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Abstract 

Abstract 

Pel-Recursive Motion Compensation Techniques for Video Compression 

In motwn pictures, there IS a certam amount of redundancy between consecutive 

frames These redundancies can be exploited by usmg mterframe pred1ctwn 

techmques To further enhance the efficiency of mterframe prediction, motion 

estimatiOn and compensatiOn, vanous motion compensation techniques can be used 

There are two distinct techmques for motion estimatiOn block matchmg and Pel

recursive Block matching has been widely used as It produces a better signal to nmse 

ratiO or a lower bit rate for transmissiOn than the Pel-recurs1ve method 

In this thesis, vanous Pel-recurs1ve motion estimation techniques such as steepest 

descent gradient algonthm have been considered and simulated Netravali's algonthm 

was one of the early algonthms which was Implemented and simulated to evaluate the 

performance of the Pel-RecufSlve technique compared with the Block Matching 

approach The performance of the gradient method was further enhanced by 

adaptively selectmg the convergence factor (modified gradient) A second algonthm 

was developed and Simulated to produce further Improvements 

A hybnd system mcorporatmg both the block matchmg and the Pel-recursive 

approaches was developed and simulated This combmation exhibits even further 

Improvement over existmg techniques. 



Abstract 

These methods were then apphed to vanous hierarchical hybnd based v1deo codmg 

techniques such as the ITU-T H 263 standard The a1m was to reduce the overall b1t 

rate required to transmit v1deo s1gnals 
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BMMC 

BT 
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CCITT 

CD-ROM 

CIF 

Codec 
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DCT 
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IS 
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Acronyms and Abbreviations 

Alternative Current. 

Absolute Temporal Difference 

Block-Based Mo!ion Compensation 

Block-Matching MotiOn CompensatiOn 

Bn!ish TelecommunicatiOns 

InternatiOnal Radio Consultative Committee 

International Telegraph and Telecommumcatwn Consulta!Jve Committee 

(see ITU) 

Compact D1sc Read-Only Memory 

Common Intermediate Format 

Coder-decoder 

Cathode Ray Tube 

Digital Aud10 Tape 

Duect Current 

D1screte Cosine Transform 

D1fferen!ial Pulse Code ModulatiOn 

H1gh Defimtion Television 

InternatiOnal Standard 

Integrated Systems Digital Network 

Intema!ional Standard1satwn Organisa!Jon 

Interna!ional Telecommumcatwn Umon 

InternatiOnal TelecommunJca!Jon Umon Telecommumcation 

Standardisation Sector 

MC Mo!ion Compensa!ion 
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MCP 

ME 

Modem 

MPEG 

NI CAM 

NTSC 

PAL 

PSNR 

QCIF 

SUB-QCIF 

MAD 

MSD 

PSNR 

PSTN 

QCIF 

SAC 

Sub-QCIF 

VLC 

VLSI 

VOD 

x,y 

Motion Compensated Prediction 

Motion Estimation 

Modulator-demodulator 

Moving Picture codmg Experts Group 

Near Instantaneous Companded Audio Multiplex 

National TelevlSlon System Committee 

Phase Altematmg Lme 

Peak Signal to Noise Ratio. 

Quarter Common Intermedmte Format. 

Sub-Quarter Common Intermediate Format 

Mean Absolute Difference. 

Mean Squared Difference 

Peak Signal to Nmse Ratio 

Pubhc Switched Telephone Network 

Quarter Common Intermediate Format 

Syntax-based Arithmetic Codmg 

Sub-Quarter Common Intermediate Format 

Vanable Length Code or Variable Length Codmg 

Very Large Scale Integratwn 

Video on Demand 

spatial co-ordmates in the pixel domam 
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A Pel-Recursive Motion Estimation Algorithm 

H Gharav1 and H Reza-Ahkham 

Abstract: 11us paper presents a new pel recurstve motwn es!imat10n algonthm for 

vtdeo codmg apphca!ions. The denvat10n of the algonthm is based on Recurstve 

Least-Squares (RLS) es!imation that mtmmtzes the mean square predtctwn error A 

companson w1th the modtfied Steepest-descent gradtent es1:ima!ion techmque 

algonthm shows sigmficant improvement m terms of mean-square predtc1:ion error 

performance. 

Introduction: Netravah and Robbms [I] developed a pel recurstve spa1:io-temporal 

steepest-descent gradtent techmque in whtch the displacement of a pel (ptcture 

element) was predtcted from prevwusly transmitted mformatwn Smce then vanous 

algonthms have been proposed to improve the performance ofpel recurstve motwn 

es!Jmatwn (PRME) techmques The most important contnbution was the 

modtfica!ion of the steepest-descent algonthm developed by Walker and Rao [2] In 

th1s paper we present a simple but very efficient PRME algonthm that stgmficantly 

outperforms the modtfied steepest-descent technique 

Proposed Algorithm: For the sake of our analysts, we assume the transla1:ional 

movement of an obJect 1s m a plane parallel to the camera and dlumma1:ion 1s 

umform We also assume the effect of uncovered background to be neghgtble 

Under these assump!ions, let S (x, y, t) denote the monochrome mtenst!ies at pomt 

(x, y) of a movmg object m the tmage plane where 1ts translatwnal movement IS at a 

constant veloctty ofvx and vy We can show that after Ll.t second (one frame penod), 

the object moves to a new locatiOn where we can show, 



S (x, y t+Lit)=S [(x +VxLlt), (y +VyLit) t] (I) 

After expanding the field m a power series in t.t and neglectmg the higher order 

terms, the frame difference can be shown as, 

a a 
S(x,y: t + llt)- S(x, y. t) =-S(x, y t)dx+ ,,S(x, y t)dy (2) 

OX VJ 

where dx and dy correspond to the honzontal and vertical components of the motion 

a a 
vector D Assuming -S ( x, y t) and -S ( x, y t) are known for each x, y, t, and ax ay 
definmg ED, LD, and FD as the magmtude of the element, line, and frame 

difference at point n, from (3), we can wnte, 

(3) 

where <I>n = 
[ 

a l ~S(xn,yn t) 

aay s ( xn, yn t) = LD 

ED 

(4) 

From (4) the frame difference (FD) measurement IS, 

(5) 

- - - T 
where D = [ d (x), d(y)] IS the motion vector esttmate 

For a cluster of M moving pels, the least-squares estimate of D, after carrying out 

the m1mmization, can be shown as, 

m m 
L <f>n;n= D L<l>n<I>~ (6) 
n=l n=l 

(7) 

the estimated motion vector from (6) is obtained as, 

2 



j 

(8) 

For recursive esl!mallon of11 and R, we can wnte 

T], 

R, 
TJ,_, + <Dnl;n 

R,_, + <DIP I (9) 

Based on the so-called matnx mvers10n lemma, the mverse of R, can be obtamed 

R-1 
1-1 • 

as, 

R -1 mm TR-1 
1-l '-1-'hV n 1-l 

1 + mTR-1 m 
'-Vn 1-l "Vn 

From (8), (9), and (10), 

R;!, <Dn ( <DT-
D, ~ D,_, - I+ mTR-1 m D,_, 

o..vn 1-tWn 

(10) 

(11) 

In the above equal! on, the term m the nght hand Side bracket can be replaced by 

what IS known as the Displaced Frame Difference, DFD Thus, 

(12) 

To avOid matnx mvers10n at each IteratiOn, (12) can be simplified by 1gnonng the x 

and y cross terms m calculatmg ~nand R Thus, from (4) and (7), 

<I>n (x) ~ EO and <Dn (y) ~ LD (13) 

R(x) ~_!_I EO m 2 and R (y) ~_!_I LDm 2 

Mm Mm 

App1ymg (13) to (12), the components of the monon displacement esl!mates are, 

EO d, (x) ~ ci,_1 (x) - ---:------ { DFD [x, y, ci,_1(x)} 

_!_IED2+ 
M 

(14) 

d, (y) 
LD d,_1(y) - -:

1
----- {DFD[x, y, d,_1(x)J} 

-ILD2 + L02 

M 

3 
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Simulation Results: The computatiOn mvolved in (14) is performed recuTSlvely. At 

each 1teration the estimated motion displacement 1s applied to measure a new DFD 

Th1s would first requue obtammg the location of the displaced pel on the prevwus 

frame, based on the estimated components of motwn displacement Smce the 

motwn estimates are expected to be non-integer, the Iummance value of the 

displaced pel 1s predicted by a two dimensional mterpolator which uses the four 

corners of the surroundmg pels m a two d1menswnal gnd. In our expenments, the 

DFD 1s measured at two locations w1th reference to the current pel, the pel above 

(1 e, prevwus hne), and the previous pel along the same !me The average of the 

two DFD's (w1th equal we1ghtJngs) 1s then used to update the displacement 

estimates 

The ED and LD in (14) were also measured usmg the interpolated Iummance values 

from the displaced previOus frame For :EED2 and :ELD2 the summatiOn mcludes the 

Iummance values of five mterpolated ne1ghbonng pels from the previous frame 

Two video sequences, known as "Salesman" and "Suz1e," were used to evaluate the 

performance of the proposed algonthm The format of both sequences was based on 

the CIF (Common Intermediate Format 352-pels by 288-lmes and 30 frames/s) In 

add1tion, for the sake of companson, we have Simulated the Walker-Rao algonthm 

[2] The sJmulatwn results of both schemes, m terms of mean square prediction 

error (m dB), are shown in F1gures 1 and 2 for the "Salesman" and "Suz1e" 

sequences, respectively In these figures, we have also mcluded the results of 

mterframe prediction without motwn compensation (1 e, frame difference) The 

number of Jteratwns for both schemes was 3 The above algonthm was applied to 

those pels whose frame difference exceeds a predefined threshold (i e IFDI > 9 ) In 

addition, these results were obtamed using the second prevwus frame for prediction 

(1 e, sk1pping one frame). Looking at these figures, it IS clear that the proposed 

scheme sJgmficantly reduces the motwn compensated prediction error. In terms of 

subjective compansons, F1gure 2 presents the motion compensated prediction error 

4 



Images between frames 49 and 51 of the "Suzie" sequence In these Images, 

relatively darker or hghter patches represent the degree of maccuracies m 

estimatmg the components of the motion displacement Comparing the two Images 

confirms the supenor performance of the proposed scheme over the modified 

steepest-descent algonthm, particularly m regions where the motiOn activities are 

relatively high 

Conclusion: This paper proposes an efficient pel-recursive estimation technique for 

motion trackmg and codmg of movmg Images. The proposed algonthm has been 

compared with the modified steepest-descent gradient algonthm The results 

indicate a considerable reduction in the predictiOn error, particularly m regions 

where the motiOn activities are relatively high 
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C'l ----No-MC -+-Walker/Rao -r- Proposed 
N 

Salesman Sequence 

49 51 53 55 57 59 61 63 65 67 69 71 
Frame number 

(a) 

---No-MC --+-Walker/Rao -r-Proposed 

~ Suz1e Sequence 

41 43 45 47 49 51 53 55 57 59 61 63 65 
Frame number 

(b) 

Figure I Mean square error performance usmg the second prevwus frame for predictiOn 

(a) Salesman sequence, (b) Suzie sequence 
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(a) (b) 

Figure 2: Motion compensated prediction error images for Suzie sequence 

(a): Walker & Rao scheme (b)· Proposed scheme. 

6 



Pel-recursive motion estimation algorithm 

H Gharavi and H Reza-Ahkham 

A new pcl-recursJVe motion estJmatJon algonthm for VJdeo codmg 
apphcatwns 1s presented The dcnvat!On of the algonthm 1s based 
on recumve least-squares esumahon that mmmll';es the mean
square prediction error A companson w1th the modified steepest
descent grad1ent estlmatton techmque algonthm shows s1gmficant 
Improvement m tenns of mean-square predictiOn error 
pcrfonnance 

ntroductwn Netravah and Robbms [I] developed a pel-recursJve 
patio-temporal steepest-descent gradtent techmque m whtch the 
Isplacement of a pel (ptcture element) was predicted from prevJ
usly transmitted mfonnatJOn Smce, then vanous algonthms have 
een proposed to nnprove the performance of pel-recurs1ve 
ot10n estimation (PRME) techmques The most Important con

nbutiOn was the modification of the steepest-descent algonthm 
eveloped by Walker and Rao [2] In thiS Letter we present a snn
le but very efficient PRME algonthm that sigmfic,mtly outper
nns the modified steepest-descent techntque 

ropmed algonthm For the sake of our analysts, we assume the 
anslattonal movement of an object ts m a plane paraiiel to the 

arnera and Illummat1on IS umform We also assume the effect of 
ncovered background to be negligible Under these assumptions, 
t S(x, y, t) denote the monochrome mtens1t1es at pomt (x, y) of a 
1ovmg object m the Image plane where ItS translational move
ent IS at a constant velocity of vx and vy We can show that after 
t second (one frame penod), the object moves to a new location 
here we can show 

S(x,y t+M)=S[(~+vxllf),(y+vyllt) t] (1) 

ter expandmg the field m a poWer ~enes m !1t and neglectmg the 
1gher-order terms, the frame difference can be shown as 

i) i) 
S(r, y t+llt)-S(x, y t) = iJx S(x, y t)d,+ !Jy S(r, y t)dy 

(2) 

here dx and dy correspond to the honzontal and vet ttcal cornpo
~nts of the motion vector D Assummg O!Ox S(x, y t) and d!dv 
x, y t) are known for e,tch x, y, t, and defmmg ED, LD, and 

as the magmtude of the element, Jme, and frame dtfference at 
mt n, from eqn 3, we can wnte 

(3) 
here 

~Pn ;:: 
[ 
~S(rn,Yn :)] = [ED] 
DyS(Xn 1 Yn t) LD 

(4) 

om eqn 4 the frame difference (FD) measurement IS 

~n = tP?; tJ + n01se (5) 

1ere D ;::; [tl(x). d(v)]T IS the motion vector estimate 
For a cluster of M movmg pels, the least-squares estimate of D, 
er carrymg out the mimmis<ttlon, can be shown as 

m m 

n=l n=l 

r, 

1 M 
and R=ML<I>n<l>~ 

n=l 

estimated motion vector from eqn 6 ts obtamed as 

[J =R-I 'I 

r recursiVe estimatiOn of 11 and R, we can wnte 

'f}, = 'TJ.-1 + tPn~n 
R, = Rt-t + ~nT~ 

(6) 

(7) 

(8) 

(9) 

ased on the so-called matnx mversion lemma, the mverse of R
1 

1 be obtamed as 

(10) 

(11) 

In the above equation, the term m the nght-hand-s1de bracket can 
be replaced by what ts known as the displaced frame difference 
(DFD) Thus, 

- - R;-_\ <l>n [ ' - ] 
D, = D,_I- T 1 DFD(x,y,D,_1 ) (12) 

1 + TnRt_ 1 <Pn 

To avo1d matnx mvers10n at each IteratiOn, eqn 12 can be Simpli
fied by 1gnonng the -r and y cross terms m calculatmg ~~~ and R 
Thus, from eqns 4 and 7, 

<I>n(x) = ED and <I>n(Y) = LD 

1 1 "" R(x) = M L EDJ, and R(y) =M L., LDJ, (13) 
m m 

Applymg eqn 13 to eqn 12, the Components of the motion dis
placement estimates are 

d,(x)= cl,_ 1(x)- tJ L;E~~+ED' {DFD[x,y,d,_I(x)]) 

- - LD { - ]) 
d,(y) = d,_I(Y)- .lS'LD'+LD' DFD[x,y,d,_I(') 

Ati.-
(14) 

Sunulatwn results The computatiOn mvolved m eqn 14 IS per
fanned recursJvely At each Iteration the estimated motion dis
placement IS applied to measure a new DFD Thts wcmld first 
requrre obtammg the locatiOn of the d1spiJced pel on the previOus 
frame, based on the estimated components of motion di'iplace
ment Smce the motion estimates are expected to be non-mteger, 
the lummance value of the displaced pel IS pred1cted by a two
dllTienstonal mterpolator whtch uses the four corners of the sur
roundmg pels m a two-dtmensional gnd In our expenments, the 
DFD IS measured at two locatiOns with reference to the current 
pel, the pel above (1 e pr~v1ous lme), and the previOus pel along 
the same !me The average of the two DFDs (with equal weight
mgs) IS then used to update the displacement estimates 

The ED and LD m eqn 14 were also measured usmg the mter
polated lummance values from the displaced prev1ous frame For 
I.ED2 and I.LD2 the summation mcludes the lummance vJlues of 
five mtcrpolated ne1ghbounng pels from the previous frame 

29 

45 49 53 57 61 65 
frame number 

b 

F1g 1 Mean square error pe1jormance usmg ~econd prevwus frame for 
predictiOn 

a Salesman sequence 
b Suzte sequence 
-•- no mot10n compensatiOn 
-+- Wdlker-Rao algonthm 
-.4.- proposed algonthm 

Two VIdeo sequences, known as 'Salesman' and 'Suzte', were 
used to evaluate the performance of the proposed algonthm The 
format of both sequences was based on the common mtermedmte 
fonndt (CIF) 352 pels by 288 hnes and 30 framesls) In addition, 
for the sake of companson, we have simulated the Walker-Rao 
algonthm [2] The simulation results of both schemes, m terms of 
mean-square prediCtion error (m dB), are shown m Figs la and b 
for the 'Salesman' and 'Suz1e' sequences, respectively We have 

ECTRONJCS LETTERS 11th October 2001 V of 37 No. 21 1285 



also mcludcd the results of mterfrdme predrcllon Without mouon 
compensation (1 e frame drfference) The number of IteratiOns for 
both schemes was three The above algonthm was applied to those 
pcls the frame drfTerence of whtch exceeds d predcfmed threshold 
(1 e IFDI > 9) In addition, these results wete obtamcd usmg the 
sC<..ond prevtous frame for prcdrctton (1 e sklppmg one frame) It 
IS clcdr that the proposed scheme srgmficantly tcduces the motion 
compensated prediction error In tenns of subjective cornpansons, 
F1g 2 ptesents the motron compensated predtctwn error Imdges 
between frames 49 and 51 of the 'Suzre' sequence In these Images, 
relatively darker or lighter patches represent the degree of maccu
ractes m estunatmg the components of the motton drsplacemcnt 
Compdnng the two Images confi1ms the supcnor performance of 
the proposed scheme over the modrfied steepest-descent algonthm, 
pdi1tcularly m rcgrons where the motwn acttvttics are rel.1hvely 
high 

~;-;m::r71 

1022/2) 

F1g 2 Motwn compensated ptethctwn en or unagcsfor Suzte sequen(e 

a Walker-Rao algonthm 
b Proposed algonthm 

Collcluswll We have proposed an efficrent pel-recurstve estrmatron 
technrque for motion trackmg and codmg of movmg rrnages The 
proposed algonthm has been compared wrth the modrfied steep
est-descent gradtent algouthm The results mdrcate a consrderable 
reductron m the p!CdictJOn error, particularly m regwns where the 
mot1on activrtrcs are relatively lugh 
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Montgomery residue number systems 

B J Plulhps 

The Montgomery res1due number system (MRNS) for long word~ 
length anthmet1c rs mtroduced MRNS, a rnodJficatmn of the 
res1due number system (RNS), represents a long mteger as a set of 
smaller Montgomery res1dues Long mteger add1t1on, subtraction 
and multJphcc.tJon c.m then be performed usmg hardware-efficient 
Montgomery oper<tllons apphed mdepcndently to each of the 
res1dues An MRNS hardware arch1tecture swtc.ble for 
mcorporatton on a nucroproccssor ddta path IS also proposed 

Badground Resrdue number systems (RNS) have long been con
srdered an efficient means of pcrfonnmg long word-length addi
tiOn, subtraction and multtphcatton [1] Recent efforts have 
succeeded m rcducmg the cost of RNS modular mult1phcatron and 

re1gmted mterest m RNS, e~pccmlly for the nnplementatlon of 
pubhc-key cryptosystems [2] The Montgomery residue number 
system (MRNS) descnbed m thts Letter 1s a modificdtron to RNS 
tlldt pernuts the use of hardware-effictcnt Montgomery multrphca
tron and rcductron [3] 

Res1due number systems In RNS a number X IS represented by tls 
res1dues modulo a set of eo-prune moduh {mk-r. , mr. m0} We 
wnte X= (xk-d lxdxo )RNS(mk-d lmdm0) whcte x, :::: X mod m, 
= (X)m, The dynamiC range of the RNS (the number of different 
values that <.an be represented) IS gtven by M::::: n~~~ m, 

Addtl!on, subttaction and multiphcatJon can be performed 
wJthm RNS by opcratmg on each of the k resrdues mdepcndcntly 

X+ Y = ( (Xk-1 + Y<-1)m,_, I 
l(xt +yJ}nql(ro +yo)mo)nNS(m~c-d Jm1 1mo) 

X- Y = ( (Xk-1 - Yk-l)m~c-tl 

I(Xt- Ydmtl(ro- Yo)mo) RNS(m~-tl Jm1 lmo) 

X X Y = ( (Xk-1 X Yk-1)m,_, I 
l(xl X Yl)mtl(.ro X Yo}mo)nNS(mk-d Jm 1Jmu) 

Montgome1 y res1dues As drscussed m subsequent Sections, Mont
gomery's reduction method [3] IS an altemattve to full modular 
reduction wtth advantdges for hardware nnplementalions Fm 
now, let us concentrate on the mathematical fmmulatwn of Mont
gomery reduct1on and bcgm by defimng a Montgomery restdue x, 
thus x, == x,1, mod m, Montgomery reductiOn IS the funct1on 
MR,,,,,(x,) == xl;1 mod m1 so that AIR,n,rlx,) == x, mod m, The 
Montgomery rcsrdue x, JS umque for each resrdue x, pro'vldcd r, > 
m, and m, and r1 are co-pume numbers [3] Therefore, for every 
representatron w1thm a resrdue number system, there IS an eqmva
lent representation m the Montgomery residue numbet system 
thus 

X= (Xk-d lxdxo)RNS(m,_,j (mdmo) 

= (Lk-d ILti.Lo)MRNS(mk-d lmdmo) 

Af RNS operatwns l11e Montgomery sum, drtrerence and product 
functions can be defined as 

A1Sm.,r, (L 0 !J;) = Lt + jh mod mt 

111 Dm,r, (..et! !h) = 2\ - y; mod m 1 

M Pm,r, (Lt 1 if';) = Af Rm.,r, (..r, X ih) = xtylrt mod mt 
' 

Note tlldt rf z, = x, + y, mod m, then z; == A1Sm, ,lT; , }!;" ), If z, = 
x-,- y, mod m, then z; = llfD111,,,(x;, );), and If z, = x, X y, mod 
m, then z; == MPm,,,(x;, );) Also note that the Montgomery sum 
and difference functrons are tdenucal to full modular addrtton and 
subtractton but that the ptoduct functton makes use of Mont-
gomery reductiOn ' 

Usmg these functiOns add1tton, subtraction and multtphcatton 
Cdn be perfonncd directly on numbers m MRNS representdtton 

X+ Y = (MSm,_,,,,_, (xk-1, Yk-tl I 
lA! Smt,rt (xi, yt} !MSmo:ro(.:Lo, Yo)) MRNS(mJ..-I! lm1 1mo) 

X- Y = (!If Dm~.,_1 ,r~..-t (::tk-1! Yk-d 1 

lA! Dm 1 ,q (:tt, YI) jAf Dmo,ro (;:to, Yo)) M RNS(m~c-tl 

X X Y = (.i\fPm~_ 1 ,r~-l(:tk-1JYk-d I 

Comertmg to andfiom MRNS Converston betv.1een MRNS and 
RNS can be straightforwardly <tccompllshed by convertmg each of 
the k resrdues usmg x, == MRm,~,(X,) or X, = .MPm,,,(x, r,2 mod 
m,) Note that m the latter equatiOn r? mod m, may be pie-com
puted 

It IS also posstble to convert drrectly to MRNS usmg a sum of 
pre-computed restdues approach If we take an n-btt number X m 
a multt-prccJSIOn form as w-btt words 

n/w-1 

'X= L X]2)Xtll 
]=0 
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Chapter I Introduction 

.Chapter 1 

Introduction 

1.1 General Overview and Background 

0 
f all the technological acluevements m the 20th century, broadcast television has 

assumed a dominant role and has shown a great usage and effect in our everyday hfe 

to such an extent that today m the U.S. there are more homes that contam a televiSion set 

than have telephone service 

TeleviSion has perhaps had the greatest effect on our everyday lives. For many people, a 

television set is an obscure box in the corner of their living room - providmg education, 

entertainment, and etc. Children are now said to be addicted to it and there is no doubt that 

the nature of leisure time activities has radically changed over the past thirty years to 

accommodate television. Telecommumcatwns systems have also mvaded our home People 

can now hold a telephone conversation as comfortably as they would do face to face Going 
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Chapter 1 Introductwn 

further it became poss1ble to combine pictures and sound and transmit them v1a telephone 

lines for v1deo conferencmg. 

The telecomrnunJcatwns system has been able to take advantage of new technology 

enablmg modem digital network to become avmlable to everyone Recent advances m 

mobile communications have shown high potential for telephones to be associated w1th 

mdJvJduals rather than theu home and offices. 

But the evolutiOn m televiSIOn and telecomrnumcations systems has followed d1fferent 

paths Smce the mtroductwn of calor televlSlon m the 1950's, there have been no s1gmficant 

changes to the mechamsm of picture transmJsswn and display. The difficulty m modifymg 

the televiSion signal that 1s broadcasted for local d1stnbution 1s that the television receiver 

would almost certainly need to be modified or replaced. The difficulty of ach1evmg tius 

w1th an mvested base of over $10 billion IS staggenng 

In this country, the 625 line format has been with us for a long t1me and for many people, 

the1r perceptiOn of improvements m the quality of television has been ass1sted by advances 

m assoc1ated audio reproduction, particularly since the advent of NICAM d1g~tal stereo 

The telecommunicatiOns system, on the other hand, has been able to take advantage of new 

technology to prov1de a modem, digital network, available to the users. So 1t is natural that 

m thmkmg of televiSIOn transmission we JmrnedJately think of the s1gnal that 1s broadcast 

mto the home. More effic1ent encodmg ofth1s s1gnal would free valuable spectnun space. 

There is a large amount of pomt-to-pomt transmisSIOn of picture matenal takmg place 

today m addition to UHFNHF broadcastmg. For example, each of the four U.S televisiOn 

networks has a d1stnbution system spanmng the whole of the continental Umted States, 

mtemational satellite links transmit live programs around the world. V1deo-conferencing 

services are receJVmg mcreasmg attention. Satellites are transmitting to earth a contmuous 

stream of weather photographs and earth-resource pictures, and there are a number of 

important m1litary applicatiOns such as the control of remotely piloted vehicles and so on 
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Taking account of tins background, 1t is perhaps surpnsmg that the concept of combmmg 

pictures and sound mto a smgle PSTN channel for video conferencmg has taken so long to 

evolve. The essential difficulty 1s that bandwidth is limited m the serv1ces provided by 

telephone companies on the bas1s that to transmit speech, only 4 kHz IS reqmred for 

acceptable quality. Broadcast quality digital televiSIOn, on the other hand, m companson 

w1th a digitized speech signal at 64 kb/s, reqmres over 100 Mb1ts/s to supply pictures Even 

existmg terrestnal channels allocated for television cannot accommodate this amount of 

data. Consequently, v1deo compression and codmg appear to be the best approach to the 

problem, until someone provides a mass commUJUcations system m winch bandwidth 1s not 

a lim1tatwn Further more efficient codmg of p1cture matenal for these applicatiOns 

provides the opportumty for significantly decreasmg transmission costs, these costs can be 

qmte large. The a1m of efficient codmg IS to reduce the required transmiSSion rate of a 

giVen picture quality so as to YJeld a reduction in transmission costs. 

Some early efforts m picture codmg used analog codmg techn1ques and attempted to reduce 

the reqmred analog bandwidth, g1ving nse to the term "bandwidth compressiOn". 

Complex manipulations of the s1gnal are today much more easily done by first samplmg 

and digitlzmg the s1gnal and then processmg the s1gnal m the digital domain rather than 

usmg analog techniques 

Ideally, one would like to take advantage of any structure (both geometnc and statistical) m 

a p1cture s1gnal to mcrease the efficiency of the encodmg operation Also the codmg 

process should take mto consideratiOn the resolutiOn (amplitude, spatial, and temporal) 

reqmrements of the rece1ver, i e., the television display and very often the human viewer 

[1]. 

InternatiOnal co-operation has proved important m the development of video codec 

algorithms. Under the auspices of the CCITT, now known as the InternatiOnal 

Telecommurucatwn Umon (ITU), a recommendation was published m 1990, descnbmg the 

framework of a v1deo codec mtended for use on the ISDN system on channels of 64kbJts/s 

Its pnmary concern is the removal of redundancy, winch occurs within and between picture 
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frames Intraframe coding can be used to compress a smgle frame and redundancy 1s smd to 

be present where the picture compnses of groups of adJacent equal value picture elements, 

or p1xels. Similarly, where p1xel values have not changed over time, mterframe codmg can 

remove temporal redundancy. Only changes m picture content need to be supphed to the 

decoder and, as a result, an efficient mechanism of picture codmg IS developed. 

In most cases, however, v1deo codecs are sa1d to be lossy, smce additiOnal processmg tends 

to lower the resolution and mtroduce errors Th1s sa1d, provided certam reqmrements of 

quahty are kept, most users are unable to detect codmg errors and those who do Will 

probably be able to tolerate them. 

The 1mplementat10n of v1deo codecs has also been hm1ted by the technology available. 

Where real-time processmg 1s reqmred, compression and codmg must be performed at h1gh 

speed - a requirement that VLSI technology has recently appeared to be able to satisfy A 

new generation of software video codecs is bemg proposed m current !TU 

recommendatiOns, to work on the growing number of personal computers connected to the 

PSTN by a modem As the processes are refined and the technology IS improved, v1deo 

conferencing codecs w11I become less expensive and more w1dely avmlable. Whether they 

become more popular is, however, a different matter. It took many years for televisions and 

telephones to get mto most homes and wanness about seemg the person the user IS talkmg 

to may, for some wh1le, make the Videophone somethmg the pubhc feels 1t can do w1thout 

1.2 Aims, Motivations , Objectives and the Scope Of The Research 

This thesis examines the current state of v1deo technology and assesses different aspects of 

v1deo compression. Further 1t goes mto developmg new ways of motion estimation The 

combmed new proposed algorithm w1th block matching is to contnbute a higher 

performance to the ex1stmg algonthm wh1ch m time could perhaps given nse to an 

altemati ve standard. 
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1.3 Structure and outline of this Thesis 

Chapter two provides the reader with an msight mto contemporary techniques of v1deo 

compressiOn. Although motwn compensatiOn IS a very w1de-rangmg top1c, chapter 2 

concentrates on the pnnc1ples of DPCM and block matchmg motion compensation Th1s 

chapter also cons1ders the ISO/MPEG standard and comes up to date Wl th the latest H 263 

recommendatiOn for very low b1trate v1deo codecs, usmg the framework of the H 263 

algonthm. 

Chapter three Analyses the state of the art techmques of another class of 1mage 

compressiOn known as pel-recurs1ve motion compensatiOn with focus on the pel-recurs1ve 

W1ener-based displacement esttmatwn algonthm. 

Chapter four Investigates the novel techmques of displacement esttmatwn algorithm in 

companson to ex1stmg techniques. 

Chapter five shows expenmental results Illustrating the performance of a few apphcations 

applymg the proposed 1dea and method to some degree. 

Chapter six examines the novel 1dea of combimng the two d1fferent classes of 1mage 

compression, the block matchmg motion estimation and pel-recurs1ve motion estimation, 

mto a Hybnd system. 

Chapter seven concludes the thes1s with a summary and prov1des conclusions drawn from 

th1s work. Also suggestions for further work are made, particularly in the area of 1mage 

compressiOn, expressing the trade-off between quahty and compressiOn complex1ty which 

could outhne and open up further avenues of research 
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Review of contemporary techniques 

2.1 Introduction 

0 
ver fifty years have passed smce the introduction of broadcast televiSion m the 

Umted Kingdom. However, 1t 1s only recently that the concept of usmg movmg 

p1ctures for mteractlve v1deo and mul!imedm has rece1ved mterest, as the costs of 

transmitting a televiSIOn s1gnal over anythmg other than short distances have proved 

prohibitive We have been lim1ted to sendmg mainly still 1mages over the public 

telephone network, mamly due to restnction m the bandwidth avmlable to most users 

It seems paradoxical that whilst the technology of digital television has advanced m 

remarkable leaps in recent years, we still have no efficient, Widespread means of 

sendmg h1gh quality video over the telephone network for the purposes of 

vJdeotelephones One of the fundamental costs of colour televlSlon 1s the bandwidth 

reqmred to transmit a channel of sound and pictures The five terrestnal channels 

allocated m the Umted Kingdom have eqmvalent digital bandwidths from 12 to 

24MbJts/s, wh1ch would be msuffic1ent to carry sound, chrommance (colour) and 

luminance (bnghtness) s1gnals w1thout any form of compressiOn It 1s the scarcity of 

space in the radio-frequency spectrum that has limited the extent of broadcast televisiOn 
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In its uncompressed state, conventional broadcast-quality digital television requires bit 

rates of typically 166 megabits per second - well over that available for the 2 Mb/s link 

Integrated Services Digital Network (ISDN) [2] channel and it is not economical to use 

155 Or 622 Mb/s links. Given this primary constraint, contemporary research has 

focused on the compression of video images, a llowing transmission of low resolution 

images over digital networks. In most cases, compression is easy to achieve, removing 

spa tial and temporal redundancies naturally occurring in sequences of images. 

Figure 2.1.1 A frame of Suzie, demonstrating picture redundancies. 

Consider the image of figure 2.1.1 . This could be regarded as typical of a 

videoconferencing scene, where during the conversation, most of the p icture will not 

change other than, say, the lips, eyes and occasional hand or head movements. Thjs 

feature can be used to good effect, such that only information about differences that 

have occurred will need to be sent to the recipient. This process is called infelframe 

cod ing and is ideal for the low level of temporal changes, associated with 

videoconferencing. Interframe coding is based on the fact that there ex ists a large 

amount of frame-to-frame correlation in moving images, which is a lso called temporal 

correlation. It is also possible to extract information about differences between spatially 

adjacent pixels at a given instant in time. This process is called intraframe coding and 

effic iently compresses large areas of consistent colour and shade (the plain background 

7 



Chapter 2 Rev1ew of contemporary techmques 

in this example). Boundanes are easy to detect, where significant changes m lummance 

and chrommance occur Interframe and intraframe codmg are two methods of 

redundancy compression that have been used to good effect in the development of 

v1deoconferencing hardware for transmission over telecommumcations channels 

The mtnns1c effect of redundancy coding is not to reduce picture quahty Significantly, 

or to affect spatial resolution However, subsequent processmg of the difference 

mfonnation can take place, where useful mfonnat10n can be descnbed as those aspects 

of the Image that convey meamng to the human viewer, even if that is only a small 

propor!Jon of the image content The contrast sensitivity function [3] allows 

understandmg of the human ab1hty to detect spatial and temporal detail Assummg the 

human eye can resolve down to two mmutes of an arc, it can take m the eqmvalent of a 

m!lhon piXels of mfonnation without movmg By movmg the eye, but not the head, the 

field of v1ew 1s at least an order of magnitude greater We know the head IS hkely to 

remam stationary whilst a person 1s domg somethmg specific, but the eyes are movmg 

contmuously. If we assume that to represent the colour and lummance of a p1xel, 12 b1ts 

are required, over I 00 million b1ts of mfonnation are needed to represent the user's 

static scene 

Consideration of these factors g1ves an understanding of the essential nature of video 

compression algonthms. It is necessary to take a picture, which under nonnal 

circumstances would requue extensive data representation, and code It to the constramts 

of, telecommunications network, whilst mamtaming an Image satisfactory to the human 

perception 

At an early stage, the mtemational telecommunications commumty Identified the need 

for close collaboration to ensure the adoption of a system which could be applied m all 

countnes and make videotelephony available to a world market. Even though a 

European standard specification did emerge m the 1980's [ 4], for a 2Mbits/s, 625 hne, 

25 frames per second PAL system, demand m North America required plans usmg the 

525 line, 30 frames per second NTSC system Subsequently, the conversiOn between 

these standards was regarded as the focal pomt of mtemat10nal co-operatiOn and under 

the auspices of the Orgamzanon now known as the International Telecommumcation 
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Umon *(the ITU), a videophone algonthm was recommended, meeting the needs of the 

new ISDN systems and working for all btt rates between 64kbtts/s and 2Mbtts/s 

The resulting ITU-T RecommendatiOn, H 261 [5][6], forms the basts of the mtematwnal 

development of vtdeoconferencing systems usmg the new ISDN networks bemg 

Installed throughout the world However, many concepts used are equally applicable to 

other areas of video codec destgn, such as htgh-defimtion dtgttal televlSlon (HDTV), 

where an m creased amount of piCture data is to be transmitted wtthin the constramts of 

extstmg terrestnal bandwidths 

*The InternatiOnal Telecommumcation Umon was formed from an amalgamatiOn of the 

CCITT and the CCIR 

2.2 Review of Image Compression 

In Image transmiSSIOn and storage, dtgttal techmques mstead of analog are mcreasmgly 

used due to the raptd growth m the use of dtgttal computers, and the dechnmg cost of 

digital processing and transmttting equipments Thts IS also because the dtgttal 

transmtsston and storage system has many mherent advantages over the analog system, 

such as easy processmg, processmg flexibility, easy and random access in storage, 

htgher stgnal-to-nmse ratio (SNR), posstbthty of errorless transmtsston etc. However, 

Images, whether dtgttal or analog, contam a large amount of mformation and require 

wtdeband channels for transmisSIOn and btg memory for storage, especially dtgttal 

Images. For example, a 4MHz televisiOn stgnal sampled at Nyqmst rate wtth 8 btt 

samples could reqmre a transmitting bandwidth of 64 MHz. Therefore It IS htghly 

desirable to compress Image data for transmissiOn and storage A lot of techmques for 

dtgttal Image compression [7] [8] have been developed. 

The statistiCal properties of Images are the main reasons that Images can be compressed 

The statistical property upon which mtraframe codmg techmques rely IS the htgh 

correlation between netghbonng ptxels Thts means that adJacent pixels are usually 

similar to one another and the magnitude of a ptxel may be estimated from the values of 

the ptxels around It Most Images, even fatrly active Images which contam a large 
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amount of spatial detail, have qmte h1gh values of correlatwn For example, m movmg 

1mages, the background is hkely to remam stationary in success1ve frames The 

correlatwn m one frame of an 1mage or successive frames are 1mage data redundancies 

which can be reduced without apparent degradatwn of 1mage quahty 

Image compressiOn techmques can be classified into two classes, namely informatiOn 

lossless and mformation lossy techniques The former is able to reconstruct the orig~nal 

1mage without any loss of informatiOn, whereas the later introduces some d1stortwn in 

the reconstructed 1mage and cannot recover the ongmal image exactly which can not be 

perce1ved by human eyes. Lossless and lossy compression techn1ques are used m 

d1fferent apphcations For example, med1cal images often require completely lossless 

compresswn because any shght d1stort10n may result in wrong d1agnosis In other 

apphcatwns, such as entertamment, education etc , the reconstructed 1mages need not 

necessanly be exactly the same as the ong~nal ones and lossy compressiOn techniques 

are then w1dely used The lossless techniques normally reach lower compressiOn ratio 

wh!le the lossy techn1ques can reach h1gher compresswn ratio. 

2.3 Transform Coding Technique 

One of the most effective 1mage compressiOn techn1ques IS transform codmg The basic 

motlvatwn and fundamental princ1ple behmd transform codmg [9] [ 1 0] IS to transform 

the image from the data domam to a frequency domain by an energy preserving unitary 

transform In the frequency domain, the image p!Xels are decorrelated and the energy 1s 

concentrated on a few coefficients so that the h1gh frequency coefficients and the 

coefficients w1th less energy can be removed w1thout any v1sual effect on the 

reconstructed image, smce they play less Important roles in the 1mage reconstruction 

The transform could be apphed to the entire 1mage but 1mplementat10n problems make 

th1s ImpractiCal Fmt, the amount of the memory and the computation reqmred mcrease 

proportionally to M2
, where M is the image d1menswn. Second, because of the 

ehmmatwn of ummportant coefficients, small transform s1ze often leads to more 

s1gn1ficant degradatiOn than a large s1ze A typ1cal approach 1s to d1v1de the 1mage mto a 

number of rectangular blocks or sub-1mages, normally the input 1mage 1s partitioned 

into N x N (e g 8 x 8 or 16 x 16) blocks (sub-Images), and then an umtary transform is 

apphed to each sub-image A block size 8 by 8 has been adopted for most v1deo codmg 
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standards mamly to reduce the transformatiOn complexity as well as better explOitation 

of 1mage redundancies between the ne1ghbonng blocks 

After the transformatiOn, actual image compressiOn is achieved by quantizing the 

transform coefficients. If all the coefficients are quantized and coded, the compressiOn 

ratio is quite small. It has been pomted out that the important charactenstic of the 

transform is that most of the energy of the 1mage 1s packed into a small number of low 

frequency coefficients and the coefficients w1th less energy or the h1gh frequency 

coefficients play less 1mportant roles in the 1mage reconstruction To ach1eve h1gher 

compression, one possibility 1s to use a mask covering an area of low frequency 

coefficients and to discard the remammg coefficients, 1 e. set the remaining coefficients 

to zero Only those coefficients in the mask are quantized and coded Considerable 

compression can be ach1eved depending on the size of the mask used m th1s method 

This technique 1s known as zonal codmg The only problem with the zonal codmg 

approach IS a blurring effect as a result of the elimmation of h1gher frequency 

components Another possib1hty 1s to use a threshold on each transform coefficient and 

set the coefficients which are below the threshold value to zero The remaimng non-zero 

coefficients together With the1r address information are quantized and finally entropy 

coded effic1ently by codmg schemes such as, Huffrnan codmg [11], anthmetic codmg 

[12] or combmmg Vanable Length Codmg (VLC) and runlength codmg For better 

subJective 1mage quality, the quantizer m all cases should be des1gned to optimize the 

reconstructed 1mage quality for a g1ven number of b1ts 

The encoded image is transmitted through the channel (or stored) An mverse operatiOn 

is performed at the rece1ver end. A number of orthogonal transforms can be used m the 

transform codmg and most of them are lmear transformations 

Transform codmg has a good immumty to channel noise. In transform codmg, a code 

error in transmiSSIOn only mfluences the correspondmg block and has no effect on the 

succeeding blocks because th1s error 1s d1stnbuted by the reverse transform over the 

entire block. Visually, a code error m the transform codmg is less vis1ble than that m 

pred1ctive codmg However, the transform codmg has some defects FITSt, smce the 

1rnage IS divided mto blocks, block to block correlatiOn 1s not employed m the 
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transform Furthermore, arlificial blockmg segments the 1mage arb1tranly w1thout 

cons1dering 1ts contents Second, in transform coding at low bit rate, sometimes so 

called blockmg effects are apparent m the reconstructed 1mage Blockmg effects are 

perce1ved m the reconstructed 1mage as VISible d1scon!inmties between adjacent blocks 

TillS IS especially VISible around the boundanes of movmg obJects and, s!ill background 

Tins is caused by the improper coding of the transform coefficients, such as ehmmatmg 

too many coefficients or due to coarse quan!iza!ion Finally, transform coding needs 

more operatiOns and memory than predic!ive codmg Th1s IS improved due to the 

rapidly decreasmg cost of d1g1tal hardware and computer memory, and th1s may no 

longer be a disadvantage 

2.3.1 The Karhunen-Loeve Transform (KL T) Technique 

The Karhunen-Loeve transform [IO]!s an op!imallmear transformation in the sense that 

1t completely decorrelates the data and maximiZes the amount of energy compacted mto 

the lowest order coefficients However, 1t IS not certam that the KL T is the absolute 

op!imum transform smce 1t does not consider other factors such as the human visual 

system Add1!ionally, the transform matnx depends on the 1mage data, 1 e the transform 

matnx IS different for different 1mage data Thus, the KL T transform matnces are also 

transm1tted and stored along w1th the coded data. Furthermore, the amount of 

computation in the transform matrix generation is very large and the KL T has no fast 

transformatiOn algonthm associated w1th 1t. 

Because of the computatiOn complexity, the large storage reqmrement and dependence 

on the input 1mages, the KL T 1s seldom used m prac!ice but 1t is employed m theore!ical 

stud1es of 1mage codmg It g1ves an md1cat10n about the upper bound computatwnal 

efficiency of what other transformatiOns should attempt to reach for decorrelatmg data 

samples. 

2.3.2 The Discrete Fourier Transform (DFT) Technique 

The discrete Fourier transform [IO]ls naturally apphed to image coding because of 1ts 

widespread use m other s1gnal processmg fields and the fact that it has efficient 

computatiOnal algonthms and fast 1mplementa!ion It IS the only complex transform 

used m data codmg schemes The DFT 1s not convenient for general use due to the 
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necessity to evaluate both real and nnagmary components, wh1ch requue a large number 

of operations and large storage 

2.3.3 The Walsh-Hadamard Transform (WHT) Technique 

The Walsh-Hadamard transform [10][13]1s the s1mplest transform among vanous types 

of orthogonal transforms The elements m the transform matnx are e1ther I and -I, and 

the only mult1phcat1on needed is that of the final scahng operation However, it is too 

s1mple to compact energy well 

2.3.4 The Discrete Cosine Transform (DCT) Technique 

The Discrete Cosme Transform (DCT), wh1ch IS an mformatwn lossless techn1que 

[10][14][15] was proposed by Ahmed et al 1974 It IS one of an extensive fam1ly of 

sinusmdal transforms At that tlme, there was increasmg mterests m the class of 

orthogonal transforms, such as the d1screte F ouner transform, the Hadamard transform, 

m the general area of d1g~tal signal processmg, such as 1mage codmg, pattern 

recogn1t1on etc. It IS known that the KL T IS the optlmal transform w1th respect to 

performance measure, but it needs a large amount of computatiOn and has no fast 

transform Compared w1th other orthogonal transforms, the DCT has the best all-around 

performance w1th respect to effic1ent computauon and acceptable perceptual quahty for 

a given compression rate. It also has correlation reductiOn capab!l1ty, good energy 

compactlon and fast computatlonal propertles [16] It 1s a w1dely used transformatiOn 

for image compressiOn for example m JPEG st1ll-1mage compresswn standard 

Therefore, researchers tned to develop a transform wh1ch 1s close to the performance of 

the KLT and has fast algonthms To fill the role, the d1screte cosine transform was 

proposed 

The two-dimensional d1screte cosine transform of a data sequence X(x, y) is defined as 
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1 N-ll<-
1 [(2x+l)un] [(2y+l}vn] F(u,v) =- 2,:2,: C(u)C(v)X(x,y)cos cos 

N-~ 2N 2N 

Wherex,y =0,1, ...... ,N-1 

The mverse two-dtmenswnal dtscrete cosme transform IS defined as. 

1 N-IN-1 [(2x + l)un] [(2y + l}vn] 
X(x,y) =- 2,:2,: C(uJ:'(v)F(u,v)cos cos 

N-~ 2N m 

Where u, v= 0, I, . , N-I 

It has been shown that the performance of the DCT IS nearly tdenhcal to the KL T 

transform for blocks of reasonably large stze [ 17] Furthermore, the empmcal evtdence 

shows that even for blocks of small stze the performances of the DCT and the KL T are 

close It also has correlatiOn reduction capabthty, minimum block dtstortwn, superb 

htgh energy compac!!on and fast computatiOnal properties [18] [19] DCT IS wtdely 

used transformation for tmage compressiOn for example m JPEG still-image 

compressiOn standard 

Smce the computatiOn effort for DCT ts qmte large for !!me critical applicatiOns, fast 

versiOns of the DCT[20] [21] have been proposed Though speed performance ts 

Improved by the fast algonthms, the fast algonthms s!!U reqmre a large amount of 

computation DCT can be hardware implemented by dtgttal signal processor to achteve 

htgh speed at reasonable cost 
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2.3.5 Hybrid (Transform I DPCM) Coding system 

Hybrid coding [23]- [25] is a kmd of techmque which combmes transform codmg and 

predictive codmg together to generate a better coding scheme It takes the advantages of 

transform codmg and pred1ct1ve codmg and overcomes the1r short comings to a certam 

degree Generally, hybnd codmg performance lies between transform coding and 

predictive codmg Th1s technique removes the spa!ial redundancies, which normally 

ex1st between the neighbounng p1xels w1thm a two d1menswnal 1mage array Hybnd 

codmg IS less sens1t1ve to channel errors than predictive codmg 

Typ1cally, m hybnd codmg, a two-dJmenswna!Jmage 1s umtanly transformed to obtam 

a sequence of one d1menswnal sequences Each of these sequences is then coded 

mdependently by a one d1menswnal predictive coding technique, such as the DPCM 

2.3.6 Differential Pulse Code Modulation (DPCM) 

In PCM time discrete, amplitude d1screte, representatiOn of the sample 1s made Without 

removmg much stahstical or perceptual redundancy from the Signal The time 

discreteness IS prov1ded by sampling the s1gnal generally at the Nyqmst rate, amplitude 

discreteness is provided by using a sufficient number of quantizatlon levels so that the 

degrada!ion due to quant1zat10n IS not easily VISible In DPCM, the sample to be 

encoded IS predicted from the encoded values of the previOusly transmitted samples and 

only the prediction error 1s quantlzed for transmJsswn Such an approach can be made 

adaptive e1ther by changmg the pred1chon or quantizatlon or by not transm1ttmg the 

predJc!ion error whenever 1t IS below a certam threshold, as m conditional 

replenishment. 

In bas1c predictive coding systems [26]-[28] (F1g. 2 3.6 I) in their Simplest form, DPCM 

uses the coded value of the previOusly coded honzontal mformatlon (pel) that has been 

transmitted as the prediction However, more sophisticated predictors, use the prevwus 

line (two-d1menswnal Pred1ctor) as well as previous frame of mformatlon (interframe 

predictor) The error resulting from the subtractiOn of the prediction from the actual 

value of the sample IS quantised into a set of discrete amplitude levels. These levels are 

represented as binary words of e1ther fixed or vanable length and sent to the channel 

15 
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coder for transmission The predictive coder has three basic components. I) predictor, 

2) quantizer, 3) entropy codmg 

Input 
Encoder 

Quantizer 

Predictor 

Transmitter 

Codes to 
channel 

Codes 
from 
binary 
channel 

Receiver 

Figure 2.3.6.1 Block diagram of a DPCM transmitter and receiver. 

Output 

I - PrediCtors for DPCM coding can be classified as lmear or nonlinear dependmg upon 

whether the prediction is a linear or a nonlmear functmn of the previously transmitted 

sample values. A further division can be made depending upon the location of the 

previous elements used: one-d1mensmnal predictors use previous elements m the same 

lme, two-dimensmnal predictors use elements in the previous lines as well, whereas 

interframe predictors use picture elements also from the previously transmitted frames 

Predictors can be fixed or adaptive Adaptive predictors change their charactenstics as a 

functiOn of the data, whereas fixed predictors maintain the same charactenst1cs 

mdependent of the data. As an example of adaptive predictiOn, see Hab1b1 [29] for 

predictors which use different numbers of picture elements within a frame. 

The set of predictors from which a predictor is selected are usually lmear and are chosen 

such that each one of them will give a small prediction error If the signal was correlated 

in a certain manner. In Graham's predictor [30]-[32], either the previous line or the 

previous element IS used for prediction, and the sw1tchmg is done by the surroundmg 

line and element differences. Several extensions have been made to this basic 
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phtlosophy However, the results have not been very encouragmg m terms of the mean 

square error or the entropy of the predtctlon error In some cases the rendenng of certain 

types of edges can be remarkably Improved by these adaptive prediCtors Another 

vanatwn [33] in adaptive predtction ts to use a wetghted sum of several predtctors, 

where the wetghts are SWitched from element to element and are chosen by observmg 

certam charactenstlcs of already transmitted netghbonng pels The same calculation can 

be performed at the recetver and, therefore, the predtctor switchmg mformatlon does not 

need to be transmttted Such techmques have been considered for gray level stgnals 

[34]. 

The more successful adaptive predtctors for frame-to-frame codmg are the ones that 

take mto account the motion of objects These are based on the notwn that, tf there are 

objects moving m the field of view of a televtston camera and tf an estimate of thetr 

translation ts ava!lable, then more efficient predtctive codmg can be performed by 

taking the dtfferences of elements wtth respect to elements in the prevwus frame that 

are appropnately spatially translated. Such predtction has been called motwn 

compensated predtctlon [35] [36] Its success obvwusly depends upon the amount of 

translatiOnal motwn of objects m real televiSion scenes and the ab!ltty of an algonthm to 

estimate translation wtth the accuracy that ts destrable for good predtctlon One set of 

techmques developed [3 7] [3 8] obtam an estimate of translation m a block of pels, 

whereas techniques developed by Netravah et a! [39]-[41], recurstvely adjust the 

translational estimate at every pel or at every small block of pels. Another approach to 

motion compensation ts adaptive hnear predtc!lon by usmg elements m both the present 

and the previous frame (or field), whtch surround the element bemg encoded, and 

adaptmg the coeffictents to mmtmtze an mtenstty error functiOn [42]. Such an approach 

ts tmplementatlonally dtfficult and reqmres transmtsswn of coeffictents of the 

predtctors 

In scenes wtth htgher deta!l and motion, field dtfference predtctwn does better than 

frame dtfference predtctlon [43] As the motion m the scene ts mcreased further, 

intrafield predictors do better [44] Thts ts largely because for htgher motwn, there ts 

less correlation between the present pel and etther the prevtous field or the frame pels 
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For the same reason, predictions such as element or !me difference of frame or field 

differences perform better than frame or field difference for higher motion 

2 - Quantization· DPCM schemes achieve compressiOn, to a large extent, by not 

quantizing the prediCtiOn error as finely as the original signal Itself. Several methods of 

optimtzmg quantizers have been studted Most of the work on systematic procedures for 

quantizer optimization were taken from studies of DPCM codmg, m whtch the 

approximate honzontal slope of the mput stgnal IS quantized Three types of 

degradatiOns can be seen due to the Improper design of the quantizer of a DPCM coder 

These are referred to as granular noise, edge busyness and slope overload as shown m 

Ftg 2 3 6 2 If the mner levels (for small magnitudes of differential signal) of the 

quantizer are too coarse, then the flat areas are coarsely quanttzed and have the 

appearance of random nmse added to the picture On the other hand, If the dynamic 

range (1 e , largest representative level) of the quantizer IS small, then for every htgh 

contrast edge It takes several samples for the output to follow the mput, resulting m 

slope overload, which appears similar to low-pass filtering of the Image For edges 

whose contrast changes somewhat gradually, the quantizer output oscillates around the 

stgnal value and may change from !me to hne, or frame to frame, grvmg the appearance 

of a busy edge Quantizers can be designed purely on a statistical basis or by usmg 

certam psychovtsual measures 
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DPCM 
quanttzer 

Input 

Largest quantizer 
output determines 

Slo e overhead 

Coarseness here 

Review of contemporary techmques 

Edge busyness for 
low contrast edges 

Coded 
output 

Figure 2.3.6.2 An mtuttive classtficatwn distortion due to DPCM coding. 

(Adapted from digital picture) 

It had been reahzed for some ttme that for a better picture quality, quantizers should be 

designed on the basis of psycho-visual criteria. However, the debate [45] [46] continues 

on what ts a good cntenon to use, and expectedly so, considering the complextttes of 

the human vtsual system 

3·- Entropy coding is the last stage in which shorter code word are assigned to the more 

frequent occurrmg symbols, therefore mmimizing the average length of the binary 

representation of the input informatiOn [ 4 7] The average information rate is given by 

entropy (measured in btts) .-
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N 

H(S) =- 2>(s,)log2 p(s,) (Eqn. 2.3 6 I) 
!=I 

Where there are N mput symbols s1, s2, s3, , SN With probabilities p(s1), p( sJ), 

p(SJ), , p(SN) 

And the average codeword length wh1ch IS the average number of b1ts reqmred IS g1ven 

by·-

N 

R(S) = L),p(s,) (Eqn 2 3 6 2) 
l=l 

, lN are the word length for the code words 

Run Length codmg (RLC) was first considered for black and white images The run 

length IS found by counting the number of consecutive black and wh1te p1xels along 

each !me, as an example for a horizontallme along an 1mage as illustrated m figure 

2.3 6 3 1s 7 black-run, 3 wh1te-run, 4 black-run, 4 wh1te-run Where 0 and I represents 

black and wh1te pixels respectively 

000000011100001111 
Figure 2.3.6.3 An example of runtength codmg. 

Th1s runlength codmg method has been further developed as two-dimenswnal Vanable 

Length Codmg (2D VLC) [ 48] so that colour 1mages can be encoded The 1mage 1s 

encoded as an EVENT. Each EVENT contams RUN and LEVEL. 

EVENT= (RUN, LEVEL) 

Where RUN 1s the number of success1ve zeros precedmg the quantlsed coefficient 

LEVEL is the non zero value for the quantised coefficient 

Fmally, 3D VLC [ 48]!s developed to 1mprove the codmg efficiency. In th1s approach, 

each EVENT contams LAST, RUN, LEVEL The LAST event 1s represented by the 
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End of Block (EOB) which indtcates that no more zero coeffictents are encoded for thts 

block 

EVENT= (LAST, RUN, LEVEL) 

Where LAST = 0 

LAST= I 

RUN 

LEVEL 

there are more non zero coeffictents m thts block. 

thts is the last non zero coefficient m this block 

is the number of successtve zeros precedmg the quantlsed 

coeffictent 

ts the non zero value of the quanti sed coeffictent 

The hmttation of thts method ts the complexity of constructing the codebook However, 

tt ts very effictent m terms of codmg and has been adopted as part of the ITU-T H.263 

Codmg Standard [49]. 

Another problem wtth the use of van able length codes ts that the output rate from the 

source coder changes with local ptcture content In order to send such a stgnal over a 

constant bit rate channel, the source coder output has to be held temporanly m a buffer 

whtch can accept inputs at a non umform rate and can be read out to the channel at a 

umform rate 

2.4 Block Matching 

In block matching motion estimation the codmg (current) frame is partttloned mto small 

non-overlapping blocks of stze m x n (where often m = n), assummg that all the ptxels 

wtthin each of the non-overlapped block have the same dtsplacement vector It is 

assumed that the motion is purely translational The motion vector for each block is 

estimated by searchmg through a larger block (search window of stze m+2u x n+2v), 

centered at the same location on the prevtous frame, for the best matchmg block (figure 

2 4 I). For the mtmmum error, set by a cntena, the motion vector is therefore taken 

from thts location 
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Current frame 

I 
- I 

Previous frame 

Figure 2.4.1 Block Matchmg search wmdow. 

Search window 

The matchmg of the blocks can be quantified accordmg to vanous cntena including 

Sum Absolute Difference (SAD), Sum Squared Difference (SSD), and Pel Difference 

Classification (PDC), etc 

These cnteria are outhned as followed·-

Sum Absolute Difference (SAD) 

m-1 n-1 

SAD(x, y) ~ l,:l,:[s(z,;,k)-s(z-x,;- y,k-I)[ (Eqn. 2.4.1) 
x=O y=O 

Sum Squared Difference (SSD) 

m-1n-l 2 

SSD(x, y) ~ l:2]s(z,;,k) -s(z-x,;- y,k-I] (Eqn. 2 4 2) 
x=O y=O 

Pel Difference Classification (PDC) 

In the Pel Difference Classification method [50], each pixel m the block is classified as 

A matching or mismatchmg pixel 

T(i,j,x,y)~ I, if[s(z,;,k)-s(z-x,;-y,k-1[::;; t (Eqn. 2.4.3) 

~ 0, otherwise 
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Where t IS a selected threshold 

T (i, j, x, y) 1s the bmary representatiOn of p1xel d1fference and 1ts value of 

e1ther one or zero corresponds to a matching or mismatchmg 

p1xel, respectively 

The numbers ofmatchmg p1xels are g1ven by G(x, y), which can be defined as follows. 

m-1n-l 

G(x, y) = LLT(z,J,x,y) (Eqn 244) 
x=O y=O 

Where G(x, y) 1s the number of matchmg p1xels that exist between the current block and 

the block on the prevwus reference frame that was sh1fted by 1 ptxels and J ltnes 

The largest value of G(x, y) IS found by searching through a search window. Th1s 

gives the best match Thus 

Gm (dx. dy) = max[G(x, y)] (Eqn 2 4 5) 

Where l,J are the spattal coordmates, 

x,y are the motton vector spa!tal coordmates, 

dx. dy are the components of the best esttmated displacement vector, 

k is the ttme reference for the current frame, 

k-1 is the time reference for the prev1ous frames, 

(1, j, k) is the intensity of the current frame, 

s(z, J, k- I) is the intensity of the prev1ous frame. 

The performance of PDC from pred1ctton matching pomt of view is better than the other 

methods 1 e. SAD, SSD . Etc In th1s method, the matching process is reduced to a 

binary level wh1ch consequently s1mphfies the computattonal complexity, as descnbed 

by Gharav1 [50] in 1990. However, the SAD method has been adopted as an 

mtemational standard because of 1ts s1mphctty 
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2.4.1 Half pixel interpolation 

A half pixel searching window is created by a btlinear interpolation technique [51][52] 

(Ftgure 2.4.1.1). Matching IS now done by first using the integer searching window and 

then using half pixel searching to find the best block match. Thts method has the 

advantage of producing more accurate prediction than the integer pixel block matching 

method However, this method requires extra computational complexity to create the 

half pixel searching wmdow. Therefore, for each of the reference blocks the search 

begms wtth an integer pixel block first. Then the motion vector for the best match is 

used to carry out further half pixel search m g. Thts searchmg wtll carry on until the best 

block match ts found 

c 
X 

B 
X 

D 
X 

X Integer ptxel position 

0 Half pixel position 

a=A 

b =(A+ B)/2 

c =(A+ C)/2 

d =(A+ B + C +D) I 4 

Figure2.4.1.1 Halfpixel prediction 

Anyhow, tt was based on the previOus models that all the current existing internatiOnal 

standards (1 e. H 261, H 263, MPEG-1, MPEG-2, etc) for video compression were bmlt 

up 

Graphical representation for block matching with half pel accuracy shows on average 

less than 0 05 dB improvement over traditiOnal block matchmg wrthout half pel 

accuracy. To justify the argument two well known sequences of "Suzie" and 

"Salesman" have been employed and graphs of the Average Mean Square of prediction 

Error have been plotted for sequences consisting of 20 frames (see Ftgures 2.4.1.2 and 

2 4.1.3). The graphs have also been produced for dtfferent frame skips, as tt is 

24 



Chapter 2 Rev1ew of contemporary techmques 

frequently used m different application . e g. video conferencmg and so on In general 

the graphs shows that using block matchmg With half pel accuracy contnbute very little 

improvement over block matchmg Without half pel accuracy cons1derahon But 1! shll 

w1dely used, for example as an optional feature m H 263 
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Figure 2.4.1.2 Suzie comparison with previous frame reconstructed. 
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Salesman Prediction Error comparison 
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Figure 2.4.1.3 Salesman companson with previOus frame reconstructed 
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2.5 H.263 

2.5.1 Introduction 

An outline block diagram of the H.263 codec, the videoconferencing codmg standard is 

given m Ftgure 2.5.1.1. 

Video 
Signal 

External Control 

--------------------------- ----------------------------------~ 

Coding Control 

' ' 
Source Video Multipex Transmission ' ' 
Coder ~ Coder [-+ Buffer 

~ 

Vtdeo Coder 

Source Video Multiplex Receivering 
' -

Decoder I- Decoder buffer ' ' ' ' 
V tdeo Decoder 

' ' 
~-------------------------------------------------------------J 

Figure2.5.1.1 H.263 block dtagram of the vtedeo codec 

Coded 
Bitstream 

The H.263 algonthm [53][54], (whtch evolved from H.261[3]) ts broadly based on its 

predecessor, recommendation H.261. However, there are some changes m the basic 

tmplementahon and optional processes are avatlable to improve the interframe 

prediction (Ftgure 2.5.1.2). 
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Figure 2.5.1.2 H 263 Draft recommendation encoder block diagram 
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The H 261 was ongmally deVJsed to standardise the transm1ss1on of aud1o v1sual 

serv1ces and m particular the transmissiOn of VIdeophone and videoconference data The 

whole 1dea IS that the H 261 has a fixed bit rate of P x 64kbits/s (where P = 1 30) 

whereas the H 263 whiCh has a capabli1ty of ach1eving lower vanable b1t rate and 1s 

targeted for extensiVe deployment of any future v1deo serv1ces The enhre 1ssue of th1s 

recommendatiOn centers on bandw1dth compressiOn of the v1deo s1gnals The reason IS 

that the v1deo s1gnal has a bandwidth of4 3Mhz (using regular television signal) as 

compared to 34khz ofvmce bandw1dth Th1s IS a raho of I : 1265 Therefore in order to 

transmit the v1deo signal through telephone !me, 1ts bandw1dth has to be grossly 

reduced 

The H 261 operates on p1ctures based on a Common Intermed1ate Format (CIF) whiCh 

has been denved from 525 and 625 !me television standards It uses a hybnd ofD1screte 

Cosme Transform (DCT) and D1fferenhal Pulse Coded Modulahon (DPCM) and can 

ach1eve transmissiOn rates between 16kbps and 2Mhps. 

The H 263 also uses a hybnd of DCT and DPCM but has an improved performance 

when compared With H 261 One of the mam reasons for th1s IS that half p1xel precision 

IS used for motion compensation whereas full p1xel prec1s1on IS used m H 26 I. However 

the H 261 algonthm mcorporates a spahal low-pass filter m the encoder feedback loop, 

wh1ch has been om1tted from H 263 It has been shown that the pixel mterpolation 

functiOn mvolved m the half-p1xel mot10n compensatiOn process has the effect of low

pass filtenng, w1thout the need for a spec1fic spatial functiOn to remove h1gh frequency 

nmse caused by the quantlsatwn of transform coefficients and also ev1dent at the 

boundanes of blocks in the motion compensation process. The recommendatiOn can 

also be apphed to a w1der range of picture formats and allows vanable bit rates to be 

used therefore mcreasmg the poss1ble uses for the package, for example it further 

supports QCIF, sub-QCIF, 4CIF, 16CIF ( Table 2 5 I I) resolutions wh1ch are more 

appropnate to the low b1t rate environment 
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Ptcture number of ptxels number ofprxels number of prxels number of p1xels 
Format for lummance (x) for lummance (y) for chrommance (x) for chrommance (y) 

sub-QCEF 128 96 64 48 

QCIEF 176 144 88 72 

ClEF 352 288 176 144 

4CIIF 704 576 352 288 

16CIIF 1408 1152 704 576 

Table 2.5.1.1 ITU-T H 263 picture formats 

The compressed ITU-T H.263 video bit stream con tarns four layers which is the same as 

ITU-T H 261. From top to bottom the layers are· Picture, Group Of Blocks, 

Macroblock, and block. Each picture frame is partitioned mto 8 x 8 image blocks. A 

MacroBlock (MB) consists of 4 lummance blocks (Y), 2 chrommance blocks (Cb & C,) 

As shown in Figure 2.5 1.3 

16 

1 2 8 8 

3 4 

16 

[J [~l 
y 

Figure 2.5.1.3 Macroblock structure 

However, the Group Of Block (GOB) arrangement for the picture formats are different 

from ITU-T H 261. A Group Of Block (GOB) comprises of a Kxl6lines, depending on 

picture format (I e. K = I for sub-QCIF, QCIF, and CIF, K = 2 for 4CIF, K = 3 for 

16CIF). Each GOB is divided mto Macroblocks (Table 2.5.1.2) Similarly each 

Macroblocks is divided into blocks. 
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Picture Format number of group of block number of macro block (MB) 
(GOB) for picture a group of block (GOB) 

sub-QCEF 6 8 

QCIEF 9 11 

ClEF 18 22 

4CIIF 18 88 

16CIIF 18 352 

Table 2.5.1.2 Group of Block and Macroblock arrangement 

Macroblocks for colour vtdeo sequence comprise 16 x 16 pixels luminance, plus two 

corresponding 8 x 8 chrominance blocks Vectors can take the form of one per 

macroblock (Figure 2.5.1.4), or on a block basis, where four vectors per macroblock 

would exist. The latter forms part of the Annex F "Advanced Predtctwn Mode" of 

H263 

X 
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xx:xx XX 

x -x-:-x-x- -x-x 
0 I 0 0 

xx1xx xx 
I 

xx1xx xx 
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Luminance Sample 

Chrominance Sample 

Block edge 

Figure 2.5.1.4 Postttonmg of block lummance and chrominance samples 
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The H 263 algorithm has been demonstrated as a versatile low b1t rate v1deo codmg 

procedure, takmg account of the growing populanty of home personal computers 

connectmg to PSTN by a modem, having b1trates of 14 4kbJts/s or 28 8kb1ts/s where 

"software codecs", usmg the processmg power of a contemporary personal computer 

can do away w1th the need for an expens1ve custom rece1ver 

A number of additiOnal optwnal functions have been mcluded m the H 263 

recommendatiOn m order to 1mprove the interframe predictiOn performance. 

• Unrestricted Motion Vectors 

• Syntax Based Anthmehc Codmg 

• Advanced PredictiOn 

• PB-frames 

All of these four are optional and can be selected when runnmg the H 263 s1mulatwn 

software. 

Graphical F1gures 2 5 I 5 - 2 5 I 7 are to show subJectively how well block matchmg 

base algonthm behaves for a sequence w1th relatively a fast motwn. Very heavy on 

prediction error means block matchmg base algonthms may not perform as they would, 1f 

the motion were not relatively so fast These graphs are done usmg a software program 

very similar to H 361 (called motwn D) on "Car" sequence. 

Motion D IS a laboratory version software utilizing block matchmg base algonthms 

MotiOn D IS meant to be qmte versatile It has all the features of the H 26 I. It can also be 

employed for non-standard picture s1zes such as the Car sequence (720 by 576 pels) used 

m the thes1s 
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Figure 2.5.1. 7 Prediction error for 
the two successive 
car frames with MC, 
with previous frame 
clean. 
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2.5.2 Unrestricted motion vectors Mode (Annex D) 

In the default prediction mode of H.263, the search for motion vectors can only take 

place inside the normal picture. In the Unrestncted Motion Vector mode, this 

requirement is removed and motion vectors are allowed to pomt outside the picture. The 

edge pels are used as a predictiOn for the "not existing" pels. To do this, edge pixel 

values are extrapolated in the x and y directiOns as appropnate, producing a virtual 

search window for the current block to search outside the normal picture boundaries 

(figure2.5.2). 

Extr polated p1xels 

4 6 6 8 8 

4 6 6 8 8 

5 5 5 3 2 0 0 

6 6 4 4 3 4 4 - Picture area 

4 4 5 5 3 I I 

3 3 6 6 4 4 7 

2 2 4 5 4 3 5 

Figure 2.5.2 Extrapolation for Unrestncted Motion Vectors 

With this mode a significant gain is achieved and the image prediction is improved 

partiCularly where there is motion involving objects entering or leaving the scene, or 

there is movement along the edge of the picture, especially for the smaller picture 

formats. Additionally, this mode includes an extensiOn of the motiOn vector range so 

that larger motion vectors can be used. This is especially useful in case of camera 

movement, where the camera itself IS movmg m a pan (pannmg situatiOns). This mode 

is optional as it does not improve the predictiOn for static camera and central obJects 

(which would be common m v1deoconferencmg). 
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2.5.3 Syntax-based Arithmetic Coding Mode SAC (Annex E) 

SAC IS a variant of Anthmetlc Codmg [55], used m place of the traditional Vanable 

Length Code for mm1mum redundancy senal transmiSSion The optimum length of 

Variable Length Codes 1s denved from the entropy of the data wh1ch tends to be non

mteger Syntax-based Anthmetlc Codmg 1s an algonthm which encodes the symbols 

into a fractwnal number [56] 

The Implementation of SAC is, however, rather complex and it is 1mposs1ble to 

recogn1ze md1v1dual symbols m an encoded b1t stream. Recovery from errors IS difficult 

and 1t has a low tolerance to error, smce SAC does not resynchromse after a few false 

symbols, as Vanable Length Codes do The SNR and reconstructed frame will be the 

same, but generally fewer b1ts wJll be produced 

2.5.4 Advanced Prediction Mode (Annex F) 

This option means that Overlapped block motion compensatiOn (OBMC) [57] [58] is 

used for P-frames Four motion vectors mstead of one per macroblock, that 1s four 8x8 

vectors instead of one 16x 16 vector are used for some of the macroblocks m the picture, 

wh1ch tends to provide a smoother pred1ct10n 1mage and a better spatial quality at the 

decoder It IS necessary that th1s mode operates m conjunctiOn w1th the Unrestncted 

Motion Vector Mode (Annex D), to make a consistent predictiOn from the availabihty of 

extrapolated lummance and chrommance p1xels 

The four 8 x 8 pixel luminance blocks m some of the macroblock allow a better 

representation of motion to be made, albeit at the price of a greater data over head It is 

therefore the respons1b1hty of the implementmg orgamsatlon to dec1de the value of this 

add1t10nal motion data 
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2.5.5 PB Frames Mode (Annex G) 

This algonthm allows for the use of forward and bi-directwnaly predicted frames. That 

is two pictures are being coded as one unit called as PB-frame (Figure 2 5 5) The name 

PB comes from the name of picture types in MPEG where there are P-p1ctures and B

pictures A PB-frame consist of one P-picture (P-frame) which IS predicted from the last 

decoded P-p1cture and one B-picture (B-frame) which is predicted from both the 

previous decoded P-picture and the P-p1cture currently bemg decoded. Motion vectors 

can be used from the P-frames to generate predictions for the B-frames. This last picture 

is called a B-picture, because it is bi-directionally predicted from the past and future P

picture For relatively simple sequences, the framerate can be doubled With this mode 

without increasing the bitrate by much. Additional vectors may also be transmitted as an 

optional mode, which effectively doubles the temporal resolution of the image with only 

a small increase m the coded VIdeo data rate. However, this tends to produce a less 

satisfactory prediction in sequences having very fast or complex motion, that is with a 

lot of motiOn or low initial frame rates Never the less, the PB-frame does not work as 

well as the B-frame in MPEG because there IS no separate bi-directional vectors in ITU

T H.263 The advantage of ITU-T H.263 over MPEG IS that It reqmres much less 

overhead which IS useful in low bit rate transmission 

Previous 
P-frame 

PB Frame 

Figure 2.5.5 PB frame Arrangement 
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For H 263 hterarchy flow dtagram and H 263 programmmg function descnptiOn refer to 

appendices A 1 and A 2 respectively. 

2.6 Further developments in the standard bodies 

The origmal avatlable videophone standard is the ITU-T H 261 [59]-[63] ITU-T 

Recommendation H 261 defines a vtdeo coding scheme for digital audiOvisual servtces 

by the ITU-T Study Group XV Two btt-rates whtch have been established for 

Integrated Servtces Dtgttal Networks (ISDN) and are of mterest for tmage transmtsston 

are called the B-channel of 64kbits/s and the HO-channel of 384kbtts/s The 

development of ITU-T H 261 went through many stages However, by late 1989, the 

final CCITT recommendations were made for the range of 64 kbtts/s up to 1920 kbtts/s 

Therefore, ITU-T H 261 ts also known as a p x 64 codec, where p is between I and 30 

Stmtlar to ITU-T Recommendation, the algonthms spectfied by the Movmg Ptcture 

codmg Experts Group (MPEG) [64] employ a degree of both loss-less and lossy coding 

techmques. However, whtlst the H.261 algonthm is specifically destgnated as the 

framework of vtdeo codecs working on ISDN channels of p x 64kbtts/s, the scope of 

MPEG ts more wtde-rangmg 

In the late 1980's an obvtous relattonshtp began to emerge between personal computers, 

dtgttal storage on mexpenstve medta (such as CD-ROM) and the sale of vtdeo 

entertatmnent and educational software As the result of that the Motion Picture Expert 

Group (MPEG) was fonned m 1988 to estabhsh a standard for the compressiOn of 

dtgttal audto and vtdeo storage and later on for transmissiOns. The MPEG-1 [ 65] [ 66]ts 

the first phase vtdeo compressiOn standard The pnmary objective of MPEG was to 

produce a compressiOn algontbm for storage medta havmg a through put of I - I 5 

Mbtts/s, wtth other goals of up to 60Mbtts/s Whtlst the dtrect apphcatiOn of CD-ROM 

was an obvious one, the bnef of MPEG was to produce a standard that would apply to 

other storage techmques and apphcatwns Thts scheme ts well suited to a wtde range of 

applications such as, Compact Disk Read-Only Memory (CD-ROM), Digttal AudiO 

Tape (DAT), Cable Televtsion (CATV), telecommunication networks, and dtgttal vtdeo 
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broadcastmg MPEG has also been applied to the compressiOn of video for the purposes 

ofV1deo-on-Demand [67] and for HDTV. 

The MPEG-1 video coding algonthm [70] resulted from the requuements of CD-

ROM and was greatly mfluenced by formulatiOn of the ITU-T H 261 algorithm The 

development and evaluation of the algonthm was performed at b1t rates m the region of 

I Mbits/s and video resolutiOns of 352 p1xels x 288 hnes, 25 frames per second, for 

PAL and 352 pixels x 240 lines, with an average of 29 97 frames per second for the 

NTSC system These rates are not fixed and can be varied according to the reqmrements 

of different applicatiOns 

The essential difference of MPEG-1, compared with H 261, is that, by the nature of the 

applicatJon to CD-ROM, random access IS requued This allows the end user to 

arb1tranly choose any pomt m the VIdeo sequence from which to start viewing the 

movmg images To achieve this, MPEG-1 has a number of frames which are encoded 

on their own and Without any reference to other frames in the sequence, which are 

referred to as key frames and occur typically once in every twelve frame. As a result, 

MPEG-1 deliberately forces intraframe coding on some frames, whilst the majonty are 

formed as an mterframe pred1ctJon with reference to temporally adJacent frames 

The presence of regularly occurring intraframe codmg IS one of the reasons why MPEG-

1 IS unsUitable for real-time codmg in audtovisual communicatiOns The time taken to 

process and transmit an mtraframe coded frame IS considerably higher than for 

mterframe difference data, causmg considerable variations m the quantity of bits per 

frame If the !-frames were to be taken as pnmary start frames for an mterframe 

sequence, they would have to be encoded With minimal losses, rendering the availability 

of data for the subsequent mterframe codmg relatJvely low in a given tJme penod 

One of the essentJal differences between MPEG-1 and the H 261 algonthm is the way in 

which interframe predictions are made. H 261 is pnmarily an interframe coding 

algonthm usmg the previous frame as the main prediction source for the generation of 

the next frame However, since MPEG-1 applies mamly to pre-recorded video 
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sequence, subsequent frames can also be used to make a better pred1ct10n of the current 

frame 

Motion vectors used by MPEG have a greater range than would be reqmred for v1deo 

conferencmg applications, since the nature of a w1de range of v1deo compnses more 

mterframe motiOn than would be anticipated in a typical head-and-shoulders scene 

Subsequent work on MPEG standards has considered the applicatiOn of the algonthm 

for data rates of up to 40Mbits/s MPEG-2 [69] has been adopted for direct satellite 

broadcasting in Europe and by the US Advanced TelevisiOn Comm1ttee (FCC) for 

HDTV It is effectively the same as MPEG-1, except that mterlace scannmg can be 

retamed and interframe delays are less, resulting in a p1cture of improved quality 

The MPEG-1 standard was published in 1993 as ISO/IEC 11172 (Coding of movmg 

pictures and assocmted for d1g1tal storage up to about 1 5 Mb1ts/s) [ 68] Part I of th1s 

standard descnbes the system, which includes information about the synchronizatiOn 

and multiplexmg of v1deo and audiO streams. Parts 2, 3 and 4 descnbe video, audio and 

conformance testmg respectively 

The MPEG-2 [70]ls the second phase ofv1deo compression standard wh1ch 1s a1med at 

codmg above 2 Mb1ts/s Preparation of the MPEG-2 standard started in 1991 and 

provides a solution for applications that are not successfully covered by MPEG-1 The 

next phase of video compression standard, MPEG-3 was dropped m July 1992 A text 

identiCal to that ofMPEG-2 was published as ITU-T Recommendation H 262. Recently, 

the MPEG-2 standard has been approved by the Advanced Television System 

Committee (ATSC) as a Dig~tal H1gh Defimt!On TeleviSion (HDTV) [71] [72] Standard 

in the United States. 

Formulation of a new MPEG-4 [73] Standard was begun at the MPEG meeting m 

Brussels m September, 1993. A draft specification IS drawn in 1997 The pnmary target 

of th1s standard IS very low b1t rate applications The MPEG-4 standard supports a w1de 

range of applications such as videophone over analogue telephone lines, s1gn language 
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capt10ning, mob1le audiovisual communications and interactive multimedia 

communicatiOns. 

H 263 is also better than MPEG-I/MPEG-2 for low resolutions and low bitrates H 263 

IS less flexible than MPEG, but therefore requues much less overhead Another 

difference is again the negotiable options in H.263. MPEG has B-frames, but H.263 has 

PB-frames wh1ch are almost as good for moderate amounts of movement, but reqmre 

much less overhead H 263 has overlapped block motion compensation, motion vectors 

outs1de the p1cture and syntax-based anthmetic coding These options are not in MPEG 

at all Note that 1t IS only possible to use H 263 at certain resolutions SQCIF , QCIF, 

CIF, 4CIIF and 16CIF, 1fyou follow the standard H 263 software can be changed to run 

at every resolutiOn diVISible by the macroblock s1ze 16, but the b1tstreams generated w1ll 

not be legal H 263 b1tstreams m th1s case 
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Pel-recursive techniques 

3.1 Background 

M otion compensation techniques predict the frame-to-frame (or field-to-field) 

motton of an object point and then access the intensity value from the previous 

frame (or field). The assumption is that predicting the motion and accessmg the 

intenstty values from the prevtous frame (or field) results in a better predtction of the 

mtenstty values than trymg to predict the intensity values directly Prev10us work [74]-[81] 

[3 7]-[ 40] has shown that motion esttmat10n techniques do improve the predtctwn of the 

intensity values in the images. 

There have been basically two approaches to motion estimation - block-matching and pel 

recursive techniques [39] [78] [79]. In block-matching, a block of intensity values in a 

frame is compared wtth blocks of intenstty values in the prev10us frame unttl a best match 

is determined. From this an interframe displacement vector (how much the block has 
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moved between frames) for the whole block can be estimated for the frame bemg 

transmitted Poor estimates result If all sample pomts m the block do not move the same 

way. Usmg the pel recursive approach a displacement is determmed for each pel value. 

This technique allows for amore exact estimatiOn of the mtens1ty value and has the ability 

to handle scale changes (zoommg, dilatmg, movement perpendicular to the Image plane). 

In, both block matching and pel recursion the prediction can be backward or forward, I.e., 

the displacement can be determined from previOusly transmitted mformatwn only 

(backward) or from past values and the current value (forward). Forward prediction 

reqmres explicit transmission of mformation about the displacement value, backward 

does not. The advantage of the forward technique IS that the presumably better estimate or 

the displacement vector reduces the error in the mtens1ty prediction. The maJonty of the 

previous approaches have used backward prediction, applying backward prediction 

leads to 1) reduced bit rates, 2) lower computational requirements. or 3) faster predictiOn 

or estimatiOn techniques 

The pwneenng work m detectmg motiOn in mterframe coders was done by estimatmg the 

speed (magmtude, but not the direction) by diVIdmg the smn of the frame differences m a 

movmg area by the sum of the element differences m that moving area [75] It was 

assumed that a speed of half a pel per frame was relatively slow, while a speed of four pels 

per frame was seldom exceeded. The results were obtained using a fixed camera and a 

movmg object, it was also churned that the techmque could be apphed to a panmng camera 

and a movmg object. Later the techmque was extended to estimate velocity, 1 e. determme 

the direction of motiOn [37] Further pwneenng work m the area of motion compensated 

techniques were done by Cafforio and Rocca [38] [76]. Their work was more theoretical. 

The proposed techniques [75] [37] reqmred an estimate of the motiOn velocity to be sent. 

Netravah and Rob bins [39] [ 40] [77] developed a pel recursive spatio-temporal gradient 

techmque m which the displacement of a pel was predicted from previously transmitted 

mformatwn. Thus smce both transmitter and receiver could predict the motion vector, It did 
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not have to be sent. If an error correction needed to be sent for the predicted bnghtness then 

only an address and the difference value had to be transmitted. They used a 35 level 

symmetnc quant1zer, as a result of which the coder performance was only slightly affected 

by the quanhzer. Previous field mtensities were used for interpolation. They found that a 

rather simple interpolator is sufficient. Their algonthm was able to reduce the data 

transmissiOn rate by up to 50%. 

The next algonthm developed was called gam compensatiOn [82]. It should be noted that 

gam compensatiOn has some inherent motiOn trackmg ability. Separate displacement 

compensatiOn and gam compensatiOn reduce the bit rate; together they reduced It even 

more, especially for the cases in which separately they produce mirumal reduction Some 

further theoretical work was done on the implications and constraints of the assumptions 

which were bemg made m the motion compensated algonthms 

Snyder et al [83] [84] mveshgated the assumptiOn that frame differences can be expanded 

as a Taylor senes. Followed by Horn and Schunck [85] [86] who segmented the Image 

into movmg and stationary regwns.By bmldmg on the work of Horn and Schunck, Nagel 

[87] developed a motiOn estimation technique which can be seen [88] to do a good job of 

prediCtmg the motion in a scene contmrung translatiOnal motiOn. No attempt has been made 

to apply these techruques[83] - [88] to mformahon bandwidth compression. Tlus IS mamly 

because the resultmg system of equations is very computationally expensive 

Thompson and Bamard [89] reported on ways of estimatmg and mterpretmg motion They 

discussed spat10-temporal gradient techniques; feahlre point matchmg (pattern matchmg) 

was determined to be too computationally expensive. 

Robbms and Netravali [90] mveshgated spatial subsamplmg in motiOn compensated 

coders. Spatial subsamplmg IS a common way of preventmg buffer overflow, in the 

presence of high or complex motiOn although motiOn estimation IS degraded somewhat. 

The bit rate was reduced by 50%, the same percentage as m conditional replerushment 
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coders. They were able to confine the blurring mherent in subsampling to the movmg areas 

by an adaptive mterpolatlon techn1que although the reductwn factor was the same, the 

motwn compensated algonthm produced better quality reconstruction than the conditional 

replemshment algonthm 

Prabhu and Netravali [91] [92] developed a motwn compensated algonthm to compress 

and transmit component color sequences. The first mvestlgation mvolved pred1ctmg each 

component separately. Three predictor schemes were evaluated·- I) use only the previous 

frame, 2) sw1tch the predictor between previous frame and displaced previous frame, and 3) 

sw1tch the predictor between previous frame, displaced prevwus frame, and an mtraframe 

predictor. They ultimately concluded that one predictor (the th1rd one) could be used to 

pred1ct both the lummance and the chrommance component. The lummance infonnation 

was used to sw1tch the predictor. 

Ish1guro and Imuma [78] gave a brief overv1ew of the existmg motwn Compensated 

bandwidth compression techniques. They divided the techmques into pel recurs1ve, and 

pattern matchmg. G1ven the pattern matchmg approach, the chmce of backward or forward 

detection implies that the transmitter and receiver both detennme the motwn prediction 

from common infonnation (previously transmitted data). In forward detection, the block 

about to be transmitted 1s translated and a motion vector detennmed. This motiOn vector 

must be sent as well as the block of error correctmg values. The assumption m forward 

detectiOn IS that the error values are smaller and thus reqmre less bandwidth to be 

transmitted, leavmg room for the motwn vector. Th1s type of pattern matchmg technique 

was actually implemented m a productwn system [93] by NEC. It IS interesting to note that 

1t uses pattern matchmg technique smce other researchers had stated that a pattern matchmg 

technique would be too computatwnally mtensive [39] [79] and smce the spatlo-temporal 

grad1ent method had receiVed more favorable cons1deratwn m the literature [94]- [97] 

All the algonthms discussed so far have m effect modelled the motwn m the sequence as 

purely translatiOnal Huang and Tsa1 [95] pointed out that 1f rotation of obJeCt is to be 
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considered, and then pattern matchmg technique reqmres a three dtmenstonal data space 

wtth an mcrease m processmg bandwidth, mdtcatmg a spatw-temporal gradtent approach 

would be more feastble. 

Paquin and Dubois [79] investigated spatw-temporal gradient algorithm which employed 

motion compensated predtctwn. Although they obtamed an algonthm similar to that of 

Netravah and Robbms [39] [40], they started from a slightly dtfferent perspective and wtth 

slightly different asumptions The displacements were estimated on a field basis. Their 

maximum allowable displacement was 10 pels per field wlule Ltmb and Murphy [75] 

assumed 4 pels per frame would seldom be exceeded. They were pnmanly mterested m 

determmmg trade-offs between accuracy and computatiOnal complexity for mterpolator and 

the estimator. 

3.2 Motion compensated image sequence compression 

In vtdeo conferencmg applications, correlatiOn between consecutive frames IS stgrnficantly 

htgh due to the hmtted amount of motion. Tlus correlatiOn can be explOited more efficiently 

by takmg into consideratiOn the displacements of movmg obJects m the codmg process. 

Thus m any motion compensated codmg scheme, the coding performance depends heavtly 

on the accuracy of the motion estimation 

There are instances when the DPCM technique cannot successfully code a segment of an 

Image sequence because motion IS a maJor cause of interframe differences. MotiOn 

CompensatiOn (MC) can be used to Improve the efficiency of the predictive codmg 

algonthm 

If translation of a moving object is available, a more efficient prediction can be estimated 

using elements in the previous frame(s) that are appropriately spatially dtsplaced. This type 

of prediction IS called Motwn Compensated Predzctzon. Furthermore, motwn can be a 

complex combination of translation and rotatwn Transitional motion is relatively eastly 
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estimated and has been used for mot10n compensated codmg, depending on the amount of 

translatiOn motion m the scene and the abthty of an algonthm to estimate translation wtth 

the accuracy that ts necessary for a good prediction. 

The mam problem ts developmg a good algonthm used for motion estimatiOn Various 

algonthms wluch have been successfully used in codmg application include Block 

Matchmg, Pel Recurstve, and Gam motion compensated estimatiOn. 

Block matchmg ts wtdely used m codmg applications but has its own limttations and 

weaknesses due to looking at dtsplacement over a block as a whole, whtch IS perhaps a 

trade-off, 1 e a less accurate estimation producing less codmg whtch in turn gtves htgher 

compression It is not a good tdea to trade off the accuracy of estimation for the mot10n for 

some over head or perhaps come up wtth a different algonthm wluch could take care of the 

mentioned problem. 

The pel recurstve method for displacement of motion compensation can overcome the 

above problem In this method, we look at every pel by pel estlmatmg the displacement 

vector for every smgle pel resulting in motion estimatiOn for every smgle pel rather than 

every block of pels, therefore higher accuracy is aclueved but wtth the cost of more 

overhead. 

Among the many dtfferent algonthms, the one by Netravali [37] [39] [40] [77] [98]- [lOO] 

is looked at in more detatl. 
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3.3 Initial estimation of displacement vector 

For simplicity the algonthm used for motion estimatiOn in mterframe codmg follows the 

assumptions below (these are true for most algonthms for motiOn estimation m mterframe 

codmg) 

I -Translation movement of an object IS m a plane which is parallel to the camera plane. 

11- Illummatron IS spatially and temporally umform 

Ill- OcclusiOn of one object by another, and also uncovered background are neglected. 

Under these assumptions, the monochrome mtensities b(z, t) and b(z, t - t) of two 

consecutive frame are related by 

b( z, t) =b( z+D, t-t) (Eqn 3.3.1) 

Where t IS the time between two frames, D is the two dimensional translation vector of the 

object during the time interval [t -t, t], and z IS the two dimensional vector [x, y]' of spatial 

position. Using Eqn (3.3.1) we can write the frame difference signal FDIF (z, t) as 

FDIF ( z, t ) ~ b( z, t ) - b( z, t- t ) = b( z, t ) - b( z + D, t ) (Eqn 3 3 2) 

For small D, using Taylor's expansion about z (assuming D to be small) 

FDIF( z, t ) =- D'V z b( z, t ) +higher order terms m D (Eqn 3 3.3) 

Where V z IS the spatial gradient With respect to z. 

Assuming that the translation of the object IS constant over some movmg area R and 

neglectmg higher order terms m D. 

D, the mimmum mean square estimate ofD can be obtamed by mmimizing 

L [ FDIF ( z,t) +D'Vzb( z, t) ]' (Eqn 3.3.4) 
R 

with respect to D, therefore 
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b =- [ L V z b( z, t ) *V z 'b( z, t ) 1-l * 
R 

[ ( ~ FDIF ( z, t ) * V z b ( z, t ) 1 (Eqn 3.3.5) 

V z b(z, t) can be approximated as 

( ) [
EDIF(z)] 

V z b z, t = LDIF(z) (Eqn 3.3 6) 

Where EDIF IS a honzontal element difference and LDIF IS a vert1callme difference given 

by 

EDIF(z) = 1/2 [b(z+Ax,t)-b(z-Ax,t)1 

LDIF(z)= 1/2 [b(z+ily,t)-b(z-ily,t)1 

Using Eqn (3 3 8) 

_ [LEDIF'(z) 

D =- LEDIF(z)* LIDF(z) 

L1 denotes by definition 

pnme denotes their transpose 

LEDIF(z)*LDJF(Z)]-
1 

* 
LLDIF'(z) 

[

LFDIF(z,t)*EDIF(z)] 

LFDIF(z,t)*EDIF(z) 

consider D, Z, V to be column vectors of size (2xl) 
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An sumpt10n IS made to convert the above matnx mto diagonal one, that is:-

I EDIF(z)* LDIF(z)"' 0 
R 

Then 

b --

IFDIF(z,t)* EDIF(z) 

I EDIF'(z) 

I FDIF(z, t )* LDIF(z) 

I LDIF' (z) 

(Eqn 3 3 10) 

(Eqn 3 3 11) 

m order to proceed with simulation. Movmg area segmentation was defined by considering 

the moving pels That IS If the frame difference for the considering pel IS less than a 

threshold value, the pel is considered or classed as movmg pel which IS chosen m relatwn 

with camera noise. 

Using Eqn (3 3.11), the imtial estimate of local displacement was provided by simulatiOn, 

giving good results where we were not on the edge of the movmg area in the scene. 

Careful consideration should be given, m order to estimate imtial displacement vectors 

accurately enough, as these are highly dependant on the implementatiOn of the movmg area 

pels. Therefore the movmg area pel should not be classed as a movmg pel1f the left, nght, 

and upper neighboring pels are not movmg pels (and vice versa) 
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3.4 INTERPOLATION 

Havmg estimated an initial value for the displacement vector, the intensity of the pel 

displaced by D is estimated by means of an interpolating technique and the following 

formula is used 

(Eqn 3 4.1) 

I 

I Is le 

-- -------t- --- ---- ------ -------------- --- r· -- ·· -- -- - -- ----- --
I , 

I 

Figure 3.4.1 : Two dimenswnallmear interpolation. 

Displacement D is decomposed into integral part D1 and non-integral part DF 
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3.5 PEL RECURSIVE MOTION VECTOR ESTIMATOR 

Now we define the D1splaced Frame Difference (DFD) as follow -

DF0z,D) = b(z,t)- b(z-D,t-r) (Eqn 3 5.1) 

In practice , the DFD, DFD(z, D), hardly ever becomes exactly zero for any value of D, 
because - I ) there IS observatiOn noise, II )there is occluswn (covered I uncovered 

background problem), Ill ) errors are mtroduced by the interpolation step m the of non

mteger displacement vectors, and IV ) scene illumination may vary from frame to frame. 

Therefore, it is generally mm to m1mmize the absolute value or the square of the DFD. 

2 

Pel recursive displacement estimators tnes to mmJmJze recumvely [ DFD~, D j at each 

movmg area pel using a steepest descent algonthm thus 

A A c [ ·rl A )]' Dk = Dk_, - z *V b,_, DF~~z,Dk-! (Eqn 3 5.2) 

Where V b IS the two d1menswnal gradient operator w1th respect to D .Usmg Eqn. (3.5.1) 

therefore 

(Eqn 3.5.3) 

Thus, the new value for D 1s the old value plus an update term. 

where c, the convergency parameter 1s some positive scalar, known as the step s1ze. The 

step size c 1s cntJcal for the convergence of the 1teratwns, because 1f step size 1s too small, 

we move by a very small amount each time, and the 1teratwns Will take too long to 

converge On the other hand, 1f it 1s too large the algonthm may become unstable and 

osc11late about the m1mmum In the above method, the step s1ze 1s usually chosen 

heunshcally 

The above algonthm can be extended by computing the displaced frame differences at 

many p1cture elements in order to estimateD 
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The steepest descent algonthm 1s used to m1mm1ze a weighted sum of the squared 

d1splaced frame d1fferences at some prevwusly transmitted ne1ghbonng pel, thus 

(Eqn 3.5.4) 

p 

Where W,<!:O and L Uj = 1 
J=O 

Usmg Eqn (3 3 I) therefore 

(Eqn 3.5.5) 

Where V, ( o) can be approximated by fimte d1fferences as before 

Now recumvely D is updated usmg Eqn (3 4 1) and Eqn (3 55). For each step, the update 

term seeks to Improve the estimate of D . The ultimate goal is minim1zat10n of the 

magmtude of the prediction error DFD. If a pel at locatiOn Za IS predicted w1th b,_, to have 

mtensity b(z- b,_"t -1 ), resultmg in a predictiOn error of DFD(z, b,_J the pred1ct1on 

should attempt to create a new estimate, b, such that .-

I DFD(z, D,) I < I DFD(z, D,_1 ) I 

3.6 Implementation and Experimental results 

In order to Implement and s1mulate the prevwusly mentioned techmque, calculatiOn oflme 

and element differences m add1t1on to the displacement frame difference are the most 

crucial and should be given the most concern. In the expenment, d1fferent ways of 
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ImplementatiOn for each parameter should be exammed e.g.:- mterpolated, none 

mterpolated, averaged usmg different causal supports (F1gure 3.6.1 ), etc. Epsilon, E:, the 

convergency parameter 1s recommended to be 1 I 1024 [77]. Further more, not every pel 

need to be motion compensated, therefore some kind of masking should be employed e,g . 

where frame difference, IFDIFI :S threshold; no prediction is needed. Th1s 1s classified as 

non-moving area. 

xxxxxxx 

xxxxxxx 

X X X X 0 

Figure 3.6.1 : An example of a second order causal support. 

For the expenment a good result IS produced having E: = 0.9 and using a 3 by 2 causal 

support (F1gure 3.6.2) for line and element differences. The maximum permitted update 

term was chosen to be hm1ted to 4. Absolute Frame Difference, IFDIFI :S 9 for a non-

moving area. This is done for two different sequences, Suzie and Salesman. 

X X X X 

X X 0 

Figure 3.6.2 : causal support. 

Figures 3.6 3 to 3.6.6 show and md1cate the vahd1ty of the theory behmd the pel-recurs1ve 

mot10n estimation. In each of the figures, the graphs represent the energy of the error for 

the sJtuatJOns m which there is no mot10n compensatiOn and where the motion is 

compensated usmg pel-recurs1ve motion estimatiOn It also looked at different frame skips, 

that could be frequently used m Video conferencmg and so on From the graphical and 

pictorial results (Figure 3.6.3- 3.6.6) 1t can be seen that pel-recurs1ve mot10n compensatiOn 

does very good job and shows, high dB reductiOn m transmittable error from the DPCM 

loop 
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Suzie Prediction Error Comparison 
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Suzie Prediction Error Comparison 
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c) Two frame skip comparison. 

Figure 3.6.3 Suz1e companson after three 1terat10n w1th prevwus frame clean. 
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a) PCM frame ofSuzie (previous frame) b) PCM frame ofSuzie (present frame) 

Prediction error with no MC for Suzies in a & b d) Prediction error for Suzies in a & b (gradient) 

Figure 3.6.4 Prediction error comparison for two successive frame of Suz ie 
after three iteration with previous frame clean. 
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a) PCM frame of Salesman (previous frame) b) PCM frame of Salesman (present frame) 

Prediction error with no MC for Salesman in a & b d) Prediction error for Salesman in a & b (gradient) 

Figure 3.6.6 Prediction error comparison for two successive frame of Salesman 
after three iteration with previous frame clean. 
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Suzie Prediction Error Comparison 
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Suzie Prediction Error Comparison 
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c) Two frame skip comparison. 

Figure 3.6.7 Suzie comparison after three Iteration with previous frame reconstructed, 
with half pel accuracy on block matching, and system resetting to zero for 
each pel. 
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Salesman Prediction Error Comparison 
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Salesman Prediction Error Comparison 
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Figure 3.6.8 Salesman comparison after three Iteratron with previous frame reconstructed, 
with half pel accuracy on block matclung, and system resettmg to zero for 

" each pel. 
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3. 7 Improved pel-recursive motion compensation 

We now consider further Improvements for pel-recurs1ve Motion compensatiOn [101] -

[I 06]. Consider the basic algonthm (Eqn 3 5.3 or 3.5 .5) for the mtens1ty functiOn at an 

obJect edge The condition requmng the largest vector correctiOns or updates factor are 

when IDFDI1s large and IVbl is small. Conversely, if iDFDils small and IVbiis large, as 

could exist at an object edge, the vector correctiOn must be small. For the affirmatiOn 

algonthms to work, E must be chosen to allow for the case where the correction or update 

must be small. Th1s g~ves nse to 

Ei = 1/2 * -,------
1
-------ijv zb(z._, -l)._l ,t- r)[J 

Or 

Ei = 112 * --r-----1 ----.._.-
0'2 +ij'Vzb(z,_

1 
-Dk-l't-r)[) 

and 

{vzb(z._
1 

-Dk-Pt-r[Y = {vxb(z._, -i>k_1,t-r[}
2 

+ {vyb(z,_1 -Dk-1,t-r[Y 

(Eqn3.71) 

(Eqn 3.7.2) 

(Eqn 3.7.3) 

Where a 1s recommended to be of the order of 10 [104], winch takes account for IVbl 

becommg small or zero. 
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3.8 Helpful implementation details and constrains 

Implementation and simulation of algonthms needs many sensible constramts and 

restnchons m order to show that the algonthms even work. Some of them are as follows-

a) -If IDFDI :5: threshold, the correction term or update ofEqn 3.5.3 or 3.5.5 1s zero 

b) :- If IDFDI > threshold IVbiJs not zero, the update term is calculated. When 

!update- terml < 1116, the update term IS recommended to be assigned to the value of 

± 1116. 

c) :-If IDFDI >threshold and if IVbl is zero, then the update term agam IS zero. 

d) :- If !update- fermi exceeds 2, the update term is recommended to be ass1gned to the 

value of ±2. 

It can be seen that as the IV bl or lgradzentl becomes large, the update term decreases, and 

v1ce versa. 

Further, some of the restrictions implemented and applied for simulatiOn are as follow -

a) - Use bk displacement obtained for the previous pel. Predict the current pel by 

obtammg a pel value from the prev1ous frame at the offset bk from the current pel 

location z. 

b) - If IDFDI :5: threshold, transmit zero If IDFDI > threshold and IFDIFI :5: threshold, 

transmit a reset to set bk = 0 If IDFDI and IFDIFI >threshold, transmit DFD. 

c) :- If IDFDI :5: threshold, use bt as obtamed from the previous pel, i.e, bt = bk-t 

And 1f IDFDI >threshold and IFDIFI <threshold, set bt = 0. 
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3.9 Implementation and Experimental results 

Once agam m the expenmental work, different ways of 1mplementmg each parameter 

should be examined e g.·- interpolated, non-interpolated, averaged usmg different causal 

supports (F1gure 3 6 1) For consistency in comparison the threshold value chosen for the 

expenmental work was 9 for frame difference and 20 for displacement frame difference 

and 3 by two causal support as before The max1mum update limit was chosen to be 3. 

These restrictions give rise to the graphical and p1ctonal result m (figures 3 9.1 - 3.9 6) 

Each figure depiCts the graphical representation of the bas1c state of the art gradient 

algonthm for & , the convergence factor, to be non-adaptive and adaptive as first and 

second gradient Lookmg at the result from the same sequences of Suz1e and Salesman, 1t 

can be eas1ly noticed that having & , the convergence factor, as a variable shows qmte 

substantial improvement over the basic algonthm and reduces the energy ofthe error 
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Suzie Prediction Error Comparison 
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Suzie Prediction Error Comparison 
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Figure 3.9.1 Suzie comparison after three Iteration with previous frame clean. 
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a) PCM frame of Suzie (previous frame) b) PCM frame ofSuzie (present frame) 

Prediction error with no MC fo r Suzie in a & b d) Prediction error for Suzie in a & b (gradient) 

Figure 3.9.2 Prediction error comparison for two successive frame of Suzie 
after three iteration with previous frame clean. 
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Figure 3.9.3 Salesman compari son after three iteration with previous frame clean. 
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a) PCM frame of Salesman (previous frame) b) PCM frame of Salesman (present frame) 

iction error with no MC for Salesman in a & b d) Prediction error for Salesman in a & b (gradient) 

Figure 3.9.4 Prediction error comparison for two successive frame of Salesman 
after three iteration with previous frame clean. 
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Suzie Prediction Error Comparison 
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c) Two frame skip comparison. 

Figure 3.9.5 Suzie companson after three iteration with previOus frame reconstructed, 

with half pel accuracy on block matclung, and system resettmg to zero for 

each pel. 
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Salesman Prediction Error Comparison 
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Figure 3.9.6 Salesman companson after three Iteration with previous frame reconstructed, 

with half pel accuracy on block matching, and system resettmg to zero for 

each pel. 
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A New pel-recursive technique 
For 

MOTION COMPENSATED IMAGE 
SEQUENCE COMPRESSION 

4.1 Background 

One of the mam developments in image codmg m recent years IS the applicatiOn of 

mathemahcal models descnbmg the mot10n of objects 

For applications m dynamic scene analys1s m a sequence of movmg 1mages, i e. television 

p1ctures, a movmg object generates frame-to-frame luminance changes These lummance 

changes can be used in order to eshmate the parameters of a mathematical model that 
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describes the displacement and movement of the obJect. For instance, consider a simple 

moving edge as in Figure 4 1 1. 

Amplitude of 
Video signal 

Direction of movement of the edge 

LIEDIFI 
M 

Horizontal scanning directiOn 

Figure 4.1.1 Illustration of displacement estimation. 

The dashed line md1cates the positiOn 

of the edge in the previous frame 

(Eqn 4.1.1) 

Where M IS the moving area which is generally defined by frame differences greater than a 

given threshold 

For the y duection, similar principle applies, therefore 

(Eqn 4.1.2) 
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Motwn models can also be used for Improving the efficiency of predictive and mterpolative 

teleVIsion coding techniques. Because of the real-time computing reqmrements or VLSI 

architecture ImplementatiOn [107], only relatively simple and easily realizable models 

which consider the translational component of motion have been worth while mvestigatmg 

The x component of the displacement estimate .b.,, for a few different mathematical 

models can be summarized below [108] :-

First model 

b = b + s* a R c b ) 
XI Xl-1 ax SkS k-l z, 1-1 ' 

& = 111024 (recommended) 

(Eqn 4.1.3) [39], [109] 

Where 

(Eqn 4.1.4) 

Its simplified update term (the difference between the present and prevwus estimation) is 

Where w; ;:: 0 and LW= 1 
]EM 

A quicker update can be achieved by mcreasmg the constant convergence factor, & 

However, this also implies a decrease of the achievable estimatiOn accuracy which IS 

limited by& 

Second model 

(Eqn 4.1.6) [110] 
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Its s1mphfied update term IS 

(Eqn 4 1 7) 

Third model 

(Eqn 4 1 8) [98] 

The correction term, 7] is introduced to avmd problems which would occur in areas of 

nearly constant lummance where as,% is small and prevents the overshoots 

Its s1mphfied update term is 

Fourth model 

-
8

R (zD) fJx StSt-1 ' 1-1 

D., = b.,_,- -1.,-[ -az=--~'---.--a_,z-----o;-J 
- -R (zD)+-R (zO) 2 axz S,S,_, ' < axz SKS> > 

Its simplified update term 1s 
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(Eqn 4.1.11) 

Similarly, the x component of the displacement estimate i> Y', can be deduced and follows 

the same format. 

Companng the above displacement estimatiOn algonthms shows that these algorithms only 

differ m the denominator of the update term. The previous algonthm gives rise to faster 

convergence respectively, while the first algonthm gives slower convergence (virtually 

damped). 

Block matching algonthms work on finding the best matchmg block by companson where 

as pel recursive algonthms work on findmg pel by pel estimatiOn. As a good figure of 

Judgment one would expect supenonty by pel recursive algorithms over block matching 

algorithms But expenmental results proved otherwise. 

In spite of the expectation one might have had for existmg pel recursive algonthms 

somehow, block matching algonthm have shown better performance m digital Image 

compressiOn As a result of this, block matching algorithms dominate compressiOn 

applicatiOns e.g.: JPEG, MPEGs, H.263, and so on. This opportunity has given nse to 

research to Improve the performance of block based algorithms further in many different 

applicatiOns. Less research has been directed m the area of pel recursive algorithms causmg 

the pel recursive base algorithms to be left even further behmd. 

Of the four existmg pel recursive algorithms, the first two were simulated as a bench mark 

for companson between pel recursive algonthms and block matching algonthms, (m 

chapter 3). 
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As an educated guess one might suggest that the problem may not be with the pel recursive 

scheme in general. A better pel recursive algonthm may prove that the pel recursive 

algonthms perhaps should do better than block matching algorithms. 

In the light of the above argument a new algonthm IS proposed and simulated to show Its 

validity (see the following sections). 

4.2 A new algorithm, 
Motion compensated image sequence compression (algorithm) 

For the sake of the analysis, it is assumed that the translatiOnal movement of an obJect IS m 

a plane parallel to the camera and Illummat10n is umform. It is also assumed that the effect 

of uncovered background is negligible Under these assumptions, let S (x, y, t) denote the 

monochrome mtens1!Ies at point (x, y) of a moving object in the Image plane where It's 

translational movement is at a constant velocity of Vx and Vy. It can be shown that after ilt 

second (one frame period), the object moves to a new location where It can be shown, 

S (x, y. t + ilt) = S [(x + Vxllt)], [(y + Vyilt): t] (Eqn421) 

After expandmg the field m a power senes m Llt and neglectmg the higher order terms, the 

frame difference can be shown as, 

a a 
S (x, y t + ilt) - S (x, y: t) = - S (x, y: t) dx + - S (x, y: t) dy ax ay 

(Eqn4 2 2) 

where dx and dy correspond to the honzontal and vertical components of the motiOn 

a a 
vector D Assummg -S ( x, y. t) and -S ( x, y: t) are known for each x, y, t, and ax ay 
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defining EDIF, LDIF, and FDIF as the magnitude of the element, !me, and frame 

difference at point n, from ( 4 2.2), we can write, 

FDIF= <l>TD 
n 

Where <I>. = 

a 
-S(xn,yn t) 
Ox 
a 

-S(xn,yn: 1) 
Oy 

EDIF 

LDIF 

From Eqn( 4 2 4) the frame difference (FDIF) measurement is, 

<I> r D + noise n 

- - - T 
where D = [ d (x), d(y)] is the motion vector estimate. 

Now let 

Y = (I; n - <I>! a) 2 + noise 

For the least-squares of a to be minimized, gives 

a T T 
aay=-2<1>.(1;.- <I>. a)=O 

That Is 

r = <I>r a 
'>n n 

Or multiplying each side or equation by <I> n 

(Eqn 4 2.3) 

(Eqn 4.2.4) 

(Eqn 4 2.5) 

For a cluster of M movmg pels, the least-squares estimate ofD, can be shown as, 

m m 

L <I>. 1;. =<I <I>. <I>! )D (Eqn4 2 6) 
n=l n=l 
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Chapter4 New pel-recurszve techmques 

1 M 
For, 11= -L 

M n=l 

1 M 

<I>. ~. and R =-L <I>. <I>! 
M n=l 

the estimated motiOn vector from Eqn( 4.2.6) IS ob tamed as, 

D =R-1 11 

For recursive estimation of 11 and R, we can wnte 

Based on the so-called matnx mvers10n lemma, which is :-

(Eqn 4 2.7) 

(Eqn 4 2 8) 

(Eqn4 2 9) 

(Eqn 4 2 10) 

-T -1 -1 -1 -T -1 -1 - T -1 
(A+XBX ) =A -AX(B +X A X) X A 

Substitute as follows ·

A= R-1 
•-I 

B = I Umt Matnx 

X= <I>. 

That IS 

- T -1 -1 
(R,_1 +<I>. I <I>. ) = R,_1 

-1 -T -1 -1 -T -1 
R,_l <I>. (I + <I>. RH <I>.) <I>. R,_l 

In the above equatiOn, the term m the left hand side bracket can be replaced, using 

Eqn( 4 2 I 0), therefore 

-1 -1 -1 -T -1 -1 -T -1 
R, = R,_1 - R,_l <I>. (I + <I>. R,_l <I>.) <I>. R,_l 
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-1 - T -1 -1 
The term (I + <1> n R ,_1 <1> n ) IS scalar, Therefore the inverse of R, can be 

obtamed as, 

R-1 =R-1- R;~1 <t>. <t>~ 
' •-1 1 m T R -1 +"V n t-1 

R -1 ,_, 

<t>n 

(Eqn 4 2 11) 

Multiplying each side of the Eqn (4 2.11) by 11, and using Eqn (4.2.9) 

R -1 

' , ' R -1 m m T R -1 
- R -1 { + <1> r ) •-1 "'n "'n •-1 { + <1> r ) - •-1 11,-1 n 'on - J <l>T R -1 <tJ 11,-1 n 'on 

+ n 1-l n 

Stmphfymg the above, therefore -

R -1 _ R-1 + R-1 
I T), - 1-l 'll1-l 1-l 

Usmg Eqn(4.2.8)and s1mphfymg further, That IS 

D =D I 1-1 
R ;

1
1 <1>. mT R-1 + ( R-1 m 

--~-:'--- 'V n 1-l T) 1-1 1-1 'V n -
1 + <t>! R ;~ 1 <t>n 

R ;
1
1 <t>. <t>! R ;\ <t> ) r 

-
1
--=-<tJ-,T;c"--R__!!_1 -m-n"'-- n '> n 
+ n ;_1'¥ 

Usmg Eqn( 4.2 8)and simphfymg the above further, That 1s 

D, =D H 
__ R-=';~:c.l _<1>_,_. -- ( 1 + <t> T R -1 <t> -

•-I - 1 m T R -1 .rh n 1-l n 
+o,vn t-1 \Vn 
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Finally it gives rise to 

D = D - R ;~, <I>. 
' H 1 n-T R _, +"V n t~l 

(Eqn 4 2 12) 

In the above equatwn, the term Within the brackets can be replaced by what 1s known as the 

Displaced Frame Difference, DFD. Thus, 

D , = D ,_1 -
1 

~;~1 R~; [DFD(x, y, D,_1 )] 

+ n t-1 <f>n 
(Eqn 4 2.13) 

To avoid matrix mverswn at each 1terat10n, Eqn (4.2.13) can be s1mphfied by ignoring the 

x and y cross terms m calculatmg ~"and R. Thus, from Eqn (4.2.4) and Eqn (4.2.7), 

<I>.(x) = EDIF and <I>. (y) = LDIF (Eqn 4.2.14) 

R(x) = -
1 

L,EDIF; 
M m 

1 
and R(y) = - LLDIF; 

M m 
(Eqn 4.2 15) 

Applymg Eqn(4 2.14) to Eqn(4 2.13), the components of the motion displacement 

EDIF -11, (x) = (i,_. (x) - --,------------- {DFD[x, y, d,_1 (x)]} 

__!_ LEDIF2 +EDIF 2 

M 

(Eqn 4.2.16) 

d, (y) = J,_, (y) -
LDIF -

1 
{DFD[x, y, d,_, (x)]} 

-L.LDIF2 + LDIF 2 

M 

(Eqn 4 2.17) 
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Accordmg to the developed new algorithm for motion compensated 1mage sequence 

compressiOn [112]. 

A A EDIF l A j D = D - * &*(EDJF)(Dx_1)-FDIF 
x x-! 'L.EDJF 2 + EDJF 2 

(Eqn 4.2.18) 

R 

or 

A A EDIF l A j D = D - • c*(EDIF)(Dx_,)+DFD 
x x-! 'L.EDJF 2 +EDJF2 

(Eqn 4 2 19) 

R 

Wh1ch can also be Simplified as 

A A EDIF [ l D =D - * c*EDIF*DFD 
x x-! 'L.EDJF 2 + EDJF 2 

(Eqn 4 2 20) 

R 

And Similarly 

A A LDIF l A j D = D - • & * (LDIF)(D,_,)- FDIF 
' ,_, LLDJF' +LDIF' 

(Eqn 4 2.21) 

R 

or 

A A LDIF l A j D = D - * c*(LDIF)(D,_,)+DFD 
' r' 'L.LDIF' +LDIF' 

(Eqn 4 2 22) 

R 

Which can also be simplified as 

A A LDIF [ l D =D - * c*LDIF*DFD 
' ,_, LLD IF' + LDIF' 

(Eqn 4.2.23) 

R 

Where & , the convergency parameter to control the rate of convergence, IS recommended 

(expenmentally) to be m the regwn of0.98 to 1.00. 
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The above recursion to update b, IS carried out only m the moving area of the current 

frame, I.e., for those pels where 

+p 

Ilb(z,.
1 
,t) -b(z,.

1 
,t- -r)l 2: Threshold (Eqn 4.2 24) 

j==-p 

Otherwise 

(Eqn 4 2.25) 

The threshold, Threshold, IS pre-selected. It should be noted that the chmce of the 

Threshold is mamly based on camera noise, light variation, and so on. In this thesis for the 

sequences used, a figure of8 tol4 out of256 intensity levels was chosen. A poor chmce of 

the Threshold figure, far off from the true value will cause errors 

Recurs1vely bxand b, are updated usmg Eqn (4.2.20) and Eqn (4.2.23) where for each 

step, the update term attempts to improve the estimate of D. The ultimate goal IS the 

mirumization of the magnitude of predictiOn error, DFD If a pel at location Za IS predicted 

with bx-• and b,_, havmg intens1ties of b(z-Dx_.,t-1) and b(z-b,_,,t-1) respectively 

and results m a prediction error of DFD(z, b k-J) the prediction should attempt to create 

new estimatiOns, for b x and b, such that :-

DFD(z, b ,) I ~ I DFD(z, b k-J) (Eqn4 2.26) 

i e the prediction error is reduced. 

The predictor is based on intensities in the previous frame and current frame 
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4.2.1 Interpolation 

Usmg affirmatiOn for the new algonthm to get the first estlffiated value for the 

displacement vector, the intensity of the pel displaced is estimated by means of an 

mterpolatwn technique. For consistency w1th the pel-recurs1ve motion estlffiatwn shown in 

pervwus chapter and for simplicity, the same algorithm can be used, that IS the following 

formula -

(Eqn 4 2_11) 

Fmally the displacement vector D 1s decomposed into two parts, the mtegral part and the 

non-integral part DF 

4.3 Implementation and Experimental results 

As far as implementation and Simulation are concerned, the great importance of the work 

lies m the calculatiOn of the components defining the formula, i.e. such as line, element, 

and displacement frame differences. For these, different ways and techniques can be 

exammed; e g : mterpolatwn, non-interpolation, averaged using different causal supports 

(Figure 4.3.1 ), etc. Not every smgle pel needs to be motion compensated, therefore a 

maskmg mechanism should be utilized e g ·- where frame difference, IFDIFI :S threshold, 

no prediction is needed. This is classed as a non-moving area. 

xxxxxxx 

xxxxxxx 

X X X X 0 

Figure 4.3.1 : A second order causal support 

The computatwn involved in Eqn (4.2.20) and Eqn (4.2.23) IS performed recursively. At 

each 1terat10n the estimated motwn displacement 1s applied to measure a new DFD. Tlns 

would first require obtaining the location of the displaced pel on the prevwus frame, based 

on the estimated components of motwn displacement. Smce the motion estimates are 

expected to be non-mteger, the luminance value of the displaced pel is predicted by a two 
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dimensional mterpolator wh1ch uses the four corners of the surroundmg pels m a two 

dimensional grid. In our expenments, the DFD is measured at two locations w1th reference 

to the current pel; the pel above (1.e., prev10us !me), and the prev10us pel along the same 

!me. The average of the two DFDs (with equal weightmgs) is then used to update the 

displacement estimates. 

In this thesis for Slmphclty, the non-mterpolated averaged 3 by 2 causal support (F1gure 

4.3.2) IS used for line and element differences and displacement frame difference as normal 

(a pel value of a frame - the interpolated pel value of previous frame), w1th the convergency 

parameter, & = 0.98. The max1mum update hm1t for consistency proposes was chosen to be 

jFDIFj ~ 9 for non-movmg areas Th1s is done for two different sequences, "Suzie" and 

"Salesman". 

X(l) X(2) X(3) X(4) 

X(5) X(6) 0 

Figure 4.3.2 : causal support. 

It should be noted that as for causal support concerns, the previous pel value of X( 6) and 

the last two prev10us !me pel values of X(3) and X( 4) have the most importance in order to 

estimate any of element, !me, frame or displace frame difference (see F1gure 4 3 2) 

Further constraint or limitation on the predictor can be used to augment the prediction 

strategy, the following rule (Eqn 4 3.1) can be used to switch or move adaptively between 

them on a pel by pel basis. 

+m 

Lw,IFDIF(z,.)l 
+m 

:2: Lw,JDFD(z,.1 ,i>,)J (Eqn 4.3.1) 
;=-m J=-m 
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Figures 4 3 3 to 4.3.11 show and indicate the validity of the new pel-recurs1ve motiOn 

estimation algonthm. The graphical and pictorial results are compared for the ex1stmg and 

the new algonthms. In the p1ctonal results (Figures 4.3 4 and 4.3.6) It can clearly, but 

subJectively be seen that an improvement occurs m reducing the prediction error for two 

different successive frames of"Suz~e" and "Salesman". 

In the Figures 4 3 3 to 4.3.9, the clean frames (the PCM value of pels in the frame) were 

used In Figures 4.3 .1 0 and 4 3.11, reconstructed frames (as m most codecs, the clean frame 

is not available in the decoder, therefore the predicted quantized reconstructed frame IS 

used throughout) were used. 
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Suzie Prediction Error Comparison 
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c) Two frame skip companson. 

Figure 4.3.3 Suzie comparison after three 1terat10ns w1th the prevwus frame clean. 
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a) PCM frame of Suzie (previous frame) 

c) Prediction error for Suzies in a & b 
(for the gradient) 

New pet-recursive techniques 

b) PCM frame ofSuzie (present frame) 

d) Prediction error fo r Suzies in a & b 
(for the proposed) 

Figure 4.3.4 Prediction error comparison for two successive frames of Suzie 
after three iterations with previous frame clean. 
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Figure 4.3.5 Salesman comparison after three iterations with the previous frame clean. 

100 



Chapter 4 

a) PCM frame of Salesman (previous frame) 

c) Prediction error for Salesman in a & b 
(for the gradient) 

New pet-recursive techniques 

b) PCM fram.e of Salesman (present frame) 

d) Prediction error for Salesman in a & b 
(for the proposed) 

Figure 4.3.6 Prediction error comparison for two successive frame of Salesman 
after three iterations with the previous frame clean. 
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Suzie Prediction Error Comparison 
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Figure 4.3.10 Suz1e comparison after three IteratiOns with the previOus frame 
reconstructed. 
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Salesman Prediction Error Comparison 
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Figure 4.3.11 Salesman comparison after three iteratwns w1th the prevwus frame 
reconstructed. 
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4A Results and summary 

As was expected the outcome of the use of the proposed algonthm over the existmg 

modified steepest gradient algorithm is that the new pel recursive algonthm has proven to 

produce a better result than the existmg ones The Figures 4 3 3 to 4 3 11 indicate the 

statement regardless to whether clean or reconstructed frames are employed. 

In the Figures 4 3 3, 4.3 5, 4.3 10, and 4.3.11; the comparisons were done for different 

frame skips. This IS mamly to show that the proposed algonthm does always have better 

performance over the existmg ones. In real time practical apphcations one may have to use 

sequences With different frame skips, especially m situations where we are dealing with 

sequences consisting of bigger or larger frames. 

As can be seen from the Figures 4.3 3, 4.3 5, and 4.3.7- 4.3.11; there has been a great 

improvement of 1 5 dB, over the existing pel recursive algonthm Thrs IS achieved by the 

proposed pel recursive algonthm. This IS qmte a substantral Improvement when compared 

With the case when no motion compensatiOn IS employed. The graphs m Figures 4.3.4 and 

4.3 .6 ( c and d sections) depict that the proposed pel recursive algonthm should result m a 

good prediction error in companson With the existmg pel recursive algonthm. 

Stnctly speakmg, the proposed pel recursive gradient has qmte fast convergency, therefore 

fewer Iterations will be needed. In spit of the fast convergency which IS acceptable by most 

apphcations, It should not be overlooked that m some sequences httle more convergence 

can be obtam by mcreasmg the number of Iterations ( see Figures 4 3. 7 and 4.3 8) 

In some cases we might deal with sequences With very fast motion, where even block 

matching motion compensation often results m a poor compression; the proposed pel 

recursive algonthm can show good improvement m reducmg the predictiOn error 
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Never the less, the result from the proposed algonthm can not compete with the old block 

matching scheme as It Is; this would reqmre a better pel recursive algonthm to be 

developed m the future. 

Fmally lookmg at Figures 4.3.4(c) and 4.3.4(d) and Figures 4.3 6(c) and 4 3 6(d), in these 

images, relatively darker or hghter patches represent the degree of maccuracies m 

estimatmg the components of the motion displacement. Companng the two images 4.3.4(c) 

and 4.3.4(d) and also Figures 4.3.6(c) and 4.3.6(d) confirm the supenor performance of the 

proposed scheme over the modified steepest-descent algonthm, particularly m regions 

where the motion activities are relatively high. 
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Application for hierarchical system 

el recufSlve motion compensation has not yet been able to replace block matchmg 

pmot!On compensation m hierarchical systems (e g. H.263, MPEGs, and so on); In the 

light of this, this chapter, looks at an application developed in VIew of a paper by 

Bierlmg [113]. 

5.1 Overview 

Block matchmg IS a widely used displacement estimation method, and can easily be 

Implemented m hardware. Using block matchmg, a displacement vector IS obtained by 

matchmg a rectangular measuring wmdow, consistmg of a certam number of neighbonng 

picture elements, with a correspondmg measunng window within a search area, placed in 

the next successive or the next precedmg Image. The match is achieved by searchmg the 

spatial positiOn of the extremum of a matchmg cntena (e g : MAD, the mean absolute 
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displaced frame difference) The resulting displacement vector is then taken to be the 

motion vector for all the picture elements ms1de the measunng wmdow. 

The basic assumption of the displacement estimation techniques used is that neighboring 

picture elements have the same motion parameters. It is not possible to obtam a 

displacement estimate for every Isolated picture element of a block 

The known block matchmg techniques provide fairly good results for motion compensation 

predictiOn in general, as their computatiOn and the complexity are low and the predictiOn 

error IS remarkably small when using the achieved motiOn compensation However, the 

match obtained by block matchmg IS an optimum only m the sense of a mimmum MAD, 

the mean absolute displaced frame difference; but frequently It does not correspond to the 

true motion of the objects. 

The rehab1hty of the displacement estimate depends on the size of the chosen measunng 

wmdows, in conJunctiOn with the present amount of motiOn. The estimate tends to be 

unreliable, If small measunng wmdows are used and the displacement IS large. The smaller 

the measunng wmdow, the higher IS the probability that there are blocks ( and hence will 

be selected by the matchmg cntena) m the corresponding search area, contammg a more 

Similar or Identical pattern of picture elements, although there IS no correspondence in the 

sense of motiOn. Therefore, large measunng wmdows are required m order to cope with 

large displacement. Thus, the known block matchmg techmques fail frequently as a result 

of usmg a fixed measuring window size [ 113] 

In order to take mto account the above problem, a hierarchical block matchmg for 

displacement estimation was suggested by Bierling [113]. The hierarchical structure uses 

distmct sizes of measunng wmdows at different levels of the hierarchy The estimator starts 

with large measunng windows at the lughest level. From one level to the next level of the 

hierarchy, the size of the measunng wmdow is decreased The displacement estimate IS 

obtamed recursiVely, I.e. at each level of the hierarchy, the resultmg estimate serves as an 

m1tial guess for the next lower level. The first hierarchy levels serve to provide a reliable 
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estimate of the major part of a large displacement, whereas the last levels serve to es!imate 

the remammg part of the displacement accurately. Figure 5.1 shows the pnnc1ple of 

Juerarclucal displacement es!imatwn for the example of three levels. A displacement vector 

between two successive frame of images IS achieved as the sum of three es!imates, usmg 

three different measuring wmdow sizes (113]. The second hierarchy level starts motiOn 

compensation using the results of the first level, i.e. the search pomts of the search 

procedure are displaced by the estimate of the first level, and carries on the same way 

through the rest of the levels recurs1vely. 

Previous frame 

Present frame 

u n 
L......J 

Figure 5.1 Pnnc1ple ofluerarchical displacement estimation for three hierarchy levels 
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5.2 Application 

In order to reduce the computatiOnal effort resulting from large windows, sub-sampling 

ms1de the measunng wmdow can be performed [113]. Th1s ra1ses the 1dea of applying the 

same method of sub-sampling to pel-recumve, m particular for the proposed pel-recurs1ve 

method. If the task is proven satlsfactory, this can perhaps be used to have an affect of final 

tunmg on the displacement which 1s estlmated by block matclung. 

Lookmg at the example from another angle the performance of any luerarchical codec can 

be Improved by mtroducing pel-recursive motiOn compensation. In v1ew of this let allow 

and investigate 1f pel-recursive motion compensatlon can be active s1de by side m the 

presence of block matchmg motion compensation. This may possibly have some benefit for 

codecs standards hke H 263, MPEGs, or any other. 

Basically the way the method is structured 1s as follow:-

!) applymg block matching motion estimation on two successive image frames, and 

producing displacement vectors (i e.- for each block of16 x 16 pels) 

2) Passing the images through a low pass filter m order to have them down sampled, 

that is to shrink the 1mages (1 e:- by 16 x 16). Two dimensional Q.M F (quadrature 

Mmor F1lter) can be used as a crude substltutlon for the low pass filter. A further 

rough substltution can be achieved by takmg the mtensity of the first DCT 

coefficient (DC coefficient) for each block (1.e- block of 16 x 16 pels); which is 

really the average mtens1ty ofpels m each block. 

3) Allocatmg each block matching displacement vector as the motiOn vector for every 

pel of the down sampled 1mages. 

4) Apply the pel-recurs1ve motlon estlmatwn algontlun on the down sampled (or 

shnnked) 1mages by takmg the motiOn vectors as the 1mtial iterative estlmatwn of 

pel-recurs1ve estimation 

5) The resultmg motlon vectors are to be the final tuning on block matclung motiOn 

estrmation displacement vectors 
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As for the experimental results concerned in th1s thesis; the above procedure IS applied to 

images w1th block sizes 8 x 8 Figures 5.2.1 to 5.2.6 shows the graphical result for two 

sequences of"Suz1e" and "Salesman". As it can be seen the outcome is not veryprom1smg. 

Fmally the above procedure could also be carried out for any other block s1zes 1 e a block 

of4 x 4 .... Etc. 

One of the drawbacks of the above method is that due to sta!istical randonmess of sub 

sampled 1mages, which causes an estimation of the error for each p!Xel, there is some 

possJb1hty of uncontrolled overshoot as can be seen from the graphs in the figure 5 2.4. 

Th1s 1s mainly due to the situation that Jmhal motwn vector 1s mdependently eshmated for 

everypels. 
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Figure 5.2.3 Suz1e companson after three Iterations w1th prev10us frame reconstructed, 
w1th half pel accuracy on block matchmg, and m1!ial mot10n vectors set to 
zero. 
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I 

Combined block matching 
and pel-recursive techniques 

n the application of pel-recursive motion compensatiOn, even the propsed pel

recursJve as well as the modified pel-recurs1ve steepest descent gradient did not 

show a promising performance when used as block recursive algorithm (refer to chapter 

five) In view of the Situation that has ansen, it IS a good Idea to mvestigate the possibility 

of combimng the two estimator techniques, pel-recursive and Block matching, m such a 

mamJer that block matchmg can assist the pel-recurs1ve approch to form a Hybnd system. 

Here we have to investigate further the possibility of developmg a hybrid system from 

block matchmg and pel-recursive systems 

6.1 Local versus Global Minima 

Steepest descent IS probably the simplest numencal optimization method. It updates the 

present estimate of the location of the m1mmum in the direction of the negative gradient, 

called the steepest descent directiOn Recall that the gradient vector pomts m the directiOn 
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of the maximum. That is, m one dimension (functiOn of a single variable), its sign will be 

positive on an "uplnll" slope Thus, the direction of steepest descent is in the oppos1te 

direction. 

The descent gradient approach however suffers from a serious drawback-- the solutiOn 

depends on the initial point. If we start in a "valley", 1t Will be stuck at the bottom of that 

valley, even if it is a "local" minimum (F1gure 6. I. I). Because the gradient vector is zero or 

nearly zero, at or around a local minimum, the updates become too small for the method to 

move out of a local mmimum. One solution to tins problem IS to initialize the algonthm at 

several different starting points, and then pick the solution that gives the smallest value of 

the criterion function However, th1s method usually reqmres significantly more processing 

time 

Global Mtmmum 

Figure 6.1.1 Demonstrative Graphical sketch oflocal and global minima. 
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6.2 Hybrid system 

As has been seen from the papers [39] [110] [114] [111] and through the SimulatiOn 

(chapter 3) none of the algorithms by Netravah and Robbms [39], Newton-Raphson [110], 

Caffero and Rocca [114], or Bergmann [Ill] give full convergence for every pel to 

produce a perfect es!lmatiOn for motiOn. In addJ!lon, some pels converge to unsa!lsfactory 

figures and some!lmes become unstable leadmg to the conclusion that the algonthms suffer 

from some form of mstab1hty. 

The a1m of compression IS based on the idea that 1t is possible to find displacement or 

motiOn vectors for each pel so as to have a m1mmum error 1mage signal Going through an 

Jtera!lve process (Le. steepest descend algonthm), it is not necessanly true that one can find 

an area of a global minimum, therefore we face a SituatiOn where one lands on a local 

m1mmum and perhaps ultimately gets to the actual local mm1mum or goes mto osc1lla!lon 

and becomes unstable. 

In sp1te of all the above, the algonthm by Netravali and Robbins [39] has shown 

convergence w1th less overshoot in relation to the other three algonthms [115], With the 

cost of a high number of iterat10nal computations for estimation of the displacement 

vectors. If we define the stability constrain cnteria as 

(6.1.1) 

the algonthm by Netravah and Robbms shows better stability as 1t requires that the update 

vector be always duected towards and not oppos1te to the actual displacement 

It has been seen that the initial estimation of displacement vectors has a great effect on 

determinmg final motiOn es!lmatwn by the Iterative process of the steepest descent 

algonthm or the proposed algonthm. As can be seen from Figure 6.1.1, 1f the 1m!lal 

estimatiOn of displacement vectors are not well chosen, when the steepest descent 

algorithm is applied, after a few IteratiOns, one can have a situation where a local m1mmum 

IS estimated instead of the global mm1mum es!lmation. 
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In view of the affirmation argument, m order to estimate the displacement vectors with 

more accuracy, virtually for every smgle pel and particularly the pels where their motion 

vector happened to be situated on local m1mmum instead of global m1mmum, will not be 

estimated correctly. So the predictiOn error associated with these pels will not be accurately 

estimated. Therefore, to overcome this inaccurate estimation It is possible to suggest that an 

easy and simple solution would be to chose the imtial displacement vector by a different 

mechanism. Havmg chosen the nght m1tial displacement vector, then the motion vector 

resultmg from first stage can be feed back into the Iterative processing of the pel-recursiVe 

system This led to the Idea of the hybnd system. Relating the above techmque to the 

problem m this thesis, block matchmg motiOn estimatiOn is combined With pel-recurs1ve 

motion estimation to form a hybnd system As for the experimental results, the block 

matchmg algonthm IS applied to a sequence of a movmg Images, producmg motion vectors 

for every block of the Image and therefore a higher signal to noise ratio. 

One of the drawbacks of motion estimation using block matching IS that displacement IS 

estimated as one estimatiOn for each block, for example; a block of 16 by 16 pels. This 

should not necessarily apply to every pixel of the block as some pels may not be moving 

pels e g.·- blocks contammg edges. Tins also may cause a blocking effect which is one of 

the drawbacks of the method used. 

One needs to transmit a displacement estimatiOn for each block as well as the number of 

blocks with no motion estimation. This causes more overhead to be transmitted resultmg m 

transmissiOn of a higher number of bits per second. 

The Netravah algonthm and the modified algonthm were employed to mvestigate the 

advantage and disadvantage of the motion estnnation by the pel recursive method. It has 

been seen that the Netravah algorithm Itself suffers from some maJor defects e g :- lack of 

divergence and stability which mamfests Itself through certain pels. 
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The pel-recumve algonthms try to mimmize the prediction error by lockmg mto either a 

local or the global mtmmum. As the algorithm iteratively tries to force the error to a 

mimmum value, whtch is detenmned by the ongmal motion displacement estimation, one 

should note that the lack of convergence or stability caused by bemg m the vtcmtty of a 

wrong mimmum may gtve nse to a local mmimum instead of global minimum. Thts may 

be the main problem associated wrth pel-recursive algonthms m general. 

Combmmg Block Matchmg motion estimation and pel recursive motion estimatiOn m a 

complex manner has shown some improvement of the signal to nOise ratio of Block 

Matchmg with no extra cost on the overhead, producing new publishable results which still 

can be Improved further. Thts actually means that, the block matching does the mam 

displacement estimation and the pel-recursive does the fine tuning on each pel. 

One of the advantages of this method is that it does not reqmre any extra overhead m 

transmission because It does not need to transmit any extra mformatiOn for the motion 

estimated than IS needed for the block matchmg technique. 

In thts thesis, for example, by employmg H.263 and using block matching Without 1/2 pel 

accuracy; the energy was measured to be 20.52dB for an image m a sequence And also 

employmg H 263 and usmg block matching with 112 pel accuracy, the energy was reduced 

by a factor of 0.04dB to a figure of 20.48dB. Thts IS also to justify the obvious which IS, 

usmg block matchmg with 112 pel accuracy is more advance than without 112 pel accuracy. 

This IS the one of the main advantages ofH 263 over H 261 (H 261 does not have 112 pel 

accuracy feature) 

Usmg block matching (by employing H 263 with 1/2 pel accuracy) and pel recursive 

motiOn estimation combined as a hybrid system reduces the energy of the error 

substantially. Employmg the new pel recursive motion estimation would further reduce the 

energy of the error. 
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6.3 Implementation and Experimental results 

In order to show the outcome resultmg from the hybnd system, motiOn vectors were 

estimated using the standard traditional method of block matchmg H.263 with half pel 

accuracy was employed to generate these displacement vectors. Having estimated the 

motion vectors for every individual block (for example, block of 16 x 16 pel), they are 

assigned to be the initial estimation for the pel recursive motion estimation for final hmmg 

of the estimations. 

As for ImplementatiOn of the simulatiOn, great accuracy was needed when calculatmg 

components representmg the pel recursive formula, such as line, element, displacement 

frame differences, and so on. For this, different ways and techniques can be utilized and 

examined; e.g . interpolated, not interpolated, averaged using different causal supports, and 

etc. It should be noted that not every smgle pel IS to be motiOn compensated, therefore a 

maskmg mechanism needs to be used, e.g.: where frame difference, IFDIFI :S threshold; 

no prediction is needed (non-moving area). 

In this thesis m order to be uruform throughout the algonthms implementation and 

simulatiOn for calculatiOn of !me and element differences, non-mterpolated averaged 3 by 

2 causal support (Figure 6.3.1) is used. For displacement frame difference the interpolated 

pel value of previOus frame IS subtracted from the average pel intens1ties ofX(3) and X(6) 

of present frame. As far as the proposed algonthm is concerned, different convergency 

parameters have been used; that 1s where the absolute value of an element or !me difference 

IS less than 11, the convergency parameter e= 0.8, other wise & = 0.7. Here one can have a 

good educated view that, this is a reasonable indication of improvement by attempting to 

have the convergency parameter adaptive. 

The maximum update linut for consistency purposes were chosen to be IFDIFI :::; 9 for 

non-movmg areas. The results show that further constraint or limitation is needed to 

accomplish a better estimation of motion vectors. As an example, where motiOn vectors 

squared are less than or equal to 1, not to update the motiOn vectors. It should also be 

mentioned that more constraint or limitation or toggling of the predictor could result in 
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better tunmg of the motion vectors_ This IS done for three different sequences, Suz1e, 

Salesman, and Car. 

X(1) X(2) X(3) X(4) 

X(5) X (6) 0 

Figure 6.3.1 : A 4 by 2 causal support. 

Figures 6.3.2 to 6.3.7 show and md1cate the validity of the new pel-recursive motion 

estimation algorithm (112] in companson With the ex1stmg pel-recurs1ve motion estimation 

algorithm. The graphical results provide comparison for existing and the new algorithms. 

Consider the motiOn estimation usmg a pel recursive motion estimation. Expenmentally it 

has been shown that It produces an average improvement of over 0.5dB m Signal to noise 

ratio. 
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Figure 6.3.3 Salesman companson after three Iteratrons with the prevrous frame 
reconstructed, with half pel accuracy on block matching 

131 



Chapter 6 Combmed block matclnng and pel-recuTSive 

Car Prediction Error Comparison 
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Figure 6.3.4 Car companson after three Iterations w1th the previous frame clean, 
w1thout halfpel accuracy on block matching. 
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Settmg the initial motion vectors to zero which almost m effect IS turning off the block 

matching motiOn estimator will produce similar results to the one generated by the new 

proposed pel-recurs1ve motion estimatiOn. This IS another JUstification of the obviOus, that 

the proposed method of pel-recurs1ve motion estimatiOn in general has not being able to 

compete With block matchmg motion estimatiOn as It can be seen from the Figures 6 3.5 -

637 
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Suzie Prediction Error Comparison 
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motiOn vectors set to zero 
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Salesman Prediction Error Comparison 
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Salesman Prediction Error Comparison 
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Figure 6.3.6 Salesman comparison after three iterations with the previOus frame 
reconstructed, with half pel accuracy on block matching, and Imtial 
motion vectors set to zero. 
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Car Prediction Error Comparison 
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Figure 6.3. 7 Car comparison after three iteratiOns wrth the previous frame clean, 
wrthout halfpel accuracy on block matching, and rm!Ial motion 
vectors set to zero. 
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6.4 Conclusions 

According to the results of Figures 6.3.2 and 6.3.3 whenever the hybnd system IS used, a 

substantial improvement m compression is bemg achieved A greater improvement IS 

shown through using the hybnd system with the proposed algonthm 

Figure 6.3.4 indicate that for a fast movmg image like the "Car" sequences (1 e Figures 

2 5 1 5 and 2.5.1 6) the hybnd system does show some improvement over the traditional 

block matchmg method. 

If the Im!Jal value motion vectors are set to zero as ob tamed from the block matchmg part 

of the hybnd system (d1sregardmg the effect of block matching from the system), then the 

situation ofpel-recursJve versus block matching Will anse. Figures 6 3 5 and 6.3 6 show the 

result when there is no imtial value estimator present. 
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Conclusions and 
Further works 

This chapter presents a general view of the results descnbed m this thesis and 

summaries the contnbutwn of new knowledge for the implementatiOn of steepest 

gradient pel-recursive mohon estimatwn. A further discussion is also developed 

based on an example in chapter 5, uhhzmg the new pel recursive algonthm to a certam 

degree. It goes further to discus the effect of involving block matclung mol! on eshmation in 

pel-recursive motiOn eshmation to form a hybnd system 
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7.1 Conclusion 

As an educated guess or rule of thumb one may suggest that the pel-recursive steepest 

decent gradient should perform better than block matchmg m estlmatmg motiOn for 

sequences of moving Images. The pel-recursive algonthms look at IIDages pel by pel, where 

as block matchmg algonthms consider a block of an Image as a whole However, 

expenmental results have shown otherwise to the extent that the pel-recumve approach 

could not get be used in international standards for low bit transmission e.g.:- H 261, 

H 263, MPEGs and so on. Figures 2.4.1.2 and 2.4.1.3 and Figures 3.6.3-3 6 8 and Figures 

3 6.3 -3 6.8 and Figures 3.9.1- 3.9 6 show a good indication of this. 

Figures 2.4 1.2 and 2.4 1.3 in general depicted that m block matchmg motion estimation 

energy of the errors are very low, that is with very high signal to nmse ratiO, when 

compared with the situation m which there 1s no motion estimation present. These results 

have been generated using H 263 for different situations, estimating motion with and 

without half pel accuracy. In almost all codec standards, the motion estimator IS designed 

on the basis of a block matchmg motiOn algonthm 

In chapter 3 the state of the art of existing pel-recursiVe algonthms have been Implemented 

and simulated for situations where the previous frame has been clean or a reconstructed 

Image. Figures 3.6.3 - 3.6 8 depicted that pel-recursive motion estimation shows a good 

low value of average energy for the error Image signal, but still energy of the error IS higher 

than for block matching. Figures 3 9 1 - 3.9.6 mdicate that even where there is some 

Improvement by making e, the convergency factor, adaptive, the error Image signal is not 

low enough as far as block matching is concerned, even though the error signals of the 

images are lower than the case where e IS not considered to be adaptive. 

Taking a step further, a new algonthm for pel-recursive motiOn estimatiOn has been 

proposed, Implemented and simulated as detailed in chapter 4. The graphical and pictorial 

results show and indicate that the average error Image signal resulting from the new 

algorithm is much lower than that for the existing pel-recursive algonthm. Figures 4.2 1 -
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4 2 7 compare the ex1stmg state of the art with the new algonthm for motiOn estimatiOn 

These justify that the new algonthm IS working and produces a better result than ex1stmg 

ones. However, the average error resulting from new algonthm on Its own is not lower than 

that for the case of block matchmg. 

Chapter 5 shows a crude example of employing the new pel-recursive algorithm. To see 

whether or not pel-recurs1ve m general can contnbute further improvement mto 

international standards such as H.263 or any other hierarchical codecs, side by Side of block 

matchmg motion compensatiOn, the new gradient is blocked recursively are applied to 

sequences of images and detailed m chapter 5, resultmg the graphs in Figures 5.2.1 -5.2.7. 

As can be seen the graphical results are not very prom1smg m comparison to the situatiOn If 

one would JUSt use the block matching technique. 

Cons1denng the above case, it shows that it would not be feasible to have both the pel

recursive motiOn compensation and block matching motion compensation present as 

separate elements of estimator in codecs. Then, the thesis moves into new work by 

combmmg the two some what different algonthms of block matching and pel-recurs1ve mto 

a hybnd system. The resulting hybrid system does show the average error image signal 

levels to be lower, when compared with the old block matching algonthm by at least a 0 5 

dB (for comparison, introducing halfpel accuracy mto block matchmg results in an 0.05 dB 

Improvement over block matching on Its own, for, the average error Image signal) Figures 

6.3.2 and 6.3.3 depict the variation of average error signals for two different sequences, 

JUstifymg the Improvements of the hybrid system over block matchmg or pel-recurs1ve on 

the1rown. 

It should be noted that the above conclusiOns m tlus thesis are based generally on 

expenments wluch were performed for about 20 frames of two different well known 

sequences of moving Images ("Suzie" and "Salesman") 
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7.2 Suggestions for further research work and recommendations 

Smce block matclung motion compensation has become standardized, research and work 

on pel recursive motiOn compensation has not been given any sigmficance and has virtually 

stopped. This may be due to the better performance of block matclung over pel-recursive 

for motiOn compensated image compression. 

Now hybnd motiOn compensatiOn can be employed for Image compressiOn, resultmg m a 

more advanced performance than each of the two aforementioned motiOn compensatiOn 

techniques, "block matching and proposed pel-recumve". This could open a new door for 

research and development in image compressiOn areas investigating the usage of pel

recursive algonthms or as hybnd systems. 

There are many papers relatmg to the development and further development mto block 

matclung techniques smce the allocation of the standards. As a startmg point a good 

example of the application suggestion is giVen m chapter five. In general the developments 

which were already applied to block matching could be applied to the hybnd system With 

reference to the these discussiOns, it is certam that there are many methods and 

developments, whether small or large, applicable for block matchmg motiOn compensation 

where pel- recursive and block matching motion compensation could work together A 

good example of this is the applicatiOn suggestion given m chapter five. The block 

recursive motion compensatiOn Idea was developed With reference to a paper for block 

matclung motiOn compensation [116]. 

In pel-recursive work, in general, the predictors used are based on intensities m the 

previOus frame but not previous frames or calculated displaced previous frame. Of course, 

as for further work, other predictors can be employed in order to augment the predictiOn 

strategy. This m turn should enhance the system performance. 

In chapter 3; It has been shown that pel-recursive motiOn estimation can Improve Its 

performance by makmg .s, the convergency factor, adaptive. In the ongmal pel-recursive 
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motion algorithm, c was chosen to be a fixed variable and this has been Improved to be 

fully adaptive as "modified pel-recursive motiOn algonthm". In chapter 4; c, the rate 

convergency controller, is recommended to be a constant vanable But as can be seen from 

chapter 4, a better result IS produced by setting different values for different conditiOns. In 

turn this suggests that making c adaptive should improve the performance of the proposed 

motion estimation algorithm. In view of this, it would be sensible to conduct further work 

toward improvement of the proposed algonthm 

Fmally, further work can be earned out m view of the example in chapter 5. This can 

basically be done to Improve the performance of a hierarchical codec This IS done firstly 

by applymg block matching motion estimation on Image frames, and obtaimng 

displacement vectors (i e.- for each block of 16 x 16 pels). The images are then passed 

through a low pass filter in order to have them down sampled, that is to shrink the images 

(i.e.:- by 16 x 16 pels). Various methods can be employed for this, for example, Two 

dimensiOnal Q.M.F (quadrature Mmor Filter) can be used as a crude substitution for the 

low pass filter. A further rough substitutiOn can be aclneved by tala.ng the mtensity of first 

DCT coefficient (DC coefficient) for each block (i e ·- block of 16 x 16 pels); winch is 

really the average mtens1ty of pels in each block. Taking the value of each block matclnng 

displacement vector as the motiOn vectors for every pel of the down sampled Images. 

Apply the pel-recurs1ve motiOn estimation algonthm on the down sampled (or shrunk) 

Images by tala.ng the motiOn vectors as the initial iterative estimation of the pel-recurs1ve 

estimatiOn (the current pels for estimatmg predictive frames IS also to be used). This can be 

looked at as fine tuning on the block matching motion estimation displacement vectors. As 

for any transmission concern, there will be no further extra over head to be transmitted. 
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Appendices 

A. I Hierarchy flow diagram of H.263 

The Hierarchy c files flow diagram for H 263 are as shown m figure A.l.l 
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mainc 

coder c 

dctc 

pred c 

Appendzces 

dct.c I 

J pred c I 
I quant c I I coder.c f--

.I ratectrl c I 
,I mot_est c I 

I sac.c I 
·1 countb1t.c I 

mainc I stream.c I 
I 

I huffinan c I 

.I IOc I 

.I SNR.c I 
I 

Figure A.l.l Hierararchy flow diagram ofH.263. 

The first routme call It acts on the mput command !me (tmn) and set 

parameter accrdingly. 

Performs all the encoding processes. Activated by main.c. 

Performs the function of Discrete Cosine Transform. Initialized by main c 

and activated by coder c. 

Relates prediction ofPB frames and Advanced Prediction mode. Activated 

by coder.c 
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quantc 

ratectrl c 

mat est c 

countbit c 

sac.c 

stream c 

huffrnan c 

IOc 

Append1ces 

Sets all the quantisation mdex during encodmg. Contra led by coder c 

Organizes the control codmg with control parameter as the quantisation 

mdex The control parameter IS generic withm ratectrl.c and doses not have 

any mfluence on quant.c. 

Performs the motion estimation in the encodmg process. Activated by 

coder c. 

Its functionality IS to count the bits during encoding process. activated by 

mam c and coder.c. 

Performs the Syntax Based Anthmetic codmg when t1ns obt10n IS selected 

Activated by countbit.c. 

Handels all of the bit level stream commands. 

Performs the function ofhuffrnan encodmg routmes. Activated by mam c. 

Contains the memory management for the component files. Activated by 

mam.c. 

snr c Processes signal to nmse ratio for every frame. Activated by mam.c. 

A.2 Programming function discription 

The programmmg functiOns as they appear in H.263 software, are descnbed as follow : 

main.c 

intNextTwoPB (--) 

void Help 0 
vmd AdvancedHelp 0 
vmd PrintResult ( --) 

vmd PnntSNR ( --) 

decides whether or not to code the next two 

Images as PB. 

help. 

help. 

pnnts results ofbits in logn file. 

pnnt snr oflummance and chrommance m log 

file. 
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coder.c 

dct.c 

pred.c 

void CodeOneOrTwo ( --) 

P1ctimage *CodeOnelntra ( --) 

int *MB_Encode (--) 

mt MB_Dncode (--) 

vmd F!IILumBiock (--) 

vmd F!IIChromBiock (--) 

void ZeroMBiock ( --) 

vmd Reconimage ( --) 

vmd MotwnEst1mateP1cture ( --) 

void MakeEdgeimage ( --) 

void Chp (--) 

mt Dct (--) 

mt idct (--) 

vo1d init_idctref ( --) 

vmd idctref ( --) 

codes one intra 1mage. 

performs dct and quant1sat10n of macroblocks 

reconstructiOn of quant1sed dct coded 

macro blocks. 

fills the lummance of one block ofP1ctimage. 

fills the chrominance of one block of 

P1ctimage. 

fills one MB w1th zeros. 

put together reconstructed 1mage. 

find mteger and half pel motion estimation. 

copy edge pels for use w1th unrestricted 

motion vector mode. 

chps reconstructed data 0-255. 

perform dct on an 8 x 8 block and z1gzag 

scanning of coefficients 

descans z1gzag scannmg coefficients and 

perform inverse dct on 64 coefficients. 

1rut1ate the mverse dct reference 

mverse dct reference. 

MB_Structure *Pred!Ct_P (--)pred1ct P macroblock in advance or normal 

mode 

MB _Structure *Pred1ct_ B ( --) pred1ct B macro block in PB frame predictiOn 

MB_Structure *MB_Recon_B (--) reconstruct the B macroblock m PB frame 

prediction 

void FindForwLumPredPB (--) find the forward Luma prediction m PB frame. 
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vmd FmdBJD1rLumPredPB (--) find the bi-dir Luma pred in PB frame 

void FindBiDirChrPredPB ( --) find the b1-d1r Chroma pred m PB frame 

vmd FmdBJD!rLimJts (--) find the bi-d1r lim1ts 

vmd FmdBJDirChromaLJmJts (--) find the bi-d1r chroma hm1ts. 

vmd BiDirPredB!ock (--) find the b1-d1r predictiOn block. 

void DoPredChrom _ P ( --) perform the chrominance pred for P frame. 

vmd FmdHalfPel ( --) find the optimum half pel prediction. 

vmd FmdPred ( --) find the prediction block. 

vmd FmdPred OBMC ( --) find the OBMC prediCtiOn block 

MB_Structure *MB_Recon_P (--) reconstruct MB after quantisation for P 

vmd ReconLumB!ock_P (--) 

void ReconChromBlock_P (--) 

vmd FmdChromB!ock_P (--) 

int ChooseMode ( --) 

int Mod1fyMode ( --) 

quant.c 

void Quant ( --) 

void Dequant ( --) 

ratectrl.c 

vmd ImtlahzePJctureRate ( --) 

mt UpdateQuantlzer ( --) 

mt UpdateP1ctureRate ( --) 

1mages. 

reconstruct one block ofluminance data. 

reconstruct chrominance of one block m P 

frame. 

find chrominance of one block m P frame. 

choose coding mode. 

mod1fy codmg mode. 

quantiser for SIM3. 

dequant1ser for SIM3. 

compute the target b1trate and target frame 

rate for the current picture bemg coded 

generate a new quantlser step size base on b1ts 

spent until current macroblock and bits spent 

from the previous picture. 

updates buffer content and determine frame 

skip. 
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mot est.c 

void MotwnEstlmation ( --) 

unsigned char *LoadArea ( --) 

mt SAD_Macroblock (--) 

mt SAD_ Block ( --) 

mt SAD_ MB _integer ( --) 

void FmdMB (--) 

countbit.c 

sac.c 

vmd CountBitsMB (--) 

void Count_sac_BitsMB (--) 

mt CountBitsSlice (--) 

vmd CountBitsCoeff ( --) 

vmd Count_Sac_BitsCoeff (--) 

mt CodeTcoef(--) 

mt FmdCBP ( --) 

mt CountBitsPicture (--) 

mt AR Encode(--) 

arithmetic 

mt encoder_ flush ( --) 

void bit_in _psc _Layer ( --) 

int indexfu ( --) 

Appendzces 

estimate all motion vector for one MB. 

fill array With a square of image data. 

fast way to find the SAD of one vector. 

fast way to find the SAD of one vector. 

fast way to find the SAD of one vector. 

pick out one field of one MB. 

count bits use for MB mformatwm. 

count bits use for MB informatwm usmg sac 

models modified from CountBitsMB. 

count bits use for slice (GOB) mformatiOm 

count bits use for coefficients 

count bits use for sac models. 

encode an AC coefficient usmg the relevant 

sac model 

find the CBP for a macro block. 

count the number of bits needed for picture 

header. 

encode a symbol usmg syntax based 

coding 

completes anthmetlc codmg before stream, or 

before any fixed length code are transmitted. 

inserts a bit mto output bitstream and avoid 

picture start code emulatiOn by stuffing a one 

bit 

index into frequency cumulative frequency 

tables or escape code. 
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stream.c 

vmd mwopen ( --) 

vmd mwclose ( --) 

mt Zero flush(--) 

void mputv ( --) 

long mwtell ( --) 

vmd mwseek (--) 

huffman.c 

void InitHuff (--) 

vmd FreeHuff ( --) 

vmd EHUFF *MakeEhuff(--) 

vmd LoadETable ( --) 

void printTable (--) 

mt Encode ( --) 

Appendzces 

opens a b1t stream for wntmg. 

close the wnte bitstream and flushes the 

remaming byte w1th "I", consistent with -I 

returned on EOF. 

flushes out the rest of the byte w1th zeros and 

return number ofb1ts wntten to bitstream 

(kol) 

put an bits to the stream from byte b 

return the position m bits of the wnte stream. 

seek to a specific b1t positiOn on the wnte 

stream. 

initialized VLC tables. 

free the VLC tables. 

construct an encoder huffrnan w1th a 

designated table s1ze. This table s1ze n, IS used 

for the lookup ofhuffrnan values and must 

represent the largest pos1tive huffrnan value. 

loads an array mto an encoder table. The array 

1s grouped mto tnplts and the first negative 

value signals the end of the table. 

print out 256 elements m a mce byte ordered 

fasluon. 

encode a symbol accordmg to a designated 

encoder huffrnan table out to the stream. It 

return the number of b1ts written to the stream 

and a zero on error. 
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IO.c 

snr.c 

unsigned char *Readlmage ( --) 

Pictlmage *F1lllmage ( --) 

void Wntelmage (--) 

P1ctlmage *Imtlmage (--) 

void Free Image ( --) 

char *StnpName (--) 

vOid ComputeSNR (--) 

Append1ces 

reads one qcif image from disk 

fills Y,Cb and C, of a P1ctlmage struct. 

write Pictlmage struct to d1sk 

allocates memory for structure of 4 2.0 Image 

free memory allocated.for structure of 4 2 0 

Image. 

remove character behmd ".", and m front of 

(mcludmg) the last"/". 

compare two image files using SNR. 
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