

Table  2.3. Summary of simulation optimization approaches (obtained from Fu (2002)). 

Approach Key Features 

Gradient Search Move locally in most promising direction, according to gradient 

Random Search Move randomly to new point, no information used in search 

Simulated Annealing Sometimes move in locally worse directions, to avoid being trapped 
in local optima 

Genetic Algorithms & 
Scatter Search 

Population based, generates new members using (local) operations on 
attributes on current members 

Tabu Search Use memory (search history) to avoid tabu moves 

Neural Networks (Nonlinear) Function approximation 

Math Programming Powerful arsenal of rigorously tested software 

 
On the other hand, any proposed methodology should be able to handle the 

uncertainty and noise involved in the objective functions and avoid drawbacks of 

traditional multiobjective optimization techniques mentioned in  CHAPTER 1. 

 

45 



 

CHAPTER 3: PROPOSED METHODOLOGY 

3.1. Introduction 

A review of literature reveals that limited work has been done in the area of 

multiobjective simulation optimization, most likely because of the existing uncertainties 

and complexities involved in the nature of the problems. The suggested approaches are 

typically suffering from local optimality, absence of pre-knowledge on underlying system 

and solution objective ranges, and/or lack of automated search process. Additionally, 

most of these methods disregard the stochastic nature of the output responses and 

perform the search deterministically without providing any statistical guarantee that the 

search is progressing in the right direction. 

The primary purpose of this research is to develop a GA-based stochastic 

multiobjective optimization methodology to find Pareto optimal solutions for simulation 

models in a short period of time. This chapter presents a proposed modeling framework 

for multiobjective optimization in deterministic problem environments integrating 

nondomination-based multiobjective optimization methods and evolutionary algorithms. 

The proposed multiobjective evolutionary algorithm, which is described in detail, uses a 

newly introduced ranking strategy and new search operators. This chapter is concluded 

by a brief discussion of the proposed MOEA’s computational complexity. 
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3.2. A Proposed Methodology – Fast Pareto Genetic Algorithm (FPGA) 

The proposed framework named fast Pareto genetic algorithm (FPGA) utilizes a 

population-based evolutionary algorithm. However, more importantly, this framework 

incorporates a new solution ranking strategy into an MOEA. A real-coded GA is 

implemented to avoid the difficulties associated with binary representation and bit 

operations, particularly when dealing with continuous search spaces with large 

dimension. Recall that each solution to a MOP is represented by an n-dimensional vector 

x = (x1, x2, …, xn), where a decision variable xi is a real number bounded by a lower limit 

ai and upper limit bi, i.e., xi ∈ [ai, bi]. The dimension of the vector is equal to the number 

of decision variables of the problem under study. Figure  3.1 gives the pseudocode for 

FPGA and Figure  3.2 shows the logic flow of FPGA.  

Initialize user decision parameters (numvars, numobjs, maxpopsize, maxsoleval, pc, pm, …) 
t := 0 
create initial random population { }1 2 3, , ,t t t

t =P x x x K  

evaluate(Pt) 
do while (stopping criterion is not met) 
{ 

t := t +1 
t′P  := select(Pt-1)  // select pairs of solutions for reproduction 

Ot := crossover( ) t′P
Ot := mutate(Ot) 
evaluate(Ot) 
CPt := Pt-1  Ot // form composite population U
rank(CPt) 
regulate(CPt) 
Pt := generate(CPt) 

}end do 

Figure  3.1. Pseudocode of the proposed fast Pareto genetic algorithm (FPGA). 

47 



 

Parameter 
Settings 

Select According to 
Rank and Fitness 

Initialize 
Population Crossover and Mutation 

Evaluate Objective 
Functions Set of All 

Solutions 

 

Figure  3.2. Logic flow of the fast Pareto genetic algorithm (FPGA). 

The major steps of FPGA are as follows: 

1. Initialize all decision parameters to user-specified values; 

2. Create an initial population of candidate solution vectors randomly at the first 

generation; however, FPGA can be easily modified to generate the initial population 

heuristically, seeded with user-defined solution vectors, or using a combination of 

these approaches; 
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3. If it is the first generation, go to Step 5; otherwise, increment the generation number 

and select pairs of solutions as parents from the previous population in the 

reproduction operation using binary tournament selection; 

4. Perform the crossover and mutation operations to generate candidate solutions 

(offspring);  

5. Evaluate the candidate solution vectors for the m objective functions and record them; 

6. Combine generated candidate solutions with the previous population to form a 

composite population; 

7. Rank the composite population of solutions based on the new ranking strategy using 

their fitness values; 

8. Regulate the population size according to the number of nondominated solutions and 

generate a new population from the composite population by discarding the inferior 

(dominated) solutions; and 

9. Terminate the search if the stopping criterion is met; otherwise, return to Step 3. 

 

In the proposed methodology, no input preferences are required from the 

decision-maker, neither any interaction during the search which even provides more 

information for the decision-maker. At the end of the search, it is expected that a large set 

of nondominated solutions are found. Using an appropriate screening algorithm, this 

large set of Pareto optimal solutions reduced to a manageable size of optimal solutions.  

3.2.1. FPGA Initialization and Solution Evaluation 

After initializing the user-specified parameter settings (e.g., number of decision 

variables, number of objectives, maximum population size, maximum number of solution 
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evaluations, etc.), the initial population is created by random sampling of each decision 

variable within its defined range of variation. The user can also include some promising 

solutions if prior knowledge about the problem under study is available. Another 

approach is to take initial solutions from either the boundary of the search space or scan 

the search space with equal intervals as a grid. An initial population can also be generated 

by combination of the methods described above. In this research, the initial population is 

generated randomly. The evaluation of new solutions in terms of the objective functions 

is accomplished by calculating the corresponding evaluation function (e.g., a 

mathematical closed-form expression, a computer simulation model) specified by the 

underlying problem. At each generation, the obtained solutions with their corresponding 

objective values are all recorded. If a solution advances to subsequent generations, its 

corresponding attributes are retrieved and copied to the new generations. In FPGA, 

before ranking and fitness assignment is performed, the new solution set Ot generated by 

crossover and mutation operations are combined with previous population Pt-1 to form the 

composite population CPt, i.e., CPt = Pt-1 Ot, where  denotes the union of the two 

sets. 

U U

3.2.2. Solution Ranking and Fitness Assignment 

The new ranking strategy is based on the classification of candidate solutions of 

the composite population CPt into two different categories (ranks) according to solution 

dominance. All dominated solutions are identified as the second rank. These ranks are 

used to evaluate solution fitness for the purpose of solution reproduction. It is important 

to note here that a solution with a larger fitness value is preferred. 
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Rank-1 Solutions 

Firstly, all nondominated solutions are identified as the first rank, which implies 

that there is no solution that is better than these solutions with respect to all objectives 

simultaneously. The fitness of the nondominated solutions in the first rank is calculated 

by comparing each nondominated solution with one another and assigning a fitness value. 

These values are computed using the crowding distance approach suggested by Deb et al. 

(2002), which has been shown to help maintain diversity among the nondominated 

solutions on the Pareto optimal front. The larger a solution’s fitness value, the greater the 

distance that solution is from its neighboring nondominated solutions along the Pareto 

front. 

 

Rank-2 Solutions 

All dominated solutions are identified as the second rank. Each dominated 

solution in the second rank is compared with all other solutions and assigned a fitness 

value depending on the number of solutions they dominate. The idea here is similar to the 

strength concept employed in SPEA and SPEA2; however, it has been generalized. The 

fitness assignment takes into account both dominating and dominated solutions for any 

dominated solution. Here, each solution in the composite population CPt is assigned a net 

strength value S(xi), indicating the number of solutions it dominates, where 

( ) { }|= ∀ ∈ ∧ ∧ ≠fi j j t i jS x x x CP x x j i

j

. (3.1)

The cardinality of a set is denoted as | · | and the expression  means 

solution xi dominates solution xj. Then, the fitness value of each dominated solution is 

calculated by 

ix xf
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x x x x

x x x x CP
f f

j i≠  (3.2)

In other words, a fitness value is assigned to each dominated solution xi is equal to the 

summation of the strength values of all solutions it dominates minus the summation of 

the strength values of all solutions by which it is dominated. In contrast to SPEA and 

SPEA2 where the strength values of only the solutions by which xi is dominated (i.e., the 

second term in Eq. 3.2) is considered. This strategy provides more information on Pareto 

dominance and niching relations among solutions in the composite population and 

reduces the chance that two solutions have the same fitness value. Thus, no additional 

diversity preservation mechanism is used among the dominated solutions in the second 

rank requiring less computation (unlike the SPEA2 which requires much higher 

computation for the density estimator). It is interesting to note that if most solutions do 

not dominate one another, it is implied that they belong to the first rank where crowding 

distance operator is invoked to maintain the diversity among them (discussed in detail in 

the next section). 

After the fitness values of all candidate solutions in CPt are calculated, the 

solutions are compared. Three different scenarios might occur. In the first scenario, two 

selected solutions have different ranks in which the solution with the better rank is 

preferred. In the second scenario, two solutions have the same rank but different fitness 

values in which the solution with larger fitness value is preferred. In the last scenario, two 

solutions have the same rank and fitness value where one of them is randomly preferred. 
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3.2.3. Distance Crowding Operation 

In order to take the right proportion of nondominated solutions to maintain an 

even distribution of solutions along the Pareto optimal front, the crowded tournament 

selection operator originally introduced by Deb (2002) in NSGA-II is employed. This 

new approach does not have the challenges of using the sharing function method 

including selecting the value of the sharing parameter σshare and the large computational 

complexity. Briefly explained, the crowding distance of a set of solutions estimates the 

density of the solutions surrounding any one particular solution in the population. It is 

determined by calculating the average distance of two solutions on either side of the 

solution in question along each of the objectives. Crowding distance is used as an 

estimate of the normalized perimeter of the cuboids formed by using the nearest 

neighbors as the vertices. Figure  3.3 shows how the crowding distance of a solution p is 

calculated as half of the perimeter of the cuboid. The interested reader is referred to Deb 

(2001) and Deb et al. (2002) for a more detailed discussion of this operator. 
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Figure  3.3: Illustration of crowding distance calculation. 
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However, in many applications, particularly in real-world problems, to emphasize 

the tradeoff among the objectives, the normalized area of the cuboid is suggested rather 

than the normalized perimeter. After all nondominated solutions in the population are 

assigned distance crowding values, the solutions are then compared to one another. In 

order to maintain diversity along the Pareto optimal front, the distance tournament 

selection operator is performed both to assign higher priority to less crowded 

nondominated solutions and to select the right subset of the nondominated set to copy to 

the next generation when the size of the nondominated set exceeds half of the pre-

specified maximum population size. 

3.2.4. Elitism and Expansion Operations 

An elitism operator with relatively high intensity is implemented to ensure 

propagation of the nondominated solutions (i.e., elite solutions) to subsequent 

generations. This is accomplished by copying all solutions in the population in the 

previous generation Pt-1 to the composite population CPt. Combination of previous 

generation Pt-1 with generated offspring Ot provides an opportunity to preserve the 

superior solutions in the next generation and discard the inferior solutions depending on 

the number of nondominated solutions obtained in the composite population. 

The number of nondominated solutions usually increases over generations 

resulting in low elitism intensity in early generations if the population size is quite large 

and kept fixed. Moreover, the fluctuations of the number of nondominated solutions over 

generations demand an adaptive population sizing strategy to place appropriate emphasis 

of elitism intensity on nondominated solutions. If elitism intensity is too high, premature 

convergence might occur and if elitism intensity is too low, convergence might be too 
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slow and computationally-expensive. Therefore, FPGA employs a regulation operator to 

dynamically adjust the population size until it reaches a user-specified maximum 

population size as calculated by 

{ }{ }is nondominatedmin | ,⎡ ⎤= + × ∈ ∧⎢ ⎥t t t i i t i popsizea b maxP x x CP x , 
(3.3)

where tP  is the population size at generation t, at is a positive integer variable that might 

change over generations, bt is a positive real variable that might change over generations, 

x⎡ ⎤⎢ ⎥  is the smallest integer that is greater than or equal to the real number x, and 

maxpopsize is the user-specified maximum population size. 

FPGA, unlike many of the other existing MOEAs, benefits the dynamic small 

number of offspring created by crossover and mutation operations over generations as 

calculated by 

{ }{ }is nondominatedmax | ,⎡ ⎤= + × ∈ ∧⎢ ⎥t t t i i t i solevalc d maxO x x CP x , (3.4)

where |Ot| is the number of offspring created at generation t, ct is a positive integer 

variable that might change over generations, dt is a positive real variable that might 

change over generations, and maxsoleval is the user-specified maximum number of 

solution evaluations at each generation. It is interesting to note that this feature makes 

FPGA capable of saving a significant number of solution evaluations early in the search 

and utilizes the exploitation in a more efficient manner at later generations. Creating large 

number of offspring at early generations consumes considerable number of solution 

evaluations limiting the total number of generations, which results in no extensive 

utilization of exploitation, especially if the number of solution evaluations is restricted. 

Bear in mind that in expensive MOPs, where a small number of solution evaluations is 
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desired, more emphasis on exploitation and less emphasis on exploration could be 

extremely beneficial. 

The suggested values for at, bt, ct and dt are obtained by performing several pilot 

runs. In this study, we set at = 20, bt = 1 and maxpopsize = 100. Thus, substituting these 

values into Eq. 3.3, we get 

{ }{ }is nondominatedmin 20 | , 100t i i t i= + ∈ ∧P x x CP x . (3.5)

In other words, the population size at generation t is 20 plus the number of nondominated 

solutions in the composite population if it is not larger than the pre-specified maximum 

population size. Otherwise, it is kept (truncated) equal to the maximum population size. 

Also, we set ct = 20, dt = 0 and maxsoleval = 100. Thus, substituting these values into Eq. 

3.4, we get |Ot| = 20, which means that the number of offspring created at each 

generation is small, but constant through the search process. 

As the intent of this research is to introduce a novel strategy that addresses 

adaptive population sizing and conservative offspring generation in order to improve the 

efficiency and effectiveness of the search, the attempt to determine more appropriate (and 

perhaps more robust) values for at, bt, ct and dt parameters is left for future study. 

3.2.5. Crossover and Mutation Operations 

The pairs of selected solutions in the reproduction process undergo crossover and 

mutation operations to produce offspring for the population at the next generation. The 

crossover operator exchanges information between selected solution pairs with a 

probability of occurrence pc. The simulated binary crossover (referred to in the literature 

as SBX) operator introduced by Deb and Agrawal (1995) is performed in this algorithm. 
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This operator requires two parent solutions and creates two offspring, and it preserves the 

common interval schemata between the parent solutions in the offspring. Another 

interesting aspect of the SBX operator is that the absolute difference in offspring values is 

that of their parents. 

After the crossover operation, the newly-obtained solutions undergo a mutation 

operation with a probability of occurrence pm. The polynomial mutation operator 

introduced by Deb and Goyal (1996) is employed in which the probability distribution is 

polynomial. This operator is very similar to non-uniform mutation, but here the shape of 

the probability distributions is not dynamically changed over generations.  

The interested reader is referred to the work of Herrera et al. (1998) or Deb 

(2001) for detailed discussions on different crossover and mutation operators for real-

coded GAs. 

3.2.6. Stopping Criterion 

Different approaches have been used to stop the search process of EAs including 

those that consider the landscape of the response surface, the desired solutions quality, 

the specific number of solution evaluations and the required computation time. Designed 

for dealing with expensive MOPs, FPGA uses a new stopping criterion that considers the 

convergence speed towards the true Pareto optimal front. Here, when the number of 

nondominated solutions reaches the pre-specified maximum population size, and 

thereafter, no changes are made in the number of nondominated solutions within a certain 

number of solution evaluations1, the search stops. For better understanding of the 

                                                 
1 The expression “solution evaluations” could be replaced by “generations” if the MOEA has identical 
population size over generations. 
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suggested stopping criterion for expensive MOPs, a new convergence velocity measure is 

defined. 

 

Definition 3.1: The Pareto production rate (PPR) is the rate at which a particular MOEA 

produces nondominated solutions per population and is calculated as 

t
t

t

PPR =
NP
P

, 
(3.6)

where Pt is the population at generation t, and |NPt| denotes the number of nondominated 

solutions belonging to population Pt. 

 

When PPRt reaches one (i.e., all solutions in the population are nondominated) and it 

does not make any changes over a pre-specified number of solution evaluations implying 

no promising nondominated solutions are found within this period, the search stops. 

This new stopping criterion has a few advantages over many other suggested 

stopping criteria, particularly when solving MOPs where each solution evaluation is 

computationally- and/or financially-expensive. First, it does not require the knowledge 

about the true Pareto optimal front of the problem under study. This is often the case 

when addressing real-world problems. If the approximate set of the true Pareto optimal 

front is not known, determination of sufficient number of solution evaluations for 

successful convergence is virtually impossible. Secondly, a sufficient number of solution 

evaluations for any problem is different depending on the number of decision variables, 

variables’ domains, number of objectives and optimality characteristics. Therefore, for 

benchmarking and comparative analysis, the number of solution evaluations for each test 

problem is set to different values to allow for convergence to the true Pareto optimal 
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front. Moreover, some algorithms might converge faster to the true Pareto optimal front, 

even when an excessive number of generations is assigned. Finally, it is possible to 

evaluate this measure during the entire search process at any given generation thus 

providing valuable information about the convergence behavior of an algorithm. 

It is important to note that this stopping criterion allows a measure to evaluate the 

capability of a multiobjective optimization algorithm to produce nondominated solutions 

at any given generation rather than a measure to evaluate the convergence of the obtained 

nondominated solutions to the true Pareto optimal front. Therefore, a careful monitoring 

of the algorithm during pilot runs is crucial to ensure that a sufficient number of 

generations (or solution evaluations) is assigned for successful convergence. Here, since 

the population size of FPGA is not fixed and is changing over the search, a variation of 

the PPR is employed in which the number of obtained nondominated solutions in terms 

of the total number of solution evaluations is calculated. 

3.2.7. Screening Nondominated Solutions Set by Clustering 

Since in most nondomination-based multiobjective problems the size of the Pareto 

optimal set becomes extremely large, some tools should be employed to prune it to 

manageable size for the decision-maker. A review of the literature on cluster analysis 

reveals that there are several methods available for this purpose. For example, Morse 

(1980) provides comprehensive review of different clustering methods including two 

general forms of direct and hierarchical clustering. The basic idea is to portray the 

nondominated set by a representative subset that reflects the characteristics of the main 

set without destroying attributes of the obtained curve. In general, cluster analysis 
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partitions a collection of N elements into P groups of relatively homogeneous elements, 

where P < N. 

In this methodology, an average linkage hierarchical clustering is adopted to 

screen out the potentially large Pareto optimal set obtained at the end of the search 

process. The mechanism is that the two clusters with minimum average distance are 

combined together into a larger cluster. This process continues until the desired number 

of clusters is formed. Then, the nearest solution to the centroid of each cluster is selected 

and the remainders are removed. 

3.3. Computational Complexity of FPGA 

To determine the computational complexity of FPGA, consider the worst case 

complexity at generation t of the search process. The key operations of FPGA with 

respect to complexity include the new ranking strategy, fitness assignment, and crowding 

distance computation. The complexity of FPGA’s ranking strategy that determines the 

nondominated solutions and dominated solutions is O(mNtlogNt) for m = 2 and 3 and 

O(mNtlogNt
m-2) for m ≥ 4. The complexity of the crowding distance computation 

performed for fitness assignment of the nondominated solutions is O(mNtlog(Nt)). Sorting 

of the nondominated solutions based on their fitness assignments obtained from crowding 

distance needs O(m NtlogNt) computations. Fitness assignment of dominated solutions 

requires O(m ) computations. Thus, the overall complexity of FPGA is at most 

O(m ). If the maximum population size of FPGA is the static population size N of most 

other MOEAs, the overall complexity of FPGA is O(mN2), which is no more than that of 

other popular MOEAs such as NSGA-II, SPEA2 and PAES. 

2
tN

2
tN
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CHAPTER 4: FPGA COMPUTATIONAL RESULTS 

4.1. Introduction 

The previous chapter describes a new multiobjective evolutionary algorithm 

approach, called fast Pareto genetic algorithm (FPGA), for expensive MOPs. In this 

chapter, we evaluate the performance of FPGA on a suite of published benchmark test 

problems having two objectives and no coupled constraints. In all test problems, the 

functions are to be minimized. These problems consider deterministic objective 

functions. The results of FPGA are also benchmarked against one of the state-of-the-art 

MOEAs – real-coded NSGA-II of Deb et al. (2002). It has been reported that NSGA-II 

outperforms most of its competitors including SPEA and PESA, and it competes closely 

with SPEA2 in terms of convergence to the true Pareto optimal front while maintaining 

the diversity (Deb et al., 2002; Zitzler et al., 2001; Erbas et al., 2006). However, SPEA2 

requires higher computational complexity of O(mN2logN) (Zitzler et al., 2001) compared 

to that of NSGA-II, O(mN2), raising the question of whether the computationally-

expensive fitness assignment strategy and truncation operator in SPEA2 pays off. Some 

studies report that there is no significant difference between the performance of SPEA2 

and NSGA-II, although SPEA2 requires significantly higher computational time (Zitzler 

et al.,  2001; Deb et al., 2005; Bui et al., 2005; Erbas et al., 2006). 
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4.2. Benchmark Test Problems 

The suite of test problems consists of seven well-known benchmark problems.  

Table  4.1 summarizes the number of decision variables and their bounds, the true Pareto 

optimal front and optimality characteristics for the seven problems. The first test 

problem, referred to as FON (Fonseca and Fleming, 1993), has a nonconvex Pareto 

optimal front. The second problem, referred to as KUR (Kursawe, 1990), has three 

discontinuous Pareto optimal front regions, which are an isolated point, a concave region 

and a convex region. Problems three through seven are well-known ZDTs real-variable 

problems, except ZDT5, which is a discrete-variable problem designed for binary strings 

suggested by (Zitzler et al., 2000). The test problems ZDT1 and ZDT2 have 30 decision 

variables each and the former has a convex Pareto optimal front and the latter has a 

concave Pareto optimal front. The 30-decision variable problem ZDT3 has five 

discontinuous Pareto optimal front regions. The 10-decision variable test problem ZDT4 

is a multi-frontal (multi-modal) problem having a large number of local Pareto optimal 

fronts and a single global Pareto optimal front. The test problem ZDT6 has 10 decision 

variables and a nonconvex Pareto optimal front. Moreover, the density of solutions across 

its Pareto optimal front is non-uniform and the density towards the Pareto optimal front 

gets thin. Many researchers have used these problems as benchmarks for evaluating their 

proposed algorithms (e.g., Deb et al., 2002; Zitzler et al., 2001). 
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Table  4.1: Benchmark test problems. 

Test 
Problem 

Number of 
Variables n 

Variable 
Bounds 

Objective 
Functions 

Pareto Optimal 
Solutions 

Optimality 
Characteristics 

FON 3 [-4, 4] 
( )

2
3

1 1

11 exp
3ii

f x
=

⎛ ⎞⎛ ⎞
= − − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑x  

( )
2

3
2 1

11 exp
3ii

f x
=

⎛ ⎞⎛ ⎞
= − − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑x  

1 2 3

1 1[- , ]
3 3

x x x= =

∈
 

Nonconvex 

KUR 3 [-5, 5] 
( ) ( )( )1 2 2

1 11
10exp 0.2n

i ii
f x x−

+=
= − − +∑x  

( ) ( )0.8 3
2 1

5sinn
i ii

f x x
=

= +∑x  
Refer to Deb 

(2001) 

Nonconvex 
Discontinuous 

Non-uniformly spaced 
Isolated point 

ZDT1 30 [0, 1] 

( )1 1f x=x  

( ) ( ) ( )2 11f g x g⎡ ⎤= −⎣ ⎦x x x

( )
2

1 9( ) ( 1)
n

i
i

g x n
=

= + −∑x  
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x
x i n

∈
= =
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ZDT2 30 [0, 1] 

( )1 1f x=x  

( ) ( ) ( )( )2
2 11f g x g⎡ ⎤= −⎢ ⎥⎣ ⎦

x x x
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1 9( ) ( 1)
n

i
i

g x n
=

= + −∑x  
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x
x i n

∈
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Table  4.1 (cont’d): Benchmark test problems. 
Test 

Problem 
Number of 
Variables n 

Variable 
Bounds 

Objective 
Functions 

Pareto Optimal 
Solutions 

Optimality 
Characteristics 

ZDT3 30 [0, 1] 

( )1 1f x=x  

( ) ( ) ( ) ( )
1

2 1 11 sin(10 )xf g x g x
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π
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ZDT6 10 [0, 1] 
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4.3. MOEA Parameter Settings 

For both FPGA and NSGA-II, all of the parameter settings, except the maximum 

number of solution evaluations, are used according to the suggested values in the original 

study of Deb et al. (2002) as summarized in Table  4.2. In order to make better 

comparisons, the maximum population size for FPGA is set to the suggested population 

size used by Deb et al. (2002). The number of solution evaluations shown in Table  4.2 

depends on the characteristics and complexity of the underlying problem. The number of 

solution evaluations is kept small to evaluate the performance of each algorithm more 

effectively for the expensive, real-world MOPs that may only allow a small number of 

solution evaluations. 

Table  4.2: Parameter settings for FPGA and NSGA-II. 

Algorithm Parameter FPGA and Real-Coded NSGA-II 

Test Problem FON KUR ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 

Number of Solution Evaluations 1500 2000 6500 7000 6000 10000 10000 

Initial Population Size 100 

Maximum Population Size 100 

Crossover Probability 1.0 

Mutation Probability 1/n (where n is the number of variables) 

Crossover Type Simulated Binary Crossover (ηc = 15) 

Mutation Type Polynomial Mutation (ηm = 20) 

Selection Scheme Binary Tournament 
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4.4. Performance Metrics 

In MOPs, there are three primary goals: 1) fast convergence to the true Pareto 

frontier solution set in the objective space, 2) close proximity to the true Pareto frontier 

solution set, and 3) diversity and even dispersion of the obtained nondominated solutions 

along the true Pareto optimal front. Many performance metrics have been introduced 

within the last decade (e.g., Srinivas and Deb, 1994; Zitzler et al., 1999; Van Veldhuizen 

and Lamont, 2000; Deb et al., 2002; Collette and Siarry, 2005; Erbas et al., 2006). Few 

performance metrics have been suggested to simultaneously consider the above goals. 

Most previous studies emphasize only the closeness and diversity measures. Fast 

convergence to optimal solutions for computationally-expensive MOPs is very important. 

This is especially the case in real-world problems where finding the optimal or even near-

optimal solutions is often computationally-prohibitive. 

In this study, four performance metrics are used to measure the convergence 

behavior and diversity of FPGA and NSGA-II, two of which are newly introduced. They 

are the diversity metric and the delineation metric. Two of the four metrics, delineation 

and hypervolume, are employed for simultaneous evaluation of closeness and diversity of 

the obtained solutions to gain a more thorough overall evaluation. For each test problem, 

each algorithm is run with 30 different seed values and the mean, standard deviation and 

95% confidence interval are computed. The lower and upper bounds of the 95% 

confidence interval are calculated by / 2, 1nx t sα −± n , where x  is the sample mean, s is 

sample standard deviation, α is the significance level and is equal to 5% and n is the 

sample size and is equal to 30. Given the fact that in expensive MOPs the time required 

for solution evaluations significantly dominates the actual CPU time of any approach, no 
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attempt is made to measure the computation time needed to run each algorithm. 

Moreover, equality of the computational complexity of FPGA and NSGA-II indicates 

that there should be no appreciable difference between their computation times. 

4.4.1. Distance from the Pareto Optimal Front 

Deb et al. (2002) suggest the distance metric ϒ, which evaluates the extent of 

convergence to a known Pareto optimal front. To calculate ϒ, a set of H evenly-spaced 

solutions from the true Pareto optimal set in the objective space must be known. The set 

of H solutions should be large enough such that it reflects the true Pareto optimal front 

well. In this study, a set of 500 solutions from the true Pareto optimal frontier set is used 

for each of the seven test problems. The minimum Euclidean distance from each obtained 

nondominated solution to the H solutions is calculated and the average of these distances 

is used as the distance metric ϒ. It is important to note that all solutions obtained by an 

algorithm including those that are dominated are considered for the calculation of this 

metric. The distance metric ϒ returns a value in the range of [0, ∞). The smaller the value 

of this metric, the closer the solutions are to the true Pareto optimal front. Ideally, this 

metric is zero, where each obtained solution falls exactly on one of the H solutions. 

However, the likelihood of this happening is rare. 

4.4.2. Diversity of Nondominated Solutions 

We define the diversity metric Δ to evaluate the extent of dispersion of the 

obtained nondominated solutions in the objective space. Here, the goal is to obtain a set 

of nondominated solutions that are both widely- and uniformly-distributed along the 
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Pareto optimal front at the end of the search. To compute the diversity metric Δ, the 

Euclidean distance di between consecutive nondominated solutions is calculated in the 

objective space, as shown in Figure  4.1, where i = 1, ..., |NPt|-1 and |NPt| is the number of 

nondominated solutions at the end of the search. Then, the standard deviation of these 

distances σd is calculated representing the degree of non-uniformity of the nondominated 

solutions. The minimum Euclidean distance of the two extreme Pareto solutions of the 

true Pareto optimal set from the nondominated solutions, denoted by dp and dq, is 

calculated. Note that the distances dp and dq are the distances from the closest 

nondominated solutions, not necessarily the endpoints of nondominated solutions, to the 

two extreme Pareto solutions. Finally, the diversity of the set of nondominated solutions 

is 

( ) ( )
1 2

1

1
1

t

t p q i
it

d d d d
−

=

Δ = + + −
− ∑

NP

NP
NP

. 
(4.1)

The first two terms of Eq. 4.1 measure the spread of the nondominated solutions and the 

last term measures their uniform spacing. 

The diversity metric Δ returns a value in the range of [0, ∞). Small values of this 

metric mean the nondominated solutions are well spread and distributed. Ideally, this 

metric takes a value of zero. This happens when each end nondominated solution falls 

exactly on the extreme Pareto optimal solutions and all Euclidean distance di between 

consecutive nondominated solutions are equal in the objective space. However, similar to 

the distance metric ϒ, that rarely happens. 
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Figure  4.1. Diversity metric Δ. 

4.4.3. Delineation of Pareto Optimal Front 

The delineation metric Φ is introduced to evaluate simultaneously the extent of 

both convergence and diversity to the true Pareto optimal front. A goal of this research is 

to propose a MOEA that identifies a set of solutions that well represent the Pareto 

optimal set. The idea behind the delineation metric is how well each solution on the 

Pareto optimal front is represented by the obtained nondominated solutions. To calculate 

Φ, a large set of H evenly-spaced solutions from the Pareto optimal set of each test 

problem that well reflects the true Pareto optimal front must be known. The same set of H 

solutions used in calculating the distance metric ϒ is used here. The minimum Euclidean 

distance from each Pareto optimal solution to the obtained solutions li is calculated, and 

the average of these distances is used as the delineation metric Φ, i.e., 

1

1( )
H

t i
i

l
H =

Φ = ∑P . 
(4.2)
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Figure  4.2 shows the calculation procedure of this metric. It is important to note that all 

solutions obtained by an algorithm including those that are dominated are also considered 

for the calculation of this metric. The delineation metric Φ returns a value in the range of 

[0, ∞). The smaller the value of this metric, the better the Pareto optimal solutions are 

represented by the obtained solutions. Ideally, this metric is zero, where population size is 

adequately large (≥ H) and each H selected Pareto solution is exactly overlapped by one 

of the nondominated solutions. The likelihood of this happening is zero, especially when 

population size is smaller than H, which is the case in most applications. 
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Figure  4.2. Delineation metric Φ. 

4.4.4. Hypervolume 

The hypervolume metric HV, originally suggested by Zitzler and Thiele (1999), 

calculates the volume of the objective space dominated by the nondominated solutions 

having the reference point R. Mathematically stated, the function HV(NPt) calculates the 

volume enclosed by the union of the hypercubes hi (i = 1, …, |NPt|), where each 

hypercube hi is built with the reference point R and solution xi, that is, 
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( ) ( )1
volume t

t i
HV h

=
=

NPNP U i . In the biobjective case, each hypercube is represented by a 

rectangle with vertices R and xi. This measure considers simultaneously the extent of 

convergence and diversity to a known Pareto optimal front. The goal of this measure is to 

identify the proportion of the volume enclosed by the reference point and Pareto optimal 

front covered by the nondominated solutions obtained at the end of the search. To be 

consistent with other performance metrics used in this study (i.e., the smaller value of the 

metric, the better), a modification of the hypervolume metric is employed. We call the 

modified HV metric the hypervolume ratio HVR metric. The HVR represents the 

proportion of the volume enclosed by reference point and true Pareto optimal front that is 

not covered by the nondominated solutions, and is give by 

( ) ( )
( )

1 t
t

HV
HVR

HV
= −

NP
NP

PF
, 

(4.3)

where PF is the set of solutions on the true Pareto optimal front. The hypervolume ratio 

HVR returns a value in the range of [0, 1].  The smaller the value of this metric, the less 

portion of the volume is not covered by nondominated solutions. Ideally, as in delineation 

metric this metric is zero, where population size is adequately large (≥ H) and each 

nondominated solutions falls on one of the H Pareto solutions. 

4.5. FPGA Computational Results 

In this section, the computational results of FPGA and the real-coded NSGA-II 

are presented. We first illustrate the suggested stopping criterion for expensive MOPs. 

Discussion of the computational results is then given followed by explanation of the 

effect of adaptive population sizing strategy employed in FPGA. 
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4.5.1. Termination of the Search 

Recall that according to the suggested stopping criterion for expensive MOPs, the 

search terminates when the number of nondominated solutions reaches the pre-specified 

maximum population size, and no changes are made in the number of nondominated 

solutions within a certain number of solution evaluations thereafter. In order to better 

evaluate the performance of these algorithms in terms of the velocity measure PPR, 

sample simulation results on KUR and ZDT6 are shown in Figure 4.3 and Figure 4.4, 

respectively. The number of nondominated solutions fluctuates (slightly on KUR and 

greatly on ZDT6) during the early and middle stages of the search. However, after a 

point, no considerable changes occur resulting in termination of the search. Although the 

number of nondominated solutions is gradually increases through the search, it does not 

have monotonically increasing behavior. It decreases at some points when a promising 

nondominated solution in the objective space is found, which converts some of the 

nondominated solutions in the previous generation into dominated solutions in the current 

generation. It can be seen that FPGA is capable of producing nondominated solutions 

faster than NSGA-II and reaches the maximum population size in a significantly fewer 

number of solution evaluations. This unique property of fast convergence makes FPGA 

an appropriate approach for dealing with MOPs that are computationally- and/or 

financially-expensive. 
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Figure  4.3. The velocity measure PPR on KUR. 
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Figure  4.4. The velocity measure PPR on ZDT6. 
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4.5.2. Discussion of the Results 

Table 4.3 and Table 4.4 show the output statistics including mean, standard 

deviation and 95% confidence interval (CI) of the four aforementioned performance 

metrics obtained from generating 30 random replications for each test problem using 

FPGA and NSGA-II. The distance ϒ and diversity ∆ metrics are shown in Table 4.3 and 

the delineation metric Φ and hypervolume ratio HVR metric are shown in Table 4.4. 

Recall that lower values are preferred for all four metrics. In both Table 4.3 and Table 

4.4, the first column shows the test problem and the second column presents the MOEA. 

The results shown in Table 4.3 indicate that FPGA significantly outperforms 

NSGA-II with respect to the convergence to the Pareto optimal front. There is no overlap 

between the confidence intervals of the distance metric ϒ for FPGA and NSGA-II in all 

problems. Compared with FPGA, NSGA-II exhibits poor convergence in the ZDT4 and 

ZDT6 test problems. Both MOEAs have acceptable standard deviations for ϒ-metric on 

most problems. An exception occurs on ZDT4, where NSGA-II has very high standard 

deviation for ϒ-metric. To illustrate the convergence behavior of FPGA and NSGA-II, 

the sample obtained populations at the end of the search together with the Pareto optimal 

front for KUR, ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6 are shown in Figure 4.5, Figure 

4.6, Figure 4.7, Figure 4.8, Figure 4.9 and Figure 4.10, respectively. These figures show 

the superiority of FPGA over NSGA-II in rapidly converging to the true Pareto optimal 

solution set while preserving a diverse set of nondominated solutions. Within the given 

number of solution evaluations, FPGA obtains the population of nondominated solutions 

while a significant proportion of solutions in NSGA-II are dominated solutions, 
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indicating that FPGA has a much faster convergence. It is interesting to note that all 

obtained nondominated solutions yielded by NSGA-II at the end of the search are 

dominated by the nondominated solutions of FPGA in most problems. The favorable 

performance of FPGA is most likely due to high elitism intensity and regulation operator 

employment. These settings help to improve search space exploitation and to save a 

considerable number of solution evaluations for further exploitation at later generations. 

 

Table  4.3. Mean, standard deviation and 95% confidence interval of distance and 
diversity metrics for FPGA and NSGA-II over the 30 random replications. 

Distance ϒ Diversity ∆ Test 

Problem Algorithm Avg. Std. Dev. 95% CI Avg. Std. Dev. 95% CI 

FPGA 0.0048 0.0007 [0.0045, 0.0050] 0.0765 0.0251 [0.0672, 0.0859] 
FON 

NSGA-II 0.0077 0.0014 [0.0072, 0.0083] 0.1324 0.0220 [0.1242, 0.1406] 

FPGA 0.0048 0.0009 [0.0044, 0.0051] 0.0705 0.0179 [0.0638, 0.0771] 
KUR 

NSGA-II  0.0086 0.0012 [0.0081, 0.0090] 0.1209 0.0710 [0.0945, 0.1474] 

FPGA 0.0210 0.0110 [0.0169, 0.0251] 0.0769 0.0296 [0.0659, 0.0879] 
ZDT1 

NSGA-II 0.0659 0.0128 [0.0612, 0.0707] 0.1324 0.0220 [0.1242, 0.1406] 

FPGA 0.0075 0.0044 [0.0059, 0.0092] 0.4436 0.3415 [0.3163, 0.5709] 
ZDT2 

NSGA-II  0.0933 0.0241 [0.0844, 0.1023] 0.3263 0.0858 [0.2943, 0.3583] 

FPGA 0.0200 0.0092 [0.0166, 0.0235] 0.2017 0.1036 [0.1631, 0.2403] 
ZDT3 

NSGA-II 0.0297 0.0091 [0.0263, 0.0331] 0.1968 0.0233 [0.1882, 0.2055] 

FPGA 0.0332 0.0262 [0.0234, 0.0430] 0.3812 0.1804 [0.3140, 0.4485] 
ZDT4 

NSGA-II  0.7677 0.3414 [0.6404, 0.8950] 1.5111 0.5797 [1.2950, 1.7273] 

FPGA 0.0445 0.0082 [0.0414, 0.0475] 0.1393 0.0256 [0.1297, 0.1488] 
ZDT6 

NSGA-II 0.2647 0.0380 [0.2506, 0.2789] 0.7239 0.1063 [0.6843, 0.7636] 
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Table  4.4. Mean, standard deviation and 95% confidence interval of delineation Φ and 
hypervolume ratio HVR metrics for FPGA and NSGA-II over the 30 random replications. 

Delineation Φ Hypervolume Ratio HVR Test 

Problem Algorithm Avg. Std. Dev. 95% CI Avg. Std. Dev. 95% CI 

FPGA 0.0087 0.0019 [0.0080, 0.0094] 0.0293 0.0046 [0.0276, 0.0310]
FON 

NSGA-II 0.0108 0.0015 [0.0102, 0.0113] 0.0411 0.0057 [0.0390, 0.0433]

FPGA 0.0056 0.0008 [0.0053, 0.0059] 0.0101 0.0059 [0.0079, 0.0123]
KUR 

NSGA-II  0.0086 0.0012 [0.0081, 0.0090] 0.0148 0.0078 [0.0119, 0.0177]

FPGA 0.0208 0.0097 [0.0172, 0.0244] 0.0443 0.0198 [0.0369, 0.0517]
ZDT1 

NSGA-II 0.0599 0.0111 [0.0557, 0.0640] 0.1259 0.0226 [0.1175, 0.1343]

FPGA 0.1050 0.1234 [0.0590, 0.1510] 0.1653 0.1603 [0.1055, 0.2251]
ZDT2 

NSGA-II  0.0899 0.0232 [0.0812, 0.0985] 0.3087 0.0679 [0.2833, 0.3340]

FPGA 0.0269 0.0255 [0.0174, 0.0364] 0.0850 0.0345 [0.0722, 0.0979]
ZDT3 

NSGA-II 0.0286 0.0084 [0.0255, 0.0318] 0.1086 0.0252 [0.0992, 0.1180]

FPGA 0.0701 0.0457 [0.0531, 0.0872] 0.0910 0.0479 [0.0732, 0.1089]
ZDT4 

NSGA-II  0.6557 0.3128 [0.5391, 0.7724] 0.8173 0.2123 [0.7381, 0.8964]

FPGA 0.0415 0.0079 [0.0385, 0.0444] 0.1083 0.0190 [0.1012, 0.1154]
ZDT6 

NSGA-II 0.2538 0.0396 [0.2391, 0.2686] 0.5731 0.0690 [0.5473, 0.5988]

 

 

 

76 



-12

-10

-8

-6

-4

-2

0

2

-20 -19 -18 -17 -16 -15 -14

f1

f 2

Pareto
FPGA
NSGA-II

 
Figure  4.5. The populations with FPGA and NSGA-II on KUR. 
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Figure  4.6. The populations with FPGA and NSGA-II on ZDT1. 
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Figure  4.7. The populations with FPGA and NSGA-II on ZDT2. 
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Figure  4.8. The populations with FPGA and NSGA-II on ZDT3. 
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Figure  4.9. The populations with FPGA and NSGA-II on ZDT4. 
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Figure  4.10. The populations with FPGA and NSGA-II on ZDT6. 
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Table 4.3 shows that FPGA has significantly better performance than NSGA-II in 

terms of the diversity metric ∆ for most problems. There is no overlap between the 

confidence intervals of the ∆-metric for FPGA and NSGA-II in FON, KUR, ZDT1, 

ZDT4 and ZDT6 problems. NSGA-II performs only slightly better than FPGA on ZDT2 

and ZDT3 with respect to this metric. It is interesting to note that FPGA has a better ∆-

metric than NSGA-II in many replications on ZDT2 and ZDT3, but its performance is 

actually poorer in a few replications. Figure 4.11 shows the sample obtained population 

with FPGA having poor diversity together with NSGA-II and the true Pareto optimal 

front for ZDT3. Here, the top three disconnected Pareto front regions are covered quite 

well by obtained solutions with FPGA, whereas no solution is found in the other two 

Pareto front regions resulting in large value for distance dq and consequently poor ∆-

metric. The reason for this happening is also most likely due to the employment of high 

elitism intensity resulting in biasedness towards some particular regions of the Pareto 

front in few replications. This undesired biasedness with FPGA is also realized on ZDT2, 

ZDT3 and ZDT4 problems having relatively large standard deviation. NSGA-II has good 

standard deviations for ∆-metric on all problems, except in ZDT4, where it has very high 

standard deviation. 
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Figure  4.11. The populations with FPGA having poor diversity in few replications and 
NSGA-II on ZDT3. 

 

Table 4.4 shows that FPGA has better performance than NSGA-II in terms of the 

delineation metric Φ for most problems. There is no overlap between the confidence 

intervals of the Φ-metric for FPGA and NSGA-II in FON, KUR, ZDT1, ZDT4 and ZDT6 

problems. FPGA has slightly better mean performance than NSGA-II on ZDT3, but there 

is a considerable overlap between their confidence intervals. On the other hand, NSGA-II 

performs just slightly better than FPGA on ZDT3, but there is a considerable overlap 

between their confidence intervals. The standard deviations of the Φ-metric across all 

problems for both MOEAs are small, except for FPGA on ZDT2 and ZDT3 (due to the 

poor diversity in a few replications) and for NSGA-II on ZDT4. 
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For the hypervolume ratio HVR metric the reference point R is set at (1, 1.1) for 

all test problems, except for KUR where it is set at (-14.3, 0.1). For each test problem, the 

reference point is determined as a point with a little higher than the maximum value of 

optimal Pareto solution set for each objective. However, if in any test problem an 

objective is equal to one of the variables, the maximum value of this variable is taken 

since the value of this objective never exceeds the maximum value of the variable. The 

results shown in Table 4.4 indicate that FPGA outperforms NSGA-II with respect to the 

hypervolume ratio HVR measure. There is no overlap between the confidence intervals of 

the HVR-metric for FPGA and NSGA-II in all problems, except in KUR where there is a 

little bit overlap. It is interesting to note that although NSGA-II has better mean 

performance than FPGA on ZDT2, and there is considerable overlap between their 

confidence intervals on ZDT3 with respect to delineation metric Φ, FPGA outperforms 

NSGA-II with respect to the HVR-metric. Regarding the obtained results, it is implied 

that although nondominated solutions with FPGA in few replications do not represent the 

Pareto fronts of ZDT2 and ZDT3 pretty well, they dominate a considerable portion of the 

hypervolumes enclosed by Pareto fronts and reference point R. The standard deviations 

of the HVR-metric for NSGA-II are small on all problems, except in ZDT4. 

4.5.3. A Discussion on FPGA Population Regulation 

The regulation operator employed in FPGA improves its performance for all three 

goals: 1) fast convergence, 2) proximity to the Pareto optimal front, and 3) diversity 

maintenance. This operator monitors the population and adjusts the population size 

accordingly. When the number of nondominated solutions increases (or decreases) at any 

generation, an increase (or a decrease) in the population size is triggered and the 
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population size becomes 20 plus the number of nondominated solutions in the composite 

population. This process continues until the population size reaches the pre-specified 

maximum population size when 80% of the population size is populated with 

nondominated solutions. Then, the population size is kept fixed at maximum population 

size and the more diverse nondominated solutions, which reflect the Pareto optimal front, 

are preserved using the distance crowding operator if their number exceeds the maximum 

population size. This operator balances the proportion of nondominated solutions in the 

population by adjusting the population size adaptively during the search process. This 

dynamic adjustment enhances FPGA’s convergence behavior and maintains diversity in 

larger populations at later generations. 

Figure 4.12 shows the number of nondominated solutions, population size, PPR 

and the number of solution evaluations at each generation for FPGA within the search 

process on the 30-variable ZDT6 problem. We multiply PPR by 100 so that the same 

scale for the y-axis can be used for better illustration. The initial population size and the 

initial number of solution evaluations are kept at 100 to make sure that FPGA and 

NSGA-II both start from identical initial populations. After the initial generation, the 

regulation operator is invoked and adjusts the population size. As mentioned earlier, in 

this study, the number of solution evaluations at each generation, except the initial 

generation, is 20. This suggests that an evolving population size with small number of 

solution evaluations at each generation ensures the algorithm’s search in the early and 

middle stages is performed to conserve solution evaluations for more search space 

exploitation in later generations. Figure 4.12 shows that, after about 2,700 solution 

evaluations, consistently more than 20 nondominated solutions are obtained resulting in 
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PPR of more than 0.50. This high level of elitism intensity puts more pressure on the 

search to converge faster towards promising regions, requiring fewer number of solution 

evaluations. 
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Figure  4.12. Population regulation behavior of FPGA on ZDT6. 
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CHAPTER 5: PROPOSED METHODOLOGY 

FOR STOCHASTIC ENVIRONMENTS 

5.1. Introduction 

In  CHAPTER 4, validation and benchmarking of the proposed MOEA 

methodology, FPGA, in deterministic problem environments is accomplished. Originally 

designed for solving deterministic MOPs, FPGA requires being equipped with some 

stochastic procedures to be able to deal with MOPs with stochastic and noisy objective 

functions. This chapter demonstrates some modifications and enhancements made to the 

FPGA to enable it to better discriminate among the competing solutions in stochastic 

problem environments. The modified algorithm is called stochastic Pareto genetic 

algorithm (SPGA). 

5.2. Redefinition of Solution Dominance in Multiobjective Stochastic Environments 

 CHAPTER 1 discusses the concept of dominance in deterministic problem 

environments. Recall that in a deterministic problem domain, solution A strictly 

dominates (is better than) solution B if fi(A) is less than fi(B) for each objective function 

i. The strict dominance definition must be modified for multiobjective stochastic problem 

environments in which the objective functions do not take on certain values but they are 

described with the expected values and variances (or half-widths). This uncertainty 

typically results from either the randomness effect involved in the simulation modeling or 

incomplete knowledge about the underlying optimization problem. Given the fact that in 
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the stochastic simulation models, objective functions are random and take on uncertain 

values, new definitions to compare two different solutions are proposed. 

In the simulation context, it is a reasonable assumption that the objective values of 

solutions are approximately normally-distributed. Suppose that ( )if A ,  and 2sA ( )if B , 

 are the expected values and variances of each objective function i for two solutions A 

and B, respectively. The objective function expected values and variances are calculated 

after a number of function evaluations n. Half-widths of solutions A and B are calculated 

by  

2sB

1 2, 1( )i n
shw t

nα− −= AA  and 1 2, 1( )i n
shw t
nα− −= BB .

 
(5.1)

where α is the significance level (0 ≤ α ≤ 1) and parameter 1 2, 1nt α− −  is the critical value 

for t-distribution based on n-1 degrees of freedom. Now, it is assumed that each objective 

function fi has truncated normal distribution and is represented by its confidence interval 

[fi − hwi, fi + hwi], where fi − hwi and fi + hwi are the lower and upper bounds of the 

interval at significance level α, respectively. 

 

Definition 5.1: Solution A probabilistically dominates solution B with a probability of  

 if  ( ) ( )( )∏
=

<
m

i
ii ffP

1
BA ( ) ( ) ( ) ( )i i i if hw f hw− < +A A B B   for each objective function i (i ∈ 

{1, …, m}). 

 

In this case, due to the uncertainty surrounding the objective function values, it is 

not certain that solution A strictly dominates solution B. As a result, the strict dominance 
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definition must be modified to account for this uncertainty. Further, in stochastic 

environments, it is necessary to know if there is a significant difference between two 

solutions. The following revised definition is proposed. 

 

Definition 5.2: Solution A significantly dominates (is better than) solution B with a 

confidence level of about (1 – mα) if ( ) ( ) ( ) ( )i i i if hw f hw+ < −A A B B

),

wise.

hw
B

 for each objective 

function i (i ∈ {1, …, m}. 

 

If two solutions A and B with their corresponding confidence intervals are 

compared, three different cases can occur for calculating the probability that solution A 

dominates solution B, i.e., P(A B). First, solution A does not dominate solution B 

when at least one lower bound of the solution A confidence interval is larger than the 

corresponding upper bound of solution B. Second, solution A significantly dominates 

solution B when all upper bounds of the solution A confidence interval are less than the 

corresponding upper bound of solution B. In the third case, solution A probabilistically 

dominates solution B with a certain probability when all lower bounds of the solution A 

confidence intervals are less than the corresponding upper bounds of solution B. 

Therefore, the probability that solution A dominates solution B is given by 

f

( ) ( )( )
1

0, if : ( ) ( ) ( ) ( ),
( ) 1, if : ( ) ( ) ( ) (

, other

i i i i

i i i i
m

i i
i

i f hw f hw
P i f hw f

P f f
=

⎧
⎪

∃ − > +⎪
⎪= ∀ + < −⎨
⎪
⎪ <⎪
⎩
∏

A A B
A B A A B B

A B

f  (5.2)
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Now, regarding that each objective function fi follows a normal distribution with a 

known mean and variance, the question is how to calculate the probability 

.  If x and y are independent random variables, it can be proved that ( ) ( )( i iP f f<A B )

( ) ( ) ( )x y tP x y f t F t d
∞

−∞
< = ∫ , (5.3)

where ( )xf t  and  are probability density function of variable x and cumulative 

density function of variable y, respectively. 

( )yF t

According to Eq. 5.3, we get 

22

22

( )( )
221 1( ) ( )

2 2

yx

yx

yx x

y x
x y

P x y e e d d
μμ
σσ

σ π σ π

−− −−∞

−∞
−∞

< = ∫ ∫ . (5.4) 

It is realized that Eq. 5.4 is very complicated to integrate directly, and it does not have a 

closed-form expression. Therefore, an alternative approach is suggested knowing that the 

difference between two independent normal distributions is also normal distribution. 

 

Theorem 5.1: If x and y are independent normal random variables with means µx and µy 

(µx < µy), and variances  and , the probability 2
xσ 2

yσ

( )
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

+

−
−=<

22
1

yx

xyQyxP
σσ

μμ
, (5.5)

where the Gaussian error integral ( ) ( ) ∫
∞ −=Φ−=
x

texxQ
2

211 π . 

 

Proof: If x and y are independent normal random variables with means μx and μy and 

variances  and , the probability of x being less than y is P(x < y) = P(0 < y – x). 2
xσ 2

yσ
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Now, assuming μx < μy, the change t = y – x results in P(x < y) = P(0 < t), where t is a 

normal random variable with mean μt = μy – μx and variance  =  + , as shown 

in Figure 5.2. 

2
tσ 2

xσ 2
yσ

 

 

f (t )

-3 -2 -1 0 1 2 3 4 5                                          0

μ y - μ x

μ t t

2 2 2
t x yσ σ σ= +

P(0 < t)

Figure  5.1. Plot of normally-distributed random variable t. 
 

Now, the probability of P(x < y) = P(0 < t) is 

( ) ( )
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+

−−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
=<

22

00
yx

xy

t

t QQtP
σσ

μμ
σ

μ

. 

Since Q(–x) = 1 – Q(–x), then 

( )
2 2

0 1 y x

x y

P t Q
μ μ

σ σ

⎛ ⎞−⎜ ⎟< = − ⎜ ⎟⎜ ⎟+⎝ ⎠

.

is calculated and how it can be employed to improve the concepts of the stochastic 

dominance and significant dominance in the stochastic problem domain. 

 

□ 

The integral described for Q(x) does not have a closed-form expression. However, 

an excellent closed-form approximation is suggested by Borjesson and Sundberg (1979) 

to estimate Q(x) with an acceptable error. The next section describes how this probability 
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It is interesting to note that although two new definitions for dominance have 

been suggested, it is still difficult to discriminate which solutions should be considered as 

nondominated at any generation. The following definition helps better identification of 

nondominated solutions. 

 

Definition 5.3: Solution A ( )if A   stochastically dominates (is better than) solution B if 

( )if Bis less than  for each objective function i (i ∈ {1, …, m}). 

ar ion B, denoted by A 〉 B, 

A Bf  is larger than . This implies that the expectation that solution A is a 

nondom

 

It is cle that if solution A stochastically dominates solut

( ) ( )P B Af

inated solution in any given generation is higher that of solution B. 

5.3. Noise 

P

Noise is introduced in the objective space as 

i i if f=x , (5.6)

where  is a noisy objective function of solution x, fi(x) is the real value of objective 

function, and si is the standard deviation of normal distribution of noise (or uncertainty) 

ith m

' ( )  ( ) (0,1)s N+x

' ( )if x

effect w ean zero. In most noisy GA studies, the standard deviations si is kept fixed 

over all possible values of objective functions (Bui et al., 2005; Fieldsend and Everson, 

2005). This assumption is not reasonable in many stochastic problem environments, 

particularly in the stochastic simulation context. In most stochastic real-world MOPs, the 

higher objective values are usually expected to have more errors than lower ones. In 

90 



minimization problems, if the objective values are quite large with respect to the standard 

deviation is , an employed algorithm is not challenged during the search until the 

objective values become relatively small so that the standard deviation significantly 

affects the real values of objective functions. 

To model the noise in stochastic environments more accurately, it is suggested 

that the standard deviation si is composed of two components – variable error λi and 

constan

i

t error εi – over all possible objective function values as follows 

( )i i is fλ ε= +x , (5.7)

where iλ  is a coefficient that makes the standard deviation able to change corresponding 

to its ob ive value, and jec iεt  is the constant error along all objective values. 

nt5.4. Stochastic Solution Ranking Strategy and Fitness Assignme  

The new ranking strategy is based on the classification of candidate solutions of 

the compo  solution 

domina

solution with one another and assigning a 

site population CPt into two different categories (ranks) according to

nce similar to FPGA. Firstly, all stochastically nondominated solutions are 

identified as the first rank, which implies that there is no solution that is stochastically 

better than these solutions with respect to all objectives simultaneously. All stochastically 

dominated solutions are identified as the second rank. These ranks are used to evaluate 

solution fitness for the purpose of solution reproduction. It is important to note that a 

solution with larger fitness value is preferred. 

The fitness of the stochastically nondominated solutions in the first rank is 

calculated by comparing each nondominated 
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fitness 

gned a fitness value depending on the probabilities that solutions 

domina

(5.8)

The expression  represents that solution i dominates solution xj. Then, the fitness 

value of each dominated solution is calculated using Eq. 3.2 

i j j j t

value. These values are computed using the crowding distance approach suggested 

by Deb et al. (2002), which has been shown to help maintain diversity among the 

nondominated solutions in the Pareto optimal front. The larger a solution’s fitness value, 

the greater the distance that solution is from its neighboring nondominated solutions 

along the Pareto front. 

Each stochastically dominated solution in the second rank is compared with all 

other solutions and assi

te one another similar to FPGA. The idea here is similar to the strength concept 

employed in SPEA and SPEA2; however, it has been generalized and developed for the 

stochastic problem domain. Here, each solution, say xi, in the composite population CPt 

is assigned a net strength value S(xi), indicating the summation of the probabilities that it 

dominates other solutions, where 

( ) ( ), .
j

S P j i= ∀ ∈ ∧ ≠∑x x x x CPf  i i j j t

i jx xf

F ( ) ( ) ( ), ,
i j j i

S S j i= − ∀ ∈ ∧ ≠∑ ∑x x x x CP  (5.9)

where expression  denotes that solution xi stochastically dominates solution x . In 

other words, a fitness value is assigned to each dominated solution xi is equal to the 

strengt

〉 〉x x x x

i j〉x x j

summation of the h values of all solutions it stochastically dominates minus the 

summation of the strength values of all solutions by which it is stochastically dominated. 

SPGA takes into account both dominating and dominated solutions with respect to 
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solution xi. This strategy provides more information on Pareto dominance and niching 

relations among solutions in the composite population and reduces the chance that two 

solutions have the same fitness value. Thus, no additional diversity preservation 

mechanism is used among the dominated solutions in the second rank requiring less 

computation. It is interesting to note that if most solutions do not dominate one another, it 

is implied that they belong to the first rank where crowding distance operator is invoked 

to maintain the diversity among them. 

After the fitness values of all candidate solutions in CPt are calculated, the 

solutions are compared, where three different scenarios might occur. In the first scenario, 

two selected solutions have different ranks in which the solution with the better rank is 

preferred. In the second scenario, two solutions have the same rank but different fitness 

values in which the solution with larger fitness value is preferred. In the last scenario, two 

solutions have the same rank and fitness value where one of them is randomly preferred. 

5.5. Sampling Operator 

In most research studies on MOEAs with noisy objective functions, the number of 

samplings is arbitrarily taken an ns, say 10 or 20 (Babbar et al., 

2003; 

d kept fixed for all solutio

Bui et al., 2005). There are very few studies that address the optimal sampling 

problem in noisy genetic algorithms (e.g., Miller, 1997; Gopalakrishnan et al., 2001). 

However, the number of samplings could be different for each solution. One approach is 

to reduce or remove the overlap of stochastically (not significantly) dominated solutions’ 

confidence intervals from those of the stochastically nondominated solutions. However, 

overlap removal is a difficult task with respect to multiple objectives. In addition, a 

higher number of samplings requires a great deal of computational effort restricting the 
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search to explore more solutions with a smaller number of samplings. The determination 

of the appropriate number of samplings for each solution or resampling strategy in 

stochastic MOPs could provide significant performance improvement of any proposed 

method. 

For SPGA, the number of samplings for each solution is determined by the 

proposed sampling operator as follows 

where insam is a small positive integer representing the initial number of samplings, 

maxsam is a positive in ber of samplings allo r 

m. Thereafter, the population is classified into three different 

categor

Sampling(insam, maxsam, incsam), (5.10)

teger representing the maximum num wed fo

each solution and incsam is a small positive integer value representing the increment for 

the number of samplings. 

At each generation, first the population of solutions is evaluated using the initial 

number of samplings insa

ies: 1) stochastically nondominated solutions, 2) stochastically dominated 

solutions and 3) significantly dominated solutions. The solutions in the first and second 

category, i.e., stochastically nondominated and dominated solutions, are evaluated for 

incsam additional times to obtain better estimates for the real values of their objective 

functions. No additional samplings for significantly dominated solutions is required, 

since at a certain confidence level, they are dominated and computational effort of 

additional samplings could be used for better estimate of exact values of competing 

solutions at the tradeoff curve. The population with updated objective values (more 

accurate mean and variance) for solutions in the first and second categories is 

reclassified. This process continues until all stochastically nondominated and dominated 
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solutions are evaluated for the maximum number of samplings maxsam. When sampling 

operator is executed, the population with more reliable nondominated solutions is passed 

for ranking and fitness assignment operation.  

The proposed resampling strategy for stochastic MOPs could potentially save 

extra number of samplings assigned to significantly dominated solutions and provide a 

higher 

.6. SPGA Computational Study

number of samplings for stochastically nondominated and dominated solutions to 

better identify the actual nondominated solutions at each generation. After the initial 

sampling of the population, the stochastically nondominated solutions at the Pareto 

frontier are not reliable. As more sampling is performed on potential nondominated 

solutions, the disturbance of noise is reduced, and the more reliable solutions are 

identified as Pareto frontier. 

5  

We evaluate the performance of SPGA on a number of test problems with 

different Pareto optimality charac 1, ZDT4 and ZDT6 (refer 

to Sect

teristics including KUR, ZDT

ion  4.2 for more information on these test problems). The performance of SPGA is 

also benchmarked against the real-coded NSGA-II of Deb et al. (2002). For both SPGA 

and NSGA-II, all of the parameter settings, except the maximum number of solution 

evaluations, are used according to the suggested values in the original study of Deb et al. 

(2002) as summarized in Table  5.1. The maximum population size for SPGA is set to the 

suggested population size used by Deb et al. (2002). The number of solution evaluations 

shown in Table  5.1 depends on the characteristics and complexity of the underlying 

problem in the stochastic environment estimated by the stopping criterion suggested in 

 CHAPTER 4. The small number of solution evaluations helps us evaluate the 
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performance of each algorithm more effectively for the expensive, real-world MOPs that 

may only allow a small number of solution evaluations. 

Table  5.1: Parameter settings for SPGA and NSGA-II. 

Algorithm Parameter SPGA and Real-Coded NSGA-II 

Test Problem ZDT6 KUR ZDT1 ZDT4 

Number of Solution Evaluations 1500 000  7000 12000 10

Initial Population Size 100 

Maximum Population Size 100 

Crossover Probability 1.0 

Mutation Probability 1/n (where n is n er of variables) umb

Crossover Type Simulated Binary ssover (ηc = 15)  Cro

Mutation Type Polynomial Mutation (ηm = 20) 

Selection Scheme Binary Tournament 

 

For comparative analysis, four performance  in  CHAPTER 4 

(distance, diversity, delineation and hypervolume ratio metrics) are used to measure the 

converg

computed. The 

 metrics described

ence behavior and diversity of SPGA and NSGA-II. Note that the observed 

values of objective functions are noisy, and they might provide misleading results and 

improper conclusion. Therefore, to calculate the performance metrics, the real values of 

objective functions of the obtained population at the end of the search are taken into 

consideration, since the exact equations of objective functions are known. 

For each test problem, each algorithm is run with 50 different initial random seed 

values and the mean, standard deviation and 95% confidence interval are 
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lower and upper bounds of the 95% confidence interval are calculated by / 2, 1nx t s nα −± , 

where x  is the sample mean, s is sample standard deviation, α is the significance level 

and is equal to 5% and n is the sample size. To make a more precise statistical 

comparative analysis and benchmarking, the sample size is set quite large (equal to 50) so 

that the 95% confidence intervals are considerably reduced. 

In this study, we set λi = 0.04 and εi = 0.02 to enforce artificial noise around each 

objective function i (i = 1 and 2). This amount of noise is significant for KUR, ZDT1, 

ZDT2 and ZDT6 problems and creates some difficulty for an algorithm to converge to 

the true Pareto optimal front. The experiments on the noisy functions are implemented 

using random sampling, where the number of samplings is 15, i.e., n = 15. For both 

SPGA and NSGA-II, the mean of the obtained noisy objective values for each objective 

function is taken as an estimate for expected objective value. The advantage of making 

this estimate is to reduce the disturbance of the noise. Obviously, making better estimates 

requires a higher number of samplings resulting in a larger evaluation computation cost 

per solution. For the sampling operator employed in SPGA, we set the parameters insam 

= 5, maxsam = 15 and incsam = 1. This setting means that, at each generation, all 

solutions are initially evaluated five times, and at any step of the resampling process 

solutions, which are either stochastically nondominated or stochastically dominated re-

evaluated. The re-evaluation of stochastically nondominated or dominated solutions is 

repeated 10 times (maxsam − insam). 
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5.7. Discussion of Computational Results 

In this section, the computational results of SPGA and the real-coded NSGA-II in 

the stochastic problem environments are presented. Table  5.2 and Table  5.3 show the 

output statistics including mean, standard deviation and 95% confidence interval (CI) of 

the four performance metrics obtained from the 50 replications using the following three 

algorithms: regular SPGA without sampling operator (referred to as SPGA-r), SPGA with 

sampling operator (referred to as SPGA-s) and real-coded NSGA-II. To illustrate the 

convergence behavior of SPGA-r, SPGA-s and NSGA-II, the sample populations at the 

end of the search together with the Pareto optimal front for KUR, ZDT1, ZDT4 and 

ZDT6 are shown in Figure  5.2, Figure  5.3, Figure  5.4 and Figure  5.5, respectively. These 

figures show the superiority of SPGA-s and SPGA-r over NSGA-II in rapidly converging 

to the true Pareto optimal solution set, while maintaining a diverse set of nondominated 

solutions. Within the given number of solution evaluations, both SPGA-s and SPGA-r 

obtain the population of nondominated solutions, while a significant proportion of 

solutions in NSGA-II are dominated solutions, indicating that SPGA-s and SPGA-r have 

a much faster convergence. It is interesting to note that all obtained nondominated 

solutions yielded by NSGA-II at the end of the search are dominated by the 

nondominated solutions of SPGA-s and SPGA-r in most problems. 
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Table  5.2. Mean, standard deviation and 95% confidence interval of distance ϒ and 

diversity ∆ metrics for SPGA-s, SPGA-r and NSGA-II over 50 random replications. 

Distance ϒ Diversity ∆ Test 

Problem Algorithm Avg. Std. Dev. 95% CI Avg. Std. Dev. 95% CI 

SPGA-s 0.0081 0.0014 [0.0077, 0.0085] 0.0709 0.0337 [0.0616, 0.0802] 

SPGA-r 0.0059 0.0011 [0.0056, 0.0062] 0.0794 0.0406 [0.0682, 0.0907] KUR 

NSGA-II 0.1575 0.0211 [0.1516, 0.1633] 0.1176 0.0282 [0.1098, 0.1254] 

SPGA-s 0.0690 0.0259 [0.0618, 0.0761] 0.0772 0.0357 [0.0673, 0.0871]

SPGA-r 0.0690 0.0322 [0.0601, 0.0779] 0.0908 0.0655 [0.0726, 0.1089]ZDT1 

NSGA-II 0.2416 0.0937 [0.2156, 0.2675] 0.1337 0.0278 [0.1259, 0.1414]

SPGA-s 0.2097 0.2416 [0.1427, 0.2767] 0.0673 0.0495 [0.0536, 0.0810]

SPGA-r 0.5064 0.3841 [0.3999, 0.6128] 0.3124 0.1152 [0.2805, 0.3443]ZDT4 

NSGA-II 19.7773 4.5576 [18.5140, 21.0405] 1.8428 1.2563 [1.4946, 2.1911]

SPGA-s 0.1208 0.0614 [0.1038, 0.1378] 0.1347 0.0298 [0.1264, 0.1429]

SPGA-r 0.1498 0.0631 [0.1323, 0.1673] 0.1499 0.0445 [0.1375, 0.1622]ZDT6 

NSGA-II 2.087 0.3232 [1.9974, 2.1766] 0.8919 0.1759 [0.8431, 0.9406]
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Table  5.3. Mean, standard deviation and 95% confidence interval of delineation Φ and 
hypervolume ratio HVR metrics for SPGA-s, SPGA-r and NSGA-II over 50 random 
replications. 

Delineation Φ Hypervolume Ratio HVR Test 

Problem Algorithm Mean Std. Dev. 95% CI Mean Std. Dev. 95% CI 

SPGA-s 0.0118 0.0018 [0.0113, 0.0123] 0.0389 0.0055 [0.0374, 0.0405] 

SPGA-r 0.0074 0.0019 [0.0069, 0.0079] 0.0313 0.0058 [0.0297, 0.0329] KUR 

NSGA-II 0.0269 0.0042 [0.0258, 0.0281] 0.1014 0.0155 [0.0971, 0.1057] 

SPGA-s 0.0484 0.0139 [0.0445, 0.0522] 0.0927 0.0238 [0.0861, 0.0993]

SPGA-r 0.0491 0.0199 [0.0436, 0.0546] 0.0880 0.0281 [0.0802, 0.0957]ZDT1 

NSGA-II 0.1046 0.0251 [0.0976, 0.1116] 0.1962 0.0437 [0.1841, 0.2083]

SPGA-s 0.0251 0.0130 [0.0215, 0.0287] 0.0456 0.0185 [0.0405, 0.0507]

SPGA-r 0.1337 0.0661 [0.1154, 0.1521] 0.1707 0.0913 [0.1454, 0.1960]ZDT4 

NSGA-II 0.9111 0.4104 [0.7973, 1.0248] 0.8450 0.1165 [0.8127, 0.8773]

SPGA-s 0.0620 0.0104 [0.0591, 0.0649] 0.1472 0.0218 [0.1412, 0.1532]

SPGA-r 0.0799 0.0157 [0.0756, 0.0843] 0.1762 0.0313 [0.1675, 0.1848]ZDT6 

NSGA-II 0.6508 0.1286 [0.6152, 0.6865] 0.8241 0.4974 [0.6862, 0.9620]
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Figure  5.2. The populations with SPGA-s, SPGA-r and NSGA-II on KUR. 
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Figure  5.3. The populations with SPGA-s, SPGA-r and NSGA-II on ZDT1. 
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Figure  5.4. The populations with SPGA-s, SPGA-r and NSGA-II on ZDT4. 
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Figure  5.5. The populations with SPGA-s, SPGA-r and NSGA-II on ZDT6. 
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5.7.1. KUR Test Problem 

The results shown in Table  5.2 and Table  5.3 for KUR problem indicate that both 

SPGA-s and SPGA-r perform quite significantly better than NSGA-II with respect to all 

metrics. SPGA-r also performs significantly better than SPGA-s with respect to distance, 

delineation and hypervolume ratio metrics. SPGA-s has slightly, but not significantly, 

lower value for diversity. The standard deviations of all metrics for three algorithms are 

small. On KUR problem, sampling operator with the given parameters does not 

apparently help the SPGA, since SPGA-r provides better overall performance than 

SPGA-s. 

5.7.2. ZDT1 Test Problem 

The results shown in Table  5.2 and Table  5.3 for ZDT1 problem indicate that both 

SPGA-s and SPGA-r perform quite significantly better than NSGA-II with respect to all 

metrics. SPGA-s and SPGA-r have similar distance metric values and delineation metric 

values. SPGA-s has slightly, but not significantly, lower value for diversity, whereas it 

has slightly, but not significantly, higher value for HVR. On ZDT1, the sampling operator 

does not significantly help SPGA to accomplish better performance. The standard 

deviations of distance metric in all problems for three algorithms are small, except for 

SPGA-r with respect to diversity. 
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5.7.3. ZDT4 Test Problem 

The obtained results for ZDT4 problem indicate that both SPGA-s and SPGA-r 

significantly outperform NSGA-II with respect to all metrics. SPGA-s also performs 

significantly better than SPGA-r for all metrics. The sampling operator significantly helps 

SPGA improve its performance in terms of all metrics. This significant improvement is 

obtained by saving considerable number of samplings for significantly dominated 

solutions during the search and exploring the solution space more thoroughly. The 

standard deviations of distance and diversity metrics for three algorithms are not 

relatively small implying that quite different populations are obtained at the end of the 

search on ZDT4. 

5.7.4. ZDT6 Test Problem 

The obtained results for ZDT6 problem indicate that both SPGA-s and SPGA-r 

significantly outperform NSGA-II with respect to all metrics. SPGA-s also performs 

significantly better than SPGA-r for all metrics. As in ZDT4 problem, the sampling 

operator significantly helps SPGA improve its performance. The standard deviations of 

all metrics for three algorithms are relatively small. 
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CHAPTER 6: SUMMARY AND FUTURE RESEARCH DIRECTIONS 

6.1. Introduction 

This chapter provides a summary of the research, conclusions and future research 

directions. 

6.2. Summary and Conclusions 

It has been shown that evolutionary algorithms, the focus of this study, are 

powerful, intelligent optimization algorithms that are able to balance exploration and 

exploitation of the solution search space. The drawbacks of traditional approaches, which 

typically try to scalarize the multiple objectives into a single objective, have motivated 

researchers and practitioners to seek alternative techniques to find a set of Pareto optimal 

solutions rather than just a single solution.  

This research presents two new multiobjective evolutionary algorithms, called fast 

Pareto genetic algorithm (FPGA) and stochastic Pareto genetic algorithm (SPGA) for 

dealing with multiobjective optimization problems, where each solution evaluation is 

computationally- and/or financially-expensive. FPGA is designed for handling MOPs 

with deterministic objective values, whereas SPGA is equipped with an enhanced 

stochastic ranking procedure and resampling strategy to be a robust approach for solving 

MOPs with uncertain, normally-distributed objective function values, particularly in 

stochastic simulation context. Both approaches are Pareto-based multiobjective 

optimization methods using genetic algorithms. New genetic operators are introduced to 

enhance both algorithms’ performance in finding Pareto optimal solutions while 
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minimizing computational effort. An elitism operator with high intensity is employed to 

ensure the quick propagation of the nondominated solutions, and a dynamic regulation 

operator to dynamically adapt the population size. In addition to distance and 

hypervolume ratio metrics, two new metrics, called diversity and delineation, are defined 

to better discriminate among the MOEAs. 

Computational results for seven well-known test problems with different Pareto 

optimality characteristics indicate that FPGA is capable of efficiently and effectively 

direct the search toward Pareto optimal front. Statistical analyses show that, within a 

relatively small number of solution evaluations, FPGA outperforms NSGA-II in most 

problems in terms of rapidly converging to the true Pareto optimal solution set while 

preserving a diverse, evenly-distributed set of nondominated solutions. Adaptive 

population sizing is most likely one of the main factors resulting in the superiority of 

FPGA over NSGA-II in this benchmark environment. It is also believed that FPGA 

benefits its own unique feature of small number of solution evaluations at each 

generation which saves a significant number of solution evaluations early in the search 

and utilizes the exploitation in a more efficient manner at later generations. However, 

FPGA could be more effective if it incorporates a diversity preservation mechanism into 

its fitness assignment strategy to emphasize the less crowded dominated solutions. 

Incorporation of a diversity preservation mechanism or reduction of high elitism intensity 

might help FPGA not to bias towards some regions found as a diversification 

maintenance problem in few replications in ZDT2 and ZDT3 problems. 

In the stochastic problem environment, computational results on four test 

problems indicate the superiority of SPGA over NSGA-II in terms of all performance 
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metrics. Within the given number of solution evaluations, both SPGA with the 

resampling operator (SPGA-s) and SPGA without resampling operator (SPGA-r) obtain 

the population of nondominated solutions, while a significant proportion of solutions in 

NSGA-II are dominated solutions, indicating that SPGA-s and SPGA-r have much faster 

convergence. It is interesting to note that all obtained nondominated solutions yielded by 

NSGA-II at the end of the search are dominated by the nondominated solutions of SPGA-

s and SPGA-r in most problems. Results obtained from a little experimentation presented 

in  CHAPTER 5 imply that sampling operator could help SPGA in many MOPs. 

However, in some MOPs, it might not be helpful or even worsen SPGA’s performance if 

appropriate selection of resampling operator parameters is not carried out. Furthermore, 

any strong conclusion about the practicality and usefulness of resampling operator 

demands further experimentation of SPGA on a larger suite of test problems with several 

different levels of noise. 

6.3. Future Research Directions 

There are several additional aspects that need to be addressed and investigated for 

providing FPGA and SPGA as more robust multiobjective simulation optimization tools. 

The proposed future research directions are outlined in the following sections. 

6.3.1. Expanded Suite of Test Problems with Different Properties 

Although FPGA and SPGA have been tested on a suite of well-known test 

problems with different optimality characteristics, they can be tested and benchmarked on 

several other test problems, different in dimension of search space, higher in dimension 

of objective space, constraint and different optimality characteristics. For example, Deb 
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et al. (2001) suggest well-known suite of DTLZ problems that are scalable to any number 

of decision variables and objectives with provided knowledge of exact shape and location 

of the resulting Pareto optimal front. In addition, since for each DTLZ problem 

difficulties in both converging to the Pareto optimal front and maintaining a diverse set of 

solutions are known, they provide very useful validation and benchmarking environment 

for better understanding of the working principles of FPGA and SPGA. For the 

constrained test problems, OSY and TNK problems, suggested by Osyczka and Kundu 

(1995) and Tanaka (1995), respectively, are among the more popular ones. 

On the other hand, the proposed optimization algorithms should be evaluated on a 

number of discrete variable test problems including Boolean functions defined over bit-

strings. The multiobjective 0-1 knapsack problem is a very good test problem in this case, 

since it is simply described but very difficult to solve, as it is a well-known NP-Hard 

problem. Moreover, it is a very practical problem investigated in various fields including 

project selection, finance and portfolio investment. As an example, Zitzler and Thiele 

(1999) introduce a suite of nine multiobjective 0-1 knapsack problems with the number 

of items as 250, 500 and 750, and the number of knapsacks as 2, 3 and 4 for comparative 

analysis of five different MOEAs. 

6.3.2. Parameter Settings  

Without any doubt, an appropriate selection of parameter settings for any MOEAs 

could significantly improve the performance of the algorithm. As the primary intent of 

this research is to introduce a novel approach that addresses solving expensive MOPs, the 

attempt to determine more appropriate (and perhaps more robust) parameter settings for 

FPGA and SPGA is left for future study. The suggested values for most of the parameters 
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used for FPGA and SPGA are obtained by either performing several pilot runs or taking 

them from the literature, particularly from Deb et al. (2002) for benchmarking. It is 

important to note that the best parameter settings are typically problem-dependent and 

may vary over different problems. Therefore, an investigation of some intelligent GA 

operators in the MOEA field that are capable of automatically adjusting their rates is 

recommended. An algorithm equipped with the feature of self-adjustment operation rates 

may have the benefit of higher convergence velocity by searching the solution space in a 

more efficient manner. 

6.3.3. Additional MOEA Performance Metrics 

Two complimentary performance metrics can be used to compare nondominated 

solutions produced by the various MOEAs. The first measure, called attainment surface, 

calculates a frequency distribution for intersection points of each cross-line with 

attainment surfaces obtained from nondominated solutions sets (Fonseca and Fleming, 

1999). Then, it compares statistically the frequency distributions of intersection points for 

all cross-lines for two MOEAs head to head. The second measure, called C metric, 

compares the coverage of nondominated solution sets of two different MOEAs by 

measuring the percentage of the solutions in one set is dominated by the solutions in 

another set (Zitzler and Thiele, 1999). This measure presents the superiority of one 

MOEA over another MOEA by comparing the coverage of their nondominated solution 

sets. Each of these two metrics considers simultaneously both goals in multiobjective 

optimization, convergence to the Pareto optimal set and maintenance of diversity. 
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6.3.4. Statistical Comparative Analysis of Performance Metrics 

It is surprising to note that although a significant amount of research has been 

carried out and many MOEAs, test problems and performance metrics are introduced in 

the MOEA area in the last decade, very little statistical analysis of results are employed to 

perform extensive comparative analysis among the proposed MOEAs. Since EAs are 

random search approaches and a few experiments with different seeds are run for each 

instance, using appropriate statistical tools are advisable to be employed for more precise 

comparative analyses. 

6.3.5. Integration of the Proposed Methodology with Commercial Simulation Software 

A very interesting and practical task is to integrate the proposed optimization 

methodology, SPGA, with simulation software package like ARENA. At this time, there 

is no interface between SPGA and simulation software and the search cannot be 

performed automatically. If we would like to apply SPGA to a simulation model, it 

requires a great deal of effort to manually import the objective values and variances of 

solutions to SPGA and export the values of the decision variables of candidate solutions 

to simulation software. However, it is possible to integrate the SPGA and simulation 

software and perform the search automatically. 
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