16 research outputs found

    New Iterative Frequency-Domain Detectors for IA-Precoded MC-CDMA Systems

    Get PDF
    The aim of this paper is to design new multi-user receivers based on the iterative block decision feedback equalization concept for MC-CDMA systems with closed-form interference alignment (IA) at the transmitted side. IA is a promising technique that allows high capacity gains in interfering channels. On the other hand, iterative frequency-domain detection receivers based on the IB-DFE concept can efficiently exploit the inherent space-frequency diversity of the MIMO MC-CDMA systems. In IA-precoded based systems the spatial streams are usually separated by using a standard linear MMSE equalizer. However, for MC-CDMA based systems, linear equalization is not the most efficient way of separating spatial streams due to the residual inter-carrier interference (ICI). Therefore, we design new non-linear iterative receiver structures to efficiently remove the aligned interference and separate the spatial streams in presence of residual ICI. Two strategies are considered: in the first one the equalizer matrices are obtained by minimizing the mean square error (MSE) of each individual data stream at each subcarrier, while in the second approach the matrices are computed by minimizing the overall MSE of all data streams at each subcarrier. We also propose an accurate analytical approach for obtaining the performance of the proposed receivers. Our schemes achieve the maximum degrees of freedom provided by the IA precoding, while allowing close-to-optimum space-diversity gain, with performance approaching the matched filter bound

    Técnicas de equalização e pré-codificação para sistemas MC-CDMA

    Get PDF
    Mestrado em Engenharia Eletrónica e TelecomunicaçõesO número de dispositivos com ligações e aplicações sem fios está a aumentar exponencialmente, causando problemas de interferência e diminuindo a capacidade do sistema. Isto desencadeou uma procura por uma eficiência espectral superior e, consequentemente, tornou-se necessário desenvolver novas arquitecturas celulares que suportem estas novas exigências. Coordenação ou cooperação multicelular é uma arquitectura promissora para sistemas celulares sem fios. Esta ajuda a mitigar a interferência entre células, melhorando a equidade e a capacidade do sistema. É, portanto, uma arquitectura já em estudo ao abrigo da tecnologia LTE-Advanced sob o conceito de coordenação multiponto (CoMP). Nesta dissertação, considerámos um sistema coordenado MC-CDMA com pré-codificação e equalização iterativas. Uma das técnicas mais eficientes de pré-codificação é o alinhamento de interferências (IA). Este é um conceito relativamente novo que permite aumentar a capacidade do sistema em canais de elevada interferência. Sabe-se que, para os sistemas MC-CDMA, os equalizadores lineares convencionais não são os mais eficientes, devido à interferência residual entre portadoras (ICI). No entanto, a equalização iterativa no domínio da frequência (FDE) foi identificada como sendo uma das técnicas mais eficientes para lidar com ICI e explorar a diversidade oferecida pelos sistemas MIMO MC-CDMA. Esta técnica é baseada no conceito Iterative Block Decision Feedback Equalization (IB-DFE). Nesta dissertação, é proposto um sistema MC-CDMA que une a pré-codificação iterativa do alinhamento de interferências no transmissor ao equalizador baseado no IB-DFE, com cancelamento sucessivo de interferências (SIC) no receptor. Este é construído por dois blocos: um filtro linear, que mitiga a interferência inter-utilizador, seguido por um bloco iterativo no domínio da frequência, que separa eficientemente os fluxos de dados espaciais na presença de interferência residual inter-utilizador alinhada. Este esquema permite atingir o número máximo de graus de liberdade e permite simultaneamente um ganho óptimo de diversidade espacial. O desempenho deste esquema está perto do filtro adaptado- Matched Filter Bound (MFB).The number of devices with wireless connections and applications is increasing exponentially, causing interference problems and reducing the system’s capacity gain. This initiated a search for a higher spectral efficiency and therefore it became necessary to develop new cellular architectures that support these new requirements. Multicell cooperation or coordination is a promising architecture for cellular wireless systems to mitigate intercell interference, improving system fairness and increasing capacity, and thus is already under study in LTE-Advanced under the coordinated multipoint (CoMP) concept. In this thesis, efficient iterative precoding and equalization is considered for coordinated MC-CDMA based systems. One of the most efficient precoding techniques is interference alignment (IA), which is a relatively new concept that allows high capacity gains in interfering channels. It is well known that for MC-CDMA systems standard linear equalizers are not the most efficient due to residual inter carrier interference (ICI). However, iterative frequency-domain equalization (FDE) has been identified as one of the most efficient technique to deal with ICI and exploit the inherent space-frequency diversity of the MIMO MC-CDMA systems, namely the one based on Iterative Block Decision Feedback Equalization (IB-DFE) concept. In this thesis, it is proposed a MC-CDMA system that joins iterative IA precoding at the transmitter with IB-DFE successive interference cancellation (SIC) based receiver structure. The receiver is implemented in two steps: a linear filter, which mitigates the inter-user aligned interference, followed by an iterative frequency-domain receiver, which efficiently separates the spatial streams in the presence of residual inter-user aligned interference. This scheme provides the maximum degrees of freedom (DoF) and allows almost the optimum space-diversity gain. The scheme performance is close to the matched filter bound (MFB)

    EXIT charts for system design and analysis

    No full text
    Near-capacity performance may be achieved with the aid of iterative decoding, where extrinsic soft information is exchanged between the constituent decoders in order to improve the attainable system performance. Extrinsic information Transfer (EXIT) charts constitute a powerful semi-analytical tool used for analysing and designing iteratively decoded systems. In this tutorial, we commence by providing a rudimentary overview of the iterative decoding principle and the concept of soft information exchange. We then elaborate on the concept of EXIT charts using three iteratively decoded prototype systems as design examples. We conclude by illustrating further applications of EXIT charts, including near-capacity designs, the concept of irregular codes and the design of modulation schemes

    Mehrdimensionale Kanalschätzung für MIMO-OFDM

    Get PDF
    DIGITAL wireless communication started in the 1990s with the wide-spread deployment of GSM. Since then, wireless systems evolved dramatically. Current wireless standards approach the goal of an omnipresent communication system, which fulfils the wish to communicate with anyone, anywhere at anytime. Nowadays, the acceptance of smartphones and/or tablets is huge and the mobile internet is the core application. Given the current growth, the estimated data traffic in wireless networks in 2020 might be 1000 times higher than that of 2010, exceeding 127 exabyte. Unfortunately, the available radio spectrum is scarce and hence, needs to be utilized efficiently. Key technologies, such as multiple-input multiple-output (MIMO), orthogonal frequency-division multiplexing (OFDM) as well as various MIMO precoding techniques increase the theoretically achievable channel capacity considerably and are used in the majority of wireless standards. On the one hand, MIMO-OFDM promises substantial diversity and/or capacity gains. On the other hand, the complexity of optimum maximum-likelihood detection grows exponentially and is thus, not sustainable. Additionally, the required signaling overhead increases with the number of antennas and thereby reduces the bandwidth efficiency. Iterative receivers which jointly carry out channel estimation and data detection are a potential enabler to reduce the pilot overhead and approach optimum capacity at often reduced complexity. In this thesis, a graph-based receiver is developed, which iteratively performs joint data detection and channel estimation. The proposed multi-dimensional factor graph introduces transfer nodes that exploit correlation of adjacent channel coefficients in an arbitrary number of dimensions (e.g. time, frequency, and space). This establishes a simple and flexible receiver structure that facilitates soft channel estimation and data detection in multi-dimensional dispersive channels, and supports arbitrary modulation and channel coding schemes. However, the factor graph exhibits suboptimal cycles. In order to reach the maximum performance, the message exchange schedule, the process of combining messages, and the initialization are adapted. Unlike conventional approaches, which merge nodes of the factor graph to avoid cycles, the proposed message combining methods mitigate the impairing effects of short cycles and retain a low computational complexity. Furthermore, a novel detection algorithm is presented, which combines tree-based MIMO detection with a Gaussian detector. The resulting detector, termed Gaussian tree search detection, integrates well within the factor graph framework and reduces further the overall complexity of the receiver. Additionally, particle swarm optimization (PSO) is investigated for the purpose of initial channel estimation. The bio-inspired algorithm is particularly interesting because of its fast convergence to a reasonable MSE and its versatile adaptation to a variety of optimization problems. It is especially suited for initialization since no a priori information is required. A cooperative approach to PSO is proposed for large-scale antenna implementations as well as a multi-objective PSO for time-varying frequency-selective channels. The performance of the multi-dimensional graph-based soft iterative receiver is evaluated by means of Monte Carlo simulations. The achieved results are compared to the performance of an iterative state-of-the-art receiver. It is shown that a similar or better performance is achieved at a lower complexity. An appealing feature of iterative semi-blind channel estimation is that the supported pilot spacings may exceed the limits given the by Nyquist-Shannon sampling theorem. In this thesis, a relation between pilot spacing and channel code is formulated. Depending on the chosen channel code and code rate, the maximum spacing approaches the proposed “coded sampling bound”.Die digitale drahtlose Kommunikation begann in den 1990er Jahren mit der zunehmenden Verbreitung von GSM. Seitdem haben sich Mobilfunksysteme drastisch weiterentwickelt. Aktuelle Mobilfunkstandards nähern sich dem Ziel eines omnipräsenten Kommunikationssystems an und erfüllen damit den Wunsch mit jedem Menschen zu jeder Zeit an jedem Ort kommunizieren zu können. Heutzutage ist die Akzeptanz von Smartphones und Tablets immens und das mobile Internet ist die zentrale Anwendung. Ausgehend von dem momentanen Wachstum wird das Datenaufkommen in Mobilfunk-Netzwerken im Jahr 2020, im Vergleich zum Jahr 2010, um den Faktor 1000 gestiegen sein und 100 Exabyte überschreiten. Unglücklicherweise ist die verfügbare Bandbreite beschränkt und muss daher effizient genutzt werden. Schlüsseltechnologien, wie z.B. Mehrantennensysteme (multiple-input multiple-output, MIMO), orthogonale Frequenzmultiplexverfahren (orthogonal frequency-division multiplexing, OFDM) sowie weitere MIMO Codierverfahren, vergrößern die theoretisch erreichbare Kanalkapazität und kommen bereits in der Mehrheit der Mobil-funkstandards zum Einsatz. Auf der einen Seite verspricht MIMO-OFDM erhebliche Diversitäts- und/oder Kapazitätsgewinne. Auf der anderen Seite steigt die Komplexität der optimalen Maximum-Likelihood Detektion exponientiell und ist infolgedessen nicht haltbar. Zusätzlich wächst der benötigte Mehraufwand für die Kanalschätzung mit der Anzahl der verwendeten Antennen und reduziert dadurch die Bandbreiteneffizienz. Iterative Empfänger, die Datendetektion und Kanalschätzung im Verbund ausführen, sind potentielle Wegbereiter um den Mehraufwand des Trainings zu reduzieren und sich gleichzeitig der maximalen Kapazität mit geringerem Aufwand anzunähern. Im Rahmen dieser Arbeit wird ein graphenbasierter Empfänger für iterative Datendetektion und Kanalschätzung entwickelt. Der vorgeschlagene multidimensionale Faktor Graph führt sogenannte Transferknoten ein, die die Korrelation benachbarter Kanalkoeffizienten in beliebigen Dimensionen, z.B. Zeit, Frequenz und Raum, ausnutzen. Hierdurch wird eine einfache und flexible Empfängerstruktur realisiert mit deren Hilfe weiche Kanalschätzung und Datendetektion in mehrdimensionalen, dispersiven Kanälen mit beliebiger Modulation und Codierung durchgeführt werden kann. Allerdings weist der Faktorgraph suboptimale Schleifen auf. Um die maximale Performance zu erreichen, wurde neben dem Ablauf des Nachrichtenaustausches und des Vorgangs zur Kombination von Nachrichten auch die Initialisierung speziell angepasst. Im Gegensatz zu herkömmlichen Methoden, bei denen mehrere Knoten zur Vermeidung von Schleifen zusammengefasst werden, verringern die vorgeschlagenen Methoden die leistungsmindernde Effekte von Schleifen, erhalten aber zugleich die geringe Komplexität des Empfängers. Zusätzlich wird ein neuartiger Detektionsalgorithmus vorgestellt, der baumbasierte Detektionsalgorithmen mit dem sogenannten Gauss-Detektor verknüpft. Der resultierende baumbasierte Gauss-Detektor (Gaussian tree search detector) lässt sich ideal in das graphenbasierte Framework einbinden und verringert weiter die Gesamtkomplexität des Empfängers. Zusätzlich wird Particle Swarm Optimization (PSO) zum Zweck der initialen Kanalschätzung untersucht. Der biologisch inspirierte Algorithmus ist insbesonders wegen seiner schnellen Konvergenz zu einem akzeptablen MSE und seiner vielseitigen Abstimmungsmöglichkeiten auf eine Vielzahl von Optimierungsproblemen interessant. Da PSO keine a priori Informationen benötigt, ist er speziell für die Initialisierung geeignet. Sowohl ein kooperativer Ansatz für PSO für Antennensysteme mit extrem vielen Antennen als auch ein multi-objective PSO für Kanäle, die in Zeit und Frequenz dispersiv sind, werden evaluiert. Die Leistungsfähigkeit des multidimensionalen graphenbasierten iterativen Empfängers wird mit Hilfe von Monte Carlo Simulationen untersucht. Die Simulationsergebnisse werden mit denen eines dem Stand der Technik entsprechenden Empfängers verglichen. Es wird gezeigt, dass ähnliche oder bessere Ergebnisse mit geringerem Aufwand erreicht werden. Eine weitere ansprechende Eigenschaft von iterativen semi-blinden Kanalschätzern ist, dass der mögliche Abstand von Trainingssymbolen die Grenzen des Nyquist-Shannon Abtasttheorem überschreiten kann. Im Rahmen dieser Arbeit wird eine Beziehung zwischen dem Trainingsabstand und dem Kanalcode formuliert. In Abhängigkeit des gewählten Kanalcodes und der Coderate folgt der maximale Trainingsabstand der vorgeschlagenen “coded sampling bound”

    MIMO Systems

    Get PDF
    In recent years, it was realized that the MIMO communication systems seems to be inevitable in accelerated evolution of high data rates applications due to their potential to dramatically increase the spectral efficiency and simultaneously sending individual information to the corresponding users in wireless systems. This book, intends to provide highlights of the current research topics in the field of MIMO system, to offer a snapshot of the recent advances and major issues faced today by the researchers in the MIMO related areas. The book is written by specialists working in universities and research centers all over the world to cover the fundamental principles and main advanced topics on high data rates wireless communications systems over MIMO channels. Moreover, the book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Low-Complexity Algorithms for Channel Estimation in Optimised Pilot-Assisted Wireless OFDM Systems

    Get PDF
    Orthogonal frequency division multiplexing (OFDM) has recently become a dominant transmission technology considered for the next generation fixed and mobile broadband wireless communication systems. OFDM has an advantage of lessening the severe effects of the frequency-selective (multipath) fading due to the band splitting into relatively flat fading subchannels, and allows for low-complexity transceiver implementation based on the fast Fourier transform algorithms. Combining OFDM modulation with multilevel frequency-domain symbol mapping (e.g., QAM) and spatial multiplexing (SM) over the multiple-input multiple-output (MIMO) channels, can theoretically achieve near Shannon capacity of the communication link. However, the high-rate and spectrumefficient system implementation requires coherent detection at the receiving end that is possible only when accurate channel state information (CSI) is available. Since in practice, the response of the wireless channel is unknown and is subject to random variation with time, the receiver typically employs a channel estimator for CSI acquisition. The channel response information retrieved by the estimator is then used by the data detector and can also be fed back to the transmitter by means of in-band or out-of-band signalling, so the latter could adapt power loading, modulation and coding parameters according to the channel conditions. Thus, design of an accurate and robust channel estimator is a crucial requirement for reliable communication through the channel, which is selective in time and frequency. In a MIMO configuration, a separate channel estimator has to be associated with each transmit/receive antenna pair, making the estimation algorithm complexity a primary concern. Pilot-assisted methods, relying on the insertion of reference symbols in certain frequencies and time slots, have been found attractive for identification of the doubly-selective radio channels from both the complexity and performance standpoint. In this dissertation, a family of the reduced-complexity estimators for the single and multiple-antenna OFDM systems is developed. The estimators are based on the transform-domain processing and have the same order of computational complexity, irrespective of the number of pilot subcarriers and their positioning. The common estimator structure represents a cascade of successive small-dimension filtering modules. The number of modules, as well as their order inside the cascade, is determined by the class of the estimator (one or two-dimensional) and availability of the channel statistics (correlation and signal-to-noise power ratio). For fine precision estimation in the multipath channels with statistics not known a priori, we propose recursive design of the filtering modules. Simulation results show that in the steady state, performance of the recursive estimators approaches that of their theoretical counterparts, which are optimal in the minimum mean square error (MMSE) sense. In contrast to the majority of the channel estimators developed so far, our modular-type architectures are suitable for the reconfigurable OFDM transceivers where the actual channel conditions influence the decision of what class of filtering algorithm to use, and how to allot pilot subcarrier positions in the band. In the pilot-assisted transmissions, channel estimation and detection are performed separately from each other over the distinct subcarrier sets. The estimator output is used only to construct the detector transform, but not as the detector input. Since performance of both channel estimation and detection depends on the signal-to-noise power vi ratio (SNR) at the corresponding subcarriers, there is a dilemma of the optimal power allocation between the data and the pilot symbols as these are conflicting requirements under the total transmit power constraint. The problem is exacerbated by the variety of channel estimators. Each kind of estimation algorithm is characterised by its own SNR gain, which in general can vary depending on the channel correlation. In this dissertation, we optimise pilot-data power allocation for the case of developed low-complexity one and two-dimensional MMSE channel estimators. The resultant contribution is manifested by the closed-form analytical expressions of the upper bound (suboptimal approximate value) on the optimal pilot-to-data power ratio (PDR) as a function of a number of design parameters (number of subcarriers, number of pilots, number of transmit antennas, effective order of the channel model, maximum Doppler shift, SNR, etc.). The resultant PDR equations can be applied to the MIMO-OFDM systems with arbitrary arrangement of the pilot subcarriers, operating in an arbitrary multipath fading channel. These properties and relatively simple functional representation of the derived analytical PDR expressions are designated to alleviate the challenging task of on-the-fly optimisation of the adaptive SM-MIMO-OFDM system, which is capable of adjusting transmit signal configuration (e.g., block length, number of pilot subcarriers or antennas) according to the established channel conditions

    Agile wireless transmission strategies

    Get PDF

    Design and implimentationof Multi-user MIMO precoding algorithms

    Get PDF
    The demand for high-speed communications required by cutting-edge applications has put a strain on the already saturated wireless spectrum. The incorporation of antenna arrays at both ends of the communication link has provided improved spectral efficiency and link reliability to the inherently complex wireless environment, thus allowing for the thriving of high data-rate applications without the cost of extra bandwidth consumption. As a consequence to this, multiple-input multiple-output (MIMO) systems have become the key technology for wideband communication standards both in single-user and multi-user setups. The main difficulty in single-user MIMO systems stems from the signal detection stage at the receiver, whereas multi-user downlink systems struggle with the challenge of enabling non-cooperative signal acquisition at the user terminals. In this respect, precoding techniques perform a pre-equalization stage at the base station so that the signal at each receiver can be interpreted independently and without the knowledge of the overall channel state. Vector precoding (VP) has been recently proposed for non-cooperative signal acquisition in the multi-user broadcast channel. The performance advantage with respect to the more straightforward linear precoding algorithms is the result of an added perturbation vector which enhances the properties of the precoded signal. Nevertheless, the computation of the perturbation signal entails a search for the closest point in an in nite lattice, which is known to be in the class of non-deterministic polynomial-time hard (NP-hard) problems. This thesis addresses the difficulties that stem from the perturbation process in VP systems from both theoretical and practical perspectives. On one hand, the asymptotic performance of VP is analyzed assuming optimal decoding. Since the perturbation process hinders the analytical assessment of the VP performance, lower and upper bounds on the expected data rate are reviewed and proposed. Based on these bounds, VP is compared to linear precoding with respect to the performance after a weighted sum rate optimization, the power resulting from a quality of service (QoS) formulation, and the performance when balancing the user rates. On the other hand, the intricacies of performing an efficient computation of the perturbation vector are analyzed. This study is focused on tree-search techniques that, by means of an strategic node pruning policy, reduce the complexity derived from an exhaustive search and yield a close-to-optimum performance. To that respect, three tree-search algorithms are proposed. The xed-sphere encoder (FSE) features a constant data path and a non-iterative architecture that enable the parallel processing of the set of vector hypotheses and thus, allow for high-data processing rates. The sequential best-node expansion (SBE) algorithm applies a distance control policy to reduce the amount of metric computations performed during the tree traversal. Finally, the low-complexity SBE (LC-SBE) aims at reducing the complexity and latency of the aforementioned algorithm by combining an approximate distance computation model and a novel approach of variable run-time constraints. Furthermore, the hardware implementation of non-recursive tree-search algorithms for the precoding scenario is also addressed in this thesis. More specifically, the hardware architecture design and resource occupation of the FSE and K-Best xed-complexity treesearch techniques are presented. The determination of the ordered sequence of complexvalued nodes, also known as the Schnorr-Euchner enumeration, is required in order to select the nodes to be evaluated during the tree traversal. With the aim of minimizing the hardware resource demand of such a computationally-expensive task, a novel non-sequential and lowcomplexity enumeration algorithm is presented, which enables the independent selection of the nodes within the ordered sequence. The incorporation of the proposed enumeration technique along with a fully-pipelined architecture of the FSE and K-Best approaches, allow for data processing throughputs of up to 5 Gbps in a 4x4 antenna setup.Aplikazio abangoardistek beharrezko duten abiadura handiko komunikazioen eskaerak presio handia ezarri du dagoeneko saturatuta dagoen haririk gabeko espektruan. Komunikazio loturaren bi muturretan antena array-en erabilerak eraginkortasun espektral eta dagarritasun handiagoez hornitu du berez konplexua den haririk gabeko ingurunea, modu honetan banda zabalera gehigarririk gabeko abiadura handiko aplikazioen garapena ahalbidetuz. Honen ondorioz, multiple-input multiple output (MIMO) sistemak banda zabaleko komunikazio estandarren funtsezko teknologia bihurtu dira, erabiltzaile bakarreko ezarpenetan hala nola erabiltzaile anitzeko inguruneetan. Erabiltzaile bakarreko MIMO sistemen zailtasun garrantzitsuena hartzailean ematen den seinalearen detekzio fasean datza. Erabiltzaile anitzeko sistemetan, aldiz, erronka nagusiena datu jasotze ez kooperatiboa bermatzea da. Prekodi kazio teknikek hartzaile bakoitzaren seinalea kanalaren egoera orokorraren ezagutzarik gabe eta modu independiente baten interpretatzea ahalbidetzen dute estazio nagusian seinalearen pre-ekualizazio fase bat inposatuz. Azken aldian, prekodi kazio bektoriala (VP, ingelesez vector precoding) proposatu da erabiltzaile anitzeko igorpen kanalean seinalearen eskuratze ez kooperatiboa ahalbidetzeko. Perturbazio seinale baten erabilerak, prekodi katutako seinalearen ezaugarriak hobetzeaz gain, errendimenduaren hobekuntza nabarmen bat lortzen du prekodi kazio linearreko teknikekiko. Hala ere, perturbazio seinalearen kalkuluak sare in nitu baten puntu hurbilenaren bilaketa suposatzen du. Problema honen ebazpenaren konplexutasuna denbora polinomialean ez deterministikoa dela jakina da. Doktoretza tesi honen helburu nagusia VP sistemetan perturbazio prozesuaren ondorioz ematen diren zailtasun teoriko eta praktikoei irtenbide egoki bat ematea da. Alde batetik, seinale/zarata ratio handiko ingurunetan VP sistemen errendimendua aztertzen da, beti ere deskodetze optimoa ematen dela suposatuz. Perturbazio prozesuak VP sistemen errendimenduaren azterketa analitikoa oztopatzen duenez, data transmisio tasaren hainbat goi eta behe borne proposatu eta berrikusi dira. Borne hauetan oinarrituz, VP eta prekodi kazio linealaren arteko errendimendu desberdintasuna neurtu da hainbat aplikazio ezberdinen eremuan. Konkretuki, kanalaren ahalmen ponderatua, zerbitzu kalitatearen formulazio baten ondorioz esleitzen den seinale potentzia eta erabiltzaileen datu transmisio tasa orekatzean lortzen den errendimenduaren azterketa burutu dira. Beste alde batetik, perturbazio bektorearen kalkulu eraginkorra lortzeko metodoak ere aztertu dira. Analisi hau zuhaitz-bilaketa tekniketan oinarritzen da, non egitura sinple baten bitartez errendimendu ia optimoa lortzen den. Ildo horretan, hiru zuhaitz-bilaketa algoritmo proposatu dira. Alde batetik, Fixed-sphere encoder-aren (FSE) konplexutasun konstateak eta arkitektura ez errekurtsiboak datu prozesaketa abiadura handiak lortzea ahalbidetzen dute. Sequential best-node expansion (SBE) delako algoritmo iteratiboak ordea, distantzia kontrol politika baten bitartez metrika kalkuluen kopurua murriztea lortzen du. Azkenik, low-complexity SBE (LC-SBE) algoritmoak SBE metodoaren latentzia eta konplexutasuna murriztea lortzen du ordezko distantzien kalkuluari eta exekuzio iraupenean ezarritako muga aldakorreko metodo berri bati esker. Honetaz gain, prekodi kazio sistementzako zuhaitz-bilaketa algoritmo ez errekurtsiboen hardware inplementazioa garatu da. Zehazki, konplexutasun nkoko FSE eta K-Best algoritmoen arkitektura diseinua eta hardware baliabideen erabilera landu dira. Balio konplexuko nodoen sekuentzia ordenatua, Schnorr-Euchner zerrendapena bezala ezagutua, funtsezkoa da zuhaitz bilaketan erabiliko diren nodoen aukeraketa egiteko. Prozesu honek beharrezkoak dituen hardware baliabideen eskaera murrizteko, konplexutasun bajuko algoritmo ez sekuentzial bat proposatzen da. Metodo honen bitartez, sekuentzia ordenatuko edozein nodoren aukeraketa independenteki egin ahal da. Proposatutako zerrendapen metodoa eta estruktura fully-pipeline baten bitartez, 5 Gbps-ko datu prozesaketa abiadura lortu daiteke FSE eta K-Best delako algoritmoen inplementazioan.La demanda de comunicaciones de alta velocidad requeridas por las aplicaciones más vanguardistas ha impuesto una presión sobre el actualmente saturado espectro inalámbrico. La incorporación de arrays de antenas en ambos extremos del enlace de comunicación ha proporcionado una mayor e ciencia espectral y abilidad al inherentemente complejo entorno inalámbrico, permitiendo así el desarrollo de aplicaciones de alta velocidad de transmisión sin un consumo adicional de ancho de banda. Consecuentemente, los sistemas multiple-input multiple output (MIMO) se han convertido en la tecnología clave para los estándares de comunicación de banda ancha, tanto en las con guraciones de usuario único como en los entornos multiusuario. La principal di cultad presente en los sistemas MIMO de usuario único reside en la etapa de detección de la señal en el extremo receptor, mientras que los sistemas multiusuario en el canal de bajada se enfrentan al reto de habilitar la adquisición de datos no cooperativa en los terminales receptores. A tal efecto, las técnicas de precodi cación realizan una etapa de pre-ecualización en la estación base de tal manera que la señal en cada receptor se pueda interpretar independientemente y sin el conocimiento del estado general del canal. La precodifi cación vectorial (VP, del inglés vector precoding) se ha propuesto recientemente para la adquisición no cooperativa de la señal en el canal de difusión multiusuario. La principal ventaja de la incorporación de un vector de perturbación es una considerable mejora en el rendimiento con respecto a los métodos de precodi cación lineales. Sin embargo, la adquisición de la señal de perturbación implica la búsqueda del punto más cercano en un reticulado in nito. Este problema se considera de complejidad no determinística en tiempo polinomial o NP-complejo. Esta tesis aborda las di cultades que se derivan del proceso de perturbación en sistemas VP desde una perspectiva tanto teórica como práctica. Por un lado, se analiza el rendimiento de VP asumiendo una decodi cación óptima en escenarios de alta relación señal a ruido. Debido a que el proceso de perturbación di culta la evaluación analítica del rendimiento de los sistemas de VP, se proponen y revisan diversas cotas superiores e inferiores en la tasa esperada de transmisión de estos sistemas. En base a estas cotas, se realiza una comparación de VP con respecto a la precodi cación lineal en el ámbito de la capacidad suma ponderada, la potencia resultante de una formulación de calidad de servicio y el rendimiento obtenido al equilibrar las tasas de transmisión de los usuarios. Por otro lado, se han propuesto nuevos procedimientos para un cómputo e ciente del vector de perturbación. Estos métodos se basan en técnicas de búsqueda en árbol que, por medio de diferentes políticas de podado, reducen la complejidad derivada de una búsqueda exhaustiva y obtienen un rendimiento cercano al óptimo. A este respecto, se proponen tres algoritmos de búsqueda en árbol. El xed-sphere encoder (FSE) cuenta con una complejidad constante y una arquitectura no iterativa, lo que permite el procesamiento paralelo de varios vectores candidatos, lo que a su vez deriva en grandes velocidades de procesamiento de datos. El algoritmo iterativo denominado sequential best-node expansion (SBE) aplica una política de control de distancias para reducir la cantidad de cómputo de métricas realizadas durante la búsqueda en árbol. Por último, el low-complexity SBE (LC-SBE) tiene por objetivo reducir la complejidad y latencia del algoritmo anterior mediante la combinación de un modelo de cálculo aproximado de distancias y una estrategia novedosa de restricción variable del tiempo de ejecución. Adicionalmente, se analiza la implementación en hardware de algoritmos de búsqueda en árbol no iterativos para los escenarios de precodi cación. Más especí camente, se presentan el diseño de la arquitectura y la ocupación de recursos de hardware de las técnicas de complejidad ja FSE y K-Best. La determinación de la secuencia ordenada de nodos de naturaleza compleja, también conocida como la enumeración de Schnorr-Euchner, es vital para seleccionar los nodos evaluados durante la búsqueda en árbol. Con la intención de reducir al mínimo la demanda de recursos de hardware de esta tarea de alta carga computacional, se presenta un novedoso algoritmo no secuencial de baja complejidad que permite la selección independiente de los nodos dentro de la secuencia ordenada. La incorporación de la técnica de enumeración no secuencial junto con la arquitectura fully-pipeline de los algoritmos FSE y K-Best, permite alcanzar velocidades de procesamiento de datos de hasta 5 Gbps para un sistema de 4 antenas receptoras
    corecore