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ABSTRACT

-With emergence of multimedia, CD-ROMS, and high speed networks there is a need for reducing
the data rate for transmission and storage of images without severe loss of quality. An image com-
pression system is presented based on motion compensated interpolation using multiframe matching
techniques and subband analysis of keyframes and residual (error) frames, followed by vector quan-
tization and arithmetic coding.

Multiframe matching differs from conventional block matching in that the intermediate frames
are used in addition to the keyframes for motion estimation. Multiframe matching significantly
improves the efficiency of motion compensated interpolation.

Keyframes and residuals are coded using a quad-split pyramid. The subbands are then coded
using variance-normalized, error limited vector quantization. The vector fields, vector quantization
codebooks, and look up tables are losslessly coded using arithmetic coding.

In computer simulations, bit rates below 2.5 megabits per second are achieved with high quality
reconstruction at the receiver. All simulation computations are carried out using integer precision
arithmetic.

Thesis Advisor: Bernd Girod
Assistant Professor, Media Laboratory
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Chapter 1

Introduction

1.1 Thesis Overview

The organization of this thesis follows: Chapter 2 presents background material on image compres-
sion techniques. Chapter 3 presents theory on the performance of motion compensated interpolation
on noise-free keyframes, as well as the effects of coding noise in the keyframes and on the perfor-
mance of motion compensated interpolation. A discussion of motion estimation techniques follows
in Chapter 4.

A coding system for high quality image transmission or storage is presented in Chapter 5. This
system incorporates many of the image compression techniques discussed in the previous chapters.
Motion compensated interpolation is the heart of the coding system. Keyframes and residuals are
coded using a pyramid decomposition which is vector quantized. The output of the vector quanti-
zation is adaptively followed by arithmetic coding. The lowest frequency subbands are predictive
coded before arithmetic coding.

Chapter 6 presents the results of computer simulation of the coding system and the parameters



used to obtain those results. Conclusions are presented in Chapter 7.

Three appendices follow: Appendix A presents calculations of the computational complexities
associated with motion estimation and motion compensated interpolation. Appendix B lists the
values of filter coeflicients used in the simulations. And finally, Appendix C thanks the many people

responsible for helping me in this endeavor.



Chapter 2

Background

2.1 Low Bit-Rate Image Coding

Recently there has been interest in low bit rate image coding for both transmission and storage
of images [3, 52, 68]. Image data reduction enables motion pictures to stored and manipulated by
personal computers and transmitted over cost effective links, such as T1 (1.5Mbit/sec) telephone
lines or standard computer networks. Such compression may enable movies on demand or multi-
media workstations where image audio and other data types are easily manipulated on a computer
screen[94].

The basic goal of low bit-rate coding is to reduce the amount of data necessary for transmission
or storage while maintaining acceptable image quality. The problem is twofold: First, by exploiting
psychovisual properties of the human visual system (HVS) irrelevant information is removed. Sec-
ondly, the statistical correlations between the data are exploited to remove redundant information.
However, limitations of the channel bandwidth or storage device may require further reduction in

data resulting in noticeable loss of quality.



Interframe techniques exploit the redundancies between frames in a sequence of images for data
reduction. Intraframe coding uses the redundancies within a single frame for data reduction.

Some standards for image coding are currently emerging. The Joint Photographic Experts Group
(JPEG) standard for coding still images [97] is based on the Discrete Cosine Transform (DCT) with
the coefficients coded using Huffman coding or arithmetic coding.

Px64, a teleconferencing standard for real time coding sequences of moving images, uses motion
compénsated prediction for interframe coding, with the prediction residual error coded using DCT’s,
which are quantized and Huffman coded. As the intended use is teleconferencing, this standard
supports relatively low resolution at very low bit rates. Px64 operates in channels with multiples of
64 Kbits per second. A similar coding standard, CCITT Nx384, operates in multiples of 384 Kbits
per second. This coding is similar to px64, as both use DCT and motion compensation. The higher
bit rates allow higher quality than the teleconferencing standard, but this is still a sequential access
system; that is, all frames from the starting frame must be decoded to reach any one frame.

The Motion Pictures Experts Group (MPEG) is developing a standard for high quality, low
bit-rate coding of image sequences. The current proposals use motion compensated prediction or in-
terpolation followed by DCT coding of the residuals to obtain compression. One of the requirements
for MPEG is a low seek latency to allow random access, making it suitable for interactive use.

Some traits that are desirable for an interactive motion picture coding system are:

o Scalability. It is desirable to be able to trade off spatial or temporal resolution versus bit-rate,
or spatial resolution versus temporal resolution. This may enable a user to view multiple
sequences at a reduced resolution. A network movie server would then be able to reduce
spatiotemporal resolution if the network use becomes too high. Temporal Scalability allows

outputs at variable frame rates.

¢ Random Access. In data storage and retrieval systems random access with a reasonable latency



is desired. Purely predictive systems require the recreation of all previous frames before the
desired frame may be displayed. For this reason, fast forward is difficult, requiring decoding
to be performed at rates higher than the basic frame rate. Also, reverse replay requires large

numbers of frame stores in predictive schemes.

2.2 Human Visual System

The final receiver of an image coding system is the human eye. For this reason, an understanding
of the HVS is important in image compression [65, 73]. It is this understanding which enables us to
eliminate irrelevant information while maintaining acceptable picture quality.

One important aspect of the HVS is masking (reduction in the visibility of stimuli) due to a
complex non-uniform background. Spatial masking occurs when there is a large change in luminance
(eg. an edge) causing reduced visibility on both sides of the edge. This masking effect is more
pronounced for edges of high contrast [63]. Figure 2.1 shows line visibility as a function of distance
from edges.

This masking is taken advantage of in Differential Pulse Code Modulation (DPCM) quantizers,
which use unequal quantization steps. Large transitions can be coarsely quantized due to this
elevation of the visibility threshold.

Spatial contrast sensitivity varies with spatial and temporal frequency, but is also a function
of contrast and viewing distance. The dependence on viewing distance can be eliminated if the
frequency is expressed in cycles per degree subtended. Figure 2.2 shows spatial contrast sensitivity vs.
spatial frequency for several values of temporal frequency, and Figure 2.3 shows temporal frequency
contrast sensitivity vs. temporal frequency for several spatial frequencies.

Some important points in the context of image coding are:

e Contrast Sensitivity falls off at higher frequencies; the peak sensitivity is around 4 cycles/degree.
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Figure 2.1: Line visibility thresholds as a function of distance from three luminance edges; Contrast
ratios %;l) = 27.5,8.7,2.75. (from Netravali and Haskell [63])
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o Horizontal and vertical orientations have the greatest contrast sensitivity.

Interframe coding can take advantage of temporal masking and perception. Masking effect will
depend on whether the eye is tracking the movement or not. Humans have higher acuity to tracked
objects, while randomly moving objects which are untracked have significant reduction in perceived
resolution. It is important that tracked moving areas, especially those with edges, do not have
appreciable noise added by an image coding process [28].

In the case of drastic movement, which the eye cannot track, the perceived spatial resolution is
lowered. Scene changes can be coded at reduced resolution, provided that resolution is gradually
restored. Unfortunately it is impossible to know apriori whether or not viewers of an image will be
tracking moving areas, thus making this property difficult to use in a practical system.

At lower temporal frequencies the HVS is very sensitive to flickering. The sensitivity to flickering
also depends on the luminance level and the ambient luminance. At the brightness level of a typical
Cathode Ray Tube (CRT) display, the sensitivity to flicker is at a maximum around 15 Hz. (Figure
2.4). Above 70 Hz. flickering is essentially imperceptible. At lower frequencies the sensitivity falls off
considerably. The flicker threshold is an important consideration in compression systems where the
coding method varies in time, eg. keyframes inserted in a predictive system, interframe interpolation,

and systems with reduced chrominance refresh rate.

2.3 Transform Coding

Transform coding uses filtering techniques to achieve data compaction [58, 98] by transforming data
from one domain to another, eg. space to frequency, or by dividing the data into different frequency
regions. Transform coding does not achieve data compression in itself, but merely converts the data
to a more convenient form for bit allocation. The transformed output data is then reduced using

methods such as s runlength coding, Differential Pulse Code Modulation (DPCM), quantization,
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and entropy coding.

Block transforms such as the Discrete Cosine Transform (DCT), Discrete Fourier Transform
(DFT), and Hadamard and Karhunen-Loeve transforms operates on a single block of data at a
time. Overlapped transforms, such as subband decompositions, use data from neighboring samples

to separate the source into different frequency bands.

2.3.1 Subband Coding

Subband coding is a method in use for data compression of images [14, 15, 21, 42, 87, 90, 92, 101, 102].
In subband coding an input sequence is split up into spatial or spatiotemporal frequency subbands
via filtering, often using quadrature mirror filters (QMF’s). By exploiting the different probability
distributions within the subbands [17, 100] and the importance of each subband relative to the acuity
of the HVS, the available bandwidth can then be efficiently allocated by a coder. For example, the
HVS is more sensitive to the low spatial frequency band than the highest spatial frequency band
[16], and the HVS spatial frequency response to diagonals is lower than the response to horizontals
and verticals [82]. Thus, fewer bits per picture element (pel) can be spent on certain of the frequency
bands. Other bands which contain more important information relative to the response of the HVS
should be carefully coded.

It is interesting to note that similar conclusions about the relative importance of the various
frequency bands can be obtained by energy considerations. :I‘he highest frequency bands contain
little average energy per sample. Coding each band to equal distortion criterion will allocate bits
roughly in proportion to the frequency band’s importance to the HVS.

In low bit-rate image transmission systems, these subbands are then coded using a redundancy

reduction technique, such as vector quantization (VQ) [14, 15, 80, 92, 101].

11



2.3.2 DCT Coding

The DCT, a linear orthonormal transform, is the most common block transform used in image coding
[61]. DCT coding has been used on source images [2, 40, 95], residuals [4, 22, 47, 55], and subbands.
The input image is tiled into non-overlapping Nz N blocks and each block is separately transformed.
The DCT transform method can approach the efficiencies of Karhunen-Loeve transform [63] at a
much lower level of computations.

The transform may be performed by matrix multiplication

C=TST (2.1)

where C is the transformed output (coefficients) T is the DCT basis matrix, and S is the source

block (matrix). The basis matrix is given by

o 2 —6;_1 (. 1 ,
ti; = — cos [N ( 2) (i 1)] (2.2)
ij = 1...N
1 if p=0
bp =

0 otherwise

The inverse (IDCT) is found by

C=TS8T (2.3)

Fast discrete cosine (FCT) algorithms have been developed [53] which use on the order of N log N
operations versus the N2 for direct computation. Typical block sizes used are 8x8, 4x4 and 16x16.
The DCT in itself does not give any data compression, but it compacts the energy into a few

frequency bands which can then be more efficiently quantized. Most often the coefficients are scanned

12



in a zig-zag fashion (Figure 2.5) before quantization. The highest frequency coefficients very often
are zero or quantized to zero, making the zig-zag scan pattern efficient for run length coding of
the quantized coefficients. It is interesting to note that DCTs can be considered to be subband
decompositions acting on a single block of data partitioning the data into equal sized bands.

One drawback of block transforms is that discontinuities can occur at block boundaries. If the
higher frequency samples are too coarsely quantized this “blockiness” will be apparent. A recent
method to overcome this blocking effect is the Lapped Orthogonal Transform (LOT) {54]. The
image is divided into slightly overlapping blocks before the transform is applied. This results in

fewer visible edge artifacts at equivalent data rates to the DCT.

2.4 Interframe Coding

Interpolative coding can be divided into fixed and adaptive methods. In fixed interpolation, a prede-
termined set of pels is used to recreate the missing pels. For example, a four way weighted average
of alternate fields (Figure 2.6) is one possible method of fixed interpolation. More sophisticated
methods such as cubic splines or higher order polynomials could be used, but it has been reported
(61, 63] that not much is gained in error reduction at the cost of greater complexity by using more
complicated schemes. One drawback in fixed interpolation coding is the spatial blurring [30] (re-
duced spatial and temporal resolution) that occurs when moving objects are present in the image
sequence due to the low-pass filtering effect of the fixed interpolation filter.

Adaptive interpolation uses varying rules to select which pels in the keyframe are used as the
source for the interpolated pels in an attempt to minimize the error in the interpolated pels. One
such adaptive method that has shown potential is motion compensated interpolation (MCI) (13,
30, 44, 48, 55, 70]. In this method motion vectors representing the translational motion of objects

determine which pels are to be used in the interpolation. Spatial resolution (sharpness of the

13
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interpolated image) can be improved using MCI vs. non-adaptive interpolation.

2.5 Motion Compensated Coding

The class of motion adaptive techniques is another method that has been applied to image coding
[55, 61, 62, 79]. Both motion compensated interpolation (MCI) (13, 30, 44, 46, 48, 55] and motion
compensated prediction (MCP) [25, 38, 45, 64, 69, 89] have been used for image compression. In
an interpolative coding scheme, a subset of the picture elements (keyframes) are transmitted to
the receiver [63]. The pels that were not selected for transmission are reproduced at the receiver
using displacement information determined from the keyframe images at the receiver, or sent via
side information from the transmitter. In an extrapolative or predictive coding scheme, pels in the
immediate future are extrapolated from past pels [25, 29, 56, 75, 81, 89]. Margoudakis reports in a
comparison of MCI and MCP that the motion compensated interpolation scheme was more stable

and subjectively preferred [55].

2.5.1 Motion Compensated Prediction

Motion compensated prediction uses the previous frame or frames to predict future ones. This tech-
nique is most commonly used for sequential linear playback applications, such as teleconferencing.
Since each frame uses information from all of the previous frames, this technique is quite efficient.
MCP is better suited for sequential access than random access applications, although some coding
systems use MCP with keyframes inserted at regular intervals to allow some random access. A
predictive system is essentially a sequential access system that would require the recreation of all

preceding frames up to the desired frame making access time prohibitively large.
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Figure 2.7: Motion compensated interpolator
2.5.2 Motion Compensated Interpolation

Random access is an important feature for many image storage and transmission systems [41]. Using
MCI rather than MCP allows recreation of selected frames after retrieving only two key frames and
their associated vector displacement fields. In addition, MCP is suitable for bi-directional replay.

Figure 2.7 shows an example of motion compensated and fixed interpolation. The keyframes,
frames n and n + 2, are transmitted; frame n + 1 is to be reproduced by interpolation. Usually one
displacement vector is transmitted for a block of pels. This is expanded to provide a displacement
vector for each pel in the image. The pel at (z1,y1) in frame n + 1 is interpolated using pels
(z1 — dz/2,y1 — dy/2) in frame n and (z1 + dz/2,y; + dy/2) in frame n + 2, as indicated by the
solid arrow in Figure 2.7. If simple linear interpolation were used, the pel at (z1,y;) in frame n + 1
is interpolated using pels (21, y1) in frame n and (2, ;) in frame n + 2, as indicated by the dotted
arrow in Figure 2.7. This has the effect of introducing motion blur since pels from the background
and the moving object are averaged together.

It is important to note that the transmitted keyframes available at the receiver contain noise
from the coding process. However, the reconstruction is completely known at the transmitter, so an

error signal (residual) can be sent to achieve the best reconstruction for a given bit rate.
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For a motion compensated interpolation coder to be successful, the most important factor is
an accurate estimate of the displacement [25, 30, 48, 63]. In addition, in the case of complex
translational motion, rotational motion, or uncovering background, additional side information (an

error signal) may need to be transmitted in order to maintain acceptable quality [38, 63].

2.5.3 Motion Estimation

Several methods for motion estimation are in general use: “pel recursive” [63], pattern matching
[30, 38, 39], transform domain techniques[29, 32, 25], and gradient matching [49]. Another method
that has been used to determine optical flow lines is spatiotemporal filtering[36].

Most of these methods assume the following [39, 61, 63, 71]:

1. Hlumination is uniform both spatially and temporally.

2. Objects are moving in a plane parallel to the camera lens.

3. Uncovering of background and occlusion of one object by another is neglected.

Using these assumptions, the monochromatic intensities Y (Z,t) and Y (Z,t — 7) are related by

Y(Zt)=Y(F—d,t— 1) (2.4)

where 7 is the two dimensional vector of the spatial position within the frame, dis the two dimensional
translation vector, and 7 is the time difference between the frames. Thus, in real image sequences

an estimate of the intermediate frame ¥ (Z,7) can be made from two keyframes by interpolating:

Y(E)=Y(E—dot —T)Wo+ Y (F=d),t + )W, (2.5)

where dy is the displacement vector from the first keyframe to the intermediate frame, and dy is the
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Figure 2.8: Block Matching. Frames n and n + 3 are keyframes. Data from the keyframes only are
used in the pattern matching

displacement vector from the intermediate frame to the second keyframe. Wy and W are weights
such that Wo+W; = 1. Thus the problem is to estimate d from the intensities of consecutive frames.

The pel recursive algorithm is based on recursively minimizing the motion estimation error ‘based
on a steepest decent algorithm on the two dimensional intensity gradient [63, 69]. The accuracy of the
motion estimate relies on many iterations of the algorithm which can be computationally expensive.

In pattern or block matching algorithms, the assumption is made that there is constant displace-
ment within small two dimensional blocks [39, 103]. The image sequence is modeled as a wide-sense
stationary stochastic process — the best estimate tAf is an attempt to find the maximum of the cross
correlation of pels in the second frame with a reference pel in the first frame. The displacement dis
estimated over samples in a search area, using matching techniques so as to minimize some measure
of the prediction error

E(d)= Y DFD(Y(51),Y(F+dt+7)) (2.6)
zeB

where B is the block of interest within the image, which is being shifted over the search area in the
next frame. Figure 2.8 shows an example of block matching.

The difference DF D is some measure of the intensity difference hetween the pels, such as squared
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difference or absolute difference. The precise definition of DF D has little effect on the accuracy of the
estimate or length of search [63]. Generally an absolute error is preferred over the computationally
more expensive squared error function. The accuracy of d is limited to a distance of 1 pel. This
could be improved by interpolating between neighboring pels in the source images [27, 29, 25]. Other
methods to improve accuracy include segmentation into moving and non-moving areas before the
displacement is performed [71] (which also reduces the search processing time) and correction of
invalid vectors [44] after the displacement estimation is completed.

The choice of block size B has an effect on the accuracy of the estimator [9]. The block size
should be chosen to contain the minimum feature size, such as a moving hand or limb, in the source
image in order to track such objects. Small block sizes can be used for finer gradations of the
estimate, but the possibility of false positive correspondence increases inversely with window size.
For example, searching over an image of a textured surface such as a sweater, there are many possible
close matches. Accuracy can increase with increased window size up to some point, after which the
accuracy degrades as window size increases due to the inability to track small objects . However,
computational complexity increases quadratically with window size [93] unless the samples in the
block are subsampled during the matching search. Also, too large a window can introduce false
motion as an artifact [49], which is noticeable as a corona of moving background around moving
objects.

Another factor in the accuracy of the estimation is the extent of the pattern matching search.
Too small of a search area may not extend far enough to accurately detect large displacements. On
the other hand, too large of a search area may converge an incorrect match.

The displacement vector fields obtained from the motion estimation are transmitted at one per
keyframe. The interpolating filter needs a displacement vector for each individual pel; thus the set of

displacement vectors must be expanded into an array equal to the dimensions of the original immage.
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To avoid block artifacts, a bilinear interpolation can be performed on the displacement vectors to
smooth the expanded vector array. From this expanded array of vectors d = (dz,dy), the pel at
frame n + i is interpolated using frames n and n + N. In the general case of interpolating N — 1
intermediate frames from two keyframes (frames n and n 4+ N), the interpolation filter weighted

more heavily on the closer keyframe:

Yose(ziyy;) = (2.7)
k k\ N—-k N-k N-—-k\ k
Y, (xi - dwiﬁ, yi — dyi'ﬁ) — 7 Yosn (:ca' + dl‘i—N-—, yi + dy:'_N—) N

Care must be taken to avoid over smoothing the vector field; too much smoothing can result in

artifacts which often look as if drops of water had blended neighboring samples together.

2.6 Vector Quantization

Vector Quantization (VQ) is a statistical coding method which maps multiple samples in the source
alphabet to a single codeword. Even if coded in a lossless manner, multiple samples will always
have an entropy less than or equal to the single sample entropy [10, 23, 85]. This mapping must be
known at the receiver; generally a code book is transmitted. If the number of samples mapped to
each codeword is too large, the cost in channel bitrate of transmitting the code book can negate the
savings of jointly coding multiple source letters.

The technique of vector quantization originally was developed for speech coding [51, 72] , but
now is commonly used in image processing [1, 5, 6, 7, 8, 11, 14, 15, 17, 18, 31, 33, 34, 52, 56, 61, 74,
86, 88, 91, 92, 96, 101, 104]. It is especially well suited for pyramid coding as the separate subbands

can be coded to meet bit allocation or error criteria tailored to the energy in that band or the band’s
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relative importance to the HVS,

2.6.1 Codebook Determination

The vector quantization process divides a source space into non-overlapping regions and maps all
samples in that region to a single codeword ie.,., a representative vector is calculated for each region.
These regions are multidimensional volumes within the source domain. Each sample in the source
block corresponds to a dimension or axis in the domain space. The term vector is used as each
sample (block) corresponds to a vector in this multidimensional domain space.

Most often in image coding applications the source image is divided into rectangular blocks of
pels before vector coding, although other partitions have been used. ’;‘hese blocks may also be
grouped with other related blocks. For instance, blocks of pels in RGB space may be grouped
together. Westerink [101] has vector coded blocks from several subbands together.

In order to quantize these blocks, some method of partitioning the source domain must be used.
The first scheme and probably the most common is the Linde, Buzo and Gray (LBG) method [51].
The algorithimn starts by making an initial guess for the code book. Each input vector is assigned to
the code which is closest in Euclidean distance from it. An error metric (distortion), most often the
sum of mean-squared-errors, for this code book is calculated. The vectors in the codebook are then
replaced by the centroid of all the source vectors which map to it. The distortion is recalculated and
the process is repeated until the distortion fails to decrease. The LBG algorithm does not guarantee
that the minimum reached will be a global minimum, and it is computationally intensive.

More efficient algorithms use tree based techniques to split and search the vector space. These
take on the order of nlogn operations. K-dimensional trees (k-d trees) have been successfully used
in vector quantization [18, 80, 88].

Once the vector code book has been determined, the source image must then be rendered. A
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code vector is assigned to each block in the source. If the LBG algorithm is used, each vector is
assigned by a minimum distortion criterion. If a k-d tree was used, the tree is traversed making
scalar decisions based on the data along the split axis for that node. The traversal continues until
a leaf is reached to determine the codeword.

One of the most important features of the k-d tree partition is that the code vectors are sorted
in a manner that is convenient for this rendering process. To render using vectors from the LBG

method, the distortion of each block against the vectors in the entire code book must be calculated.

2.6.2 Bit Allocation

One important reason for using pyramid coding is the flexibility it affords in bit allocation. The
information content in real scenes varies considerably over ti.me. It is useful to allocate the channel
use as the information varies. The quality can be set at some constant level letting the bit rate
vary accordingly. In addition, if buffering is available a period of low information can allow later
more complex scenes to be coded at a higher effective bit rate, while maintaining relatively constant
channel bandwidth. In the case of subband coding, bit allocation can vary between bands as different
spatial bands have nonstationary energy distributions.

Early work in VQ used a fixed codebook size to bound the channel use. This has the draw-
back that quality varies with content; more complex scenes that contain more information will be
reproduced at a lower quality level than others. More recent work [19, 80] has used error limits to
bound the size of the codebook. With this method the domain continues to be split until the desired
distortion level is reached. The distortion metric may be mean-squared error, maximum peak error,

peak signal to noise ratio , mean-squared signal to noise ratio or some other metric.

22



2.7 Entropy Coding

In this thesis the term Entropy Coding is used for any method that losslessly reduces the number
of bits necessary to represent a data set, eg. attempts to reach an average number of bits per word

that approaches the entropy, H of the source:

H=-) QnlogQn (2.8)
where @, is the probability of the source letter n occurring.

2.7.1 Huffman Coding

Huffman coding [37] has long been used to reduce the data rate needed to transmit a source. Huffman
coding is a fixed length to variable length coding technique. The Huffman technique allocates the
fewest bits per sample to the most common source letters and more bits per sample to the less
common source letters. The output code words are concatenated to form a prefix or suffix code that

can be uniquely decoded [10, 23]. Each symbol’s length approximates the entropy of that symbol.

Ln = [~ log; (@n)] (2.9)

where [-] is the next larger integer greater than or equal to -, and @, is the probability of source

letter n occurring. Thus, the average number of bits per symbol L over a long stream of data is

N
L2H=~Y) Qulog(Qn). (2.10)

i=1

Where H is the entropy of the source as defined in Equation 2.8.
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Actually L is bounded on both sides [23]

H+1>L>H. (2.11)

Forming the code book is the most computationally intensive part of Huffrnan coding. The code
book is formed by building a tree. The N letters in the source alphabet are the leaves of the tree,
each of which is assigned a probability Q,, [24]. Figure 2.9 shows an example of Huffman prefix code
assignment using a tree. The probability distribution @ may be obtained from the sample statistics
or may be based on some apriori model of the source. The two least probable leaves are joined into
a node. This node assumes the probability of the sum of the probabilities of the two leaves. Each
branch is assigned a zero or a one according to whether it is the left or right branch. The node is
now treated as a leaf in the next grouping of the two least probable leaves. This grouping continues
until the root node (with probability one) is reached. The code word for each source letter is found
by following from leaf to root reading off the binary digits. This codebook can now be used as a
look-up table to encode the source. The variable length codewords are then concatenated, before
being sent through the communication channel.

Decoding is done by scanning through the transmitted bits branching left or right through the
tree as each bit arrives. A code word is known to be complete when a leaf is reached, the decoded
letter is emitted and a new tree walk started.

Note that the number of bits for each symbol in a Huffman code must be an integer. This is the

major limitation of this coding method.

2.7.2 Arithmetic Coding

Arithmetic coding is another method of fixed length to variable length coding that has recently

become more popular [50, 57, 60, 76, 77, 78, 84]. It is referred to as arithmetic coding because it

24



Letter Code Word  Probability

a 0 0.40
0

az 100 0.20 1.00

0 0.35

0

a3 101 0.15

1 0.60

1

a4 110 0.15

0 0.25

1

as 111 0.10 1

Figure 2.9: An example of building a Huffman code

compiles a code string which is the arithmetic combination of the probabilities of the individual
symbols. The major advantage of arithmetic coding over Huffman coding is that the number of
bits per symbol is not constrained to be an integer, so it can more closely approach the theoretical
entropy limit. The coding process involves the addition of binary fractions rather than concatenating
integer length code words.

Arithmetic coding performs a mapping of a source sequence ag,a1,ds,... to a point z on the
interval [0, 1) which represents the cumulative probabilities of the symbols ag . ..a,. The value of z

in the interval [0, 1) can be expanded in negative powers of two as
(o]
=Y z;270H) (2.12)
t=0

where each of the z; is a binary digit. This mapping of the source string to the unit interval is
done in such a way that z is uniformly distributed in the interval [0, 1), thus each of these z; are

statisticly independent and each has equal probability of being 0 or 1.
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Each member of the source alphabet is assigned a subinterval in [0, 1) according to the probability
of that letter occurring. As each letter in the string is emitted by the source, the unit interval is
iteratively divided into subintervals.

This subdivision continues until, due to the finite precision of the code register, no further
subintervals can be made. The code word is then emitted and the process continues. The output

code word associated with each string is the left end point of the interval of interest.

2.8 Color Coding

Color systems are typically characterized by three linearly independent primaries. These can be
transformed through matrix multiplications to other color spaces. Through this change of basis a
color space more suitable for coding can be used. In this manner the energy can be compax:téd into
channels that are relatively more important to the HVS and thus, can be allocated different portions
of the channel bandwidth.

A transform in which chrominance is orthogonal to luminance matches the HVS well. The
common broadcast standard NTSC color space YIQ, where Y is luminance and IQ are chrominance

[83], is one such color space. This is related to the primaries RGB by

[ Y 1 0.299 0.587  0.114 11 RT
I |=1] -059% —0.274 —0.322 G (2.13)
Q 0.211 .—0.522 0.311 B
and the inverse
R 1.0 0.956  0.623 Y
G| =] 10 —0.272 —0.648 I (2.14)
B 1.0 —1.105 0.705 Q
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Another commonly used color space is YUV

S
Y 299 587 114
vl=1| 701 -587 500 G (2-15)
299 587 886
|4 B
and YUV to RGB
oL o
R 100 100 ooof|Y
¢l=|100 -50 -194|]| 01 (2.16)
100 000 100
B v

Note that the inverse YUV (equation 2.16) needs only two multiplications and four additions
for each three sample conversion versus the inverse YIQ which needs six multiplications and six
additions. This could be a factor in a broadcast type system with few transmitters and many
receivers.

The temporal response of the HVS to chrominance is less than the response to luminance. Some
coding schemes [14, 80] have updated chrominance at half the rate of luminance with little perceptible
loss of quality.

The chrominance components are closely related to luminance. This correlation has been used
in reducing the total amount of data for the color image system [12]. The three color components

may also be treated as a single vector and vector quantized as such [104].



Chapter 3

Motion Compensated
Interpolation: Theory and

Limitations

3.1 Mean Square Estimation

In this chapter the theory and limitations of Motion Compensated Interpolation will be developed.
We wish to estimate the value of an intermediate frame, s(z,y,t+7) 1 < 7 < N — 1, where 7

is the frame number, from samples at s(z, y,t) and s(z,y,t + N) (the keyframes)

npels nlines

é(mvy,t+7)= Z Z [Cl.j’k’OS(.’B-*-j,y-{"k,t)+(lj’k,NS(17+].,y+k,f,—i-]\r)]. (31)
j=0 k=0

In this case, we are assuming pure integer displacement of each pel, so all the «; , are zero,
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except coefficients at ¢t = 0,5 = —dz N k= —c’lg\/ﬁ aj k0 = ﬂ;—q and att = N,j = dz Q%I)-,k =
@ﬂ;—fl aj,k,N = 77, corresponding to the displaced pels in the previous and next keyframes.

Keeping only the non-zero terms in (3.1) gives:

(N —1)

“ _(N—T) —~ T —_T T A(N_.T) —

s(zyyt+1)= N s(z—dzN,y dyN,t)+Ns z +dz I ,y+dy ,t+NJ}.
(3.2)

Define the interpolation error en(7) as the difference between the true signal s(z,y,f+ 7) and

the interpolated estimate §(z,y,t + 7)

en(t) = s(z,y,t+7)—8(z,y,t+71)
= s(z,yt+7)—
(N-1) _—T _—T T —~ (N -1T1) —~ (N -1)
sz —dz—,y—dy— — kP SR A .
[ ¥ s(:c dzN,y dyN,t)+Ns z +dzx N ,y+dy N 4+ N

(3.3)

From Equation (3.3) it follows that the mean square value, MS, of the interpolation error is

MS

E[(en(r))’] (3.4)

E [(s(x, yt+7)—8(x,y, t + r))2] (3.5)

E [52(31, y,t+ 7')] +E [52(:1:, Ut + T)] —2E[s(z,t,t + 7)8(z, y,t + 7)] (3.6)

Where E[] is the expected value.

Expanding the three terms in Equation (3.6) by using (3.2) gives:

E[s’(z,y,t+7)] = R(0,0,0) (3.7)
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E[§2(x,y,t+‘r)] = E[ N_T)zsz(z—g:;l—:r-,y—@L‘t)
o) (=@ (557) @ (57 o)
+2 N~T> (—T—)s(z—a?vl-,y—@z-,t)
n N N N
s(z+’;: N];T),y+21\l<-N—1;—t),t+N)]
_ (N];T 215{(0,0,0)+ (%)QR(O,O,O)
(52 g (5 5 825 )
= {(NIGT): (1—:,-)2}11(0,0,0)
+2 (N]; T) %R (d’z,@, N) (3.8)
E[s(:c,y,t+'r){(Ngr)s(x—a%,y—@%\;—,t)
-3 () e () o)
- () e @)

@) ) e

R(-) is the autocorrelation function:

Il

E[S(:t, y,t+ 1')§(.’L‘, y,t+ T)]

R(u,v,7) = E[s(z,y,t)s(z + v,y + v,t + 7)}. (3.10)

Substituting Equations (3.7),(3.8), and (3.9) into Equation (3.6) gives the following result for

the mean squared error:

>
!

2 .
MS = R(0,0,0)+[( = ) +(%)Z]R(0,0,0)

#2 (M) (R R (@) - 2 (557 m (& (7). (7))
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- Gn(E) a(2) )

N%+4 72— N7)R(0,0,0) + 2 (%—V——l) (F)® (dz,dy, V)

(M) R (@ (5) @ (5) )
-G EER) a5 )

(3.11)

3.2 Image Models

The image correlation function can be modeled as an isotropic function [66], such that the autocor-

relation depends on the Euclidean distance

R(z,y) = o2a~® 4@Y), (3.12)

The function d(z, y) is some distance measure such as

d(z,y) = (2% + y*)%. (3.13)

The constants « and a together determine the rate that the autocorrelation decreases as you
move away from the origin. This simply means that the correlation is decreasing as you move in
any direction away from the correct point. Figure 3.1 shows a plot of an isotropic autocorrelation
function 0-9(="+¥")%

In the case of pure translational motion, the intensity is related by

s(z,y,t+7)=s(z+ T7és,y+ Ty, 1) (3.14)
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Figure 3.1: An isotropic two dimensional autocorrelation function
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or in terms of the two keyframes at t and t + V

- N — N—
s(z,y,t+71)= (NTT)-S (z—daz—;\’—r,y—dy]—;—,t)+-]—::s (x+dm(N_T)’y+dy(N—T)’t+N)

(3.15)
where the true displacement between ¢t and t + N is dz = N 6;,dy = N éy. The estimated displace-

ment differs from the true displacement by

—

dr = dr+e (3.16)

—_—

dy = dy+ey. (3.17)
So, using the autocorrelation function given in 3.12 and 3.13,
i
R(:B, v, T) —= 02(7')0:"’(“2"":'2)’ . (3.18)

From (3.11) and (3.18), the mean square error will be

— P e
MS = 73—2 (N? 4 72— N7) o2(0) + 2 (NN T) (%) oX(N)a~e(E+4)?
_9 (NA—r T) 0'2(7‘)01_“ K'r'(‘:*'fz)%
_, 3
- (—;\-}-) o} (N —71)a™" fr(e+e)”, (3.19)

Typical values in real images are 0.90 < a~% < 1 [63]. If an accurate motion estimation was
made using integer pel accuracy, the difference from the true displacement in (3.16) and (3.17) is
from round off errors. Then €, and e, are bounded less than % Using the values 02 = 1, =% = 0.90

, and €; = €, = 0.50 , and the variance o?(r) from the Alley sequence, Equation (3.19) is plotted

33



0.12

Modeled Normalized MS Error
— Measured Normalzed MS Error

0.1

0.08

0.06

0.04

0.02

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

Figure 3.2: Measured and modeled mean square error using autocorrelation function R(z,y) =
a2a-a(zz+y2)"}.
in Figure 3.2 along with the measured normalized mean square interpolation error for the sequence
using keyframe spacing of four frames. Note that the measured values shown in the graph are the
interpolation mean square errors obtained from interpolation using uncoded keyframes, normalized
by the maximum variance of the keyframes.

It is seen that the curve for the model follows the general shape of the measured curves. Note
that the interpolation error within a set of intermediate frames interpolated with the same vectors
is highest in the center frame, which is the farthest frame from the two keyframes. The maximum

interpolation error also occurs when the greatest fraction of the image is in motioun.
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To improve the model of (3.19), the assumption is made that non-moving areas have zero error,

thus the expected mean square error is

MS = mv MS (3.20)

where mv is the fraction of area in the image which is moving. The percentage of each frame set
which was classified as non-moving is given in Table 3.1 (See section 6.2.1 for a discussion of how
the non-moving area is classified).

For comparison with measured values, the modeled mean square error is weighted with the

fraction of moving area, mv, in the images:

MS = mv

1 (V24722 ) 20) 2 (N7 ) () Panyae ()’

|
N
SN e

Nz;r- T) o¥(r)a~0 F(E+}
-— 1
- (%) o*(N = 7)a™® %-(‘3“3)’] . (3.21)

Using the normalized sample variance value from the keyframes of the sequence Alley for o%(7),
a”% =0.90, and €, = ¢, = 0.50 , Equation 3.21 is plotted in figure 3.3 along with the measured
normalized mean square interpolation error for the sequence frames and the modeled error of Equa-
tion (3.20). This model more closely follows the experimental observations. This implies that the
amount of motion in a scene has a significant effect on the interpolation error. It is important to
note also that the in the real sequence, the motion is not simple translational displacement of rigid
objects. In particular, the model fails in the frames 85 to 105, where one figure crosses in front,
occluding the other. The interpolation error becomes large here, when the displacement. estimator

is unable to determine the flow path of the covering and uncovering areas.
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Frames Percent Non-Moving
1—-3 49.729168
5—7 67.125000
9—11 60.229168
13— 15 70.312500
17— 19 71.833336
21 — 23 77.666664
25 — 27 79.500000
29 — 31 52.020832
3335 60.645832
37 — 39 56.979168
41 — 43 60.187500
45 — 47 52.687500
49 — 51 40.041668
53 — 55 44.395832
57 — 59 28.708334
61 — 63 22.833334
65 — 67 19.166666
69 — 71 16.062500
73— 75 14.000000
77— 79 10.354167
81 — 83 10.708333
85 — 87 9.916667
89 — 91 11.041667
93 — 95 17.708334
97 — 99 20.104166
101 — 103 24.895834
105 — 107 52.333332
109 — 111 89.104164
113 — 115 79.104164

Table 3.1: Percentage of area classified non-moving in Alley sequence
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Figure 3.3: Measured vs. modeled mean square error using autocorrelation function R(z,y,7) =
02(r)a“‘(’j+92)%.
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Figure 3.4: Measured normalized mean square error using coded and uncoded keyframes in Alley
sequence
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Chapter 4

Motion Estimation

4.1 Block Matching

Conventional block matching algorithms use the data from blocks within two frames to estimate
linear displacement by finding the minimum of some error metric, such as the sum of absolute
differences or mean square error.

This technique works well for interframe prediction techniques, but performs poorly for a motion
compensated interpolation coding system. The two keyframes used for a motion estimate may
describe the translational motion from keyframe to keyframe, but doe not accurately describe the
translation from one keyframe to the next intermediate frame or from the second keyframe back to
the intermediate frames. For this reason an improved motion estimation method for interpolation
is used called multiframe matching (MFM).

Various block matching search techniques have been investigated [61]:
1. Two dimensional logarithmic search.

2. Modified conjugate direction search.
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Figure 4.1: Two dimensional logarithmic search. From Musmann [61]
3. Three step search.

All of these techniques make the assumption that E(J) increases monotonically as the search window
shifts away from the direction of minimum difference.

In the two dimensional logarithmic search, the prediction error E(z,y), is calculated at four
displacements around the starting point (Figure 4.1). The displacement with the minimum distortion
is selected as the next starting point, to follow the path of least distortion. For each successive search
step, the distance between-search windows is reduced by -;-, causing the search area to be reduced
logarithmicly. The steps are repeated until the minimum distance resolution desired is reached.

The modified conjugate direction search uses two steps to search for the direction of minimum
difference. A search is first performed in the z direction shifting one pel at a time to find the point
of minimum difference. The search then proceeds in the y direction (Figure 4.2).

The three step search uses eight search positions spaced around the starting point (Figure 4.3).
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Figure 4.2: Conjugate direction search. From Musmann [61]

The point which had the minimum difference is then used as the starting point for the next search.
Each successive search step uses more closely spaced window positions to give the distance resolution

desired.

4.2 Multiframe Matching

Multiframe matching is an extension of block matching. It is applied to the image sequence in a
temporal block fashion. The sequence is divided into sets of frames each of length nframes. The
first and last frames in these sets are keyframes. The second keyframe of each preceding frame
becomes the first keyframe in the current set of images.

This set of images, comprised of the two keyframes and the intermediate frames, is divided into

tessellated three dimensional blocks, each of which is assigned a displacement vector (see figure 4.4).
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Figure 4.3: Three step search. From Musmann [61]

This displacement vector is determined by the minimum sum of absolute differences between the
keyframes and the intermediate frames - weighted to reflect the distance to each keyframe. This
method effectively gives the best average displacement within a three dimensional block, to minimize
the sum of the interpolation error for the intermediate frames in that three dimensional block.

MFM performs better than block matching for recreating intermediate frames through inter-
polation. Figures 4.5 to 4.8 show the RMS error of interpolated frames using MFM and block
matching. Note that further the distance between keyframes, the greater the performance improve-
ment of MFM over block matching. Keyframe spacing of two is the case when MFM and block
matching are equivalent.

The displacement estimation was performed using block size of 8x8 for both the block matching
and MFM. The search area was + 32 pels in both cases. This interpolation was performed using the

original keyframes, not coded keyframes containing noise. Also, these data are from images which
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Figure 4.4: Example showing how a single displacement vector is used for each Three-dimensional
volume.

were cropped to contain mostly moving areas.

4.3 Hierarchical Multiframe Matching

The method of multiframe matching is extended to an hierarchical search method. One of the
errors encountered in pattern matching is false matches. For example, the movement of an arm
over a textured sweater may cause false matches (and the resultant grossly incorrect displacement
estimate) due to the regular pattern of the texture. The problem here is that the average feature
size is smaller than the window size. If the search window contains an edge, this gives a more unique
pattern to match resulting in more accurate displacement estimation.

Hence, it would appear that larger window sizes would give better results. This is true to some
extent, but as the window size grows, localized motion is not detected, causing motion blurring in

those areas of the interpolated frame.
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Figure 4.9: Hierarchical multiframe matching displacement estimator

An hierarchical approach is used to overcome these problems. An initial motion estimate is
calculated using a large window size (say 32x32) with one vector for each 3-D volume (typically
8x8xn frames). This initial search is done over a large search area (covering + 60 pels) with a
course spacing (4 pels horizontally and vertically).

These displacement estimates are then used as an initial starting point for a finer search using
smaller window sizes (see Figure 4.9). This is continued until the desired granularity is reached.

By using small window sizes over a small search area, a fine, yet accurate search can be obtained.

4.4 Prefiltering

Prefiltering using a lowpass filter improves the performance of the motion estimation or prediction

[9, 20, 27, 29, 39]. The spatial lowpass filtering has several effects.

e It can reduce the chance of convergence onto a local minimum by smoothing the distortion

function.

e It reduces the errors due to noise in the image. This is a “Wiener Filter” effect [29].

e The image can be subsampled within the search window without the risk of aliasing due to

sampling below the Nyquist rate.
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Simple filters have been shown to be sufficient for prefiltering prior to a displacement estimate[9].
An equally weighted sum of all the samples over a small region of support ( a box filter) can be
used. Although the frequency response of the box filter does not closely approximate that of an
ideal lowpass filter [67], it is adequate for the purpose of region matching.

Computationally, the expense of a boxfilter is very low, approximately one addition and one
subtraction per sample in each direction, horizontal and vertical, and one multiplication for nor-
malization. The efficient implementation is carried out as follows: Fpr a boxfilter of length N, the
sum S of the first % samples z is calculated. This sum is doubled tofeffectively mirror the samples
at the edges. Each output point y; is then equal to S + z; TN, Then the next input data
% samples ahead is added to the sum and the previous data % samples away is subtracted. This
gives the sum of the N samples around the output point. This process is repeated in the vertical
direction, and each point is weighted by 1% In the case where N is a power of two, the weighting
can be implemented by shifting. Note also that the computation is nearly independent of the filter
length.

The reduction in interpolation error when prefiltering prior to the motion estimation can be
dramatic. Figures 4.5 through 4.8 show curves of RMS error for keyframe spacing of two through
five respectively. Keyframe spacing of two has a single interpolated frame between the keyframes;

keyframe spacing of three has two intermediate frames; etc.
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Chapter 5

Coding System for High
Quality /Low Bit Rate Coding of

Motion Sequences

In this chapter, I propose a system for the coding of image sequences which provides high quality at
low bit rates. The receiver in this system is easily scalable in terms of spatial resolution, temporal
resolution, bit rate and decoding complexity. Additionally, unlike predictive motion compensated
systems, random access (with an atomicity of four frames) and variable frame rate play-back are

easily incorporated.

5.1 Overview

I propose a motion compensated interpolation system for the transmission of images as shown in

figures 5.1 and 5.2.
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Figure 5.3: Multiframe Matching. Frames n and n + 3 are keyframes. Data from the keyframes and
intermediate frames are used in the pattern matching.

To obtain the velocity vector field, the hierarchical MFM technique discussed in chapter 4 is used.
MFM differs from conventional block matching in that the intermediate frames are also used in the
pattern matching search (Figure 5.3). This results in a more accurate vector field with reduced error
variance over block matching [26]. The accuracy and speed of the motion estimator can be improved
by first segmenting the images into moving and non-moving areas [71].

The MFM search is extended over a hierarchy of successively smaller block sizes. A motion
estimate is made using a large block size (32x32) for the initial search. This gives a somewhat coarse
estimate of the displacement, but is less prone to false matches than a smaller block size [9]. This
estimate is then used as an initial estimate for the next level of the hierarchy, using smaller block
size for a finer displacement estimate. This continues through as many levels of the hierarchy to
reach the desired fineness of the displacement estimate. Subsampling within blocks can be used to
reduce computations without a great loss in accuracy of the displacement estimate [35, 79].

The actual pattern matching search used is an extension of the three step search to an arbitrary
number of steps, which I refer to as a “K-step search”. The search is extended to K steps reducing

the spacing between search windows logarithmicly, on each succeeding search step (figure 5.4). The
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Figure 5.4: K-step search pattern

first search step has a maximum displacement
dy = dppin27! (5.1)
where dy is the step size at the final search step. This gives a maximum displacement of
k-1
dmaz = dmin Z 2' (5.2)
i=1

for a given level of the hierarchy.

Sub-pel accuracy can improve the performance of the motion compensated system [29]. However
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the improvement that subpel accuracy yields is diminished as the signal to noise ratio decreases [29].

It has been reported [25] that the error signal from a motion compensated prediction system does
not code well using DCT coding. ‘Standard’ DCT coding algorithms presume that the D.C. and
lower spatial frequencies contain the most important information and are thus most finely quantized,
while the higher frequencies are more coarsely quantized. Residual signals however, have a higher
proportion of the energy distributed in the middle and high frequencies, and ideally have zero D.C.
energy. In this system the keyframes and residuals are decomposed using a pyramid transform
followed by vector quantization. The variance or the residual signal varies greatly from frame to
frame (see chapter3). For this reason the frames are normalized before pyramid decomposition and

vector quantization.

5.2 Preprocessing

The color space YUV was chosen for this work. Input signals in RGB format are converted to
YUV using a matrix multiplication. The color components U and V are lowpass filtered using a
Gaussian filter and subsampled spatially by a factor of four. The luminance signal, Y, is coded at
full resolution.

If the input signal is in YUV format, then the only preprocessing necessary is to decimate the

chrominance signals to one quarter of the luminance resolution.

5.3 Encoder

Figure 5.1 shows a block diagram of the encoder. The interface to the channel or storage device is

not shown. Depending on the requirements of the storage device, there may be a buffering system

to maintain a constant data rate.



5.3.1 Motion Estimator

The motion estimation is performed using the original (uncoded) keyframes and intermediate frames.
The hierarchical multiframe matching technique discussed in section 4.2 is used for motion esti-
mation. The motion estimation is performed with only the luminance signal; chrominance is not

used.

5.3.2 Keyframe Encoder

The keyframe encoder [Figure 5.5] consists of a pyramid subband decomposition filter, a vector
quantizer, and an arithmetic coder.

The pyramid decomposition is performed by recursively applying Quadrature Mirror Filters
(QMF) to split the image into spatial octave subbands (Figure 5.6). Each successive level splits the
lowest spatial frequency band into four more subbands.

The vector quantizer then encodes each subband separately or in groups. The outputs of this
block are code books and look up tables (LUTs). The LUTs are determined for a one second block
of keyframes. A new LUT is transmitted for each one second block. In this way, the cost (in bits) of
the LUTs is amortized over a one second period. The multilevel arithmetic coder follows to losslessly

compress the output of the vector quantizer.

5.3.3 Motion Compensated Interpolator

To obtain the interpolated intermediate frames, the keyframes are decoded as described below. The
decoded keyframes are used together with the motion vectors to interpolate the intermediate frames.
These interpolated intermediate fraines are subtracted from the original to obtain the residual frames.
The residual frames are coded in the same manner as the keyframes - a subband pyramid followed

by the arithmetic coder.
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Figure 5.5: Block diagram of keyframe encoder.

5.4 Decoder

The decoder for this image system is shown in figure 5.2. The displacement vectors are decoded using
the inverse of the arithmetic coder. The vector quantized subbands and LUTs for the keyframes and
intermediate frames are also decoded through this arithmetic decoder. Each subband has a separate
LUT associated with it. These LUT’s are completely updated once per second.

The lowest level subbands are then reconstructed through their corresponding LUT. These four
bands are then interpolated and summed to synthesize level 3 of the pyramid into the level 2 LL
band (Figure 5.7), where LL refers to the horizontal and vertical lowpass filtered band.

The remaining three bands for level 2 are decoded and reconstructed, and together with level
two LL band, they are interpolated and summed to synthesize the level one LL band. Level one is
likewise decoded and interpolated into the full size image.

It is possible to interpolate up to any level without all of the subbands being present, as may
happen on a heavily used network. In this case, zeros are input to the subband interpolation filter
in the place of that band. This will cause the image to degrade somewhat, but the image will not
be lost all together.

At the beginning of a sequence, two keyframes must be received and decoded prior to beginning
the motion compensated interpolation. Once these two keyframes are decoded, only one additional
keyframe is needed for each set of N intermediate frames.

The displacement vectors are applied to the decoded keyframes to recreate the intermediate
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frames. This will result in intermediate frames with some interpolation error. To reduce this error,
the residual signal which has been processed by the pyramid decoder is added to these intermediate

frames resulting in the decoded luminance signal for each output frame.

5.4.1 Chrominance Decoding

The chrominance signal is decoded in a fashion similar to the luminance. The UV frames are
decoded by using the transmitted codewords to index into the LUTs. The chrominance information
is then upsampled and interpolated from one quarter resolution horizontally and vertically to full
resolution. Motion compensation is not applied to the chrominance signal in this system. Using
motion compensation on the chrominance signals tends to exaggerate any motion artifacts in the

luminance signal.

5.4.2 Postprocessing

The final step is to convert the decoded luminance/chrominance signals to the color space and frame
rate of the output device. Color conversion is performed by a matrix multiplication (see section 2.8).
If the original source was a 24 fps motion picture, and the display device is 60 Hz., the frame rate
can be converted using ‘three two pull down’, a method which will alternately replicate frames from

the 24 fps sequence two and three times to output a 60 Hz. sequence.
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Chapter 6

Computer Simulations

Computer simulations of the system described in Chapter 5 were developed using the *C’ program-
ming language.

The coding system was simulated on a test sequence Alley, a 24 fps non-interlaced RGB sequence
of two figures in an alley in animated conversation, with one figure crossing in front of another. The
processed image size is 640 pels horizontal by 480 pels vertical.

The Alley sequence presents the challenge of correctly detecting rapidly moving arms and legs,

reflections of moving objects, occluding figures, panning and zooming.

6.1 Preprocessing

The input sequences were converted from RGB color space to YUV using the equations:

Y = 0.299R+ 0.587G + 0.114B (6.1)
B-Y
U= 2.03 (6.2)
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(6.3)

or in matrix form, see equation (2.15).

6.2 Motion Estimation

Keyframe spacing of 4 for Alley was used for these simulations. These numbers were chosen as a
reasonable trade off between reduced keyframe rate and increased interpolation error. This spacing
corresponds to a time interval between keyframes of 167 milliseconds.

The multiframe search used the parameters in Table 6.1. The number of search stages is the
number of levels in the hierarchical search. X and Y direction window spacing is the block size in
the interpolated image that is assigned one displacement vector. In this case, each 8x8 block is given
a displacement vector.

Window size X and Y are the size of the window used in the displacement estimation search for
each level of the hierarchical search. The first level used a 32x32 window, the second level a 16x16
window, and the last level an 8x8 window. Subsample factor is the rate of subsampling within the
search window, ie. the first level search uses subsampling by four both horizontally and vertically.

The number of search steps and minimum search step size determine the range of the logarithmic
search pattern. For example, the first level of the search hierarchy performs the motion estimation
in four steps with the minimum displacement of four pels. The first step will search over & 4 * (1 *
2 * 2% 2) = + 32 pels, the next step over & 4 * (1 * 2 * 2) = £ 16 pels, etc. This gives a maximum
search area through the three levels of the hierarchy of + [(4+8+16+32) + (244) + (142)] = + 69
pels. Movement in real scenes rarely exceeds this displacement.

The thresholds at the bottom of Table 6.1 are explained in section 6.2.1 below.

64



number of search stages

3 levels

x direction window spacing 8 pels
y direction window spacing 8 pels
window size x || 32 pels | 16 pels | 8 pels
window size y || 32 pels | 16 pels | 8 pels
boxfilter length || 33 pels | 5 pels | 3 pels
subsample factor x 4 2 1
subsample factor y 4 2 1
number of search steps 4 2 2
minimum step size 4 pels | 2 pels | 1 pels
average pel difference motion threshold 6
pel difference over threshold count 18

Table 6.1: Parameters used in the multifield matching motion estimation search.

6.2.1 Segmentation

Prior to beginning the displacement estimate the images are segmented into moving and non-moving
areas based on 8x8 blocks. The classification is done as follows. Each pel in the first keyframe is
compared to the corresponding pel in the next keyframe. If the absolute value of this difference
exceeds a threshold, a counter is incremented. If the counter exceeds a maximum the block is
declared moving. A threshold of 6 and a maximum count of 18 were used for these simulations.
The segmentation is done over a temporal block, eg. all blocks in the intermediate frames with the
same X,y location have a single moving/non-moving determination. A bar graph of the percentage
of non-moving areas for the sequence Alley is shown in Figure 6.1.

The motion estimation is performed only on those blocks which are classified as moving. This

segmentation has two effects:

1. Search time is improved significantly since only moving areas are searched.

2. False motion around moving objects is reduced, resulting in a more accurate interpolation.
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Figure 6.1: Graphical illustration of the percentage of the frame area classified as non-moving in
Alley sequence.
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6.2.2 Prefiltering

The next step is to filter the images before performing the motion estimation search. This is done to
reduce the possibility of converging on a local minimum of the matching criterion and to force the
cross correlation functions to act in a more isotropic manner. The filtering also reduced low level
noise present in the image. The lowpass filtering is performed using a simple two dimensional box
filter. This gives adequate performance at very low computational cost. Each sample requires only
four operations (two additions and two subtractions) regardless of the filter length (Section 4.4).

The original images are filtered before each level of the hierarchical search. The length of the two
dimensional filter is determined by the maximum search distance for a given level of the hierarchy.
The length used was

For this simulation that gives filter lengths of 33,5, and 5 for the three levels of the hierarchy.

6.2.3 Displacement Search

The motion estimation is carried out on the uncoded luminance signal. The first level of the hierar-
chical search is performed on 32 x 32 blocks extending +32 pels, with a minimum granularity in the
search of four pels. During this initial estimate, the blocks are also subsampled by a factor of four.
By subsarmpling within the search window, this considerably speeds up the search without affecting
the accuracy of the displacement estimate significantly.

The next level of the hierarchical search is performed using 16x16 windows. The estimate from
the previous search is used as the initial estimate for this search. This is performed over +4 pels
with a minimum granularity of two pels. Subsampling by a factor of two within the window is used

at this level.
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The final search is performed using 8x8 windows. This search extends over 2 pels in single pel
intervals. No subsampling is used at this level. The motion vectors obtained are then coded using
the arithmetic coder (section 6.6) before transmission.

A visual display of the displacement vectors superimposed on the original frames is shown in

Figures 6.2 to Figure 6.6.

6.3 Keyframe Coding

The keyframes are coded in one second segments, eg., six keyframes at a time. This gives a reasonably
small atomicity for random access, while allowing the use of the redundancies between keyframes to
reduce the size of the LUTs. The cost in bit rate of transmitting the LUT'Ss for the six keyframes is
amortized over a one second period.

The keyframes are decomposed into a three level pyramid using the QMF filters plotted in Figures
6.7 and 6.8, and listed in Appendix B, B.1. These analysis filters are separable two-dimensional
symmetric filters of length 9. The two highest levels (Level 1 and 2) are noise cored before further
processing. The noise coring is a simple thresholding; if the absolute value of a sample is less
than three, it is replaced by zero. The noise coring considerably reduces the size of the LUT and
increases the efficiency of the k-d tree search. There are many samples near zero that are relatively
unimportant. The noise coring avoids this low level noise being split into many regions increasing
the code book size. A typical keyframe pyramid decomposition is shown in Figure 6.9.

Next, the code books are calculated using an error limit based k-d tree search. This simulation
coded each subband separately; no joint redundancies between subbands at a given level are utilized.
It was found that the code book size increased significantly when the subbands were jointly coded
eg., there is little correlation between the subbands at a given level.

Level one is coded using 8x8 blocks of pels, level two using 4x4 blocks, and level three is scalar
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Figure 6.2: Displacement vectors for Alley sequence frames 1 to 3
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Figure 6.3: Displacement vectors for Alley sequence frames 25 to 27
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Figure 6.4: Displacement vectors for Alley sequence frames 49 to 51
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Figure 6.5: Displacement vectors for Alley sequence frames 73 to 75
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Figure 6.6: Displacement vectors for Alley sequence frames 96 to 99
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Figure 6.7: Lowpass filter used both horizontally and vertically in subband pyramid analysis
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Figure 6.8: Highpass filter used both horizontally and vertically in subband pyramid analysis



Figure 6.9: A typical keyframe pyramid decomposition from the Alley sequence
76



level ]| block size select split bound
HH ] HL 1 LH | LL
1 4x4 peakerr | mean || maxe mse 8.0 [ maxe mse 8.0 maxe mse 8.0 na
2 2x2 peakerr | mean || maxe mse 20 | maxe mse 20.0 | maxe mse 20.0 na
3 1x1 mse mean psnr 44 psnr 44 psnr 44 psnr 48
Table 6.2: Error limits used in coding the keyframes for Alley
level || block size select split bound
HH T HL ] LH ] LL
1 4x4 peakerr | mean || maxe mse 23.5 | maxe mse 23.0 | maxe mse 23.0 na
2 2x2 peakerr | mean || maxe mse 23.5 | maxe mse 23.0 | maxe mse 23.0 na
3 1x1 mse mean el psnr 34.0 el psnr 34.5 el psnr 43.5 el psnr 48.0

Table 6.3: Error limits used in coding the residuals for Alley

quantized. The parameters used are summarized in Table 6.2. In this table, ‘Select’ refers to the
method used to select the branch at each split point. ‘Peakerr’ selects the branch with the lower
peak error, and ‘mse’ selects the branch with the lower mean square error. ‘Split’ is the method
used to split the vector space. ‘Mean’ splits at the geometric mean. Termination of the splitting is
determined by ‘bound’; splitting ceases when the error metric falls below the bound. ‘Maxe mse’
refers to maximum error measured as a mean square. ‘Psnr’ refers to peak signal to noise ratio.

The bounding criteria of maximum error was chosen for the higher levels (levels 1 and 2) of the
pyramid. These higher frequency bands contain spatially localized information such as edges. The
‘maxe’ criteria will assign code words to these higher amplitude blocks, preserving more important
information. The peak signal to noise bound used for the lowest levels will maintain good quality
for these important bands.

The keyframes are rendered using the code books calculated with the k-d tree search. The indices
(codes) and LUTs are entropy coded using the arithmetic coder before being sent to the channel.

The keyframes must be decoded at the transmitter before MCI and residual coding. The rendered
keyframe subbands are decoded by indexing into the LUTs. The keyframes are then synthesized

from the three levels of the pyramid using separable symmetric analysis filters as in Table B.1.
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Figure 6.10: Interpolated intermediate frame pels from bilinearly interpolated pels in the keyframes

These decoded keyframes used in the transmitter are identical to the ones that the receiver will

decode and use for its MCI.

6.4 Calculating Residual Frames
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