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Abstract

As one of the vital diagnostic signals, respiration rate is monitored for the purpose of patient
surveillance in the hospital, since it can predict potentially serious clinic events. Conven-
tionally, many contact-based methods are used, such as EBD-Derived Respiration or pneu-
mograph. Compared with contact-based respiration monitoring, non-contact methods have
advantages in: 1) Unobtrusiveness. Subjects are absent from distress caused by a contact
device to avoid interferences of the measurement. 2) Comfort. Sensors attached may irritate
the subject’s skin, especially for long time surveillance. 3) Convenience. It is convenient
for subjects without consideration for sensors and even connected wires. Furthermore, this
technique can be implemented with a camera in the hand-held device, for instance, a smart
phone. Unfortunately, currently reliable optical measurement of respiration is sensitive to all
kinds of camera movements. This thesis provides a motion compensation algorithm for the
video-based respiration measurement. Compared with existing method, our algorithm im-
proves PSNR by the gain of 1.7747, and improves correlation metrics by 0.8063. Inevitably,
there is always residue motion in the stabilized video, and those residue motion can decrease
the accuracy of respiration measurement algorithm. Therefore, a post-processing algorithm
is proposed to further improve the motion robustness. By adding missing peaks and deleting
wrong peaks in the respiration curve, the post processing algorithm can further improve the
accuracy of respiration measurement according to our benchmark.

Keywords: Respiration monitoring, hand-held camera, global motion compensation
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Chapter

Introduction

Respiration in physiology refers to the transport of oxygen from the outside air to the cells
within body tissues, and the transport of carbon dioxide in the opposite direction. Respiration
rate (RR) is the number of breaths taken within a certain amount of time, typically one
minute. As one of the vital diagnostic signals, respiration rate is mainly monitored for the
purpose of patient surveillance, since it can predict potentially serious clinic events, such
as apenea. The most intuitive way to measure respiration rate is to count by a person
how many times the chest rises in one minute, which is inaccurate and unrealistic for long-
time surveillance. Along with breathing behaviour, many phenomenons can be observed,
for instance, respiratory sounds, respiratory airflow and respiratory chest movement. Based
on measuring one of the above parameters, many respiration monitoring methods have been
proposed.

1.1 Contact-based Respiration Monitoring

Currently, standard methods for respiration monitoring are all contact-based and non-invasive,
including ECG-Derived Respiration (EDR) and pneumograph. The ECG-Derived Respira-
tion (EDR) technique is based on the facts that 1) the positions of ECG electrodes on the
chest surface move relative to the heart, and 2) transthoracic impedance varies, as the lungs
fill and empty [7]. Commercial ECG monitor is usually integrated with respiration monitor-
ing. The respiration can also be monitored by pneumograph that measures the chest and
abdomen movement. There are various kinds of pneumograph, depending on different princi-
ples of operation. Conventionally, a thick rubber of elliptical shape is attached to the chest.
Nowadays, electrical impedance is inserted into the elastic chest belt. During the respiration
process, the expansion of the chest will change the impedance of the sensor. By measuring
the current flows through the belt, the respiration signal can be extracted.



CHAPTER 1. INTRODUCTION

>

(a) electrodes in ECG (b) chest strap

Figure 1.1: Currently standard respiration monitoring: a) ECG, b) pneumograph

Considering the electrodes and the chest belt (Figure 1.1), contact-based respiration monitor-
ing requires a direct contact with the subject’s body, which can irritate the skin, and cause
skin to grow itchy or become sore, especially if the device is worn for a long period of time.
Moreover, it is obtrusive in daily life, considering extra efforts required to wear on and off
the device, and may also influence the accuracy of the measurement because of the subject’s
awareness of the sensor.

1.2 Non-contact Respiration Monitoring

As a unobtrusive way to monitor the subject, non-contact respiration monitoring attracts
more and more attentions recently. Compared with contact-based respiration monitoring,
non-contact methods have advantages in: 1) Unobtrusiveness. Subjects are absent from dis-
tress caused by a contact sensor to avoid interferences of the measurement. 2) Comfort.
Sensors attached may irritate the subject’s skin, especially for long time surveillance. 3) Con-
venience. It is convenient for subjects without consideration for sensors and even connected
wires.

Non-contact methods are based on measurement of chest and abdomen movement caused
by respiration. Instead of using expensive and cumbersome radar-based equipment [12], a
basic digital camera such as a webcam can further provide portability and low cost. Philips
Electronics B.V. developed a respiration measurement algorithm, referred as ProCor [13]
based on optical detection of chest movement. However, ProCor is sensitive to all kinds of
motions, including local motion of the subject, and the global motion induced by the camera.
The limitation of this method is that the breathing signal is likely to be corrupted by motion.
Non-contact respiration monitoring can perform well if no motion corruption occurs. But it
is certainly not the case with hand-held camera. Generally speaking, the chest and abdomen
movement caused by respiration is relatively small local motion, compared with large global
motion induced by camera movement. It is a challenge to extract the small local motion from
relatively large global motion using image and video processing techniques.

1.3 Respiration Monitoring in Using Hand-held Camera

In this thesis, we consider the problem related with respiration monitoring using a hand-held
camera. Generally speaking, the camera, as a rigid object with certain size, can have two
types of motions corresponding to two coordinate systems (Figure 1.2). All these motions
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in 3-D space can be projected onto the frame plane, and affect the video recorded by the
camera. On one hand, the camera can move freely in 3-D space. Movement in Z direction
causes scaling in the video, while the movement in X or Y direction contributes to translation.
On the other hand, the attitude of the camera can alter in the coordinate system with the
camera itself as the origin. The attitude alternations include yaw, pitch and roll. Roll of the
camera causes rotation in the frame, and the effect of yaw and pitch can be considered as
translation with perspective distortion. Since yaw and pitch change the viewing angle from
the camera, the frame plane is no longer parallel to the camera.

Figure 1.2: The possible types of camera movements in 3-D space.

Respiration signal extracted from local motion is relatively small compared with global motion
induced by the camera movement. There are three basic types of effects of the global motion
on the frame: (1) Translation: Camera movement in XY plane or yaw and pitch can cause
translation in the frame, denoted by the amount of shift (¢;,t,). (2) Rotation: Roll of the
camera can cause rotation in the frame, denoted by rotation angle 6. (3)Scaling: Camera
movement in Z plane will contribute to scaling effect in the frame series, denoted by scaling
ratio Rs. Furthermore, yaw and pitch will also contribute to perspective distortion because
the distance between the camera and the object is different for different viewing angle. But
we assume that people who holds the camera intend to focus on the subject, so both the range
and variation speed of translation (t,,t,), rotation angle # and scaling ratio R, are limited,
and the perspective distortion caused by yaw and pitch can be ignored.

The report is structured as follows. In Chapter 2, original respiration algorithm ProCor is
presented as well as the existing compensation algorithm. In Chapter 3, our compensation
algorithm is proposed to improve motion robustness. In Chapter 4, a post stabilization
algorithm is invented to further improve the accuracy of respiration measurement. Finally in
Chapter 5, Summary is given.
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Respiration Measurement
Algorithm

A camera-based algorithm (ProCor) [13] has been developed at Philips Research Eindhoven to
meet the demand for unobtrusive monitoring of respiration signal. Unlike other camera-based
algorithm [10], no markers are required to enhance visibility of the subtle respiration motion.
The algorithm detects the small local motions of chest of a subject induced by respiration,
and calculates the respiration rate from the frequency of those small motions. A region
of interest(RespROI) (Figure 2.1) is required as an input for the respiration measurement
algorithm to indicate where the chest of the subject is. The method is further intended to be
applied on mobile devices to improve portability. Unfortunately, the existing algorithm is not
robust to all kinds of motions. During the measurement, the camera has to be static and the
subject has to be stationary. This is unrealistic when the camera is located in a hand-held
device. In this chapter, we will introduce the details of ProCor and the existing compensation
algorithm.

2.1 ProCor

An overview of the respiration measurement algorithm is illustrated in Figure 2.2. The
algorithm consists of a Profile Correlation(ProCor) algorithm to derive respiration curve from
the chest movement and a post processing algorithm to calculate the respiration. The system
first reads a frame from either a camera or from a recorded video in the memory. A ROI is
manually selected by users to indicate the chest of the subject at the beginning. Then ROI
of each frame is projected to vertical axis to create a 1D profile, since horizontal motions
of the chest are more likely polluted by other unintentional movement. Shift between two
consecutive profiles, calculated by correlation, indicates changes of the chest position. So the
raw respiration signal can be reconstructed by integrating the shift over time. (Figure 2.3).
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Figure 2.1: RespROI and NoMeasureROI displayed in the frame: the white rectangle is
RespROI, as the original input of respiration measurement algorithm(ProCor). The black
rectangle is NoMeasureROI, input of the compensation algorithm proposed by van den Helder
[27]
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Figure 2.2: Overview of the respiration measurement algorithm
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Post-processing calculates the respiration rate from the raw respiration signal.

The raw

respiration signal is restored in a circular buffer, and first normalized according to current

maximum and minimum value.

Snorm = raw/(Max(Sraw) - Min(sraw))

(2.1)

Peak detection algorithm finds peaks on normalized signal. The respiration rate is mainly
influenced by the peak detection algorithm [13]. Hereby is the pseudo-code of peak detection

algorithm applied in the project.

Algorithm PeakDetect(S = p1,p2,D3.-., Pn)
n <—number of the points in S
dev <—deviation of the points in S
min < Float g, ; max <——Floatyqy
minPosition <——1 ; maxPosition +——1
FlagForMax <1
for i <1 ton

if p; < min
min = p;
minPosition = 1
if p; > max
maxr = p;
maxPosition = 1
if FlagForMax

© XN O W

[
e

else

—_ =
el
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14. if p; < max — dev

15. p; is a peak

16. min = p;

17. minPosition = i

18. FlagForMax =0

19. else if p; > min + dev

20. maxr = p;

21. maxPosition = 1
22. FlagForMax =1

23. return all the peaks and their positions

In order to avoid local maximum, the peak detection algorithm uses deviation of all available
signals to determine whether it is a peak. So it is vital to implement normalization before
peakdetection algorithm to avoid the impact from DC signal in the respiration curve.

With peaks in respiration signals, respiration rate is calculated by a window function to
count at least three peaks. A window-based calculation can respond to changes more quickly.
Assume the number of respiration signal points in the window is m, and the number of peaks
found in the window is p, then respiration rate per minute (RR/min):

RR/min = 60 * p x framerate/m (2.2)

2.2 Existing Compensation Algorithm

Van den Helder [27] proposed a compensation algorithm to stabilize the video while using
an extra NoMeasureROI (Figure 2.1) to protect the respiration signal. RespROI is the input
of respiration measurement algorithm ProCor, to indicate the position of subject’s chest.
And NoMeasureROI is the input of compensation algorithm, such that all pixels outside the
NoMeasureROI will not have any respiration signals. So the compensation based on the part
outside the NoMeasureROI will not ruin the subtle respiration signal. The idea behind the
existing compensation algorithm is to first stabilize the video from hand-held camera as a pre-
processing, then use ProCor and post-processing algorithm to calculate the respiration rate
from stabilized video. Ideally, if the video is fully compensated, original ProCor algorithm
will work. However, the stabilization algorithm is limited to only compensate translation.
Several estimation algorithms are implemented to estimate motion vectors, from which a
global motion vector is derived by either mean or median method. The limitation of the
method lies in using a unified motion vector to describe the global motion. Therefore, the
global motion model is only a translation model. That is why only translation can be com-
pensated.
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Existing Algorithm
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Figure 2.4: Overview of existing compensation algorithm.

In the next chapter, our stabilization algorithm is proposed to deal with all affine transfor-
mation caused by the global motion.
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Motion Estimation and
Compensation

In this chapter, we try to improve the motion robustness by a global motion estimation and
compensation algorithm. First, general concept of global motion estimation and compensation
is introduced. Various algorithms have their own advantages and disadvantages. We have
chosen a feature-based algorithm Lucas-Kanade with affine model, since the combination is
most suitable for our scenario.

3.1 General Concept

Global motion estimation(GME) and compensation(GMC) (Figure 3.1) are two essential parts
to stabilize the video sequence: 1) GME provides motion parameters for global motion models
by analysing the input video; 2) GMC uses the global motion model to reconstruct the
stabilized video from input video. In this section, we briefly review previous works about
global motion estimation, and compare different global motion models for compensation.

. Global Motion . Global Motion
—Input Video—p I - .
p Esitmation Global Motion Parameters— Compensation Stabilized Video—»

A

Figure 3.1: Block Diagram of GME and GMC

3.1.1 Global Motion Estimation

Global motion estimation(GME) algorithms can be classified by the size of units. Most motion
estimation algorithms directly deal with pixels, blocks(group of pixels), objects(groups of
pixels sharing a similar motion) or features(salient pixels with large gradients).
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Pel-recursive algorithms(or gradient algorithms, pixel based) improve earlier ME algo-
rithm [3] by estimating difference between actual and the predicted displacement vector. The
difference vector, called update, is calculated for each pixel. This method, first proposed by
Netravali [20], iteratively minimizes the square of displaced frame difference(DFD) by the
steepest descent technique. The conventional pel-recursive algorithm suffers from several
drawbacks. First, the iterative process may converge to a local minimum rather than a global
one. Second, the converge process is quite slow since it iterates from pixel to pixel towards
the true displacement. Third, the computational complexity increase dramatically with the
size of the frame.

Many improved algorithms have been addressed. Walker [28] extends the algorithm to im-
prove the convergence rate substantially and a different scheme for using the motion es-
timate is presented which eliminates explicit address transmission. Biemond [1] assumes
that the update and the linearisation error are samples of wiener processes and improves
the algorithm in convergence speed and reduction of prediction error. Compared with the
methods by Netravali [20] and Walker [28], the improved approach shows advantages in ro-
bustness, stability and convergence. Csillag[4] further improves the accuracy of Biemond’s
approach[l] by applying hierarchical motion estimation and reducing the image areas of slow
convergence. Efstratiadis[8] presents an improved algorithm of Biemond’s approach[l] by
utilizing the spatio-temporal correlations of the image sequence by considering an autore-
gressive(AR) model for the motion compensated frames. Estrela[9] uses spatially-adaptive
regularization to improve the Wiener-based pel-recursive algorithm [1] and employs general-
ized cross-validation(GCV) to determine the optimal value of the regularization parameter
for each pixel.

In block-matching algorithms, every frame is divided into non-overlapping square blocks
with size N x M. The motion vector is assigned to every block instead of each pixel by
searching a similar block within certain search area in the previous frame. The similarity
between blocks is determined by the match criterion, for instance, Summed Absolute Differ-
ence(SAD), Summed Squared Difference(SSD), Mean Squared Error(MSE) and etc. Besides
the match criterion, the performance of block-matching algorithms also depends on the search
strategy. Typical full search algorithm(FSA) searches the best matched block in the search
area (2WW + N) % (2W + m) in the previous frame, where W is the size of the search area,
usually is the maximum displacement. Despite the heavy computations it requires, FSA
can guarantee global minimum. In order to decrease the computational complexity, many
improved search strategies have been proposed. For instance, three step search(TSS)[14],
new three step search(NTSS)[16], four step search(FSS)[21], block-based gradient descent
search(BBGDS)[17], diamond search(DS)[30] and HEXagon based search(HEXBS)[29]. These
fast search algorithms may suffer from the disadvantage that they may get stuck in local min-
imum using SSD or SAD as the matching criterion, causing aperture problem. The 3-D
recursive search(3DRS) algorithm[6] is proposed to provide true motion estimation to solve
the problem. Currently, 3DRS is one of the most popular algorithms widely applied in motion
estimation considering true motion estimation and computational complexity.

In the standard block-matching algorithm, the motion is restricted to translation. However,
the algorithm can be extended by adding an affine model to estimate rotation. In [11] an
affine model is proposed, where each block performs an affine transform instead of a trans-
lation. Similarly, a generalized block matching algorithm [23] is proposed which can handle
complex motions including rotation. Of course, more complex motion model leads to heavier
computational workloads.

10
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Object-based algorithms replace block-based motion vector with object-based motion vec-
tor. In block-matching algorithm, the same motion vector is assigned to all pixels in the square
block, however, the edge of actual moving object can not always be square and coincide with
the block. Then the performance of block-matching algorithm is quite bad at the boundary
of the object. It is more reasonable to assign a motion vector to every individual object, since
pixels in a segmented object indeed share the same motion vector.

Object-based algorithms([19], [25], [15]) are mainly limited in the research field, because they
are computationally expensive and inaccurate compared with other estimation algorithms
with regarding to object segmentation algorithm required in the first step.

Feature-based algorithms follow the same principle to estimate the motion by matching
among consecutive frames. Instead of segmenting the frame spatially, the feature-based al-
gorithms choose features to represent the whole frame. Therefore, it is extremely important
to choose good features at the beginning. Those good features should be easily identified
and tracked from frame to frame. Shi and Tomasi[24] provided a feature selection crite-
rion based on dissimilarity that uses affine motion as the underlying image change model.
The best tracking method is the one first proposed by Lucas and Kanade[18] in 1981, and
many improvements have been made based on that. A pyramidal implementation of classi-
cal Lucas-Kanade algorithm[2] improved the local tracking accuracy and robustness. Tomasi
and Kanade[26] proposed a selection criterion of feature windows to improve the tracking
algorithm.

Compared with block-matching algorithm, feature-based algorithms are less sensitive to rota-
tion, scaling and other perspective transforms, since feature points do not assume a uniform
motion vector for each block. The algorithm is also available in OpenCV and open source( KLT
tracker).

3.1.2 Global Motion Model

A parametric motion model is a mapping M (Figure 3.2) from the coordinates of the pixel
in current frame X’ = (x,y,1)7 to previous frame X = (2/,9/,1)7: X' = MX. Various
models include two-parameter translation model, four-parameter rotation-scale-translation
model, six-parameter affine model and eight-parameter perspective model.

—

(a) (b) 4] (d)

Figure 3.2: Example of various mapping functions: translation transform(a), RST trans-
form(b), affine transform(c), perspective transform(d)

11
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Translational Model

The mapping between current frame and previous frame is

10 t,
M=10 1 t,
00 1

where [t;, t,]is the translation offset. This model, used in previous work [27], can only describe
translation.

RST Model

RST model is suitable to describe motions including rotation, scaling and translation. But
the shape of the frame is preserved. The mapping matrix can be expressed as

rcos —rsinf t,
M = |rsinf rcosf t,
0 0 1

where r is the scaling ratio, 6 is the rotation angel in degree, and vector [t;, t,] is the translation
in pixels.

Affine Model

A more complex model with six parameters is the most popular one, affine model. The affine
model can describe any affine transformation. Parameter matrix A is related with scaling and
rotation, and parameter vector b is the translation. Straight lines and the parallelism between
straight lines are preserved in the affine transform, and it is assumed that the distance of the
camera to the frame plane is not changed or the change can be ignored compared with the
size of the frame. The mapping matrix

a1l aiz tg

M= |aa a2 t
0 0 1
If a11 = age and a1 = —a91, the affine model can be reduced to four-parameter Rotation-

Scale-Translation model (RST).

Perspective Model

Since the frame plane is not always parallel to the camera during the perspective transform,
the assumption in affine model about the distance of the camera is not valid any more. The
perspective mapping is

a1l a2 ais

M = |az1 a2 agz

azy asz2 ass
It is noted that only two parameters are independent among asi, ass, ass, since they satisfy
as1x+asey+ass = 1. Therefore, the perspective mapping requires eight parameters. Straight
lines are preserved in the perspective transform. For example, a square can be mapped into
the shape of lines connecting four arbitrary points.

12
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3.1.3 Selecting Suitable Motion Estimation Algorithm and Motion Model

The motion estimation algorithm and motion model should be chosen based on user scenario.
Our scenario includes: 1) people tend to focus the camera on the subject, but the unintentional
movement is unavoidable. 2) subject can not move during the measurement. 3) the distance
between the camera and the subject is 1 to 1.5 meters. Thus, it is a trade off between
flexibility and complexity when choosing the motion model. The model with more parameters
can describe more complex global motion, but also means more computational workloads and
more valid feature points required to determine the parameters. The camera movement is not
large according to scenario 1, and the difference of the viewing angle is limited considering
small distance between the camera and the subject. Thus, perspective transform due to the
changing viewing angle is not dominant in our scenario , therefore an affine model is selected.

As to the motion estimation algorithm, pixel-based algorithm suffers from large computational
complexity, and metric-optimal method can not generate true motion vectors. Object-based
algorithm is still in research area. Although it may have advantages considering segmentation
of the subject from the background, the accuracy of currently available implementation is not
good. Only block-based and feature-based algorithms are feasible. Block-based algorithm,
especially true motion estimator, such as 3DRS, is computationally efficient in estimating true
motion vectors for a block in a frame. However, it is designed for local motion estimation.
For estimation of global motion vector, the size of the block can not be small, since it may be
trapped by local motion. The size and number of the motion vector are also limited compared
with feature-based algorithm. Therefore, feature-based algorithm is more suitable for global
motion estimation. Among them, optical flow using Lucas-Kanade feature tracker is most
popular, and computationally efficient implementation is available in OpenCV.

3.2 Optical Flow

Optical flow means tracking features in a frame across the video sequences. Actually human
does optical flow all the time — unconsciously track moving objects by eyes. Formally, given
point [ug, uy| in frame Fy, and find the same point [uy + 0, uy + ;] in frame F5 that minimize

the error e:

€(0u:6y) = > > (Filz,y) — Fala+dayy +6y)) (3.1)

T=Ug —Wg Y=Uy—Wy

(0,9y) is the optical flow, or motion vector between frame F} and frame F», and w,, w, are
the width and height of the integration window. Typically, §, < w, and , < w,. Known
as the aperture problem, the optical flow can not be solved unless additional conditions are
added. Among all methods for optical flow estimation, Lucas-Kanade differential method [26]
is the most popular. In addition, it is vital to select good features to track. Intuitively, a good
feature should at least have two properties: 1)texturedness. Lack of texture means ambiguity
in tracking. 2)corner. No corner contributes to the aperture problem. Shi [24] proposed a
criterion to select good features.

Both good features to track and Lucas-Kanade feature tracker have been implemented In
OpenCV. cvGoodFeaturesToTrack() and cvCalcOptical FlowLK () are always combined to
calculate optical flow by first selecting dominant features, and then tracking them along the
video sequences. Motion vectors can be derived from matching features between two frames.

13
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3.2.1 Selecting Features to Track

To avoid ambiguity and aperture problem, intuitively, a good feature should have texturedness
and corner, which are determined by eigenvalues of expression 3.2 in Shi[24]’s conclusion.
Higher eigenvalue means better feature.

oF I*°F
Zneighbour ( o )2 Zneighbour ( dz0y )

O*F oF
Zneighbour ( Oz0y ) Zneighbour ( Oy )2

where F' is the intensity of the pixel in the frame, and Oz, Jy are the horizontal and ver-
tical displacements of the center of the window containing the neighbour. In OpenCV,
cvGoodFeaturesToTrack() is an initial step for optical flow method. But the function is
only pixel accurate, cvFindCornerSubPiz() afterwards can locate the features up to sub-
pixel accuracy by iteration.

(3.2)

3.2.2 Pyramidal Lucas-Kanade Feature Tracker

As one of the widely used differential methods to calculate optical flow, Lucas-Kanade is
based on three assumptions as additional conditions: 1) Intensity constancy. Intensity of a
small region of the frame remains the same although its location may change. Otherwise,
it is not possible to track the features selected by cvGoodFeaturesToTrack(). 2) Tem-
poral persistence. The image motion of a surface patch changes gradually over time. 3)
Spatial coherence. Neighbouring points in the frame have similar motion if they belong to
the same surface. In OpenCV, classical Lucas-Kanade method is implemented as function
cvCalcOptical FlowLK (). But it suffers from a dilemma between accuracy and robustness.
On one hand, the integration window size [w;, w,] in Equation 3.1 should be small enough to
make details dominant in the similarity function. On the other hand, the maximum motion
vector estimated is limited by the size of the integration window: ¢, < w, and J§, < wy.
Then it is preferable to set the window size [w, w,| large for robustness. As a solution to the
dilemma, a pyramidal implementation of classical Lucas-Kanade algorithm is proposed [2].
The main advantage of a pyramidal implementation is keeping relatively small integration
window to ensure accuracy while able to estimate large motion vector.

Fo

Figure 3.3: Pyramid structure from 0 level to LY level. 0™ level is the original frame Fy,
with the highest resolution. The size of frame in level L,, is 1/(2%™) of the original one.

14
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The pyramidal construction of a frame F is recursive. Let Fy be the 0% level frame(raw
frame), with the highest resolution. Each higher level is sub-sampled from the lower frame,
for instance, F} from Fpy, Fy from Fi, until the highest level F7, , as illustrated in Figure 3.3.
The obvious advantage of a pyramidal implementation is that residue motion vector in each
level can be kept very small while the overall motion vector is large. A pyramid depth of
L,, = 3 can lead to a gain of 15 in overall pixel displacement. cvCalcOptical FlowPyrLK ()
is the available implementation in OpenCV .

3.3 RANdom SAmple Consensus(RANSACQC)

Motion vectors estimated by Lucas-Kande method can not be all accurate, since it is possible
that few features are wrongly tracked. However, those outliers in motion vectors can be
filtered out based on majority of inliers. It is assumed that the model determined by certain
amount of inliers can distinguish all other inliers from outliers. So as a randomized algorithm,

the basic steps of RANSAC are:
e Randomly choose a subset s of available motion vectors S.
e Evaluate a model M from the chosen subset S.

e Evaluate all motion vectors in S — s. If the percentage of fitting vectors is large than
the threshold ¢, the model M is returned, and all fitting vectors are valid.

e Otherwise, randomly choose another subset.

By running RANSAC to motion vectors obtained from estimation algorithm, those outliers
can be deleted, and the estimation of the global motion is more accurate and robust.

3.4 Analysis of Motion Robustness

In order to analyse the motion robustness of all available algorithms, several test videos are
recorded. The reference of respiratory signal is obtained from a contact-based method using
the chest strap.

3.4.1 Experiment Set-up

The set-up is illustrated in Figure 3.4. The uEye camera with a fixed 20 frame rate and
monochrome is used. The video is stored in format of PFSPD(Philips File Standard for
Pictorial Data). In the meanwhile, a chest strap with Piezo transducer is attached to the
subject. Respiration signal acquired by the databox from the chest strap is a reference.
The synchronization between video and reference is guaranteed by TCP /TP mechanism. The
frequency of the respiration is less than 1 Hz, while the sampling frequency of the databox
is 1KHz. Thus, the corresponding respiration signal is sub-sampled from the databox by
TCP/IP connection in the computer for every frame.
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Figure 3.4: Experiment set-up: uEye camera, chest strap with Piezo transducer, DataBox to
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acquire respiration signal, computer

There are 12 test videos in total, snapshots in Figure 3.5, which can be categorized by four
properties: subject, posture of the subject, camera status and orientation of the camera. All
the videos are listed in Table 3.1. The label of each video represents the four properties. For
example, SILbHF represents the video of Subject 1 Lying back, with a Hand-held camera
in Front. The subject in the video is asked to follow a fixed pattern of various respiration
phases: normal, fast, deep, apnea and talking.

Table 3.1: Lists of 12 test videos, categorized by 4 properties. The number of frames and
label are also presented.

Video No. ‘ Subject Posture Camera-status Orientation ‘ No. of frames  Label ‘
1 S1 Lying back Hand-held Front 2000 S1LbHF
2 S1 Lying back Hand-held Side 2000 S1LbHS
3 S1 Lying down Hand-held Front 1600 S1LdHF
4 S1 Lying down Hand-held Side 2000 S1LdHS
5 S1 Sitting Hand-held Front 1600 S1SHF
6 S1 Sitting Hand-held Side 1700 S1SHS
7 S2 Lying back Hand-held Front 2000 S2LbHF
8 S2 Lying back Hand-held Side 2000 S2LbHS
9 S2 Lying down Hand-held Front 1600 S2LdHF
10 S2 Lying down Hand-held Side 2000 S2LdHS
11 S2 Sitting Hand-held Front 1600 S2SHF
12 S2 Sitting Hand-held Side 1700 S2SHS
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(a) Snapshot of SILbHF (b) Snapshot of S2SHS

Figure 3.5: Snapshots of two test vides SILbHF and S2SHS listed in Table 3.1

3.4.2 Quantification

In order to evaluate the motion robustness, two types of quantification metrics can be defined.
On one hand, the motion robustness can be evaluated directly by metrics related with the
frame, such as pixel-based Peak Signal to Noise Ratio (PSNR) or similarity-based correlation.
On the other hand, the accuracy of respiration measurement, such as respiration rate, can be
evaluated, which is the ultimate purpose.

Frame-based Metrics

In this section, the performance of the stabilization algorithm is compared based on PSNR
and correlation among all 12 test videos recorded in section 3.4.1.
Peak Signal to Noise Ratio (PSNR) , is defined as:

2

B MaxFI
PSNR = 10log;( VSE ) (3.3)

where Maxp, is the maximum possible pixel value of the image, here is 255. And MSE (Mean
Square Error) for two images I and J with the same size m * n is defined as

m—1n—1

MSE = % S°S UG ) — TG, (3.4)

i=0 j=0

If compensated image is identical to the reference, PSNR should be infinite since the MSE will
be zero. Compared with other pixel-based criteria, PSNR is best choice for image distortion
caused by translation, rotation and scaling. Furthermore, since we have used interpolation
in the compensation, it is also important to measure the quality of the reconstruction. For
each frame in a video, stabilized frame is compared with the first frame as reference. Thus,
in Figure 3.6(a), our algorithm is compared with existing algorithm for test video SILbHF.
From the PSNR gain = PSNRtest/PSNRwithoutstabilization (Figure 36(b))7 we can see that
our algorithm improves PSNR by the gain of 2 in average.
Correlation between two images I and J with the same size m * n is defined as

corr = Lm Zn(lmﬁ DG ) = (3.5)

Vo Sln = D2 S, S (i — )2
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Figure 3.6: Performance of stabilization algorithm of test video SILbHF. The reference frame
is the first frame. The stabilized frame is compared with the reference.

where I and J is the mean value of image I and J.

The benchmark based on correlation for test video SILbHF is illustrated in Figure 3.6(c).
And by comparing the correlation difference = correlationsess — correlationyithoutstabilization
(Figure 3.6(d)), our algorithm surpasses the existing one by 0.8241 in average. For all test
videos, mean values of their PSNR gain and correlation difference are compared in Figure 3.7.
As the results show, the stabilization algorithm compared with existing one improves PSNR
by the gain of 1.77 in average for all test videos, and by the difference of 0.8063 in correlation.
But it should be noted that there is still residue motion since PSNR of our stabilization
algorithm is not infinite in Figure(3.6(a)).

Respiration-based Metrics

The frame-based metrics are intermediate evaluations considering our goal to measure res-
piration rate. Therefore, certain metrics based on respiration rate and curve are necessary.
For the respiration rate, both the value and timing are important. However, this metric also
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Figure 3.7: Comparison of average PSNR and correlation difference among all 12 test videos
(Table 3.1). The result of each video is derived as the same in Figure 3.6

depends on the performance of peak detection algorithm. A more strict and independent
metric is to compare respiration curve directly, such as the correlation with the respiration
curve of reference.

Respiration Rate can be calculated by post processing from raw respiration signal using
Equation 2.2. Each respiration rate value is coupled with its time stamp in frame. Both
the value and timing are important in respiration monitoring, since lagging can contribute
to inaccuracy of the respiration rate. Therefore, instead of simply comparing respiration
rate value one by one using metrics like mean square error(MSE), the area covered by the
respiration rate curve is evaluated. The performance of this metric is influenced by peak
detection algorithm, since the respiration rate is determined by peaks.

Suppose the respiration rate measured by a algorithm is [rr, ], where the value of respiration
rate rr = rry,7ry, ..., r7,, and corresponding time stamp t = t1,ts,...,t,. A respiration rate
curve can be derived as a stair function

0 : t<ty
RR(t): rry 0 U <t <tiy1,1 € [1,n—1]
rr, : t>t,

Then the sum of absolute difference in area (Figure 3.8) covered by the two respiration rate
curves RR(t) and RRa(t), referred as SADA is

SADA = / t |RRy(t) — RRy(t)|dt (3.6)
0

Metrics of Respiration Curve, such as correlation of respiration curve, are more direct and
independent compared with the area covered by the respiration rate curve. The correlation is
calculated by Equation 3.7. If two respiration curves X = x1, %2, ..., Zn and Y = y1, Y2, ., Yn,
the correlation between these two curves is
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Figure 3.8: Sum of absolute difference in area covered by respiration rate curve.

corr — 2z (@ = X)(yi —Y) (37)

Vi — X2 (s — V)2

whereX andY are the mean values of two curves. Considering we want to compare the
similarity in peaks, correlation between two raw respiration curves will suffer from their
inherent DC signals. Therefore, a window based correlation metric is applied. The final
correlation is the average of all correlations in each window. Result based on respiration
curve is presented in Figure 4.11.

3.5 Conclusion

In this chapter, we first introduced the general concept of global motion estimation and motion
model. We have implemented the most suitable algorithm to our scenario, feature-based
Pyramid Lucas-Kanade with affine model. The motion robustness is improved according to
the benchmark. But it is not always accurate for respiration measurement, since there is still
residue motion in the stabilized video.
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Chapter

Post-Stabilization Algorithm

In the last chapter, a feature-based motion estimation algorithm with affine model is imple-
mented to compensate a global motion. However, there is still residue motion in the stabilized
video from the benchmark result in Figure 3.6(a), since PSNR is not infinite. In this chap-
ter, the impact of the residue motion on the respiration measurement algorithm ProCor is
analysed, and a novel post stabilization algorithm is proposed to further eliminate the er-
ror induced by the residue motion and the accuracy of respiration measurement is improved
according to the results.

4.1 Residue Motion’s Impact on Respiration Measurement

As illustrated in Figure 2.3, the final respiration curve is integration of a shift vector (S—‘} )
between consecutive frames over time, and the shift is calculated by cross correlation of
projection curves in vertical axis of two RespROIs in the neighbouring frames. In this section,
we can see how horizontal and vertical global motion are different in affecting the shift vector.

4.1.1 Horizontal Residue Motion

We first assume that the frame is only a stair line P, representing the chest, to simplify the
situation, as depicted in Figure 4.1. In Figure 4.1(a), no residue motion exists. The output of
ProCor SV = ad’ is the exact shift vector of the respiration signal. However, if a horizontal
residue motion exists(Figure 4.1(b)), the output vector aa” is no longer accurate, since it
. . . s - -

also contains the shift vector caused by the residue motion SV potion = a’a’ . Because of the
residue motion, ROI moves, then the_grojection of ROI in vertical axis is also impacted by
the residue motion, contributing to SV otion-

In Figure 4.1(b), we can see that with residue motiﬂ the releii;)n between the output of
ProCor SV gutput and the actual respiration signal SV ,esp is [SV output| = |aa” | = |aa’ | +

- —

la’a”| =[SV resp| + | SV motion|, but this is not always the case. The relation depends on the
direction of residue motion and the content of the frames as well. Comparing Figure 4.1(b)
with Figure 4.1(c), the same horizontal motion vector can yield two different shift vectors
with opposite directions. Therefore, the outpofuts ProCor are also different. In Figure 4.1(c),

— —

— ~ — —
ISV output| = |aa”| = |aad’| —|a’a”| = |SV resp| — | SV motion|. It should be noted that if SV otion
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(a) The output shift vector ad’ is exactly the respiration signal caused by chest movement if no residue motion
exists. ProCor’s measurement is accurate without residue motion.
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(b) The output of ProCor is no longer accurate with horizontal residue motion. The output shift vector aa” not
only contains the actual respiration signal aa’caused by chest movement, but also the shift vector a’a’ caused

by the movement of ROI, which is an impact from residue motion. , and |aa”| = |aa’| + |a’a”|
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(c) Same horizontal residue motion as in Figure 4.1(b) , but the content of the frame is inverse. The output of
ProCor aa’ also changes, because the shift vector a’a” has the opposite direction compared with a’a’” in Figure
4.1(b), and |aa”| = |aa’| — |a’a”|

Figure 4.1: Impact of the horizontal residue motion on respiration algorithm
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is large enough, the output S’—‘} output can have totally opposite direction of actual respiration
signal Wresp.

In conclusion, the output of ProCor is the sum of two shift vectors of respiration signal
and residue motion. The direction of the shift vector caused by residue motion is not only
determined by the direction of residue motion, but also the content of ROI in the frame.

4.1.2 Vertical Residue Motion

For vertical residue motion, the relation between output shift vector W output and residue
motion vector is illustrated in Figure 4.2. Without residue motion, we know that the mea-
surement is accurate (Figure 4.2(a)). The analysis becomes a bit more complex with residue
motion, as shown in Figure 4.2(b) and 4.2(c). But the output of ProCor S—‘} output 15 always
equal to the sum of SV ,.csp and SV 0ti0n. And for vertical motion, W motion 18 the reversed
motion vector, and not influenced by the content of ROI in the image. This is the main
difference compared with horizontal residue motion.

4.1.3 Fundamental Limitation due to ProCor

It should be noted that the above analysis does not consider certain cases when correlation in
ProCor itself is wrong. As shown in Figure 4.3, when there are missing or appearing peaks of
projection, correlation in ProCor will definitely return a wrong shift vector. This situation is
out of scope of further investigation. Moreover, if the image in ROI is not sensitive to residue
motion, for instance, a full black ROI, the respiration measurement can not work as well.
When selecting the ROI manually, it should be aware to avoid these cases.

Residue Projection Projection
Motion CEE—— - o

1

output

P ROV’

| |
| |
| |
| |
| |
| |
| |
I I
| |
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| |
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' I
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Figure 4.3: Missing and appearing peaks: shift vector from ProCor is not accurate due to
mismatched peaks. This is a limitation of ProCor itself.

4.2 Improvement based on NoRespROI

In this section, we propose a novel post stabilization algorithm (Figure 4.4) based on the
property of residue motion’s impact on the respiration measurement algorithm. The idea
is using another ROI outside the chest area, called NoRespROI, to compensate the motion-
polluted respiration curve derived from RespROI, based on Equation 4.1.

— — —
Svcompensated = SVRespROI - SVNoRespROI

— — —
= (SVResp + SVMotionROI) - SVMotionNoROI (4 1)
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(a) The output shift vector is calculated by correlation between projections of ROI of consecutive frames. When
there is no residue motion, the respiration measurement is accurate.
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(b) The output of PorCor aa” = aa’ + a’'a”, where aa’ is induced by the residue motion, and a’a” is the real
respiration signal. The direction of shift vector caused by residue motion aa’ is opposite to the direction of the
motion.
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(¢) The direction of shift vector aa’ is still in the opposite direction of the residue motion, which is not influenced
by the content of the frame.

Figure 4.2: Impact of the vertical residue motion on respiration algorithm
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In RespROI, both local chest movement and residue motion exist. But in NoRespROI, outside
of the chest area, only contains the global residue motion. The residue motion 1s the same in
both ROI, but the shift vector caused by the same residue motion of RespROI S’ V MotionROI
and NoRespROI S V motionNoror are different, since they are also influenced by the content of
the images in both ROIs. Ideally, if images in RespROI and NoRespROI are the same, then
SV votionNorOT = SV potionrOI, the compensated output is exactly the respiration signal
accroding to Equation 4.1. Unfortunately, the assumption is not valid in practice. Therefore,
the performance of PSA mainly depends on how well NoRespROI is chosen.

NoRespROI
» Extract ROI » ProCor
3 Raw Signal
l Compensated Signal
N >
Raw Signal
Stabilized Video 4
RespROI
» Extract ROI » ProCor

Figure 4.4: Overview of post stabilization algorithm(PSA). Motion-polluted signal extracted
from RespROI after stabilization is compensated by signal extracted from NoRespROI.

4.3 Selection of NoRespROI

The principle to select NoRespROI is:

PSA can fully eliminate the residue motion’s impact on respiration measurement as long as
the shift vectors caused by residue motion of RespROI and NoRespROI are same.

Before we derive certain criteria, one assumption has to be made about ROI. Suppose
MazxResidueMotion is the maximum residue motion in pixels of translation, then ROI is
assumed to be limited within a rectangle, noted as ROl teng (Figure 4.5), whose width and
height are both MaxResidueM otion larger than those of ROl in every frame of stabilized
video. Instead of looking at original ROI, we should focus on ROI . tena, because ROIcptend
contains all possible impacts from residue motion.
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Figure 4.5: Relation between ROI, ROl pteng and ROIporizontal

Therefore, certain criteria can be derived to find NoRespROI in the frame.

1. Variance of images in NoRespRO . ienq should be equal or larger than the variance of
images in RespRO I ienq. 1t makes sure that the sensitivity of both ROIs to respiration
algorithm ProCor are similar. So residue motion in vertical direction can be fully
compensated according to the analysis in section 4.1.2.

2. Correlation between projection matriz of RespROIporizontar and NoRespRO I orizontal
should be maximum, where RespROI},oriz0nta; has the same height as RespROI but is
2 %« MaxRestdueMotion wider, as illustrated in Figure 4.5. The projection matriz, in
which there are 2*MaxResidueMotion+1 columns and ROIHeight rows, can be derived
from ROlIporizontai- Each column is the projection curve of one possible ROI among
ROIorizontar (Figure 4.6).

3. NoRespROI. teng can not contain any pixels influenced by the local respiration motion.
In principle, the chest and abdomen of the subject should be segmented and avoided. We
use another ROI called NoMeasureROI to protect area with respiration signal (Figure
4.5). The width and height of NoMeasureROI are both two times larger than RespROL.

Projection L
f—————— t-—————————== | Projection
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| ol - : Matrix
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I |
I I
| I
: 1 | |=e===-
I |
: KR ROI |
. |
| . ROI + |
| S, MaxResiduMotion| | L.
| | Projection
N DU 4
ROI_horizontal Projection

Figure 4.6: Construction of projection matrix from ROIporizontal
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Pseudo code of PSA based on above three criteria to automatically select NoRespROI from
manually selected RespROI:

Algorithm AutoSelectROI(frame, RespROI, M ax Residue M otion)
Calculate RespROlI. tenq from RespROI and M ax ResidueM otion
Calculate projection matrix of RespROI.zteng as RespROI Proj
Calculate variance of RespROIpienqg as RespROIV ar
NoMeasureROI is calculated from RespROI
for i < MaxResidueMotion : FrameWidth — MazxResidueM otion
for j <« MaxResidueMotion : FrameHeight — MaxResidueM otion
Choose one NoRespROI at position (i, j)
if NoRespROI is outside NoMeasure ROI
Calculate variance of NoRespROI . teng as NoRespROIV ar
Calculate projection matrix of NoRespRO I teng as NoRespROI Proj
correlation between NoRespROI Proj and RespROIProj
if correlation > MaxCor && NoRespROIV ar > RespROIV ar
MaxCor = correlation
OptNoRespROI = NoRespROI

© XN O W

— =
= O

— = e
SU Lo o

. return OptNoRespROI

NoRespROI1 NoRespROI3

NoRespROI2

o

MNoMeasureROI RespROI

RespROI4

Figure 4.7: Comparison of PSA’s performance between four different NoRespROIs: NoRespl
fulfils criteria 1 and 3, NoResp2 does not fulfil any criterion, NoResp3 fulfils criterion 3, and
NoResp4 fulfil all criteria. Comparison of their performances are depicted in Figure 4.8

The above algorithm is illustrated by comparing four different NoRespROIs (Figure 4.7) with
simulated residue motion. Original video is recorded in experiment mentioned in subsection
3.4.1 with still camera. Simulated horizontal and vertical residue motions in triangular wave
are added into original video, with a period of 20 frames and amplitude of [—5,5] pixels.
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The variance and correlation with RespROI of four NoRespROI are listed in Table 4.1. Only

NoRespROI4 fulfils all three criteria.

Table 4.1: Four NoRespROlIs: their variances and correlation with RespROI. Noted: variance

of RespROI is 18.8671.

’ NoRespROI ‘ Variance Correlation ‘ Criterion 1  Criterion2 Criterion 3 ‘

1 30.0499  -0.1445 v x v
2 1.6327  -0.1904 x x x
3 13.8242  0.0449 x x YV
4 10.8242  0.2389 v v v

The performances of PSA with above four NoRespROIs are compared in Figure 4.8. From
the above results, PSA with NoResp2 and NoResp3 can not compensate any residue mo-
tion, PSA with NoRespl can only compensate vertical motion, and PSA with NoResp4 can
fully eliminate residue motion. Therefore, we can conclude that PSA can compensate both
horizontal and vertical residue motion if NoRespROI satisfies all criteria 1, 2 and 3.

PSA performance of NoRespl
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Figure 4.8: Performance of PSA on simulated video with four different NoRespROIs in Figure
4.7

4.4 Results

In this section, the performance of PSA is evaluated by practical videos listed in Table 3.1.
We try to compare the performance of original respiration measurement algorithm ProCor,
existing compensation algorithm ProCor-Marteen, our compensation algorithm ProCor-LK
and post stabilization algorithm ProCor-LK-PSA using respiration-based metrics (section
3.4.2).

In Figure 4.9(a), the respiration curve and corresponding respiration rate derived from video
S2SHS are depicted. By comparing detected peaks in reference with test algorithms, four
wrong peaks in ProCor-LK is deleted by PSA, and the corresponding respiration rate is more
accurate (Figure 4.9(b)). Actually, there are two types of inaccurate measurement: 1) missing
peaks(MP), if peak in the reference is not detected in test algorithm. 2) wrong peaks(WP),
if peak in the test algorithm is not a peak in the reference. All statistics of missing peaks and
wrong peaks for all test videos are listed in table 4.2.
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Table 4.2: Statistics of missing peaks (mp) and wrong peaks(wp) in 12 test videos

Video No. Algorithm [ MP WP [ MP Ratio WP Ratio
SO | pcortirsa | 3 3 | b om
SIS | piCorticrsa | 5 2 | om o
ST | pcortirsa | T2 | on oo
SIS | pocorticrsa | 6 0 | o1r o
SIS | poGorticrsa | 5 1| oo o
S5 | pocorticrsa | 2 1| 06 o
SOE | pocorticrsa | 10 | ow o
S | pocrticrsa | 3 0 | oos o
LI | poorticPsa | 2 0 | om0
LS | pocicrsa| 5 0 | 0w o
S | pocorticrsa| 5 0 | o1 o
55 | procorticrsa | 0 3 | 0 ow

We can see that PSA can add missing peaks and delete wrong peaks in most cases. The
consequent improvement can be illustrated in Figure 4.10. In Figure 4.10, the sum of absolute
difference of the area covered by the respiration rate curve with reference is calculated for all
12 test videos, and the respiration measurement is more accurate for smaller difference. We
can see improvements in 11/12 videos, except SILbHF. In video SILbHF, although 1 missing
point is added, PSA also induces 3 additional wrong points. The wrong points induced by
PSA is caused by a sudden drop in the respiration curve. At the same time, a big change in
the viewing angle is observed in the stabilized video, which is a limitation of the affine model
applied in the stabilization algorithm.
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(a) Respiration curves of ProCor-LK, ProCor-LK-PSA, ProCor-Marteen and
reference in video S2SHS. Four wrong peaks in ProCor-LK are compensated in

ProCor-LK-PSA. ProCor-Marteen is not working in this test video.
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(b) Respiration rate curves of ProCor-LK, ProCor-LK-PSA and reference in
video S2SHS. Four wrong peaks in the respiration curve of ProCor-LK leads to

three inaccurate intervals of respiration rate.

Figure 4.9: Benchmark result of video S2SHS.
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Figure 4.10: The sum pf absolute difference in area covered by respiration rate curve with the
reference between with or without PSA are compared. Without PSA is ProCor-LK algorithm,
and with PSA is ProCor-LK-PSA.

The improvement can also be verified by correlation metrics defined by Equation 3.7. From
Figure 4.11, PSA improves the correlation for 10/12 test videos except SILbHF and S2LbHF.
For video S2LbHF, both ProCor-LK and ProCor-LK-PSA are performing best according to
the result in Figure 4.10, and they are the same regarding to missing or wrong peaks. The
minor decrease in the performance may be caused by lagging in peaks detected. It is possible
that PSA can influence the peak detection algorithm on the timing stamp of peaks.
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Figure 4.11: The raw respiration curves derived from three algorithms are compared in
window-based correlation with reference. The length of the window is 200 frames. ProCor-
Marteen is the existing compensation algorithm, ProCor-LK is our stabilization algorithm,
and ProCor-LK-PSA includes PSA algorithm after the stabilization
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4.5 Conclusion

In this chapter, we have proposed a novel post stabilization algorithm to further eliminate the
impact from residue motion by using another ROI called NoRespROI, in which only residue
motion exists. The performance of PSA mainly depends on how well NORespROI is chosen.
Therefore, an automatic selection of NoRespROI is implemented based on three criteria to
guarantee the performance of PSA. From the benchmark result, the accuracy of respiration
measurement is indeed improved by PSA.
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Summary

This thesis develops and implements a motion robust algorithm for respiration monitoring us-
ing a hand held camera. The original respiration measurement algorithm, referred as ProCor,
was developed by Philips. Electronics B.V. previously, however the algorithm is limited to
the scenario of stationary camera. In order to improve its motion robustness, a stabilization
algorithm in combination of pyramid Lucas-Kanade feature tracker and affine global motion
model is implemented. The benchmark shows that the motion robustness is improved, though
still suffers from the impact of the residue motion on respiration measurement. Therefore, a
post stabilization algorithm is proposed to correct the respiratory signal with non-respiratory
motion residue. Another ROI, called NoRespROI is chosen outside the area with respiratory
signal to represent the residue motion. The performance is mainly determined by how well
NoRespROI is chosen. We have defined certain criteria to select NoRespROI, and the residue
motion can be compensated using PSA with those NoRespROIs.

5.1 Future Work

e More complex global motion model. Four parameter affine model can not dealt with
subtle but existing perspective transform. Upgrading the motion model may reduce the
residue motion after stabilization, and the probability that the residue motion impacts
the respiration rate is also reduced.

e Better peak detection algorithm. The accuracy of the respiration rate is also heavily
influenced by the peak detection methods. Missing peaks and wrong peaks may be
found or discarded for a better peak detection algorithm.

e Real time implementation. In ProCor-LK-PSA algorithm, the motion estimation and
compensation algorithm is the most complex and time consuming part. Several improve-
ments are possible, for example, only images in ROI stabilized reduce execution time.
Currently, four parameter affine model is used. Additional parameters can improve the
accuracy of stabilization, but further increase the computational workload.
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