150 research outputs found

    Motion compensation for image compression: pel-recursive motion estimation algorithm

    Get PDF
    In motion pictures there is a certain amount of redundancy between consecutive frames. These redundancies can be exploited by using interframe prediction techniques. To further enhance the efficiency of interframe prediction, motion estimation and compensation, various motion compensation techniques can be used. There are two distinct techniques for motion estimation block matching and pel-recursive block matching has been widely used as it produces a better signal-to-noise ratio or a lower bit rate for transmission than the pel-recursive method. In this thesis, various pel-recursive motion estimation techniques such as steepest descent gradient algorithm have been considered and simulated. [Continues.

    A Review Paper On Motion Estimation Techniques

    Get PDF
    Motion estimation (ME) is a primary action for video compression. Actually, it leads to heavily to the compression efficiency by eliminating temporal redundancies. This approach is one among the critical part in a video encoder and can take itself greater than half of the coding complexity or computational coding time. Several fast ME algorithms were proposed as well as realized. In this paper, we offers a brief review on various motion estimation techniques mainly block matching motion estimation techniques. The paper additionally presents a very brief introduction to the whole flow of video motion vector calculation

    Model based estimation of image depth and displacement

    Get PDF
    Passive depth and displacement map determinations have become an important part of computer vision processing. Applications that make use of this type of information include autonomous navigation, robotic assembly, image sequence compression, structure identification, and 3-D motion estimation. With the reliance of such systems on visual image characteristics, a need to overcome image degradations, such as random image-capture noise, motion, and quantization effects, is clearly necessary. Many depth and displacement estimation algorithms also introduce additional distortions due to the gradient operations performed on the noisy intensity images. These degradations can limit the accuracy and reliability of the displacement or depth information extracted from such sequences. Recognizing the previously stated conditions, a new method to model and estimate a restored depth or displacement field is presented. Once a model has been established, the field can be filtered using currently established multidimensional algorithms. In particular, the reduced order model Kalman filter (ROMKF), which has been shown to be an effective tool in the reduction of image intensity distortions, was applied to the computed displacement fields. Results of the application of this model show significant improvements on the restored field. Previous attempts at restoring the depth or displacement fields assumed homogeneous characteristics which resulted in the smoothing of discontinuities. In these situations, edges were lost. An adaptive model parameter selection method is provided that maintains sharp edge boundaries in the restored field. This has been successfully applied to images representative of robotic scenarios. In order to accommodate image sequences, the standard 2-D ROMKF model is extended into 3-D by the incorporation of a deterministic component based on previously restored fields. The inclusion of past depth and displacement fields allows a means of incorporating the temporal information into the restoration process. A summary on the conditions that indicate which type of filtering should be applied to a field is provided

    Low bit-rate image sequence coding

    Get PDF

    Network driven motion estimation for wireless video terminals

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1997.Includes bibliographical references (p. 101-102).by Wendi Beth Rabiner.M.S

    Video modeling via implicit motion representations

    Get PDF
    Video modeling refers to the development of analytical representations for explaining the intensity distribution in video signals. Based on the analytical representation, we can develop algorithms for accomplishing particular video-related tasks. Therefore video modeling provides us a foundation to bridge video data and related-tasks. Although there are many video models proposed in the past decades, the rise of new applications calls for more efficient and accurate video modeling approaches.;Most existing video modeling approaches are based on explicit motion representations, where motion information is explicitly expressed by correspondence-based representations (i.e., motion velocity or displacement). Although it is conceptually simple, the limitations of those representations and the suboptimum of motion estimation techniques can degrade such video modeling approaches, especially for handling complex motion or non-ideal observation video data. In this thesis, we propose to investigate video modeling without explicit motion representation. Motion information is implicitly embedded into the spatio-temporal dependency among pixels or patches instead of being explicitly described by motion vectors.;Firstly, we propose a parametric model based on a spatio-temporal adaptive localized learning (STALL). We formulate video modeling as a linear regression problem, in which motion information is embedded within the regression coefficients. The coefficients are adaptively learned within a local space-time window based on LMMSE criterion. Incorporating a spatio-temporal resampling and a Bayesian fusion scheme, we can enhance the modeling capability of STALL on more general videos. Under the framework of STALL, we can develop video processing algorithms for a variety of applications by adjusting model parameters (i.e., the size and topology of model support and training window). We apply STALL on three video processing problems. The simulation results show that motion information can be efficiently exploited by our implicit motion representation and the resampling and fusion do help to enhance the modeling capability of STALL.;Secondly, we propose a nonparametric video modeling approach, which is not dependent on explicit motion estimation. Assuming the video sequence is composed of many overlapping space-time patches, we propose to embed motion-related information into the relationships among video patches and develop a generic sparsity-based prior for typical video sequences. First, we extend block matching to more general kNN-based patch clustering, which provides an implicit and distributed representation for motion information. We propose to enforce the sparsity constraint on a higher-dimensional data array signal, which is generated by packing the patches in the similar patch set. Then we solve the inference problem by updating the kNN array and the wanted signal iteratively. Finally, we present a Bayesian fusion approach to fuse multiple-hypothesis inferences. Simulation results in video error concealment, denoising, and deartifacting are reported to demonstrate its modeling capability.;Finally, we summarize the proposed two video modeling approaches. We also point out the perspectives of implicit motion representations in applications ranging from low to high level problems

    Motion compensated interpolation for subband coding of moving images

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1994.Includes bibliographical references (leaves 108-119).by Mark Daniel Polomski.M.S
    corecore