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Chapter 1 

Introduction 

Digital images are increasingly being employed in a diverse range of applications for 

the storage and transmission of picture information. The sheer bulk of data contained 

within an digital image has prompted the development of compression algorithms to 

reduce the storage and transmission requirements of these images. Currently, im-

age compression is recognised as an enabling technology since it is crucial to the 

development of many applications. 1ipical applications which employ image com-

pression include: facsimile transmission (fax), medical diagnosis, videoconferencing 

and multimedia. 

Over the past three decades much research has been dedicated to developing image 

compression algorithms [1-5] for the storage and transmission of image data. A diverse 

range of algorithms have been generated which range from simple algorithms based 

upon linear prediction [11(chapter 6' , to complex algorithms which employ wireframe 

models of the head and shoulders [6].  This diversity is due to researchers constantly 

seeking to increase the compression ratio whilst still maintaining the image integrity. 

To enable the exchange of compressed picture information several standards have 

been developed. The CCITT H.261 [7] and the motion picture experts group (MPEG) 

standards [8] both target full motion video. They are based upon a hybrid coding 
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architecture which combines motion-compensated prediction with transform coding. 

Although motion-compensated transform codecs have been found to produce reas-

onable quality reconstructed images, the quality of the reconstructed image rapidly 

degrades after a critical value of compression ratio is reached [9].  In general, it is 

difficult to give an absolute value for this critical value of compression ratio since 

the tolerable distortion threshold varies from person to person and indeed may vary 

according to application. 

However, for small head and shoulder type images (typically 176 x 144 pixels) 

which are used for videotelephony applications, 64 kbits/s appears to be the lower 

limit of the rate at which images can be encoded whilst maintaining acceptable quality. 

Algorithms which can encode images at rates below 64 kbits/s are currently of great 

interest since they will allow video to be transmitted on conventional PSTN telephone 

lines and on mobile communication channels. 

The degradation in the integrity of the reconstructed images generated from a 

motion-compensated transform architecture can be attributed to two major factors: 

The transform encoder is optimal for encoding real-world images not prediction 

errors. 

Both the transform encoder and the motion-estimation algorithm are block-based 

algorithms and as such do not describe the semantic detail of a image. As the 

compression ratio is progressively increased the regular block structure becomes 

apparent and eventually dominates the structure of the image. 

Thus to further increase the compression ratio whilst still maintaining the integrity 

of the decoded image, the spatial encoder must be optimised for compressing prediction 

errors and the semantic detail of the image must be also be encoded. Strobach [9] has 

recently introduced such an encoder which is based upon a quadtree segmentation of 

a prediction error. However, this scheme fails to reach its full potential since it still 

employs a block-based motion-estimation algorithm. 

2 



Chapter 1 [Introduction 

1.1 Synopsis of thesis 

The research recorded in this thesis investigates methods for efficiently encoding image 

sequences. The objective of the research is to characterise the prediction error signal 

and then, based upon these results, to develop a new algorithm for encoding the 

prediction error. 

Chapter 2 introduces image compression. It includes a description of the theoretical 

basis for image compression, a description of some typical algorithms and a discussion 

of the various standards for the compression of greyscale and colour images. 

To further increase compression ratios increasingly complex and sophisticated 

compression algorithms will be required. Both H.261 and MPEG already require 

considerable computational power to achieve real-time encoding/decoding. As com-

pression algorithms become more complex, progressively more sophisticated dedicated 

hardware implementations will be required. Chapter 3 addresses this problem by invest-

igating parallel implementations of image compression algorithms on a reconfigurable, 

multiple instruction multiple data computer. The aim of the work is twofold: firstly, 

to produce a real-time simulation tool which allows video compression algorithms to 

be tested and optimised, and secondly, to investigate the inherent parallelism in image 

coding algorithms to determine scalable and portable solutions for mapping this class 

of algorithm onto a parallel architecture. 

Motion estimation for image coding is examined in chapter 4. Motion-compensated 

prediction, which is used in many state-of-the-art video codecs, is discussed in some 

detail. Theoretical models of the prediction error are developed and compared to 

experimental results. It is demonstrated that motion-compensated prediction can be 

considered to be non-ideal spatial high-pass filtering of the original image. 

Based upon the analysis of the optimum hybrid motion-compensated prediction 

coder by Girod [10] it is demonstrated that, for small distortions, the signal-to-noise 

coding gain of this encoder is asymptotically bounded by the inverse spectral flatness 

measure of the prediction error. Theoretical and empirical results show that the spectral 

flatness measure of typical prediction errors approach unity, and thus, only small gains 

can be expected from applying a spatial encoding algorithm. Finally, some serious 

3 
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flaws in the motion-compensated transform encoder are highlighted. 

Based upon the results of chapter 4, a new algorithm is developed for the com-

pression of an image sequence in chapter 5. The new algorithm employs a variable 

size block matching motion estimation algorithm to segment images so that they can 

be encoded using conditional replenishment. The resulting segmentation partitions 

the image into regions which can be copied between frames and regions which must 

be replenished. The complex block structure is compactly described using a tree and 

the regular nature of the decomposition allows simple inequalities to be formulated so 

that compression is always ensured. A novel method of controlling rate and distortion 

is also introduced which is based upon adaptively parsing the tree structure so that 

leaf nodes can be merged. Finally, to reduce the computational overhead of the vari-

able block size motion estimation algorithm, a stationary background segmentation 

algorithm is employed. 

Chapter 6 summarises the results presented in chapters 3,4 and 5. Conclusions of 

the work are discussed with suggestions for extensions to this work. 

The results presented in this thesis are based upon applying encoding algorithms 

to three different image sequences: Miss America, Clare, and Salesman. The Miss 

America and Clare sequences both contain images with a plain background, which 

contain very little frame to frame motion. These two sequences are almost 'ideal' 

for videotelephony. The Salesman sequence still contains head and shoulder type 

images but the images contain a complex background and the frame to frame motion is 

quite complex. In comparison to the Miss America and Clare sequences the Salesman 

sequence is, generally, more difficult to encode. 

Appendix A contains a list of the original publications which are associated with 

this thesis. Appendix B contains a proof of the fact that the Karhunen-Love transform 

approaches the rate-distortion bound for Gaussian sources. Some of the intermediate 

results from this appendix are also used in chapter 4 to derive a figure of merit for the 

signal-to-noise gain of the discrete motion-compensated transform coder. Appendix C 

contains a description of the software contained on the disk attached to the back cover 

of this thesis. 

4 



Chapter 2 

Image coding 

2.1 Introduction 

Compression algorithms can be broadly divided into two classes: information-lossless 

or information-lossy. The former is able to reconstruct an exact copy of the original 

image whereas the latter produces a reconstructed image which is an approximation 

to the original. Information-lossless coding algorithms are used in applications where 

the quality of the reconstructed image is critical, e.g. medical images. Information-

lossy algorithms give the greatest compression and are used in applications in which 

the storage or transmission bandwidth is limited and a good quality reproduction is 

sufficient, e.g. videotelephony. 

Compression is achieved by exploiting naturally occurring redundancy in an image 

or image sequence. In general, three different types of redundancy can be identified 

and exploited: pyschovisual redundancy which is based upon limitations of the human 

visual system; coding redundancy which is caused by inefficient assignment of code 

words; and spatial and temporal redundancy which allows one part of an image to be 

predicted from other parts of the image. 

This chapter reviews image compression for greyscale and colour images. The 

different types of redundancy which can be exploited to obtain compression are de- 
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scribed. Information theory and its derivative rate-distortion theory are introduced. 

Popular algorithms for the compression of images are also discussed and then the 

JPEG, H.261 and MPEG standards are described. 

2.2 Psychovisual redundancy 

The human visual system (HVS), which comprises of the eye, optic nerve and finally the 

brain for interpreting images, is exceptionally powerful but nevertheless, many images 

contain detail which the HVS is simply not capable of registering. This represents a rich 

source of redundancy which if correctly exploited results in significant compression 

without introducing noticeable degradation in the image fidelity. 

Clearly, to control the distortion which is introduced into an image a model is 

required which faithfully mimics the HVS. Unfortunately, the complexity of the human 

visual system precludes the development of such a model, and since the perceived 

quality of an image is extremely subjective it is doubtful that such models could ever 

be developed. Instead, images are quantised based upon empirical rules developed 

from simple experiments to measure the response of the HVS to various stimuli. 

2.2.1 Brightness sensitivity 

The human visual system (HVS) is able to adapt to an enormous range of intensities; 

although at any one time it is only able to simultaneously adapt to a small subset of its 

full range. 

Experiments to measure the response of the HVS to intensity perturbations consider 

two cases: the response of the HVS to intensity perturbations presented against a uni-

form background and the response of HVS to intensity perturbations presented against 

a non-uniform background. The response of the HVS to the former is well known and 

is given by the Weber law [11],  that is, the just noticeable intensity perturbation, A!, is 

given by, 

(2.1) 

where I is the intensity of the uniform background and k is a constant which is 
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experimentally measured to be approximately 2% of the background intensity. 

If the perturbation is presented against a non-uniform background then the response 

of the human visual system is found to be considerably modified. No comprehensive 

model exists to explain the response of the eye to non-uniform stimuli. But, in general, 

a complex background masks luminance perturbations, although in some cases the 

perturbation becomes more noticeable [6].  If a luminance perturbation is presented 

close to an image edge then it is known that the just-noticeable threshold increases 

either side of the edge [11].  Girod [12] has shown that this masking effect is greater 

on the dark side of the edge. 

For images displayed on VDUs the above phenomena are considerably modified 

by the non-linear response [11, 121 of the cathode ray tube and light falling upon the 

screen. 

2.2.2 Spatial response 

The response of the HVS to spatial phenomena has been measured using spatial sine-

wave patterns. These experiments show that the eye has an approximately bandpass 

response to spatial frequency [12].  The degradation in spatial response at high fre-

quencies is far greater than that at low frequencies and as such is the most important 

for image coding. 

2.2.3 Colour sensitivity 

The HVS is well known to be more sensitive to changes of intensity than changes in 

colour. Indeed, greater compression ratios can be achieved in colour images since the 

colour information masks coding artifacts [2]. 

Many encoding schemes exploit this by using a tn-stimulus colour coordinate 

system which uses luminance and two colour difference components (YC rCb) instead 

of the red-green-blue (RGB) colour coordinate system which is frequently used for 

computer graphics. The advantage of the YC rCb  colour coordinate system is that 

luminance (Y) component is the greyscale image and the two colour difference signals 

(CrCb) are relatively uncorrelated compared to their RGB counterparts. In many 
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applications the colour difference signals are subsampled by a factor of two without 

introducing a noticeable degradation in image fidelity. 

2.2.4 Temporal response 

The visibility of spatial detail falls as the velocity of an object increases, which results 

in short term temporal masking. The duration of this masking effect is generally so 

small that it is difficult to exploit in practical coding schemes [12]. 

2.3 Information theory 

Information theory [13] can be used to quantify the redundancy contained within a 

waveform and to derive the lower bound to the rate at which a signal can be en-

coded. The fundamental concept of information theory is uncertainty, that is, the more 

uncertain an event is the more information it contains. 

The self information, 1(x1), of a discrete-time, discrete-amplitude source X E 

{xo,xi ,x2  . . . X_} in which a symbol {X = x1 } has a probability p(xi) of occurring is 

defined to be, 

1(x1) = log
(---) = - 

log p(x,) 	 (2.2) 

Thus, if p(x1 ) = 1, then this symbol contains no information, i.e. the symbol is com-

pletely predictable and as such contains no self-information. The base of the logarithm 

in equation (2.2) determines the units in which self-information is measured. Gener-

ally logarithms to the base 2 are used which produces units of bits/symbol, although 

in certain cases natural logarithms are favoured for mathematical simplicity. 

The average self-information of a signal is known as the entropy, H(X), of the 

signal, 

	

1 	 N-i N-i 

	

H(X) = - 	1(x1) = - 	p(x) log2  p(x,) bits/symbol 	(2.3) 

where H(X) e [0, log2  N]. 

For a noiseless channel a signal can be encoded at rate, R(X), which is arbitrarily 
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close to the entropy of the signal , i.e. 

R(X) =H(X)+e 
	

(2.4) 

where c is an arbitrarily small real number. This result is known as the noiseless coding 

theorem [13](Chapter  4). Huffman codes [14] and arithmetic codes are both variable 

length codes which attempt to code a signal at a rate which is close to its entropy 

bound. 

2.3.1 Rate-distortion theory 

The rate-distortion function, R(D), determines the rate, R, at which a signal can be 

encoded for a given average distortion measure, D. The distortion measure is a non-

negative cost function which, ideally, measures the perceived quality of an encoded 

image. in practice, formulating a distortion measure which measures perceived image 

quality is very difficult (see section 2.2) and instead distortion measures such as mean 

square error (MSE) are used. The mean square error, e, between an image, i(x,y), and 

an encoded version of the image, I(x, y), is defined to be, 

B [(i(x,y) - I(x,y))2J 	 (2.5) 

where B[.] denotes the expectation operator. 

Other distortion measures which are frequently quoted include signal-to-noise ratio 

(SNR) and peak signal-to-noise ratio (PSNR) which are defined to be, 

SNR = 10 log10 
a2 	

(2.6) 

maxval2  
PSNR = 1010910 	2 	 (2.7) 

where cry, u,2  and maxval2  are the variance of the image i(x, y, t), the variance of the 

coding error, and the maximum amplitude of the signal respectively. If the coding 

error is a zero mean signal then u,2  and the mean square error are equivalent. 
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In practice, the rate-distortion function can only be solved for a few simple examples 

in which it is assumed that the images have Gaussian statistics.. Images rarely have 

Gaussian statistics but the rate-distortion function of a -  Gaussian source can be usefully 

interpreted as the upper bound to the actual performance [15] (see also appendix B). 

2.4 Spatial and temporal redundancy 

Spatial and temporal redundancy allows pixels or regions of an image to be predicted 

from other pixels. Compression is achieved by transforming the data so that redundancy 

is removed. Frequently the removal of spatial or temporal redundancy does not result 

in compression and can in fact result in expansion. However, the resulting data is 

frequently easily compressed and these algorithms are often the basis of many very 

successful coding algorithms [1,3,4,11]. 

2.5 Coding techniques 

The various types of redundancy which can be exploited to obtain compression have 

been discussed. This section discusses a number of compression algorithms which 

have been developed to compress greyscale and colour images. 

2.5.1 DPCM 

Differential pulse coded modulation (DPCM) [l](Chapter 6) reduces or removes nat-

urally occurring correlation by predicting the signal based on previous values of the 

signal. The signal is then represented by the difference, e(n), between the actual value, 

y(n), and the predicted value, $'(n). 

e(n) = y(n) - 5(n) 	 (2.8) 

The predictor complexity depends upon the source model. The lowest complexity 

predictors use short-term memory of the signal to make a linear prediction. More 

10 
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Figure 2.1: Schematic diagram of a DCPM codec. 

complicated predictors either use longer memory or use short-term memory to make 

adaptive predictions. 

23.2 Transform coding 

Transform coding is yet another algorithm for reducing or removing naturally occurring 

correlation from images Transform coding reduces spatial redundancy in an image 

by applying a linear orthogonal transform to the image or subblocks of the image so 

that the resulting transform coefficients contain little or no correlation. In general, the 

transform is not applied to a whole image but to smaller subblocks to take advantage 

of strong local correlations. The transform operation is defined by, 

(2.9) 

where 0, x and A are the tensors containing the transformed samples, pixel intensities 

and the basis matrix respectively. Transform encoding can be applied to data sets of 

any dimension but in practice one or two-dimensional transforms are invariably used. 

The one-dimensional transform is the easiest to understand and as such it will be 

used to illustrate the principle of transform coding. A sequence of N points is to be 

transformed, this sequence can be viewed as an N-dimensional vector, x. By analogy 

with vector geometry the transform operation is a rotation, scaling and translation of 

11 
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i) Original data space 	 ii) Transformed data space 

x l  

 

x l  0. 

 

X 
2 

Legend: 

Distribution of vectors 

 

0 2 

Figure 2.2: Example of transform coding with two-dimensional vectors. 

the axes (or vector). The transform decorrelates the vector by rotating the axes so that 

the projection of the vector onto the new axes is small for all but a few (ideally one) of 

the axes. This can alternatively be envisaged as energy packing, in which the transform 

packs the majority of the vector energy into M of the N transform coefficients. 

For example, consider an image in which pairs of neighbouring pixels are used 

to form the data vectors, x = ( Xi,X2)T. Because neighbouring pixels are used we 

would expect for real-world images that the majority of the data vectors would have 

approximately equal components, i.e. x 1  ± x2. Hence the majority of the vectors 

will be distributed about the line x 1  = x2  in the vector space. Figure 2.2(1) shows a 

two-dimensional space in which the vectors are contained within the shaded region 

and figure 2.2(u) shows the transformed axes. Clearly, the projection of the vectors 

onto the 61  axis will be large and the projection onto the 02 axis will be small. 

The Karhunen-Loève transform [2](chapter 3) (KLT) is an optimal transform for 

the coding of images (see appendix B). The KLT requires the eigenvectors and 

eigenvalues of the image covariance matrix to be calculated and as such is generally 

not used because of its high computational complexity. 

For data which can be modelled as having autoregressive statistics (AR) with 

a correlation coefficient approaching unity the discrete cosine transform (DCT) has 

basis vectors which are almost identical to those of the KLT [1](Chapter'12). The 1-d 

12 
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forward and inverse N-point transforms are defined as, 

N1 	(2n+1)km 
0(k) = 1/a(k) 	x(n) cos 	 k =0, 1,2,... ,N - 1 	(2.10) 

n=O 	 - 

x(n) r~~2~ 
N1 

0 a(k)(k) cos 
(2n + 1)k7r 

n=0,1,2,...,N-1 	(2.11) 
N =  

where a(0) = 1//2_ and a(k) = 1 if k 0 and x(n) are the original data values. 

Images are frequently modelled as having AR statistics and as such the DCT is 

described as being close to optimal. The small computational overhead of the DCT in 

comparison to that of KLT also makes it very attractive. 

23.3 Motion compensation 

Image sequences frequently contain more redundancy in the temporal dimension than 

they contain in the spatial dimension. A powerful technique for image compression 

is to estimate and then compensate for the motion of objects between frames [3]. 

Compression is achieved by applying one of two techniques: motion-compensated 

prediction in which the motion estimates are used in a temporal prediction algorithm 

(section 2.5. 1) and motion-compensated interpolation in which the motion vectors are 

used to reconstruct skipped frames. 

The most popular algorithms for motion estimation are block matching and pel-

recursive algorithms. The former make motion estimates by dividing an image into 

a regular array of blocks and then search for the best match between blocks in the 

previous frame. The latter use a steepest gradient algorithm to make motion estimates 

for individual pixels. 

25.4 Vector quantization 

Vector quantizers encode an image by classifying vectors (subblocks) of the image 

as vectors from a code book. The formal definition of vector quantization (VQ) is a 
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mapping, Q, of a k-dimensional Euclidian space, Rk,  onto a finite subset of Rk,  that is, 

(2.12) 

Compression is achieved by creating a code book which is a small subset of all 

possible input data vectors. The classical algorithm for choosing an optimum code book 

from input data is the Linde, Buzo and Gray algorithm (LBG) [16].  Nasrabadi [17] 

reviews a range of VQ algorithms. 

23.5 Fractal coding of images 

Fractal image compression was originally introduced by Barnsley [18] and was heral-

ded by the popular literature as a method of achieving enormous compression ratios 

whilst still maintaining high image quality. This has been subsequently shown to be 

untrue and it has also been shown that fractal encoding performs no better than any 

other image coding technique. 

Fractal image compression is based upon iteratively applying a transform to a 

subblock of an image [19].  The transform is chosen to be contractive so that after 

a finite number of iterations the subblock forms a unique fixed point. The image is 

reconstructed by iteratively applying the transform. 

2.5.6 Object-oriented algorithms 

Object-oriented algorithms attempt to encode the semantic detail of an image rather 

than reduce statistical redundancy [6].  Object-oriented algorithms, in general, give 

higher compression ratios but at the price of reducing the generality of the encoder. 

For example, model-based coding algorithms fit a wire frame to the face [20-22] and 

then transmit the changes to the vertices of the wire frame which requires only a few 

tens of bits. However, if the object to be encoded differs significantly from the model 

the encoder will fail. 

14 
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2.6 Standards for image coding 

To enable the interchange of compressed picture information, image coding standards 

have been introduced. Three standards have been introduced for compressing greyscale 

and colour images: the joint photographic experts group (JPEG) standard for still 

greyscale and colour images, and the CCITT H.261 and the motion picture expert 

group (MPEG) for full motion video. 

2.6.1 JPEG 

The joint photographic experts group (JPEG) [23] proposed standard is for greyscale or 

colour still pictures of natural, real-world scenes. It comprises two basic compression 

algorithms, an information-lossy coding scheme employing the DCT (see section 2.5.2) 

and an information-lossless coding scheme employing a predictive coding algorithm 

(see section 2.5.1). The lossy coding algorithm is known as the baseline method. 

Figure 2.3 shows a schematic diagram of the baseline encoder. Non-overlapping 

8 x 8 pixel blocks of the image are transformed using the DCT. The resulting transform 

coefficients are then quantized using a user-specified quantization table. Quantization 

of the d.c. coefficient leads to visually disiurbing results and as such it is not quantized. 

The quantized DCT coefficients are then re-ordered into a one-dimensional array by 

zig-zag scanning the coefficients starting at the d.c. coefficient and finishing at the 

highest frequency coefficient (see figure 2.4). The re-ordered transform coefficients 

are then grouped into run-amplitude pairs and variable length encoded. The d.c. 

coefficients are encoded separately using a predictive coding algorithm and a variable 

length code. 

2.6.2 H.261 

The CC1TF H.261 [7] standard is a hybrid of motion-compensated prediction and DCT 

encoding for transmitting moving images at p x 64 kbits/s (where p is an integer). A 

schematic diagram of the H.261 encoder is shown is shown in figure 2.5. The encoder 

consists of motion-compensated prediction, DCT, a quantizer, run length and variable 
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Figure 2.3: Schematic diagram of the JPEG encoder. 
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Figure 2.4: Zig-zag scan path for DCT coefficient ordering. 
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Figure 2.5: Schematic diagram of the H261 encoder. 

length encoding. 

The encoder may operate in two modes: inter-frame or intra-frame. The mtra-frame 

mode codes spatial detail and is similar to the JPEG algorithm. The inter-frame mode 

uses a prediction algorithm which can be optionally augmented by motion estimation. 

To allow the transmission of video across international boundaries a frame format 

known as common intermediate format (CIF) has been defined. The CIF format 

consists of non-interlaced frames occurring 30000/10001 (approximately 29.97) times 

a second. A frame is coded as luminance (Y) and two colour difference frames (CB and 

CR) as defined by CCIRR recommendation 601. Two different sized CIF formats have 

been defined: quarter-CIF (QCIF) and CIF. The bigger format, CIF, has a luminance 

signal which contains 288 lines x 352 pixels. The colour difference signals are sub-

sampled by factor of two in each dimension. The smaller, format, QCJF, has half the 

number of lines and half the number of pixels. The standard defines that all decoders 

should, decode QCIF and the CIF format is optional. 

Each CIF or QCIF frame is organised hierarchically. At the lowest level the frame 

is divided into 8 x 8 blocks. Four 8 x 8 luminance blocks and two 8 x 8 chrominance 
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blocks are called a macroblock (MB). The macroblocks are also grouped together to 

form a group of blocks which contains three rows of 11 macroblocks. 

2.6.3 MPEG 

The motion picture expert group (MPEG) standard is a generic standard for the com-

pression of video and audio. The standard is split into three parts: MPEG-i for audio 

and video compressed to be within a bandwidth of 1.5 Mbits/s, which is the bandwidth 

of uncompressed compact disc (CD) and digital audio cassette (DAT); MPEG-2 for 

higher quality video and audio compressed to be within the range 2-15 Mbits/s; and 

MPEG-4 will address video and audio compressed to less than 64kbitsls. MPEG-3 

was intended for compressing HDTV pictures but it was subsequently found that the 

MPEG-2 standard could be used for this purpose,, and as such it was superceded before 

it was even designed! 

Although MPEG is designed to be a generic standard in the sense that is independent 

of any particular application; it has been designed with certain application specific 

features in mind. These features include random access, fast forward/reverse searches, 

reverse playback, editibility and format flexibility. 

MPEG-i 

MPEG-i [81 and H.261 share many similar features since the MPEG committee strived 

as much as possible to make the two standards compatible. The two standards differ 

in that H.261 is designed for video communications at bandwidths as low as 64 kbits/s 

and as such it has a much more tightly constrained bitstream than MPEG-i. 

MPEG defines three different frame types: Intra-frame (I), predicted frame (P) and 

interpolated or bi-directional frame (B). The intra-frames give the lowest compression 

but provide random access points. The predicted frames are coded with reference 

to a past 'I' frame or a previous 'P' frame and are the same as the H.261 prediction 

errors. The interpolated frames provide the highest compression by transmitting the 

sequence at a reduced temporal frequency and then reconstructing the missing frames 

using interpolation. Interpolated frames are coded with reference to the two past and 
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future 'I' or 'P' frames. This is done by testing the forward vector, or the previous 

vector or by averaging the future and past blocks. If none of these works well the block 

is intra-coded. The frequency of the 'B' and 'P' frames is application dependent but 

the 'I' frames are separated by 12 frames. 

MPEG-2 

The MPEG-2 standard is for high quality video and audio and at the time of writing 

was not completely specified. It aims to be a compatible extension to the completely 

specified MPEG-i standard and also supports interlaced video formats and features to 

support HDTV. 

MPEG-4 

MPEG-4 is aimed at very-low-bit-rate encoding of video (4,800-64,000 kbits/s). 

MPEG-4 will allow video to be transmitted on conventional PSTN telephone lines 

and mobile communication channels. At the time of writing the standard was still at 

the proposal stage, although the following techniques were being considered: morpho-

logy, subband coding and model-based coding. 

2.7 Summary 

This chapter introduced various aspects of image compression. Initially, the redundan-

cies which are typically exhibited by image data were discussed. This was followed by 

descriptions of popular coding algorithms. In conclusion the international standards 

for the compression of greyscale and colour images were introduced. 
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Parallel implementations of image 

coding algorithms 

3.1 Introduction 

For real-time applications, i.e. encoding/decoding at full frame rate, many algorithms 

for video coding require considerable computational power. As the algorithms for the 

encoding/decoding of images become increasingly more complex progressively more 

sophisticated hardware solutions are required to obtain real-time performance. For 

example, Whybray [24] estimates the worst case computational load for the CCiTT 

H.261 standard to be 9000 million operations per second (MOPS). Current DSP mi-

croprocessors are only able to operate at a few tens of MOPS and as such H.261 is 

usually implemented on dedicated hardware or as a custom chip set. 

The computational requirements of image coding algorithms can also be a hindrance 

to development. Many parameters such as quantizer step size are perceptually optim-

ised by simulating the algorithm. Since a single frame can take several minutes to 

process on a conventional workstation this can be a time-consuming process. 

Parallel architectures are a natural way of obtaining the required performance for 

simulating and implementing these algorithms. Indeed, it is common in hardware 
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implementations to exploit simple parallel architectures such as pipelines or systolic 

arrays. Many modem microprocessors also contain parallelism, which is frequently 

hidden from the user but is nevertheless present. In this chapter strategies for explicitly 

exploiting the inherent parallelism in image coding algorithms are considered. Using 

H.261 as an example, results will be presented based upon work aimed at producing a 

high performance simulation tool for image coding algorithms on a transputer surface. 

3.2 Parallel architectures 

Flynn's taxonomy [25] broadly divides computer architectures into four classes: 

SISD: Single Instruction Single Data machines are simple single processor sequential 

machines. This is the classical Von Neumann architecture. 

SIMD: Single Instruction Multiple Data machines have many processors which apply 

the same instruction to many different data objects. 

MISD: Multiple Instruction Single Data apply multiple operations to each piece of 

data fetched from memory. 

MILMD: Multiple Instruction Multiple Data machines contain several independent 

processors which execute independent programmes. M[Ivll) architectures can 

be further sub-divided into two classes: 

• Shared memory or tightly coupled architectures in which processors share 

the same global memory. These architectures are simple to program but the 

shared memory creates a bottleneck which limits the number of processors 

which can be usefully connected together. 

• Distributed memory or loosely coupled architectures i n  which the pro-

cessors each have their own local memory and they communicate by mes-

sage passmg. 

The current trend, in parallel computing is towards either SIMI) or MIMI) archi-

tectures. For the purposes of creating a tool for simulating image coding algorithms or 

21 



Chapter 3: Parallel implementations of image coding algorithms 

indeed for creating an actual codec, the MIMD architecture is the most natural to use 

since extra processors may be added at will to increase the system performance. 

3.3 Transputers and multicomputers 

Although many of the methods described in this chapter are independent of the com-

puter architecture it is essential to describe the system used to obtain the simulation 

results. 

The inmos transputer [26] combines a central processing unit, four bi-directional 

serial communications links, and memory in a single RISC device. Both internal RAM 

and external memory can be addressed. Serial communication between transputers 

is provided by four 20 Mbit/s links. The links and CPU run autonomously and 

concurrently, thus allowing communications and computation to be overlapped. The 

IMS T800 is a transputer with a floating point processing unit which provides efficient 

hardware for floating point operations. 

The Edinburgh Concurrent Supercomputer (ECS) [27] is a Meiko Computing Sur-

face which houses 425 T800s. It is a distributed memory M[MD or message passing 

machine. These are shared amongst single-user domains of various sizes and resources 

- e.g. graphics board, frame grabber, etc. Each T800 has 4 Mbytes of external RAM. 

The domain topology is configured by the programmer prior to run-time. This allows 

for easy experimentation with various topologies. 

The ECS has proved to be an ideal computing engine for many image processing 

problems. However, simulating H.261 in real-time presents some special input/output 

(I/O) bandwidth problems. The simulations were performed upon standard image 

sequences such as "Clare" and "Miss America" stored on disk. Obviously, disk access 

times would prohibit real-time simulations. Instead, a sequence of up to 20 frames was 

read from disk into the RAM of the master processing element (PE) before simulation 

commenced. Once in RAM the image data could be accessed as quickly as possible. 

Displaying results in real-time proved more difficult. Actually displaying 10 

frame/s RGB colour images was not a problem on the ECS. However, the H.261 
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algorithm operates on YC rCb colour data which must be transformed pixel by pixel to 

RGB format before display on conventional monitors is possible. This amount of extra 

processing dramatically reduces the performance [28]. However, dedicated hardware 

is available which can do this conversion extremely quickly and so could remove the 

problem at a very small cost'. Alternatively the results can be stored on a the disk in 

RGB format and then read back later for real-time viewing. 

3.4 Parallel considerations 

Processing elements in distributed memory machines have distinct address spaces 

and hence must exchange information by message passing. This act of communication 

introduces an overhead which decreases the performance of the system. The transputer 

allows communication to be overlapped with computation so that this overhead can 

be minimised. For small networks of transputers in which the transputers are fully 

connected, the communication overheads can be negligible, but as the network size 

increases they can become significant. Communication delays can be attributed to: 

Through-routing: Routing messages through intermediate processors and so 'steal- 

ing' CPU time in making a decision as to where next to send the message. 

Link contention: Messages may need to travel along the same link at the same time 

resulting in one or more of them being delayed. This can be alleviated by adding 

more link bandwidth or employing an intelligent routing algorithm which utilises 

alternative routes. 

For maximum efficiency, optimal use must be made of the resources available; 

there is little use in having many processors if only a few of them are doing useful 

work on the data at any given time. The work should be distributed among them so as 

to keep them all busy most of the time. This is called load balancing. 

In order to parallelise a program, the problem must be divided into separate parts. 

Selecting the size of these portions which are allocated to each processor is critical to 

'British Telecom Laboratories use such boxes 
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the efficiency of any parallel program. This is known as the implementation grain size. 

Intuitively, one expects fine-grained concurrency to deliver faster results while using 

more processors. However, for message passing machines there is a point at which the 

additional communications outweigh the expected benefits. 

The choice of grain size effects the scalability of the program: too small a grain 

and the many messages saturate the limited bandwidth between the many processors. 

A parallel machine can also be thought of as having a grain size. In this case it is some 

function relating communication power to computation power, but it is not obvious 

how to evaluate it [29].  Thus it can be seen that the selection of grain size depends on 

both the application and the target machine. In practice an educated guess at the best 

granularity can be made and then empirical experiments will provide the best result. 

3.4.1 Parallel languages and development tools 

The Communicating Sequential Processes (CSP) model developed by Hoare [30] de-

scribes a parallel program as a set of communicating sequential processes. Occam [3 11 

and the Iransputer are both based on the CSP model. The channel between processes 

is only used for communications between those processes. Each act of communica-

tion forces the processes involved to synchronise, preventing both from doing useful 

processing. Processes are not allowed to share data even if they reside on the same 

processor. This can lead to unnecessary copying of data. 

Since the transputer has only four links, it may not be possible for processes to 

be directly linked via channels. Instead, communication protocols must be devised 

and implemented by the programmer. When the number of communicating processes 

becomes large, the handling of channels can become a daunting task. 

For these practical reasons a better communication model is one which addresses 

messages by destination process rather than channel name [32].  Tiny [33] is a message 

passing system which supports such a model of communication and was developed 

at the University of Edinburgh on the ECS. It functions on any processor array 

topology allowing the user .to easily experiment with various transputer configurations 

and process mappings. Message routing is optimised for small messages so as to allow 
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high granularity to be exploited in applications thus leading to better speedup and load 

balancing. The speedup of a parallel program is defined as: 

Speedup = T(1)<n 	 (3.1) 
T(n) - 

where T(1) is the time for the program to execute on one PE and T(n) the time for 

concurrent execution on n PEs. Tiny is supplied as a compiled library. User processes 

are coupled to Tiny by means of an occam harness. It can currently be used to link 

processes written in occam, Fortran, or C. The important features of a good message 

router are: 

. Communication times grow slowly with the number of processors, n, i.e. O(log n). 

• The routing is parallel, i.e. alternative routes and adaptive strategies are used 

under conditions of high network loading. 

• Non-local communications are fast so that the program can be ported to different 

topologies and still run efficiently. 

• Communications are not forced to be synchronous so that unnecessary delays 

are removed. 

The principal advantage of a message router is that programs are made more portable. 

Unconventional topologies can be experimented with without having to worry about 

how complicated the communication protocol will be. 

There are now several parallel program development environments available. They 

support single processor or multiprocessor applications using familiar development 

environments and standard languages such as C and Fortran and comprise: compilers, 

configuration tools, and high level communication services. Their aim is to hide 

most of the difficulties of parallel programming from the user while still allowing the 

user access to the underlying parallelism of the hardware. Unfortunately, the natural 

consequence of such a generalised system is increased overheads which can result in 

reduced efficiencies. 
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Meiko's CS Tools [34] (Communicating Sequential Tools) is such a program de-

velopment toolset. Its communications services provide a set of hardware independent 

high level communication functions. CS Tools provides similar functionality to Tiny 

but less efficiently. 

3.4.2 Problem decomposition and mapping 

The problem must be mapped to the network of processors so as to minimise the time 

for the set of tasks to complete execution. This 'mapping problem' can be tackled by 

models which assign execution times and communication patterns to tasks [35,36]. 

The proposed mapping models do not match reality very closely and are also difficult 

to apply. Instead programmers have come to use stereotyped solutions which they then 

try to optimise heuristically [37,38]. Experience has shown that if the data space is 

mapped instead of the algorithm, greater efficiency can be achieved and expensive, 

complex and inelegant solutions [39] (see section 3.5) can be avoided. 

The decomposition of the problem is critical to achieving good performance and 

scalability. The decomposition can be classify into one of two techniques: 

Functional decomposition: In an algorithmic or functional decomposition the al-

gorithm to be implemented is partitioned into functional blocks. Processes to 

implement these blocks are distributed across the processor network which is 

configured so as to mimic the data flow between the functional blocks. Al-

gorithmic decompositions do not scale well and it is difficult to balance their 

load. Thus they do not achieve very high efficiencies. Figure 3.1 shows a 

functional decomposition used by Sexton [40] to simulate H.261 on a Meiko 

Computing Surface with up to 14 transputers at British Telecom Labs (BTL) 

(see section 3.5). 

Data decompositions: Rather than splitting the problem into functional blocks the 

data set can be decomposed so that each processor executes the same process 

but only operates on a part of the data set. Data decompositions can be further 

subdivided into two groups: 
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Figure 3.1: Functional decomposition of H261 by Sexton at BTL. 

Geometric decomposition: The data set is divided equally amongst the pro-

cessors. This can lead to uneven load balancing due to localised computa-

tionally intense regions in the data set being distributed to a small fraction 

of the processors. 

Task farm: The task farm is a well known dynamic load-balancing tech-

nique which uses the classic master-worker control structure. The master 

processor distributes grains of data to the workers. When each worker 

completes a task it requests more work from master. 

Data decomposition can provide automatic load balancing by dynamic task 

scheduling and, with the correct choice of processor topology, can also scale 

extremely well. 

3.5 Related parallel implementations 

Parallel image processing problems have been traditionally tackled as a multi-staged 

pipeline [36]. This was the approach used by Sexton et al. [40]. They produced a 

functional decomposition of the H.261 standard based upon chains (or load-balancing 

pipes), figure 11. At the time no message routers were available and so they were 
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restricted to using simple topologies such as chains, despite their obvious inefficiencies. 

Figure 3.1 shows the data flow through the pipelined processor graph. Load 

balancing is a problem if multi-stage pipelines are used; considerable effort must be 

made to ensure that each stage of the pipeline is equally computationally intense [41]. 

Multi-stage pipelines have a communications problem; if each load balancing pipe is 

the correct length then, on average, each job travels half way down the pipe and back 

up again. This usually makes for excessive communications overheads. However, 

fundamental problems prevented the simulation from running near to real-time. 

Sexton's original serial implementation was coded in C on a VAX 750 and ran 

at approximately 15 minutes per QCIF frame, parallelisation of the C code with a 

custom written occam harness on a 14 transputer pipelined topology produced speeds 

of around 10 seconds per QCIF frame. This is two orders of magnitude away from the 

requirements for real-time coder simulation. 

A fine-grained functional decomposition has been implemented using transputers 

by Ichikawa and Shamura [39].  This uses 100 transputers in a hybrid topology tailored 

specifically to the requirements of H.261. The result is a massive amount of non-

reusable engineering which would far better have been achieved in hardware since 

changes in the algorithm would almost certainly require changes in the topology. 

Rudberg et al. [42] have implemented a variation of recommendation H.261 for a 

local area network (LAN). Their variation on H.261 operates on monochrome images, 

does not include variable length coding of the DCT coefficients, and only intra -frame 

coding is implemented. In this way the most computationally intense part of the 

algorithm, viz, motion compensation, is ignored. Their mapping strategy is essentially 

the same as the farming model adopted in this paper whereby all the H.261 functions 

are implemented on each transputer. By contrast however, they do not use a message 

passing system and all their programs are written in occam. The results published are 

for a tree topology using 16 transputers. Given all of the above constraints, they report 

execution speeds of less than two QCIF frame/s. 
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Function % Time 
occam 

Absolute time (ms) 
occam C 

DPCM 1.3 1.9 3.2 
DCT 19.0 30.0 12.0 
Scanning 5.5 8.3 0.4 
Quantisation 1.1 1.7 0.4 
Inv. quantisation 1.0 1.4 0.4 
Inv. scanning 2.2 4.9 0.5 
Inv. DCT 19.0 29.0 11.4 
Inv. DPCM 1.2 1.8 3.1 
VLC 1.0 1.1 0.5 
Low pass filter 4.4 7.3 9.6 
Motion estimation 1 	47.01 700 31.0 

Table 3.1: Breakdown of H.261 function execution times on a single macroblock. 

3.6 Multiprocessor implementations 

Initially code was developed on a minimal network of two transputers: one for the 

simulations and the other for displaying the graphical output. In this way, complic-

ations due to communications were removed. Also the timing performance measured 

for one processor is necessary in order to calculate the efficiencies of larger processor 

networks. Initially all programs were written in occam since it was the only language 

available on the ECS at the time. The uniformity of occam makes it very easy to write 

processes without needing to know whether they are running on the same or different 

processors. 

Table 3.1 shows the proportion of time taken to execute the various processes for 

the functional blocks of H.261. These values are averages for standard videophone 

test image sequences. Clearly, motion estimation consumes far more computational 

power than any of the other functional blocks. 

is a feature of the ECS graphics domains that the graphics processor is never the processor 
connected to the filestore (via the host). Thus two is the smallest number of transputers that could be 
employed. 
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Figure 3.2: The chosen process structure for the simulations. 

3.6.1 Mapping employed 

A hybrid of the task farm and algorithmic paradigms of concurrent program decom-

position were used to simulate H.261. The implementation contained three distinct 

processes as shown in figure 3.2: 

Master: Distributes tasks, collates results and maintains global structures. 

Worker: Accepts tasks and performs the main coding functions. 

Graphics: Displays colour blocks received from the master or any worker PE. 

The communication pattern is complex. The master passes packets of data to 

each of the workers which in turn pass packets of data back to the master and on to 

the graphics processor. Without a topology independent message routing harness, it 

would be extremely difficult to program this efficiently, taking advantage of alternative 

routes to increase overall throughput. With all the main H.261 functions contained 

in each worker process, it was easy to experiment with various topologies with little 

reprogramming. The load balancing scheme used in these simulations is dynamic since 

it is determined at run-time and adaptive since the tasks are sent to whichever worker 

processors are ready for more work. 

'Ii] 
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3.6.2 Choosing the granularity 

For this particular algorithm the data is already broken down into a hierarchical structure 

(section 2.6.2). From this, the smallest element upon which all the functions (DPCM, 

DCT, quantisation, variable length coding, etc) can be performed independently is the 

MB. The MB was chosen as the grain size. Any smaller would not be practical to 

operate upon independently; any larger would not utilise the number of PBs available 

and allow good load balancing. There are 99 MBs in a single QCIF image frame. 

Communications were overlapped with computation by ensuring that each worker 

processor is initially sent two MBs. Once received, the first is processed while the 

second is buffered. On completing the processing of the first MB, the worker sends the 

results to the master and immediately starts work on the buffered MB. On receiving a 

result from a worker, the master sends that worker another MB to process. 

Experiments with more than one MB buffered at the worker showed that commu-

nications were already maximally overlapped with computation for the chosen grain 

size. 

3.6.3 Processor array topology 

If the communication patterns of the mapping are simple then a simple topology such 

as a grid or a tree may be appropriate. For more complicated communication patterns, 

determining optimal processor topologies can be difficult. Tree and chain topologies 

have often been used to implement processor farms [43] (see [44] for analyses) regard-

less of whether they mimic the actual communication patterns, simply because these 

reduce the complexity of communication protocols. Topology independent routing 

harnesses remove the need for the programmer to be concerned with the complexity 

of the communication protocols. Indeed trees and chains may not be good topologies 

to use with routing harnesses which provide an adaptive routing strategy; in these to-

pologies, there is only one path to each of the nodes and so the routing harness cannot 

re-route messages to avoid congested links. 

For a task farm we require that the master can deliver data to the workers as fast as 

possible. This is further complicated when the graphics processor is included because 
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the workers must deliver the processed data to the graphics processor as fast as possible. 

To this end, the best topologies are compact ones in which all the processors are as 

densely connected (or as "close") as possible to each other. The processor topology 

must be further constrained so that no "hotspots" (or bottle-necks) exist, i.e. no paths 

should exist through which a large proportion of the communications traffic must pass. 

Ideally, some form of automated system is required to generate good processor 

network topologies. Thus the essential communications characteristics of a processor 

network can be modelled using techniques from graph theory. Processor graphs have a 

set of attributes such as diameter and inter-processor distance which can be optimised 

so as to minimise communication delays. The terms topology and graph will be used 

interchangeably throughout the following discussion. 

Graph theory 

Some, but not all, graph theoretic terms used are defined here. The reader unfamiliar 

with the field is referred to the recent paper by Ghafoor [45] where more rigourous 

definitions are provided. In using graph theory to describe a processor network, the 

processors are represented as nodes or vertices, and their interconnecting links by 

edges. The degree of a node is the number of edges with which it is incident. The 

distance between two nodes is the smallest number of edges traversed in travelling 

between them and the diameter is the largest of all the shortest paths between nodes. 

A wiring file for an ECS domain describes which processors are directly connected. 

From this information, a table of distances between all processors is easily deduced. 

In the graph theory literature this is termed the "all-pairs shortest path" problem for 

the solution of which there are several algorithms (e.g. Floyd-Warshall described by 

Cormen [46]).  The adopted solution was similar to these but simpler since all edges 

in a processor graph are unweighted (equal communications load since all worker PEs 

perform identical tasks) and undirected (bi-directional links). Thus the table of shortest 

paths is symmetric and so only half of its values need be computed. 
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Graph generation 

The application graphs used for these simulations were subjected to several constraints. 

All nodes are of degree four since transputers have four links. The master processor 

is linked to the host machine and so only has three remaining links for inclusion in 

networks being created. The graphics processor is unique and so perhaps should be 

carefully positioned in the network. This explains why the mean inter-PE distance 

measure is important rather than just the mean master-to-worker distance. Also this 

is another reason why the tree topology is not good for these simulations: there is no 

obvious place for the graphics processor. 

The hypercube (or binary k-cube) has been a very popular choice of topology 

for parallel machines of fixed architectures. The reason for this popularity is the 

high interconnectivity provided for a small number of connections at each node. For 

transputer-based machines however it is limiting. With four links at each node, at most 

sixteen nodes can be interconnected in this way. Thus for this project, hypercubes are 

not suitable. Additionally, analysis shows that smaller diameters and average inter-

node distances can be obtained from irregular graphs. Experiments were carried out 

with three different types of networks, one of which is 'regular' i.e. the PE connections 

have some kind of symmetry, and the other two are 'irregular' [47].  The network 

generation algorithms are all restricted to forming a Hamiltonian 3  ring initially so that 

there are no isolated nodes. Brief descriptions of each of the algorithms are given 

below (refer to figure 3.3): 

Chordal rings These regular graphs are formed by connecting chords across a ring 

of processors [48]. Trial and error can be used on the chord length to geflerate 

optimum graphs of this kind. Chordal rings have been popular in the past because 

their regular structure makes routing algorithms easier to implement [49]. 

'Greedy' graphs These graphs are produced by iteratively placing links so as to 

locally optimise the partial solution. Thus a 'greedy' graph might be generated 

by progressively connecting links which will most reduce the diameter of the 

3A Hamiltonian path is one which visits all nodes in the graph exactly once. 
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Figure 3.3: Examples of the three graph types for a total of nine PEs. 

graph. The resulting graph may not have minimal diameter for the number of 

processors but it will have a low diameter. 'Greedy' algorithms [50] are often 

used in optimisation problems. 

Random graphs A random graph is easily configured by first wiring the PEs in a ring 

and then randomly connecting up remaining pairs of links. The only constraint 

on the graphs is that they contain no self-links. Such a linking scheme could 

allow bottle-necks to appear. Several random graphs were generated and the one 

with the lowest mean inter-PE distance was selected. 

Having generated the processor graphs according to these various schemes, it was 

of interest to see how the mean inter-node distances varied with the number of nodes. 

Figure 3.4 shows this result plotted with the number of processors on a logarithmic 

scale. It is clear that the 'greedy' graph scales the best, although the random graphs 

scale almost as well. Since the plots appear to be almost linear for both 'greedy' and 

random graphs, it can be deduced that their rate of increase is O(logn), where n is the 

number of processors. The chordal graph plot increases much more quickly, and so it 

is concluded that chordal rings do not scale so well. Browne and Hodgson [49] give 
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Figure 3.4: Mean inter-processor distance for various processor graphs. 

the chordal ring mean inter-PE distance as being at best O(/). Since the advent of 

topology independent routers, the programmer is no longer concerned with keeping 

the processor topology simple and regular. This result shows that regular graphs do not 

scale as well as irregular ones. Figure 3.5 shows how the H.261 simulation execution 

times for a QCIF frame varied for these three topologies for up to 64 worker PEs. The 

variation is small as would be expected from the results shown in figure 3.4; for small 

numbers of transputers (i.e. less than twenty) the mean inter-PE distances are almost 

the same. 

The random graphs were optimised for low inter-PE distances and no account 

was taken of potential bottle-necks. This can be seen in figure 3.5 by the fact that 

the execution time for the random topology increases when moving from 16 up to 

33 workers, and then the execution time decreases again for 64 workers. Hence this 

indicates that the 33 worker random graph is not a good one and may contain bottle-

necks. The symmetry of chordal rings guarantees no bottle-necks provided that the 

computation is evenly distributed. It is also unlikely that the 'greedy' graphs will 

contain bottle-necks since at each stage, the link placement strategy aims to minimise 

the graph diameter; after each link is placed, the diameter must shift to another area of 
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Figure 3.5: Timings for H.261 (without motion compensation) simulation on a QCJF 
frame for 'greedy', chordal and random topologies using occam and tiny. 

the graph which is not as well connected. In this way the communications bandwidth 

is fairly evenly distributed throughout the graph. 

In order to verify that the chain topology performs as poorly as predicted, the 

DCT/inverse DCT coding loop was implemented on a balanced chain. Figure 3.6 

shows the timing results for the chain topology compared to a random graph which 

confirms the theoretical prediction. The disparity is apparent from upwards of two 

worker PBs. Above 16 workers the simulation using the chain topology actually slows 

down whereas the simulation using the random graph topology continues to make 

small gains. Thus the chain topology was abandoned. 

3.6.4 Choice of languages 

Initially these simulations were written entirely in occam under the inmos occam pro-

gramming system (OPS). The sequential processes themselves, however, are far more 

easily written in a more semantically rich language such as C [51] which allows the 

use of pointers, recursion, memory allocation and for which useful, optimised libraries 

have been written. Development in C is further aided by the existence of familiar envir- 
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onments with powerful debugging tools. It was found that translating processes from 

occam into C could easily achieve up to a factor of two speedup in sequential execution 

time (refer to table 3.1). The reasons for this are mainly due to matters of memory 

management. When programming in C, it is easy to determine where critical pieces of 

code reside in memory. Thus for maximum speeds, the transputer on-chip memory is 

employed as much as possible. With occam compilers, this is far from straightforward. 

Also the availability of pointers in C aids the writing of efficient implementations of 

algorithms. A similar reduction in development time was observed. For these reasons 

the simulation serial programs are now developed in C. The sequential processes were 

parallelised using CS Tools (section 3.4.1). 

3.7 Visualisation 

One of the primary aims of these simulations was that the user should be able to 

view the output from any stage of the algorithm. This was one of the main reasons 

for choosing the compact topologies in which the master and all of the worker PEs 

- 
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are as close to the graphics PE as possible. Also this is why the mean inter-PE 

distance was minimised in the graph optimisations. Unfortunately the ECS graphics 

domains contain a single graphics PE to service all graphics requests. Thus a severe 

bottle-neck is present. Figure 3.7 shows how displaying graphical output saturates the 

communications bandwidth and prevents the simulations benefiting from additional 

worker PEs. The solution adopted was to allow the user of the simulation to turn the 

graphics on or off as desired. The results can be stored on disk and displayed off-line 

in real-time. 

3.8 Performance evaluation 

Figure 3.8 shows plots of execution time for the H.261 algorithm without MC against 

increasing numbers of transputers. Results are presented for simulations using occam 

with the Tiny routing harness and C with CS Tools. These simulations used random 

Hamiltonian processor topologies but, as explained in section 3.6.3, the performance 

of 'greedy' graphs and chordal rings is virtually identical for these numbers of PBs. 
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Figure 3.8: Timings for H261 simulation (without motion compensation) using a) C & 
CS Tools and b) occam & Tiny. 

Though the C serial programs are considerably faster than the occam, Tiny is more effi-

cient than CS Tools. The CS Tools simulation seems to saturate at about four workers. 

Whereas, with Tiny, gains continue to be made up to 16 workers. Approximately two 

frames can be processed in one second using 16 workers. This is a fifth of real-time. 

The simulation is clearly communications bound at this point and so faster execution 

speed could only be achieved by adding more communications bandwidth. 

The efficiency of a parallel program can be defined as follows 

Efficiency = 	Tcalc 	< 
Tcalc  + Tcomms - 

(3.2) 

where Tcomms  is the non-overlapped communication time and Tcalc  is the total com-

putation time, reflecting that any inefficiency is due to the communication overheads. 

Thus it is desirable to minimise non-overlapped communication and maximise the over-

lap of communication with computation which the transputer can provide. Section 3.6 

described how the implementations achieved these aims. An equivalent definition 

of efficiency which does not require communication and computation times to be 

I 
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calculated is 

Efficiency = 
	

Speedup(n) 
nT(n)  

(3.3) 

where T(n) is the total execution time for n processors and T(1) is the execution time 

for a single processor. Figure 3.9 shows efficiency curves for the simulation timings 

shown in figure 3.8; It is clear how much more efficient Tiny is than CS Tools. The 

former maintains 50% efficiency for up to 30 worker PEs, whereas the latter can only 

manage that for 10 workers PBs. 

3.9 Summary and conclusions 

Difficulties in simulating a complex image compression algorithm in real-time have 

been discussed. The evolution of the implementation of the simulations has been 

discussed from the use of occam with the Tiny routing harness, through C with Meiko's 

CS Tools. Clearly there is great demand for tools which will automatically and 

efficiently parallelise sequential algorithms and existing serial programs. 

The advent of topology independent message routers means that programmers are 
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no longer tied to simple processor topologies with simple message passing protocols. 

Nor do they have to worry about rewriting communications software for each new 

application. Instead a highly optimised software routing harness can be written once 

and for all. The router can be topology independent and hence the programmer is 

free to experiment with any processor network topologies. The next phase will be to 

relinquish the handling of communications completely to a hardware packet switching 

network. 

The results presented in this chapter demonstrate that although close-to-real-time 

simulation can be achieved using 20 or more transputers the execution speed of the 

simulations is bounded by communications overheads. However, using compact graph 

topologies it was found possible to maintain 50% efficiency for up to 30 worker 

transputers. The simulations performed approximately an order of magnitude faster 

than the preceding work by Sexton using chain topologies. 

Perhaps the most important discovery is that for small numbers of transputers 

(<20), provided all available link bandwidth is used, one topology performs as well as 

any other. It is only when larger numbers of PEs are utilised that the differing scaling 

properties come into play. In the past this fact has been hidden for two main reasons: 

• Efficient topology independent routing harnesses have not been available and so 

programmers have restricted themselves to simple topologies such as chains and 

trees which do not use all the available link bandwidth. 

• Most transputer research has been conducted using either small numbers of 

transputers, or else larger numbers in a fixed topology (see, for example, the 

conference proceedings of Transputer Applications '91 [52]).  The work presen-

ted here has concentrated on parallelism with large numbers of PEs. 

All three of the compact topologies experimented with are very easy to generate 

for any number of PBs; they provide a practical means of interconnecting processors 

having four interprocessor links and are incrementally extensible. For large numbers 

of PBs both 'greedy' and random graphs perform well. The chordal ring does not scale 

well, and since routing algorithms are no longer a problem there is no reason to favour 
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regular processor topologies. Irregular graphs have the lowest inter-node distances and 

scale well, but for up to 100 PEs, all the graphs perform virtually as well as each other. 

Thus it can be concluded that for machines with numbers of PEs of this order, topology 

is no longer such a burning issue and efforts should be concentrated on automating the 

mapping of the problem to the PEs. 

Finally we conclude that although the results presented here are for an implement-

ation of H.261 on a transputer surface many of the strategies presented apply equally to 

any problem and any MIMD machine. In particular, these methods will apply to new 

generations of DSP processors which include high speed communication links such as 

the Texas Instruments C40. 
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Chapter 4 

Motion estimation and compensation for 

image coding 

4.1 Introduction 

Motion estimation is a powerful tool for the compression of image sequences. Indeed, 

many image sequences contain much more temporal redundancy than spatial redund-

ancy. For example, if an object in a scene is moving with constant uniform velocity, 

parallel to the focal plane of the camera, once the velocity vector of the object is known 

no further information need be transmitted. Clearly, this an over-simplification and 

in many 'real' image sequences the motion of objects within the scene is far more 

complex. Nevertheless, considerable temporal redundancy is present in many image 

sequences. 

This chapter reviews different algorithms for estimating motion in image sequences. 

Motion-compensated prediction is then discussed in detail. Theoretical models of the 

prediction error are developed and compared to empirical results. The theoretical 

models are then used to estimate the coding gain of an optimum hybrid motion-

compensated codec. Finally, various hybrid algorithms are discussed. 
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4.2 Motion estimation 

Motion within an image sequence can be divided into two categories: global motion 

caused by camera motion such as zoom and pan and local motion caused by the motion 

of individual objects within the scene. Estimation of motion is, in general, difficult 

since both local and global motion may occur simultaneously; all the objects within 

the scene may move independently, undergo deformations and occlude each other. 

In general, no a priori information concerning the structure of the objects within a 

scene is available, so that motion estimation is a problem of estimating the unknown 

displacement of unknown objects. 

To enable the estimation of motion Within an image simplifying assumptions are 

usually made about the type of motion which is present. The most common assumptions 

are that motion is restricted to be parallel to the focal plane of the camera and there 

is no change of ambient illumination. If no occlusion occurs then a pixel at position 

x = (x, y)T is displaced by d(x) = (d(x, y), d(x, y))T. Thus a point in an image at time 

t is related to point in the image at time (t - &) by, 

f(x,t - At) =f(x - d(x),t) 	 (4.1) 

In practice, occlusion will occur in a scene and as such equation (4.1) will only apply 

to disjoint subsets of the image. 

4.2.1 Pel-recursive motion estimation 

Pel-recursive algorithms estimate the motion of each pixel (pel) independently using 

a steepest gradient algorithm to minimise the displaced frame difference. The first 

recursive motion estimation algorithm was introduced by Netravali and Robbins [53] 

in 1979. The algorithm assumes that the image contains only translational motion so 

that a pixel in the tth  frame is equivalent to one in the (t - 1) th  frame offset by a 

displacement vector, 

i(x, t) = i(x + d, t — 1) 	 (4.2) 
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The displaced frame difference (DFD) is defined to be, 

DFD(x, d,) = i(x, t) - i(x - d 1 , t - 1) 	 (4.3) 

It measures the intensity difference between two pels in the current and previous frame 

located at x and x - d 1  respectively. The choice of the next vector is determined 

by minimising the square of the displaced frame difference (DFD) using a steepest 

gradient algorithm. 

The algorithm uses an initial displacement estimate d 1  to produce a better displace-

ment estimate a1+1, 

a,+1 = a1 + Ui 
	 (4.4) 

where u 1  is the iteration update term. If equation (4.3) is expanded as a Taylor series 

and only the first order term retained it can be shown that the iterative steepest gradient 

algorithm is given by, 

fVd.[DFD(x, a,)]2 	 (45) 

where Va,  is the gradient operator with respect to d, and E is a positive constant which 

determines the rate of convergence. Several adaptations of the basic algorithm have 

been published which generally aim to decrease the time for convergence [54-56]. 

Pel-recursive algorithms give poor motion estimates at the boundaries of moving 

objects since the previous motion estimate is not a good estimate of the actual motion. 

Furthermore, motion estimates can easily be corrupted by noise. Kleihorst [57] has 

recently introduced a pel-recursive algorithm which is less sensitive to noise based 

upon the triple correlation of three images. 

4.2.2 Block matching motion estimation 

Block matching algorithms (BMAs) estimate motion by matching blocks of pixels 

between frames. The simplest BMAs arbitrarily choose blocks by dividing an image 

into a regular array of fixed sized blocks in which it is assumed that all pixels have 
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uniform motion. 

Blocks of pixels are matched by calculating a distortion measure between blocks. 

Common distortion measures include normalised cross-correlation R(i,j, r) (equa-

tion (4.6)), mean squared error E(i, k, t) (a = 2 in equ. (4.7)) and mean absolute 

error (a = 1 in equ. (4.7)). 

N—i N—i 

>2 >2 i(x,y,t)i(x+i,y+j,t— 1) 
R(i,j, t) = 	m=O m=O 	 (4.6) 

[NlN- 1— 	 112 [N~IN- I 	 112 

>2 >2 
(x,y,t)] 	

>2 P(x+i,y+j,t— 1)] 
n=O 	 m=O n=O 

1 N-1N—I 

	

E(j,k,t) = 	 Ji(x,y,t) —i(x+j,y+k,t— 1)J 	a E {1,2} 	(4.7) 
m=O n=() 

The estimated motion vector for a given block is found by searching for the 

maximum value of cross-correlation or the minimum mean square error or minimum 

mean absolute error between blocks. The mean squared error and mean absolute error 

are generally used in preference to the normalised cross-correlation simply because 

they require less computation. 

Reduced computation search algorithms 

An exhaustive search of an image is guaranteed to find the best match between a pair 

of blocks but is computationally very expensive, if the search for the best fit between 

a pair of blocks is limited to a distance of +dmax  pixels from the origin,  a complete 

search of all possible displacements in this area requires (2dmax  + 1)2 calculations of a 

distortion measure. Thus a search of the whole image is impractical and as such d 

is usually not greater than 15 pixels. 

The number of search positions needed to find the best match between a pair of 

blocks can be significantly decreased by calculating a distortion measure for a small 

subset of the total + 1)2 search positions and then using this information to 

predict the position of the absolute minimum. 

To decrease the total computation in making a displacement estimate Jain and 

46 



Chapter 4: Motion estimation and compensation for image coding 

Figure 4.1: 2-D logarithmic search procedure. 

Jam [58] use a two-dimensional logarithmic search. This algorithm uses a three stage 

iterative search in which the resolution of the search is increased at each stage until it 

finally uses a full resolution search in a 3 x 3 pixel window (see figure 4.1). 

It can be shown [58] that the if the error surface is monotonically increasing away 

from the absolute minimum then a two-dimensional logarithmic search will converge 

to this value. If this condition is not satisfied, the algorithm may converge to a local 

minima on the error surface. 

The conjugate direction search is another important reduced computation search [59] 

in which motion estimates are made first along the x-axis and then along y-axis, until 

a minimum/maximum of the distortion measure is found in both directions. 

Vector accuracy and block size 

The accuracy of the estimated displacement vector depends upon the size of block 

used. Generally, larger blocks give more reliable displacement estimates since it is 

unlikely that there will be another similar block within the image. But as the block 

size becomes progressively larger it is unlikely that all pixels within the block will be 

uniformly displaced, and as such the derived displacement vector will only be accurate 
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for some of the pixels within the block. 

To overcome this problem variable resolution algorithms can be employed which 

make motion estimates for varying block sizes. Bierling [60] proposes a hierarchical 

block matching scheme in which large blocks are used to make a coarse displacement 

estimate and then smaller blocks are used to refine the initial estimate. The final motion 

estimate is given by summing the vector estimates for each level of the hierarchy. 

An alternative algorithm suggested by Chan [61] adaptively varies the block size 

by initially making motion estimates with a large block. If the mean square error is 

greater than a threshold value the block is split into two smaller blocks and the search 

is continued. This splitting of the block is repeated until either an adequate motion 

estimate has been made or a minimum block size is reached. Chan's algorithm has 

the advantage of reducing the overhead information required to transmit the vectors by 

only using small blocks when they are required. 

Sub-pixel motion estimation 

The block matching algorithms described previously make motion estimates which 

are restricted to an integer pixel grid, in reality the displacement of the objects within 

an image will be over non-integer pixel distances. Motion estimates to a fractional 

pixel accuracy can be made by using interpolation to estimate the pixel intensities 

at non-integer grid points (see section 4.4.1). Motion estimation to fractional pixel 

displacements further increases the computational load required to make a motion 

estimate. 

4.23 Image pyramids for motion estimation 

Wang and Clarke [62 63] describe a hierarchical motion estimation algorithm using 

"image pyramids" to overcome some of the deficiencies of pel-recursive algorithms. 

A pyramid is constructed from successively down-sampled versions of the original 

image. The down-sampling is such that a pixel on any level (except the base level) is 

an average of an n x n block of pixels on the previous level (see figure 4.2). A pixel 



Chapter 4: Motion estimation and compensation for image coding 

on the 1th level of the pyramid at time t has an intensity of, 

n-1 n-1 
ii(ii, k,, t) = - 	i1_ 1  (j1_ + x, k,_1 + y, t) 	 (4.8) 

X=0 Y_-O 

Motion estimates are made by constructing a pyramid for both the current and 

previous image. Pixels are then matched on each level of the pyramid using the 

displacement estimate from the previous level as an initial displacement estimate for 

the current level. Wang and Clarke create a pyramid by averaging 4 x 4 pixel blocks to 

produce a pyramid with 3 levels. Thus the base level of a pyramid is a full resolution 

image and the higher levels are successively reduced resolution copies of the original 

image. Pixels are matched within a 3 x 3 pixel area on the top level and within a 5 x 5 

pixel area on the middle and bottom levels of the pyramid allowing a maximum motion 

estimate of 26 pixels. 

The image pyramid has superior motion compensation performance compared 

to current pel-recursive algorithms since it - is robust to noise and can compensate for 

displacements of up to 26 pixels/frame. Unfortunately the averaging of pixels produces 

ambiguities in the motion estimates which if not carefully tracked can result in poor 

motion estimates. 

Image Pyramids for block matching 

The image pyramid can also be used for block matching; as described in the previous 

section the pyramid is constructed from successive averaging of pixels. Motion estim-

ates are then made by making a displacement estimate at each level of the pyramid. 

In contrast to Wang and Clarke's scheme the size of the block to be matched is varied 

from level to level so that it is equivalent to a N x N block on the base level of the 

pyramid. 

Incorrect motion estimates at the higher levels of the pyramid propagate through to 

the lower levels, which can result in mean absolute errors and mean square errors which 

are worse than those given by frame differencing. This problem can be overcome by 

comparing the minimum MSE for each level against the frame difference MSE and 

49 



Chapter 4: Motion estimation and compensation for image coding 

Top level 

Base level (original image) 

Figure 4.2: An image pyramid for motion compensation. 
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then restarting the search every time the frame difference error is smaller. This ensures 

that the pyramid algorithm will always produce mean square errors which are less than 

or equal to those given by frame differencing. 

Further improvement can be achieved by comparing the MSE of the best fit on the 

previous level with the MSE of the current best fit. If the MSE on the current level is 

less than to equal the MSE on the previous level the search is continued otherwise it is 

reset on the current level. This procedure ensures reasonable displacement estimates, 

but as with Wang's original scheme averaging pixels results in ambiguities in the 

displacement estimates which cannot be easily resolved. 

4.2.4 Phase-correlation 

An alternative method of calculating block motion is to use phase-correlation [9,64-67]. 

If two images or sub-images are related by pure displacement their Fourier transforms 

are related by a phase shift. Thus for a displacement d = (di, dr), 

J(, Co" t)J(o,  Co"  t - l)* 
= exp[—j(od + O ydy)] 	(4.9) 

II(0)x,(y,t)I((Ox,O)y,t - l)J 

where I(o),  cog , t) and I(o, o, t - 1) are the two-dimensional Fourier transforms of 

i(x, y, t) and i(x, y,t - 1) respectively. The inverse Fourier transform of equation (4.9) 

produces a finite impulse at the displacement. If the block contains objects with 

different displacements then phase correlation will produce a set of candidate vectors 

which must be must matched to objects in the block. 

4.23 Other motion estimation algorithms 

Block matching and pel-recursive motion estimation algorithms are only able to corn-

pen sate for translatory motion. Some recently introduced algorithms attempt to over-

come this deficiency by compensating for rotation and non-rigid deformations. 

Li [68] and Seferidis [69] both employ motion estimation schemes based upon de-

composing the image into polygons. The vertices of the polygons are then manipulated 

to estimate the motion. Li's scheme is based upon using triangles whereas Seferidis 
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employs quadrilaterals. 

Papadopoulos and Clarkson [70-72] employ a second order geometric transform 

to compensate for motion. The algorithm performs geometric transforms to stretch 

and warp the image. 

The computational load imposed by these algorithms is far greater than that of 

block matching and pel-recursive algorithms, and as such they are unsuitable for real-

time applications. However, these algorithms can be usefully employed for encoding 

pre-recorded material for television or video. 

4.2.6 Estimation of global motion 

In scenes which contain global motion, such as zoom and pan, estimating local motion 

is of limited use. Combining global motion and local motion estimates can increase 

compression ratios. 

Accurately estimating local rotation and zoom local is very difficult, since the 

image must be accurately segmented into the regions which correspond to each type of 

motion. However, if rotation and zoom are present as global parameters all the pixels 

in the image undergo this motion and there is no need for segmentation. This allows 

zoom, rotation and pan to be estimated. 

For example, Wu [73] has introduced an algorithm based upon a pel-recursive 

motion estimation using a second order Taylor expansion which is able to simultan-

eously estimate change of scale, pan and rotation. Other algorithms for global motion 

estimation include several which are based upon the Hough transform, see e.g. [74,75] 

4.3 Motion-compensated interpolation 

Motion-compensated interpolation (MCI) algorithms transmit only one frame in every 

two or three. The missing frames can then be reconstructed by simple frame repetition 

or linear interpolation, both these methods have been shown [76] to introduce visual 

impairment in the reconstructed image sequence. MCI attempts to minimise such 

distortion by using estimated displacement vectors to reconstruct the missing frame(s). 
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The accuracy of the estimated motion vectors is critical to the quality of the reproduced 

frames, since inaccurate motion vectors can produce a visually disturbing rendition of 

the frame-to-frame motion. 

Motion compensated interpolation algorithms are invariably complex to implement, 

requiring that the frame be segmented into moving areas, stationary areas, uncovered 

and covered background. Thoma [77] implements such a coder using Bierling's 

hierarchical block matching algorithm (see section 4.2.2). 

4.4 Motion-compensated prediction 

Motion-compensated prediction (MCP) is adaptive DPCM in the temporal dimension. 

Figure 4.3 shows a schematic diagram of a typical motion-compensated predictor. The 

encoder predicts the contents of the current frame based on the contents of a previously 

encoded frame or frames using motion estimates. The difference between the current 

frame, i(x,y, t) and the prediction frame, i(x,y, t), is known as the prediction error or 

the motion-compensated difference frame, i.e. 

e(x,y,t) = i(x,y,t) - I(x,y,t) 	 (4.10) 

The prediction error and optionally the estimated motion vectors are transmitted to 

the receiver. If the motion estimation algorithm is working well little or no error 

information need be transmitted to the receiver. 

In contrast to MCI the accuracy of the motion estimate is not important; rather, the 

sole purpose of the motion estimator is to minimise the magnitude of the prediction 

error. The resulting prediction error has a much smaller variance than the original 

image and as such it can be encoded at a lower rate for a given value of distortion. 

For example, for memoryless encoding of a signal with a Gaussian statistics the rate 

distortion function, R(D)G, is given by, 

R(D)r, = max 10, lo& 	 (4.11) 
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i(x,y,t) + 	 e(x,y,t) 

Key: 

Q - Quantizer 
MCP - motion-compensated 

predictor 
ME - motion estimator 

AA 
(A x4 y) 

Figure 4.3: Schematic diagram of MCP coder. 

where R is the rate, D is mean square error and o2  is the variance of the image. Clearly, 

a reduction in variance results in a reduction in rate. Prediction errors do not, in general, 

have a Gaussian pdf in which case equation (4.11) can be beneficially interpreted as the 

upper bound to the minimum  rate at which the data can be encoded, i.e. R(D) <R(D) G . 

The energy of an image, J, is defined to be the sum of the square of the pixel 

intensities, 

(4.12) 
x!y 

Mean energy and variance are equivalent for zero mean signals and as such energy can 

be used to predict the potential gains from motion-compensated prediction. 

In the following sections energy and entropy will be used to demonstrate the 

potential gains given by motion-compensated prediction. Block matching algorithms 

will be used throughout to demonstrate these results, although many of the results 

derived apply equally to other motion estimation algorithms. Comparisons between 

pel-recursive and block matching algorithms can be found in [63]. 

4.4.1 Block matching motion-compensated prediction 

Figure 4.4 shows the energy of the original uncoded frames of the Miss America 

standard image sequence, the energy of the difference frames and the energy of the 

motion compensated difference frames using the motion estimates from an exhaustive 
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Figure 4.4: Energies of the frame differences, motion-compensated frame differences 
and the original images for the Miss America standard image sequence 
(block size 16 x 16 pixels, max. displacement = 15 pixels). 

search for a block size of 16 x 16 pixels. The frame difference results are included 

to demonstrate the efficiency of the motion compensation algorithm. Clearly, both the 

difference frames and the motion compensated difference frames show a remarkable 

decrease in energy compared to the original uncoded sequence. In figure 4.4 the motion 

compensated difference frames contains on average less than 0.6% of the original image 

energy. 

The frame to frame motion in the Miss America sequence increases as the sequence 

progresses. This trend is reflected in the frame difference energies which also increase 

with frame number. In contrast, the motion-compensated difference frame is relatively 

flat showing that the block matching algorithm compensates for the motion between 

frames. 

Figure 4.5 shows the distribution of pixel intensities in the motion compensated 

frame differences of the Miss America standard image sequence. The distinctive 

dominant central peak of the distribution is typical for all motion prediction errors. In 
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Figure 4.5: Distribution of pixel intensities in the motion compensated frame differ-
ences  of the Miss America standard image sequence (block size = 16 x 16, 
max. displacement = 15 pixels). 

figure 4.5 more than 90% of the pixels have an intensity in the range -10 to 10. 

The rate at which an image can be encoded without distortion is given by its entropy 

(see section 2.3). Figure 4.6 compares the entropy of the original image sequence, 

the frame difference and the motion compensated frame differences using exhaustive 

search for the Miss America standard image sequence. The motion compensated 

frame differences show a reduction in entropy of approximately 40-50%, compared to 

a reduction in entropy of only 30% for the ordinary difference frame. As predicted, 

reducing the energy of a signal results in a decrease in rate. Also note that the entropy 

data shows similar trends to the energy data but the reduction in entropy is considerably 

less since the rate required to encode an image is proportional to the logarithm of the 

variance (see equation 4.11). 

Variable length codes, such as Huffman codes, would in general not be generated 

for each frame since this would require a code book to be transmitted for each image. 

Instead, a code would be generated for the average statistics of a sequence and as such 
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Figure 4.6: Entropies of the frame differences, motion-compensated frame differences 
(block size 16 x 16 max. displacement = 15 pixels) and the original images 

- for the Miss America standard image sequence. 

entropy results will be quoted for entire sequences rather than single frames in the 

following sections. 

Block size 

MCP simply aims to minimise the energy of the error signal and as such the accuracy 

of the displacement estimate is not deemed to be important. A small block size 

gives greater energy reduction than could be obtained from using a large block size, 

but reducing the block size also increases the number of vectors which need to be 

transmitted. The choice of block size is thus a compromise between the compression 

achieved by MCP versus the extra bandwidth required to transmit the motion vectors. 

For a maximum displacement ±dma x  pixels there are (2dmax+ 1)2  search positions. 

Hence, if the motion vectors are PCM encoded, an upper bound to the minimum rate 
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required to transmit the motion vectors, r, for a block size of N x N pixels is given by, 

Rvec = [ log2(2dmax + 1)1 bits/pixel 	 (4.13) 

where 	denotes the nearest integer which is greater than •. 

Table 4.1 compares the entropies of the motion prediction errors of three standard 

image sequences, Miss America (Miss A), Clare and Salesman (Sale) for various 

block sizes with the maximum bandwidth required to transmit the motion vectors for 

that block size. Clearly, reducing the block size reduces the entropy of the motion 

prediction errors but for the 4 x 4 and 8 x 8 blocks the increase in rate required to 

transmit the motion vectors is greater than the reduction of entropy in the prediction 

errors. Note, that the derived rates for the transmission of the motion vectors assume 

the vectors are PCM coded, this rate can be further reduced by exploiting statistical 

redundancies in the vector information. 

Block size 
Max. motion vector 

rate (bits/pixel) 
Entropy (bits/pixel) 

Miss A Clare Sale 
4 x 4 0.625 2.616 2.444 3.283 
8 x 8 0.156 2.893 2.673 3.358 

16 x 16 0.039 3.015 2.764 3.383 

Table 4.1: Entropies of the motion prediction errors of three standard image sequences, 
Miss America, Clare and Salesman (Sale) for various block sizes compared 
to maximum bandwidth required to transmit the vectors for that block size. 

Reduced computation searches 

In section 4.2.2 reduced computation searches were introduced which substantially 

decrease the computation needed to make a motion estimate compared to that of an 

exhaustive search. These searches are prone to finding local minima on the error 

surface and as such are not guaranteed to give the maximum energy minimisation. 

Figure 4.7 shows the energies of the prediction errors given by a logarithmic search 

and a exhaustive search. The superiority of the exhaustive search can be seen from the 

higher frame numbers which contain larger motion. Table 4.2 compares the entropies 

of the motion prediction errors of an exhaustive search and logarithmic search for 
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Figure 4.7: Energies of the motion prediction errors of the Miss America image se-
quence for a logarithmic and exhaustive search. The results for the ex-
haustive search are the same as those shown in figure 4.4. 

Search 
Entropy (bits/pixel) 

Miss A Clare Sale 
Exhaustive 3.015 2.764 3.383 
Logarithmic 3.058 2.770 3.387 

Table 4.2: Comparison of entropies of the motion prediction errors of standard image 
sequences (block size 16 x 16 pixels). 

three standard image sequences. The exhaustive 'search gives entropies which are 

1-2% lower than those given by logarithmic search for an increase in computation of 

approximately 270%. Although this appears to make the exhaustive search of little 

practical significance it is used in hardware implementations [78] since it does not 

require that intermediate search positions be stored. 

Sub-pixel motion estimation 

Sub-pixel motion estimation was previously introduced as method of refining the 

accuracy of the motion estimate. In the context of MCP sub-pixel motion estimation is 
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Figure 4.8: Energy of the Miss America sequence for Various search resolutions. 

lution 	Miss A Clare Sale 

1 	3.015 

70.5 

2.764 3.383 

 2.836 2.626 3.358 

25 	2.769 2.259 3.383 

Table 4.3: Comparison of data rates for sub-pixel motion estimation (block size 16 x 16 

pixels). 

an effective tool for energy minimisation. Figure 4.8 shows the energy of the prediction 

error for two search resolutions. 

Table 4.3 shows the entropies of the three standard image sequences over a wider 

range of search resolutions. The Miss America (Miss A) and Clare image sequences 

show a reduction in entropy of approximately 0.1-0.2 bit/pixel on progressing to 1/4 

pixel resolution. 

Motion compensation to non-integer pixel accuracy requires that extra bandwidth 

be used to transmit the motion vectors. For a resolution of 0.5 pixel, 2 bits per vector 

extra are required and for a search resolution of 0.25 pixel, an extra 4 bits per vector 
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are required. This would imply an increase of bandwidth of 4/N 2  bits/pixel and 8/N 2  

bits/pixel for a resolution of 0.5 and 0.25 pixels respectively. Thus for a block size 

of 16 x 16 pixels the increase in rates would be 0.016 bits/pixel and 0.031 bits/pixel 

which is below the decrease in entropy of the prediction errors implying that subpixel 

interpolation reduces the rate required to encode an image. 

4.4.2 The prediction error 

In the previous sections the performance of the motion compensation algorithms were 

quantified in terms of the energy and entropy of the prediction errors. Although both 

are useful for comparing the performance of various motion-compensated prediction 

algorithms they do not give any information about the spatial and spectral properties of 

the prediction errors, which are essential for developing an efficient intra-frame coder 

to exploit any remaining redundancy in the prediction error. In the following sections 

the prediction error is studied in detail. 

Spatial properties 

The spatial properties of the prediction error signal can be approximated using a simple 

motion model in which it is assumed that the motion of any pixel can be described by 

a displacement vector (d(x, y, t), d(x, y, t))T  and that there are no changes in ambient 

illumination. The displacement functions d(x, y, t) and d(x, y, t) are continuous func-

tions which deform the image. Note, that this assumption is somewhat unrealistic since 

it does not include the possibility of objects being (un)covered or objects moving in or 

out of the scene. It is more accurate to describe the displacement functions, d(x, y, t) 

and d(x,y, t), as piecewise continuous functions over disjoint subsets of the image, 

where each subset corresponds to an object in the image. 

A digital image, i(a, b, n), is assumed to be formed from sampling a continuous 
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image function 1 ,f(x,y, t), with a lattice of unit impulse functions, l(x,y, t), given by 

X-1 Y-1 00 

l(x,y,t) = >2>2 >2 ô(x - aAx)ö(y - bEy)ö(t - n&) 	(4.14) 
a=O b=O n=-oo 

where &, Ay and At are the sampling intervals in the x, y and t dimensions respectively. 

Thus the discrete image is given by, 

i(a,b,n) = f(x, y, t)l(x, y, t) 	 (4.15) 

Using this model the prediction error is attributed to errors in the displacement 

estimates, (Ad(x, y, t), &i(x, y, t)) T  defined by, 

t%uI(x,Y, t) = d(x, y, t) - d(x, y, t) 	 (4.16) 

Ad(x, y, t) = d(x, y, t) - d(x, y, t) 	 (4.17) 

where (t2x(x,y, t),cI),(x,y, t)) is the estimated displacement vector. Note, that the dis-

placement estimate is made in the discrete image and as such it should be discrete in 

both time and space but for mathematical simplicity it is assumed to be interpolated so 

that it is continuous. 

The compensated image can be written in terms of the current image offset by the 

displacement error defined in equations (4.16) and (4.17), i.e. 

f(x + cIx(x,y, t),y + d(x,y, t), t - &) f(x - &1(x, y, t),y - 4(X, Y, t), t) (4.18) 

If the image f(x,y, t) has continuous partial derivatives thenf(x - Ad(x,y, t),y - 
b4(x,y, t), t) can be expanded as a Taylor series to give, 

f(x - M(x,y, t), y - 
4(x, y, t), t) = f(x,y, t)— 

00 

-
1(

MX(X, 
	

a 	t) 8\N 
 ), t) + M(x, y, - J f(x, y, t) 	(4.19) =  

'Assuming Nyquist conditions 
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Figure 4.9: A typical prediction error frame from the Miss America sequence. 

Thus the prediction error is given by, 

00 	 9 	a)N 
e(a, b, n) = —l(x,y, t) 	(Adx(x,Y. t)- + &il),(x,y, t) 	f(x,y, t) 	(4.20)

lay 

From equation (4.20) it can be seen that the prediction error will contain high 

magnitude regions where the partial derivatives of the image are large, such as in 

textured regions or at image edges. Figure 4.9 shows a typical prediction error generated 

from the Miss America standard image sequence. The prediction error has high 

magnitudes in blocks which correspond to object edges which is consistent with the 

argument presented above. 

Although equation (4.20) has been derived for a single displacement estimate per 

pixel it applies equally to block matching algorithms. The only difference being that 

a single motion estimate, (ks, kr), is made per N x N block of pixels and, as such, the 

definition of displacement estimate needs to be adjusted accordingly. 

Equation (4.20) can be used to model the mean square error surface generated in a 

block matching search. The estimated displacement is defined to be, 

d(x,y,t) = kEx 	 (4.21) 

ci(x,y,r) = kEy 	 (4.22) 

where kx, ky  E {ZI - dm  < kx , ky  <dm }. 
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The displacement errors are thus defined to be, 

&(x,y,t) = d(x,y,t) - 	 (4.23) 

Ad(x,y,t) = d(x,y,t)—k 34y 	 (4.24) 

For a block with origin at (x', )') and which has dimensions of X x X pixels the mean 

square error surface is given by, 

2 1X1X1/ 	001 

E(kx,ky,n)=>2 	(l(x,y,t)> j  M(x,y,t)-- +M Y (x,Y,t)_)f(x,Yt)) 
N=1 

(4.25) 

The optimum estimated displacement for a block is given by the absolute minimum of 

the error surface. 

Although equation (4.25) would not be used to generate an actual error surface it 

can be used to make some general statements about block matching. Firstly, if the 

partial derivatives of the image tend to zero, i.e. the image is flat, the error surface will 

also be flat. Under these circumstances the displacement estimate is easily corrupted 

by noise. Secondly, if two moving objects are separated by an edge the motion estimate 

will be more accurate for the region around the edge than the flat regions, even though 

conversely the magnitude of the prediction error is greater in the edge region. Physically 

this is expected since in these regions a small change in displacement produces a large 

contribution to the total error. 

Spectral properties 

Amodel of the prediction error was previously generated based upon a Taylor expansion 

of a simple image model. The spectral properties of the prediction error can be derived 

from the Fourier transform of this equation but, in general, the complexity of the model 

hinders analysis. In the following, the model used previously is further simplified and 

a model of the spectral properties of the prediction error is generated. 

The model developed in the previous section assumes that the prediction error is 

generated from a failure to correctly estimate displacement vectors. The model allows 
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for a displacement estimate per pixel and allows any pixel to move independently of 

any other pixel. To allow a model of the spectral properties of prediction error to be 

developed the displacement errors will be assumed to be constant across the whole 

image. Thus the prediction error is now given by, 

e(a,b,n) = (f(x,y,t) —f(x - Ad(t),y - &t(t),t))l(x,y,t) 	(4.26) 

where Ad(t) and My(t) are the constant displacement errors. 

If we assume that the images are wide sense stationary a closed form solution 

(see [791) for the prediction error spectrum can be derived. Note, that the displacement 

errors vary from frame to frame and as such they are a function of time, in the following 

these displacement errors will be assumed to be stationary random variables. The two-

dimensional Fourier transform of equation (4.26) is given by, 

E(a, co,. n) = F(co,, co,, t) (1 - exp(j(Mx(t)co.r  + M(t)a),))) * L(o,co, t) (4.27) 

where F(o, coj , t) is the two-dimensional transform of the continuous image function, 

f(x,y, t), and L(a), cog , t) is the Fourier transform of the sampling lattice l(x,y, t), and 

* ' is the convolution operator. Note, thatf(x,y, t) is assumed to be bandlimited. The 

function L(co, a, t) leads to the well known result of baseband replications and the 

Gibbs phenomena [80]. 

The ultimate aim of developing a spectral model of the prediction error is to 

apply rate-distortion theory to estimate the coding gain for different scenarios. The 

rate-distortion function of a finite discrete image is asymptotically bounded by the rate-

distortion function of a discrete image with infinite samples. In this case the Gibbs 

phenomena does not occur and only the baseband replications exist. Thus without loss 

of generality only the baseband need be considered. 

From equation (4.27) the time dependent two-dimensional power spectrum of the 

prediction error, See( cox , co,, n), is thus given by, 

See(a)x , co,. n) = S,(cox, co,, n) sin' 
(

Adco + Ad,  coy  \ 
2 	) 	

(4.28) 
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where S(o, co,,, n) is the two-dimensional power spectrum of the uncoded images. 

Since the images are assumed to be related by uniform displacement with no 

(un)covered background, an image at time n has the same power spectrum as one at 

time (n - n'). That is, the power spectrum of the image sequences is independent of time. 

If the displacement errors are such that M, M E [-0.5,0.5] and all displacement 

errors are equi-probable then the average two-dimensional prediction error spectrum 

is given by, 

See((Ox, co,) = Su(cox, 	(i 
- sin(W2) sin(w 	

(4.29) 
/2) \ 

W2 a ,, 
)  

The average two-dimensional power spectrum of the prediction error signal is thus 

a high-pass filtered version of the two-dimensional spectrum of the original image 

sequence. 

Equation (4.29) can be used to estimate the average energy gain due to motion 

compensation for various model spectra. The isotropic correlation function, R•1 (x, y), 

given below is frequently used to model the spectrum of an image [81], 

	

R, 1 (x,y) 	 (4.30) 

where a = - log  and p is the correlation coefficient. The power spectrum of the 

above isotropic correlation function is given by, 

	

/ 	2ira 
S1 (o, o,,) = 

((a2  + o + 2)312) 	S 	 (4.31) 

Figure 4.10 shows the theoretical energy gain for an isotropic correlation function 

(solved using numerical methods). Real-world images are frequently modelled as 

having a correlation coefficient p 0.9, which gives an energy gain of approximately 

0.7%. This agrees favourably with the experimentally measured gain in section 4.4.1 

of 0.6%. 
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Figure 4.10: Theoretical energy gain using an isotropic correlation functionfor various 
values of correlation (see equation 430). 

4.4.3 Hybrid-coding of the prediction error 

Motion-compensated prediction is frequently combined with a spatial coding algorithm 

to remove any remaining redundancy from the prediction error. To provide the max-

imum compression for a given image fidelity the spatial encoder must exploit redund-

ancy which is specific to the prediction error. A common problem, in many hybrid 

encoders, is that the spatial encoder is optimised for compressing real-world images 

and as such produces poor results when applied to the prediction error. In the following 

sections the benefits of spatial encoding the prediction error will be assessed. 

The signal-to-noise coding gain of an optimum spatial encoder is asymptotic-

ally bounded by the inverse spectral flatness measure (SFM) of the signal, e.g. 

see [1](chapters 6 and 12). The spectral flatness measure, y,  of a signal is defined by, 

[1 	f7r 

y2 	 -(2,T7  f__ 
cog) dop,  do 	

(4.32) 
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where S,(co, cog) is the power spectrum of the signal and y E [0, 11. SFM can be 

interpreted as a measure of the redundancy in a signal, for example, if y = 1 then the 

signal has a white spectrum and as such it is uncorrelated and contains no redundancy. 

The architecture of a hybrid motion-compensated encoder differs considerably from 

a standard spatial encoder and as such it is necessary to further investigate this to 

demonstrate that the above result is still true. 

The parametric rate, R(), and distortion, D(), functions of a Gaussian source 

with a power spectrum, 	cog), are given by, 

1 
D() = 	fI min{ ,So,w.,)}dcodo, 	 (4.33)  

1 	2rr7r S(o,coY 
R(4i) = (2)2 	mm {o. 1092 do  dco 	(4.34) jj  

The optimal mapping [1](Appendix  D) which achieves the rate-distortion bound of 

equations (4.33) and (4.34) is given by the application of a non-ideal filter .  (equa-

tion (4.35)) followed by the addition of additive bandlimited noise (equation (4.36)). 

H(co, co. 
). 

= max {o 
1 - See((Ox, OY)} 	

(4.35) 

'°y, ) = max 0, 	
1 - See((Dx, 	

] } 	

(4.36) 

Figure 4.11 shows a schematic diagram of an optimum motion-compensated hybrid 

architecture. The optimum spatial coder is given by the optimum forward channel and 

G(co, cog , t) is simply a phase shift (section 4.4.2), i.e. 

G(a!, wy , t) = e_j(0 dx(t>f 0 y() 
	

(4.37) 

It can easily be shown that the power spectrum of the prediction error, See((o, W) ), 

is given by, 

2 1— G(o, coy , 

	

See(, ) = 
E 1 - H(, , ) + H(, , )G(, , t) ] 

	
) 
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Figure 4.11: Schematic diagram of motion-compensated prediction algorithm with an 
optimum spatial encoder. 

—E [I 	 o G(o, ,, t) 	 2

1 H(, 
, ) + H(, , )G(, , t) 	

) (4.38) 

where E[•]  denotes the expectation operator with respect to the displacement errors. 

If equations (4.35) and (4.36) are substituted into equation (4.38) it can be seen that 

the left-hand side of equation (4.38) depends upon the prediction error power spectrum 

and as such is very difficult to solve. Girod [10] solves this problem by considering two 

cases, q < See(Ov, o)) and q  ~! See(O, a)), for which equation (4.38) can be solved 

and then argues that the intermediate region smoothly approaches these two solutions. 

• For the purposes of this chapter, the case when 0 <<See(ü, cog) is sufficient. If 

<<See(0)x, cot) equation (4.38) simplifies to, 

See( (ox, Wy) = E [ii - G(cox,o)y ,t)1 21 S(w,O)) +E [IG(ox,o y ,tI 2] 	(439) 
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Substituting G(o, ü ) , t) into equation (4.39) gives, 

See((Ox, ü) = 	 ) ( i 
- sin(W2) sin(o/2)'\ + 	

(4.40) 
wJ2  

Finally, note that 0 <<See(a, cog) and as such equation (4.40) is equivalent to equa-

tión (4.29). The rate-distortion function is hence given by, 

R - JJ 	D 

iT iv lOg[See(o.,o)y)] 

	

dcoX dw), 	 (4.41) 

For zero mean signals the variance of the signal, , is given by, 

iT 

= (2jr) JYM 	coy ) dcodw 	 (4.42) 

Substituting equations (4.42) and (4.32) into equation 4.41 gives, 

R= 
D 
	 (4.43) 

where y,,2  is the spectral flatness measure of the prediction error and o is the variance 

of the prediction error. 

The rate-distortion function for memoryless encoding of a Gaussian source is given 

by, 

R(D)G = 
1og(o) 	

(4.44) 

Hence, the signal-to-noise coding gain when using an optimum spatial coder is given 

by, 

G=( 2)' 
	

(4.45) 

It can thus be demonstrated that the signal-to-noise coding gain of an optimum hybrid 

motion-compensated coder, for small distortions, is asymptotically bounded by the 

inverse SFM of the prediction error. This is an important result since, as will be 

demonstrated in the following sections, typical prediction errors have an SFM which 

is close to unity. 
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Figure 4.12: Spectralfiatness measures ofan isotropic correlation function and motion-
compensated isotropic correlation function for various values of correla-
tion. 

Spectral flatness of model correlation functions 

The coding gain of an optimum hybrid motion-compensated prediction encoder can be 

assessed for various model correlation functions using equations (4.29) and (4.45). 

Figure 4.12 compares the spectral flatness measure of a isotropic correlation model 

(equation (4.31)) and a motion-compensated isotropic model for various values of 

correlation in the input image. As expected, for high values of correlation the prediction 

error power spectrum has a significantly whiter spectrum than the original. But as the 

correlation coefficient is decreased, the spectrum of the image becomes progressively 

whiter and effect of the motion-compensated prediction filter is to decrease the SFM 

of the prediction error. Since many real-world images are approximated to contain 

predominantly low frequency information their prediction errors will certainly show 

an increased SFM. 

Figure 4.12 shows that the minimum value of spectral flatness measure for the 

motion-compensated isotropic signal is approximately 0.8. This implies that the max-

imum coding gain is G 1.25. 
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Sequence SFM of image 
Miss A 0.019 
Clare 0.017 
Sale 0.144 

Table 4.4: Spectral flatness of different image sequences. 

Spectral flatness measure of real data 

Previously the spectral flatness measure of a model correlation function was evaluated 

and it was demonstrated that for images which can be modelled as containing predom-

inantly low frequency information, motion compensation results in an increase in the 

spectral flatness measure. In this section the SFM of actual images is measured and 

compared to the results shown previously. 

The coding gain of a discrete source is given by the SFM of the eigenspectrum 

of the image covariance matrix (see equation B.10 in appendix B) which is given by 

the ratio of geometric mean and arithmetic mean of the eigenvalues of the covariance 

matrix. Thus for an N x N pixel block the coding gain, NXNG  is given by, 

N 
(fl?)l/N 2  

NXNG =1 N2 	
(4.46) 

Table 4.4 and table 4.5 shows the spectral flatness measures of the original images 

and their corresponding prediction errors respectively. All the covariance matrices 

are calculated using 8 x 8 blocks which are row stacked to make a vector [2].  The 

prediction errors are formed using exhaustive search block matching in which block 

sizes of  x 4,8 x 8 and 16 x ló were used. 

Clearly, the prediction errors have a much greater SFM than the original images as 

expected from theory. However, the spectral flatness of the actual prediction errors is 

not as great as is predicted by the theoretical results. This is because the assumptions 

made to generate the theoretical models are an over simplification of what occurs in 

the real-world images. Note, also that the spectral flatness of the prediction errors 
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MCP block 
size 

SFMofPE 
Miss A Clare Sale 

4 x 4 0.689 0.779 0.807 
8 x 8 0.524 0.658 0.540 

16 x 16 0.430 0.597 0.505 

Table 4.5: Spectral flatness measure of the prediction errors of three different image 
sequences. The prediction error is formed using block matching motion-
compensation with three different block sizes. 

increases as the block size is decreased. This occurs because decreasing the blocks 

size increases the accuracy of the motion estimate. 

Motion-compensated transform coding 

The analysis of the hybrid motion-compensated architecture discussed in section 4.4.3 

is for an optimum spatial encoder. Since transform coding is frequently combined with 

motion-compensated prediction it is worth making some comments on the expected 

performance of this particular combination. 

The KLT is an optimum algorithm for encoding images and it can be shown to 

approach the rate-distortion bound (appendix B). It is generally not used for encoding 

images because of its computational complexity and instead, suboptimal transforms 

such as the DCT are used. 

The DCT has a performance which is close to optimal for images which can 

be approximated to be AR with correlation approaching unity. Since in many real-

world images this assumption is frequently true the DCT performs well. However, 

the properties of a typical prediction error deviate significantly from those required 

for the DCT to have optimal performance and as such it is expected that transform 

coding of the prediction error will give particularly poor results. In particular, the high' 

intensity lines which correspond to the edges of objects in the image and which are 

vital to maintaining the fidelity of the encoded images, cannot easily be encoded by 

a transform operation [9].  However, since block matching algorithms do no correctly 

estimate all types of motion, the prediction error contains significant structure which 
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allows the transform encoder to continue producing gains. 

A problem which may occur with non-adaptive transforms is that the transform 

operation may increase the correlation between pixels rather than decrease the correl-

ation. This would manifest itself as a decrease in the spectral flatness measure of the 

transform coefficients compared to the spectral flatness measure of the original data. 

Clarke [82] has measured the spectral flatness measure of transform coefficients, his 

results indicate that the SFM of the transformed data is around 0.9 indicating that the 

transform coding is working as required. 

The result of applying suboptimal non-adaptive block-based transforms to the 

prediction error is well known to be a loss of high frequency information which results 

in poor edge definition and, in extreme cases, the block structure which the transform 

is based upon becomes apparent. 

'free-structured encoding 

To conclude this section Strobach's tree-structured scene adaptive coder [9] is dis-

cussed. This algorithm encodes the prediction error by performing a regular decom-

position. The image is first split into arbitrary disjoint blocks and then each block is 

recursively split until a subblock contains pixels with an almost homogeneous intensity. 

The image is then encoded by describing the block structure with a tree and assigning 

each block a mean intensity value. The prediction error is easily decoded by adding the 

mean intensity value to the corresponding region in the previous image after motion 

compensation has been applied. 

In comparison to transform coding this technique is optimised for encoding pre-

diction errors and Strobach has reported good results at rates of approximately 61 

kbits/s. 

4.5 Summary and conclusions 

This chapter discussed and presented results for various aspects of motion estimation for 

image compression. In particular, motion-compensated prediction and the prediction 
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error were discussed in detail. 

Theoretical models were developed to describe the spatial and spectral properties 

of the prediction error. It was shown from these models that the prediction error could 

be characterised as a zero mean signal in which the majority of the pixels have values 

which are close to zero. It was also shown that high intensity edges would be found in 

regions where there are large changes of pixel intensity in the original image. 

This model was then used to determine the nature of an error surface generated 

using a BMA. The accuracy of the motion estimate was shown to depend upon the 

contents of a block: 

• motion estimates made with blocks in which the pixels have approximately 

uniform intensities are easily corrupted by noise. 

• motion estimates made with blocks in which there are large changes in pixel 

intensities are robust to noise. 

This implies that the high intensity lines in the prediction error may have 'accurate' 

displacement estimates associated with them. 

The model which was used to develop the spatial description of the prediction error 

was further simplified to produce a model of the spectral properties of the prediction 

error. For sufficiently accurate motion estimates motion-compensated prediction was 

demonstrated to be equivalent to non-ideal spatial high-pass filtering of the original 

image. 

Based upon the analysis by Girod [10] of the optimum hybrid motion-compensated 

codec it was demonstrated that the signal-to-noise coding gain is asymptotically 

bounded by the inverse of the spectral flatness measure of the prediction error. Theor -

etical analysis of the SFM showed that values of 0.9 could be expected for an image 

which has an isotropic correlation function with correlation coefficient greater than 

0.9. The coding gain for discrete images is given by the ratio of the geometric mean 

and arithmetic mean of the eigenvalues of the image covariance matrix. The SFM of 

actual prediction errors was  shown to be greater than the SFM of the original images 

as predicted by the theoretical results. However, the SFM of the actual prediction 
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error was found to be less than the SFM predicted by the theoretical model. This was 

attributed to the simplicity of the theoretical model. 

The chapter concluded by discussing two different hybrid coding schemes: the 

motion-compensated transform coder and a tree-structured scene adaptive coder. The 

motion-compensated transform coder, which is used in many state-of-the-art codecs, 

was shown to have a poor performance since the transform encoder is not optimised for 

compressing prediction errors. In contrast, Strobach's tree-structured scene adaptive 

coder has been optimised for compressing prediction errors and as such has a superior 

performance. 

VV 



Chapter 5 

Variable block size conditional 

replenishment 

5.1 Introduction 

Many hybrid motion-compensated codecs have a poor performance since the spatial 

coding algorithm is not optimised for encoding prediction errors. In particular, motion-

compensated transform coding has been observed to produce very poor results. It is 

the aim of this chapter to develop a coding scheme which exploits the properties of the 

prediction error so that the quality of the reconstructed image is preserved. 

5.2 Region-based image coding 

Block-based coding algorithms, although being relatively simple to implement, can 

result in visually disturbing artifacts as the compression ratio is progressively increased. 

Two reasons for this were highlighted at the end of chapter 4: firstly, the blocks are 

chosen without considering the contents of a particular block, and secondly, and as the 

distortion is progressively increased the regular block structure becomes apparent. 
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Region-based techniques overcome these problems by first segmenting the image 

according to some property of the encoder. The resulting segmentation frequently 

corresponds to actual objects in the image and, as such, even with very poor image 

fidelity, the structure of the image is still apparent, rather than the chequerboard pattern 

of the block structure. 

Segmentation algorithms can be broadly divided into two classes: region-based 

methods which depend upon pixels statistics over localised areas of the image and 

edge-based methods which detect discontinuities between regions. Region-based seg-

mentation may be defined as follows [83].  Let S be a set which represents the entire 

image. The segmentation algorithm then partitions S into n subregions (subsets), 

S 1 ,52 ,... ,S such that 

I.  

Sisaconnectedregion,i=l,2,...n, 

S1 flSj=O for all iandj,i.j, 

4;P(S) TRUE for i=l,2,...,n, 

5. P(51  U S,) = FALSE for i Ej, 

where P(S1) is a uniformity predicate over the set Si. 

The uniformity predicate assigns a point to be TRUE or FALSE depending:upon 

some property of the image. The choice of uniformity predicate is very much problem 

dependent. For example, if the image is to be segmented into regions of approximately 

homogeneous greyscale, mean and variance are a good choice of uniformity predicate. 

If the image is to be segmented into regions corresponding to objects then textural in-

formation may be more useful. The accuracy of a segmentation can be greatly enhanced 

by segmenting using multiple image properties, e.g. textural and edge information can 

be combined to improve a segmentation. 
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5.2.1 Region growing 

Region growing algorithms segment an image by starting with a set of seed points 

which are grown into larger regions by appending neighbouring pixels if the uniformity 

predicate is true and the pixels are connected to this region [84](Chapter 7). Region 

growing is terminated when no further pixels can be appended to the current region. 

5.2.2 Region splitting and merging 

In contrast to region growing, split-and-merge algorithms [84](chapter 7) are top-down 

algorithms in which arbitrary disjoint subregions are subdivided into smaller subregions 

in an attempt to satisfy the uniformity predicate. Blocks with identical properties are 

then merged to form irregular regions. A common split and merge algorithm is to 

successively subdivide a square image into quadrants until the uniformity predicate is 

true. 

5.2.3 Regular decompositions and trees 

A regular decomposition is a simplified version of the split and merge algorithm which 

produces regular shaped regions as the final output of the segmentation. The resulting 

segmentation is a hierarchical data structure which describes regions of the image and 

can be compactly encoded using a tree. Regular decompositions have been shown 

to be able to describe complex structures [85] and are particularly good at describing 

sparse line structures; a fact which Strobach [9] exploits in his tree-structured scene 

adaptive encoder. Another advantage of the regular decomposition is that it can be 

easily manipulated with a digital computer [86]. 

There is no restriction on how a block may be split but, in general, decompositions 

which result in square or rectangular blocks are favoured. Quadtrees are commonly 

used in regular decompositions images because of their inherent symmetry. Figure 5.1 

shows an example of a quadtree decomposition and its associated tree. Each node in 

the tree is associated with an area of the image. 

A tree is defined to be a graph which is connected, acyclic and undirected [46] (chapter 
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Depth 0 

Depth 1 A 	Depth 2 El 	Led 

0 	Node 

Figure 5.1: A regular decomposition of a block and its associated tree structure. The 
tree has a height of two and each node is degree four. 

5). The tree shown in figure 5.1 is a rooted tree. A rooted tree is a type of tree which 

has one node which is distinguished from the others. This node is described as the 

root node. For a regular decomposition this node is always associated with an entire 

image or a subblock of the image. Throughout this chapter the area of the image which 

corresponds to a root node is described as a root block. 

Any node which has no children is described as a leaf. The depth of a node, x, 

is defined to be length of the path from the root node to the node, x, where length is 

defined to be the smallest number of edges which must be traversed to go from the 

root node to x. Each leaf is associated with an area of the image and the depth of a 

leaf indicates the size of this area. For example, if the root block in figure 5.1 has a 

dimension of 8 x 8 pixels, a leaf at depth one corresponds to a 4 x 4 pixel block. 

The maximum depth of any node is the height of the tree. Finally, the number of 

children at a node is the degree of a node. For a regular decomposition the degree of a 

node is generally always fixed to a constant value, k. 

A rooted tree can be described by a variable length binary string. For example, if 

a leaf is denoted by a binary zero and a node by a binary one, the tree in figure 5.1 

can be described by the binary string 1/0001/0000. To allow this code to be uniquely 

decipherable some convention is need to describe the ordering of the binary digits. For 

example, the binary string 1/0001/0000 was generated by starting at the top left hand 
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block and reading to the bottom right hand block by scanning rows. 

5.3 Conditional replenishment 

Prediction errors are characterised as having an approximately zero mean with the 

majority of pixels having values which are close to zero. High magnitude edges are 

found in regions where the original image has a high gradient, such as at object edges. 

In regions where the displacement estimate is sufficiently accurate the prediction error 

can be approximated to be white noise. 

It was shown in chapter 4 that transform coding of the prediction error is not 

optimal and to ensure maximum coding gain a different spatial encoding scheme 

should be employed. Strobach addresses this problem by using a tree-structured scene 

adaptive coder [911 which encodes the prediction error using a quadtree decomposition 

in which the prediction error in a particular block is approximated by its mean value. 

An alternative scheme which can be employed is conditional replenishment, which 

is a simple but effective method of encoding images based upon only transmitting 

the changed part of an image. The image is then decoded by copying pixels from 

the previous frame to the current frame. This is similar to Strobach's encoder in 

that copied regions correspond to blocks which have a zero mean and the replenished 

regions correspond to blocks which have a finite mean. 

Using conditional replenishment to encode a prediction error does not significantly 

degrade the fidelity of the image, since the prediction error in the copied regions can be 

approximated to be low power white noise. However, if conditional replenishment is 

used to encode an image which is a low-quality reproduction of the original image, no 

increase in image fidelity will be seen, therefore, throughout this chapter it is assumed 

that both the transmitter and receiver start with high fidelity images. 

Much of the early work on conditional replenishment was completed in the late 

1960's by Mounts [87].  He described a conditional replenishment system in which the 

current image is subtracted from a reference picture stored in memory and only picture 

elements which have changed significantly are updated. The update threshold is made 
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a function of the output buffer occupancy so that a constant rate is maintained. This 

results in a serious degradation of the image quality during periods of large motion. 

Hem [88] describes a conditional replenishment algorithm based on a block match-

ing motion predictor in which the residual blocks are encoded using a Walsh transform. 

Ghanbari [89] describes a conditional replenishment encoder using a block matching 

motion estimator. In this scheme the image is replenished in strips to decrease the 

overhead information required to transmit the address of regions to be replenished. 

To maintain the image fidelity accurate displacement estimates are required. BMAs 

assume that all pixels within a block are homogeneously displaced. To ensure this is 

true small blocks should be used. However, using a small block size requires a large 

overhead for the vector data and as such larger blocks are usually employed which are 

not suitable for conditional replenishment. 

This problem can be circumvented since in real-world scenes entire objects move 

coherently and as such small blocks are only required for a small subset of the image. 

Wang [90] has suggested a solution to this problem based upon the grouping of vectors 

into irregular regions. Chan's variable block size motion estimation algorithm [61] 

performs a regular decomposition so that small blocks are only used where necessary. 

A variable size block matching algorithm (VSBMA) will be used in the following 

sections to generate a segmented image for conditional replenishment. 

5.4 Variable block size conditional replenishment 

Chan's variable block size motion estimation algorithm [61] attempts to segment an 

image into regions of approximately homogenous motion using a regular decompos-

ition. The algorithm makes motion estimates by initially dividing the image into a 

regular array of blocks. A motion estimate is made for each block; if a motion estimate 

for a particular block is not sufficiently accurate, this block is subdivided and a new 

motion estimate is made for each new block. This process is continued until either 

a sufficiently accurate motion estimate is found or a minimum block size is reached. 

Neighbouring blocks with the same displacement vector are then merged. 
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Figure 5.2: An example of a variable block size motion estimate. 

Figure 5.2 shows a simple example of this type of motion estimate, in which only the 

active blocks are shown. The minimum block size is set so that after three iterations the 

search terminated. Initially, a motion estimate is made for the large block (fig. 5.2(i)). 

The accuracy of this estimate is not deemed sufficient so this block is split into four 

smaller blocks and a new motion estimate is made for each of these blocks using the 

previous best match as a starting point (fig. 5.2(ü)). Three of the four blocks pass in 

the second stage. Finally, the failed block is subdivided and a motion estimate is made 

for each of the smaller blocks after which the search is terminated (fig. 5.2(m)). The 

block structure in figure 5.2 is equivalent to that shown in figure 5.1 and as such can 

easily be described by this tree. 

The VSBMA algorithm will be used in the following to segment an image using a 

regular decomposition so that conditional replenishment can be used. The encoder can 

be considered to be similar to Strobach's tree-structured scene adaptive coder except the 

conventional BMA is replaced with an enhanced BMA which endeavours to generate 

zero mean blocks with a white power spectrum. In contrast to Strobach's encoder no 

attempt will be made to describe the prediction error. If a block is labelled as requiring 

replenishment the corresponding block in the original image will be encoded. 

The choice of threshold used to determine whether a block should be copied or 
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replenished is critical to maintaining the integrity of the encoded images. An optimum 

threshold is one which mimics the HVS, unfortunately the complexity of the HVS 

prohibits the formulation of such a threshold. After some experimentation the ratio 

of mean square error to mean block energy was found to be a reasonable choice of 

the threshold. That is, a block of pixels, S. is labelled pass or fail according to the 

following, 	
> e(x,y,1)2 

- 	 COpy 	iff > 
	yI)2 

xjES 

replenish 	otherwise 

where T E [0,1] is the motion estimation threshold value. 

The success of this threshold can be attributed to its similarity to Weber's law 

(section 2.2) since more distortion is permitted in high intensity regions than low 

intensity regions. Mean absolute error could also be used and has the advantage of 

requiring less computation but it was found to be too insensitive to small isolated 

regions of high intensity pixels and as such 'incorrectly' assigned them as pass blocks. 

Figure 5.3 shows a typical segmentation of an image generated with a variable 

block size motion estimation algorithm using the above threshold. White regions 

correspond to areas which can be encoded by copying and shaded regions correspond 

to fail regions. Note, that the eyes and mouth cannot be encoded by copying since the 

distortion of the lips or the closing of the eyes cannot be described by the displacement 

vectors. 

The output of the VSBMA is a hierarchical data structure in which blocks are 

labelled as either pass (copy region) or fail (replenish region). To encode an image the 

hierarchical data structure is described by a tree, the pass blocks with a vector and the 

fail blocks with a code which corresponds to the block of pixels in the original image. 

The tree is described with a variable length binary string and the vector data must be 

encoded with an information-lossless algorithm. The failed blocks may be encoded 

using an information-lossy algorithm such as VQ or transform coding. However, it 

should be noted that the algorithm used to encode the failed blocks is critical to the 

efficient operation of the replenishment coder, since if too much coding distortion is 

introduced these blocks may be unnecessarily replenished at later stages of coding. 
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Figure 5.3: A typical segmentation of Miss America generated with a threshold T = 
0.001. 

The regular nature of the decomposition allows the rate required to encode an image 

to be calculated based upon the number of leaf nodes in a particular decomposition. 

5.4.1 Rate required for tree data 

The total number of bits required to encode a tree is easily calculated since each leaf 

and node requires one bit. This can be calculated from the number of leaf nodes, Ni  

at depth i in the trees and the degree of the node, k. For example, assume that the 

maximum height of the trees is L and there are NL leaves at this depth. Clearly, NL bits 

are required for these leaves. At depth L - 1 there are NL_1 leaves and NJk  nodes. By 

repeated application of this rule the total number of bits required to encode the trees 

can be calculated. 

Before deriving the general expression a simple example is considered. Figure 5.1 

shows a three level quadtree decomposition (k =4) of a block in which No = 0, N1  =3 

and N2  = 4. This decomposition can be described by the binary string 1/0001/0000 and 

hence requires 9 bits to encode. Applying the previous rule the number of bits required 

to encode this is 4 bits at depth two, 3+4/4 =4 bits for depth one and 0 + (3+1)/4 = 1 

bits for depth zero. Hence the total number of bits required is 9. 

For the general case of a node which has degree k the number of bits required to 
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describe the structure of the trees, B 1 , is, 

NL 	NL_1 NL 
B,=NL+--+NL_1+ k 

	
(5.2) 

Equation (5.2) can be simplified by grouping terms which include the blocks from the 

same level so that the series becomes the summation of a set series, i.e. 

B t  = L L
E

-i 

1=0 m 
- 

	 (5.3) 

The inner summation in equation (5.3) is a geometric series and as such can be 

simplified using, 

(5.4) 

to give 

B g = k l (1_k1_L_ 1 )NL_ n 	 (5.5) k   

5.4.2 PCM encoding of the vector data 

Each leaf which has been labelled 'passed' is assigned a vector, thus if Alf leaves fail 

at depth i the total number of bits required for the vectors, B, is given by, 

B = 	- N()r 	 (5.6) 

where r is the rate required to encode the vectors. If a maximum displacement of dmax  

pixels is allowed then r is given by, 

TV = lo& ((2dma + 1)2) bits/vector 	 (5.7) 

5.4.3 PCM encoding of failed blocks 

Initially, analysis and simulation results will be presented for PCM encoding of the 

failed leaf data such that zero distortion is introduced. PCM encoding of the 'failed' 

data is generally unsatisfactory since if large areas of the image are labelled failed 
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there will be a dramatic increase in rate. However, this scenario allows some useful 

mathematical analysis of the encoder to be performed and the simulation results may 

be beneficially interpreted as the upper bound to the rate and the lower bound to the 

distortion. 

The rate required to encode a failed block is proportional to the total number of 

pixels within a block. For example, if the root blocks contain A pixels then a block at 

depth i in the tree will contain Ak' pixels. The number of bits required to encode the 

failed regions is simply given by, 

B1 = NAk 1rd 	 (5.8) 

where rd is the rate required to encode each pixel. 

As yet no information concerning the state of the node has been included. Thus to 

differentiate between a pass and fail leaf an extra binary digit will be included per leaf 

node of the tree. The total number of bits required to describe the state information is 

given by, 
L 

B=>JNj 	 (5.9) 
1=0 

Total rate 

The total number of bits required to encode an image, B. is given by, 

Btt 	 (5.10) 

where B1 , B5 , B and B1 are the number of bits required for the tree, state data, vector 

data and failed leaf data respectively. 

Thus substituting equations (5.5), (5.9), (5-6)and (5.8) into equation (5.10) gives, 

(k
k  1 (1 _/ i_L_ l  )NL  +N+(N _N)r+NcAkrd) 	(5.11) 
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The rate required to encode an image which has dimensions X x Y pixels is given by, 

R = B Ot  XY 
(5.12) 

Analysis of the coder 

Equation (5.11) allows the rate required to encode an image to be calculated if the 

number of leaf nodes and number of failed nodes are known. This equation can also be 

used to determine simple expressions which ensure compression is always achieved. 

As a given decomposition becomes progressively more complex the overhead 

required to describe the tree and vector data increases correspondingly. It is conceivable 

for a sufficiently complex decomposition that compression will no longer occur. The 

tree and vector codes require a maximum number of bits when all the leaves of the 

trees are at a depth which is equal to the height of the tree, i.e. 

lo ifiL 
Ni= 	 (5.13) 

( NL otherwise 

Hence, this represents a limiting case and will be used to calculate the conditions 

necessary to ensure that compression is always obtained. 

For an image which has dimensions X x Y pixels compression is given when, 

	

B<XYr d 	 (5.14) 

From equation (5.11) this condition is satisfied when, 

k(1 _k''))N +NL + (NL - N)r, <(XY - NAk)r d 	(5.15) 

Since there are no blocks on any level of the tree except the L th  level, the area of 

the image, XY, is equal to, 

	

XY=N LAk 	 (5.16) 
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Height of tree (L) 
Ni 

0 0.999 
1 0.995 
2 0.893 
3 2.165 

Table 5.1: Ratio offailed blocks to maximum number of blocks so that compression is 
just achieved when the height of the tree is L (see equation (5.19)). (k = 4, 
rd = 8 bits/pixel, r = 10 bits/pixel and  = 16 x 16 pixels). 

Substituting equation (5.16) into equation (5.15) gives, 

N{ (i - k-('-")))' + 1 
—<1— 	 (5.17) 
NL 	Ak'rd  

Table 5.1 shows the ratio of failed blocks to the total number of blocks at depth 

L required to just achieve compression using a quadtree decomposition (k = 4), PCM 

encoding the failed pixels and vectors at 8 bits/pixel and 10 bits/vector respectively 

and using root blocks of dimension 16 x 16 pixels. As expected the ratio of failed 

blocks to total number of blocks is seen to progressively decrease as the total number 

of levels increases. Note, for L =3 the ratio of failed blocks to total number of blocks 

is greater than unity and since N :~ Nj., this is not possible and as such compression 

cannot occur. Clearly, this is a trivial example since when L = 3 a block corresponds 

to a single pixel and since r, > rd compression will never occur. 

Although equation (5.17) provides a method of determining the conditions neces-

sary for compression for a given maximum number of levels, it provides no information 

on the optimum maximum number of levels which should be used. That is, although 

a tree with a maximum of L levels.may provide compression it may be more efficient 

to use less levels. 

The optimum number of levels which should be employed to obtain maximum 

compression is easily calculated from the change in rate, A B, when an extra level is 

added to a tree with height 1. Assume that there Nc failed leaves at this level so that 

when the extra level is added kNc  new leaves are created of which Nf. 1  fail. Since the 
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Height of tree (1) 
Nw 

0 0.997 
1 0.985 
2 0.920 
3 1.875 

Table 5.2: Ratio of failed blocks so that compression just occurs when the height of 
the tree is increased from 1 to l + 1 (see equation (5.19)). (k = 4, rd  = 8 
bits/pixel, r = 10 bits/pixel and  = 16 x 16 pixels). 

tree with height 1+ 1 is simply the tree with height 1 extended by an extra level the 

increase in rate to describe the tree is trivially kV'. The increase in the rate due to 

the state information is (k - 1)N and the increase in rate from the vector information 

is (kN - N. 1)r. Finally, the increase in rate from the failed regions is given by 

(N 1Ak -('+')-  N1Ak'). Thus, AB is given by, 

= NfI 	1) + (kNç - N 1 )r, + (N 1  - kV)Ak'"rd 	(5.18) 

and as lung AB <0 adding an extra level will result in compression. Using N11  = kNf 

it can be shown that compression is given when the following is true, 

2k-1 	
(5.19) 

N1.. 1 	Ak'rd - kr 

In comparison to equation (5.1) this a much stronger condition since not only does 

it ensure compression but it also determines the maximum number of levels which can 

be usefully be employed. 

Table 5.2 shows the ratio of failed blocks to total number of blocks which are 

required so that compression just occurs when increasing the height of a tree from ito 

i + 1. Once again a quadtree decomposition (k=4) is used in which the failed regions 

are encoded at, rd = 8 bits/pixel, and the vectors at r = 10 bits/vector and the root 

blocks have dimensions of 16 x 16 pixels. 

The results in tables 5.2 must be interpreted with care since equation (5.18) does 

not include the possibility of blocks merging. These results are best interpreted for the 
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case of an extra level being added to a single failed node. For example, if an extra level 

is added to a node in a quadtree, four new blocks are generated. When 1 = 0, 1 or 2 

the ratio of failed blocks to total number of blocks must be greater than 0.9 for an 

increase in rate to occur. Even if three out the four new blocks need to be replenished, 

compression will still occur. Indeed, even if all four blocks fail, no increase in rate will 

occur since these blocks will be merged back to their previous state. If the ratios in 

table 5.2 were interpreted globally it would be tempting to think that adding an extra 

level which contained a small number of pass blocks would result an increase in rate, 

but the merging of some of the fail blocks would ensure that this was never so. 

This has important implications for implementing such an encoder since if the ratio 

of failed blocks to total number of blocks to just achieve compression is greater than 

0.75 no control mechanisms need be installed. However, if the ratio is less than 0.75 

some care must be taken to ensure that the maximum compression always occurs As 

predicted from table 5.1 adding an extra level when I = 3 results in expansion and as 

such 1=2 represents the maximum number of levels which can be used. 

Figure 5.4 shows the rate required to. encode Miss America for a threshold T = 

0.001. Results are shown for a minimum block size of 8 x 8 pixels (L = 1), 4 x 4 

pixels (L =2) and 2 x 2 pixels (L = 3). As predicted from the above a decrease in rate 

occurs each time the minimum block size is decreased. 

Rate and distortion versus threshold 

The number of bits required to encode an image is a function of the motion estimation 

threshold, i.e. as the threshold is increased the complexity of decomposition decreases 

and a greater number of blocks are encoded by copying, which results in a decrease 

in rate. Likewise, the total distortion which is introduced is a function of the motion 

estimation threshold, except in this case the distortion increases as the threshold is 

increased. Results will be presented in this section to demonstrate these trends. The 

results quoted for both rate and distortion are average results and it should be noted that 

considerable variation of these quantities may occur between the individual images of 

the sequence (e.g. see figure 5.4). 
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Figure 5.4: Rate required to PCM encode Miss America using a threshold of 0.001. 
Vectors are PCM encoded at 10 bits/vector and the failed regions are PCM 
encoded at 8 bits/pixel. 
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Figure 5.5: Average rate versus threshold for three different image sequences. 

Figure 5.5 and figure 5.6 show the average rate and average PSNR for three different 

image sequences for various values of threshold. As expected, increasing the threshold 

results in a decrease in the average rate and a decrease in the PSNR (increase in 

distortion). These results are the upper bound to the rate and the lower bound to the 

distortion. If a more sophisticated spatial coding algorithm were to be employed, a 

decrease in rate and an increase in distortion would be observed. 

Unfortunately, using the motion estimation threshold as a method of controlling rate 

and distortion is, in general, not satisfactory. This is because the threshold controls the 

motion estimation algorithm and as the threshold is increased, the motion estimation 

algorithm terminates for progressively larger blocks. This results in poor displacement 

estimates which produce an unacceptable degradation in the image fidelity. A better 

method of controlling rate and distortion is to make motion estimates with 'a small 

threshold and adaptively merge blocks as required. This is discussed in greater detail 

in section 5.4.7. 
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Figure 5.6: Peak SNR for various thresholds. 

5.44 Lower bound to rate 

The upper bound to the rate required to encode a sequence of images using the VBCR 

encoder was found by PCM encoding the failed regions. A good approximation to the 

lower bound can easily be calculated by simply encoding all the blocks with vectors. 

The lower bound, like the upper bound, is dependent upon the minimum block size 

and the motion estimation threshold. 

Figure 5.7 compares the upper and lower bound to the rate at which the Miss 

America standard image sequence can be encoded for various values of threshold 

using a minimum block size of 2 x 2 pixels. For small values of threshold there is 

a large difference between the lower and upper bound (approximately 0.35 bit/pixel) 

but as the threshold is steadily increased the two curves converge to the same value. 

This indicates there are no failed blocks within the images and as such this point 

represents the maximum value of threshold which can be usefully employed. For the 

Miss America thresholds of less than 0.025 should be employed. 
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Figure 5.7: Upper and lower bound to rate required to encode the Miss America 
sequence of images. 

5.4.5 Tree complexity 

Equation (5.11) allows the number of bits required to encode an image to be calculated 

and allows simple rules to be derived so that compression is always ensured (equa-

tions (5.17) and (5.19)). Unfortunately, these equations cannot be used for determining 

the number of blocks which will be generated for any particular decomposition. In 

practice, it is doubtful that this can be accomplished except for a few simple cases. 

The best that can be hoped for is some qualitative understanding of the process so that 

simple rules can be established which help determine complexity. 

Clearly, the complexity of any given decomposition depends upon the size, shape 

and number of objects within the image. Also the complexity of the decomposition 

depends upon the type of motion which is present within the scene. That is, an object 

which moves with translatory motion will produce a relatively simple decomposition 

whereas an object which is rotating will produce a more complex decomposition. 

The complexity of a tree produced from a conventional split and merge segmenta- 
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tion of an image is well known to be dependent upon the position of the objects within 

the image [9].  Likewise, the position of an object also affects the complexity of a 

segmentation when using a variable block size motion estimation algorithm. 

For example, figure 5.8 shows two images in which a moving object is represented 

by a single square block which is assumed to undergo constant translatory motion. The 

large grid squares denote the initial decomposition of the image for motion estimation. 

In figure 5.8(i) the object exactly coincides with the grid squares and as such the 

variable block size motion estimation algorithm is able to make a motion estimate 

without splitting blocks. In figure 5.8(u) the square is offset from the grid. In contrast 

to figure 5.8(i) this decomposition is much more complex requiring a block structure 

given byNo =7,Ni =4,N2 =8 and N3=32as opposed toNo =9in figure s.8(j). 

From equation (5.5) it can be seen that the tree in figure 5.8(i) requires 9 bits to describe 

whereas the tree in figure 5.8(u) requires 65 bits. 

This sensitivity, to the position of an object is caused by the fact that the initial 

decomposition into the large grid squares represents a naive segmentation of the image 

which is subsequently refined. The complexity of the tree can be greatly reduced by 

choosing a better initial decomposition. Strobach overcomes this problem in his tree-

structured scene adaptive coder by re-calculating the segmentation for several different 

initial block placements. However, for the variable block size motion estimation 

system this is not practicable since the computational overhead required to do this is 

excessive. Similar arguments can be invoked to show that the size of the object also 

effects complexity. 

5.4.6 Alternative methods of encoding failed regions 

PCM encoding of the failed regions is, in general, unsatisfactory since if large areas of 

the image are labelled failedthe rate required to encode an image increases dramatically. 

Almost any algorithm can be employed to encode the failed blocks as long as the coding 

distortion is restricted to be small, to avoid unnecessary replenishment at later stages 

of encoding. 

The performance of many spatial coding algorithms is dependent upon the area of 
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(i) 
	

(ii) 

Figure 5.8: Example of quadtree complexity versus position. 

the image which is encoded. This can have important implications for the design of the 

encoder, since as the block size is progressively decreased it may be more efficient to 

prematurely terminate the motion estimation algorithm and employ the spatial encoder. 

To illustrate this problem a block truncation coder will be employed to encode the failed 

regions. 

Block truncation coding 

Block truncation coding [91-99] is a moment preserving non-parametric quantizer 

which is adaptive over local areas of the image. The basic algorithm, introduced by 

Delp [91],  subdivides an image into N x N blocks which are encoded independently 

by quantizing each block to a two level signal. The level for each block is chosen so 

that the first moments are preserved. 

If the intensities of the pixels in a block are given by, X 1 ,X2 ,... ,X a pixel with 

intensity X1  is quantized according to the following. 

lb ifX1 >1t 
Xi 	- 	 (5.20) 

a otherwise 
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where u is the mean of the pixel values. The values of a and b are determined by the 

following, 

a = 	- 	
q 	

(5.21) 

b 11.  + aV 
q - q 

(5.22) 

where a and q are the standard deviation of the pixels and number of pixels greater 

than the mean respectively. 

Each block is then described by its mean and standard deviation and a N x N bit 

plane indicating whether the pixels are above or below the threshold, if the mean and 

standard deviation of a block are encoded at 8 bits each, the rate required to encode a 

block is given by, 

rd= 1 + 
16 	

(5.23) 

Equation (5.18) was used to predict the ratio of failed leaves to total number of 

leaves which are required for a decrease in rate to occur when an extra level is added to 

the tree when PCM encoding of the failed leaves. The conditions necessary to ensure 

compression when a BTC encoder is employed are given by substituting equation (5.23) 

into equation (5.18) to give, 

2k—i 
(5.24) 

N11 	Ak'-i-i6—kr 

Table 5.3 shows the ratio of failed blocks to total number of blocks at depth lrequired 

to just decrease the rate required to encode an image using a quadtree decomposition 

in which the vectors are PCM encoded at r = 10 bits/vector and the root blocks have 

dimensions of 16 x 16 pixels. As with table 5.2 compression is guaranteed for trees 

with depthes of! =0 and 1= 1 but for a depth of two adding an extra level increases the 

rate required to describe a tree. Thus, the smallest block size which can be employed 

is 4 x 4 pixels. 

In general, a BTC encoder cannot be employed to encode blocks of arbitrary size 

since the blocks may contain significant activity which cannot be encoded with a bi- 
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Depth 
Ni 

0 0.97 
1 0.82 
2 1.29 

Table 5.3: Ratio offail blocks to total number of blocks to just allow compression. 

level signal. Roy [99] has introduced a hierarchical block truncation scheme which 

employs a quadtree decomposition which could be integrated with the VBCR encoder. 

But for purposes of simplicity, simulation results will be quoted for a fixed block size 

of 4 x 4 pixels. This results in a simplified VBCR encoder in which failed blocks no 

longer need to be merged, and since the failed blocks only occur at a depth equal to 

the height of the tree, no state information need be included. 

Figure 5.9 compares the rates to encode the Miss America sequence when the failed 

blocks are encoded using BTC and PCM for various values of threshold. For small 

values of threshold many blocks in the image are labelled failed and as such the BTC 

encoder provides large gains (approximately 0.4 bit/pixel). However, as the threshold 

is progressively increased less blocks are labelled failed and the BTC encoder provides 

very little gain. 

The distortion results which correspond to the rate results in figure 5.9 are shown 

in figure 5.10. For small values of threshold there is a large decrease in the PSNR, 

e.g. for a threshold of 0.001 there is an 8 dB decrease. This large decrease in PSNR 

is caused by the signal being quantised to a two level signal. Figure 5.11 shows two 

images from the Miss America sequence separated by 25 frames, some degradation in 

quality has occurred although the image quality is still acceptable. 

BTC is of limited use for maintaining image integrity since it quantizes the signal 

to a bi-level signal. It was used in the above example to demonstrate the potential gain 

from encoding the failed blocks. In practice, an algorithm such as transform coding or 

VQ should be used. However, in the following section it will be demonstrated that, in 

many cases, spatial coding is not required, except when large scene changes occur. 
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Figure 5.9: Comparison of rates to encode the Miss America sequence using block 
truncation coding and PCM of the failed regions. 
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Figure 5.10: Comparison of PSNR for block truncation coding and PCM encoding of 
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Lis  
(i) Rate = 0.45 bits/pixel 	 (ii) Rate = 0.66 bits/pixel 
PSNR =37 	 PSNR =36 dB 

Figure 5.11: Two imagesfrom the Miss America sequence encoded using variable block 
size conditional replenishment and block truncation coding. 

5.4.7 Rate control 

The difficulties of controlling the rate and distortion via the motion estimation threshold 

were discussed in section 5.4.3. In this section an alternative approach is formulated 

based upon adaptive relabelling and merging of leaf nodes. 

The motion estimation threshold should not be used to control the rate at which an 

image is encoded since it is responsible for maintaining the integrity of the displace-

ment estimates. For example, figure 5.12 shows the block structures generated from a 

motion estimate using two different motion estimation threshold values. The tree in fig-

ure 5.12(11) is generated using a larger threshold value than for the tree in figure 5.12(i). 

Clearly, the tree in figure 5.12(11) is less complex than the tree in figure 5.12(i). As the 

motion estimation threshold is progressively increased the complexity of the motion 

estimates will be further reduced, until eventually all motion estimates terminate for 

the root blocks. Under these conditions the decoded images will contain large mis-

matches at the block boundaries which are perceptually very disturbing and, as such, 

conditional replenishment should not be employed. 

Clearly, to preserve the integrity of the decoded images the accuracy of the dis-

placement estimates need to be preserved. This can be achieved by using a small 
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Figure 5.12: Two trees generated for different motion estimation thresholds. 
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Figure 5.13: (i) Block structure after motion estimation (ii) block structure after adpat-
ive relabelling of (i). 

motion estimation threshold to generate a complex decomposition; leaves and nodes 

are then merged and relabelled to achieve the desired rate. For example, if the two 

fail nodes in figure 5.12(i) were to be changed to pass nodes a reduction in rate would 

occur and the accuracy of the motion estimate would be preserved. 

The simplest method of removing any remaining redundancy from the tree is to 

parse the tree structure and compare the magnitude of the prediction error at each failed 

leaf node to a new threshold. A failed leaf is then relabelled as passed if the magnitude 

of the prediction error is less than the new threshold, the relabelled leaves are then 

merged with any neighbouring leaves. This operation increases the computational 

overhead by a very small amount since the magnitude of the prediction error and 

motion vector for each node can be stored in a 'pointer' structure in the processor 

memory. 

Figure 5.13(i) shows a segmentation generated for a frame of the Miss America 

sequence using a motion estimation threshold of 0.001. As with figure 5.2 white 

regions denote blocks which can be copied and coloured regions denote blocks which 

cannot be copied. Figure 5.13(u) shows the result of parsing the tree and adaptively 

relabelling fail blocks as ps blocks using a 'relabel' threshold of 0.01. This results in 

a large reduction in the number of failed blocks, and as such there is a corresponding 
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Figure 5.14: Rate required to encode the Miss America sequence for various values of 
'relabel' threshold, using a motion estimation threshold of 0.001. 

reduction in rate (in this case 0.3 bit/pixel). 

Relabelling fail leaves as pass leaves results in a substantial decrease in the number 

of fail blocks in an image. The total number of fail blocks which remain after parsing 

the trees depends upon the relabel threshold, experiments with the Miss America 

sequence show that less than 10 fail blocks per image are found when the relabel 

threshold is greater than 0.03. This supports the claim in section 5.4.6 that the failed 

blocks only need to be encoded when large changes occur. 

Figure 5.14 shows the average rate at which the Miss America sequence can be 

encoded for various values of 'relabel' threshold, using a motion estimation threshold 

of 0.001. The minimum rate achieved for the range of thresholds shown is 0.68 

bit/pixel. The picture quality at this rate is excellent. For a greyscale image which has 

dimensions of 176 x 144 pixels encoded at a frame rate of 10 Hz this corresponds to 

an average rate of 172 kbits/s, which is much greater than the desired rate of 64 kbits/s. 

A further reduction in rate can be achieved by increasing the motion estimation 

threshold so that the initial decomposition is less complex. However, manipulating 

two thresholds to achieve the desired rate is unnecessarily complex and the same result 
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Image Entropy (bits/vector) 
Miss America 6.8 

Clare 6.2 
Salesman 5.4 

Table 5.4: Entropy of vectors andfailed data. Results generatedfrom using a threshold 
of 0.001 

can be achieved by improving the tree parsing algorithm. For example, the algorithm 

used to generate the above results, relabels fail leaves as pass leaves and then merges 

any redundant leaves. This algorithm can be extended by adding a further stage which 

reduces the complexity of the trees by adaptively merging nodes to achieve the desired 

rate. 

The estimate of the minimum rate at which an image can be encoded, which was 

made in section 5.4.4, can be usefully employed with the above problem. For example, 

it can be seen from figure 5.14 that the minimum rate achievable for a motion estimation 

threshold of 0.001 is 0.62 bit/pixel. if rates of less than 0.62 bit/pixel are required then 

the tree structure must be simplified by merging some leaf nodes. 

5.4.8 Vector entropy 

In the previous sections the displacement vectors were PCM encoded at 10 bits/vector 

to allow a displacement of ±15 pixels in both dimensions. A further reduction in 

rate can be achieved by entropy encoding the vectors. Table 5.4 shows the entropies 

of the vectors for the Miss America, Clare, and Salesman standard image sequences 

generated for a motion estimation threshold of 0.001 and relabel threshold of 0.05. 

Clearly, entropy encoding of the displacement vectors will result in a reasonable 

reduction in the rate. For example, if the vectors for the Miss America sequence were 

encoded at rate equal to the entropy of the vectors the Miss America sequence could 

be encoded at an average rate of approximately 0.49 bit/pixel. However, in practice 

it is not always possible to achieve the entropy bound and a slight increase in rate 

will occur. As yet, variable length coding algorithms have not been included in the 
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simulations and the above results represent an approximation to the actual results. 

5.5 Stationary background prediction 

The computational load imposed by the variable block size motion estimation far ex-

ceeds that of normal block matching algorithms. In chapter 3 heuristics and paradigms 

were described which could be used to port image coding algorithms to a parallel 

computer. The variable block size motion estimation could also be implemented on 

a parallel computer using the methods described in chapter 3 to achieve the desired 

performance. However, it is still desirable to reduce the computational overhead re-

quired to make a motion estimate. This will be achieved using a stationary background 

prediction algorithm. 

Conventional algorithms for the identification of stationary background are based 

upon change detectors which compare the magnitude of the frame difference to a 

threshold value [77,100-104]. In general, segmented images contain isolated regions or 

isolated single pixels which are caused by incorrect segmentation of the image: Clearly, 

the number and size of these isolated regions depends upon the chosen threshold. These 

small isolated regions require too much information to encode and as such should be 

removed to improve compression efficiency. Various algorithms have been suggested 

for the removal of isolated regions. For example, Bierling [77] uses a 5 x 5 median 

filter to remove isolated single pixels. More sophisticated algorithms [102-104] have 

been introduced which compare the size of a region to a threshold to decide whether a 

region should be merged into the surrounding region. The removal of isolated regions 

can be combined with an adaptive threshold estimate by assuming that all regions 

marked as stationary background contain noise. 

For the purposes of variable block size motion estimation a simplified stationary 

background segmentation is used, based upon a quadtree decomposition of the frame 

difference image. The quadtree decomposition is terminated at a block size of 8 x 8 

pixels so that isolated regions are not formed. Figure 5.15 shows a typical stationary 

background segmentation from the Miss America standard image sequence. The 
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Figure 5.15: A typical stationary background segmentation from the Miss America 
standard sequence using a threshold, T = 0.001. 

threshold used to determine whether a block is part of the stationary background is the 

same as that used for the variable block size motion estimation algorithm. 

Although, the segmentation has correctly identified the majority of the stationary 

background there are some regions which are incorrectly segmented. For instance, 

there are small clusters of blocks in the hair and on the throat of Miss America which 

are labelled as stationary background and which inreality are part of the moving region. 

These regions are only a small part of the total image area and as such no attempt has 

been made to remove them. They do not significantly degrade the quality of the 

reconstructed image but they do result in a slight increase in rate. 

Figure 5.16 compares the rate required to encode the Miss America sequence' 

using a stationary background prediction followed by motion estimation. As predicted, 

employing stationary background prediction results in a slight increase in rate for low 

values of threshold. However, as the threshold is increased the deviation between the 

results for the stationary background prediction and the full search becomes greater. 

This is because the magnitude of the prediction error is so large that increasing the 

threshold does not decrease the complexity of the stationary background prediction. 

The aim of employing a stationary background prediction is to reduce the compu-

tational overhead required to make a motion estimate. Clearly, figure 5.15 shows that 

'PCM encoding the replenished blocks. 
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Figure 5.16: Comparison of rates to encode Miss America using stationary background 
prediction and full search. 

a large area of an image can be described as stationary background and as such a pro-

portional decrease in computational overhead is expected. Experiments with the Miss 

America sequence show that stationary background prediction results in a decrease in 

a execution time of 40-60%. 

5.6 Comparison with related work 

There are many inherent difficulties in comparing different image coding schemes. 

One of the biggest problems is due to the fact that there is little or no agreement 

on what represents a reasonable measure of coding distortion. In general, distortion 

results are quoted in terms of mean square error or SNR and are then qualified by a 

subjective statement concerning the perceived image quality. Although it is possible to 

directly compare such measures as mean square error or SNR it is almost impossible 

to compare the perceived image quality without laboriously recreating a codec so 

that direct comparison between reconstructed images is possible. Therefore, in the 

following only general remarks are made about the comparison with this and other 
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related work. 

The variable block size conditional replenishment encoder is similar to Strobach's 

tree-structured scene adaptive coder. Both algorithms are based upon a quadtree 

decomposition of the prediction error. However, in comparison to Strobach's encoder 

the variable block size conditional replenishment encoder uses an enhanced motion 

estimation algorithm to allow blocks to be directly copied between frames. This results 

in less distortion being introduced but only allows one quadtree decomposition to be 

calculated per block, which as discussed in section 5.4.5 may result in a suboptimum 

decomposition being employed. 

A minimum rate of 0.3 bit/pixel was reported, which corresponds to a bandwidth 

of approximately 76 kbits/s for a frame rate of 10 Hz and an image size of 176 x 144 

pixels. This is greater than the 61 kbits/s reported by Strobach but as yet entropy 

encoding of the vectors has not been included in the variable block size conditional 

replenishment scheme. Also if the suggestions for future work which are described in 

chapter 6 are investigated it is anticipated the bandwidth of less than 61 kbits/s could 

be achieved. 

5.7 Summary and conclusions 

A new algorithm was introduced which encodes sequences of images based upon 

conditional replenishment. The algorithm employs a variable size block matching 

algorithm to segment an image into regions which can be encoded using a displacement 

vector and regions which must be replenished. 

The threshold used to control the VSBMA allowed greater distortion to be intro-

duced in brighter regions of the image where the HVS is less sensitive to intensity 

perturbations. The threshold was found to ignore single isolated pixels but was still 

sensitive to small isolated regions of pixels and hence produced accurate segmentations. 

The regular structure of a decomposition allowed simple rules to be developed 

which determine whether compression will or will not occur. These rules were em-

ployed for calculating the height of tree so that compression was always ensured. 
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The copying operation does not introduce unsightly artifacts since for sufficiently 

accurate motion estimates the prediction error can be approximated to be white noise. 

Initial simulation results were presented based upon PCM encoding of the failed 

leaves. It was noted that these results represented the upper bound to the rate and the 

lower bound to the distortion. Compression was found to occur for a minimum block 

size of 2 x 2 pixels and gave rates in the range 0.5-0.9 bits/pixel for good image quality. 

In general, PCM encoding of the failed blocks is unsuitable for most practical im-

plementations since the rate required to encode the failed regions is too high. Different 

algorithms for encoding the failed blocks were discussed. It was noted that the coding 

gain of many spatial encoders is area dependent and that the operation of the VBCR 

encoder would be fundamentally modified. BTC was employed to demonstrate the 

effect of including such a spatial coding algorithm. Although the results from BTC 

were found to be satisfactory it was noted that other more sophisticated algorithms, 

such as transform coding, could be employed to produce better results. 

Attempts at controlling rate whilst maintaining the image fidelity via the motion es-

timation threshold demonstrated that only a limited range of values could be employed. 

This is because as the threshold is increased the complexity of a decomposition de-

creases producing progressively coarser motion estimates. A solution to this problem 

was suggested, based upon relabelling fail blocks as pass blocks depending upon their 

contribution to the total distortion. 

Finally, a stationary background prediction algorithm was employed to reduce the 

computational overhead of the VSBMA. A simple algorithm was employed which 

performed a regular decomposition on the frame difference image using the same 

threshold as the VBCR encoder. To obviate the need for the removal of small isolated 

regions in the stationary background prediction the height of the tree was set so that the 

smallest block size was 8 x 8 pixels. The stationary background prediction algorithm 

was found to reduce the overall computation by 40-60%. 
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Conclusions 

The research reported in this thesis has investigated methods of efficiently encoding 

image sequences. The fundamental aim was to generate an algorithm for encoding 

images which maintained the fidelity of the reconstructed images at low bit-rates. 

To .  obtain this objective, motion estimation and motion-compensated prediction were 

investigated in detail. 

An assumption often made by many researchers is that infinite computational power 

is available. Algorithms are created which are far too complex to implement efficiently 

in hardware with the assumption that technology will eventually provide a solution. 

To avoid this problem, parallel implementations of image coding algorithms were also 

studied 

6.1 Summary 

Chapter 3 investigated the problems of porting image coding algorithms to reconfig-

urable, distributed-memory MIMD parallel computer architectures. The aim of this 

research was twofold: firstly, develop heuristics and paradigms which could be reli-

ably employed to map image coding algorithms to a MDvID architecture; and secondly, 
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develop a high performance simulation tool for developing image compression al-

gorithms. To illustrate the potential gains from employing a parallel architecture the 

H.261 standard was mapped onto an array of T800 transputers. 

Since image coding algorithms are frequently applied to independent blocks of 

data, mapping the data space rather than the problem space was found to give a rich 

source of potential parallelism. Functional and data decompositions of H.261 were 

compared and it was demonstrated that data decompositions are more efficient. 

The use of topology independent routing harnesses was found to significantly 

simplify the task of routing communications, thus allowing the programmer to eas-

ily experiment with different processor topologies. l'hree compact topologies were 

employed: the random graph, the greedy graph and the chordal ring. An important 

discovery was that for less than 20 transputers the execution time of a program is almost 

independent of the processor topology. 

The simulation results demonstrated that although close-to-real-time performance 

could be achieved using 20 transputers the execution time was communication bound. 

This problem was caused by the T800 architecture which has a relatively small com-

munication bandwidth. This problem could be easily solved by employing a more 

sophisticated processing element which has a greater communication bandwidth such 

as the Texas Instruments C40 range of products. 

Motion estimation for image coding was discussed in chapter 4. Motion-compensated 

prediction, which is employed in many state-of-the-art encoders, was discussed in 

detail. Simulation results were presented to show how the entropy and energy of 

motion-compensated prediction errors vary when different block-matching algorithms 

are employed. 

A model of the prediction error was developed based upon the assumption that 

the prediction error is caused by the failure to correctly estimate the displacement of 

the objects within the image. It was shown from this model that a typical prediction 

error will contain high intensity lines in regions where the original image contains high 

spatial gradients. The model was also used to approximate the error surface generated 

by a block matching algorithm. The accuracy of the motion estimate was shown to be 
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dependent upon the contents of a block: 

• Motion estimates for blocks which contain pixels with an almost uniform distri-

bution of pixel intensities can easily be corrupted by noise. 

• Motion estimates for blocks in which there are large changes in intensity are 

robust to noise. 

Thus displacement estimates for object edges may be very accurate although conversely 

the magnitude of the prediction error for these displacement estimates may be large. 

The approach adopted previously was further simplified to allow a model of the 

spectral properties of the prediction error to be developed. Motion-compensated 

prediction was shown, for sufficiently accurate displacement estimates, to be equivalent 

to a non-ideal high-pass spatial filter. This model was used to approximate the energy 

gain of motion-compensated prediction using an isotropic correlation function. The 

theoretical and experimental results were demonstrated to agree to within the limitations 

imposed by the model. 

The signal-to-noise coding gain of the optimum hybrid motion-compensated codec 

was shown to be asymptotically bounded by the inverse spectral flatness measure 

of the prediction error. Since motion-compensated prediction can be approximated 

to be a non-ideal high-pass spatial filter and real-world images are approximated to 

contain predominantly low frequency information, the prediction error was shown 

have a greatly increased SFM. Spectral flatness measures of approximately 0.9 were 

predicted using the theoretical model, indicating that only small coding gains could be 

expected. Measurement of the coding gain for actual prediction errors demonstrated 

that a significant increase in SPM does occur. However, the measured values are 

smaller than those predicted by theory which was attributed to the simplicity of the 

adopted model. 

The importance of employing a spatial encoder which is optimised for compressing 

the prediction error was highlighted at the end of this chapter. 

A new algorithm was introduced in chapter 5 which attempts to exploit the remain-

ing redundancy in the prediction error. A variable size block matching algorithm was 
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employed to segment an image so that it could be encoded efficiently using conditional 

replenishment. The regular structure of the decomposition allowed simple mathemat-

ical rules to be formulated which ensured that compression would always occur. The 

reconstruction error in the copied regions was simply the prediction error, which for 

sufficiently accurate displacement estimates can be approximated to be white noise. It 

was observed that the algorithm preserved the frequency content of an image and as 

such maintained the fidelity of the edges. 

Initially, simulation results were presented for PCM encoding of the failed leaves 

of the regular decomposition. It was noted that these results represent the upper bound 

to the rate and the lower bound to the distortion. High quality images were given for 

rates between 0.5-0.9 bit/pixel but the image quality degraded rapidly as the rate was 

further reduced. 

PCM encoding of the failed leaves is, in general, unsatisfactory since if large areas 

of the image are labelled failed, the rate required to encode an image will increase 

dramatically. Different spatial coding algorithms were discussed and it was noted that 

the coding gain of many of these algorithms is area dependent. A BTC encoder was 

employed to illustrate the effect of including a spatial coding algorithm. Despite the 

obvious simplicity of the BTC encoder reasonable quality images were obtained in the 

range 0.3-0.5 bit/pixel. It was observed that more sophisticated algorithms such as 

transform coders or vector quantizers would give better results. 

Attempts at controlling rate and distortion using the motion estimation threshold 

demonstrated that only a limited range of values could be employed. This problem was 

solved by using a small motion estimation threshold to generate a- complex decompos-

ition, leaf nodes were then adaptively relabelled and merged to achieve the required 

rate or distortion. It was noted that if all the leaves in a decomposition were encoded 

with vectors this represented the lower bound to the rate and the upper bound to the 

distortion. This result can be usefully employed with the merging operation. 

Entropy coding the displacement vectors was also shown to reduce the rate required 

to encode an image. Reductions in rate of approximately 0.2 bit/pixel were observed 

for a motion estimation threshold of 0.001. 

114 



Chapter 6: Conclusions 

Finally, a simple stationary background prediction algorithm was employed to 

reduce the computational requirements of the VSBMA. For head and shoulder type 

sequences reductions in the computational overhead of 40-60% were observed. 

The variable block size conditional replenishment encoder was demonstrated to 

maintain the fidelity of the reconstructed images, even at very low rates. 

6.2 Future work 

The variable block size conditional replenishment encoder was demonstrated to be 

a powerful algorithm for encoding images sequences. The regular nature of the 

decomposition allowed simple rules to be formulated which ensure compression will 

always occur. Since each tree and its corresponding displacement estimates can easily 

be stored in processor memory, the trees can be manipulated to achieve the desired rate 

and distortion. In section 5.4.7 an algorithm was described which employed a threshold 

to reduce the rate required to encode a tree. However, it is difficult to determine the 

magnitude of the threshold required to achieve a particular rate, a poor estimate of the 

required threshold can result in a reduction in the image fidelity. 

The desired rate could be achieved by sorting the nodes of the trees according to 

their contribution to the total distortion. The nodes which least contribute to the total 

distortion could then be relabelled and merged. Although this approach is guaranteed to 

find the minimum value of distortion for a given value of rate it is very computationally 

expensive Further work is required to investigate whether this operation could be 

achieved in real-time. However, even if real-time processing is not possible the above 

algorithm could be employed for encoding recorded video, where real-time encoding 

is not important. 

Further investigation into the sensitivity of the object position within the image 

when using the variable block size conditional replenishment algorithm is also re-

quired. At present, this sensitivity can result in a very complex decomposition being 

generated when a simple decomposition would suffice. Strobach overcomes this prob-

lem in his tree-structured scene adaptive coder [9] by repeated calculation of the 
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initial decomposition for a number of different block positions to find the best solu-

tion. However, this solution cannot be employed with the variable block size motion 

estimation algorithm since the computational overhead would be excessive. 

A simple and elegant solution to this problem could be to perform merging across 

block boundaries to produce irregular regions. These irregular regions could then be 

described using the contour which bounds them [105]. This approach should have 

several potential benefits: 

The sensitivity to object position is removed. 

Motion estimates can be made for single pixels. 

For an irregular decomposition the rate required to encode an image is dependent 

upon the length of the perimeter of a region. Thus, regions which have complex 

boundaries require a greater number of bits. For many types of images the boundaries 

between objects are not complex and as such the above should not be a problem. 

However, motion estimates for single pixels are easily corrupted by noise and ragged 

boundaries may occur. Therefore, before two regions could be merged a decision must 

be made to ensure that a sufficient gain would be achieved. Wagner has described such 

a scheme which could be used which is based upon comparing the improvement to the 

reconstructed image versus the bit cost [106]. 

Using an irregular decomposition could also have important repercusions for the 

stationary background prediction. The isolated regions caused by incorrect segment-

ation of the frame difference could no longer be tolerated. Algorithms described in 

chapter 5 could be used to remove these regions. 
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Appendix B 

Rate-distortion theory for transform 

coding 

The KLT is an Optimum transform [2](Chapter  3), [1](Chapter 12) for image coding. 

In practice it is rarely used because it is computational expensive, but it is useful for 

deriving an upper bound to the transform coding gain [15]. 

The basis vectors of the KLT are given by the eigenvectors, ip, of the co-variance 

matrix, R,, i.e. 

R—)=O 	 (B.1) 

where A1  are the eigenvalues associated with the eigenvectors. 

The effect of the KLT is to make the transform coefficients statistically independent 

so that the co-variance matrix of the transform coefficients, R, is diagonal: 

A 11  0 	0 	. 	0 

o 1122 0 

R 	
o 0 A33  

= 

o 	. 	• 	. 

(B.2) 
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Appendix B : Rate-distortion theory for transform coding 

The diagonal elements of the matrix are the variances of the transform coefficients 

which are the eigenvalues of equation (B. 1). If the transform coefficients are assumed 

to be stationary Gaussian variables then a rate-distortion function can be derived. 

The parametric rate-distortion function of a stationary Gaussian source [15] is given 

by, 

D(0) = min{,o2 } 	 (B.3) 

R(4) = max {o. 1092 	 (B.4) 

where & is the variance of the Gaussian source. For N 2  independent Gaussian variables 

(KLT transform coefficients) with variances, oj, the rate-distortion function is given 

by the average of N2  Gaussian rate-distortion [15] functions, 

1 N-1N-I 
DN(cb) = 	> min{, o} 	 (B.5) 

k=Ol=O 

	

1 N-IN-I 	( 	o.2 1 
RN(cb) = 	max 01 1092  - 	 (B.6) 

	

k=Ol=O 	I. 

For small distortions, 0 < o, then the rate-distortion function is given by, 

	

fN-n1N-
ni 
	1/N2 

iot) 

RN(D) = log ' k=O 1=0 
 

D 

Recall that the variances of the transform coefficients are the eigenvectors of the auto-

correlation matrix. Hence, multiplying the eigenvectors is equivalent to calculating the 

determinant of the auto-correlation matrix R, and hence equation (B.7) becomes, 

RN(D) = log 
IRI i/N2 

 
D 

The transform coding gain is defined to be the signal-to-noise gain over PCM 

encoding of the image for the same average rate. From equations (B.8), (B.3) and 
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Appendix B : Rate-distortion theory for transform coding 

(B.4) the coding gain for an N x N block, NXNG  is 

NXNG 

IR.,,/N2 	

(B.9) 
= 

N2 	
1/N2 (fl A•) 	

(B.1O) i=1 

= 	N2  

i=1 

The minimum rate at which the image can be encoded for a given average distortion 

is given as N - 00. The asymtotic versions of equations (B.5) and (B.6) are given by, 

1 	7rjir 

	

D(i) = (22) jJmrn{cbS x ((oX o)Y)}d(oX do)Y 	(B.11) 

1  
   

lrf,r 

R(b)   min 01 1092
S(co ,co)) 

dod 	(B. 12) C2 	
o  

where S,(c), cog) is the power spectrum of the image. 

For small distortions, fr < S(o, o), the rate-distortion function is given by, 

= (2 1 )2 
	

log ' ' 	do do, 	(B. 13) 

The spectral flatness measure of signal with a power spectrum, S(o, co,,), is 

defined to be: 
2 - exp [ 	1og(S,(co. , cog)) dco dco] 

- 	f.ffJ.ffgScr((Ox,(0y)d0)xd(O, 	
(B.14) 

For zero mean signals the variance of the signal, o, is given by, 

= (21r) I'lrJ S,(co, cog) dco dco,, 	 (B. 15) 

Substituting equations (B. 14) and (B. 15) into equation (B. 13) gives, 

R(D)—1 

	

-- og2 
D 	 (B.16) 
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Appendix B : Rate-distortion theory for transform coding 

The asymptotic coding gain [1, Chapter 12] is given by, 

G= lim NxNG .....(72)_1 	 (B.17) 
N—*oo 

Hence for low distortions the asymtotic coding gain for a Gaussian source is given by 

the inverse of spectral flatness measure of the original image. Physically this result 

makes sense since an image with a white spectrum has no correlation between elements 

and hence transform coding can be expected to give no gain. 
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Appendix C 

Contents of disk 

The disk attached to the back of this thesis contains the software necessary to generate 

the variable block size conditional replenishment encoder. The software is written in 

ANSI 'C' for UNIX based machines. 

The software can be unpacked with the following command, 

uncompress mc.tar.Z; tar xfmc.tar 

The software can be compiled using the Makefile provided with the software. The 

encoder is called mc and can be invoked with the following command line arguments, 

-f <filename>: Filename or name of basename of file sequence. 

-g <threshold>: Fail threshold, default =0. 

-p: Use stationary background prediction. 

-s: Show statistics for individual frames. The default mode shows average statistics. 

-t <threshold>: Motion estimation threshold, default = 0.001. 

-v: Run in verbose mode. 

-z: Use BTC encoder. 
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