
Motion Compensated Interpolation
for Subband Coding
of Moving Images

by
Mark Daniel Polomski

B.E., Electrical Engineering
SUNY at Stony Brook (1987)

Submitted to the Department of
Electrical Engineering and Computer Science

in Partial Fulfillment of the
Requirements for the

Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

October 1993

@ 1990, 1993 Mark Daniel Polomski

The author hereby grants to MIT permission to reproduce and to distribute copies of this thesis
document in whole or in part.

Signature of Author:

Certified by:

Accepted by:

Department of Electrical Engineering and Computer Science
October 4, 1993

6. 93.
Bernd irod

Assistant f•rfessor, Media Laboratory
Thesis Supervisor

%qU'" a IA r f - r . I- -

.UIBRAUE T

LIBRARIES

rossor F. R. Morgenthaler
hairman, Comtt 'e on Graduate Students

Eng,

Motion Compensated Interpolation
for Subband Coding

of Moving Images

by

Mark Daniel Polomski

Submitted to the Department of Electrical Engineering and Computer Science
on May 25, 1990 in partial fulfillment of the

requirements for the Degree of
Master of Science in Electrical Engineering

ABSTRACT

With emergence of multimedia, CD-ROMS, and high speed networks there is a need for reducing
the data rate for transmission and storage of images without severe loss of quality. An image com-
pression system is presented based on motion compensated interpolation using multiframe matching
techniques and subband analysis of keyframes and residual (error) frames, followed by vector quan-
tization and arithmetic coding.

Multiframe matching differs from conventional block matching in that the intermediate frames
are used in addition to the keyframes for motion estimation. Multiframe matching significantly
improves the efficiency of motion compensated interpolation.

Keyframes and residuals are coded using a quad-split pyramid. The subbands are then coded
using variance-normalized, error limited vector quantization. The vector fields, vector quantization
codebooks, and look up tables are losslessly coded using arithmetic coding.

In computer simulations, bit rates below 2.5 megabits per second are achieved with high quality
reconstruction at the receiver. All simulation computations are carried out using integer precision
arithmetic.

Thesis Advisor: Bernd Girod
Assistant Professor, Media Laboratory

Contents

1 Introduction

1.1 Thesis Overview

2 Background

2.1 Low Bit-Rate Image Coding

2.2 Human Visual System

2.3 Transform Coding

2.3.1 Subband Coding

2.3.2 DCT Coding

2.4 Interframe Coding

2.5 Motion Compensated Coding

2.5.1 Motion Compensated Prediction .

2.5.2 Motion Compensated Interpolation

2.5.3 Motion Estimation

2.6 Vector Quantization

2.6.1 Codebook Determlination

2.6.2 Bit Allocation. ..

. 3

...............

...............

...............

...............

ooooooooooooo..

. . .o . .o .o o . o

o o.°

2.7 Entropy Coding

2.7.1 Huffman Coding

2.7.2 Arithmetic Coding

2.8 Color Coding

3 Motion Compensated Interpolation: Theory

3.1 Mean Square Estimation

3.2 Image Models

4 Motion Estimation

4.1 Block Matching

4.2 Multiframe Matching

4.3 Hierarchical Multiframe Matching . .

4.4 Prefiltering

5 Coding System for High Quality/Low Bit

5.1 Overview

5.2 Preprocessing

5.3 Encoder

5.3.1 Motion Estimator

5.3.2 Keyframe Encoder

5.3.3 Motion Compensated Interpolator

5.4 Decoder

5.4.1 Chrominance Decoding

5.4.2 Post processing

......................

.......

and Limitations

.o ° •

.°° ° o . .

Rate

.

Coding of Motion Sequences

..............

.............

..............

..............

..............

.............

.............

.............

.............

6 Computer Simulations 63

6.1 Preprocessing 63

6.2 Motion Estimation 64

6.2.1 Segmentation 65

6.2.2 Prefiltering 67

6.2.3 Displacement Search 67

6.3 Keyframe Coding 68

6.4 Calculating Residual Frames 78

6.5 Residual Coding 79

6.6 Arithmetic Coding 86

6.7 Chrominance Coding 87

6.8 Decoding 90

6.9 Postprocessing 90

6.10 Results 90

7 Conclusions 101

A Computational Complexity and Hardware Implementation 103

B Filter Coefficients 105

C Acknowledgments 107

Bibliography 108

List of Figures

2.1 Line visibility thresholds as a function of distance from three luminance edges; Con-

trast ratios -L = 27.5, 8.7, 2.75. (from Netravali and Haskell [63]) 6

2.2 Contrast sensitivity of the Human Visual System. (o = 1 Hz. * = 6 Hz. A = 16 Hz.

A = 22 Hz.) (From Netravali and Haskell [63]) 7

2.3 Contrast sensitivity of the Human Visual System. (0 = 5 cpd . = 4 cpd A = 16 cpd

A = 22 cpd) (From Netravali and Haskell [63]) 8

2.4 Modulation frequency needed to keep a flickering light of different frequencies at flicker

fusion threshold. (from Kelly [43]) (9300 trolands is approximately the brightness of

a CRT display) 10

2.5 Zig-Zag scanning order of DCT coefficients 14

2.6 Fixed interpolation using four-way weighted average 14

2.7 Motion compensated interpolator 16

2.8 Block Matching. Frames n and n + 3 are keyframes. Data from the keyframes only

are used in the pattern matching 18

2.9 An example of building a Huffman code 25

3.1 An isotropic two dimensional autocorrelation function 32

3.2 Measured and modeled mean square error using autocorrelation function R(z, y) =

a2a a (z2+y2)..

3.3 Measured vs. modeled mean square error using autocorrelation function R(x, y, 7) =

a2(r)a-a(2X2
+y 2). The model is weighted by the percentage of area of each frame in

m otion .

3.4 Measured normalized mean square error using coded and uncoded keyframes in Alley

sequence .

4.1 Two dimensional logarithmic search .

4.2 Conjugate direction search.

4.3 Three step search

4.4 Example showing how a single displacement vector is used for each Three-dimensional

volum e

4.5 Comparison of Multiframe matching

with and without pre-filtering

4.6 Comparison of Multiframe matching

with and without pre-filtering

4.7 Comparison of Multiframe matching

with and without pre-filtering

4.8 Comparison of Multiframe matching

with and without pre-filtering . .

vs. Block matching with frame spacing = 2,

Block matching

Block matching

Block matching

Block matching

4.9 Hierarchical multiframe matching displacement estimator . . .

Motion compensated interpolation system coder

Motion compensated interpolation system decoder

with frame

with frame

with frame

spacing =

spacing =

spacing =
spacing =

A A

5.3 Multiframe Matching. Frames n and n + 3 are keyframes. Data from the keyframes

and intermediate frames are used in the pattern matching. 55

5.4 K-step search pattern 56

5.5 Block diagram of keyframe encoder. 59

5.6 Block diagram of pyramid analysis QMF filters. 60

5.7 Block diagram of pyramid synthesis QMF filters. 61

6.1 Graphical illustration of the percentage of the frame area classified as non-moving in

Alley sequence. .. 66

6.2 Displacement vectors for Alley sequence frames 1 to 3 69

6.3 Displacement vectors for Alley sequence frames 25 to 27 70

6.4 Displacement vectors for Alley sequence frames 49 to 51 71

6.5 Displacement vectors for Alley sequence frames 73 to 75 72

6.6 Displacement vectors for Alley sequence frames 96 to 99 73

6.7 Lowpass filter used both horizontally and vertically in subband pyramid analysis . 74

6.8 Highpass filter used both horizontally and vertically in subband pyramid analysis . 75

6.9 A typical keyframe pyramid decomposition from the Alley sequence 76

6.10 Interpolated intermediate frame pels from bilinearly interpolated pels in the keyframes 78

6.11 Interpolated recreation of frame 1 of the Alley sequence 80

6.12 Residual from frame 1 of the Alley sequence 81

6.13 Interpolated recreation of frame 25 of the Alley sequence 82

6.14 Residual from frame 25 of the Alley sequence 83

6.15 Interpolated recreation of frame 49 of the Alley sequence 84

6.16 Residual from frame 49 of the Alley sequence 85

6.17 Gaussian decimation filter used in chrominance coding 88

6.18 Gaussian interpolation filter used in chrominance coding 89

6.19 Lowpass filter used both horizontally and vertically in subband pyramid synthesis 91

6.20 Highpass filter used both horizontally and vertically in subband pyramid synthesis 92

6.21 Luminance and Chrominance PSNR for Alley sequence. 98

List of Tables

3.1 Percentage of area classified non-moving in Alley sequence

6.1 Parameters used in the multifield matching motion estim;

6.2 Error limits used in coding the keyframes for Alley . . .

Error limits used in coding the residuals for Alley .

Comparison of the average energy of keyframes and residi

6.5 Error limits used in chrominance coding..

Channel bit rate for Alley sequence frames 0 -+ 20

Channel bit rate for Alley sequence frames 21 -- 44 .

Channel bit rate for Alley sequence, frames 45 --, 68

Channel bit rate for Alley sequence frames 69 --, 92 .

Channel bit rate for Alley sequence frames 93 -, 116

Displacement vector bit rates for Alley sequence . . .

Channel bit rate for Alley sequence Chrominance . .

Fraction bandwidth allocation for Alley simulation .

ation search. 65

. 77

. 77

uals in Alley. 79

. 88

. 93

. 94

. 95

. 96

. 97

. 97

. 99

. 99

A.1 Worst--case comparison operations for a multiframe search as used in the computer

simulations on Alley sequence using 4800 vectors per four frame set.

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

103

A.2 Worst-case comparison operations for block search in a motion compensated predic-

tive system using +7 pel search area, using 4800 vectors per four frame set 104

B.1 QMF analysis and synthesis filters used in pyramid decomposition 105

B.2 Gaussian Decimation / Interpolation Filters used in chrominance coding 106

Chapter 1

Introduction

1.1 Thesis Overview

The organization of this thesis follows: Chapter 2 presents background material on image compres-

sion techniques. Chapter 3 presents theory on the performance of motion compensated interpolation

on noise-free keyframes, as well as the effects of coding noise in the keyframes and on the perfor-

mance of motion compensated interpolation. A discussion of motion estimation techniques follows

in Chapter 4.

A coding system for high quality image transmission or storage is presented in Chapter 5. This

system incorporates many of the image compression techniques discussed in the previous chapters.

Motion compensated interpolation is the heart of the coding system. Keyframes and residuals are

coded using a pyramid decomposition which is vector quantized. The output of the vector quanti-

zation is adaptively followed by arithmetic coding. The lowest frequency subbands are predictive

coded before arithmetic coding.

Chapter 6 presents the results of computer simulation of the coding system and the parameters

used to obtain those results. Conclusions are presented in Chapter 7.

Three appendices follow: Appendix A presents calculations of the computational complexities

associated with motion estimation and motion compensated interpolation. Appendix B lists the

values of filter coefficients used in the simulations. And finally, Appendix C thanks the many people

responsible for helping me in this endeavor.

Chapter 2

Background

2.1 Low Bit-Rate Image Coding

Recently there has been interest in low bit rate image coding for both transmission and storage

of images [3, 52, 68]. Image data reduction enables motion pictures to stored and manipulated by

personal computers and transmitted over cost effective links, such as T1 (1.5Mbit/sec) telephone

lines or standard computer networks. Such compression may enable movies on demand or multi-

media workstations where image audio and other data types are easily manipulated on a computer

screen[94].

The basic goal of low bit-rate coding is to reduce the amount of data necessary for transmission

or storage while maintaining acceptable image quality. The problem is twofold: First, by exploiting

psychovisual properties of the human visual system (HVS) irrelevant information is removed. Sec-

ondly, the statistical correlations between the data are exploited to remove redundant information.

However, limitations of the channel bandwidth or storage device may require further reduction in

data. resulting in noticeable loss of quality.

Interframe techniques exploit the redundancies between frames in a sequence of images for data

reduction. Intraframe coding uses the redundancies within a single frame for data reduction.

Some standards for image coding are currently emerging. The Joint Photographic Experts Group

(JPEG) standard for coding still images [97] is based on the Discrete Cosine Transform (DCT) with

the coefficients coded using Huffman coding or arithmetic coding.

Px64, a teleconferencing standard for real time coding sequences of moving images, uses motion

compensated prediction for interframe coding, with the prediction residual error coded using DCT's,

which are quantized and Huffman coded. As the intended use is teleconferencing, this standard

supports relatively low resolution at very low bit rates. Px64 operates in channels with multiples of

64 Kbits per second. A similar coding standard, CCITT Nx384, operates in multiples of 384 Kbits

per second. This coding is similar to px64, as both use DCT and motion compensation. The higher

bit rates allow higher quality than the teleconferencing standard, but this is still a sequential access

system; that is, all frames from the starting frame must be decoded to reach any one frame.

The Motion Pictures Experts Group (MPEG) is developing a standard for high quality, low

bit-rate coding of image sequences. The current proposals use motion compensated prediction or in-

terpolation followed by DCT coding of the residuals to obtain compression. One of the requirements

for MPEG is a low seek latency to allow random access, making it suitable for interactive use.

Some traits that are desirable for an interactive motion picture coding system are:

* Scalability. It is desirable to be able to trade off spatial or temporal resolution versus bit-rate,

or spatial resolution versus temporal resolution. This may enable a user to view multiple

sequences at a reduced resolution. A network movie server would then be able to reduce

spatiotemporal resolution if the network use becomes too high. Temporal Scalability allows

outputs at variable frame rates.

* Random Access. In data storage and retrieval systems random access with a reasonable latency

is desired. Purely predictive systems require the recreation of all previous frames before the

desired frame may be displayed. For this reason, fast forward is difficult, requiring decoding

to be performed at rates higher than the basic frame rate. Also, reverse replay requires large

numbers of frame stores in predictive schemes.

2.2 Human Visual System

The final receiver of an image coding system is the human eye. For this reason, an understanding

of the HVS is important in image compression [65, 73]. It is this understanding which enables us to

eliminate irrelevant information while maintaining acceptable picture quality.

One important aspect of the HVS is masking (reduction in the visibility of stimuli) due to a

complex non-uniform background. Spatial masking occurs when there is a large change in luminance

(eg. an edge) causing reduced visibility on both sides of the edge. This masking effect is more

pronounced for edges of high contrast [63]. Figure 2.1 shows line visibility as a function of distance

from edges.

This masking is taken advantage of in Differential Pulse Code Modulation (DPCM) quantizers,

which use unequal quantization steps. Large transitions can be coarsely quantized due to this

elevation of the visibility threshold.

Spatial contrast sensitivity varies with spatial and temporal frequency, but is also a function

of contrast and viewing distance. The dependence on viewing distance can be eliminated if the

frequency is expressed in cycles per degree subtended. Figure 2.2 shows spatial contrast sensitivity vs.

spatial frequency for several values of temporal frequency, and Figure 2.3 shows temporal frequency

contrast sensitivity vs. temporal frequency for several spatial frequencies.

Some important points in the context of image coding are:

o Contrast Sensitivity falls off at higher frequencies; the peak sensitivity is around 4 cycles/degree.

LINE STRENGTH

6

5

4

18 24

DISTANCE FROM EDGE (MIN. OF ARC)

Figure 2.1: Line visibility thresholds as a function of distance from three luminance edges; Contrast
ratios a_ = 27.5, 8.7, 2.75. (from Netravali and Haskell [63])LD

r

300

100

CONTRAST
SENSITIVITY

30

0.3 1 3 10 30
SPATIAL FREQUENCY (CYCLES/DEGREE)

Figure 2.2: Contrast sensitivity of the Human
A = 22 Hz.) (From Netravali and Haskell [63])

Visual System. (o = 1 Hz. * = 6 Hz. A = 16 Hz.

-I- I I I f i llI I- I I I fi l l I I i

300

100

CONTRAST
SENSITIVITY

0.3
I I II

1 3 10 30
TEMPORAL FREQUENCY (CYCLES/SECOND)

Figure 2.3: Contrast sensitivity of the Human Visual System. (o = 5 cpd . = 4 cpd A = 16 cpd
A = 22 cpd) (From Netravali and Haskell [63])

. I I I I
1 I I tI ll I1 1 1 1 111

a Horizontal and vertical orientations have the greatest contrast sensitivity.

Interframe coding can take advantage of temporal masking and perception. Masking effect will

depend on whether the eye is tracking the movement or not. Humans have higher acuity to tracked

objects, while randomly moving objects which are untracked have significant reduction in perceived

resolution. It is important that tracked moving areas, especially those with edges, do not have

appreciable noise added by an image coding process [28].

In the case of drastic movement, which the eye cannot track, the perceived spatial resolution is

lowered. Scene changes can be coded at reduced resolution, provided that resolution is gradually

restored. Unfortunately it is impossible to know apriori whether or not viewers of an image will be

tracking moving areas, thus making this property difficult to use in a practical system.

At lower temporal frequencies the HVS is very sensitive to flickering. The sensitivity to flickering

also depends on the luminance level and the ambient luminance. At the brightness level of a typical

Cathode Ray Tube (CRT) display, the sensitivity to flicker is at a maximum around 15 Hz. (Figure

2.4). Above 70 Hz. flickering is essentially imperceptible. At lower frequencies the sensitivity falls off

considerably. The flicker threshold is an important consideration in compression systems where the

coding method varies in time, eg. keyframes inserted in a predictive system, interframe interpolation,

and systems with reduced chrominance refresh rate.

2.3 Transform Coding

Transform coding uses filtering techniques to achieve data, compaction [58, 98] by transforming da.ta

from one domain to another, eg. space to frequency, or by dividing the data into different frequency

regions. Transform coding does not achieve data compression in itself, but merely converts the data

to a more convenient form for bit allocation. The transformed output data. is then reduced using

methods such as s runlength coding, Differential Pulse Code Modulation (DPCM), quantization,

A &LMII~.LI I Iikl AI M
NA INL.

MODULATION
AMPLITUDE AL (TROLANDS)

U.03

0.03

0.1

0.3

4

3

30

100

300

1000

4 3
FREQUENCY

Figure 2.4: Modulation frequency needed to keep a flickering light of different frequencies at flicker
fusion threshold. (from Kelly [43]) (9300 trolands is approximately the brightness of a CRT display)

10
IN CYCLES

30
PER

100
SECOND

. m m I II - B

-

-

-

-

and entropy coding.

Block transforms such as the Discrete Cosine Transform (DCT), Discrete Fourier Transform

(DFT), and Hadamard and Karhunen-Loeve transforms operates on a single block of data at a

time. Overlapped transforms, such as subband decompositions, use data from neighboring samples

to separate the source into different frequency bands.

2.3.1 Subband Coding

Subband coding is a method in use for data compression of images [14, 15, 21, 42, 87, 90, 92, 101, 102].

In subband coding an input sequence is split up into spatial or spatiotemporal frequency subbands

via filtering, often using quadrature mirror filters (QMF's). By exploiting the different probability

distributions within the subbands [17, 100] and the importance of each subband relative to the acuity

of the HVS, the available bandwidth can then be efficiently allocated by a coder. For example, the

HVS is more sensitive to the low spatial frequency band than the highest spatial frequency band

[16], and the HVS spatial frequency response to diagonals is lower than the response to horizontals

and verticals [82]. Thus, fewer bits per picture element (pel) can be spent on certain of the frequency

bands. Other bands which contain more important information relative to the response of the HVS

should be carefully coded.

It is interesting to note that similar conclusions about the relative importance of the various

frequency bands can be obtained by energy considerations. The highest frequency bands contain

little average energy per sample. Coding each band to equal distortion criterion will allocate bits

roughly in proportion to the frequency band's importance to the HVS.

In low bit-rate image transmission systems, these subbands are then coded using a redundancy

reduction technique, such as vector quantization (VQ) [14, 15, 80, 92, 101].

2.3.2 DCT Coding

The DCT, a linear orthonormal transform, is the most common block transform used in image coding

[61]. DCT coding has been used on source images [2, 40, 95], residuals [4, 22, 47, 55], and subbands.

The input image is tiled into non-overlapping NxN blocks and each block is separately transformed.

The DCT transform method can approach the efficiencies of Karhunen-Loeve transform [63] at a

much lower level of computations.

The transform may be performed by matrix multiplication

C=TST' (2.1)

where C is the transformed output (coefficients) T is the DCT basis matrix, and S is the source

block (matrix). The basis matrix is given by

i 2 -61 i ios - - (2.2)
N N 2

i,j = 1...N

1 if p = 0

0 otherwise

The inverse (IDCT) is found by

C = T' ST (2.3)

Fast discrete cosine (FCT) algorithms have been developed [53] which use on the order of N log N

operations versus the N 2 for direct computation. Typical block sizes used are 8x8, 4x4 and 16x16.

The DCT in itself does not give any data compression, but it compacts the energy into a few

frequency bands which can then be imore efficiently quantized. Most often the coefficients a.re scanned

in a zig-zag fashion (Figure 2.5) before quantization. The highest frequency coefficients very often

are zero or quantized to zero, making the zig-zag scan pattern efficient for run length coding of

the quantized coefficients. It is interesting to note that DCTs can be considered to be subband

decompositions acting on a single block of data partitioning the data into equal sized bands.

One drawback of block transforms is that discontinuities can occur at block boundaries. If the

higher frequency samples are too coarsely quantized this "blockiness" will be apparent. A recent

method to overcome this blocking effect is the Lapped Orthogonal Transform (LOT) [54]. The

image is divided into slightly overlapping blocks before the transform is applied. This results in

fewer visible edge artifacts at equivalent data rates to the DCT.

2.4 Interframe Coding

Interpolative coding can be divided into fixed and adaptive methods. In fixed interpolation, a prede-

termined set of pels is used to recreate the missing pels. For example, a four way weighted average

of alternate fields (Figure 2.6) is one possible method of fixed interpolation. More sophisticated

methods such as cubic splines or higher order polynomials could be used, but it has been reported

[61, 63] that not much is gained in error reduction at the cost of greater complexity by using more

complicated schemes. One drawback in fixed interpolation coding is the spatial blurring [30] (re-

duced spatial and temporal resolution) that occurs when moving objects are present in the image

sequence due to the low-pass filtering effect of the fixed interpolation filter.

Adaptive interpolation uses varying rules to select which pels in the keyframe are used as the

source for the interpolated pels in an attempt to minimize the error in the interpolated pels. One

such adaptive method that has shown potential is motion compensated interpolation (MCI) [13,

30, 44, 48, 55, 70]. In this method motion vectors representing the translational motion of objects

dcetermine which pels are to be used in the interpolation. Spatial resolution (sharpness of the

Increasing Horizontal Frequency

Increasing

Vertical

Frequency
I

Figure 2.5: Zig-Zag scanning order of DCT coefficients

frame n. fra.me n + 1 frame n + 2

Figure 2.6: Fixed interpolation using four-way weighted average

interpolated image) can be improved using MCI vs. non-adaptive interpolation.

2.5 Motion Compensated Coding

The class of motion adaptive techniques is another method that has been applied to image coding

[55, 61, 62, 79]. Both motion compensated interpolation (MCI) [13, 30, 44, 46, 48, 55] and motion

compensated prediction (MCP) [25, 38, 45, 64, 69, 89] have been used for image compression. In

an interpolative coding scheme, a subset of the picture elements (keyframes) are transmitted to

the receiver [63]. The pels that were not selected for transmission are reproduced at the receiver

using displacement information determined from the keyframe images at the receiver, or sent via

side information from the transmitter. In an extrapolative or predictive coding scheme, pels in the

immediate future are extrapolated from past pels [25, 29, 56, 75, 81, 89]. Margoudakis reports in a

comparison of MCI and MCP that the motion compensated interpolation scheme was more stable

and subjectively preferred [55].

2.5.1 Motion Compensated Prediction

Motion compensated prediction uses the previous frame or frames to predict future ones. This tech-

nique is most commonly used for sequential linear playback applications, such as teleconferencing.

Since ea'ch frame uses information from all of the previous frames, this technique is quite efficient.

MCP is better suited for sequential access than random access applications, although some coding

systems use MCP with keyframes inserted at regular intervals to allow some random access. A

predictive system is essentially a sequential access system that would require the recreation of all

preceding frames up to the desired frame making access time prohibitively large.

frame frame
n frame n + 2

(keyframe) n + 1 (keyframe)

Figure 2.7: Motion compensated interpolator

2.5.2 Motion Compensated Interpolation

Random access is an important feature for many image storage and transmission systems [41]. Using

MCI rather than MCP allows recreation of selected frames after retrieving only two key frames and

their associated vector displacement fields. In addition, MCP is suitable for bi-directional replay.

Figure 2.7 shows an example of motion compensated and fixed interpolation. The keyframes,

frames n and n + 2, are transmitted; frame n + 1 is to be reproduced by interpolation. Usually one

displacement vector is transmitted for a block of pels. This is expanded to provide a displacement

vector for each pel in the image. The pel at (xl, yl) in frame n + 1 is interpolated using pels

(xl - dx/2, yl - dy/2) in frame n and (xl + dx/2, yl + dy/2) in frame n + 2, as indicated by the

solid arrow in Figure 2.7. If simple linear interpolation were used, the pel at (xl, yl) in frame n + 1

is interpolated using pels (xl, yl) in frame n and (x 1, yl) in frame n + 2, as indicated by the dotted

arrow in Figure 2.7. This has the effect of introducing motion blur since pels from the background

and the moving object are averaged together.

It is important to note that the transmitted keyframes available at the receiver contain noise

from the coding process. However, the reconstruction is completely known at the transmitter, so an

error signal (residual) can be sent to achieve the best reconstruction for a given bit rate.

For a motion compensated interpolation coder to be successful, the most important factor is

an accurate estimate of the displacement [25, 30, 48, 63]. In addition, in the case of complex

translational motion, rotational motion, or uncovering background, additional side information (an

error signal) may need to be transmitted in order to maintain acceptable quality [38, 63].

2.5.3 Motion Estimation

Several methods for motion estimation are in general use: "pel recursive" [63], pattern matching

[30, 38, 39], transform domain techniques[29, 32, 25], and gradient matching [49]. Another method

that has been used to determine optical flow lines is spatiotemporal filtering[36].

Most of these methods assume the following [39, 61, 63, 71]:

1. Illumination is uniform both spatially and temporally.

2. Objects are moving in a plane parallel to the camera lens.

3. Uncovering of background and occlusion of one object by another is neglected.

Using these assumptions, the monochromatic intensities Y(F, t) and Y(-, t - r) are related by

Y(7, t) = Y(V- d, t - r) (2.4)

where -'is the two dimensional vector of the spatial position within the frame, d is the two dimensional

translation vector, and r is the time difference between the frames. Thus, in real image sequences

an estimate of the intermediate frame ýY(Z', r) can be made from two keyframes by interpolating:

'(-, t) = Y(v-e ,t - r)Wo + Y(F = di,nt + T)W1 (2.5)

where do is the displacement vector from the first keyframe to the intermediate frame, and d- is the

frame frame frame frame
n n+1 n+2 n+3

Figure 2.8: Block Matching. Frames n and n + 3 are keyframes. Data from the keyframes only are
used in the pattern matching

displacement vector from the intermediate frame to the second keyframe. Wo and W1 are weights

such that W0 + W1 = 1. Thus the problem is to estimate d from the intensities of consecutive frames.

The pel recursive algorithm is based on recursively minimizing the motion estimation error based

on a steepest decent algorithm on the two dimensional intensity gradient [63, 69]. The accuracy of the

motion estimate relies on many iterations of the algorithm which can be computationally expensive.

In pattern or block matching algorithms, the assumption is made that there is constant displace-

ment within small two dimensional blocks [39, 103]. The image sequence is modeled as a wide-sense

stationary stochastic process - the best estimate d is an attempt to find the maximum of the cross

correlation of pels in the second frame with a reference pel in the first frame. The displacement d is

estimated over samples in a search area, using matching techniques so as to minimize some measure

of the prediction error

E(d)= DFD (Y(, t), Y(+ d, t + r)) (2.6)
FEB

where B is the block of interest within the image, which is being shifted over the search area. in the

next frame. Figure 2.8 shows an example of block matching.

The difference DFD is some measure of the intensity difference between the pels, such as squared

difference or absolute difference. The precise definition of DFD has little effect on the accuracy of the

estimate or length of search [63). Generally an absolute error is preferred over the computationally

more expensive squared error function. The accuracy of d is limited to a distance of 1 pel. This

could be improved by interpolating between neighboring pels in the source images [27, 29, 25]. Other

methods to improve accuracy include segmentation into moving and non-moving areas before the

displacement is performed [71] (which also reduces the search processing time) and correction of

invalid vectors [44] after the displacement estimation is completed.

The choice of block size B has an effect on the accuracy of the estimator [9]. The block size

should be chosen to contain the minimum feature size, such as a moving hand or limb, in the source

image in order to track such objects. Small block sizes can be used for finer gradations of the

estimate, but the possibility of false positive correspondence increases inversely with window size.

For example, searching over an image of a textured surface such as a sweater, there are many possible

close matches. Accuracy can increase with increased window size up to some point, after which the

accuracy degrades as window size increases due to the inability to track small objects . However,

computational complexity increases quadratically with window size [93] unless the samples in the

block are subsampled during the matching search. Also, too large a window can introduce false

motion as an artifact [49], which is noticeable as a corona of moving background around moving

objects.

Another factor in the accuracy of the estimation is the extent of the pattern matching search.

Too small of a search area may not extend far enough to accurately detect large displacements. On

the other hand, too large of a search area may converge an incorrect match.

The displacement vector fields obtained from the motion estimation are transmitted at one per

keyframe. The interpolating filter needs a displacement vector for each individual pel; thus the set of

displacement vectors must be expanded into an array equal to the dinlensions of the original image.

To avoid block artifacts, a bilinear interpolation can be performed on the displacement vectors to

smooth the expanded vector array. From this expanded array of vectors d' = (dz, dy), the pel at

frame n + i is interpolated using frames n and n + N. In the general case of interpolating N - 1

intermediate frames from two keyframes (frames n and n + N), the interpolation filter weighted

more heavily on the closer keyframe:

Yn+k(Xi, Y) - (2.7)(k g k N N-k N-k

Yn(zi - dxi k, y - dyi -) + Yn+N zi + dxi N - + dyi .N N N + N ' N N

Care must be taken to avoid over smoothing the vector field; too much smoothing can result in

artifacts which often look as if drops of water had blended neighboring samples together.

2.6 Vector Quantization

Vector Quantization (VQ) is a statistical coding method which maps multiple samples in the source

alphabet to a single codeword. Even if coded in a lossless manner, multiple samples will always

have an entropy less than or equal to the single sample entropy [10, 23, 85]. This mapping must be

known at the receiver; generally a code book is transmitted. If the number of samples mapped to

each codeword is too large, the cost in channel bitrate of transmitting the code book can negate the

savings of jointly coding multiple source letters.

The technique of vector quantization originally was developed for speech coding [51, 72] , but

now is commonly used in image processing [1, 5, 6, 7, 8, 11, 14, 15, 17, 18, 31, 33, 34, 52, 56, 61, 74,

86, 88, 91, 92, 96, 101, 104]. It is especially well suited for pyramnid coding as the separate subbands

can be coded to meet bit allocation or error criteria. tailored to the energy in that band or the band's

relative importance to the HVS.

2.6.1 Codebook Determination

The vector quantization process divides a source space into non-overlapping regions and maps all

samples in that region to a single codeword ie.,., a representative vector is calculated for each region.

These regions are multidimensional volumes within the source domain. Each sample in the source

block corresponds to a dimension or axis in the domain space. The term vector is used as each

sample (block) corresponds to a vector in this multidimensional domain space.

Most often in image coding applications the source image is divided into rectangular blocks of

pels before vector coding, although other partitions have been used. These blocks may also be

grouped with other related blocks. For instance, blocks of pels in RGB space may be grouped

together. Westerink [101] has vector coded blocks from several subbands together.

In order to quantize these blocks, some method of partitioning the source domain must be used.

The first scheme and probably the most common is the Linde, Buzo and Gray (LBG) method [51].

The algorithm starts by making an initial guess for the code book. Each input vector is assigned to

the code which is closest in Euclidean distance from it. An error metric (distortion), most often the

sum of mean-squared-errors, for this code book is calculated. The vectors in the codebook are then

replaced by the centroid of all the source vectors which map to it. The distortion is recalculated and

the process is repeated until the distortion fails to decrease. The LBG algorithm does not guarantee

that the minimum reached will be a. global minimum, and it is computationally intensive.

More efficient algorithms use tree based techniques to split and search the vector space. These

take on the order of n log n operations. K-dimensional trees (k-d trees) have been successfully used

in vector quantization [18, 80, 88].

Once the vector code book has been determinedl, the source image must then be rendered. A

code vector is assigned to each block in the source. If the LBG algorithm is used, each vector is

assigned by a minimum distortion criterion. If a k-d tree was used, the tree is traversed making

scalar decisions based on the data along the split axis for that node. The traversal continues until

a leaf is reached to determine the codeword.

One of the most important features of the k-d tree partition is that the code vectors are sorted

in a manner that is convenient for this rendering process. To render using vectors from the LBG

method, the distortion of each block against the vectors in the entire code book must be calculated.

2.6.2 Bit Allocation

One important reason for using pyramid coding is the flexibility it affords in bit allocation. The

information content in real scenes varies considerably over time. It is useful to allocate the channel

use as the information varies. The quality can be set at some constant level letting the bit rate

vary accordingly. In addition, if buffering is available a period of low information can allow later

more complex scenes to be coded at a higher effective bit rate, while maintaining relatively constant

channel bandwidth. In the case of subband coding, bit allocation can vary between bands as different

spatial bands have nonstationary energy distributions.

Early work in VQ used a fixed codebook size to bound the channel use. This has the draw-

back that quality varies with content; more complex scenes that contain more information will be

reproduced at a lower quality level than others. More recent work [19, 80] has used error limits to

bound the size of the codebook. With this method the domain continues to be split until the desired

distortion level is reached. The distortion metric may be mean-squared error, maximum peak error,

peak signal to noise ratio , mean-squared signal to noise ratio or some other metric.

2.7 Entropy Coding

In this thesis the term Entropy Coding is used for any method that losslessly reduces the number

of bits necessary to represent a data set, eg. attempts to reach an average number of bits per word

that approaches the entropy, H of the source:

H = - Qn log2 Q. (2.8)

where Q, is the probability of the source letter n occurring.

2.7.1 Huffman Coding

Huffman coding [37] has long been used to reduce the data rate needed to transmit a source. Huffman

coding is a fixed length to variable length coding technique. The Huffman technique allocates the

fewest bits per sample to the most common source letters and more bits per sample to the less

common source letters. The output code words are concatenated to form a prefix or suffix code that

can be uniquely decoded [10, 23]. Each symbol's length approximates the entropy of that symbol.

Ln= [- log 2 (Qn)] (2.9)

where [-1 is the next larger integer greater than or equal to -, and Q, is the probability of source

letter n occurring. Thus, the average number of bits per symbol L over a long stream of data is

N
L > H = - Q log2 (Qn) . (2.10)

i=1

Where H is the entropy of the source as defined in Equation 2.8.

Actually L is bounded on both sides [23]

H + 1 > L > H. (2.11)

Forming the code book is the most computationally intensive part of Huffman coding. The code

book is formed by building a tree. The N letters in the source alphabet are the leaves of the tree,

each of which is assigned a probability Q, [24]. Figure 2.9 shows an example of Huffman prefix code

assignment using a tree. The probability distribution Q may be obtained from the sample statistics

or may be based on some apriori model of the source. The two least probable leaves are joined into

a node. This node assumes the probability of the sum of the probabilities of the two leaves. Each

branch is assigned a zero or a one according to whether it is the left or right branch. The node is

now treated as a leaf in the next grouping of the two least probable leaves. This grouping continues

until the root node (with probability one) is reached. The code word for each source letter is found

by following from leaf to root reading off the binary digits. This codebook can now be used as a

look-up table to encode the source. The variable length codewords are then concatenated, before

being sent through the communication channel.

Decoding is done by scanning through the transmitted bits branching left or right through the

tree as each bit arrives. A code word is known to be complete when a leaf is reached, the decoded

letter is emitted and a new tree walk started.

Note that the number of bits for each symbol in a Huffman code must be an integer. This is the

major limitation of this coding method.

2.7.2 Arithmetic Coding

Arithmetic coding is another method of fixed length to variable length coding that has recently

become more popular [50, 57, 60, 76, 77, 78, 84]. It is referred to as arithmetic coding because it

24

Letter Code Word Probability

al 0 0.40

a2 100 0.20

a3 101 0.15

a4 110 0.15

111 A in
U5 1L1 u.Ju

Figure 2.9: An example of building a Huffman code

compiles a code string which is the arithmetic combination of the probabilities of the individual

symbols. The major advantage of arithmetic coding over Huffman coding is that the number of

bits per symbol is not constrained to be an integer, so it can more closely approach the theoretical

entropy limit. The coding process involves the addition of binary fractions rather than concatenating

integer length code words.

Arithmetic coding performs a mapping of a source sequence ao, al, a2, ... to a point x on the

interval [0, 1) which represents the cumulative probabilities of the symbols ao... a,. The value of x

in the interval [0, 1) can be expanded in negative powers of two as

o00

x = 2-(i+1) (2.12)
i=0

where each of the xi is a binary digit. This mapping of the source string to the unit interval is

done in such a way that z is uniformly distributed in the interval [0, 1), thus each of these Xi are

statisticly independent and each has equal probability of being 0 or 1.

Each member of the source alphabet is assigned a subinterval in [0, 1) according to the probability

of that letter occurring. As each letter in the string is emitted by the source, the unit interval is

iteratively divided into subintervals.

This subdivision continues until, due to the finite precision of the code register, no further

subintervals can be made. The code word is then emitted and the process continues. The output

code word associated with each string is the left end point of the interval of interest.

2.8 Color Coding

Color systems are typically characterized by three linearly independent primaries. These can be

transformed through matrix multiplications to other color spaces. Through this change of basis a

color space more suitable for coding can be used. In this manner the energy can be compacted into

channels that are relatively more important to the HVS and thus, can be allocated different portions

of the channel bandwidth.

A transform in which chrominance is orthogonal to luminance matches the HVS well. The

common broadcast standard NTSC color space YIQ, where Y is luminance and IQ are chrominance

[83], is one such color space. This is related to the primaries RGB by

Y 0.299 0.587 0.114 R

I = -0.596 -0.274 -0.322 G (2.13)

Q 0.211 -0.522 0.311 B

and the inverse

R 1.0 0.956 0.623 Y

G = 1.0 -0.272 -0.648 I (2.14)

B 1.0 -1.105 0.705 Q

Another commonly used color space is YUV

.299 .587 .114 R

U = .701 -.587 .500 G (2.15)
-.299 -.587 .886

V B

and YUV to RGB

R 1.00 1.00 0.00

G = 1.00 -.509 -.194 U (2.16)
1.00 0.00 1.00

B V

Note that the inverse YUV (equation 2.16) needs only two multiplications and four additions

for each three sample conversion versus the inverse YIQ which needs six multiplications and six

additions. This could be a factor in a broadcast type system with few transmitters and many

receivers.

The temporal response of the tVS to chrominance is less than the response to luminance. Some

coding schemes [14, 80] have updated chrominance at half the rate of luminance with little perceptible

loss of quality.

The chrominance components are closely related to luminance. This correlation has been used

in reducing the total amount of data for the color image system [12]. The three color components

may also be treated as a single vector and vector quantized as such [104].

Chapter 3

Motion Compensated

Interpolation: Theory and

Limitations

3.1 Mean Square Estimation

In this chapter the theory and limitations of Motion Compensated Interpolation will be developed.

We wish to estimate the value of a.n intermediate frame, s(x, y, t + r) 1 < r < N - 1 , where r

is the frame number, from samples a.t s(x, y, t) and s(x, y, t + N) (the keyframes)

npels nlines

s(z,y,t+r) = E E [aj,k,oS(x+j,y+k,t)+a j ,k,NS(+j,y+k, t +N)].
j=O k=O

(3.1)

In this case, we are assuming pure integer displacement of ea.ch pel, so all the ajj,,,n are zero,

except coefficients at t = 0, j = -dz ', k = -dy 1' aj,,o = and at t = N, j = d , k =

d Ny a),k, = , corresponding to the displaced pels in the previous and next keyframes.

Keeping only the non-zero terms in (3.1) gives:

s(X,y,t+) N) S z- (-~ y y t + s z+dz ,y+ (N ,Y++N +NN N N N N N
(3.2)

Define the interpolation error eN(T) as the difference between the true signal s(z, y,t + r) and

the interpolated estimate s(x, y, t + r)

eN(r) = s(x,y,t + r) -(,y,t + r)

s (x,y, t+ r)-

- X ,y-dy • +-s z+dz ,÷ + dy t+
N N ' yN N N

(3.3)

From Equation (3.3) it follows that the mean square value, MS, of the interpolation error is

MS = E [(en(r))2] (3.4)

= E [(s(X, , t + •) - S(x, y, t + T))2 (3.5)

= E [s2 (x, y, +)] + E [2(x, y,t + r)] - 2E[s(x, t, t + Tr)(x, y, t + r)] (3.6)

Where E[.] is the expected value.

Expanding the three terms in Equation (3.6) by using (3.2) gives:

E [s2(, y, t + 7r)] = R(0, 0,0) (3.7)

= E [(N)'·s -d2 z , y-dy-,t)

+()2 S z(x + (NT)N d -N

(+2(- s ZT)-y-(1,
+2N dxN d

,t + N)]

(N R(0,0,0)+ R (0, (o0,0)

+2 (N) RR(dxN R((N-N
N){ - 2+ (- R (0, 0, 0)N N

+2(NT) -R(d,x dy,N)N N

N N N-

(3.8)

SE[s(X, y, t + r)(N s - d - , t)

it+N)}]

dr) - r ,r
N NN

+R (N-7), (N -r), - r) (3.9)

R(.) is the autocorrelation function:

R(u, v, r) = E [s(x, y, t)s(x + u, y + v, t + 7)] . (3.10)

Substituting Equations (3.7),(3.8), and (3.9) into Equation (3.6) gives the following result for

the mean squared error:

MS = R(0, 0 0)+ -() R (, 0, 0)N N
- N- rN N N

E [s(x, y, t + r)S(x, y, t + 7)]

s (z

+-c(N-7)d -N

+2 (NR <,,N)N N

E [i2(X, y, t + r)]

,y+dy N ,t+N

(Ndr , y+ d -(N- N - ,rd -N Ny

+(N) (X ,y+dy N

R (d , dy , N - r

2 N- 7N

R(-, y) = (72-a d(•,y) (3.12)d(, (N) = (N2 + y2). (3.13)(-r) R (dz - ,dy - , -r
N N N

(3.11)

3.2 Image Models

The image correlation function can be modeled as an isotropic function [66], such that the autocor-

relation depends on the Euclidean distance

R(x, y) = o a-a (3.12)

The function d(x, y) is some distance measure such as

d((, y) = (sx + ,y . , (3.13)

The constants a and a together determine the rate that the autocorrelation decreases as you

move away from the origin. This simply means that the correlation is decreasing as you move in

any direction away from the correct point. Figure 3.1 shows a plot of an isotropic autocorrelation
function eO.9g(x+y)2

In the case of pure translational motion, the intensity is related by

S(X, y, t + 7) = s(x + 7 61, y + r by, t) (3.14)

exp[-a(x^2+y^2)^(1/2)]

Figure 3.1: An isotropic two dimensional autocorrelation function

or in terms of the two keyframes at t and t + N

s(X,y,t+r) N x - d N , y - dy s x d y N ,t+N

(3.15)

where the true displacement between t and t + N is dx = N b6, dy = N by. The estimated displace-

ment differs from the true displacement by

dx = dx + e• (3.16)

dy = dy +E y. (3.17)

So, using the autocorrelation function given in 3.12 and 3.13,

R(x, y, 7) = c 2(r)a-a(E 2+ ") (3.18)

From (3.11) and (3.18), the mean square error will be

MS = (N 2 + 2 - N) a2(0) + 2 2(N)-a(+)

2(N- ') r2 (Tr)Ca _L(C+ C2

- 2(N)-a (+ (3.19)

Typical values in real images are 0.90 < a- a < 1 [63]. If an accurate motion estimation was

made using integer pel accuracy, the difference from the true displacement in (3.16) and (3.17) is

from round off errors. Then ex and Ec are bounded less than -. Using the values a2 = 1, -a = 0.90

and c, = e. = 0.50 , and the variance a 2 (7) from the Alley sequence, Equation (3.19) is plotted

0.12

0.1

0.08

0.06

0.04

0.02

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

Figure 3.2: Measured and modeled mean square error using autocorrelation function R(x, y) =
2 -a (z +y)

in Figure 3.2 along with the measured normalized mean square interpolation error for the sequence

using keyframe spacing of four frames. Note that the measured values shown in the graph are the

interpolation mean square errors obtained from interpolation using uncoded keyframes, normalized

by the maximum variance of the keyframes.

It is seen that the curve for the model follows the general shape of the measured curves. Note

that the interpolation error within a set of intermediate frames interpolated with the same vectors

is highest in the center frame, which is the farthest frame from the two keyframes. The maximunm

interpolation error also occurs when the greatest fraction of the image is in motion.

- · · · ·

To improve the model of (3.19), the assumption is made that non-moving areas have zero error,

thus the expected mean square error is

MS = my MS (3.20)

where my is the fraction of area in the image which is moving. The percentage of each frame set

which was classified as non-moving is given in Table 3.1 (See section 6.2.1 for a discussion of how

the non-moving area is classified).

For comparison with measured values, the modeled mean square error is weighted with the

fraction of moving area, my, in the images:

MS = my (N 2 +2 - 2(0) + (2 7) (N)a(+)
- 2 (N; r - NT-r)' 2a 2',

- ((N -)-a N (+)] . (3.21)

Using the normalized sample variance value from the keyframes of the sequence Alley for a2(r),

a-a = 0.90 , and Ec = ey = 0.50 , Equation 3.21 is plotted in figure 3.3 along with the measured

normalized mean square interpolation error for the sequence frames and the modeled error of Equa-

tion (3.20). This model more closely follows the experimental observations. This implies that the

amount of motion in a scene has a significant effect on the interpolation error. It is important to

note also that the in the real sequence, the motion is not simple translational displacement of rigid

objects. In particular, the model fails in the frames 85 to 105, where one figure crosses in front,

occluding the other. The interpolation error becomes large here, when the displacement estimator

is unable to determine the flow path of the covering and uncovering areas.

Frames Percent Non-Moving
1 -+ 3 49.729168

5 -- ,7 67.125000
9 -- 11 60.229168

13 -- 15 70.312500
17 -- 19 71.833336

21 -. 23 77.666664

25 -- 27 79.500000
29 -+ 31 52.020832
33 -+ 35 60.645832

37 -+ 39 56.979168
41 --.43 60.187500

45 -+ 47 52.687500
49 -- 51 40.041668

53 - 55 44.395832
57 -- 59 28.708334
61 -- 63 22.833334

65 --+ 67 19.166666
69 --+ 71 16.062500

73 --* 75 14.000000
77 --+ 79 10.354167

81 -+ 83 10.708333
85 -- 87 9.916667

89 -+ 91 11.041667
93 -- 95 17.708334
97 -- 99 20.104166

101 -- 103 24.895834

105 -+ 107 52.333332

109 -- 111 89.104164
113 -- 115 79.104164

Table 3.1: Percentage of area classified non-moving in Alley sequence

-n 19

-0.1

0.08

0.06

-0.04

-0.02

modeled mean square error using autocorrelation function R(z, y, T) =Figure 3.3: Measured vs.

or2 r)Ct-a (2+)

0 I I I 32 40 I I I I I 8I 8I I
0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

012

-0.1

-0.08

-0.06

-0.04

-0.02

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

Figure 3.4: Measured normalized mean square error using coded and uncoded keyframes in Alley
sequence

.01

This page is intentionally left blank.

This page is intentionally left blank.

Chapter 4

Motion Estimation

4.1 Block Matching

Conventional block matching algorithms use the data from blocks within two frames to estimate

linear displacement by finding the minimum of some error metric, such as the sum of absolute

differences or mean square error.

This technique works well for interframe prediction techniques, but performs poorly for a motion

compensated interpolation coding system. The two keyframes used for a motion estimate may

describe the translational motion from keyframe to keyframe, but doe not accurately describe the

translation from one keyframe to the next intermediate frame or from the second keyframe back to

the intermediate frames. For this reason an improved motion estimation method for interpolation

is used called multiframe matching (MFM).

Various block matching search techniques have been investigated [61]:

1. Two dimensional logarithmic search.

2. Modified conjugate direction search.

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
5

5 .

-1 N
- - -- - - - - ~ 4

Figure 4.1: Two dimensional logarithmic search. From Musmann [61]

3. Three step search.

All of these techniques make the assumption that E(d) increases monotonically as the search window

shifts away from the direction of minimum difference.

In the two dimensional logarithmic search, the prediction error E(x, y), is calculated at four

displacements around the starting point (Figure 4.1). The displacement with the minimum distortion

is selected as the next starting point, to follow the path of least distortion. For each successive search

step, the distance between- search windows is reduced by I, causing the search area to be reduced

logarithmicly. The steps are repeated until the minimum distance resolution desired is reached.

The modified conjugate direction search uses two steps to search for the direction of minimum

difference. A search is first performed in the x direction shifting one pel at a time to find the point

of miniinum difference. The search then proceeds in the y direction (Figure 4.2).

The three step search uses eight search positions spaced around the starting point (Figure 4.3).

-7 -6 -5 -4 -3 -2 -1 0 1 2 3

1 -

--- - ~ 2 ~ S

Figure 4.2: Conjugate direction search. From Musmann [61]

The point which had the minimum difference is then used as the starting point for the next search.

Each successive search step uses more closely spaced window positions to give the distance resolution

desired.

4.2 Multiframe Matching

Multiframe matching is an extension of block matching. It is applied to the image sequence in a

temporal block fashion. The sequence is divided into sets of frames each of length nframes. The

first and last frames in these sets are keyframes. The second keyframe of each preceding frame

becomes the first keyframe in the current set of images.

This set of images, comprised of the two keyframes and the intermediate frames, is divided into

tessellated three dimensional blocks, each of which is assigned a displacement vector (see figure 4.4).

4 5 6 7

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

A R

Figure 4.3: Three step search. From Musmann [61]

This displacement vector is determined by the minimum sum of absolute differences between the

keyframes and the intermediate frames - weighted to reflect the distance to each keyframe. This

method effectively gives the best average displacement within a three dimensional block, to minimize

the sum of the interpolation error for the intermediate frames in that three dimensional block.

MFM performs better than block matching for recreating intermediate frames through inter-

polation. Figures 4.5 to 4.8 show the RMS error of interpolated frames using MFM and block

matching. Note that further the distance between keyframes, the greater the performance improve-

ment of MFM over block matching. Keyframe spacing of two is the case when MFM and block

matching are equivalent.

The displacement estimation was performed using block size of 8x8 for both the block matching

and MFM. The search area was ± 32 pels in both cases. This interpolation was performed using the

original keyframes, not coded keyframes containing noise. Also, these data are from images which

N

Figure 4.4: Example showing how a single displacement vector is
volume.

ci~::::::::::: iiii:J

used for each Three-dimensional

were cropped to contain mostly moving areas.

4.3 Hierarchical Multiframe Matching

The method of multiframe matching is extended to an hierarchical search method. One of the

errors encountered in pattern matching is false matches. For example, the movement of an arm

over a textured sweater may cause false matches (and the resultant grossly incorrect displacement

estimate) due to the regular pattern of the texture. The problem here is that the average feature

size is smaller than the window size. If the search window contains an edge, this gives a more unique

pattern to match resulting in more accurate displacement estimation.

Hence, it would appear that larger window sizes would give better results. This is true to some

extent, but as the window size grows, localized motion is not detected, causing motion blurring in

those areas of the interpolated frame.

N

" "

27 rms error - Block Matching, Preftltered
26- --- Block Matching, Not Prefiltered
25 Multiframe Matching, Prefiltered
24

24-- - Multiframe Matching, Not Prefiltered
23
22
21
20
19
18
17
16
15
14
13
12
11
10

9
I- -.

7 . "-Bfock Matching vs MFM
6 With and Without Pre-Filtering5-
4 nframes = 2
3
2
1 Frame Number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 4.5: Comparison of Multiframe matching vs. Block matching with frame spacing = 2, with
and without pre-filtering

46

Block Matching, Prefiltered
--- Block Matching, Not Prefiltered
.....- Multiframe Matching, Prefiltered

- - Multiframe Matching, Not Prefiltered

27rms27-'
26-
25-
24
23-
22
21
20
19
18
17
16
15
14
13
12
11
10

9
8
7

6•
5-
4
3
2
1

Block Matching vs MFM
With and Without Pre-Filtering
nframes = 3

Frame Number

1 2 I l I I I I 8 I I I I I I

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
I I i I I

17 18 19 20 21

Figure 4.6: Comparison of Multiframe matching vs. Block matching with frame spacing = 3, with
and without pre-filtering

error

...................- .

I- -I I

/ .. · · ·

I i 1 1 I

-rmerror nu, L |cg c ,nlerc. A _ l
27'
26"
25-
24"
23"
22"
21"
20'
19-
18"

17-
16-
15-
14-
13-
12"
11-
10"
9-
8-
7-
6-
5-
4-
3-
2-
1-

1 2 3 4 5 6 -7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 4.7: Comparison of Multiframe matching vs. Block matching with frame spacing = 4, with
and without pre-filtering

. .oc matcning, Prehltered

-- - - Block Matching, Not Prefiltered

...... Multiframe Matching, Prefiltered

- - Multiframe Matching, Not Prefiltered

..

-''

. - -

Block Matching vs MFM
With and Without Pre-Filtering
nframes = 4

Frame Number
I I I I I I lI I I , I l I I l • I

_. rms error I _L L 1- -- J

26-
25-
24-
23-
22"
21-

20-
19-
18-
17-
16-
15-
14-
13-
12-
11-
10-

9-
8-
7-
6-
5-
4-
3-
2-
1-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 4.8: Comparison of Multiframe matching vs. Block matching with frame spacing = 5, with
and without pre-filtering

- DIOClk Matching, rrenilered

-- - Block Matching, Not Prefiltered

.....- Multiframe Matching, Prefiltered

- - Multiframe Matching, Not Prefiltered

-

-

- /

I..

.. ..

I .

Block Matching vs MFM
With and Without Pre-Filtering
nframes = 5

Frame Number

I I I I , , I I I I I I I I I I I

Multiframe Multiframe Multiframe
Displacement Displacement Displacement
Estimator Estimator Estimator

0 Initial Initial Initial
Offset Offset Offset

Best Best Best
Displacement Displacement Displacement

Block Size 32x32 Block Size 16x16 Block Size 8x8 Displacement
Estimate

Figure 4.9: Hierarchical multiframe matching displacement estimator

An hierarchical approach is used to overcome these problems. An initial motion estimate is

calculated using a large window size (say 32x32) with one vector for each 3-D volume (typically

8x8xn frames). This initial search is done over a large search area (covering ± 60 pels) with a

course spacing (4 pels horizontally and vertically).

These displacement estimates are then used as an initial starting point for a finer search using

smaller window sizes (see Figure 4.9). This is continued until the desired granularity is reached.

By using small window sizes over a small search area, a fine, yet accurate search can be obtained.

4.4 Prefiltering

Prefiltering using a lowpass filter improves the performance of the motion estimation or prediction

[9, 20, 27, 29, 39]. The spatial lowpass filtering has several effects.

* It can reduce the chance of convergence onto a local minimum by smoothing the distortion

function.

* It reduces the errors due to noise in the image. This is a "Wiener Filter" effect [29].

* The image can be subsampled within the search window without the risk of aliasing due to

sampling below the Nyquist rate.

Simple filters have been shown to be sufficient for prefiltering prior to a displacement estimate[9].

An equally weighted sum of all the samples over a small region of support (a box filter) can be

used. Although the frequency response of the box filter does not closely approximate that of an

ideal lowpass filter [67], it is adequate for the purpose of region matching.

Computationally, the expense of a boxfilter is very low, approximately one addition and one

subtraction per sample in each direction, horizontal and vertical, and one multiplication for nor-

malization. The efficient implementation is carried out as follows: F r a boxfilter of length N, the

sum S of the first h samples x is calculated. This sum is doubled t ffectively mirror the samples

at the edges. Each output point yi is then equal to S + zi+N - zi _ . Then the next input data

samples ahead is added to the sum and the previous data ; samples away is subtracted. This

gives the sum of the N samples around the output point. This process is repeated in the vertical

direction, and each point is weighted by -L. In the case where N is a power of two, the weighting

can be implemented by shifting. Note also that the computation is nearly independent of the filter

length.

The reduction in interpolation error when prefiltering prior to the motion estimation can be

dramatic. Figures 4.5 through 4.8 show curves of RMS error for keyframe spacing of two through

five respectively. Keyframe spacing of two has a single interpolated frame between the keyframes;

keyframe spacing of three has two intermediate frames; etc.

Chapter 5

Coding System for High

Quality/Low- Bit Rate Coding of

Motion Sequences

In this chapter, I propose a system for the coding of image sequences which provides high quality at

low bit rates. The receiver in this system is easily scalable in terms of spatial resolution, temporal

resolution, bit rate and decoding complexity. Additionally, unlike predictive motion compensated

systems, random access (with an atomicity of four frames) and variable frame rate play-back are

easily incorporated.

5.1 Overview

I propose a motion compensated interpolation system for the transmission of images as shown in

figures 5.1 and 5.2.

Encoded,M. 11

Figure 5.1: Motion compensated interpolation system coder

ment

- To
Receiver

led
ames

ded
lual

Encoded
Displacement

Encoded

Keyframes

Keyframes

Figure 5.2: Motion compensated interpolation system decoder

From -
Transmitter

Intermediate

Frames

frame frame frame frame
n n+1 n+2 n+3

Figure 5.3: Multiframe Matching. Frames n and n + 3 are keyframes. Data from the keyframes and
intermediate frames are used in the pattern matching.

To obtain the velocity vector field, the hierarchical MFM technique discussed in chapter 4 is used.

MFM differs from conventional block matching in that the intermediate frames are also used in the

pattern matching search (Figure 5.3). This results in a more accurate vector field with reduced error

variance over block matching [26]. The accuracy and speed of the motion estimator can be improved

by first segmenting the images into moving and non-moving areas [71].

The MFM search is extended over a hierarchy of successively smaller block sizes. A motion

estimate is made using a large block size (32x32) for the initial search. This gives a somewhat coarse

estimate of the displacement, but is less prone to false matches than a smaller block size [9]. This

estimate is then used as an initial estimate for the next level of the hierarchy, using smaller block

size for a finer displacement estimate. This continues through as many levels of the hierarchy to

reach the desired fineness of the displacement estimate. Subsampling within blocks can be used to

reduce computations without a great loss in accuracy of the displacement estimate [35, 79].

The actual pattern matching search used is an extension of the three step search to an arbitrary

number of steps, which I refer to as a "K-step search". The search is extended to K steps reducing

the spacing between search windows logarithmicly, on each succeeding search step (figure 5.4). The

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11-12 13

4• 41 4

9 . 1 d .. " 1 4 9.

-4. 4 42 a a

/ a~
- -- 2 /

--- ~ -

Figure 5.4: K-step search pattern

first search step has a maximum displacement

di = dmin2k- 1 (5.1)

where di,,in is the step size at the final search step. This gives a maximum displacement of

k-1

dmax = drminl 2i

i=1

(5.2)

for a given level of the hierarchy.

Sub-pel accuracy can improve the performance of the motion compensated system [29]. However

the improvement that subpel accuracy yields is diminished as the signal to noise ratio decreases [29].

It has been reported [25] that the error signal from a motion compensated prediction system does

not code well using DCT coding. 'Standard' DCT coding algorithms presume that the D.C. and

lower spatial frequencies contain the most important information and are thus most finely quantized,

while the higher frequencies are more coarsely quantized. Residual signals however, have a higher

proportion of the energy distributed in the middle and high frequencies, and ideally have zero D.C.

energy. In this system the keyframes and residuals are decomposed using a pyramid transform

followed by vector. quantization. The variance or the residual signal varies greatly from frame to

frame (see chapter3). For this reason the frames are normalized before pyramid decomposition and

vector quantization.

5.2 Preprocessing

The color space YUV was chosen for this work. Input signals in RGB format are converted to

YUV using a matrix multiplication. The color components U and V are lowpass filtered using a

Gaussian filter and subsampled spatially by a factor of four. The luminance signal, Y, is coded at

full resolution.

If the input signal is in YUV format, then the only preprocessing necessary is to decimate the

chrominance signals to one quarter of the luminance resolution.

5.3 Encoder

Figure 5.1 shows a block diagram of the encoder. The interface to the channel or storage device is

not shown. Depending on the requirements of the storage device, there may be a buffering system

to maintain a constant data. rate.

5.3.1 Motion Estimator

The motion estimation is performed using the original (uncoded) keyframes and intermediate frames.

The hierarchical multiframe matching technique discussed in section 4.2 is used for motion esti-

mation. The motion estimation is performed with only the luminance signal; chrominance is not

used.

5.3.2 Keyframe Encoder

The keyframe encoder [Figure 5.5] consists of a pyramid subband decomposition filter, a vector

quantizer, and an arithmetic coder.

The pyramid decomposition is performed by recursively applying Quadrature Mirror Filters

(QMF) to split the image into spatial octave subbands (Figure 5.6). Each successive level splits the

lowest spatial frequency band into four more subbands.

The vector quantizer then encodes each subband separately or in groups. The outputs of this

block are code books and look up tables (LUTs). The LUTs are determined for a one second block

of keyframes. A new LUT is transmitted for each one second block. In this way, the cost (in bits) of

the LUTs is amortized over a one second period. The multilevel arithmetic coder follows to losslessly

compress the output of the vector quantizer.

5.3.3 Motion Compensated Interpolator

To obtain the interpolated intermediate frames, the keyframes are decoded as described below. The

decoded keyframes are used together with the motion vectors to interpolate the intermediate frames.

These interpolated intermediate frames are subtracted from the original to obtain the residual frames.

The residual frames are coded in the same manner as the keyframes - a subband pyramid followed

by the arithmetic coder.

Figure 5.5: Block diagram of keyframe encoder.

5.4 Decoder

The decoder for this image system is shown in figure 5.2. The displacement vectors are decoded using

the inverse of the arithmetic coder. The vector quantized subbands and LUTs for the keyframes and

intermediate frames are also decoded through this arithmetic decoder. Each subband has a separate

LUT associated with it. These LUT's are completely updated once per second.

The lowest level subbands are then reconstructed through their corresponding LUT. These four

bands are then interpolated and summed to synthesize level 3 of the pyramid into the level 2 LL

band (Figure 5.7), where LL refers to the horizontal and vertical lowpass filtered band.

The remaining three bands for level 2 are decoded and reconstructed, and together with level

two LL band, they are interpolated and summed to synthesize the level one LL band. Level one is

likewise decoded and interpolated into the full size image.

It is possible to interpolate up to any level without all of the subbands being present, as may

happen on a heavily used network. In this case, zeros are input to the subband interpolation filter

in the place of that band. This will cause the image to degrade somewhat, but the image will not

be lost all together.

At the beginning of a sequence, two keyframes must be received and decoded prior to beginning

the motion compensated interpolation. Once these two keyframes are decoded, only one additional

keyfra.me is needed for each set of N intermediate frames.

The displacement vectors are applied to the decoded keyframes to recreate the intermediate

Input
Signal

Vertical Hot

LLevel 1

Level 1

High
Pass

Low
Pass

High
Pass

Low Fii]
Pass (LL) Pass

izontal High Low
Pass Pass

- 0- HH

- ' HL

-LH

LL

HL

2ass

LL

Level 2

LH

High
Pass HH

Low HL.Ipass [r HL

LHHighPass LH

Low
Pass L

Vertical Horizontal

I I

L ------- J

Level 3

Figure 5.6: Block diagram of pyramid analysis QMF filters.

Subbands

W-
- HL

I

)nstructed
Emage

Vertical Horizontal

I I
L----------------------J

Level 3

Figure 5.7: Block diagram of pyramid synthesis QMF filters.

frames. This will result in intermediate frames with some interpolation error. To reduce this error,

the residual signal which has been processed by the pyramid decoder is added to these intermediate

frames resulting in the decoded luminance signal for each output frame.

5.4.1 Chrominance Decoding

The chrominance signal is decoded in a fashion similar to the luminance. The UV frames are

decoded by using the transmitted codewords to index into the LUTs. The chrominance information

is then upsampled and interpolated from one quarter resolution horizontally and vertically to full

resolution. Motion compensation is not applied to the chrominance signal in this system. Using

motion compensation on the chrominance signals tends to exaggerate any motion artifacts in the

luminance signal.

5.4.2 Postprocessing

The final step is to convert the decoded luminance/chrominance signals to the color space and frame

rate of the output device. Color conversion is performed by a matrix multiplication (see section 2.8).

If the original source was a 24 fps motion picture, and the display device is 60 Hz., the frame rate

can be converted using 'three two pull down', a method which will alternately replicate frames from

the 24 fps sequence two and three times to output a 60 Hz. sequence.

Chapter 6

Computer Simulations

Computer simulations of the system described in Chapter 5 were developed using the 'C' program-

ming language.

The coding system was simulated on a test sequence Alley, a 24 fps non-interlaced RGB sequence

of two figures in an alley in animated conversation, with one figure crossing in front of another. The

processed image size is 640 pels horizontal by 480 pels vertical.

The Alley sequence presents the challenge of correctly detecting rapidly moving arms and legs,

reflections of moving objects, occluding figures, panning and zooming.

6.1 Preprocessing

The input sequences were converted from RGB color space to YUV using the equations:

Y = 0.299R + 0.587G + 0.114B (6.1)

B-Y
U - (6.2)

2.03

R-Y
V =R- (6.3)1.14

or in matrix form, see equation (2.15).

6.2 Motion Estimation

Keyframe spacing of 4 for Alley was used for these simulations. These numbers were chosen as a

reasonable trade off between reduced keyframe rate and increased interpolation error. This spacing

corresponds to a time interval between keyframes of 167 milliseconds.

The multiframe search used the parameters in Table 6.1. The number of search stages is the

number of levels in the hierarchical search. X and Y direction window spacing is the block size in

the interpolated image that is assigned one displacement vector. In this case, each 8x8 block is given

a displacement vector.

Window size X and Y are the size of the window used in the displacement estimation search for

each level of the hierarchical search. The first level used a 32x32 window, the second level a 16x16

window, and the last level an 8x8 window. Subsample factor is the rate of subsampling within the

search window, ie. the first level search uses subsampling by four both horizontally and vertically.

The number of search steps and minimum search step size determine the range of the logarithmic

search pattern. For example, the first level of the search hierarchy performs the motion estimation

in four steps with the minimum displacement of four pels. The first step will search over ± 4 * (1 *

2 * 2 * 2) = + 32 pels, the next step over ± 4 * (1 * 2 * 2) = ± 16 pels, etc. This gives a maximum

search area through the three levels of the hierarchy of ± [(4+8+16+32) + (2+4) + (1+2)] = ± 69

pels. Movement in real scenes rarely exceeds this displacement.

The thresholds at the bottom of Table 6.1 are explained in section 6.2.1 below.

number of search stages 3 levels
x direction window spacing 8 pels
y direction window spacing 8 pels

window size x 32 pels 16 pels 8 pels
window size y 32 pels 16 pels 8 pels

boxfilter length 33 pels 5 pels 3 pels
subsample factor x 4 2 1
subsample factor y 4 2 1

number of search steps 4 2 2
minimum step size 4 pels 2 pels 1 pels

average pel difference motion threshold 6
pel difference over threshold count 18

Table 6.1: Parameters used in the multifield matching motion estimation search.

6.2.1 Segmentation

Prior to beginning the displacement estimate the images are segmented into moving and non-moving

areas based on 8x8 blocks. The classification is done as follows. Each pel in the first keyframe is

compared to the corresponding pel in the next keyframe. If the absolute value of this difference

exceeds a threshold, a counter is incremented. If the counter exceeds a maximum the block is

declared moving. A threshold of 6 and a maximum count of 18 were used for these simulations.

The segmentation is done over a temporal block, eg. all blocks in the intermediate frames with the

same x,y location have a single moving/non-moving determination. A ba.r graph of the percentage

of non-moving areas for the sequence Alley is shown in Figure 6.1.

The motion estimation is performed only on those blocks which are classified as moving. This

segmentation has two effects:

1. Search time is improved significantly since only moving areas are searched.

2. False motion around moving objects is reduced, resulting in a more accurate interpolation.

-100

-60

-40

-20

0 11 22 33 44 55 66 77 88 99 1101 1 1 1 1 1 1 1 1 11I I

Figure 6.1:. Graphical illustration of the percentage of the frame area classified as non-moving in
Alley sequence.

,,-1u

I

LL

m

L L

1

6.2.2 Prefiltering

The next step is to filter the images before performing the motion estimation search. This is done to

reduce the possibility of converging on a local minimum of the matching criterion and to force the

cross correlation functions to act in a more isotropic manner. The filtering also reduced low level

noise present in the image. The lowpass filtering is performed using a simple two dimensional box

filter. This gives adequate performance at very low computational cost. Each sample requires only

four operations (two additions and two subtractions) regardless of the filter length (Section 4.4).

The original images are filtered before each level of the hierarchical search. The length of the two

dimensional filter is determined by the maximum search distance for a given level of the hierarchy.

The length used was

L = (minstep * 2 (num s tep - 1)) + 1 (6.4)

For this simulation that gives filter lengths of 33,5, and 5 for the three levels of the hierarchy.

6.2.3 Displacement Search

The motion estimation is carried out on the uncoded luminance signal. The first level of the hierar-

chical search is performed on 32 x 32 blocks extending ±32 pels, with a minimum granularity in the

search of four pels. During this initial estimate, the blocks are also subsampled by a factor of four.

By subsampling within the search window, this considerably speeds up the search without affecting

the accuracy of the displacement estimate significantly.

The next level of the hierarchical search is performed using 16x16 windows. The estimate from

the previous search is used as the initial estimate for this search. This is performed over ±4 pels

with a minimum granularity of two pels. Subsampling by a factor of two within the window is used

at this level.

The final search is performed using 8x8 windows. This search extends over ±2 pels in single pel

intervals. No subsampling is used at this level. The motion vectors obtained are then coded using

the arithmetic coder (section 6.6) before transmission.

A visual display of the displacement vectors superimposed on the original frames is shown in

Figures 6.2 to Figure 6.6.

6.3 Keyframe Coding

The keyframes are coded in one second segments, eg., six keyframes at a time. This gives a reasonably

small atomicity for random access, while allowing the use of the redundancies between keyframes to

reduce the size of the LUTs. The cost in bit rate of transmitting the LUTs for the six keyframes is

amortized over a one second period.

The keyframes are decomposed into a three level pyramid using the QMF filters plotted in Figures

6.7 and 6.8, and listed in Appendix B, B.1. These analysis filters are separable two-dimensional

symmetric filters of length 9. The two highest levels (Level 1 and 2) are noise cored before further

processing. The noise coring is a simple thresholding; if the absolute value of a sample is less

than three, it is replaced by zero. The noise coring considerably reduces the size of the LUT and

increases the efficiency of the k-d tree search. There are many samples near zero that are relatively

unimportant. The noise coring avoids this low level noise being split into many regions increasing

the code book size. A typical keyframe pyramid decomposition is shown in Figure 6.9.

Next, the code books are calculated using an error limit based k-d tree search. This simulation

coded each subband separately; no joint redundancies between subbands at a given level are utilized.

It was found that the code book size increased significantly when the subbands were jointly coded

eg., there is little correlation between the subbands at a given level.

Level one is coded using 8x8 blocks of pels, level two using 4x4 blocks, and level three is scalar

Figure 6.2: Displacement vectors for Alley sequence frames 1 to 3
69

__ ___~~

Figure 6.3: Displacement vectors for Alley sequence frames 25 to 27
70

Figure 6.4: Displacement vectors for Alley sequence frames 49 to 51

71

Figure 6.5: Displacement vectors for Alley sequence frames 73 to 75

72

Figure 6.6: Displacement vectors for Alley sequence frames 96 to 99
73

-0.8

-0.6

-0.4

-0.2

-- 0.2

-- 0.4

-- 0.6

Figure 6.7: Lowpass filter used both horizontally and vertically in subband pyramid analysis

*

Figure 6.8: Highpass filter used both horizontally and vertically in subband pyramid analysis

75

Figure 6.9: A typical keyframe pyramid decomposition from the Alley sequence

76

level block size select split bound
HH HL LH LL

1 4x4 peakerr mean maxe mse 8.0 maxe mse 8.0 maxe mise 8.0 na
2 2x2 peakerr mean maxe mse 20 maxe mse 20.0 maxe mse 20.0 na
3 1xl mse mean psnr 44 psnr 44 psnr 44 psnr 48

Table 6.2: Error limits used in coding the keyframes for Alley

level block size select split II bound
HH HL LH LL

1 4x4 peakerr mean maxe rmse 23.5 maxe mse 23.0 maxe mse 23.0 na
2 2x2 peakerr mean maxe rse 23.5 maxe mse 23.0 maxe mse 23.0 na
3 1xl mse mean el psnr 34.0 el psnr 34.5 el psnr 43.5 el psnr 48.0

Table 6.3: Error limits used in coding the residuals for Alley

quantized. The parameters used are summarized in Table 6.2. In this table, 'Select' refers to the

method used to select the branch at each split point. 'Peakerr' selects the branch with the lower

peak error, and 'mse' selects the branch with the lower mean square error. 'Split' is the method

used to split the vector space. 'Mean' splits at the geometric mean. Termination of the splitting is

determined by 'bound'; splitting ceases when the error metric falls below the bound. 'Maxe mse'

refers to maximum error measured as a mean square. 'Psnr' refers to peak signal to noise ratio.

The bounding criteria of maximum error was chosen for the higher levels (levels 1 and 2) of the

pyramid. These higher frequency bands contain spatially localized information such as edges. The

'maxe' criteria will assign code words to these higher amplitude blocks, preserving more important

information. The peak signal to noise bound used for the lowest levels will maintain good quality

for these important bands.

The keyframes are rendered using the code books calculated with the k-d tree search. The indices

(codes) and LUTs are entropy coded using the arithmetic coder before being sent to the channel.

The keyframes must be decoded at the transmitter before MCI and residual coding. The rendered

keyframe subbands are decoded by indexing into the LUTs. The keyframes are then synthesized

from the three levels of the pyramid using separable symmetric analysis filters as in Table B.1.

Frame n Frame n + 1 Frame n + 2 Frame n + 3 Frame n + 4
(Keyframe) (Keyframe)

Figure 6.10: Interpolated intermediate frame pels from bilinearly interpolated pels in the keyframes

These decoded keyframes used in the transmitter are identical to the ones that the receiver will

decode and use for its MCI.

6.4 Calculating Residual Frames

The keyframes are now used for motion compensated interpolation of the intermediate frames. The

motion vectors are applied to each 8x8 block of the keyframes to obtain the interpolated frames.

Since a single motion vector is used to interpolate blocks in each of the three intermediate frames,

they are divided into forward and reverse pointing vectors. This division creates fractional parts

in the displacements. To accommodate this, each sample in the keyframes is two dimensionally

bilinearly interpolated from the four nearest pels (Figure 6.10). The subpel precision resulting

performs better than rounding the divided displacements to integer precision. These bilinearly

interpolated samples from each of the keyframes are then weighted according to the distance of the

intermediate frame to each keyfra.me.

Level Band Average Energy per Sample

Keyframes Residual
Lev 1 HH 131.393474 2.928426

HL 134.559582 4.098564
LH 137.870853 5.743887

Lev 2 HH 238.262517 3.511255
HL 243.495536 3.955221
LH 248.691099 4.237471

Lev 3 HH 327.676258 1.808828
HL 334.162721 2.058322
LH 340.412076 2.387653
LL 347.019380 2.842444

Table 6.4: Comparison of the average energy of keyframes and residuals in Alley.

The resulting interpolated intermediate frame is subtracted from the original to give the residual

frame. Typical interpolated frames and their corresponding residuals are shown in Figures 6.11

through 6.16. The residuals subbands are vector coded in one second temporal sections.

The residual frames contain considerably less energy than the keyframes. The average energy

per sample within the subbands from the first second of Alley are shown in Table 6.4.

6.5 Residual Coding

The variance of the residuals changes with its distance from the keyframes (see section 3.1). Coding

these residuals directly will result in large LUTs and the resulting higher entropy in the codes. Before

decomposing the residuals into a pyramid they are normalized to create more similarities between

frames. The highest variance among the residual frames is determined for each one second segment.

Each sample in the frame is then normalized using

maxvariance
p = aevaance (6.5)

framte vai~a n~ce

Figure 6.11: Interpolated recreation of frame 1 of the Alley sequence

80

~

Figure 6.12: Residual from frame 1 of the Alley sequence

81

Figure 6.13: Interpolated recreation of frame 25 of the Alley sequence

82

Figure 6.14: Residual from frame 25 of the Alley sequence

83

Figure 6.15: Interpolated recreation of frame 49 of the Alley sequence

84

Figure 6.16: Residual from frame 49 of the Alley sequence

85

where p is the sample in the original frame, and p' is the normalized sample.

The normalized residual signals are coded in a manner similar to the keyframes. After normaliza-

tion, they are decomposed into a three level pyramid using the same analysis filters as the keyframes.

Noise coring is performed in the same manner as with the keyframes.

The code books are built using error limits that parallel those used in the keyframe coding. If the

intermediate frames and keyframes do not have closely matched noise levels, there will be noticeable

flicker at the keyframe rate (6 Hz.). At this temporal rate the HVS is very sensitive to flicker [63].

By keeping similar noise levels in both the keyframes and intermediate frames, flickering is avoided.

6.6 Arithmetic Coding

All the codes, LUTs and vectors pass through the arithmetic coder. A simple first order predictor is

used adaptively in the coding of the level 3 bands. The entropy of a one dimensional pel difference

is calculated vs. the entropy of the input to the predictive coder. If the entropy is lower, then the

subband is put through the predictive coder and then through the arithmetic coder. If the predictive

coder output has a higher entropy than the original signal, the subband is put directly through the

arithmetic coder. The level 1 and 2 quantized subbands are also sent directly through the arithmetic

coder. The saving on the level 3 was in the range of 1 to 2 bits, typically around 1.5 bits. For the

level 3 LL, this translates to a savings of about 129 Kbits per second.

The arithmetic coder used is a multilevel arithmetic coder which operates on single ended signals.

The number of levels in this coder may be up to 65,535 (16 bits). The source indices (codes) from

the vector quantizer are by definition greater than zero, so no preprocessing before arithmetic coding

is necessary. The displacement vectors, LUTs and predictive coded level 3 subba.nlds are bipolar, so

first they are biased to ensure that the most negative value is mapped to zero.

Both the arithmetic coder and decoder need to model the probability distribution (histogram) of

the source. This biasing reduces the total size of the histogram significantly. It is difficult to develop

an accurate model of the distribution of the codes, as any vector can be arbitrarily mapped to any

index. For this reason, the histogram is sent as side information from the arithmetic coder. As the

histogram is typically very sparse (all unused levels have a frequency of zero), it is sent using run

length coding.

The displacement vectors are also coded one frame at a time using the arithmetic coder. The

Ziv-Lempel [59, 99, 105] adaptive compression algorithm was also tried, but it was found that the

arithmetic coder provided a lower bit rate for the displacement vectors.

6.7 Chrominance Coding

The chrominance U and V signals are first prefiltered and decimated by a factor of four both

horizontally and vertically using the decimation filters in Table B.2. A plot of the decimation filter

impulse response is shown in Figure 6.17. This removes much of the irrelevant information, as the

HVS has reduced acuity to chrominance over luminance.

The decimated chrominance are not decomposed into a pyramid, but are quantized directly.

Motion compensation was not used on the chrominance for two reasons. Dissimilarities between

chrominance keyframes and intermediate frames would contribute to flickering in the displayed

sequence. Also, it was found that if the displacement vectors obtained from the luminance signal

were applied to the subsampled chrominance signal (with the vectors appropriately scaled), coding

the interpolation error required higher bit rates to code than the subsampled chrominance signal

directly. Coding parameters for the chrominance are given in Table 6.5. The code books are

generated using the k-d tree method with an error limit of 28.0 dB peak signal to noise ratio

terminating the search.

Figure 6.17: Gaussian decimation filter used in chrominance coding

Table 6.5: Error limits used in chrominance coding.

type block size select split bound

Chrominance 2x2 peakerr mean I-el psur 28.0 I

-0.8

-0.6

0.4

0.2

0 11 22

Figure 6.18: Gaussian interpolation filter used in chrominance coding

r E

E

+ ak ~m * * * *

6.8 Decoding

At the receiver, each one second segment of keyframes is decoded using the codes as indices into

the LUTs. The output image is synthesized by filtering the frequency subbands as in Figure 5.7.

The synthesis filter coefficients are plotted in Figures 6.19 and 6.20. The values are also listed in

Appendix B, Table B.1.

The keyframe pairs are then used with the displacement vectors to interpolate each of the inter-

mediate frames. Residual frames are decoded in the same manner as the keyframes, and added to

the interpolated frames to give the luminance signal for these intermediate frames.

The chrominance is decoded directly from the chrominance codes and LUTs.

6.9 Postprocessing

The chrominance frames are spatially interpolated up to full resolution using the interpolation filters

in Table B.2 (see also Figure 6.18). The output sequences are converted from YUV color space

back to RGB using the equations 2.16 and 2.15.

6.10 Results

The bit rates required to the one second groups of frames are shown in Tables 6.6 to 6.10. Bit

rates for the displacement vectors are shown in Table 6.10, and bit rates for the chrominance signal

are displayed in Table 6.12. The resulting peak signal to RMS noise ratio (PSNR) are graphed in

Figure 6.21. PSNR is defined here as:

PSNR(i) = 20 log MAXx I- - -N(z) (6.6)

(N i=O·-

0.6

-0.4

-0.2

, t _

0

--0.2

-0.4

Figure 6.19: Lowpass filter used both horizontally and vertically in subband pyramid synthesis

I

rol nV., I

-1

-0.8

-0.6

-0.4

-0.2

-- 0.2

-- 0.4

-- 0.6

Figure 6.20: Highpass filter used both horizontally and vertically in subband pyramid synthesis

_ - I I

Keyframes Residuals
Level Band Code (bits) LUT (bits) CBS Code (bits) LUT (bits) CBS

Level 1 HH 96 16 1 240 16 1

HL 50157 13042 362 19099 2064 71
LH 60972 32099 606 29439 5534 140

Level 2 HH 5350 177 13 3418 127 12
HL 141231 17220 897 44843 3168 194
LH 120782 14061 741 50448 3376 215

Level 3 HH 82283 76 28 149008 45 7
HL 100681 144 54 95186 43 3

LH 89905 121 54 153102 52 7

LL 126433 173 7 163046 1598 48

Totals 777890 77129 707829 14584

Rate Totals (bits) 855,019 722,413

Total Luminance (bits) 1,577,432
Total Chrominance (bits) 141,170

Vectors (bits) 57,409

Grand Total 1,7.76,011
Average Bits per Pel 0.275

Table 6.6: Channel bit rate for Alley sequence frames 0 -- , 20

The fraction of bandwidth required for the keyframe luminance, residual luminance, chrominance,

and displacement vectors over the entire simulation are shown in Table 6.13.

One point to note when interpreting the tables of bit rates is that since MCI requires two

keyframes in order to interpolate the intermediate frames, there is a 'fencepost' problem. The

test sequence was stored in files each of which has 24 frames of RGB images. I chose to code six

keyframes at a time, which resulted in the first segment having five sets of intermediate frames

(three intermediate frames in each set), resulting in a total of 21 frames. The last keyframe of each

segment is used for interpolating the next segment, resulting in six sets of intermediate frames in

each successive segment for a total of 24 frames. Subsequently, the first segment had 21 frames, and

Keyframes Residuals
Level Band Code (bits) LUT (bits) CBS Code (bits) LUT (bits) CBS

Level 1 HH 96 16 1 288 16 1
HL 52366 14012 371 46946 5659 163
LH 58762 30199 596 50999 9179 224

Level 2 HH 5170 149 11 8189 186 17

HL 139925 17655 914 90606 7485 423

LH 118117 12776 687 81705 4220 270

Level 3 HH 82542 89 29 175134 49 7
HL 109351 145 53 138068 45 4

LII 90024 112 45 158049 48 5

LL 126934 185 78 252300 194 67

Totals 783287 75338 1002284 27081
Rate Totals (bits) 858,625 1,029,365
Total Luminance i(bits) 1,887,990
Total Chrominance (bits) 179,138
Vectors (bits) 73,837
Grand Total 2,140,965
Average Bits per Pel 0.290

Table 6.7: Channel bit rate for Alley sequence frames 21 --, 44

SKeyframes Residuals
Level Band Code (bits) LUT (bits) CBS Code (bits) LUT (bits) CBS
Level 1 HH 96 16 1 4304 65 4

HL 55359 15974 417 106590 18760 478
LH 57827 28418 561 95422 19049 441

Level 2 HH 5314 108 8 12247 332 26
HL 145994 16913 874 169638 12804 676
LH 118069 11438 629 139772 7999 468

Level 3 HH 84197 82 29 201356 57 7
HL 112141 165 69 194293 53 6

LH 91599 108 46 174695 42 5

LL 132554 195 84 233776 253 98

Totals 803150J 73417 1332093 59414
Rate Totals (bits) 876,567 1,391,507

Total Luminance (bits) 2,268,074
Total Chrominance (bits) 232,959
Vectors (bits) 143,919

Grand Total 2,644,952
Average Bits per Pel 0.359

Table 6.8: Channel bit rate for Alley sequence, frames 45 --- 68

Keyframes Residuals
Level Band Code (bits) LUT (bits) I CBS Code (bits) LUT (bits) CBS

Level 1 HH 96 16 1 4896 49 3
HL 39333 11910 317 137845 21509 512
LH 11818 5512 131 116177 19017 452

Level 2 HH 1485 68 4 16667 657 51
HL 127972 16154 840 227349 16640 865
LH 78461 7305 416 185316 14046 746

Level 3 HH 79693 98 29 203153 51 8
HL 111011 154 63 151358 52 5
LH 88484 116 48 178331 71 8
LL 133448 164 80 254400 246 65

Totals 671801 41497 1475492 72338
Rate Totals (bits) 713,298 1,547,830

Total Luminance (bits) 2,261,128
Total Chrominance (bits) 235,569
Vectors (bits) 230,066

Grand Total 2,726,763
Average Bits per Pel 0.370

Table 6.9: Channel bit rate for Alley sequence frames 69 --, 92

Keyframes Residuals
Level Band Code (bits) LUT (bits) CBS Code (bits) LUT (bits) CBS

Level 1 HH 96 16 1 7222 130 9
HL 17486 3826 112 98902 23509 560
LH 18309 4496 116 94377 29865 614

Level 2 HH 2988 110 8 37704 1956 138
HL 101442 9414 526 294546 23706 1206
LH 72734 4599 267 260528 17637 945

Level 3 HH 74478 83 2 149753 45 4
IlL 88664 127 51 56511 34 2
LH 90095 146 52 143311 41 4
LL 124508 169 85 194954 238 41

Totals 590800 22986 1337808 97161
Rate Totals (bits) 613,786 1,434,969

Total Luminance (bits) 2,048,755
Total Chrominance (bits) 262,279
Vectors (bits) 155,875

Grand Total 2,466,909
Average Bits per Pel 0.335

Table 6.10: Channel bit rate for Alley sequence frames 93 -- 116

Frames Bits

0 --, 20 57,409
21 --, 44 73,837
45 - 68 143,919
69 - 92 230,066
93 -- 116 155,875

Table 6.11: Displacement vector bit rates for Alley sequence

PSNR ---- Luminance
---------- Chrominance

0 20 40 60 80 100
Frame Number

120

Figure 6.21: Luminance and Chrominance PSNR. for Alley sequence.
98

dB

40.00

39.00

38.00

37.00

36.00

35.00

34.00

33.00

32.00

31.00

30.00

29.00

28.00

27.00

26.00

25.00

Frames Code (bits) LUT (bits) Total (bits) CBS
0--420 130582 10588 141,170 73

21 --,44 169892 15390 179,138 106
45 --68 207016 33622 232,959 230
69 --,92 200658 34911 235,569 249
93 -, 116 214807 47472 262,279 310

Table 6.12: Channel bit rate for Alley sequence Chrominance

Keyframe Luminance 33.33 %
Residual Luminance 52.11 %

Chrominance 8.94 %
Displacement Vectors 5.62 %

Table 6.13: Fraction bandwidth allocation for Alley simulation

each successive segment had 24 frames. For ease of comparison, I have included an average number

of bits per pel at the bottom of each table. This average is derived from the total bit rate required

for luminance and chrominance codes and LUTs, and vector fields.

An explanation of the bit rate tables is in order. The 'level' refers to the level of the octave

pyramid decomposition, with level 1 being the first split. The two indices in the band column refer

to the horizontal and vertical filtering. For example, band HL is highpass filtered horizontally and

lowpass filtered vertically. 'CBS', code book size, is the number of unique symbols in the LUT for

a given subband.

Rate totals are the total number of bits of all the subbands, codes, and LUTs for the keyframes

and residuals, respectively. The keyframes and residuals are summed under 'Total Luminance'. This

is the total number of bits required to transmit the luminance information for the frames listed in

the caption below each table.

'Total chrominance' is the total number of bits required for the UV signal. This is also listed in

Table 6.12. The row 'vectors' refers to the number of bits required to send the displacement vector

fields for the listed frames. The above is summarized in the row 'Grand Total'. Following that is

the average number of bits per pel to display at the 640x480 output resolution.

The signal to noise ratio roughly follows the amount of motion in the original sequence. The sharp

drop in signal to noise ration of the luminance at frame 95 occurs when the two figures cross, one

occluding the other. The displacement estimator performance drops at this point. It is interesting

to note that the PSNR varies between keyframes as discussed in Chapter 3, especially where large

amounts of motion are present. The keyframes of frames 80 through 104 could have been coded to a

lower PSNR, shifting the the bit rate saved to the intermediate frames. This would result in a more

consistent overall PSNR to improve the subjective quality.

The chrominance was coded without motion compensation. The PSNR for the chrominance

signal is fairly consistent throughout the sequence. It should be noted that good quality was obtained

with the chrominance coded at a significantly lower SNR than luminance.

100

Chapter 7

Conclusions

Motion compensated interpolation in conjunction with subband coding and vector quantization

has been shown to be an effective method for bit rate reduction in a moving image sequence.

The hierarchical multiframe matching estimation method can reduce the residual error over that

of conventional block matching, when the displacement vectors are used for motion compensated

interpolation.

Two important lessons learned in regards to motion compensated interpolated image coding

systems are that the accuracy of the displacement estimation has a large impact on performance,

much larger than the coded quality of the keyframes. For this reason, an accurate displacement

estimation method should be used to obtain the motion vectors. The second is that the signal to

noise ratios of the keyframes and residual frames should be closely matched to avoid flickering at

rates which the human visual system is most sensitive.

The residual error signal in a motion compensated system tends to have energy distributions that

are spatially localized. A subband pyramid decomposition of the residual signal will still have the

energy spatially localized within each subband. However, by using a peak error criteria when building

101

the vector quantization look up tables, the areas of greatest error can be adequately reconstructed.

The energy in the residual signal is distributed more in the middle spatial frequency subbands, in

comparison to the distribution of energy of the keyframes which is primarily in the baseband. By

coding using subbands, the bit rate allocation can be distributed in a manner appropriate to the

energy distribution in the keyframes and residuals separately to achieve good results.

102

Appendix A

Computational Complexity and

Hardware Implementation

The displacement estimation method outlined in this thesis using the minimum absolute difference

criteria (MAD) uses simple calculations, yet there is a tremendous amount of these calculations

required. Using the N-step method, there are (N * 8) + 1 block comparisons made. The subsampling

methods used in each block resulted in a uniform 64 points per block regardless of the block size.

The spacing and search parameters used in the simulation were given in Table 6.1. These values

required a worst case number of calculations as presented in Table A.1.

Level Steps Block Comparisons Point Comparisons
1 4 33 2112 60,825,600
2 2 17 1088 31,334,400
3 2 17 1088 31,334,400

Total 123,494,400

Table A.1: Worst-case comparison operations for a. multiframe search as used in the computer
simulations on Alley sequence using 4800 vectors per four frame set.

103

Type Steps Block Comparisons Point Comparisons
Fast 3 25 1600 7,680,000
Full na 225 14,400 69,120,000

Table A.2: Worst-case comparison operations for block search in a motion compensated predictive
system using -7 pel search area, using 4800 vectors per four frame set .

Each comparison takes two operations (a subtract and an accumulate) so the total number

of operations for a four frame set is 246,988,800. There are 6 four frame sets per second , so

the requirement is for 1.48 billion operations per second (GOPS). In comparison, a simple block

matching scheme using the same parameters would require one sixth of the operations or 246 million

operations per second (MOPS).

The actual method used requires significantly less operations than the above calculations indicate.

This is for two reasons:

* The search is performed only on areas classified as moving. This area ranged from 20 to 80

percent of the image.

* The simulation included a comparison with the minimum absolute difference after each line in

the comparison block. If the current sum exceeded the minimum, the comparison to this test

vector is ended.

The predictive system requires one vector set for each frame so there are 368.6 MOPS in the fast

search case, and 3.318 GOPS in the full search case.

104

Appendix B

Filter Coefficients

The following table (B.1) gives the values of the quadrature mirror filters (QMFs) used in the analysis

and synthesis of the recursive pyramid splitting for both the keyframes and residuals. Floating point

values are shown, while the actual values used were converted to 16 bit fixed point.

The Gaussian decimation and interpolation filtered used in chrominance coding as given in Table

B.2. As with the QMF filters, these are converted to 16 bit fixed point before applying them in the

simulation.

Point Highpass Lowpass
_ 1 Analysis Synthesis Analysis Synthesis

0 1.995484e-02 3.990967e-02 1.995484e-02 3.990967e-02
1 -4.270508e-02 -8.541015e-02 4.270508e-02 8.541015e-02
2 -5.224239e-02 -1.044848e-01 -5.224239e-02 -1.044848e-01
3 2.927051e-01 5.854102e-01 -2.927051e-01 -5.854102e-01
4 5.645751e-01 1.129150e+00 5.645751e-01 1.129150e+00
5 2.927051e-01 5.854102e-01 -2.927051e-01 -5.854102e-01
6 -5.224239e-02 -1.044848e-01 -5.224239e-02 -1.044848e-01
7 -4.270508e-02 -8.541015e-02 4.270508e-02 8.541015e-02
8 1.995484e-02 3.990967e-02 1.995484e-02 3.990967e-02

Table B.1: QMF analysis and synthesis filters used in pyramid decomposition

105

Point Decimate Interpolate
0 1.722366e-09 6.889467e-09
1 4.401103e-08 1.827576e-07
2 8.259543e-07 3.303818e-06
3 1.138437e-05 4.392394e-05
4 1.152445e-04 4.609782e-04
5 8.568212e-04 3.557984e-03
6 4.678628e-03 1.871452e-02
7 1.876314e-02 7.239321e-02
8 5.526507e-02 2.210603e-01
9 1.195514e-01 4.964418e-01
10 1.899402e-01 7.597609e-01
11 2,216346e-01 8.551257e-01
12 1.899402e-01 7.597609e-01
13 1.195514e-01 4.964418e-01
14 5.526507e-02 2.210603e-01
15 1.876314e-02 7.239321e-02
16 4.678628e-03 1.871452e-02
17 8.568212e-04 3.557984e-03
18 1.152445e-04 4.609782e-04
19 1.138437e-05 4.392394e-05
20 8.259543e-07 3.303818e-06
21 4.401103e-08 1.827576e-07
22 1.722366e-09 6.889467e-09

Table B.2: Gaussian Decimation / Interpolation Filters used in chrominance coding

106

Appendix C

Acknowledgments

I would like to thank the many people who have supported me through this endeavor:

Andy Lippman for suggesting the topic of motion compensated interpolation; Pat Romano who

developed much of the image processing utility programs in the Garden; Foof for all his good and

bad music; Walter, Mike, Wad, Pascal and the rest of the Garden crew for their help with equipment

and computer systems.

The greatest thanks go to my wife, Susan, who has endured both the sacrifices of being married

to a poor graduate student and the long days and nights with two children while I finished my thesis

and held down a full time job. Your patience is beyond anything I could have asked for.

107

Bibliography

[1] H. Abut, B. P. Tao, and J. L. Smith. Vector quantizer architectures for speech and image

coding. In Proceedings of IEEE International Conference on Acoustics Speech and Signal

Processing, pages 18.9.1-18.9.4. IEEE, 1987.

[2] S. R. Adams. A real-time image compression system for use in workstation environments. SID

89 Digest, SID 89:334-337, 1989.

[3] K.-I. Aihara. Universal data compression scheme for enhancing multi-media communication.

In IEEE Globecom, pages 1873-1877, 1986.

[4] H. Amor, D. Biere, and A. G. Tescher. Technical issues in low bit rate transform coding. In

Visual Communications and Image Processing '88, volume SPIE 1001, pages 164-177, 1988.

[5] M. J. Badge. Interframe predictive coding of images using hybrid vector quantization. IEEE

Transactions on Communications, COM-34:411-415, Apr. 1986.

[6] R. L. Baker and H. Shen. A finite-state vector quantizer for low-rate image sequence coding.

In Proceedings of IEEE International Conference on Acoustics Speech and Signal Processing,

pages 18.10.1-18.10.4. IEEE, 1987.

108

[7] J. Barrilleaux, R. Hinkle, and S. Wells. Efficient vector quantization for color image encoding.

In Proceedings of IEEE International Conference on Acoustics Speech and Signal Processing,

pages 18.5.1-18.5.4. IEEE, 1987.

[8] W. Bender. Adaptive color coding based on spatial/temporal features. In Proceedings of SPSE

Electronic Imaging Devices and Systems Symposium. SPSE, Jan. 1988.

[9] M. Bierling. Displacement estimation by hierarchical blockmatching. In Visual Communica-

tions and Image Processing '88, volume SPIE 1001, pages 942-951. Proceedings SPIE, 1988.

[10] R. E. Blahut. Principles and Practices of Information Theory. Addison-Wesley Publishing

Co., Reading, MA, 1988.

[11] M. E. Blain and T. R. Fischer. Optimum rate allocation in pyramid vector quantization

transform coding of imagery. In Proceedings of IEEE International Conference on Acoustics

Speech and Signal Processing, pages 18.2.1-18.2.4. IEEE, 1987.

[12] B. Braun. Luminance adaptive chrominance coding. In Proceedings of IEEE International

Conference on Acoustics Speech and Signal Processing, pages 25.7.1-25.7.4. IEEE, 1987.

[13] W. Butera. Motion compensated interpolation for low bit rate image coding. Oct. 1988.

[14] W. J. Butera. Multiscale coding of images. Master's thesis, Massachusetts Institute of Tech-

nology, 1988.

[15] C. H. Chen. Laplacian pyramid image data compression. In Proceedings of IEEE International

Conference on Acoustics Speech and Signal Processing, pages 18.4.1-18.4.3. IEEE, 1987.

[16] T. N. Cornsweet. Visual Perception. Academic Press, Orlando, Florida, 1970.

109

[17] P. Douglas, G. Karlsson, and M. Vetterli. Statistical analysis of the output rate of a sub-

band coder. In Visual Communications and Image Processing '88, volume SPIE 1001, pages

1011-1025. Proceedings SPIE, 1988.

[18] W. H. Equitz. Fast algorithm for vector quantization picture coding. In Proceedings of IEEE

International Conference on Acoustics Speech and Signal Processing, pages 725-728. IEEE,

1987.

[19] W. H. Equitz. A new vector quantization clustering algorithm. IEEE Transactions on Acoustics

Speech and Signal Processing, 37:1568-1574, 1989.

[20] S. Ericsson. Fixed ans adaptive predictors for hybrid predictive / transform coding. IEEE

Transactions on Communications, COM-33:1291-1302, Dec. 1985.

[21] D. Esteban and C. Galand. 32 KBPS CCITT compatible split band coding scheme. pages

320-325. IEEE, 1978.

[22] A. Furukawa, T. Koga, and K. Niwa. Coding effficiency analysis fo motion-compensated

interframe dpcm with transform coding. In Proceedings of IEEE International Conference on

Acoustics Speech and Signal Processing, pages 22.4.1-22.5.5, 1985.

[23] R. G. Gallager. Information Theory and Reliable Communications. John Wiley & Sons, New

York, 1968.

[24] R. G. Gallager. Variations on a theme by Huffman. IEEE Transactions on Information Theory,

IT-24:668-674, Nov. 1978.

[25] M. Gilge. A high quality videophone coder using hierarchical motion estimation and structure

coding of the prediction error. In Visual Communications and Image Processing '88, volume

SPIE 1001, pages 864-874. Proceedings SPIE, 1988.

110

[26] B. Girod. Displacement estimation by multi-field-matching. Presented at Picture Coding

Symposium, 1987.

[27] B. Girod. The efficiency of motion-compensating prediction for hybrid coding of video se-

quences. IEEE Journal on Selected Areas in Communications, SAC-5:1140-1154, Aug. 1987.

[28] B. Girod. Eye movements and coding of video sequences. In Visual Communications and

Image Processing '88, volume SPIE 1001, pages 398-405. Proceedings SPIE, 1988.

[29] B. Girod. Motion-compensating prediction with fractional pel accuracy. Submitted to the

IEEE Transactions on Communications, 1989.

[30] B. Girod and R. Thoma. Motion-compensated field interpolation from interlaced and non-

interlaced grids. SPIE Image Coding, 594:186-193, 1985.

[31] R. M. Gray. Vector quantization. IEEE ASSP Magazine, pages 4-29, Apr. 1984.

[32] M. H. Groves. Calculation of displacement fields by means of the motion detection transform.

In Proceedings of IEEE International Conference on Acoustics Speech and Signal Processing,

pages 23.6.1-23.6.4. IEEE, 1984.

[33] B. Hammer, A. V. Brandt, and M. Schielein. Hierarchical encoding of image sequences using

multistage vector quantization. In Proceedings of IEEE International Conference on Acoustics

Speech and Signal Processing, pages 25.2.1-25.2.4. IEEE, 1987.

[34] H.-M. Hang and B. G. Haskell. Interpolative vector quantization of color images. IEEE

Transactions on Communications, COM-36:465-470, Apr. 1988.

[35] H. Hashimoto, H. Watanbe, and Y. Suzuki. A 64 kb/s video coding system and its performance.

In Visual Communications and Image Processing '88, volume SPIE 1001, pages 847-853.

Proceedings SPIE, 1988.

[36] D. J. Heeger. Optical flow using spatiotemporal filters. International Journal of Computer

Vision, pages 279-302, 1987.

[37] D. A. Huffman. A method of construction of minimum redundancy codes. Proceedings of the

IRE, 40:1098-1101, Oct. 1952.

[38] T. Ishiguro and K. Iinuma. Television bandwidth compression transmission by motion-

compensated interframe coding. IEEE communications magazine, 20:24-30, Nov. 1982.

[39] J. R. Jain and A. K. Jain. Displacement measurement and its application to interframe image

coding. IEEE Transactions on Communications, COM-29:1799-1804, Dec. 1981.

[40] P. Jakatdar and W. A. Pearlman. An optimal transform coding method applied to images.

In Proceedings of IEEE International Conference on Acoustics Speech and Signal Processing,

pages 29.11.1-29.11.4, 1984.

[41] C. N. Judice. Entertainment video-on-demand at T1 transmission speeds (1.5 Mb/s). In Visual

Communications and Image Processing '88, volume SPIE 1001, pages 396-397. Proceedings

SPIE, 1988.

[42] G. Karlsson and M. Vetterli. Sub-band coding of video signals for packet-switched networks.

In Visual Communications and Image Processing II (1987), volume SPIE 845, pages 446-456,

1987.

[43] D. H. Kelly. Visual response to time dependant stimuli. i. amplitude sensitivity measurements.

Journal of the Optical Society of America, 51(4):422-429, 1961.

[44] J. Kim and Rae-HongPark. Local motion-adaptive interpolation technique. In Visual Com-

munications and Image Processing '88, volume SPIE 1001, pages 432-439. Proceedings SPIE,

1988.

112

[45] T. Koga. A 384 kbit/sec motion video codec with scene change detection. In Proceedings of

IEEE International Conference on Communications, pages 366-370. IEEE, June 1986.

[46] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Isigur. Motion-compensated interframe

coding for video conferencing. NTC 81, Proceedings, pages G5.3.1-G5.3.5, Dec. 1981.

[47] Y. Kosugi, K. Sakai, T. Hosokawa, and K. Matsuda. A realization of MC/DCT by video signal

processors. In Visual Communications and Image Processing '88, volume SPIE 1001, pages

875-880. Proceedings SPIE, 1988.

[48] E. Krause. Motion estimation and interpolation in time-varying imagery. Master's thesis,

Massachusetts Institute of Technology, 1984.

[49] E. Krause. Motion Estimation for Frame-Rate Conversion. PhD thesis, Massachusetts Insti-

tute of Technology, 1987.

[50] G. G. Langdon, Jr. An introduction to arithmetic coding. IBM Journal of Research and

Development, 28:135-149, Mar. 1984.

[51] Y. Linde, A. Buzo, and R. M. Grey. An algorithm for vector quantizater design. IEEE

Transactions on Communications, TCOMM 28:84-95, Jan. 1980.

[52] A. Lippman and W. Butera. Coding image sequences for interactive retrieval. Communications

of the ACM, 32:852-860, 1989.

[53] J. Makhoul. A fast cosine transform in one and two dimensions. IEEE Transactions on

Acoustics Speech and Signal Processing, ASSP-28:27-34, 1980.

[54] H. S. Malvar and D. H. Staelin. The LOT: Transform coding without blocking effects. IEEE

Transactions on Acoustics Speech and Signal Processing, 37, No. 4:553 559, Apr. 1989.

113

[55] M. Margoudakis and J. D. Gibson. Experiments on video teleconferencing algorithms at 56

kilobits/sec. In Proceedings of IEEE International Conference on Acoustics Speech and Signal

Processing, pages 25.6.1-25.6.4. IEEE, 1987.

[56] V. J. Mathews, R. W. Waite, and T. D. Tran. Image compression using vector quantization

of linear (one-step) prediction errors. In Proceedings of IEEE International Conference on

Acoustics Speech and Signal Processing, pages 18.2.1-18.3.4. IEEE, 1987.

[57] R. W. McColl and G. R. Martin. Quad-tree modeling of colour image regions. In Visual

Communications and Image Processing '88, volume SPIE 1001, pages 231-238. Proceedings

SPIE, 1988.

[58] G. W. Meeker. Signal processing advances in the Avelex video codec. In IEEE Globecom,

pages 684-688, 1985.

[59] Miller and Wegman. Variations on a theme by Ziv and Lempel. Research Report RC 10630(No.

47798), IBM Laboratories, July 1984.

[60] J. L. Mitchell and W. B. Pennebaker. Optimal hardware and software arithmetic coding

procedures for the Q-Coder. IBM Journal of Research and Development, 32:727-736, 1988.

[61] H. G. Musmann, P. Pirsch, and H.-J. Grallert. Advances in picture coding. Proceedings of the

IEEE, Apr. 1985.

[62] H. Nagel. Detection and interpretation of changes in image sequences. In Proceedings IEEE

Colloquium on motion adaptive image processing, pages 1.1 - 1.4, June 1986.

[63] A. H. Netravali and B. G. Haskell. Digital Pictures, Representation and Compression. Plenum

Press, New York, 1988.

114

[64] Y. Ninomiya and Y. Ohtsuka. A motion compensated interframe coding scheme for NTSC

color television signals. IEEE Transactions on Communications, COM-32:328-334, 1984.

[65] R. A. Nobaht and S. A. Rajala. An image coding technique using a human visual system

model and image analysis critera. pages 1358-1361. IEEE, 1987.

[66] J. B. O'Neal, Jr. and T. R. Natarajan. Coding isotropic images. IEEE Transactions on

Information Theory, IT-23:697-707, Nov. 1977.

[67] A. V. Oppenheim and R. W. Shafer. Digital Signal Processing. Prentice-Hall, Englewood

Cliffs, NJ, 1975.

[68] D. E. Pearson and J. A. Robinson. Visual communication at very low data rates. Proceedings

of the IEEE, 73:795-812, Apr. 1985.

[69] K. A. Prabhu and A. N. Netravali. Motion compensated composite color coding. IEEE

Transactions on Communications, COM-31:216-223, Feb. 1983.

[70] A. Purl and H.-M. Hang. Adaptive schemes for motion-compensated coding. In Visual Com-

munications and Image Processing '88, volume SPIE 1001, pages 925-935. Proceedings SPIE,

1988.

[71] A. Purl, H.-M. Hang, and D. L. Schilling. An efficient block-matching algorithm for motion-

compensated coding. In Proceedings of IEEE International Conference on Acoustics Speech

and Signal Processing, pages 25.4.1-25.4.4. IEEE, 1987.

[72] Q. Qureshi and T. R. Fischer. A hardware pyramid vector quantizer. pages 1402-1405. IEEE,

1987.

[73] S. A. Rajala, M. R.. Civanlar, and W. M. Lee. A seconf generation image coding technique

using human visual system based segmantation. pages 1362-1365. IEEE, 1987.

115

[74] B. Ramamurthi and A. Gersho. Classified vector quantization of images. IEEE Transactions

on Communications, COM-34:1105-1115, Nov. 1986.

[75] G. Ramponi and G. L. Sicuranza. 2- and 3-D nonlinear predictors. In Proceedings of IEEE In-

ternational Conference on Acoustics Speech and Signal Processing, pages 25.8.1-25.8.4. IEEE,

1987.

[76] J. Rissanen and G. G. Langdon. Arithmetic coding. IBM Journal of Research and Develop-

ment, 23 No. 2:149-162, Mar. 1979.

[77] J. Rissanen and G. G. Langdon. Universal modeling and coding. IEEE Transactions on

Information Theory, IT-27:12-23, Jan. 1981.

[78] J. Rissanen and K. M. Mouhiuddin. A multiplication free multialphabet arithmetic code.

IEEE Transactions on Communications, COM 37:93-98, Feb. 1989.

[79] J. D. Robbins and A. N. Netravali. Spatial subsampling in motion compensated television

coders. Bell System Technical Journal, 61:1895-1910, Oct. 1982.

[80] P. Romano, Jr. Vector quantization for spatiotemporal sub-band coding. Master's thesis,

Massachusetts Institute of Technology, 1989.

[81] S. Sabri. Movement compensated interframe prediction for NTSC color TV signals. IEEE

Transactions on Communications, COM-32:954-968, Aug. 1984.

[82] W. F. Schreiber. Psychophysics and the improvement of television image quality. SMPTE

Journal, 93 Number 8:717-725, Aug. 1984.

[83] W. F. Schreiber. Fundamentals of Electronic Imaging Systems. Springer-Verlag, Berlin, 1986.

[84] G. R. Seabrook. Arithmetic coding - an alternative VLC strategy for video coding.

116

[85] C. E. Shannon. The mathematical theory of communication. Bell System Technical Journal,

July and October 1948.

[86] H. Shen and R. L. Baker. An adaptive finite-state vector quantizer with conditional replen-

ishment for low rate video compression.

[87] M. J. Smith and S. L. Eddins. Subband coding of images with octive band tree structure.

pages 1382-1385. IEEE, 1987.

[88] R. F. Sproull. Refinements to nearest neighbor searching k-d trees. (unpublished), Feb. 1988.

[89] R. Srinivasan and K. R. Rao. Predictive coding based on efficient motion estimation. ICC

1984 Proceedings, pages 521-526, May 1984.

[90] J. B. Stampleman. Multiscale codebooks. Bachelor's Thesis, Massachusetts Institute of Tech-

nology, 1989.

[91] K. S. Thyagarajan and M. Viswanatahan. Low bit rate coding techniques. In Proceedings

of IEEE International Conference on Acoustics Speech and Signal Processing, pages 18.7.1-

'18.7.4. IEEE, 1987.

[92] A. Tran and K.-M. Liu. An efficient pyramid image coding scheme. In Proceedings of IEEE

International Conference on Acoustics Speech and Signal Processing, page 18.6.1. IEEE, 1987.

[93] R. Y. Tsai. Multiframe image point matching and 3-D surface reconstruction. IEEE Trans-

actions on pattern Analysis and Machine Intelligence, PAMI-5:159-174, Mar. 1983.

[94] S. Tsuruta, K. Mitsuhashi, M. Mera, and K. Niwa. Intellegent communication terminal for

integrating voice, data and video signals. In IEEE Globecom, pages 1509-1513, 1986.

117

[95] G. Tu, L. Van Eycken, and A. Oosterlinck. Hybrid image coding based on local-variant source

models. In Visual Communications and Image Processing '88, volume SPIE 1001, pages 239-

245. Proceedings SPIE, 1988.

[96] D. J. Vaisey and A. Gersho. Variable block-size image coding. In Proceedings of IEEE In-

ternational Conference on Acoustics Speech and Signal Processing, pages 25.1.1-25.1.4. IEEE,

1987.

[97] G. K. Wallace. Overview of the JPEG (ISO/CCITT) still image compression standard. In

Visual Communications and Image Processing '89. SPIE, 1989.

[98] L. Wang and M. Goldberg. Progressive image transmission by multistage transform coefficient

quantization. In Proceedings of IEEE International Conference on Acoustics Speech and Signal

Processing, pages 14.2.1-14.2.5. IEEE, 1986.

[99] T. A. Welch. A technique for high performance data compression. IEEE Computer, 17:8-19,

June 1984.

[100] P. H. Westerink, J. Biemond, and D. E. Boekee. Quantization error analysis of sub-band filter

banks. In ISCAS-88, 1988.

[101] P. H. Westerink, D. E. Boekee, J. Biemond, and J. W. Woods. Subband coding of images

using vector quantization. IEEE Transactions on Communications, COM-36:713-719, June

1988.

[102] J. W. Woods and S. D. O'Neil. Sub-Band coding of images. In ICASSP 86, Tokyo, pages

1005-1007. IEEE, 1986.

118

[103] K.-M. Yang, L. Wu, H. Chong, and M.-T. Sun. VLSI implementation of motion compensation

full-search block-matching algorithm. In Visual Communications and Image Processing '88,

volume SPIE 1001, pages 892-899. Proceedings SPIE, 1988.

[104] C.-L. Yeh. Color image-sequence compression using adaptive binary-tree vector quantization

with codebook replenishment. In Proceedings of IEEE International Conference on Acoustics

Speech and Signal Processing, pages 25.2.1-25.3.4. IEEE, 1987.

[105] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Transac-

tions on Information Theory, IT-23:337-343, May 1977.

119

