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Abstract

Abstract

Pel-Recursive Motion Compensation Techniques for Video Compression

In motion pictures, there 1s a certamn amount of redundancy between consecutive
frames These redundancies can be exploited by using interframe prediction
techmques To further enhance the effictency of interframe prediction, motion
estimation and compensation, various motion compensation techmques can be used
There are two distinct techmques for motion estimation block matching and Pel-
recursive Block matching has been widely used as 1t produces a better signal to noise

rat1o or a lower bit rate for transmission than the Pel-recursive method

In this thests, various Pel-recursive motion estimation techmques such as steepest
descent gradient algorithm have been considered and simulated Netravali’s algonthm
was one of the early algorithms which was implemented and simulated to evaluate the
performance of the Pel-Recursive techmque compared with the Block Matching
approach The performance of the gradient method was further enhanced by
adaptively selecting the convergence factor {modified gradient) A second algorithm

was developed and simulated to produce further improvements

A hybnd system incorporating both the block matching and the Pel-recursive
approaches was developed and simulated This combmation exhibits even further

improvement over existing techmques.




Abstract

These methods were then applied to vartous hierarchical hybnd based video coding

techniques such as the ITU-T H 263 standard The aim was to reduce the overall bit

rate required to transmit video signals
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Acronyms and Abbreviations

AC
ATD
BBMC
BMMC
BT
CCIR
CCITT

CD-ROM
CIF
Codec
CRT
DAT
DC
DCT
DPCM
HDTV
IS
ISDN
ISO
ITU
ITU-T

MC

Acronyms ..« Abbreviations

Alternative Current.

Absolute Temporal Difference

Block-Based Motion Compensation
Block-Matching Motion Compensation
British Telecommunications

International Radio Consultative Committee
International Telegraph and Telecommun:cation Consultative Committee
(see ITU)

Compact Disc Read-Only Memory
Common Intermediate Format
Coder-decoder

Cathode Ray Tube

Digital Audio Tape

Direct Current

Discrete Cosine Transform

Dafferential Pulse Code Modulation

High Definition Television

International Standard

Integrated Systems Digital Network
International Standardisation Organisation
Intermational Telecommumcation Union
Intemational Telecommunication Union Telecommunication
Standardisation Sector

Motion Compensation




Acronyms and Abbreviations

MCP

ME
Modem
MPEG
NICAM
NTSC
PAL
PSNR
QCIF
SUB-QCIF
MAD
MSD
PSNR
PSTN
QCIF
SAC
Sub-QCIF
VLC
VLSI
VOD

XY

Motion Compensated Prediction

Motion Estimation

Modulator-demodulator

Moving Picture coding Experts Group

Near Instantaneous Companded Audio Multiplex
National Television System Commuttee

Phase Alternating Line

Peak Signal to Noise Ratio.

Quarter Common Intermediate Format.
Sub-Quarter Common Intermediate Format
Mean Absolute Difference.

Mean Squared Dhfference

Peak Signal to Noise Ratio

Public Switched Telephone Network

Quarter Common Intermediate Format
Syntax-based Anithmetic Coding

Sub-Quarter Common Intermediate Format
Variable Length Code or Variable Length Coding
Very Large Scale Integration

Video on Demand

spatial co-ordinates in the pixel domain
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A Pel-Recursive Motion Estimation Algorithm

H Gharavi and H Reza-Alkham

Abstract: This paper presents a new pel recursive motion estimation algorithm for
video coding applications. The derivation of the algorithm is based on Recursive
Least-Squares (RLS) estimation that mmmmzzes the mean square prediction error A
companson with the modified Steepest-descent gradient estimation technique
algorithm shows significant improvement 1n terms of mean-square prediction error

performance.

Introduction: Netravali and Robbins [1] developed a pel recursive spatio-temporal
steepest-descent gradient techmque in which the displacement of a pel (picture
element) was predicted from previously transmitted information Since then vanous
algonithms have been proposed to improve the performance of pel recursive motion
estimation (PRME) techniques The most important contnibution was the
modification of the steepest-descent algonthm developed by Walker and Rao [2] In
this paper we present a simple but very efficient PRME algonthm that sigmficantly

outperforms the modified steepest-descent technique

Proposed Algorithm: For the sake of our analysis, we assume the translational
movement of an object 1s 1n a plane parallel to the camera and illumination 1s
uniform We also assume the effect of uncovered background to be neghgible
Under these assumptions, let S (, y, #) denote the monochrome ntensities at point
(x, y) of a moving object 1n the 1mage plane where 1ts translational movement 1s at a

constant velocity of v, and v, We can show that after At second (one frame period),

the object moves to a new location where we can show,




S(% y t+At)=S[(x +Vadt), (y +Ww4d) f] (1)

After expanding the field n a power series in At and neglecting the higher order

terms, the frame difference can be shown as,

S(xy:t+At)-S(xy. D =aiS(x, y t)dx+%S(x, y tydy (2)
X

where dy and dy correspond to the horizontal and vertical components of the motion
d 0

vector D Assuming ES (x,y t) and a—yS (x,y t)are known for each x, y, t, and

defining ED, LD, and FD as the magntude of the element, line, and frame

difference at point n, from (3), we can write,
FD = @TD (3)

F: ED
5_8 (xn, yn 1)
where &n = X =

8 = 4
ES (xn, yn t) LD

From (4) the frame difference {(FD) measurement 1s,

- ®aTD + noise &)

where D = [E (x),a'(y)]T 1s the motion vector estimate

For a cluster of M moving pels, the least-squares estimate of D, after carrying out

the mmimization, can be shown as,

Zj $aln= D Ecb,.cDI (6)

1 n=]

For n=—1—g ®nEn  and R=-I-§ o T (N
’ M = Moy "0 "

the estimated motion vector from (6) is obtained as,




D =RrR'n (8)

For recursive esttmation of n and R, we can wnte

Tll = nl—[ + (Dngn
R, R + O 1 (9)

Based on the so-called matnx mmversion lemma, the inverse of R, can be obtained

ot = g . RAOD IR 10)
! "1+ oIRADn

as,
From (8), (9), and (10),

_ _ R @y T—
- o ™S . 11
D, Dui © 13 OIR n((I) Da - §) (11)

In the above equation, the term 1n the right hand side bracket can be replaced by

what 1s known as the Displaced Frame Difference, DFD Thus,

— — R D,

Di = Du - [DFD(x,y, D.p] (12)
i 1-1 1+ QJIRI_]](DH -1

To avoid matrix inversion at each iteration, (12) can be simplified by 1gnoring the x

and y cross terms 1n calculating ¢, and R Thus, from (4) and (7),

O.(x) = ED and O, (y) = LD (13)

1 1
Rm=§§a%HMRWkﬁ§wﬁ

Applying (13) to (12), the components of the motion displacement estimates are,

_ _ ED _
4 09 =340 - (DFDIx, ¥, 4,.,(0)}
—SED?+ ED?
M
(14)
- - LD -
d® = da® - T {DFD[x, y, d,;x)]}
ﬁZLD2+ Lo?



Simulation Results: The computation mvolved in (14) is performed recursively. At
cach iteration the estimated motion displacement 1s applied to measure a new DFD
Ths would first require obtaining the location of the displaced pel on the previous
frame, based on the estimated components of motion displacement Since the
motion estimates are expected to be non-integer, the lumimance value of the
displaced pel 1s predicted by a two dimensional interpolator which uses the four
comers of the surrounding pels 1n a two dimensional gnd. In our experiments, the
DFD 1s measured at two locations with reference to the current pel, the pel above
(1e, previous line), and the previous pel along the same line The average of the
two DFD’s (with equal weightings) 1s then used to update the displacement
estimates

The ED and LD in (14) were also measured using the interpolated luminance values

from the displaced previous frame For ZED? and ZLD? the summation includes the

luminance values of five interpolated neighboring pels from the previous frame

Two video sequences, known as “Salesman” and “Suzie,” were used to evaluate the
performance of the proposed algonithm The format of both sequences was based on
the CIF (Common Intermediate Format 352-pels by 288-lines and 30 frames/s) In
addition, for the sake of comparison, we have simulated the Walker-Rao algonthm
[2] The simulation results of both schemes, in terms of mean square prediction
error (in dB), are shown in Figures 1 and 2 for the “Salesman” and “Suzie”
sequences, respectively In these figures, we have also included the results of
interframe prediction without motion compensation (1¢, frame difference) The
number of 1terations for both schemes was 3 The above algornithm was appled to
those pels whose frame difference exceeds a predefined threshold (ie |[FD[>9) In
addition, these results were obtamed using the second previous frame for prediction
(1e, skipping one frame). Looking at these figures, it 1s clear that the proposed
scheme significantly reduces the motion compensated prediction error. In terms of

subjective compansons, Figure 2 presents the motton compensated prediction error



mmages between frames 49 and 51 of the “Suzie” sequence In these images,
relatively darker or lighter patches represent the degree of imaccuracies m
estimating the components of the motion displacement Comparing the two 1mages
confirms the supenor performance of the proposed scheme over the modified
steepest-descent algonthm, particularly 1n regions where the motion activities are
relatively high

Conclusion: This paper proposes an efficient pel-recursive estimation technique for
motion tracking and coding of moving images. The proposed algonthm has been
compared with the modified steepest-descent gradient algorthm The results
indicate a considerable reduction in the prediction error, particularly in regions
where the motion activities are relatively high
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Figure 1 Mean square error performance using the second previous frame for prediction
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Figure 2: Motion compensated prediction error images for Suzie sequence
(a): Walker & Rao scheme (b)* Proposed scheme.



Pel-recursive motion estimation algorithm

H Gharavi and H Reza-Alikham

A new pel-recursive motion estimation algorithm for video coding
applications 15 presented The dervation of the algonthm 18 based
on recursive Jeast-squares esttmation that mimimises the mean-
square prediction error A comparison with the modified steepest-
descent gradient estimation technique algonthm shows sigmificant
mprovement m terms of meansquare predichon error
performance

'

niroduction Netravall and Robbins [1] developed a pel-recursive
patio-temporal steepest-descent gradient technique i which the
splacement of a pel (picture element) was predicted from previ-
usly transmitted information Since then various algonthms have
een proposed to mmprove the performance of pel-recursive
otion estimation (PRME) techmques The most important con-
ribution was the modification of the steepest-descent algorithm
eveloped by Walker and Rao [2] In this Letter we present a sim-
le but very efficient PRME algonthm that significantly outper-
tms the modified steepest-descent techmque

roposed algorithm For the sake of our analyss, we assume the
anslational movement of an object 18 m a plane parallel to the
amera and illummation 15 uniform 'We also assume the effect of
ncovered background to be negligible Under these assumptions,
t S(x, y, 1) denote the monochrome mtensities at point (x, 3) of a
hoving object 1 the image plane where 1ts translational move-
ent 1s at a constant velocity of v, and v, We can show that after
¢ second (one frame penod), the object moves to a new location
here we can show

Slzy t+ A8 =S[(z+ A0, {y+vAt) 1] (D)
ter expanding the field in a power series 1n At and neglecting the
igher-order terms, the frame difference can be shown as
I Ie)
S(Tay 1‘+/_\.t)-S(x,y f) = %S(me t)d.x:""'éas('rwy t)dy
(2}

here d, and 4, correspond to the horizontal and ver tical compo-
ents of the motion vector D Assumung 9/9x S(x, y 1) and 9/
x, y ) are known for each x, y, t, and defining ED, LD, and
as the magnitude of the element, hine, and frame difference at
it », from eqn 3, we can write

FD=%TD (3)

here

5(tn,Yn t)] [ED] @

&, =

n [ayS(mn,Jn t) LD

om eqn 4 the frame difference (F/) measurement 1s
£, = ®TD + nose {5)

here D = [d(x), 4077 1s the motion vector estimate
For a cluster of M moving pels, the least-squares esttmate of D,
er carrymg out the minumisation, can be shown as

m m
Z Pnbn = D Z (I’ﬂq);{ (6}
n=1 n=1

M
2 T
n—ﬂgén& and R_—Z'ﬁ@ (7

estimated motion vector from eqn 6 15 obtaned as
D=R"y (8)

r recursive esttmation of i and R, we can write

T =11+ ®nln

R =Ry +3,07 (9)

ased on the so-called matrix inversion lemma, the inverse of R,
1 be obtamed as
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RNG,.8TRY
“t_oprl Ll rtn -l 10
=TT eTR L, (1o
From eqns 8 — 10 J
_ _ R7L&, _
D.=D_y~—22 2 (37D, ;-6 (1)

1+3TR\ &,

In the above equation, the term m the night-hand-side bracket can
be replaced by what 15 known as the displaced frame difference
(DFD) Thus,

[DFD(z,y,D,1)]  (12)

R\ &
D: = D:—l - 2

1+9TR L%,
To avoid matrix mversion at each iteration, eqn 12 can be stmph-

fied by 1gnormg the ¥ and y cross terrns m calculatmg ¢, and R
Thus, from egns 4 and 7, :

$.(z)=ED and @,(y)=1L .
R(z) = MZED2 and R(y)-—ZLD2 (13)

Applymg eqn 13 to eqn 12, the components of the motion dis-
placement estimates are

d.(z)= (f,—](l') - ?Z:_E:%I;-_.FW{DFD[L%&‘_I('I}]}
A
&) =d_y (1) - }‘I_IZ:LL%E{DFD[LT ,c?,_l('r)]}

(14)

Swnulation results The computation mvolved m eqn 14 15 per-
formed recursively At each iteration the estimated motion dis-
placement 1s applied to measure a new DFD This would first
require obtaining the location of the displaced pel on the previous
frame, based on the esttmated components of motion displace-
ment Since the motion estimates are expected to be non-mteger,
the lummance value of the displaced pel 15 predicted by a two-
dimensional mterpolator which uses the four corners of the sur-
rounding pels in a two-dmensional grid In our expenments, the
DFD 15 measured at two locations with reference to the current
pel, the pel above (1¢ previous Ime), and the previous pel along
the same Iine The average of the two DFDs (with equal weight-
ngs) 15 then used to update the displacement estimates

The ED and LD m eqn 14 were also measured using the mter-
polated lurminance values from the displaced previous frame For
ZED? and ZLD? the summation ncludes the luminance values of
five mterpolated neighbournng pels from the previous frame

522 : 29
‘9'20 27
o 18 25
g 23
%16 -
o 14 19
[ =

T 12 i7
E gl 1

5%
41 45 49 53 57 6t 65
frame number

0
43 53 57 61 65 €9
{rame number

a
022/

Tig 1 Mean square error performance using second previous frame for
prediction

a Salesman sequence

b Suzie sequence

—M— no motion compensation
—#— Walker-Rao algonthm
—A— proposed algorithm

Two wideo sequences, known as ‘Salesman’ and ‘Suzie’, were
used to evaluate the performance of the proposed algorithm The
format of both sequences was based on the common mtermediate
format (CIF) 352 pels by 288 lines and 30 frames/s}) In addiion,
for the sake of comparison, we have simulated the Walker-Rao
algorithm [2] The simulation results of both schemes, 1n terms of
mean-square prediction error {in dB), are shown n Figs laand b
for the ‘Salesman’ and ‘Suzie’ sequences, respectively We have

No. 21 1285




also included the results of 1nterframe predichion witheut motion
compensation (t¢ frame difference) The number of ilerations for
both schemes was three The above algonthm was applied to those
pels the frame difference of which exceeds a predefined threshold
(ie |FD| > 9 In addition, these resulls weie obtamned using the
second previous [rame for prediction (1e skippmg one frame) It
15 clear that the proposed scheme sigmificantly seduces the motion
compensated prediction error In terms of subjective comparnsons,
Fig 2 piesents the motion compensated prediction error mmages
between frames 49 and 51 of the *Suzie’ sequence In these images,
relatively darker or lighter patches represent the degree of maccu-
racies n estimatmg the components of the motion displacement
Comparmg the two mnages confirms the superior performance of
the proposed scheme over the modified steepest-descent algorithm,
particularly i regions where the motion activities are relatively
high

2

Fig 2 Mounwon compensated prediction erior nmages for Suzie sequence

a Walker-Rao algonthm
& Proposcd algorthm

Conclusion We have proposed an efficient pel-recursive estimation
technique for motion tracking and coding of moving images The
proposed algonithm has been compared with the modified steep-
est-descent gradient algouthm The 1esults indicate a considerable
reduction n the prediction error, particulally m regions where the
motion aclivities are relatively high
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Montgomery residue number systems
BJ Phillips

The Montgomery residue number system (MRNS) for long word-
length anthmetic 15 mtroduced MRNS, a modification of the
restdue number system {RINS), represents a long integer as a set of
sialler Montgomery residues Long integer addition, subtraction
and multiplication can then be performed using hardware-cfficient
Montgomery operations applied mdependently to cach of the
residues  An MRNS  hardware architecture  suitable  for
mcorporalion on a microprocessor data path 1s also proposed

Bachground Residue number systerns (RNS) have long been con-
stidered an eflicient means of performing long word-length addi-
tion, subtraction and muluiphcation [1] Recent efflorts have
succeeded 1n reducing the cost of RNS modular multiplication and

1286 ELECTRONICS LETTERS

regmted mterest m RNS, especially for the unplementation of
public-key cryptosystems [2] The Montgomery residue number
system (MRNS) described in this Letter 15 a modification to RNS
that permuts the use of hardware-efTicient Montgomery multiplica-
tion and reduction [3]

Residie rmomber systems In RNS a number X 1s represented by its
tesidues modulo a set of co-prime modub {my_y, , my, 1} We
write X = (x| il )RNS( ) boyyling) where x, = X mod m,
= (X),,, The dynamic range of the RNS (the number of different
values that can be represented) 1s given by M = i m,

Adduion, subtiaction and multiplication can be performed
within RNS by operating on cach of the k residues independently

X+Y = ({Zr1 + Ye—1)my |

{z1 + y1)m {0 +"‘Jﬂ)mu)nNS(mk-ll Jma|mo}
X =Y = {{Zr-1 = Pr1)mrcs|

[{z1 — 11} m, [ {70 _yﬂ)?"O)RNS(nu-ﬂ Jmy|mo)
X xY = ({Zr-1 X Yr—1)myea|

{21 % Y1)l (20 X Y0)mo) rws(my_s] fmalmo)

Monigomery residues  As discussed im subsequent Sections, Mont-
gomery’s reduction method [3] is an altetnative to full modular
reduction with advantages for hairdware implementations Fo1
now, let us concentrate on the mathematical formulation of Mont-
gomery reduction and begin by definmg a Montgomery residue 37
thus % = xy, mod m, Montgomery reduction 15 the funclion
MR, (x) = x;7' mod m; so that MR, (%) = x, mod m, The
Montgomery residue X, 1s umque for each residue x, provided r, >
m, and »1, and r, are co-prime numbers [3] Therefore, for every
represeration withun a residue number system, there 1s an equiva-
lent representation m the Montgomery residue number system
thus

X = (ﬂ:k_ll

= (-Lk—ll

|‘Tl |IO)RNS(mk—1| {my}me})

IZ11T0) Mrn s(mey] [mafmo)

MRNS operations The Monigomery sum, difference and product
functions can be defined as

MSm, »(T5%) =L+ Fimod m,

MDy, (5. 7) =T, —Fimod m,

MEPn, 5 (T0,T) = M, v, (T2 X §) = .37 mod m,
Note that if z, = x, + y,mod »3, then Z, = MS,, (% , )iz, =
Y, — ¥, mod i, then 7, = AD,, (5, 3,), and if z, = x, X y, mod
m, then Z, = MP, (X, 3,) Also note that the Montgomery sum
and difference fuactions are dentical to full modular addition and
subtraction but that the product function makes use of Mont-
gomery reduction v

Using these functions additton, subtraction and multipheation
can be performed directly on numbers in MRNS representation

X+Y = (M8m_y re (T, T-1) |
'AIS?RI,TI (Ehl.a ?I) IMS’“D"'D ('I'_U’ y_ﬂ)) MARNS(my 1] |mylme)
X - )., = I\IDm,,_,_,-l_l(a,k_.l,yk_;) |

|M Dony oy (T2, TOHM Dm0 (T0:T0)) pg gy sme | fraaimo)
X xY = (AIRnk—lyrl—l(‘l’k—l-’yk—l) |
M-{Pml.n (ﬁ; _1) IMPmu.?‘u (En %DMRNS(mk_ﬂ {mi1|ma)

Comerting to and fiom MRNS Converston between MRNS and
RNS can be straightforwardly accomplished by converting each of
the & residues using x, = MR, (%) or % = MP,, .(x, r! mod
m} Note that 1 ihe latter equation r? mod m, may be pre-com-
puted

It 1s also possible to convert directly to MRNS using a sum of
pre-computed residues approach If we take an n-bit number X in
a mult-precision form as w-bit words

nfw—1

x=

11th October 2001 Vol. 37 No 21
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Chapter 1 Introduction

Chapter 1

Introduction

1.1 General Overview and Background

Of all the technological achievements 1n the 20th century, broadcast television has

assumed a dominant role and has shown a great usage and effect in our everyday life

to such an extent that today 1n the U.S. there are more homes that contain a television set

than have telephone service

Television has perhaps had the greatest effect on our everyday lives. For many people, a
television set is an obscure box in the corner of their living room - providing education,
entertainment, and etc, Children are now said to be addicted to 1t and there is no doubt that
the nature of leisure time activities has radically changed over the past thirty years to
accommodate television. Telecommunications systems have also invaded our home People

can now hold a telephone conversation as comfortably as they would do face to face Going
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further it became possible to combine pictures and sound and transmit them wvia telephone

lines for video conferencing,

The telecommunications system has been able to take advantage of new technology
enabling modern digital network to become available to everyone Recent advances 1n
mobile communications have shown high potential for telephones to be associated with

mdividuals rather than theirr home and offices.

But the evolution 1n television and telecommunications systems has followed different
paths Since the mtroduction of color television in the 1950's, there have been no sigmificant
changes to the mechanism of picture transmission and display. The difficulty mn modifying
the television signal that 1s broadcasted for local distribution 1s that the television receiver
would almost certainly need to be modified or replaced. The difficulty of achieving thus

with an invested base of over $10 billion 1s staggenng

In thts country, the 625 line format has been with us for a long time and for many people,
their perception of improvements 1n the quality of television has been assisted by advances
1n associated audio reproduction, particularly since the advent of NICAM digital stereo
The telecommunications system, on the other hand, has been able to take advantage of new
technology to provide a modern, digital network, available to the users. So 1t is natural that
in thinking of television transmission we immediately think of the signal that 1s broadcast

into the home. More efficient encodmg of this signal would free valuable spectrum space.

There is a large amount of pomnt-to-point transmussion of picture matenal taking place
today 1n addition to UHF/VHF broadcasting. For example, each of the four U.S television
networks has a distnbution system spanning the whole of the continental United States,
international satellite links transmit live programs around the world. Video-conferencing
services are recelving increasing attention. Satellites are transmitting to earth a continuous
stream of weather photographs and earth-resource pictures, and there are a number of

important military applications such as the control of remotely piloted vehicles and so on
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Taking account of this background, 1t is perhaps surpnising that the concept of combining
pictures and sound 1nto a single PSTN channel for video conferencing has taken so long to
evolve. The essential difficulty 1s that bandwidth is hmited m the services provided by
telephone companies on the basis that to transmit speech, only 4 kHz 1s required for
acceptable quality. Broadcast quality digital television, on the other hand, mn comparison
with a digitized speech signal at 64 kb/s, requires over 100 Mbuts/s to supply pictures Even
existing terrestrial channels allocated for television cannot accommodate this amount of
data. Consequently, video compression and coding appear to be the best approach to the
problem, until someone provides a mass communications system m which bandwidth 1s not
a himitation Further more efficient coding of picture material for these applications
provides the opporturuty for significantly decreasing transmission costs, these costs can be
qute large. The aim of efficient coding s to reduce the required transmission rate of a

given picture quality so as to yield a reduction in transmission costs.

Some early efforts 1n picture coding used analog coding techniques and attempted to reduce
the required analog bandwidth, giving nse to the term "bandwidth compression".
Complex mampulations of the signal are today much more easily done by first sampling

and digitizing the signal and then processing the signal in the digital domain rather than

using analog techniques

Ideally, one would like to take advantage of any structure (both geometnic and statistical) in
a picture signal to increase the efficiency of the encoding operation Also the coding
process should take into consideration the resolution {amphtude, spatial, and temporal)

requirements of the recetver, i e., the television display and very often the human viewer

(1].

International co-operation has proved important in the development of video codec
algorithms. Under the auspices of the CCITT, now known as the International
Telecommumcation Umon (ITU), a recommendation was published in 1990, describing the

framework of a video codec intended for use on the ISDN system on channels of 64kbats/s

Its primary concern is the removal of redundancy, which occurs within and between picture
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frames Intraframe coding can be used to compress a single frame and redundancy 1s said to
be present where the picture comprises of groups of adjacent equal value picture elements,
or pixels. Simularly, where pixel values have not changed over time, interframe coding can
remove temporal redundancy. Only changes in picture content need to be supphed to the

decoder and, as a result, an efficient mechanism of picture coding 1s developed.

In most cases, however, video codecs are said to be lossy, since additional processing tends
to lower the resolution and mtroduce errors This said, provided certain requirements of
quality are kept, most users are unable to detect coding errors and those who do will

probably be able to tolerate them.

The immplementation of video codecs has also been limited by the technology available.
Where real-time processing 1s required, compression and coding must be performed at high
speed - a requirement that VLSI technology has recently appeared to be able to satisfy A
new generation of software video codecs is bemng proposed i current ITU
recommendations, to work on the growing number of personal computers connected to the
PSTN by a modem As the processes are refined and the technology 1s improved, video

conferencing codecs will become less expensive and more widely available, Whether they

become more popular is, however, a different matter. It took many years for televisions and
telephones to get imnto most homes and wariness about seeing the person the user 1s talking

to may, for some while, make the videophone something the public feels 1t can do without

1.2 Aims, Motivations , Objectives and the Scope Of The Research

This thesis examines the current state of video technology and assesses different aspects of
video compression. Further 1t goes into developing new ways of motion estimation The
combined new proposed algorithm with block matching is to contribute a higher
performance to the existing algonthm which 1n time could perhaps given rise to an

alternative standard.
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1.3 Structure and outline of this Thesis

Chapter two provides the reader with an msight into contemporary techniques of video
compression. Although motion compensation 1s a very wide-ranging topic, chapter 2
concentrates on the principles of DPCM and block matching motion compensation This
chapter also considers the ISO/MPEG standard and comes up to date with the latest H 263
recommendation for very low bitrate video codecs, using the framework of the H 263
algorithm.

Chapter three Analyses the state of the art techmques of another class of image
compression known as pel-recurstve motion compensation with focus on the pel-recursive
Wiener-based displacement estimation algonthm.

Chapter four Investigates the novel techmques of displacement estimation algorithm in
comparison to existing techniques.

Chapter five shows experimental results illustrating the performance of a few applications
applying the proposed 1dea and method to some degree.

Chapter six examines the novel tdea of combining the two different classes of image
compression, the block matching motion estimation and pel-recursive motion estimation,
mnto a Hybrd system.

Chapter seven concludes the thesis with a summary and provides conclusions drawn from
this work. Also suggestions for further work are made, particularly in the area of 1mage
compression, expressing the trade-off between quality and compression complexity which

could outhine and open up further avenues of research
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Review of contemporary techniques

2.1 Introduction

ver fifty years have passed since the introduction of broadcast television 1n the
O United Kingdom. However, 1t 1s only recently that the concept of using moving
pictures for interactive video and multimedia has received interest, as the costs of
transmitting a television signal over anything other than short distances have proved
prombitive 'We have been limited to sending mainly still images over the public

telephone network, mainly due to restriction in the bandwidth available to most users

It seems paradoxical that whilst the technology of digital television has advanced 1n
remarkable leaps in recent years, we still have no efficient, widespread means of
sending high quality video over the telephone network for the purposes of
videotelephones One of the fundamental costs of colour television 1s the bandwidth
required to transmit a channel of sound and pictures The five terrestrial channels
allocated m the Umted Kingdom have equivalent digital bandwidths from 12 to
24Mbuts/s, which would be msufficient to carry sound, chrominance (colour) and
luminance (brightness) signals without any form of compression It 1s the scarcity of

space in the radio-frequency spectrum that has hmited the extent of broadcast television
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In its uncompressed state, conventional broadcast-quality digital television requires bit
rates of typically 166 megabits per second - well over that available for the 2 Mb/s link
Integrated Services Digital Network (ISDN) [2] channel and it is not economical to use
155 Or 622 Mb/s links. Given this primary constraint, contemporary research has
focused on the compression of video images, allowing transmission of low resolution
images over digital networks. In most cases, compression is easy to achieve, removing

spatial and temporal redundancies naturally occurring in sequences of images.

Figure 2.1.1 A frame of Suzie, demonstrating picture redundancies.

Consider the image of figure 2.1.1. This could be regarded as typical of a
videoconferencing scene, where during the conversation, most of the picture will not
change other than, say, the lips, eyes and occasional hand or head movements. This
feature can be used to good effect, such that only information about differences that
have occurred will need to be sent to the recipient. This process is called interframe
coding and is ideal for the low level of temporal changes, associated with
videoconferencing. Interframe coding is based on the fact that there exists a large
amount of frame-to-frame correlation in moving images, which is also called temporal
correlation. It is also possible to extract information about differences between spatially
adjacent pixels at a given instant in time. This process is called intraframe coding and

efficiently compresses large areas of consistent colour and shade (the plain background
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in this example). Boundares are easy to detect, where sigmficant changes mn lumnance
and chrommnance occur Interframe and intraframe coding are two methods of
redundancy compression that have been used to good effect in the development of

videoconferencing hardware for transmission over telecommunications channels

The mtrmsic effect of redundancy coding is not to reduce picture quality sigmficantly,
or to affect spatial resolution However, subsequent processing of the difference
information can take place, where useful mformation can be described as those aspects
of the image that convey meaning to the human viewer, even if that is only a small
proportion of the image content The contrast sensitivity function [3] allows
understanding of the human ability to detect spatial and temporal detail Assumung the
human eye can resolve down to two minutes of an arc, it can take 1n the equivalent of a
million pixels of mformation without moving By mowving the eye, but not the head, the
field of view 1s at least an order of magmtude greater We know the head 1s likely to
remain stattonary whilst a person 1s doing something specific, but the eyes are moving
continuously. If we assume that to represent the colour and luminance of a pixel, 12 bits
are required, over 100 million bits of information are needed to represent the user's

static scene

Consideration of these factors gives an understanding of the essential nature of video
compression algorithms, It is necessary to take a picture, which under normal
circumstances would require extensive data representation, and code 1t to the constraints
of, telecommunications network, whilst mamntaining an image satisfactory to the human

perception

At an early stage, the international telecommunications communty 1dentified the need
for close collaboration to ensure the adoption of a system which could be applied 1n all
countries and make videotelephony available to a world market. Even though a
European standard specification did emerge n the 1980's [4], for a 2Mbats/s, 625 Iine,
25 frames per second PAL system, demand 1n North America required plans using the
525 line, 30 frames per second NTSC system Subsequently, the conversion between
these standards was regarded as the focal point of international co-operation and under

the auspices of the Orgamzation now known as the International Telecommunication
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Union * (the ITU), a videophone algorithm was recommended, meeting the needs of the

new ISDN systems and working for all bit rates between 64kbits/s and 2Mbuts/s

The resulting ITU-T Recommendation, H 261 [5][6], forms the basis of the international
development of videoconferencing systems using the new ISDN networks bemng
installed throughout the world However, many concepts used are equally applicable to
other areas of video codec design, such as high-defimtion digital television (HDTV),
where an mncreased amount of picture data is to be transmitted within the constraints of

existing terrestnal bandwidths

* The International Telecommunication Union was formed from an amalgamation of the

CCITT and the CCIR

2.2 Review of Image Compression

In 1mage transmisston and storage, digital techniques instead of analog are increasingly
used due to the rapid growth i the use of digital computers, and the decliming cost of
digital processing and transmutting equipments This 1s also because the digital
transmisston and storage system has many inherent advantages over the analog system,
such as easy processing, processing flexibility, easy and random access in storage,
higher signal-to-noise ratio (SNR), possibility of errorless transmission etc. However,
images, whether digital or analog, contain a large amount of mformation and require
wideband channels for transmission and big memory for storage, especially digital
images. For example, a 4MHz television signal sampled at Nyquist rate with 8 bit
samples could requre a transmmtting bandwidth of 64 MHz. Therefore 1t 1s highly
desirable to compress 1mage data for transmission and storage A lot of techmques for

digital image compression [7] [8] have been developed.

The statistical properties of 1mages are the main reasons that images can be compressed

The statistical property upon which intraframe coding techmques rely 1s the high
correlation between neighboring pixels This means that adjacent pixels are usually
similar to one another and the magmtude of a pixel may be estimated from the values of

the pixels around 1t Most images, even fairly active images which contamn a large
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amount of spatial detail, have quite high values of correlation For example, m moving
mmages, the background is likely to remamn stationary in successive frames The
correlation 1n one frame of an 1mage or successive frames are image data redundancies

which can be reduced without apparent degradation of 1mage qualhity

Image compression techmques can be classified into two classes, namely information
lossless and information lossy techniques The former is able to reconstruct the original
image without any loss of information, whereas the later introduces some distortion in
the reconstructed image and cannot recover the original image exactly which can not be
perceived by human eyes. Lossless and lossy compression technmiques are used mn
different applications For example, medical images often require completely lossless
compresston because any shight distortion may result in wrong diagnosis In other
applications, such as entertainment, education etc, the reconstructed 1mages need not
necessanly be exactly the same as the ongmnal ones and lossy compression techniques
are then widely used The lossless techniques normally reach lower compression ratio

while the lossy techmques can reach higher compression ratio.

2.3  Transform Coding Technique

One of the most effective 1mage compression technmques 1s transform coding The basic
motivation and fundamental principle behind transform coding [9] [10] 1s to transform
the image from the data domam to a frequency domain by an energy preserving unitary
transform In the frequency domain, the image pixels are decorrelated and the energy 1s
concentrated on a few coefficients so that the high frequency coefficients and the
coefficients with less energy can be removed without any wvisual effect on the
reconstructed image, since they play less important roles in the image reconstruction
The transform could be applied to the entire 1mage but implementation problems make
this impractical First, the amount of the memory and the computation required increase
proportionally to M?, where M is the image dmmension. Second, because of the
elimmation of unimportant coefficients, small transform size often leads to more
significant degradation than a large size A typical approach 1s to divide the image 1nto a
number of rectangular blocks or sub-images, normally the input image 1s partitioned
intoNx N(eg 8x 8 or 16 x 16) blocks (sub-images), and then an umtary transform is
applied to each sub-image A block size 8 by 8 has been adopted for most video coding




Chapter 2 Review of contemporary technigues

standards mamly to reduce the transformation complexity as well as better exploitation

of image redundancies between the neighboring blocks

After the transformation, actual image compression is achieved by quantizing the
transform coefficients, If all the coefficients are quantized and coded, the compression
ratio is quite small. It has been pointed out that the important charactenistic of the
transform is that most of the energy of the image 1s packed into a small number of low
frequency coefficients and the coefficients with less energy or the high frequency
coefficients play less important roles in the image reconstruction To achieve higher
compression, one possibility 1s to use a mask covering an area of low frequency
coefficients and to discard the remaining coefficients, 1 e. set the remaining coefficients
to zero Only those coefficients in the mask are quantized and coded Considerable
compression can be achieved depending on the size of the mask used 1n this method
This technique 1s known as zonal coding The only problem with the zonal coding
approach 15 a blurring effect as a result of the elimination of higher frequency
components Another possibility 1s to use a threshold on each transform coefficient and
set the coefficients which are below the threshold value to zero The remaining non-zero
coefficients together with their address information are quantized and finally entropy
coded efficiently by coding schemes such as, Huffrnan coding [11], anthmetic coding
[12] or combiming Varable Length Coding (VLC) and runlength coding For better
subjective image quality, the quantizer n all cases should be designed to optimize the

reconstructed image quality for a given number of bits

The encoded image is transmitted through the channel (or stored) An inverse operation
is performed at the recerver end. A number of orthogonal transforms can be used mn the

transform coding and most of them are linear transformations

Transform coding has a good immumty to channel noise. In transform coding, a code
error in transmission only influences the corresponding block and has no effect on the
succeeding blocks because this error 15 distributed by the reverse transform over the
entire block. Visually, a code error 1n the transform coding is less visible than that in
predictive coding However, the transform coding has some defects First, since the

mage 15 divided mto blocks, block to block correlation 1s not employed 1n the

11
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transform Furthermore, artificial blocking segments the image arbitranly without
considering 1ts contents Second, in transform coding at low bit rate, sometimes so
called blocking effects are apparent 1n the reconstructed image Blocking effects are
percerved 1n the reconstructed 1image as visible discontinuities between adjacent blocks
Thus 1s especially visible around the boundaries of moving objects and, still background
Ths is caused by the improper coding of the transform coefficients, such as elimmating
too many coefficients or due to coarse quantization Finally, transform coding needs
more operations and memory than predictive coding This 1s improved due to the
rapidly decreasing cost of digital hardware and computer memory, and this may no

longer be a disadvantage

|

|

2.3.1 The Karhunen-Loeve Transform (KLLT) Technique l

The Karhunen-Loeve transform [10] 1s an optimal linear transformation in the sense that

it completely decorrelates the data and maximzes the amount of energy compacted nto

the lowest order coefficients However, 1t 1s not certain that the XLT is the absolute

optimum transform since 1t does not consider other factors such as the human visual

system Additionally, the transform matnx depends on the image data, t ¢ the transform

matrix 1s different for different image data Thus, the KLT transform matrices are also

transrmitted and stored along with the coded data, Furthermore, the amount of

computation in the transform matrix generation is very large and the KLT has no fast
|
|
|

transformation algonithm associated with 1t.

Because of the computation complexity, the large storage requirement and dependence

on the input 1mages, the KLT 1s seldom used 1n practice but 1t is employed 1n theoretical

studies of image coding It gives an mdication about the upper bound computational
efficiency of what other transformations should attempt to reach for decorrelating data

samples.

2.3.2 The Discrete Fourier Transform (DFT) Technique

The discrete Fourier transform [10] 1s naturally applited to image coding because of 1ts
widespread use m other signal processing fields and the fact that it has efficient
computational algonthms and fast implementation It 1s the only complex transform

used n data coding schemes The DFT 1s not convenient for general use due to the
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necessity to evaluate both real and imaginary components, which require a large number

of operations and large storage

2.3.3 The Walsh-Hadamard Transform (WHT) Technique

The Walsh-Hadamard transform [10][13] 1s the simplest transform among vanous types
of orthogonal transforms The elements 1n the transform matnx are either 1 and -1, and
the only multiplication needed is that of the final scaling operation However, it is too

simple to compact energy well

2.3.4 The Discrete Cosine Transform (DCT) Technique

The Discrete Cosme Transform (DCT), which 1s an information lossless techmique
[10][14][15] was proposed by Ahmed et al 1974 It 1s one of an extensive family of
sinusoidal transforms At that time, there was increasing interests in the class of
orthogonal transforms, such as the discrete Founer transform, the Hadamard transform,
m the general area of digital signal processing, such as image coding, pattern
recognition etc, It 1s known that the KLT 1s the optimal transform with respect to
performance measure, but it needs a large amount of computation and has no fast
transform Compared with other orthogonal transforms, the DCT has the best all-around
performance with respect to efficient computation and acceptable perceptual quality for
a given compression rate. It also has correlation reduction capability, good energy
compaction and fast computational properties [16] It 1s a widely used transformation
for image compression for example i JPEG still-image compression standard
Therefore, researchers tried to develop a transform which 1s close to the performance of
the KLT and has fast algonthms To fill the role, the discrete cosine transform was

proposed

The two-dimensional discrete cosine transform of a data sequence X¢x, y} is defined as

13
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The mmverse two-dimensional discrete cosme transform 1s defined as.

= L5§ ¢ (2x + Dum (_2y_+1)v_ﬂ]
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Whereu, v=0, 1, . ,N-1

It has been shown that the performance of the DCT 1s nearly identical to the KLT
transform for blocks of reasonably large size [17] Furthermore, the empirical evidence
shows that even for blocks of small size the performances of the DCT and the KLT are

close It also has correlation reduction capability, minimum block distortion, superb

high energy compaction and fast computational properties [18] [19] DCT 1s widely
used transformation for image compression for example m JPEG stll-image

compression standard

Since the computation effort for DCT 1s quite large for time critical applications, fast
versions of the DCT[20] [21] have been proposed Though speed performance i1s
improved by the fast algonthms, the fast algonthms still require a large amount of

computation DCT can be hardware implemented by digital signal processor to achieve

Iigh speed at reasonable cost
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2.3.5 Hybrid (Transform / DPCM) Coding system

Hybrid coding [23] — [25] is a kind of techmque which combines transform coding and
predictive coding together to generate a better coding scheme It takes the advantages of
transform coding and predictive coding and overcomes their short comings to a certain
degree Generally, hybrid coding performance lies between transform coding and
predictive coding This techmque removes the spatial redundancies, which normally
exist between the neighbouring pixels within a two dimensional 1image array Hybnd

coding 1s less sensitive to channel errors than predictive coding

Typically, in hybnd coding, a two-dimensional 1image 1s unitanly transformed to obtain
a sequence of one dimensional sequences Each of these sequences is then coded

mdependently by a one dimensional predictive coding techmque, such as the DPCM

2.3.6 Differential Pulse Code Modulation (DPCM)

In PCM time discrete, amplitude discrete, representation of the sample 1s made without
removing much statistical or perceptual redundancy from the signal The time
discreteness 1s provided by sampling the signal generally at the Nyquist rate, amplitude
discreteness is provided by using a sufficient number of quantization levels so that the
degradation due to quantization 1s not easily visible In DPCM, the sample to be
encoded 1s predicted from the encoded values of the previously transmitted samples and
only the prediction error 1s quantized for transmission Such an approach can be made
adaptive erther by changing the prediction or quantization or by not transmitting the
prediction error whenever 1t 1s below a certain threshold, as in conditional

replenishment.

In basic predictive coding systems [26]-[28] (Fig. 2 3.6 1) in their stmplest form, DPCM
uses the coded value of the previously coded honzontal information (pel} that has been
transmitted as the prediction However, more sophisticated predictors, use the previous
line (two-dimensional Predictor) as well as previous frame of information (interframe
predictor) The error resulting from the subtraction of the prediction from the actual
value of the sample 1s quantised into a set of discrete amplhitude levels, These levels are

represented as binary words of either fixed or vanable length and sent to the channel

15
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coder for transmission The predictive coder has three basic components. 1) predictor,

2) quantizer, 3) entropy coding

Codes to
channel
Input j Decoder OUtPUt
—>®—» Q » Encoder [} /—> D + >
r
A §
Quantizer Codes
from
P A binary PL
omant channel susol
Predictor
Transmitter Recerver

Figure 2.3.6.1 Block diagram of a DPCM transmitter and receiver.

1 - Predictors for DPCM coding can be classified as linear or nonlinear depending upon
whether the prediction is a linear or a nonlinear function of the previously transmitted
sample values. A further division can be made depending upon the location of the
previous elements used: one-dimensional predictors use previous elements in the same
line, two-dimensional predictors use elements in the previous lines as well, whereas
interframe predictors use picture elements also from the previously transmitted frames
Predictors can be fixed or adaptive Adaptive predictors change their characteristics as a
function of the data, whereas fixed predictors maintain the same characterstics
independent of the data. As an example of adaptive prediction, see Habibr [29] for

predictors which use different numbers of picture elements within a frame.

The set of predictors from which a predictor is selected are usually linear and are chosen
such that each one of them will give a small prediction error if the signal was correlated
in a certain manner. In Graham's predictor [30]-[32], either the previous line or the

previous element 1s used for prediction, and the switching is done by the surrounding

line and element differences. Several extensions have been made to this basic
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philosophy However, the results have not been very encouraging 1n terms of the mean
square error or the entropy of the prediction error In some cases the rendernng of certain
types of edges can be remarkably improved by these adaptive predictors Ancther
vartation [33] in adaptive prediction 1s to use a weighted sum of several predictors,
where the weights are switched from element to element and are chosen by observing
certain charactenistics of already transmtted neighboring pels The same calculation can
be performed at the recerver and, therefore, the predictor switching information does not
need to be transmitted Such techniques have been considered for gray level signals
[34].

The more successful adaptive predictors for frame-to-frame coding are the ones that
take mto account the motion of objects These are based on the notion that, if there are
objects moving 1n the field of view of a television camera and if an estimate of their
translatton 1s available, then more efficient predictive coding can be performed by
taking the differences of elements with respect to elements in the previous frame that
are appropriately spatially translated. Such prediction has been called motion
compensated prediction [35] [36] Its success obviously depends upon the amount of
translational motion of objects 1n real television scenes and the ability of an algonthm to
estimate translation with the accuracy that 1s desirable for good prediction One set of
techniques developed [37] [38] obtain an estimate of translation 1 a block of pels,
whereas techniques developed by Netravall et al [39]-[41], recursively adjust the
translational estimate at every pel or at every small block of pels. Another approach to
motion compensation 1s adaptive linear prediction by using elements in both the present
and the previous frame (or field), which surround the element bemng encoded, and
adapting the coefficients to mimmize an intensity error function [42]. Such an approach
13 1mplementationally difficult and requires transmission of coefficients of the

predictors

In scenes with higher detail and motion, field difference prediction does better than
frame difference prediction [43] As the motion 1n the scene 1s increased further,
intrafield predictors do better [44] Ths 1s largely because for hgher motion, there 1s

less correlation between the present pel and either the previous field or the frame pels

17
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For the same reason, predictions such as element or line difference of frame or field

differences perform better than frame or field difference for higher motion

2 - Quantization® DPCM schemes achieve compression, to a large extent, by not
quantizing the prediction error as finely as the original signal tself. Several methods of
optimizing quantizers have been studied Most of the work on systematic procedures for
quantizer optimuzation were taken from studies of DPCM coding, mn which the
approximate horizontal slope of the mput signal 1s quantized Three types of
degradations can be seen due to the improper design of the quantizer of a DPCM coder
These are referred to as granular noise, edge busyness and slope overload as shown 1n
Fig 2362 If the mner levels (for small magnitudes of differential signal) of the
quantizer are too coarse, then the flat areas are coarsely quantized and have the
appearance of random noise added to the picture On the other hand, i1f the dynamic
range (1e, largest representative level) of the quantizer 1s small, then for every high
contrast edge 1t takes several samples for the output to follow the mput, resulting m
slope overload, which appears similar to low-pass filtering of the mmage For edges
whose contrast changes somewhat gradually, the quantizer output oscillates around the
signal value and may change from line to line, or frame to frame, giving the appearance

of a busy edge Quantizers can be designed purely on a statistical basis or by using

certain psychovisual measures
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Largest quantizer

output determines
Slope overhead
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Figure 2.3.6.2 An ituitive classification distortion due to DPCM coding.
(Adapted from digital picture)

It had been realized for some time that for a better picture quality, quantizers should be
designed on the basis of psycho-visual criteria. However, the debate [45] [46] continues
on what 1s a good criterion to use, and expectedly so, considering the complexities of

the human visual system

3-- Entropy coding is the last stage in which shorter code word are assigned to the more
frequent occurring symbols, therefore minimizing the average length of the binary
representation of the input information [47] The average information rate is given by

entropy (measured in bats) .-
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N
H(S) =- p(s,)log, p(s,) (Eqn. 2.3 6 1)
1=t
Where there are N 1nput symbols s, s, 53, , sy with probabilities p(s;), p( s2),
pis3), , p(sn)

And the average codeword length which 1s the average number of bits required 1s given

by -
N

R(S) = X Lpls)) (Eqn23 62)
=1

Where I}, I, 13, , Iy are the word length for the code words

Run Length coding (RLC) was first considered for black and white images The run
length 15 found by counting the number of consecutive black and white pixels along
each line, as an example for a horizontal Iine along an 1mage as 1llustrated 1n figure

2.3 6 3 1s 7 black-run, 3 white-run, 4 black-run, 4 white-run Where 0 and 1 represents

black and white pixels respectively

000000011100001111
Figure 2.3.6.3 An example of runtength coding.

This runlength coding method has been further developed as two-dimensional Vanable
Length Coding (2D VLC) [48] so that colour images can be encoded The mmage 1s
encoded as an EVENT. Each EVENT contains RUN and LEVEL.

EVENT = (RUN, LEVEL)

Where RUN 1s the number of successive zeros preceding the quantised coefficient

LEVEL is the non zero value for the quantised coefficient

Finally, 3D VLC [48] 1s developed to improve the coding efficiency. In this approach,
each EVENT contamms LAST, RUN, LEVEL The LAST event 1s represented by the
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End of Block (EOB) which indicates that no more zero coefficients are encoded for this
block
EVENT = (LAST, RUN, LEVEL)

Where LAST =0 there are more non zero coefficients n this block.

LAST=1 this is the last non zero coefficient 1n this block

RUN is the number of successive zeros preceding the quantised
coefficient
LEVEL 1s the non zero value of the quantised coefficient

The hmitation of this method 15 the complexity of constructing the codebook However,
1t 15 very effictent 1n terms of coding and has been adopted as part of the ITU-T H.263
Coding Standard [49].

Another problem with the use of vanable length codes 1s that the output rate from the
source coder changes with local picture content In order to send such a signal over a
constant bit rate channel, the source coder output has to be held temporarnly 1n a buffer
which can accept inputs at a non umiform rate and can be read out to the channel at a

umform rate

2.4 Block Matching

In block matching motion estimation the coding (current) frame is partitioned 1nto small
non-overlapping blocks of size m x n (where often m = n), assumng that all the pixels
within each of the non-overlapped block have the same displacement vector It is
assumed that the motion is purely translational The motion vector for each block is
estimated by searching through a larger block (search window of size m+2u x nt+2v),
centered at the same location on the previous frame, for the best matching block (figure
24 1). For the mmmmum error, set by a cnitena, the motion vector is therefore taken

from this location
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D/’_\ Search window

Current frame

Previous frame

Figure 2.4.1 Block Matching search window.

The matching of the blocks can be quantified according to vartous criteria including
Sum Absolute Difference (SAD), Sum Squared Difference (SSD), and Pel Difference
Classification (PDC), etc

These criteria are outlined as followed'-
Sum Absolute Difference (SAD)

m-1 n-1

SAD(x, )= . > |s(t, 1. k) —s(—x, 7 - y,k-1) (Eqn. 2.4.1)

x=0 y=0
Sum Squared Difference (SSD)

m=1 n-t 2

SSD(x, y) = > >[5, 1, k) - sG—x, 7 -y, k1] (Eqn. 2 42)

x=0 y=0

Pel Difference Classification (PDC)
In the Pel Difference Classification method [50], each pixel 1n the block is classified as

A matching or mismatching pixel

T(isj’ X, Y) = 1: if |S(Isf:k) ""S(I —XJ] *}’JCHI <t (Equ. 2.4.3)

=0, otherwise
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Where ¢15 a selected threshold
T(@,j,X,y) 15 the binary representation of pixel difference and its value of
either one or zero corresponds to a matching or mismatching
pixel, respectively

The numbers of matching pixels are given by G¢x, ¥), which can be defined as follows.

m=1 n-1

Gix, y) = ZZT(:,],x,y) (Eqn 24 4)

x=0 y=0

Where G(x, y) 1s the number of matching pixels that exist between the current block and
the block on the previous reference frame that was shifted by ¢ pixels and  lines

The largest value of G(x, y) 1s found by searching through a search window. This

gives the best match Thus

Gm (d,, d,) = max[G(x, )] (Eqn 24 5)

Where 1, ; are the spatial coordinates,
x,y  are the motion vector spatial coordinates,
d., d, are the components of the best esttmated displacement vector,
k is the time reference for the current frame,
k-1 is the time reference for the previous frames,
(1, j, k) is the intensity of the current frame,

5(1, 1, k- 1) is the intensity of the previous frame.

The performance of PDC from prediction matching point of view is better than the other
methods 1e. SAD, SSD . Etc In this method, the matching process is reduced to a
binary level which consequently simplifies the computational complexity, as described
by Gharavi [50] in 1990. However, the SAD method has been adopted as an

international standard because of its ssmplicity
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2.4.1 Half pixel interpolation

A half pixel searching window is created by a bilinear interpolation technique [51][52]
(Figure 2.4.1.1). Matching 1s now done by first using the integer searching window and
then using half pixel searching to find the best block match. This method has the
advantage of producing more accurate prediction than the integer pixel block matching
method However, this method requires extra computational complexity to create the
half pixel searching window. Therefore, for each of the reference blocks the search
begins with an integer pixel block first. Then the motion vector for the best match is
used to carry out further half pixel searching. This searching will carry on until the best

block match 1s found

A B
X, Oy X X Integer pixel position
O Half pixel position
Oc 0O d a=A
b=(A+B)/2
=(A+
C D c=(A+C)/2
X X d=(A+B+C+D)/4

Figure2.4.1,.1 Half pixel prediction

Anyhow, 1t was based on the previous models that all the current existing international
standards (1 e. H 261, H 263, MPEG-1, MPEG-2, etc) for video compression were built

up

Graphical representation for block matching with half pel accuracy shows on average
less than 0 05 dB improvement over traditional block matching wrthout half pel
accuracy. To justify the argument two well known sequences of “Suzie” and
“Salesman” have been employed and graphs of the Average Mean Square of prediction
Error have been plotted for sequences consisting of 20 frames (see Figures 2.4.1.2 and

24.1.3). The graphs have also been produced for different frame skips, as it is
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frequently used 1in different application . e g. video conferencing and so on In general
the graphs shows that using block matching with half pel accuracy contribute very hitle
mmprovement over block matching without half pel accuracy consideration But 1t still

widely used, for example as an optional feature 1n H 263
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Suzie Prediction Error comparison
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Suzie Prediction Error comparison
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Figure 2.4.1.2 Suzie comparison with previous frame reconstructed.
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Salesman Prediction Error comparison
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Salesman Prediction Error comparison
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Figure 2.4.1.3 Salesman comparison with previous frame reconstructed

29




Chapter 2 Review of contemporary techmgues

2.5 H.263
2.5.1 Introduction
An outline block diagram of the H.263 codec, the videoconferencing coding standard is

given in Figure 2.5.1.1.

External Control

Coding Control

v h 4

iyl Source [ - Video Multipex ] - Transmission [} -
' Coder Coder Buffer >
;?d: 01E Video Coder Coded
e E Bitstream
E Source [} Video Multiplex |} Receivering |}
— Decoder Decoder buffer
) Video Decoder

Figure2.5.1.1 H.263 block diagram of the viedeo codec

The H.263 algorithm [53][54], (which evolved from H.261{3]) 1s broadly based on its
predecessor, recommendation H.261. However, there are some changes in the basic

implementation and optional processes are available to improve the interframe

prediction (Figure 2.5.1.2).
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£
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T Transform coding

Q Quantizer

P Picture Memory with motion compensated variable delay

CC Coding control

p Flag for INTRA/INTER

t Flag for transmitted or not

qz Quantizer indicator

q Quantizing index for transform coefficients

v Motion vectors

Figure 2.5.1.2 H 263 Draft recommendation encoder block diagram
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The H 261 was ongmally devised to standardise the transmussion of audio visual
services and 1n particular the transmission of videophone and videoconference data The
whole 1dea 1s that the H 261 has a fixed bit rate of P x 64kbits/s (where P =1 30)
whereas the H 263 which has a capability of achieving lower variable bit rate and 1s
targeted for extensive deployment of any future video services The entire 1ssue of this
recommendation centers on bandwidth compression of the video signals The reason 18
that the video signal has a bandwidth of4 3Mhz (using regular television signal) as
compared to 3 4khz of voice bandwidth This 1s a ratio of 1 : 1265 Therefore in order to
transmit the video signal through telephone line, its bandwidth has to be grossly

reduced

The H 261 operates on pictures based on a Common Intermediate Format (CIF) which
has been dernived from 525 and 625 line television standards It uses a hybrid of Discrete
Cosine Transform (DCT) and Differential Pulse Coded Modulation (DPCM) and can

achieve transmission rates between 16kbps and 2Mbps.

The H 263 also uses a hybnid of DCT and DPCM but has an improved performance
when compared with H261 One of the main reasons for this 1s that half prxel precision
18 used for motion compensation whereas full pixel precision 1s used in H 261. However
the H 261 algonthm incorporates a spatial low-pass filter in the encoder feedback loop,
which has been omutted from H 263 It has been shown that the pixel interpolation
function mmvolved 1n the half-pixel motion compensation process has the effect of low-
pass filtering, without the need for a specific spatial function to remove high frequency
noise caused by the quantisation of transform coefficients and also ewvident at the
boundaries of blocks in the motion compensation process. The recommendation can
also be applied to a wider range of picture formats and allows vanable bit rates to be
used therefore mcreasing the possible uses for the package, for example it further
supports QCIF, sub-QCIF, 4CIF, 16CIF ( Table 2 51 1) resolutions which are more

appropriate to the low bit rate environment
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Picture | number of pixels [ number of pixels | number of pixels number of pixels
Format for luminance (x) | for lumtnance (y)| for chrominance (x)| for chrominance (y)

sub-QCEF 128 96 64 48

QCIEF 176 144 88 72

CIEF 352 288 176 144

4CIIF 704 576 352 288

16CIIF 1408 1152 704 576

The compressed ITU-T H.263 video bit stream contains four layers which is the same as
ITU-T H261. From top to bottom the layers are' Picture, Group Of Blocks,
Macroblock, and block. Each picture frame is partitioned into 8 x 8 image blocks. A
MacroBlock (MB) consists of 4 luminance blocks (Y), 2 chromimance blocks (Cy, & C,)

Table 2.5.1,1 ITU-T H 263 prcture formats

As shown in Figure 2.5 1.3

16

F 3

v

16

However, the Group Of Block (GOB) arrangement for the picture formats are different
from ITU-T H 261. A Group Of Block (GOB} comprises of a Kx16 lines, depending on
picture format (1e. K = 1 for sub-QCIF, QCIF, and CIF, K = 2 for 4CIF, K = 3 for
16CIF). Each GOB is divided into Macroblocks (Table 2.5.1.2) Similarly each

Figure 2.5.1.3 Macroblock structure

Cp

Macroblocks is divided into blocks.

Ce
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Picture Format | number of group of block| number of macroblock (MB)
{GOB) for picture a group of block (GOB)

sub-QCEF 6 8

QCIEF 9 11

CIEF 18 22

4CIIF 18 88

16CIIF 18 352

Table 2.5.1.2 Group of Block and Macroblock arrangement

Macroblocks for colour video sequence comprise 16 x 16 pixels luminance, plus two
corresponding 8 x 8 chrominance blocks Vectors can take the form of one per
macroblock (Figure 2.5.1.4), or on a block basis, where four vectors per macroblock
would exist. The latter forms part of the Annex F “Advanced Prediction Mode” of
H 263

XXX X XX
o o0 o©
XX | XX XX
XX | XX XX
o 0O o

XXIXX XX
X XIXX XX
o' o 0
XX, XX XX

X Luminance Sample
O Chrominance Sample

- Block edge

Figure 2.5.1.4 Posttioning of block luminance and chrominance samples
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The H 263 algorithm has been demonstrated as a versatile low bit rate video coding
procedure, taking account of the growing populanty of home personal computers
connecting to PSTN by a modem, having bitrates of 14 4kbits/s or 28 8kbits/s where
“software codecs”, using the processing power of a contemporary personal computer

can do away with the need for an expensive custom receiver

A number of additional optional functions have been included 1n the H263
recommendation m order to improve the interframe prediction performance.

« Unrestricted Motion Vectors

* Syntax Based Anthmetic Coding

* Advanced Prediction

+» PB-frames

All of these four are optional and can be selected when runming the H 263 simulation

software,

Graphical Figures 2515 - 2517 are to show subjectively how well block matching
base algonthm behaves for a sequence with relatively a fast motion. Very heavy on
prediction error means block matching base algorithms may not perform as they would, 1f
the motion were not relatively so fast These graphs are done using a software program

very similar to H 361 (called motion D) on “Car” sequence.

Motion D 1s a laboratory version software utilizing block matching base algorithms
Motion D 1s meant to be quite versatile It has all the features of the H 261. It can also be

employed for non-standard picture sizes such as the Car sequence (720 by 576 pels) used

1n the thesis
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Figure 2.5.1.5
PCM of previous
frame for car.
(clean frame)
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Figure 2.5.1.7 Prediction error for
the two successive
car frames with MC,
with previous frame
clean.
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2.5.2 Unrestricted motion vectors Mode (Annex D)

In the default prediction mode of H.263, the search for motion vectors can only take
place inside the normal picture. In the Unrestricted Motion Vector mode, this
requirement is removed and motion vectors are allowed to pont outside the picture. The
edge pels are used as a prediction for the “not existing” pels. To do this, edge pixel
values are extrapolated in the x and y directions as appropriate, producing a virtual
scarch window for the current block to search outside the normal picture boundaries
(figure2.5.2).

Extrapolated pixels

414 6 6 8 8

44 5 6 6 8 8

505 5 3 2 0 o0

6|16 4 4 3 4 4 «+—— Picture area
414 5 5 3 1 1

313 6 6 4 4 7

212 4 5 4 3 5

Figure 2.5.2 Extrapolation for Unrestricted Motion Vectors

With this mode a significant gain is achieved and the image prediction is improved
particularly where there is motion involving objects entering or leaving the scene, or
there is movement along the edge of the picture, especially for the smaller picture
formats. Additionally, this mode includes an extension of the motion vector range so
that larger motion vectors can be used. This is especially useful in case of camera
movement, where the camera itself 1s moving m a pan (panning situations). This mode
is optional as it does not improve the prediction for static camera and central objects

(which would be common 1n videoconferencing).
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2.5.3 Syntax-based Arithmetic Coding Mode SAC (Annex E)

SAC 15 a variant of Anthmetic Coding [55], used 1n place of the traditional Vanable
Length Code for mimmimum redundancy serial transmission The optimum length of
Variable Length Codes 1s denived from the entropy of the data which tends to be non-
integer Syntax-based Anthmetic Coding 1s an algonthm which encodes the symbols

into a fractional number [56]

The implementation of SAC is, however, rather complex and it is mmpossible to
recogmuize mdividual symbols 1n an encoded bt stream. Recovery from errors 1s difficult
and 1t has a low tolerance to error, since SAC does not resynchronise after a few false
symbols, as Variable Length Codes do The SNR and reconstructed frame will be the

same, but generally fewer bits will be produced

2.5.4 Advanced Prediction Mode (Annex F)

This option means that Overlapped block motion compensation (OBMC) [57] [58] is
used for P-frames Four motion vectors mstead of one per macroblock, that 1s four 8x8
vectors instead of one 16x16 vector are used for some of the macroblocks m the picture,
which tends to provide a smoother prediction mmage and a better spatial quality at the
decoder It 15 necessary that this mode operates in conjunction with the Unrestricted
Motion Vector Mode (Annex D), to make a consistent prediction from the availability of

extrapolated luminance and chrominance pixels

The four 8 x 8 pixel luminance blocks 1n some of the macroblock allow a better
representation of motion to be made, albeit at the price of a greater data over head It is

therefore the responsibility of the implementing organtsation to decide the value of this

additional motion data
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2.5.5 PB Frames Mode (Annex G)

This algorithm allows for the use of forward and bi-directionaly predicted frames. That
is two pictures are being coded as one unit called as PB-frame (Figure 2 5 5) The name
PB comes from the name of picture types in MPEG where there are P-pictures and B-
pictures A PB-frame consist of one P-picture (P-frame) which 1s predicted from the last
decoded P-picture and one B-picture (B-frame) which is predicted from both the
previous decoded P-picture and the P-picture currently being decoded. Motion vectors
can be used from the P-frames to generate predictions for the B-frames. This last picture
is called a B-picture, because it is bi-directionally predicted from the past and future P-
picture For relatively simple sequences, the framerate can be doubled with this mode
without increasing the bitrate by much. Additional vectors may also be transmitted as an
optional mode, which effectively doubles the temporal resolution of the image with only
a small increase 1n the coded video data rate. However, this tends to produce a less
satisfactory prediction in sequences having very fast or complex motion, that is with a
lot of motion or low initial frame rates Never the less, the PB-frame does not work as
well as the B-frame in MPEG because there 15 no separate bi-directional vectors in ITU-
T H.263 The advantage of ITU-T H.263 over MPEG 1s that 1t requires much less

overhead which 1s useful in low bit rate transmission

PB Frame

Previ Ousuumm
P-Frame

P.frame

Figure 2.5.5 PB frame Arrangement
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For H 263 hierarchy flow diagram and H 263 programming function description refer to
appendices A 1 and A 2 respectively.

2.6 Further developments in the standard bodies

The origmal available videophone standard is the ITU-T H 261 [59]-[63] ITU-T
Recommendation H 261 defines a video coding scheme for digital audiovisual services
by the ITU-T Study Group XV Two brt-rates which have been established for
Integrated Services Digital Networks (ISDN) and are of interest for image transmission
are called the B-channel of 64kbits/s and the HO-channel of 384kbits/s The
development of ITU-T H 261 went through many stages However, by late 1989, the
final CCITT recommendations were made for the range of 64 kbits/s up to 1920 kbits/s
Therefore, ITU-T H 261 1s also known as a p X 64 codec, where p is between 1 and 30
Smular to ITU-T Recommendation, the algonthms specified by the Moving Picture
coding Experts Group (MPEG) {64] employ a degree of both loss-less and lossy coding
techmques. However, whilst the H.261 algonthm is specifically designated as the
framework of video codecs working on ISDN channels of p x 64kbits/s, the scope of

MPEG 1s more wide-ranging

In the late 1980's an obvious relationship began to emerge between personal computers,
digital storage on inexpensive media (such as CD-ROM) and the sale of video
entertamment and educational software As the result of that the Motion Picture Expert
Group (MPEG) was formed m 1988 to establish a standard for the compression of
digital audio and video storage and later on for transmissions. The MPEG-1 [65] [66] 1s
the first phase video compression standard The primary objective of MPEG was to
produce a compression algorithm for storage media having a through put of 1 - 15
Mbuts/s, with other goals of up to 60Mbits/s Whilst the direct application of CD-ROM
was an obvious one, the brief of MPEG was to produce a standard that would apply to
other storage techmques and applications Thts scheme 1s well suited to a wide range of

applications such as, Compact Disk Read-Only Memory (CD-ROM), Digital Audio

Tape (DAT), Cable Television (CATV), telecommunication networks, and digital video
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broadcasting MPEG has also been applied to the compresston of video for the purposes
of Video-on-Demand [67] and for HDTV,

The MPEG-1 video coding algonthm [70] resulted from the requirements of CD-

ROM and was greatly influenced by formulation of the ITU-T H 261 algorithm The
development and evaluation of the algorithm was performed at bit rates n the region of
1 Mbits/s and video resolutions of 352 pixels x 288 lines, 25 frames per second, for
PAL and 352 pixels x 240 lines, with an average of 29 97 frames per second for the
NTSC system These rates are not fixed and can be varied according to the requirements

of different applications

The essential difference of MPEG-1, compared with H 261, is that, by the nature of the
application to CD-ROM, random access 1s requuired This allows the end user to
arbitranly choose any pomnt m the video sequence from which to start viewing the
moving images To achieve this, MPEG-1 has a number of frames which are encoded
on therr own and without any reference to other frames in the sequence, which are
referred to as key frames and occur typically once in every twelve frame. As a result,
MPEG-1 deliberately forces intraframe coding on some frames, whilst the majority are

formed as an interframe prediction with reference to temporally adjacent frames

The presence of regularly occurring intraframe coding 1s one of the reasons why MPEG-
1 1s unsuitable for real-time coding in audiovisual communications The time taken to
process and transmit an mtraframe coded frame 1s considerably higher than for
mterframe difference data, causing considerable variations m the quantity of bits per
frame If the I-frames were to be taken as primary start frames for an interframe
sequence, they would have to be encoded with minimal losses, rendering the availability

of data for the subsequent interframe coding relatively low in a given ttme peniod

One of the essential differences between MPEG-1 and the H 261 algorithm is the way in
which interframe predictions are made. H261 is primarily an interframe coding

algorithm using the previous frame as the main prediction source for the generation of

the next frame However, since MPEG-1 applies mainly to pre-recorded video
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sequence, subsequent frames can also be used to make a better prediction of the current

frame

Motion vectors used by MPEG have a greater range than would be required for video
conferencing applications, since the nature of a wide range of video comprises more

interframe motion than would be anticipated in a typical head-and-shoulders scene

Subsequent work on MPEG standards has considered the application of the algonthm
for data rates of up to 40Mbits/s MPEG-2 [69] has been adopted for direct satellite
broadcasting in Europe and by the US Advanced Television Commuttee (FCC) for
HDTV 1t is effectively the same as MPEG-!, except that interlace scanning can be

retained and interframe delays are less, resulting in a picture of improved quality

The MPEG-1 standard was published in 1993 as ISO/IEC 11172 (Coding of moving
pictures and associated for digital storage up to about 1 5 Mbuts/s) [68] Part 1 of this
standard describes the system, which includes information about the synchronization
and multiplexing of video and audio streams. Parts 2, 3 and 4 describe video, audto and

conformance testing respectively

The MPEG-2 [70] 1s the second phase of video compression standard which 1s aimed at
coding above 2 Mbits/s Preparation of the MPEG-2 standard started in 1991 and
provides a solution for applications that are not successfully covered by MPEG-1 The
next phase of video compression standard, MPEG-3 was dropped mn July 1992 A text
1dentical to that of MPEG-2 was published as ITU-T Recommendation H 262. Recently,
the MPEG-2 standard has been approved by the Advanced Television System
Commuttee (ATSC) as a Digital High Defimtion Television (HDTV) [71] [72] Standard
in the United States.

Formulation of a new MPEG-4 [73] Standard was begun at the MPEG meeting 1n
Brussels i September, 1993, A draft specification 1s drawn in 1997 The primary target
of this standard 1s very low bit rate applications The MPEG-4 standard supports a wide

range of applications such as videophone over analogue telephone lines, sign language
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captioning, mobile audiovisual communications and interactive mulhimedia

communications.

H 263 is also better than MPEG-I/MPEG-2 for low resolutions and low bitrates H 263
1s less flexible than MPEG, but therefore requires much less overhead Another
difference is again the negotiable options in H.263, MPEG has B-frames, but H.263 has
PB-frames which are almost as good for moderate amounts of movement, but require
much less overhead H 263 has overlapped block motion compensation, motion vectors
outside the picture and syntax-based anthmetic coding These options are not in MPEG
at all Note that 1t 1s only possible to use H 263 at certain resolutions SQCIF , QCIF,
CIF, 4CIIF and 16CIF, 1f you follow the standard H 263 software can be changed to run
at every resolution divisible by the macroblock size 16, but the bitstreams generated will

not be legal H 263 bitstreams 1n this case
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Pel-recursive techniques

3.1 Background

otion compensation techniques predict the frame-to-frame (or field-to-field)
Mmotlon of an object point and then access the intensity value from the previous
frame (or field). The assumption is that predicting the motion and accessing the
intensity values from the previous frame (or field) results in a better prediction of the
intensity values than trying to predict the intensity values directly Previous work [74]-[81]
[37]-[40] has shown that motion estimation techniques do improve the prediction of the

intensity values in the images.

There have been basically two approaches to motion estimation - block-matching and pel
recursive techniques [39] [78] [79]. In block-matching, a block of intensity values in a
frame is compared with blocks of intensity values in the previous frame until a best match

is determined. From this an interframe displacement vector (how much the block has
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moved between frames) for the whole block can be estimated for the frame being
transmutted Poor estimates result 1f all sample points i the block do not move the same
way. Using the pel recursive approach a displacement is determined for each pel value.
This techmque allows for amore exact estimation of the intensity value and has the ability

to handle scale changes (zooming, dilating, movement perpendicular to the image plane).

In, both block matching and pel recursion the prediction can be backward or forward, 1.e.,
the displacement can be determined from previously transmitted information only
(backward) or from past values and the current value (forward). Forward prediction
requires explicit transmission of information about the displacement value, backward
does not. The advantage of the forward techmque 1s that the presumably better estimate or
the displacement vector reduces the error in the mtensity prediction. The majonty of the
previous approaches have used backward prediction, applying backward prediction
leads to 1) reduced bat rates, 2) lower computational requirements. or 3) faster prediction

or estimation techniques

The pioneering work m detecting motion in interframe coders was done by estimating the
speed (magmtude, but not the direction) by dividing the sum of the frame differences 1n a
moving area by the sum of the element differences in that moving area [75] It was
assumed that a speed of half a pel per frame was relatively slow, while a speed of four pels
per frame was seldom exceeded. The results were obtained using a fixed camera and a
moving object, it was also claimed that the techmque could be applied to a panmng camera
and a moving object. Later the technique was extended to estimate velocity, 1 e. determine
the direction of motion [37] Further pioneering work 1n the area of motion compensated

techmques were done by Cafforio and Rocca [38] [76]. Their work was more theoretical,

The proposed techniques [75] [37] required an estimate of the motion velocity to be sent.
Netravali and Robbins [39] [40] [77] developed a pel recursive spatio-temporal gradient
techmque m which the displacement of a pel was predicted from previously transmutted

mformation. Thus since both transmutter and receiver could predict the motion vector, 1t did
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not have to be sent. If an error correction needed to be sent for the predicted brightness then
only an address and the difference value had to be transmmtted. They used a 35 level
symmetric quantizer, as a result of which the coder performance was only slightly affected
by the quantizer. Previous field intensities were used for interpolation. They found that a
rather simple interpolator is suffictent. Their algonithm was able to reduce the data

transmission rate by up to 50%.

The next algonthm developed was called gain compensation [82]. It should be noted that
gamn compensation has some inherent motion tracking ability. Separate displacement
compensation and gamn compensation reduce the bit rate; together they reduced 1t even
more, especially for the cases in which separately they produce mimmal reduction Some
further theoretical work was done on the implications and constraints of the assumptions

which were being made m the motion compensated algonthms

Snyder et al [83] [84] investigated the assumption that frame differences can be expanded
as a Taylor senes. Followed by Horn and Schunck [85] [86] who segmented the image
into moving and stationary regions.By building on the work of Horn and Schunck, Nagel
[87] developed a motion estimation technique which can be seen {88] to do a good job of
predicting the motion in a scene contaiming translational motion. No attempt has been made
to apply these techmques[83] — [88] to mformation bandwidth compression. This 1s mainly

because the resulting system of equations is very computationally expensive

Thompson and Barnard [89] reported on ways of estimating and interpreting motion They
discussed spatio-temporal gradient techniques; feature point matching (pattern matching)

was determined to be too computationally expensive.

Robbins and Netravali [90] mvestigated spatial subsampling in motion compensated
coders. Spatial subsampling 1s a common way of preventing buffer overflow, in the
presence of high or complex motion although motion estimation 1s degraded somewhat.

The bit rate was reduced by 50%, the same percentage as in conditional replenushment
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coders. They were able to confine the blurring mherent in subsampling to the moving areas
by an adaptive interpolation techmique although the reduction factor was the same, the
motion compensated algorithm produced better quahity reconstruction than the conditional

replemishment algorithm

Prabhu and Netravali [91] [92] developed a motion compensated algorithm to compress
and transmit component color sequences. The first investigation mvolved predicting each
component separately. Three predictor schemes were evaluated'- 1) use only the previous
frame, 2} switch the predictor between previous frame and displaced previous frame, and 3)
switch the predictor between previous frame, displaced previous frame, and an intraframe
predictor. They ultimately concluded that one predictor (the third one) could be used to
predict both the luminance and the chrominance component. The luminance information

was used to switch the predictor.

Ishiguro and linuma [78] gave a brief overview of the existing motion Compensated
bandwidth compression techniques. They divided the techmques into pel recursive, and
pattern matching. Given the pattern matching approach, the choice of backward or forward
detection implies that the transmitter and recerver both determine the motion prediction
from common information (previously transmitted data). In forward detection, the block
about to be transmuitted 1s translated and a motion vector determined. This motion vector
must be sent as well as the block of error correcting values. The assumption in forward
detection 1s that the error values are smaller and thus require less bandwidth to be
transmutted, leaving room for the motion vector. This type of pattern matching technmque
was actually implemented 1n a production system [93] by NEC. It 1s interesting to note that
1t uses pattern matching technique since other researchers had stated that a pattern matching
technique would be too computationally intensive [39] [79] and since the spatio-temporal

gradient method had received more favorable consideration 1n the literature [94] ~[97]

All the algonthms discussed so far have n effect modelled the motion 1n the sequence as

purely translational Huang and Tsai {95] pointed out that 1f rotation of object is to be
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considered, and then pattern matching technique requires a three dimensional data space
with an increase 1n processing bandwidth, indicating a spatio-temporal gradient approach

would be more feasible.

Paquin and Dubois [79] investigated spatio-temporal gradient algorithm which employed
motion compensated prediction, Although they obtamed an algonthm similar to that of
Netravalh and Robbins [39] [40], they started from a slightly different perspective and with
shightly different asumptions The displacements were estimated on a field basis. Therr
maximum allowable displacement was 10 pels per field while Limb and Murphy [75]
assumed 4 pels per frame would seldom be exceeded. They were primanly interested n
determining trade-offs between accuracy and computational complexity for interpolator and

the estimator.

3.2 Motion compensated image sequence compression

In video conferencing applications, correlation between consecutive frames 1s significantly
high due to the limited amount of motion. This correlation can be exploited more efficiently
by taking into consideration the displacements of moving objects in the coding process.
Thus 1n any motion compensated coding scheme, the coding performance depends heavily

on the accuracy of the motion estimation

There are instances when the DPCM technique cannot successfully code a segment of an
image sequence because motion 1s a major cause of interframe differences. Motion
Compensation (MC) can be used to improve the efficiency of the predictive coding

algorithm

If translation of a moving object is available, a more efficient prediction can be estimated
using elements in the previous frame(s) that are appropriately spatially displaced. This type
of prediction 1s called Motion Compensated Prediction. Furthermore, motion can be a

complex combination of translation and rotation Transitional motion is relatively easily
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estimated and has been used for motion compensated coding, depending on the amount of
translation motion 1n the scene and the ability of an algonthm to estimate translation with

the accuracy that is necessary for a good prediction.

The main problem 1s developing a good algorithm used for motion estimation Various
algonthms which have been successfully used in coding application include Block

Matching, Pel Recursive, and Gain motion compensated estimation.

Block matching 1s widely used in coding applications but has its own limitations and
weaknesses due to looking at displacement over a block as a whole, which 1s perhaps a
trade-off, 1e a less accurate estimation producing less coding which in turn gives higher
compression It is not a good 1dea to trade off the accuracy of estimation for the motion for
some over head or perhaps come up with a different algonithm which could take care of the

mentioned problem.

The pel recursive method for displacement of motion compensation can overcome the
above problem In this method, we look at every pel by pel estimating the displacement
vector for every single pel resulting in motion estimation for every single pel rather than
every block of pels, therefore higher accuracy is achireved but with the cost of more

overhead.

Among the many different algornithms, the one by Netravali [37] [39] [40] [77] [98] — {100]

is looked at in more detail.
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3.3 Initial estimation of displacement vector

For simplicaty the algonthm used for motion estimation in interframe coding follows the
assumptions below (these are true for most algornthms for motion estimation 1n interframe
coding)

I - Translation movement of an object 1s 1n a plane which is parallel to the camera plane.

II - Tllumination 1s spatially and temporally umiform

III - Occlusion of one object by another, and also uncovered background are neglected.
Under these assumptions, the monochrome intensities b(z, t) and b(z, t - 1) of two

consecutive frame are related by

b( z,t )=b( z+D,t-1 ) (Eqn 3.3.1)
Where 1 15 the time between two frames, D is the two dimensional translation vector of the

object during the time interval [t -t, t], and z 1s the two dimensional vector [x, y]* of spatial

position. Using Eqn (3.3.1) we can write the frame difference signal FDIF (z, t) as
FDIF ( z,t JA b( z,t })-b( z,t-t )=b( z,t )-b( z+D,t ) (Eqn332)
For small D, using Taylor’s expansion about z (assuming D to be small)

FDIF( z,t ) =-D'V:b( zt )+ higher order terms in D (Eqn 3 3.3)

Where V : 1s the spatial gradient with respect to z.
Assuming that the translation of the object 1s constant over some moving area R and

neglecting higher order terms 1n D.

D, the mmimum mean square estimate of D can be obtained by nunimizing

> [ FDIF ( z,t ) +D'V:b( z,t) ]° (Eqn 3.3.4)

R

with respect to D, therefore
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b

- [ ER: V:b(zt )*V:b( zt) ['*

[ [ 2 FDIF(zt)* V:b(zt) ] (Eqn 3.3.5)

R

V : b(z, t) can be approximated as

EDIF\ (z)]
(Eqn 3.3 6)

V: =
b(zt) |:LDIF(z)
Where EDIF 1s a honizontal element difference and LDIF 1s a vertical line difference given

by

EDIF(z) = 1/2 [b(z + Ax,t) = b(z - Ax,1)] (Eqn337)
LDIF(z)=1/2 [b(z + Ay,t) —b(z - Ay,1)] (Eqn 3.3.8)

Using Eqn (3 3 8)

. Y EDIF*(z) S EDIF(z)* LDIF(Z)] )
o ZEDIF(Z)* LIDF(Z) Z LDIF? (z)
" FDIF(z,t)* EDIF(z)
[Z FDIF(z,ty« EDIF(z) (Eqn339)

A denotes by definition

prime ~  denotes their transpose

consider D, Z, V to be column vectors of size (2x1)
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An sumption 1s made to convert the above matrix mto diagonal one, that is:-

> EDIF(z)* LDIF(z) ~ 0 (Eqn 3 3 10)
R

Then

[ FDIF(z,t)* EDIF(Z)
Y EDIF(z)
> FDIF(z,t)+ LDIF(z)
> LDIF*(z)

>
I

(Eqn3 3 11)

m order to proceed with simulation. Moving area segmentation was defined by considering
the moving pels That 1s 1f the frame difference for the considering pel 1s less than a
threshold value, the pel is considered or classed as moving pel which 1s chosen n relation

with camera noise,

Using Eqn (3 3.11), the imitial estimate of local displacement was provided by simulation,

giving good results where we were not on the edge of the moving area in the scene.

Careful consideration should be given, 1n order to estimate imtial displacement vectors
accurately enough, as these are highly dependant on the implementation of the moving area
pels. Therefore the moving area pel should not be classed as a moving pel 1f the left, nght,

and upper neighboring pels are not moving pels (and vice versa)
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3.4 INTERPOLATION

Having estimated an initial value for the displacement vector, the intensity of the pel

displaced by D is estimated by means of an interpolating technique and the following

formula is used

I=1,+D(1,-1)+D, (I, -1,)+D, *D, (I, +I. +1,+1,) (Eqn 3 4.1)

Dy

[
o]

e mvemeas ameaf emen e vmen = m mde m et ad & & Leeamra
H

Figure 3.4.1 : Two dunensional linear interpolation.

Displacement D is decomposed into integral part D, and non-integral part D
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3.5 PEL RECURSIVE MOTION VECTOR ESTIMATOR
Now we define the Displaced Frame Difference (DFD) as follow -

DFD(Z, 13) = b(z,1) - b(z— Dyt- z‘) (Eqn 3 5.1)

In practice , the DFD, DFD(z, .5), hardly ever becomes exactly zero for any value of D,
because - 1 } there 1s observation noise, II )there is occlusion (covered / uncovered
background problem), III ) errors are ntroduced by the interpolation step in the of non-
integer displacement vectors, and IV ) scene illumination may vary from frame to frame.

Therefore, it is generally aun to mummize the absolute value or the square of the DFD.

2
Pel recursive displacement estimators tries to minimize recursively [DFD(Z, Dj at each
moving area pel using a steepest descent algonthm thus

~ ~ A 2
p.=b,_ - g "V, [DFD(z, b, )] (Eqn35.2)

Where V  1s the two dimensional gradient operator with respect to D .Using Eqn. (3.5.1)

therefore

~ ~

- _-g* Z,A_ % z z-—A_,t-——‘[ qn..
D, =D, - e*DFDz,D_)*V: blz, - D, (Eqn 3.5.3)

Thus, the new value for D 1s the old value plus an update term.

where ¢, the convergency parameter 1s some positive scalar, known as the step size. The
step size ¢ 1s critical for the convergence of the iterations, because 1f step size 1s too small,
we move by a very small amount each time, and the iterations will take too long to
converge On the other hand, 1if it 1s too large the algonithm may become unstable and
oscillate about the mimmum In the above method, the step size 1s usually chosen

heunstically

The above algonthm can be extended by computing the displaced frame differences at

many picture elements in order to estimate D
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The steepest descent algonithm 1s used to munmmze a weighted sum of the squared

displaced frame differences at some previously transmitted neighboring pel, thus

" A £ L
Dkszl-E*VﬁH[

1=0

w,( DFD(z,,_J, b, ))2] (Eqn 3.5.4)

P
Where /20 and ) W, =1
J=0

Using Eqn (3 3 1) therefore

A

N P ~ ~
Do=D_ -ex ,Z(:‘W’ Dz, ,, D) * V2 b, , —Dk_,,t—z')] (Eqn 3.5.5)

Where V,(c) can be approximated by finite differences as before

Now recursively D is updated using Eqn (3 4 1) and Eqn (3 5 5). For each step, the update
term seeks to improve the estimate of D, The ultimate goal is minimization of the

magnitude of the prediction error DFD. If a pel at location Z,1s predicted with f)k_, to have
intensity b(z—ﬁk_l,t—l), resulting in a prediction error of DFD(z, D _,) the prediction

should attempt to create a new estimate, D, such that .-

| pFDG, By | £ | DFD(z, D,.y) |

3.6 Implementation and Experimental results

In order to implement and simulate the previously mentioned techmque, calculation of line
and element differences m addition to the displacement frame difference are the most

crucial and should be given the most concern. In the expertment, different ways of
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implementation for each parameter should be exammed e.g.:- mterpolated, none
mterpolated, averaged using different causal supports (Figure 3.6.1), etc. Epsilon, £, the
convergency parameter 1s recommended to be 1 / 1024 [77]. Further more, not every pel

need to be motion compensated, therefore some kind of masking should be employed €,g .

where frame difference, IFDIF | < threshold; no prediction is needed. This 1s classified as

non-moving area.

XXX XXXX
XXX XXXX

XXXXO

Figure 3.6.1 : An example of a second order causal support.

For the experiment a good result 1s produced having ¢ = 0.9 and using a 3 by 2 causal

support (Figure 3.6.2) for line and element differences. The maximum permitted update

term was chosen to be limited to 4. Absolute Frame Difference, IFDIF | < 9 for a non-

moving area. This is done for two different sequences, Suzie and Salesman.

X XXX
XXO
Figure 3.6.2 : causal support.

Figures 3.6 3 to 3.6.6 show and indicate the validity of the theory behind the pel-recursive
motion estimation, In each of the figures, the graphs represent the energy of the error for
the situations m which there is no motion compensation and where the motion is
compensated using pel-recursive motion estimation It also looked at different frame skips,
that could be frequently used mn video conferencing and so on From the graphical and
pictorial results (Figure 3.6.3 — 3.6.6) 1t can be seen that pel-recursive motion compensation

does very good job and shows, high dB reduction 1n transmuttable error from the DPCM
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Suzie Prediction Error Comparison
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¢) Two frame skip comparison.

Figure 3.6.3 Suzie companson after three iteration with previous frame clean.
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4

a) PCM frame of Suzie (previous frame) b) PCM frame of Suzie (present frame)

Prediction error with no MC for Suziesina & b d) Prediction error for Suzies in a & b (gradient)

Figure 3.6.4 Prediction error comparison for two successive frame of Suzie
after three iteration with previous frame clean.
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Salesman Prediction Error Comparison
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Salesman Prediction Error Comparison
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c) Two frame skip comparison.

Figure 3.6.5 Salesman comparison after three iteration with previous frame clean.
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a) PCM frame of Salesman (previous frame) b) PCM frame of Salesman (present frame)

Prediction error with no MC for Salesmanina & b d) Prediction error for Salesman in a & b (gradient)

Figure 3.6.6 Prediction error comparison for two successive frame of Salesman
after three iteration with previous frame clean.
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Average Prediction Error

Suzie Prediction Error Comparison
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¢) Two frame skip comparison.

Figure 3.6.7 Suzie comparison after three iteration with previous frame reconstructed,
with half pel accuracy on block matching, and system resetting to zero for

each pel.
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Figure 3.6.8 Salesman comparison after three tteration with previous frame reconstructed,
with half pel accuracy on block matching, and system resetting to zero for

. each pel.
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3.7 Improved pel-recursive motion compensation

We now consider further improvements for pel-recursive Motion compensation [101] —
[106]. Consider the basic algonthm (Eqn 3 5.3 or 3.5.5) for the mtensity function at an

object edge The condition requiring the largest vector corrections or updates factor are
when |DFD)| 1s large and [V#| is small. Conversely, if |DFD| 1s small and [V3| 1s large, as
could exist at an object edge, the vector correction must be small. For the affirmation

algonthms to work, E must be chosen to allow for the case where the correction or update

must be small. This gives rise to

£=1/2* IA (Eqn3.71)

QVzb(z,,_, -D, - z-)|)2
Or

1

e=1/2* . (Eqn 3.7.2)

o’ + qub(zw -D, ,t- r)])
and |

~ 2 ~ 2 ~ 2 I
ivzb(z,_r D, .t~ r|} = {be(z,w ~D,_,t- r]} + gVyb(z,,_J -D,_,t- rl}
{Eqn 3.7.3)

Where o 1s recommended to be of the order of 10 [104], which takes account for |Vb|
becoming small or zero.
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3.8 Helpful implementation details and constrains

Implementation and simulation of algonthms needs many sensible constramnts and

restrictions 1n order to show that the algonthms even work. Some of them are as follows -

a) -If |DFD] < threshold, the correction term or update of Eqn 3.5.3 or 3.5.5 1s zero
b) - If |DFD[ > threshold |Vb] 1s not zero, the update term is calculated. When

lupdate — term| < 1/16, the update term 1s recommended to be assigned to the value of

+ 1/16.
c) -1If |DFD| >threshold and if IVb| is zero, then the update term again 1s zero.

d) -1If Iupdate—rerml exceeds 2, the update term is recommended to be assigned to the

value of £2.

It can be seen that as the |V| or |gradient| becomes large, the update term decreases, and

VICEC VETIsa.

Further, some of the restrictions implemented and applied for simulation are as follow -

a) - Use ﬁk displacement obtained for the previous pel. Predict the current pel by

obtaining a pel value from the previous frame at the offset f)k from the current pel

location z.

b) -If |DFD| < threshold, transmut zero If |DFD| > threshold and |FDIF | < threshold,
transmit a reset to set D, =0 If [DFD| and |FDIF| > threshold, transmut DFD.
¢) :- If |DFD| < threshold, use D, as obtamed from the previous pel, i.e, D, = D, , .

And 1f |DFD) > threshold and |FDIF| < threshold, set D, = 0.
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3.9 Implementation and Experimental results

Once again 1n the experimental work, different ways of implementing each parameter
should be examined e g.- interpolated, non-interpolated, averaged using different causal
supports (Figure 3 6 1) For consistency in comparison the threshold value chosen for the
expertmental work was 9 for frame difference and 20 for displacement frame difference
and 3 by two causal support as before The maximum update limit was chosen to be 3.

These restrictions give rise to the graphical and pictorial result in (figures 3 9.1 — 3.9 6)

Each figure depicts the graphical representation of the basic state of the art gradient
algonthm for £, the convergence factor, to be non-adaptive and adaptive as first and
second gradient Looking at the result from the same sequences of Suzie and Salesman, 1t
can be easily noticed that havinge, the convergence factor, as a variable shows quite

substantial improvement over the basic algonthm and reduces the energy of the error
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Figure 3.9.1 Suzie comparison after three iteration with previous frame clean.
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a) PCM frame of Suzie (previous frame) b) PCM frame of Suzie (present frame)

Prediction error with no MC for Suzieina & b d) Prediction error for Suzie in a & b (gradient)

Figure 3.9.2  Prediction error comparison for two successive frame of Suzie
after three iteration with previous frame clean.
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Salesman Prediction Error Comparison
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Salesman Prediction Error Comparison

1st Gradient |
EREE 2nd Gradient |

r.m.s (in dB)

Average Prediction Error
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Frame Number

c) Two frame skip comparison.

Figure 3.9.3 Salesman comparison after three iteration with previous frame clean.
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a) PCM frame of Salesman (previous frame) b) PCM frame of Salesman (present frame)

d) Prediction error for Salesman in a & b (gradient)

rediction error with no MC for Salesmanina & b

Figure 3.9.4 Prediction error comparison for two successive frame of Salesman
after three iteration with previous frame clean.
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Suzie Prediction Error Comparison
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Suzie Prediction Error Comparison
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¢) Two frame skip comparison.

Figure 3.9.5 Suzie comparison after three iteration with previous frame reconstructed,

with half pel accuracy on block matching, and system resetting to zero for

each pel.

78




Chapter 3 Pel-recursive techmques

Salesman Prediction Error Comparison
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Salesman Prediction Error Comparison

§ 21

L

SE

=T

2 e 19 4 1st Gradient
& LR A N I 2nd Gradient
e =

g7

3

< 16

53 5855 57 589 61 63 65 67 69 71
Frame Number

¢} Two frame skip comparison

Figure 3.9.6 Salesman comparison after three iteration with previous frame reconstructed,
with half pel accuracy on block matching, and system resetting to zero for

each pel.
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C h.u a (N t e r |
o ch & By, - - -

N 3 oy Ex s ety s

— N L RN T I"Mu..\ R A R . ety

A New pel-recursive technique
For
MOTION COMPENSATED IMAGE
SEQUENCE COMPRESSION

4.1 Background

One of the main developments in image coding 1n recent years 1s the application of

mathematical models describing the motion of objects

For applications in dynamic scene analysis in a sequence of moving images, i e. television

pictures, a moving object generates frame-to-frame luminance changes These luminance

changes can be used in order to estimate the parameters of a mathematical model that
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describes the displacement and movement of the object. For instance, consider a simple

moving edge as in Figure 4 1 1.

A

Amplitude of Direction of movement of the edge
Video signal 2. |FDIF| . >
M A

> |EDIF]|
: M
A4

A 4

Horizontal scanning direction

Figure 4.1.1 Illustration of displacement estimation.
The dashed line indicates the position

of the edge in the previous frame

> |FDIF|

D: =dg =M ZlEDIFl (Equ 4.1.1)

M

Where M 1s the moving area which is generally defined by frame differences greater than a

given threshold

For the y direction, similar principle applies, therefore

" |FDIF|
= M

=dy = (Eqn 4.1.2)

> |LDIF|

M
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Motion models can also be used for improving the efficiency of predictive and interpolative
television coding techniques. Because of the real-time computing requirements or VLSI
architecture mmplementation [107], only relatively simple and easily realizable models

whtch consider the translational component of motion have been worth while imnvestigating

The x component of the displacement estimateﬁx,, for a few different mathematical
models can be summarized below [108] :-

First model
0

éx, = D, ,+ &* ™ Rss,. (2, b, & =1/1024 (recommended)
' _
(Eqn 4.1.3) [39], [109]
Where
Ry, (2,D) =E[sg(z)e s, (x - dx,y—dy)] (Eqn 4.1.4)

Its simplified update term (the difference between the present and previous estimation) is

1 ~

U, = ES*VI-.)J ZMWJ [DFD(ZSDJ-I)F
JE

(Eqn 4.1.5)

Where W, = 0 and ZW=1

JeMm

A quicker update can be achieved by imncreasing the constant convergence factor, &
However, this also implies a decrease of the achievable estimation accuracy which 1s

limited by &

Second model

Fal n
. - aRs,,S,c_l (z,D,,)
D, =D, - e (Eqn 4.1.6) [110]
axz Rsisk-l (Z’Dl-l)
83
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Its simplified update term 1s

Z E)FD(Z,B,_,)]

== (Eqn417)
Z [DFD(z D, 1)]
M
Third model
o n
- .. aRS*SR_, (zs D;-l)
D,= D, + py , n=10 (Eqn 4 1 8) [98]

Rs 5. (2,0)+ 7

o

The correction term, 77 is introduced to avoid problems which would occur in areas of

nearly constant luminance where ask%c is small and prevents the overshoots

Its simplified update term is

%* Zé’i‘; E)FD(z, D, )]
U=- 3 = - (Eqn419)
Z[E_sk—l(x_éxa’ngyi)] +T72
o Lox
Fourth model
o a
5 a ExFRSeSk_. (Z"D!—l)
D,= D, - n - (Eqn 4.1.10) [111]
1|8 a
5 27 Rgs,. 1(z,D )+ Rg s, (z,0)

Its simplified update term 1s
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% . ;% brpe. b, )]

B 1 J o D
E*E[gsk-l(x"dxny‘dya)"'ask(Z)]E;Sk (2)

U, = (Eqn4.1.11)

Simularly, the x component of the displacement estimate f)y, , can be deduced and follows
the same format.

Comparing the above displacement estimation algorithms shows that these algorithms only
differ 1n the denominator of the update term. The previous algonthm gives rise to faster
convergence respectively, while the first algorithm gives slower convergence (virtually

damped).

Block matching algorithms work on finding the best matching block by companison where
as pel recursive algonthms work on finding pel by pel estimation. As a good figure of
judgment one would expect superiority by pel recursive algorithms over block matching

algorithms But expenimental results proved otherwise.

In spite of the expectation one mught have had for existing pel recursive algorithms
somehow, block matching algorithm have shown better performance in digital image
compression As a result of this, block matching algorithms dominate compression
applications e.g.: JPEG, MPEGs, H.263, and so on. This opportunity has given nise to
research to improve the performance of block based algorithms further in many different
applications. Less research has been directed 1n the area of pel recursive algorithms causing

the pel recursive base algorithms to be left even further behind.

Of the four existing pel recursive algorithms, the first two were simulated as a bench mark
for comparison between pel recursive algonithms and block matching algonthms, (in

chapter 3).
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As an educated guess one might suggest that the problem may not be with the pel recursive
scheme in general. A better pel recursive algornithm may prove that the pel recursive

algorithms perhaps should do better than block matching algorithms.

In the light of the above argument a new algorithm 1s proposed and simulated to show 1its

validity (see the following sections).

4.2 A new algoerithm,
Motion compensated image sequence compression (algorithm)

For the sake of the analysis, it is assumed that the translational movement of an object 1s
a plane parallel to the camera and 1llumination is uniform. It is also assumed that the effect
of uncovered background is negligible Under these assumptions, let S (x, y, ¢} denote the
monochrome intensities at point (%, y) of a moving object in the mmage plane where 1t’s
translational movement is at a constant velocity of v, and v,. It can be shown that after At

second {one frame period), the object moves to a new location where 1t can be shown,

S (x,y. t+At) =S [(x + vy At)], [(y + vy At): t] (Eqn421)

After expanding the field 1n a power senies m At and neglecting the higher order terms, the

frame difference can be shown as,

S,y t+A)-S(x,y: t)= aES(x,y:t)dx+ %S(x,y: t) dy (Eqn 4 22)
X

where dy and d, correspond to the horizontal and vertical components of the motion

3, 0
vector D Assuming ES (x,y.t) and —a—yS ( %, y: t) are known for each x, vy, t, and
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defining EDIF, LDIF, and FDIF as the magnitude of the element, line, and frame

difference at point »n, from (4 2.2}, we can write,

FDIF= ®] D (Eqn 42.3)

3 N EDIF
o Xxn, yn

Where ¢, = = (Eqn 4.2.4)

—S(xn,yn:t)
oy LDIF

From Eqn(4 2 4) the frame difference (FDIF) measurement is,

{, = ®! D +noise (Eqn 4 2.5)

where D = [E (x),a(y)]T is the motion vector estimate.

Now let

y=(@, - ® a)® +noise
For the least-squares of & to be minimized, gives

S y-207(¢, - o a)=0
o

n

That 15

, = 0, @

Or multiplying each side or equation by @,
®,(, =0,Q, a

For a cluster of M moving pels, the least-squares estimate of D, can be shown as,

3 0,0,=(3 00)D (Eqn426)

n=1
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M M
For, n=ﬂ—ljz ®, ¢, and R=-A1?Z @, o7 (Eqn 4 2.7)
n=l n=1

the estimated motton vector from Eqn(4.2.6) 1s obtained as,

D =R7"q (Eqn428)

For recursive estimation of nj and R, we can wnite

Tl.l = ni—l + (Dn Cm (Eqn429)

R =R_ +@ & (Eqn 4 2 10)

Based on the so-called matrix inversion lemma, which is :-

-1 -1 -T -1 -1 _ -T -l
=A -AXB +X A X X A

(A+XBX T )
Substitute as follows --
A=R]}

B=1 UmtMatrix
X=0,

That ts

~-T -1
Rt-l

-1 -T -1
Rl—l (Dn (I + (Dn R q)n) (D

-1 n

In the above equation, the term 1n the left hand side bracket can be replaced, using
Eqn(4 2 10), therefore

-1 -1
R =R

I -1

-1 -T -1 -1 _ -T_ -l
-R_, ©,0 +®

n
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-1 -T -1 -1
The term (I + @, R, ®_ ) 1s scalar, Therefore the inverse of R, can be
obtained as,
-1 T -1
R =R - R,® & RS (Eqn4 2 11)

T 1+0f R @,
Multiplying each side of the Eqn (4 2.11) by 1, and using Eqn (4.2.9)

R} ® ®I R}
1-| i -I'I 1-| (T],_ + @n C")
1+@T R @ :

L]

R’:l rll =R:—11(T1;—| + (Dn Cn)_

Simplifying the above, therefore -
Rl--ll (I)n (DE R ;-ll

R'n, =R} +R @ € - -
TI.( T]l-l " cn 1+(D'111" R :1 q)n rll—l

[ =1 =1

R} o o R

-l
O}
1+® R ®, S
Using Eqn(4.2.8)and simplifying further, That 1s
S - R @
D 13 = D - - = 2 (DI Ri-—l Tll'— +(Rl-—l (Dﬂ-
" 1+®I R @, P ‘
-1 T -1
Rl-l (Dn d)n Rl-l (D,,)g,,

1+®I R ©,
Using Eqn(4.2 8)and simplifymg the above further, That 1s

R © = R @
o . D - L1 (1+®, R\ ®,-

D =D _ - ®
‘ 1+l R0, " T 1+@T R O,

o, R, @,)¢,
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Finally it gives rise to

R;-ll ch
1+®I R} @,

D,=D

- (©"' D, - ¢) (Eqn 4212)
In the above equation, the term within the brackets can be replaced by what 1s known as the

Displaced Frame Dafference, DFD. Thus,

n R 1-31 (Dn

D,=D - DFD(x,y, D, Eqn 42.13
' -1 1+(~DI R:l (Dn[ ( y l)] ( q )

To avoid matrix inversion at each iteration, Eqn (4.2.13) can be simplified by ignoring the

x and y cross terms in calculating ¢, and R. Thus, from Eqn (4.2.4) and Eqn (4.2.7),

®_(x) = EDIF and @, (y) = LDIF (Eqn 4.2.14)
R(x) = }lef D EDIF; and R(y)= A—} > LDIF} (Eqn 4.2 15)

Applying Eqn(4 2.14) to Eqn{4 2.13), the components of the motion displacement

400 = 3,00 - ——— {DFDIx, v, 7, (1} (Eqn 4.2.16)
— > EDIF* + EDIF’
M

ay = d.6) - LDIF {DFDIx, y, .., (1} (Equ42.17)

lZLDIFZ + LDIF?
M
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According to the developed new algorithm for motion compensated image sequence
compression [112].

.o EDIF X
D.=b_ - « |e*(EDIFYD, )~ FDIF Eqn4.2.18
x x=1 ZEDIFZ +EDIF2 [ ( )( .r-l) ] ( q )
R
or
D =D EDIF v |e* EDIFYD, ) + DFD) (Eqn 42 19)

* 7' N EDIF? + EDIF?
R

Which can also be simplified as

D, =D, - E‘? il — * [¢*EDIF * DFD] (Eqn 4 2 20)
> EDIF® + EDIF
R

And similarly
A oa LDIF .
D =D_ - * |e*(LDIF)(D,_,)~ FDIF Eqn 4 2.21
> 7' % LDIF* + LDIF* l ( )(D,y.1) J Eq )
R
or
b =D LDIF + |e*(LDIFYD, ) + DFD) (Eqn 4 2 22)

* 7 N LDIF? + LDIF?
R

Which can also be simplified as

. LDIF

D -DH - « [¢* LDIF * DFD Eqn4.2.23

» =T N LDIF? + LDIF? | ] (Eq )
R

Where ¢, the convergency parameter to control the rate of convergence, 1s recommended .

(expenmentally) to be 1n the regron of 0.98 to 1.00.
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The above recursion to update f)k 1s carried out only 1n the moving area of the current

frame, 1.e., for those pels where

+p
> lb(z,.,»1) - by, t - 7)| 2 Threshold (Eqn 4.2 24) |
=-p

Otherwise

D.,=D,,and D,=D,, (Eqn 4 2.25)

The threshold, Threshold, 1s pre-selected. It should be noted that the choice of the
Threshold is mainly based on camera noise, light variation, and so on. In this thesis for the
sequences used, a figure of 8 tol4 out of 256 intensity levels was chosen. A poor choice of

the Threshold figure, far off from the true value will cause errors

Recursively ﬁx and f)y are updated using Eqn (4.2.20) and Eqn (4.2.23) where for each

step, the update term attempts to improve the estimate of D. The ultimate goal 1s the

minmization of the magmtude of prediction error, DFD If a pel at location Z;1s predicted

with D

x=1

and ij_, having intensities of b(z -D_ t- 1) and b(z - f)y_, N 1) respectively

and results 1n a prediction error of DFD(z, J_’ijhl) the prediction should attempt to create

new estimations, for D_and ﬁy such that :-

| DED(z, D) | €| DFD(z, D) | (Eqn 4 2.26)

i e the prediction error is reduced.

The predictor is based on intensities in the previous frame and current frame
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4.2.1 Interpolation

Usmg affirmation for the new algonthm to get the first estimated value for the
displacement vector, the intensity of the pel displaced is estimated by means of an
interpolation technique. For consistency with the pel-recursive motion estimation shown in
pervious chapter and for stmplicity, the same algorithm can be used, that 1s the following
formula -

I=1,+D (1, -1,)+D,(I,-1,)+D,*D{I, +I . +1,+1,) (Eqn42.11)

Fmally the displacement vector D 1s decomposed into two parts, the integral part and the
non-integral part Dr

4.3 Implementation and Experimental results

As far as implementation and simulation are concerned, the great importance of the work
lies 1n the calculation of the components defining the formula, i.e. such as line, element,
and displacement frame differences. For these, different ways and techniques can be
examined; e g : interpolation, non-interpolation, averaged using different causal supports

(Figure 4.3.1), etc. Not every single pel needs to be motion compensated, therefore a

masking mechamsm should be utilized ¢ g *- where frame difference, |FDIF I < threshold,

no prediction is needed. Thus is classed as a non-moving area.

XX XXXXX
X XXX XXX
X XXXO0
Figure 4.3.1 : A second order causal support

The computation involved in Eqn (4.2.20) and Eqn (4.2.23) 1s performed recursively. At
gach 1teratton the estimated motion displacement 1s applied to measure a new DFD. This
would first require obtaining the location of the displaced pel on the previous frame, based

on the estimated components of motion displacement. Since the motion estimates are

expected to be non-integer, the luminance value of the displaced pel is predicted by a two
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dimensional mterpolator which uses the four comers of the surrounding pels 1n a two
dimensional grid. In our expeniments, the DFD is measured at two locations with reference
to the current pel; the pel above (1.e., previous line), and the previous pel along the same
line. The average of the two DFDs (with equal weightings) is then used to update the

displacement estimates.

In this thesis for simplicity, the non-imnterpolated averaged 3 by 2 causal support (Figure
4.3.2) 1s used for line and element differences and displacement frame difference as normal
(a pel value of a frame - the interpolated pel value of previous frame), with the convergency

parameter, £= 0.98. The maximum update limit for consistency proposes was chosen to be

]FDIF | < 9 for non-moving areas This is done for two different sequences, “Suzie” and

“Salesman”,

X(1) X(2) X(3) X(4)
X(5) X(6) O
Figure 4.3.2 : causal support.

It should be noted that as for causal support concerns, the previous pel value of X(6) and
the last two previous line pel values of X(3) and X(4) have the most importance in order to

estimate any of element , line, frame or displace frame difference (see Figure 4 3 2)

Further constraint or limitation on the predictor can be used to augment the prediction
strategy, the following rule (Eqn 4 3.1) can be used to switch or move adaptively between
them on a pel by pel basis.

iw,IFDIF(zM) > +Zmw,|DFD(z,w,b,,) (Eqn 4.3.1)

J==m J=-m
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Figures 4 3 3 to 4.3.11 show and indicate the validity of the new pel-recursive motion
estimation algorithm. The graphical and pictorial results are compared for the existing and
the new algorithms. In the pictorial results (Figures 4.3 4 and 4.3.6) 1t can clearly, but
subjectively be seen that an improvement occurs 1n reducing the prediction error for two

different successive frames of “Suzie” and “Salesman”.

In the Figures 4 3 3 to 4.3.9, the clean frames (the PCM value of pels in the frame) were
used In Figures 4.3.10 and 4 3.11, reconstructed frames (as 1n most codecs, the clean frame

is not available in the decoder, therefore the predicted quantized reconstructed frame 1s

used throughout) were used.
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Suzie Prediction Error Comparison
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Suzie Prediction Error Comparison
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Figure 4.3.3 Suzie comparison after three iterations with the previous frame clean.
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»

a) PCM frame of Suzie (previous frame) b) PCM frame of Suzie (present frame)

c¢) Prediction error for Suziesina &b d) Prediction error for Suziesina & b
(for the gradient) (for the proposed)

Figure 4.3.4 Prediction error comparison for two successive frames of Suzie
after three iterations with previous frame clean.
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,‘ NoMC |
| — — — Gradient |
[zl Propos_eg_.i

Average Prediction Error
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Frame Number

¢c) Two frame skip comparison.

Figure 4.3.5 Salesman comparison after three iterations with the previous frame clean.
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AV /
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4

a) PCM frame of Salesman (previous frame) b) PCM frame of Salesman (present frame)

c) Prediction error for Salesmanina & b d) Prediction error for Salesmanina & b
(for the gradient) (for the proposed)

Figure 4.3.6 Prediction error comparison for two successive frame of Salesman
after three iterations with the previous frame clean.
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Suzie Prediction Error Comparison
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Figure 4.3.7 Suzie comparison for 20 iterations with previous frame clean.
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Figure 4.3.8 Salesman companson for 20 1terations with the previous frame clean
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Car Prediction Error Comparison
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Figure 4,3.9 Car companson after three iterations with the previous frame clean.
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Suzie Prediction Error Comparison
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Figure 4.3.10 Suzie comparison after three iterations with the previous frame
reconstructed.
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Salesman Prediction Error Comparison
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Salesman Prediction Error Comparison
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c) Two frame skip comparison.

Figure 4.3.11 Salesman comparison after three iterations with the previous frame
reconstructed.
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4.4 Results and summary

As was expected the outcome of the use of the proposed algorithm over the existing
modified steepest gradient algorithm is that the new pel recursive algortthm has proven to
produce a better result than the existing ones The Figures 43 3 to 4 3 11 indicate the

statement regardless to whether clean or reconstructed frames are employed.

In the Figures 4 3 3, 4.3 5, 4.3 10, and 4.3.11; the comparisons were done for different
frame skips. This 1s mainly to show that the proposed algonthm does always have better
performance over the existing ones. In real time practical applications one may have to use
sequences with different frame skips, especially in situations where we are dealing with

sequences consisting of bigger or larger frames.

As can be seen from the Figures 4.3 3, 4.3 5, and 4.3.7- 4.3.11; there has been a great
improvement of 15 dB, over the existing pel recursive algonthm This 1s achieved by the
proposed pel recursive algorithm. This 1s quite a substantial improvement when compared
with the case when no motion compensation 1s employed. The graphs 1n Figures 4.3.4 and
4.3.6 ( c and d sections) depict that the proposed pel recursive algonthm should result 1n a

good prediction error in comparison with the existing pel recursive algorithm.

Strictly speaking, the proposed pel recursive gradient has quite fast convergency, therefore
fewer 1terations will be needed. In spit of the fast convergency which 1s acceptable by most
apphications, 1t should not be overlooked that in some sequences little more convergence

can be obtain by increasing the number of 1terations ( see Figures 4 3.7 and 4.3 8)

In some cases we mught deal with sequences with very fast motion, where even block

matching motion compensation often results m a poor compression; the proposed pel

recursive algorithm can show good improvement 1n reducing the prediction error
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Never the less, the result from the proposed algorithm can not compete with the old block ;
matching scheme as 1t 1s; this would require a better pel recursive algonthm to be :

developed 1n the future.

Fimally looking at Figures 4.3.4(c) and 4.3.4(d) and Figures 4.3 6(c) and 4 3 6(d), in these
images, relatively darker or lighter patches represent the degree of imaccuracies 1n
estimating the components of the motion displacement. Comparing the two images 4.3.4(c)
and 4.3.4(d) and also Figures 4.3.6(c) and 4.3.6(d) confirm the supertor performance of the
proposed scheme over the modified steepest-descent algorithm, particularly in regions

where the motion activities are relatively high,
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Application for hierarchical system

el recursive motion compensation has not yet been able to replace block matching

motion compensation n hierarchical systems (e g. H.263, MPEGs, and so on); In the

light of this, this chapter, looks at an apphcation developed in view of a paper by
Bierling [113].

5.1 Overview

Block matching 1s a widely used displacement estimation method, and can easily be
implemented 1n hardware. Using block matching, a displacement vector 1s obtained by
matching a rectangular measuring window, consisting of a certain number of neighboring
picture elements, with a corresponding measuring window within a search area, placed in
the next successive or the next preceding image. The match is achieved by searching the

spatial position of the extremum of a matching cntena (e g : MAD, the mean absolute
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displaced frame difference) The resulting displacement vector is then taken to be the
motion vector for all the picture elements inside the measuring window.

The basic assumption of the displacement estimation techmiques used is that neighboring
picture elements have the same motion parameters. It is not possible to obtamn a

displacement estimate for every 1solated picture element of a block

The known block matching techmques provide fairly good results for motion compensation
prediction in general, as their computation and the complexity are low and the prediction
error 1s remarkably small when using the achieved motion compensation However, the
match obtained by block matching 1s an optimum only 1n the sense of a mimmum MAD,
the mean absolute displaced frame difference; but frequently 1t does not correspond to the

true motion of the objects.

The reliability of the displacement estimate depends on the size of the chosen measuring
windows, in conjunction with the present amount of motion. The estimate tends to be
unreliable, 1f small measuring windows are used and the displacement 1s large. The smaller
the measuring window, the higher 1s the probability that there are blocks ( and hence will
be selected by the matching criteria) 1n the corresponding search area, containing a more
similar or 1dentical pattern of picture elements, although there 1s no correspondence in the
sense of motion. Therefore, large measuring windows are required in order to cope with
large displacement. Thus, the known block matching techmques fail frequently as a result

of using a fixed measuring window size [113]

In order to take into account the above problem, a hierarchical block matching for
displacement estimation was suggested by Bierling [113]. The hierarchical structure uses
distinct s1zes of measuring windows at different levels of the hierarchy The estimator starts
with large measuring windows at the highest level. From one level to the next level of the
hierarchy, the size of the measuning window is decreased The displacement estimate 1s
obtained recursively, 1.e. at each level of the hierarchy, the resulting estimate serves as an

imtral guess for the next lower level. The first hierarchy levels serve to provide a reliable
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estimate of the major part of a large displacement, whereas the last levels serve to estimate
the remaining part of the displacement accurately. Figure 5.1 shows the principle of
hierarchical displacement estimation for the example of three levels. A displacement vector
between two successive frame of images 1s achieved as the sum of three estimates, using
three different measuring window sizes [113]. The second hierarchy level starts motion
compensation using the results of the first level, i.e. the search poimnts of the search
procedure are displaced by the estimate of the first level, and carries on the same way

through the rest of the levels recursively.

Previous frame

Present frame

Figure 5.1  Principle of hierarchical displacement estimation for three hierarchy levels
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5.2 Application

In order to reduce the computational effort resulting from large windows, sub-sampling
inside the measuring window can be performed [113]. This raises the 1dea of applying the
same method of sub-sampling to pel-recursive, 1n particular for the proposed pel-recursive
method. If the task is proven satisfactory, this can perhaps be used to have an affect of final

tuning on the displacement which 1s estimated by block matching,

Looking at the example from another angle the performance of any hierarchical codec can
be mmproved by introducing pel-recursive motion compensation. In view of this let allow
and investigate if pel-recursive motion compensation can be active side by side m the
presence of block matching motion compensation. This may possibly have some benefit for
codecs standards ke H 263, MPEGs, or any other.

Basically the way the method is structured 1s as follow:-

1) applying block matching motion estimation on two successive image frames, and
producing displacement vectors (i e.- for each block of 16 x 16 pels)

2) Passing the images through a low pass filter in order to have them down sampled,
that is to shrink the images (1 e:- by 16 x 16). Two dimensional Q.M F (quadrature
Murror Filter) can be used as a crude substitution for the low pass filter. A further
rough substitution can be achieved by taking the intensity of the first DCT
coefficient (DC coefficient) for each block (1.e - block of 16 x 16 pels); which is
really the average intensity of pels in each block.

3) Allocating each block matching displacement vector as the motion vector for every
pel of the down sampled images.

4) Apply the pel-recursive motion estimation algorithm on the down sampled (or
shrinked) 1mages by taking the motion vectors as the nitial iterative estimation of
pel-recursive estimation

5) The resulting motion vectors are to be the final tuning on block matching motion

estimation displacement vectors
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As for the experimental results concerned in this thesis; the above procedure 1s applied to
images with block sizes 8 x 8 Figures 5.2.1 to 5.2.6 shows the graphical result for two

sequences of “Suzie” and “Salesman”. As it can be seen the outcome is not very promising.

Finally the above procedure could also be carried out for any other block sizes 1€ a block
of 4 x 4....Etc,

One of the drawbacks of the above method is that due to statistical randomness of sub
sampled 1mages, which causes an estimation of the error for each pixel, there is some
possibility of uncontrolled overshoot as can be seen from the graphs in the figure 5 2.4.
This 1s mainly due to the situation that mtial motion vector 1s independently estimated for

every pels.
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Suzie Prediction Error Comparison
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Figure 5.2.1 Suzie block recursive comparison after three iterations with previous frame
clean, without half pel accuracy on block matching,.
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Salesman Prediction Error Comparison
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Figure 5.2.2  Salesman block recursive comparison after three 1terations with previous
frame clean, without half pel accuracy on block matching.
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Suzie Prediction Error Comparison
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Figure 5.2.3  Suzie comparison after three 1terations with previous frame reconstructed,
with half pel accuracy on block matching, and mnitial motion vectors set to
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Salesman Prediction Error Comparison
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Figure 5.2.4 Salesman comparison after three iterations with previous frame
reconstructed, with half pel accuracy on block matching, and mmtial
motion vectors set to zero.




Chapter 5 Application for herarchical system

Suzie Prediction Error Comparison
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Figure 5.2.5 Suzie block recursive comparison after three iteration with previous frame
reconstructed, with half pel accuracy on block matching.
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Salesman Prediction Error Comparison
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Figure 5.2.6 Salesman block recursive comparison after three iterations with previous
frame reconstructed, with half pel accuracy on block matching.
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Combined block matching
and pel-recursive techniques

n the application of pel-recursive motion compensation, even the propsed pel-
I recursive as well as the modified pel-recursive steepest descent gradient did not
show a promusing performance when used as block recursive algorithm (refer to chapter
five) In view of the situation that has ansen, it 1s a good 1dea to investigate the possibility
of combimng the two estimator techniques, pel-recursive and Block matching, in such a
manner that block matching can assist the pel-recursive approch to form a Hybnd system.
Here we have to investigate further the possibility of developing a hybrid system from

block matching and pel-recursive systems

6.1  Local versus Global Minima
Steepest descent 1s probably the simplest numerical optimization method. It updates the
present estimate of the location of the mummum in the direction of the negative gradient,

called the steepest descent direction Recall that the gradient vector points 1n the direction
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of the maximum. That is, 1n one dimension (function of a single variable), its sign will be
positive on an "uphill" slope Thus, the direction of steepest descent is in the opposite

direction.

The descent gradient approach however suffers from a serious drawback'- the solution
depends on the initial point. If we start in a "valley", 1t will be stuck at the bottom of that
valley, even if it is a "local" minimum (Figure 6.1.1). Because the gradient vector is zero or
nearly zero, at or around a local minimum, the updates become too small for the method to
move out of a local minimum. One solution to this problem 1s to initialize the algonthm at
several different starting points, and then pick the solution that gives the smallest value of
the criterion function However, this method usually requires significantly more processing

time

Global Mimmum

Local Mimimum

Figure 6.1.1 Demonstrative Graphical sketch of local and global minima.
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6.2  Hybrid system

As has been seen from the papers [39] [110] [114] [111] and through the simulation
(chapter 3) none of the algorithms by Netravali and Robbins [39], Newton-Raphson [110],
Caffero and Rocca [114], or Bergmann [111] give full convergence for every pel to
produce a perfect estimation for motion. In addition, some pels converge to unsatisfactory
figures and sometimes become unstable leading to the conclusion that the algorithms suffer

from some form of instability.

The aim of compression 1s based on the idea that 1t is possible to find displacement or
motion vectors for each pel so as to have a mimimum error 1mage signal Going through an
iterative process {1.e. steepest descend algorithm), it is not necessanly true that one can find
an area of a global minimum, therefore we face a situation where one lands on a local
mimmum and perhaps ultimately gets to the actual local mmimum or goes into oscillation

and becomes unstable.

In spite of all the above, the algorithm by Netravali and Robbins [39] has shown
convergence with less overshoot in relation to the other three algonithms [115], with the
cost of a high number of iterational computations for estimation of the displacement

vectors. If we define the stability constrain criteria as
| D-D_,| (| D- D] (6.1.1)

the algonithm by Netravalt and Robbins shows better stability as 1t requires that the update

vector be always directed towards and not opposite to the actual displacement

It has been seen that the initial estimation of displacement vectors has a great effect on
determining final motion estimation by the iterative process of the steepest descent
algorithm or the proposed algorithm. As can be seen from Figure 6.1.1, if the mmtial
estimation of displacement vectors are not well chosen, when the steepest descent
algorithm is applied, after a few 1terations, one can have a situation where a local mmmum

1s estimated instead of the global minimum estimation.
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In view of the affirmation argument, in order to estimate the displacernent vectors with
more accuracy, virtually for every single pel and particularly the pels where therr motion
vector happened to be situated on local mimmum instead of global minimum, will not be
estimated correctly. So the prediction error associated with these pels will not be accurately
estimated. Therefore, to overcome this inaccurate estimation 1t is possible to suggest that an
easy and simple solution would be to chose the imtial displacement vector by a different
mechanism. Having chosen the night imtial displacement vector, then the motion vector
resulting from first stage can be feed back into the iterative processing of the pel-recursive
system This led to the 1dea of the hybnd system. Relating the above techmque to the
problem 1n this thesis, block matching motion estimation is combined with pel-recursive
motion estimation to form a hybnd system As for the experimental results, the block
matching algonthm 1s applied to a sequence of a moving 1mages, producing motion vectors

for every block of the image and therefore a higher signal to noise ratio.

One of the drawbacks of motion estimation using block matching 1s that displacement 1s
estimated as one estimation for each block, for example; a block of 16 by 16 pels. This
should not necessarily apply to every pixel of the block as some pels may not be moving
pels e g.*- blocks containing edges. This also may cause a blocking effect which is one of

the drawbacks of the method used.

One needs to transmut a displacement estimation for each block as well as the number of
blocks with no motion estimation. This causes more overhead to be transmitted resulting 1n

transmission of a higher number of bits per second.

The Netravali algorithm and the modified algonthm were employed to investigate the
advantage and disadvantage of the motion estimation by the pel recursive method. It has
been seen that the Netravah algorithm 1tself suffers from some major defects e g :- lack of

divergence and stability which mamfests itself through certain pels.
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The pel-recursive algonthms try to minimize the prediction error by locking into either a
local or the global minimum. As the algorithm iteratively tries to force the error to a
minimum value, which is determined by the original motion displacement estimation, one
should note that the lack of convergence or stability caused by being in the viciuty of a
wrong mimmum may give rise to a local mmimum instead of global minimum. This may

be the main problem associated with pel-recursive algonthms in general.

Combining Block Matching motion estimation and pel recursive motion estimation mn a
complex manner has shown some improvement of the signal to noise ratio of Block
Matching with no extra cost on the overhead, producing new publishable results which still
can be improved further. This actually means that, the block matching does the main

displacement estimation and the pel-recursive does the fine tuning on each pel.

One of the advantages of this method is that it does not require any extra overhead n
transmisston because 1t does not need to transmit any extra information for the motion

estimated than 1s needed for the block matching technique.

In this thesis, for example, by employing H.263 and using block matching without 1/2 pel
accuracy; the energy was measured to be 20.52dB for an image 1n a sequence And also
employmg H 263 and using block matching with 1/2 pel accuracy, the energy was reduced
by a factor of 0.04dB to a figure of 20.48dB. Ths 1s also to justify the obvious which 1s,
using block matching with 1/2 pel accuracy is more advance than without 1/2 pel accuracy.
Thus 15 the one of the main advantages of H 263 over H 261 (H 261 does not have 1/2 pel

accuracy feature)

Using block matching (by employing H 263 with 1/2 pel accuracy) and pel recursive
motion estimation combined as a hybrid system reduces the energy of the error

substantially. Employing the new pel recursive motion estimation would further reduce the

energy of the error.
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6.3 Implementation and Experimental results

In order to show the outcome resulting from the hybnd system, motion vectors were
estimated using the standard traditional method of block matching H.263 with half pel
accuracy was employed to generate these displacement vectors. Having estimated the
motion vectors for every individual block (for example, block of 16 x 16 pel), they are
assigned to be the initial estimation for the pel recursive motion estimation for final tuning

of the estimations.

As for implementation of the simulation, great accuracy was needed when calculating
components representing the pel recursive formula, such as line, element, displacement
frame differences, and so on. For this, different ways and techniques can be utilized and
examined; e.g . interpolated, not interpolated, averaged using different causal supports, and

etc. It should be noted that not every single pel 1s to be motion compensated, therefore a

masking mechantsm needs to be used, e.g.: where frame difference, |FDIF| < threshold;

no prediction is needed (non-moving area).

In this thesis 1n order to be umform throughout the algonthms implementation and
simulation for calculation of line and element differences, non-interpolated averaged 3 by
2 causal support (Figure 6.3.1) is used. For displacement frame difference the interpolated
pel value of previous frame 1s subtracted from the average pel intensities of X(3) and X(6)
of present frame. As far as the proposed algorithm is concerned, different convergency
parameters have been used; that 1s where the absolute value of an element or hne difference
1s less than 11, the convergency parameter = 0.8, other wise £=0.7. Here one can have a
good educated view that, this is a reasonable indication of improvement by attempting to

have the convergency parameter adaptive.

The maximum update lmmt for consistency purposes were chosen to be [FDIF| < 9 for

non-moving areas, The results show that further constraint or limitation is needed to
accomplish a better estimation of motion vectors. As an example, where motion vectors
squared are less than or equal to 1, not to update the motion vectors. It should also be

mentioned that more constraint or hmitation or toggling of the predictor could result in
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better tuming of the motion vectors. This 1s done for three different sequences, Suzie,

Salesman, and Car,

X(1) X(@2) X(3) X4
X(5) X(@©) O
Figure 6.3.1 : A 4 by 2 causal support,

Figures 6.3.2 to 6.3.7 show and mdicate the validity of the new pel-recursive motion
estimation algorithm [112] in companson with the existing pel-recursive motion estimation

algorithm. The graphical results provide comparison for existing and the new algorithms.

Consider the motion estimation using a pel recursive motion estimation. Expenmentally it
has been shown that 1t produces an average improvement of over 0.5dB 1n signal to noise

ratio.
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Figure 6.3.2 Suzie comparison after three iterations with the previous frame
reconstructed with half pel accuracy on block matching.
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Salesman Prediction Error Comparison
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Figure 6.3.3 Salesman comparison after three iterations with the previous frame
reconstructed, with half pel accuracy on block matching
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Car Prediction Error Comparison
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Figure 6.3.4 Car comparison after three iterations with the previous frame clean,
without half pel accuracy on block matching.

132




Chapter 6 Combined block matching and pel-recursive

Setting the initial motion vectors to zero which almost 1n effect 1s turning off the block
matching motion estimator will produce similar results to the one generated by the new
proposed pel-recursive motion estimation. Thus 1s another justification of the obvious, that
the proposed method of pel-recursive motion estimation in general has not being able to
compete with block matching motion estimation as 1t can be seen from the Figures 6 3.5 -

637
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Suzie Prediction Error Comparison
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Figure 6.3.5 Suzie comparison after three iterattons with the previous frame
reconstructed, with half pel accuracy on block matching, and initial
motion vectors set to zero
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Salesman Prediction Error Comparison
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Figure 6.3.6 Salesman comparison after three iterations with the previous frame
reconstructed, with half pel accuracy on block matching, and mitial
motion vectors set to zero.
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Car Prediction Error Comparison
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Figure 6.3.7 Car comparison after three iterations with the previous frame clean,
without half pel accuracy on block matching, and initial motion
vectors set to zero.
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6.4 Conclusions

According to the results of Figures 6.3.2 and 6.3.3 whenever the hybrid system 1s used, a
substantial improvement m compression is being achieved A greater improvement is

shown through using the hybnid system with the proposed algonthm

Figure 6.3.4 indicate that for a fast moving image like the “Car” sequences (1e Figures
2515 and 2.5.1 6) the hybnd system does show some improvement over the traditional

block matching method.

If the mitial value motion vectors are set to zero as obtained from the block matching part
of the hybnd system (disregarding the effect of block matching from the system), then the

situation of pel-recursive versus block matching will arise. Figures 6 3 5 and 6.3 6 show the

result when there is no imtial value estimator present.




Chapter 7 Conclusions and Further Works

Conclusions and
Further works

his chapter presents a general view of the results described in this thesis and
Tsummaries the contribution of new knowledge for the implementation of steepest
gradient pel-recursive motion estimation. A further discussion is also developed
based on an example in chapter 5, utihizing the new pel recursive algorithm to a certain
degree. It goes further to discus the effect of involving block matching motton estimation in

pel-recursive motion estimation to form a hybnd system
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7.1 Conclusion

As an educated guess or rule of thumb one may suggest that the pel-recurstve steepest
decent gradient should perform better than block matching in estimating motton for
sequences of moving images. The pel-recursive algorithms look at images pel by pel, where
as block matching algonthms consider a block of an image as a whole However,
experimental results have shown otherwise to the extent that the pel-recursive approach
could not get be used in international standards for low bit transmission e.g.:- H 261,
H 263, MPEGs and so on. Figures 2.4.1.2 and 2.4.1.3 and Figures 3.6.3 -3 6 8 and Figures
3 6.3 -3 6.8 and Figures 3.9.1 — 3.9 6 show a good indication of this.

Figures 2.4 1.2 and 2.4 1.3 in general depicted that in block matching motion estimation
energy of the errors are very low, that is with very high signal to noise ratio, when
compared with the situation 1n which there 1s no motion estimation present. These results
have been generated using H 263 for different situations, estimating motion with and
without half pel accuracy. In almost all codec standards, the motion estimator 1s designed

on the basis of a block matching motton algorithm

In chapter 3 the state of the art of existing pel-recursive algonthms have been implemented
and simulated for situations where the previous frame has been clean or a reconstructed
mmage. Figures 3.6.3 — 3.6 8 depicted that pel-recursive motion estimation shows a good
low value of average energy for the error image signal, but still energy of the error 1s higher
than for block matchmg. Figures 391 — 3.9.6 indicate that even where there is some
improvement by making &, the convergency factor, adaptive, the error image signal is not
low enough as far as block matching is concermned, even though the error signals of the

images are lower than the case where ¢ 1s not considered to be adaptive.

Taking a step further, a new algorithm for pel-recursive motion estimation has been
proposed, implemented and simulated as detailed in chapter 4. The graphical and pictorial
results show and indicate that the average error image signal resulting from the new

algorithm is much lower than that for the existing pel-recursive algorithm. Figures 4.2 1 —

141




Chapter 7 Conclusions and Further Works

4 2 7 compare the existing state of the art with the new algorithm for motion estimation
These justify that the new algorithm 1s working and produces a better result than existing
ones. However, the average error resulting from new algorithm on its own is not lower than

that for the case of block matching,

Chapter 5 shows a crude example of employing the new pel-recursive algorithm. To see
whether or not pel-recursive m general can contribute further improvement nto
international standards such as H.263 or any other hierarchical codecs, side by side of block
matching motion compensation, the new gradient is blocked recursively are applied to
sequences of images and detailed in chapter 5, resulting the graphs in Figures 5.2.1 -5.2.7.
As can be seen the graphical results are not very promising 1n comparison to the situation 1f

one would just use the block matching technique.

Considenng the above case, it shows that it would not be feasible to have both the pel-
recursive motion compensation and block matching motion compensation present as
separate elements of estimator in codecs. Then, the thesis moves into new work by
combining the two some what different algonthms of block matching and pel-recursive into
a hybnd system. The resulting hybrid system does show the average error image signal
levels to be lower, when compared with the old block matching algorithm by at leasta 05
dB (for comparison, introducing half pel accuracy into block matching results in an 0.05 dB
improvement over block matching on 1ts own, for, the average error image signal) Figures
6.3.2 and 6.3.3 depict the variation of average error signals for two different sequences,
justifying the improvements of the hybrid system over block matching or pel-recursive on

their own,

It should be noted that the above conclusions in this thesis are based generally on

expeniments which were performed for about 20 frames of two different well known

sequences of moving mmages (“Suzie” and “Salesman”)
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7.2 Suggestions for further research work and recommendations

Since block matching motton compensation has become standardized, research and work
on pel recursive motton compensation has not been given any significance and has virtually
stopped. This may be due to the better performance of block matching over pel-recursive

for motion compensated image compression.

Now hybrid motion compensation can be employed for image compression, resulting in a
more advanced performance than each of the two aforementioned motion compensation
techmques, “block matching and proposed pel-recursive™. This could open a new door for
resecarch and development in image compression areas investigating the usage of pel-

recursive algorithms or as hybnd systems.

There are many papers relating to the development and further development mto block
matching techmiques since the allocation of the standards. As a starting point a good
example of the application suggestion is given 1n chapter five. In general the developments
which were already applied to block matching could be applied to the hybrid system With
reference to the these discussions, it is certain that there are many methods and
developments, whether small or large, applicable for block matching motion compensation
where pel- recursive and block matching motion compensation could work together A
good example of this is the application suggestion given in chapter five. The block
recursive motion compensation 1dea was developed with reference to a paper for block

matching motion compensation [116].

In pel-recursive work, in general, the predictors used are based on intensities in the
previous frame but not previous frames or calculated displaced previous frame. Of course,
as for further work, other predictors can be employed in order to augment the prediction

strategy. This m turn should enhance the system performance.

In chapter 3; 1t has been shown that pel-recursive motion estimation can improve its

performance by making &, the convergency factor, adaptive. In the onginal pel-recursive
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motion algorithm, & was chosen to be a fixed vartable and this has been improved to be
fully adaptive as “modified pel-recursive motion algorithm”. In chapter 4;¢, the rate
convergency controller, is recommended to be a constant variable But as can be seen from
chapter 4, a better result 1s produced by setting different values for different conditrons. In
turn this suggests that making £ adaptive should improve the performance of the proposed
motion estimation algorithm. In view of this, it would be sensible to conduct further work

toward improvement of the proposed algorithm

Finally, further work can be carmed out in view of the example in chapter 5. This can
basically be done to mmprove the performance of a luerarchical codec This 1s done firstly
by applying block matching motion estimation on 1mage frames, and obtaining
displacement vectors (i e. - for each block of 16 x 16 pels). The images are then passed
through a low pass filter in order to have them down sampled, that is to shrink the images
(i.e.:- by 16 x 16 pels). Various methods can be employed for this, for example, Two
dimensional Q.M.F (quadrature Muror Filter) can be used as a crude substitution for the
low pass filter. A further rough substitution can be achieved by taking the mtensity of first
DCT coefficient (DC coefficient) for each block (i e -- block of 16 x 16 pels); which is
really the average intensity of pels in each block. Taking the value of each block matchmng
displacement vector as the motion vectors for every pel of the down sampled images.
Apply the pel-recursive motion estimation algorithm on the down sampled (or shrunk)
mmages by taking the motion vectors as the initial iterative estimation of the pel-recursive
estimation (the current pels for estimating predictive frames 1s also to be used). This can be
looked at as fine tuning on the block matching motion estimation displacement vectors. As

for any transmission concern, there will be no further extra over head to be transmitted.
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A.1  Hierarchy flow diagram of H.263

The Hierarchy c files flow diagram for H 263 are as shown 1n figure A.1.1
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main ¢

coder ¢

detc

pred ¢

Appendices
¥ dct.c
| predc
J quantc
coder.c .
J| ratectrl
» mot_estc
| sac.c
* countbit.c >
main ¢ . % stream.c
huffman ¢
I0c¢
] SNR.c

Figure A.1.1 Hierararchy flow diagram of H.263.

The first routine call It acts on the input command line (tmn) and set
parameter accrdingly.

Performs all the encoding processes. Activated by main.c.

and activated by coder c.
Relates prediction of PB frames and Advanced Prediction mode. Activated

by coder.c

|
Performs the function of Discrete Cosine Transform. Initialized by main ¢
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quant ¢

ratectrl ¢

mot_estc

countbit ¢

sac.c

stream ¢

huffman ¢

I0c¢c

snrc

Sets all the quantisation mdex during encoding. Controled by coder ¢
Organizes the control coding with control parameter as the quantisation
index The control parameter 1s generic within ratectrl.c and doses not have
any nfluence on quant.c.

Performs the motion estimation in the encoding process. Activated by
coder c.

1ts functionality 1s to count the bits during encoding process. activated by
main ¢ and coder.c.

Performs the Syntax Based Anthmetic coding when this obtion 1s selected
Activated by countbut.c.

Handels all of the bit level stream commands.

Performs the function of huffman encoding routines. Activated by main c.
Contains the memory management for the component files. Activated by
main.c.

Processes signal to noise ratio for every frame. Activated by main.c.

A.2  Programming function discription

The programming functions as they appear in H.263 software, are described as follow :

main.c
int Next TwoPB (--) decides whether or not to code the next two
images as PB.
void Help () help.
void AdvancedHelp () help.
void PrintResult (--) prints results of bits in logn file.
void PnintSNR (--) print snr of lummance and chrominance 1n log

file.

148



Appendices

coder.c

dct.c

pred.c

void CodeOneOrTwo (--)
PictImage *CodeOnelntra (--)
int *MB_Encode {(--)

it MB_Dncode (--)

void FillLumBlock (--)
void FallChromBlock (--)

void ZeroMBlock (--)
void ReconImage (--}
void MotionEstimatePicture (--)

void MakeEdgeImage (--)

void Chp (--)

int Dct (--)

mt idct (--)

void init_idectref (—-)
void idetref (--)

codes one intra image.

performs dct and quantisatton of macroblocks
reconstruction of quantised dct coded
macroblocks.

fills the lutminance of one block of Pictlmage.
fills the chrominance of one block of
PictImage.

fills one MB with zeros.

put together reconstructed 1mage.

find integer and half pel motion estimation.
copy edge pels for use with unrestricted
motion vector mode.

clips reconstructed data 0-255.

perform dct on an 8 x 8 block and zigzag
scanning of coefficients

descans zigzag scanning coefficients and
perform inverse dct on 64 coefficients.
mitiate the inverse dct reference

mverse dct reference.

MB_Structure *Predict_P (--)predict P macroblock in advance or normal

MB_Structure *Predict_B (--)

MB_Structure *MB_Recon_B (--)

void FindForwLumPredPB (--)

mode

predict B macroblock in PB frame prediction
reconstruct the B macroblock 1n PB frame
prediction

find the forward Luma prediction n PB frame.
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void FindBiDirLumPredPB (--)
void FindBiDirChrPredPB (--)
void FindBiDirLimuts (--)

void FindBiDirChromalimaits (--)
void BiDirPredBlock (--)

void DoPredChrom_P (--)

void FindHalfPel (--)

void FindPred (--)

void FindPred OBMC (--)
MB_Structure *MB_Recon_P (--)

void ReconLumBlock P (--)
void ReconChromBlock_P (--)

voild FindChromBlock_P (--)

int ChooseMode (--)

int ModifyMode (--)
quant.c

void Quant (--)

void Dequant (--)

ratectrl.c
void ImtiahizePictureRate (--)

mt UpdateQuantizer (--)

mt UpdatePictureRate (--)

find the bi-dir Luma pred in PB frame
find the bi-dir Chroma pred 1in PB frame
find the bi-dir limits

find the bi-dir chroma limuts.

find the bi-dir prediction block.

perform the chrominance pred for P frame.
find the optimum half pel prediction.

find the prediction block.

find the OBMC prediction block
reconstruct MB after quantisation for P
images.

reconstruct one block of luminance data.
reconstruct chrominance of one block in P
frame.

find chrominance of one block mn P frame.
choose coding mode.

modify coding mode.

quantiser for SIM3.
dequantiser for SIM3.

compute the target bitrate and target frame
rate for the current picture bemng coded
generate a new quantiser step size base on bits
spent until current macroblock and bits spent

from the previous picture.

updates buffer content and determmine frame
skip.
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mot_est.c
void MotionEstimation (--) estimate all motion vector for one MB.
unsigned char *LoadArea (--) fill array with a square of image data.
| int SAD_Macroblock (--) fast way to find the SAD of one vector.
int SAD_Block (--) fast way to find the SAD of one vector.
it SAD MB integer (--) fast way to find the SAD of one vector.
void FindMB (--) pick out one field of one MB.
countbit.c
vold CountBitsMB (--) count bits use for MB informatiom.
void Count_sac_BitsMB (--) count bits use for MB informattom using sac
models modified from CountBitsMB,
mt CountBitsSlice (--) count bits use for slice (GOB) informatiom
void CountBitsCoeff (--) count bits use for coefficients
void Count_Sac_BitsCoeff (--) count bits use for sac models.
int CodeTcoef (--) encode an AC coefficient using the relevant
sac model
mt FindCBP (--) find the CBP for a macroblock.
int CountButsPicture (--) count the number of bits needed for picture
header.
sac.c
int AR _Encode (--) encode a symbol usmg syntax based
arithmetic coding
mnt encoder_flush (--) completes anthmetic coding before stream, or
before any fixed length code are transmitted.
void bit_in_psc_Layer {--} inserts a bit into output bitstream and avoid
picture start code emulation by stuffing a one
bt
int indexfn (--) index into frequency cumutative frequency

tables or escape code.

151




e ’'’''SSSSSS“BBBHBHHHBBEEEEEEGGEGESHSSH

Appendices

stream.c
void mwopen (--)

void mwclose (--)

int Zeroflush (--)

void mputv (--)
long mwtell (--)

void mwseek (--)

huffman.c
void InitHuff (--)
void FreeHuff (--)
vold EHUFF *MakeEhuff (--)

void LoadETable (--)

void printTable (--)

int Encode (--)

opens a bit stream for wrniting,

close the wrnite bitstream and flushes the
remaming byte with “1”, consistent with -1 |
returned on EOF.

flushes out the rest of the byte with zeros and
return number of bits wrniiten to bitstream

(kol)

put a n bits to the stream from byte b

return the position 1n bits of the wrnite stream.
seek to a specific bit position on the write

stream.

initialized VLC tables.

free the VLC tables.

construct an encoder huffman with a
designated table stze. This table size n, 1s used
for the lookup of huffman values and must
represent the largest positive huffman value.
loads an array into an encoder table. The array
1s grouped into triplts and the first negative
value signals the end of the table.

print out 256 elements 1n a nice byte ordered
fashion.

encode a symbol according to a designated
encoder huffman table out to the stream. It
return the number of bits written to the stream

and a zero on error.
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10.c

snr.c

unsigned char *Readlmage (--)
PictImage *Filllmage (--}

void Wnitelmage (--)
PictImage *ImtImage (--)

void FreeImage (--)

char *StripName (--)

void ComputeSNR (--)

reads one qcif image from disk

fills Y,C, and C, of a PictImage struct.

write PictImage struct to disk

allocates memory for structure of 4 2.0 image
free memory allocated.for structure of 4 2 0
1mage.

remove character behind “.”, and in front of

(including) the last “/.

compare two image files using SNR.
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