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Summary 

In current broadband evolution of wireless communications, Orthogonal Frequency 

Division Multiplex (OFDM) is widely accepted as a major technique for many future 

broadband wireless systems. OFDMA, a multiuser OFDM using Frequency Division 

Multiple Access (FDMA), becomes a paramount candidate to support multiple access in 

future broadband wireless systems due to its advantages over existing multi-access 

techniques.  

In uplink transmission, OFDMA suffers from Inter-Carrier Interference (ICI) 

caused by subcarrier frequency misalignment, which can be due to Carrier Frequency 

Offset (CFO) and Doppler effects. In particular, different users have independent 

frequency misalignment and thus CFO compensation used in single-user OFDM fails to 

suppress the ICI in an OFDMA system. In this dissertation, the use of multiuser 

detection schemes is developed to suppress ICI at the receiver after transmission through 

time and frequency selective channels. Both linear and non-linear detection techniques 

are considered and investigated. Minimum Mean Square Error (MMSE) and MMSE 

with Successive Detection (MMSE-SD) are proposed for possible use in OFDMA 

uplink. It is shown that the MMSE scheme is optimal linear scheme in terms of 

maximizing system rate, and the MMSE-SD is capable of exploiting the Doppler 

diversity from time-varying channels.  

Since channel information is requisite knowledge to ICI suppression, estimation of 

the doubly selective fading channel is investigated in Chapter 4. To avoid performance 



 x

degradation caused by ICI in frequency domain, a time domain estimation scheme is 

proposed based on Basis Expansion Model. Both analytical and simulation results 

demonstrate that the proposed scheme obtains significant accuracy improvement. 

Moreover, the proposed ICI suppression schemes used in conjunction with the proposed 

channel estimation scheme are also evaluated. 

Chapter 5 particularly presents a study on interleaved OFDMA system uplink, since 

a novel signal model can be designed in such a system, which obtains low complexity in 

ICI suppression. The design is considered in a static multipath fading channel and 

compared with current studies. Analytical and simulation results are presented to 

demonstrate that performance can be improved with reduced complexity.  

In summary, this dissertation presents two important issues in physical layer design 

of OFDMA system. Improved ICI suppression and channel estimation schemes are 

proposed and analyzed for the use in mobile applications with time and frequency 

selective fading channels. 
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Chapter 1  

Introduction 

An explosive increase in the demand on multimedia information has lately 

motivated a high-data-rate evolution in wireless industry characterized by the change 

from narrowband to broadband. Under this evolution, signal modulation techniques 

will also be changed from single-carrier modulation to multicarrier modulation [1]. 

Conventional single-carrier modulation suffers from Inter-Symbol Interference (ISI) in 

a multipath fading channel and thus shows obvious limitation when used in broadband 

high-rate systems. Complicated channel equalization techniques are needed to remove 

the ISI in order to maintain performance. On the other hand, the use of multicarrier 

modulation is able to improve system immunity to multipath fading, because a 

high-rate data stream is separated into several low-rate data streams which are 

transmitted through different subcarriers. Design of channel equalization techniques in 

a multicarrier system thus can be dramatically simplified. 

Amongst various multicarrier modulation schemes, Orthogonal Frequency 

Division Multiplexing (OFDM) has become a popular scheme since it can be readily 

implemented through a Fast Fourier Transform (FFT) module. OFDM also becomes a 

prime theme in the evolution towards future broadband wireless technologies and a 

promising candidate in several broadband wireless systems, such as Universal Mobile 

Telecommunications System (UMTS)[2], IEEE 802.11 and IEEE 802.16 [3]-[6]. 
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1.1 OFDM-based Wireless Communications 

1.1.1 Principles of OFDM 

In OFDM modulation, a series of information symbols are placed onto uniformly 

spaced orthogonal subcarriers (the subcarriers that are orthogonal to each other during 

signaling interval). Fig.1.1 depicts the spectrum of an OFDM-modulated signal. To 

attain highest spectra efficiency, the spacing between subcarriers is chosen to be the 

smallest distance that ensures orthogonality. 

 

Fig.1.1: Spectra of an OFDM-modulated Signal. 

A. FFT Implementation of OFDM 

 Let ( )X k , 0 1 1, ...k N= − , denote the information symbols. The signal after 

OFDM modulation can be described as 

( ) ( )
1

2π

0

k

N
j f t

k

x t X k e
−

=

= ∑ ,           0 t T≤ ≤ , (1-1) 

where 0 Δkf f k f= +  stands for the uniformly spaced subcarriers, and T  is OFDM 

signaling interval. To ensure the orthogonality amongst waveforms 2π kj f te  over the 

interval 0 t T≤ ≤ , it is necessary that Δ 1f T⋅ = , which is generally referred to as 

OFDM orthogonal condition. As a result of the orthogonality, information symbol 

Subcarriers 
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( )X k  can be easily demodulated from ( )x t  by using 

( ) ( ) 2π

0

1
2π

k
T j f tX k x t e dt−= ∫ ,    0 1 1, ...k N= − .  (1-2) 

 Clearly, the modulation given by (1-1) and demodulation given by (1-2) have the 

same form as discrete-time Fourier transform and its inverse. If the OFDM signal (1-1) 

is sampled in time domain at a sampling period of T N , it follows 

( ) ( ) ( )
( )02π Δ2π1 1

0 0

k j n f k f Tj f nTN N
N N

k k

x n X k e X k e
+− −

= =

= =∑ ∑ .           (1-3) 

Using the orthogonal condition Δ 1f T⋅ =  and setting 0 0f = to eliminate the 

common phase shift, 

( ) ( )
2π1

0

j nkN
N

k

x n X k e
−

=

= ∑ , 

0 1k N≤ ≤ − , 0 1n N≤ ≤ − . (1-4) 

Equation (1-4) gives digital OFDM modulation. It is apparent that the digital OFDM 

modulation essentially uses Inverse Discrete Fourier Transform (IDFT) to modulate 

information symbols. And it is straightforward to see that the information symbol can 

be demodulated by using DFT at the receiver. In practical systems, FFT, the 

well-known fast algorithm for DFT, is used in digital OFDM modulation and 

demodulation modules. 

B. Cyclic Prefix 

When transmitted in a multipath fading channel, multiple replicas of an OFDM 

block will be received at the receiver, and this will give rise to Inter-Block Interference 

(IBI). To avoid the distortion due to IBI, a guard interval, specially named as Cyclic 

Prefix (CP), is appended at the head of each OFDM block. The use of CP helps to 
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simplify equalization. Specifically, after removing CP at the receiver, the received signal 

in frequency domain is simply the transmitted information symbols scaled by channel 

frequency responses, and therefore equalization can be simply done with a 

multiplication. Fig.1.2 shows a typical structure of CP. As shown below, a CP is 

normally a copy of the ending portion of the associated OFDM signal. 

 

Fig.1.2: A Cyclic Prefix used in an OFDM system 

With the aforementioned basic modules, a block diagram of OFDM transmitter and 

receiver are illustrated in Fig.1.3. 
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(b) 

Fig.1.3: Block diagrams of (a) OFDM transmitter with a single antenna (b) OFDM receiver 
with a signal antenna. 

1.1.2 OFDM-based Multiple Access 

When used to support multiuser communications, OFDM can be used in 

combination with all types of multiple access schemes to share resources among 

different users. Typical OFDM-based multiple access techniques include Time 

Division Multiple Access (OFDM-TDMA), Code Division Multiple Access 

(OFDM-CDMA or MC-CDMA) and Frequency Division Multiple Access 

(OFDM-FDMA). These schemes are briefly introduced as below. 

A. OFDM-TDMA 

As illustrated in Fig.1.4(a), OFDM-TDMA places different users into different time 

slots. Each user occupies the whole bandwidth in an exclusive time slot. The time 

duration, in which every user accomplishes transmission once, is one frame. 

B. OFDM-CDMA 

ADC 

ADC 

90°  

~ 

Re

Im

j
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CP 

 
 
 

FFT

…
 

 
 
 

P/S 

…
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OFDM-CDMA differentiates users by assigning each of them a subset of codes. As 

can be seen from Fig.1.4(b), all the users occupy the same bandwidth and communicate 

simultaneously. According to different combination fashions of OFDM and CDMA, 

OFDM-CDMA can be categorized as Multicarrier CDMA (MC-CDMA), Multicarrier 

DS-CDMA and Multitone CDMA [8]. 

C. OFDM-FDMA 

OFDM-FDMA is generally termed as Orthogonal Frequency Division Multiple 

Access (OFDMA). As can be seen in Fig.1.4(c), each user is exclusively assigned with a 

subset of subcarriers and all the users communicate simultaneously. Subcarrier 

allocation in OFDMA is fairly flexible and thus attracts considerable research interest in 

the field of cross layer design. Subcarrier allocation in OFDMA can be either static 

allocation or dynamic allocation. Static allocation can be further categorized into Block, 

Interleaved and Hybrid schemes, which are sketched in Fig.1.4(c). 

 
(a) OFDM-TDMA 

Time 

… … 

Frame Slot 

Subcarriers 
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(b) OFDM-CDMA 

 

 

(c) OFDM-FDMA with different subcarrier allocation schemes. 

Fig.1.4: Typical multiple access techniques used with OFDM. 

A number of studies have been dedicated to compare the above multiple access 

schemes in OFDM systems [9]. Table 1.1 presents comparisons on modulation, 
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flexibility and signaling overhead between different OFDM multiple access techniques. 

TABLE 1-1. COMPARISON OF OFDM-BASED MULTIPLE ACCESS SCHEMES 

 OFDM-TDMA OFDM-FDMA OFDM-CDMA
Modulation Scheme Coherent or Incoherent Coherent or Incoherent Coherent only

Flexibility in adaptation Adaptive modulation 
Adaptive modulation 
Adaptive allocation 

No adaptation

Signaling Overhead Low Moderate High 

 

1.2 OFDMA: Advantages and Challenges 

Amongst all the multiple access techniques mentioned above, OFDMA receives 

the widest interest from both industry and academia. Particularly, OFDMA has been 

accepted as the air interface in a number of leading technologies for broadband 

communications, such as the well-known IEEE802.16e (WiMAX) system. In this 

section, some important advantages of the OFDMA technique, and the challenges in 

OFDMA system design are introduced and discussed. 

A. Advantages of OFDMA 

One major advantage of OFDMA is its flexibility on radio resource allocation, 

such as subcarrier, bit and power allocation. By using wisely designed scheduling 

algorithms, the so-called Multiuser Diversity, which is embedded in multipath fading 

channels, can be exploited to improve the overall system capacity [10]-[12]. Moreover, 

the flexibility on resource allocation also makes OFDMA a promising technique to 

accommodate variable data rate and differentiated Quality of Service (QoS) 

[11][13]-[16]. In previous study, it has been shown that OFDMA, by using intelligent 

resource allocation, outperforms the OFDM-TDMA and OFDM-CDMA systems in 
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overall system rate, Bit Error Rate (BER) performance, immunity to narrow-band 

interferences[7][17]. Due to these attractive features, OFDMA has been widely 

adopted. However, OFDMA itself also has some disadvantages that give rise to some 

challenging issues in system design. 

B. Challenges 

As a descendant of OFDM technique, OFDMA inherits a major disadvantage from 

OFDM: it is sensitive to frequency asynchronism. More specifically, carrier frequency 

misalignment commonly seen between Mobile Station (MS) and Base Station (BS) 

gives rise to Carrier Frequency Offset (CFO), which in turn induces Inter-Carrier 

Interference (ICI). It is ICI that causes severe performance degradation to OFDM and 

OFDMA systems. Particularly in OFDMA, this disadvantage becomes even more 

challenging. Specifically, the carrier frequencies used by different transmitters are 

fairly unlikely to be exactly the same, and signals transmitted from these transmitters 

also go through independent impairments during wireless transmission. Different users 

thus have different CFO at the receiver. As a result, these offsets cannot be removed by 

merely CFO compensation. Suppressing the ICI thus becomes a major challenge in 

OFDMA physical layer design, and also main scope of the study in this dissertation. 

1.3 Inter-Carrier Interference Suppression in OFDMA 

Uplink 

A simple idea to suppress ICI is to recover the frequency synchronism between 

transmitter and receiver. This is what researchers had been trying to do in early studies 
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[18]-[22]. A frequency synchronization scheme commonly studied for OFDMA 

systems is termed as Feedback-Adjustment, in which all the users’ CFO are estimated 

at the receiver and sent back to each user through feedback channel. Every user then 

adjusts its own oscillator to eliminate the CFO. An obvious disadvantage of feedback 

adjustment is the long processing delay in the feedback process and extra cost on 

feedback channel. Therefore, the feedback-adjustment approach is generally used for 

the purpose of coarse frequency synchronization to reduce the frequency offset into a 

moderate value. After coarse synchronization, data transmission starts and feedback 

may be unsuitable as data transmission is sensitive to large delay, particularly in 

mobile or multimedia communications. Therefore, in the stage of data transmission, it 

is a preferred choice that using detection techniques to suppress the CFO-induced ICI 

at the receiver, instead of the feedback-adjustment [23]. 

Very recently, detection-based ICI suppression attracts considerable interest. While 

a number of studies have addressed this issue (specific review of these studies will be 

presented in Chapter 2), most of them are incremental work based on the conventional 

single-user OFDM detector, whose performance was analyzed in [24]. The 

conventional detector requires multiple FFT demodulation modules, and therefore 

involves considerable computational complexity. To solve this problem, a variant of 

this detector has been proposed in [25]. Specifically, multiple FFT modules have been 

reduced to only one by compensating for multiuser CFO through circular convolution 

after FFT demodulation. A number of sequent studies tried to improve performance by 

canceling ICI from the conventional detector or the low-complexity variant. 
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One design sacrifice in these studies is the lack of consideration on large scale 

fading. Most studies simply assume equal powers at the receiver when evaluating 

performance. In practice, it is unlikely that different users still have the same power 

after transmission. More importantly, power difference has significant impact on the 

performance of ICI suppression. In the studies of CDMA, this issue is known as the 

near-far effect [34]-[38]. Another insufficiency in previous studies is the assumption of 

static or quasi-static channel in signal modeling. Although the ICI caused by CFO is 

studied, the ICI caused by channel variation, which is commonly seen in mobile 

communications, has not been explicitly considered. 

The contributions of this work include: 

1. Research on ICI suppression is extended to time and frequency selective 

fading channels, and a signal model suitable for general OFDMA systems is 

obtained. 

2. Both linear and nonlinear cancellation schemes are studied as an effort to 

establish a framework for the study on ICI suppression. Some of current 

studies can be considered as special cases of the detectors investigated herein. 

3. Research on channel estimation is also extended to time and frequency 

selective fading channels, with Basis Expansion Model (BEM) formulated to 

ensure tracking multiuser CIR in time domain and thus bypass the issue of 

ICI during channel estimation. 

4. Low complexity detection structure is obtained for interleaved OFDMA 

system. 
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1.4 Outline 

The aim of this dissertation is to investigate the detection-based ICI suppression 

for OFDMA uplink in a time and frequency selective fading channel. In detail, 

contents of the remaining chapters are arranged as follows: 

Chapter 2 presents a review on earlier studies of ICI suppression in OFDMA 

uplink. Chapter 3 investigates ICI suppression in a time and frequency selective fading 

channel. A signal model is firstly formulated and then several ICI suppression schemes 

are discussed and compared. 

As a piece of knowledge requested in ICI suppression, channel information should 

be estimated prior to ICI suppression. Chapter 4 investigates the issue of channel 

estimation. In detail, basis expansion model is adopted to develop possible estimation 

techniques, to track multiuser doubly selective fading channels in OFDMA uplink. 

Chapter 5 particularly takes the interleaved OFDMA system into account and 

formulates a novel signal model, which obtains low complexity in ICI suppression. 

Chapter 6 presents some conclusions on the basis of the research covered in this 

dissertation, and also gives some possible directions for future work. 
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Chapter 2  

Inter-Carrier Interference in OFDMA System Uplink 

As mentioned in Chapter 1, suppression of Inter-Carrier Interference (ICI) caused 

by frequency asynchronism is crucial in the design of OFDM/OFDMA systems. In a 

single-user OFDM system, ICI can be easily suppressed via CFO compensation and 

equalization. In an OFDMA system, however, different users have different CFO and 

channel conditions, and therefore the issue of ICI suppression becomes more 

complicated. It is thus this chapter’s objective that giving important background and 

review of latest notable research in the area of ICI suppression for OFDMA uplink. 

This chapter is organized as follows. First, relevant background of ICI in an 

OFDMA uplink is introduced. Second, previous studies on the issue of ICI suppression 

in OFDMA uplink are reviewed. 

2.1 Frequency Asynchronism and ICI in OFDMA Uplink 

For the convenience of statement, the discussion is for now given to a static 

channel, in which asynchronism is due to CFO. Frequency asynchronism due to both 

CFO and channel variation will be considered in Chapter 3. Mathematically, frequency 

asynchronism appears to be a phase shift in the time domain signal. The received 

signal with phase shift due to CFO is given by 
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( ) ( ) ( )
( )

( ) ( )
( )

2π1

0

2π1

0

k u

u

j f f nTN
N

u u u
k

j k nN
N

u u
k

r n X k H ek

X k H ek
ε

+−

=

+−

=

=

=

∑

∑
                    (2-1) 

where ( )uH k  is channel frequency response (static or semi-static channel) on 

subcarrier k, uf  is CFO of user u and uε  stands for the CFO normalized with respect 

to subcarrier spacing 1
T

, i.e., u uf T=ε . Clearly, in a single-user OFDM system, the 

CFO-induced ICI can be readily suppressed by compensating for the phase shift before 

FFT demodulation. In an OFDMA uplink, on the other hand, due to the coexistence of 

multiple users, CFO compensation for one user is not helpful to compensating for 

other users’ CFO. As a result, the ICI caused by other users’ CFO cannot be eliminated. 

This implies that the ICI in an OFDMA uplink has two components, one is from the 

subcarriers used by user him/herself and the other is from other users. The former is 

generally termed as self ICI, while the latter is termed as cross ICI, or Multiple Access 

Interference (MAI). It is the MAI that makes ICI suppression a challenging issue in an 

OFDMA uplink.  

To deal with the issue, considerable efforts have been made recently. Notable 

studies in this field are reviewed in next section. 

2.2 A Review on Current ICI Suppression Approaches 

2.2.1 Conventional Detector 

As was mentioned in Chapter 1, the earliest and simplest suppression scheme is to 

employ a conventional detector, which deploys multiple single-user OFDM detection 

branches at the OFDMA BS receiver. The block diagram of such a detector is shown in 



 15

Fig.2.1(a). Two concerns are generally shown for this detector: First, it is clear that the 

use of multiple FFT demodulation modules leads to relatively large complexity. Second, 

as discussed in Section 2.1, CFO compensation is unable to remove MAI from the 

mixed signal and therefore residual ICI still exists after detection. To solve the first 

problem, a variant of the conventional detector has been proposed in [25]. CFO 

compensation is performed after FFT demodulation by using circular convolution and 

only one FFT demodulation module is needed. The block diagram of this variant is 

shown in Fig.2-1(b). 

 
(a) 

 
(b) 

Fig.2.1: (a) Conventional OFDMA detector (b) Low-complexity variant based on post-FFT 
circular convolution. 
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Although complexity can be reduced, the performance of MAI suppression is still 

to be improved. For this reason, a number of studies have made attempts on the use of 

various interference cancellation algorithms to further improve performance of this 

detection scheme. 

2.2.2 Supplementary Schemes based on Conventional Detection 

In [26], Edge Sidelobe Suppression (ESS) has been developed to remove the MAI 

in a block OFDMA system. As shown by the authors, ESS is able to reduce the error 

floor in BER performance and can be realized by using lookup tables. However, ESS 

may not be suitable for other OFDMA systems than block OFDMA. In [27], Parallel 

Interference Cancellation (PIC) has been used to mitigate MAI after conventional 

detection. Specifically, interference signals are reconstructed via circular convolution 

and cancelled iteratively. Although it employs the low-complexity variant of the 

conventional detector, the use of circular convolution, signal reconstruction and 

iterative cancellation increases overall complexity. Moreover, in terms of BER 

performance, PIC scheme is capable of reducing error floor, but not eliminating the 

error floor. In [30], Selective Parallel Interference Cancellation (SPIC) and Successive 

Interference Cancellation (SIC) schemes were investigated and compared with the PIC 

scheme. It is shown that the SIC scheme gives slightly better performance than PIC 

and SPIC schemes, and the latter two schemes generate close performance. 

2.2.3 Non Conventional Detector-based Schemes 

In addition to the aforementioned schemes, several novel detection structures have 
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also been proposed. In [28], the author proposed an MMSE detection for the 

interleaved OFDMA uplink by exploring the periodicity embedded in an interleaved 

OFDMA block. According to the results presented in [29], an important advantage of 

the scheme is its low complexity. However, this scheme is only suitable for the use in 

an interleaved OFDMA system, since the periodicity is inapplicable in other OFDMA 

systems. In [31], the author developed another MMSE detection structure, which can 

be used in all types of OFDMA systems. It has been shown by the author that the PIC 

scheme proposed in [27] is a special case of the adaptive realization of this MMSE 

scheme. The author of [31] also developed a multistage linear parallel interference 

cancellation in [32]. In [33], the author investigated optimal demodulation of 

multicarrier multiuser signals on the basis of Maximum A-Posterior (MAP) rule. In 

addition, iterative detection has also been developed for the MAP detection to reduce 

the complexity. The study in [33] gives a theoretical framework of the ICI suppression 

in multicarrier systems. However, the complexity is still a concern in practical 

applications. 

2.3 Problem Definition 

Although the previous studies have gained considerable improvement on the 

performance of ICI suppression in OFDMA uplink, two important issues have not been 

clearly identified due to some common assumptions used in these studies: First, the 

impact of near-far problem has not been taken into account in all the performance 

assessment that have been done so far. Second, ICI suppression in time-varying 
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multipath channels is yet to be considered as most of the studies made a common 

assumption that the channel is either static or semi-static. 

2.3.1 Near-far Problem in OFDMA Uplink 

In most of the previous studies on ICI suppression, large-scale fading has not been 

considered. A common assumption is that the signals from all the users have the same 

power at the BS receiver. While this assumption may simplify the theoretical analysis, 

it is not a practical assumption because signals from different users usually go through 

different propagation loss and have different power at the BS. More importantly, the 

power difference, which is known as near-far problem in CDMA systems [34]-[38], 

affects performance of ICI suppression. A notable example is a simulation result 

presented in [27]. Specifically, the PIC scheme was simulated under the scenario that 

users have different powers at the BS and the result shows that performance 

degradation becomes unacceptable when the Signal-to-Interference power Ratio (SIR) 

is lower than -10dB. The authors suggested using power control to prevent severe 

performance degradation in the event of near-far problem. Although power control is 

an option to cope with the near-far problem, its additional processing delay and 

complexity may not be suitable for some delay-sensitive communications, such as 

multimedia and mobile communications. Therefore, having resistance to near-far 

problem in ICI suppression is important for some OFDMA applications. 

2.3.2 ICI Suppression in Time-selective Fading Channels 

In the latest IEEE802.16e standard (also known as mobile WiMAX), OFDMA has 
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been appointed to support mobile broadband access [39][40]. According to the 

physical layer specification, the maximum allowable velocity of MS is 120km/s. A 

simple calculation shows that the maximal normalized Doppler offset df T  

corresponding to this velocity may reach 5% or even higher. In such a scenario, 

channel variation within each OFDMA block is obvious and cannot be neglected [41]. 

In current studies, however, it is commonly assumed that wireless channel does not 

change within each OFDMA block. Therefore, extending the research into doubly 

selective channel is of remarkable significance to practical use. 

 In the remainder of this dissertation, investigation will be aimed at developing 

near-far resistant ICI suppression techniques under time and frequency selective fading 

channels. 
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Chapter 3  

ICI Suppression in Doubly Selective Fading Channels 

For OFDM transmission in time and frequency selective channels, in addition to 

CFO, channel variation also causes frequency asynchronism in the signal received at 

the receiver [42]-[47]. More specifically, channel variation induces spectra dispersion, 

which appears to be a series of CFO values, which disrupt orthogonality between 

subcarriers and induce ICI. ICI suppression in time selective channels has been 

extensively considered for single-user OFDM [48]-[54]. However, a signal model of 

OFDMA uplink has not been developed in a time selective channel. In this chapter, 

efforts are made to establish the signal model and develop appropriate ICI suppression 

schemes for OFDMA uplink in the doubly selective fading channel. At the moment, 

channel information is provisionally assumed to be perfectly known at the receiver. 

The issue of channel estimation will be considered in Chapter 4. 

Section 3.1 introduces basic concepts relevant to time and frequency selective 

channels. Section 3.2 develops a signal model under a doubly selective fading channel 

for OFDMA uplink. Section 3.3 investigates linear and non-linear suppression schemes 

to clean ICI. Numerical results and discussions are presented in Section 3.4. 

3.1 Time and Frequency Selective Fading Channels 

In wireless and mobile communications, due to reflection and scattering of the 

radio wave on obstacles as well as motion of terminals, it is a usual case that Channel 



 21

Impulse Response (CIR) is dispersive in both time and frequency domain [55][56]. A 

general expression of the CIR is given by 

( ) ( ) ( )
1

0

,
L

l l s
l

h t h t Tτ δ τ τ
−

=

= −∑ ,                   (3-1) 

where sT  is sampling period and sLT  is delay spread. A transmitted signal ( )s t  is 

received as given by 
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,            (3-2) 

where ∗  is the linear convolution operator. 

3.1.1 Multipath Propagation and Frequency Selective Fading 

From the Fourier transform of (3-1) over multipath index τ , it is apparent that 

time dispersion gives rise to fluctuations in frequency domain. More multipaths give 

rise to larger fluctuations. For this reason, the term ‘frequency selective fading’ is 

interchangeably used with ‘multipath fading’.  

 In time domain, the presence of multipath fading causes interference between 

successive symbols, i.e., Inter-Symbol Interference (ISI). However, if the symbol 

duration is much longer than the delay spread, the impact of ISI would be insignificant. 

In OFDM systems, duration of one OFDM symbol is much larger than delay spread 

due to the use of a Cyclic Prefix. After the CP is discarded at the receiver, ISI is 

removed, and therefore multipath fading does not lead to a severe problem in an 

OFDM system. 
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3.1.2 Time Variation and Time Selective Fading 

According to the time-frequency duality, variation or fluctuation in time domain 

gives rise to dispersion in frequency domain. Degree of the variation depends on the 

relation between symbol duration T  and channel coherent time cT  (the time interval 

during which channel correlation is higher than some predetermined value, say 0.8). 

Generally speaking, a channel is regarded as static or quasi-static if 0.01 cT T≤ [41]. In 

an OFDM system, basic unit for transmission is one OFDM block, whose duration can 

be as long as 0.1 cT . Therefore, the ICI due to time selectivity is a crucial problem to 

be solved. 

Next section presents a signal model for OFDMA uplink in doubly selective 

channels. 

3.2 OFDMA Signal in Doubly Selective Fading Channels 

Consider an OFDMA system with N subcarriers and a total of U users. All the users 

communicate with the BS through uncorrelated time and frequency selective fading 

channels. The diagram of an OFDMA transmitter at user’s terminal is shown in Fig.3.1. 

 

Fig.3.1: Transmitter block diagram for each user in an OFDMA uplink. 
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( ) ( ) ( )0 , 1 ... 1u u uX X X N −⎡ ⎤⎣ ⎦ , and then fed into an IFFT module. In the resulting 

OFDMA block, information symbols are placed on the subcarriers used by user u, while 

zero elements are put onto the subcarriers occupied by other users. After IFFT 

modulation, a cyclic prefix is added at the head of each OFDMA block to avoid the 

distortion due to Inter-Block Interference. After CP is added, the signal can be 

mathematically expressed as 

( ) ( ) ( )
1

0

1 exp 2
N

u u
k

x n X k j nk N
N

π
−

=

= ∑ , 

1gN n N− ≤ ≤ − ,  (3-3) 

where gN  is the length of CP. In an OFDMA system, time-domain dispersion is not 

only due to multipath propagation, but also delay between users. To this end, the length 

of cyclic prefix should be larger than the overall delay spread resulting from multipath 

fading and time asynchronism between users. The signal given by (3-3) is then fed into 

RF modules where a radio frequency signal is generated and transmitted into wireless 

channels. The channel model used in this study is Wide-Sense Stationary Uncorrelated 

Scattering (WSSUS) doubly selective with delay spread L. In particular, the channel 

may vary within the duration of each OFDMA block. 

 After transmission, the signal received from user u is given by 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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where ( ),uh n l  stands for path l of the channel associated with user u and 

( ) ( ) ( )
1

0

, , exp 2
L

u u
l

H n k h n l j lk Nπ
−

=

= −∑                 (3-5) 
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is the frequency domain CIR on subcarrier k at time n, and ( )z n  is a complex white 

noise with variance 2
nσ . After front-end processing, due to time and frequency 

misalignment between transmitter and BS, time offset and CFO are induced into the 

baseband signal. After discarding CP, the baseband signal becomes 

( ) ( ) ( ) ( ) ( ) ( )
1

0

1 , exp 2
N

u u u u u
k

r n X k H n k j n n k N z n
N

π ε
−

=

= − + +⎡ ⎤⎣ ⎦∑ , 

0 1n N≤ ≤ − ,  (3-6) 

where un  and uε  are time offset and CFO, normalized with respect to sampling 

period sT  and subcarrier spacing 1
sNT , respectively. In practice, a coarse time and 

frequency synchronization would have been accomplished before the commencement 

of data transmission. Therefore, these two offsets un  and uε  are their residual 

values and usually appear as a fractional of the sampling period and subcarrier spacing. 

As described in [19], the fractional time offset un  simply introduces a linear phase 

shift across the subcarriers, and thus it can be combined into the channel frequency 

response and compensated for in a channel equalizer. Therefore, the baseband signal 

given by (3-6) can be rewritten into 

( ) ( ) ( ) ( ) ( )
1

0

1 , exp 2
N

u u u u
k

r n X k H n k j n k N z n
N

π ε
−

=

= + +⎡ ⎤⎣ ⎦∑ , 

0 1n N≤ ≤ − ,  (3-7) 

where ( ) ( ) ( ), , exp 2u u u uH n k H n k j n k Nπ ε= − +⎡ ⎤⎣ ⎦  is the equivalent frequency 

channel response. From (3-7), the mixed signal due to all the users is given by 
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0 1n N≤ ≤ − . (3-8) 
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In (3-8), since information symbols have been padded with zero, symbol ( )uX k  is 

zero if subcarrier k is not used by user u. To concisely express an OFDMA block in 

matrix form, a masking variable ( )um k  is introduced. Specifically, 

( )
0 subcarrier  is not used by user 
1 subcarrier  is used by user u

k u
m k

k u

⎧
= ⎨
⎩

, for u=1, 2…U.    (3-9) 

Following (3-8) and (3-9), an OFDMA block can be expressed in matrix form given by 

1

U

u u u
u=

= +∑r D H M X Z ,                   (3-10) 

where 
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( )
0,1... 1

diagu u k N
m k

= −
= ⎡ ⎤⎣ ⎦M ,                (3-13) 

and ( ) ( ) ( )[ ]0 11 ...
T

X X X N= −X  contains information symbols on all the 

subcarriers. Note that the matrix uH  is essentially the Hadamard product† between 

the channel frequency response matrix 

                                                        
 
† Hadamard Product: For two matrices of the same dimensions A  and B , the Hadamard product or entry-wise 
product is defined by [ ] [ ] [ ]ij ij ij

• =A B A B . 
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and IFFT matrix: 
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Apparently, channel variation disrupts orthogonality between column vectors of the 

IFFT matrix. 

As a special case, if channel is invariant, the Hadamard product will degenerate to 

u S=H FH ,                        (3-16) 

and the signal model given by (3-10) degenerates to 

1

U

Static u u S
u=

⎛ ⎞= +⎜ ⎟
⎝ ⎠
∑r D FM H X Z ,               (3-17) 

where 

( ) ( ) ( )diag 0 1 ... 1S H H H N= −⎡ ⎤⎣ ⎦H .           (3-18) 

In such a scenario, SH  does not affect orthogonality between the subcarriers. 

In next section, the issue of ICI suppression is investigated on the basis of (3-10). 
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3.3 ICI Suppression for OFDMA Uplink 

Let A  denote 
1

U

u u u
u=
∑D H M , (3-10) can be rewritten as 

= +r AX Z .                       (3-19) 

Based on this signal model, multiuser detection techniques, that have been extensively 

studied for CDMA systems [35][36][57]-[59], can be developed for possible use in 

OFDMA systems. 

3.3.1 Matched Filtering 

Matched Filtering (MF) is the simplest cancellation algorithm that can be used for 

(3-19). In a MF detector, an OFDMA block is simply filtered by 

H=W A .                         (3-20) 

This processing essentially includes FFT demodulation, CFO compensation and 

channel equalization. To see this, when the MF is used in a static channel, from (3-17), 

W  can be rewritten into 

1

HU
H

S S u u
u=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑W H D FM .                 (3-21) 

It is obvious that (3-21) describes what is done by a conventional OFDMA detector 

plus channel equalization. From this point of view, MF does nothing but FFT 

demodulation and CFO compensation. As was discussed in Chapter 2, this type of 

detection is ineffective and suffers from residual MAI. 

More importantly, the existence of residual MAI in the output of matched filtering 

raise another issue – the near-far problem. Specifically, a user with strong power may 
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induce serious MAI onto other users, and therefore handicap the detection of a user with 

weaker power. A simulation is carried out to illustrate the performance in the event of 

near far problem. In the simulation, a desired user is placed 5m away from the BS, while 

the other users uniformly distribute within a circle centering at the BS with a 10m 

diameter. The system setup is shown in Fig.3.2. 

 

Fig.3.2: Near-far effect simulation system setup. The desired user locates at 5m from the BS, 
while interference users uniformly distribute in the circle. The desired user has a 30dB SNR at 
the BS. The large-scale fading is modeled by amplitude attenuation 1 ud β , where attenuation 
index β  ranges from 2 to 4. In this example, 3β = . 

The simulation result is shown in Fig.3.3. Obviously, the output SINR of a MF 

detector can be as low as -30dB due to the near-far problem. Therefore, as in CDMA 

systems, power control mechanism is stringently required when matched filtering (or the 

conventional OFDMA detector) is used. As a result, additional complexity becomes new 

price to pay in system design. 
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Fig.3.3: Probability density function of post-MF SINR, SNR = 30dB. 

Although easy to implement, the MF detection has the following two major 

weaknesses: 

1. sensitive to CFO and channel variations, 

2. sensitive to near-far problem. 

Finally, it is worthwhile to examine noise power after detection, since linear 

detection schemes may enhance the noise. As shown in Appendix A, the noise power 

after matched filtering is given by 

22
,

1
MF λ

r

n n i
i

p σ
=

= ∑ ,                    (3-22) 

where λ i  is the eigenvalue and r is the rank of matrix A . Since 2

1

λ
r

i
i=
∑  is limited, 

matched filtering does not suffer from severe noise enhancement problem, and 

therefore the performance is mainly limited by residual MAI. 
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3.3.2 Zero Forcing 

Zero Forcing (ZF) is well known as decorrelating multiuser detector in CDMA 

systems [59]. It is a least square technique that attempts to completely remove 

interference from a mixed signal. Mathematically, ZF-based ICI suppression 

corresponds to the least square problem given by 2
ZFmin −

W
W AX X , solving which 

yields 

( ) 1H H−
=W A A AZF ,                    (3-23) 

which is essentially the Moore-Penrose pseudo inverse of matrix A . 

As shown in Appendix A, noise power in the output of ZF is given by 

2
, 2

1

1
ZF

λ

r

n n
i i

p σ
=

= ∑ .                      (3-24) 

It is obvious that the magnitude of noise power depends on those small eigenvalues. 

In practice, CFO and channel variations may lead to relatively high correlation between 

some columns of matrix A , the resulting small eigenvalues give rise to serve 

enhancement on noise power. This is known as the noise enhancement problem for zero 

forcing. Noise amplification is plotted against the value of the minimal eigenvalue in Fig 

3.4. It is obvious that noise enhancement increases without limit as the minimal 

eigenvalue decreases. 



 31

10
-2

10
-1

10
0

10
1

10
210

-4

10
-2

10
0

10
2

10
4

Minimal Eigenvalue λmin

N
oi

se
 A

m
pl

ifi
ca

tio
n

Zero Forcing

 

Fig 3.4: Noise enhancement of zero forcing ICI suppression. Whenever the subchannel 
correlation is high, the minimum eigenvalue approaches zero and noise enhancement increases 
without limit. 

As a result, although ZF detection is capable of completely removing the ICI, the 

performance improvement gained from ICI cancellation sometimes may be completely 

cancelled by the enhanced noise power. This will be seen in simulation results in 

Section 3.4. 

3.3.3 MMSE 

MMSE technique attempts to suppress both interference and noise, and therefore 

avoids severe noise enhancement. Mathematically, based on the signal model given by 

(3-19), the MMSE ICI suppression corresponds to solving optimization problem 

2min mmse −
W

W r XE ,                   (3-25) 

and the weight matrix mmseW  can be easily obtained by using Lagrange multiplier. 

Nevertheless, this is not the only method leading to the MMSE solution. In this 

dissertation, an optimal linear ICI suppression scheme that maximizes overall 
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achievable rate is derived and proven as an equivalent of the MMSE solution. 

 As described in [44][60], the overall achievable rate can be maximized if the 

SINR kγ  is maximized for all the subcarriers 0,1... 1k N= − . After each OFDMA 

block is filtered by a weight matrix W , the SINR on the m-th subcarrier (supposing it 

is used by user u) can be derived as follows. 

First, signal power on subcarrier m is given by 

{ }
{ }

H T H T H
m m m m m m m

H T H T H
m m m m m m

p =

=

w Ae e XX e e A w

w Ae e XX e e A w
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E
,             (3-26) 

where mw  and me  are the m-th column of weight matrix W  and identity matrix 

NI . 

Second, ICI power on subcarrier m is given by 
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(3-27) 

where uS  stands for the set of subcarriers occupied by user u. Without loss of 

generality, assuming that powers are uniformly allocated over all the subcarriers, the 

signal and ICI powers given by (3-26) and (3-27) become 

2 H T H
m s m m m mp σ= w Ae e A w ,                 (3-28) 

( )2 H T H
m s m N m m mJ σ= −w A e e A wI ,              (3-29) 

where 2
sσ  stands for the signal power assigned on each subcarrier. 
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Finally, noise power on subcarrier m is given by 

 { } 2H H
m m m n m mη σ= =w ZZ w w wE .               (3-30) 

According to (3-28), (3-29) and (3-30), the SINR mγ  is given by 

( )
2

2

H T H
m m m m

m
H T Hn
m N N m m m

s

γ
σ
σ

=
⎡ ⎤

+ −⎢ ⎥
⎣ ⎦

w Ae e A w

w A e e A wI I

.            (3-31) 

An optimization problem that maximizes mγ  can be expressed as 

{ }max
m

H T H
m m m mw
w Ae e A w , subject to ( )

2

2 1H T Hn
m N N m m m

s

σ
σ
⎡ ⎤

+ − =⎢ ⎥
⎣ ⎦

w A e e A wI I , 

for 0,1,... 1m N= − .  (3-32) 

In fact, (3-32) corresponds to a standard generalized eigenvalue problem [61][62], with 

a solution given by 

12

2
Hn

m N m
s

σ
σ

−
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

w AA AeI ,    0 1 1, ...m N= − .  (3-33) 

And the weight matrix W  is expressed as 

12

2
H Hn

N
s

σ
σ

−
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

W A AAI .               (3-34) 

This is the optimal linear ICI suppression in terms of maximizing overall achievable 

rate. On the other hand, under the same assumption of uniform power allocation, the 

MMSE solution solved from (3-25) is given by 

12

2mmse
H Hn

N
s

σ
σ

−
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

W A A AI .             (3-35) 

According to the following lemma, the linear ICI suppression schemes given by (3-34) 

and (3-35) are the same. 
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Lemma: If matrix E  has full column rank, matrix G  is nonsingular, for an 

arbitrary 2 0σ ≠ , the following equality is true: 

( ) ( )1 12 2 1H H H Hσ σ
− −−+ = +GE EGE I E E G E                  

Proof: See Appendix B. 

Although uniform power allocation is assumed in the above derivation, it is 

straightforward to extend the result to arbitrary power allocation schemes. In this point 

of view, MMSE is the optimal linear ICI suppression scheme. Hence, it is expected 

that the MMSE should be able to produce reasonably good cancellation on both ICI 

and noise. According to the results given in Appendix A, the noise power after MMSE 

detection is given by 

2
, 2

21

1
MMSE

λ
λ

r

n n
i

n
i

i

p σ
σ=

=
⎛ ⎞

+⎜ ⎟
⎝ ⎠

∑ ,                   (3-36) 

In Fig.3.5, noise amplification is plotted against the minimum eigenvalue under unit 

noise power 2 1nσ = . Clearly, unlike ZF, MMSE puts a limit on noise amplification. 

Finally, it is worthwhile to point out that, if the channel is static, the MMSE scheme 

developed here degenerates to the MMSE scheme proposed in [31]. 



 35

10
-2

10
-1

10
0

10
1

10
210

-4

10
-2

10
0

10
2

10
4

Minimal Eigenvalue λmin

N
oi

se
 A

m
pl

ifi
ca

tio
n

Zero Forcing
MMSE

 

Fig.3.5: Noise enhancement characteristic of MMSE ICI suppression. Unlike zero forcing, 
MMSE has a limited value on noise enhancement. 

3.3.4 MMSE Successive Detection 

As discussed in [63], combining Successive Detection (SD) post-decoding with 

MMSE pre-detection maximizes mutual information and incurs no performance loss 

compared with complicated joint multiuser decoding, which is devoted to achieve the 

total channel capacity. With this result, the MMSE-SD scheme can be also used to 

suppress ICI in OFDMA uplink. Specifically, we propose the use of ordered SD on a 

per-user basis. The order of detection is determined by comparing post-MMSE SINR of 

undetected users. The user with the highest post-MMSE SINR will be detected and 

decoded. The signal of the decoded user is then reconstructed and subtracted from the 

multiuser signal. The resultant multiuser signal enters a new round of MMSE-SD 

detection until all the users are detected. We note that a per-subcarrier MMSE-SD has 

been studied in [64] for a single-user OFDM system and gains significant performance 

improvement. It can be also used in OFDMA system, but obviously involves much 
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higher complexity. Hence, the proposed scheme presents a trade-off between 

performance and complexity. The flowchart and mathematical description of the 

MMSE-SD algorithm are shown in Fig.3.6 and Table 3-1, respectively. 

 

Fig.3.6: Flowchart of MMSE-SD detection 

MMSE 

Hard decode the user 

having highest SINR 

Subtract the decoded user from 

the received signal 

More users left? 
yes 

Output 

Stop 
no 
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TABLE 3-1. MMSE-SUCCESSIVE DETECTION (MMSE-SD) 

Initialization: 1j = , 1 =A A , 1 =Y Y  

Step 1: Calculate the MMSE detection output SINR for each user, select the highest one 

12
0
2

H H
j N j j j

s

σ
σ

−
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

W A A AI , 

{ }
( )

2

2 22

trace
argmax SINR argmax

trace trace

u j j

j u
u U u U

u j j N u n u j

u
σ∈ ∈

⎧ ⎫⎡ ⎤
⎢ ⎥⎪ ⎪⎣ ⎦= = ⎨ ⎬

⎡ ⎤ ⎡ ⎤− +⎪ ⎪⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭

M W A

M W A M M WI

where U is the set formed by the users to be detected. 

Step 2: Decode the selected user, { }ˆ sign
j ju u j j=X M W Y  

Step 3: Subtract the decoded user from the original signal 

1
ˆ

j jj j j u u+ = −Y Y A M X , ( )1 jj j N u+ = −A A MI , jU U u= −  

1j j= + , go back to Step 1. Stop when all users are decoded. 

3.4 Performance Analysis 

3.4.1 Post-detection SINR 

As will be used soon, SINR after ZF and MMSE detection is listed here. From the 

detection weight matrix of ZF (3-23) and MMSE (3-35), it is not difficult to derive their 

post-detection SINR as shown in Table 3-2. 

TABLE 3-2: POST-DETECTION SINR FOR ZF AND MMSE 

 Post-detection SINR for subcarrier m, m=0, 1… N-1. 

ZF ( )

2

12
s

m H H
n m m

σγ
σ −=
e eA A

 

MMSE 
1

11

H H
m yy m

m H H
m yy m

γ
−

−=
−
e A R Ae

e A R Ae
, 

2

2
H n

yy
s

σ
σ

= +R AA I  
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 In Section 3.5, these results will be used to calculate theoretical symbol error rate. 

3.4.2 Sensitivity to Channel Estimation Error 

When the proposed MMSE and MMSE-SD detection schemes are practically 

implemented, the matrix A is unknown to the receiver and should be estimated before 

detection. Specifically, CFO and CIR have to be estimated by estimators and used to 

calculate A. Estimation error is unavoidable and thus it is worthwhile to study 

robustness of the proposed detectors against these errors. Analysis in this section 

focuses on studying the impact of CIR estimation error. Similar analysis on the impact 

of CFO estimation error is given in Chapter 5. 

Let 
1 2

ˆ ˆ ˆ ˆ... N
⎡ ⎤= ⎣ ⎦A θ θ θ  denote the estimate of A. First, it is easy to show that 

the SINR after linear detection is given by 

2 2

2 22 2
mm

m

l nl m
l m

σαγ
σ σα

≠

=
+∑ w

,     for 1 2, ...m N= , (3-37) 

where H
m m mα =w θ  and 2

mσ  is the signal power carried by subcarrier m. In [36], mγ  

has been derived for zero forcing detectors and the result can be also used for MMSE 

detectors in high SNR region. Mathematically, the post-ZF detection SINR is given by 

( )

22

2 12 2 1 1

*

*

m m
m H H

l nl
l m

c

c

σ
γ

σ σ

−

−− − −

≠

=
+∑ c P P cA A

,     for 1 2, ...m N= , (3-38) 

where 

2 2 2
1 2 N= ⎡ ⎤⎣ ⎦P σ σ σdiag ... ,                  (3-39) 

and mc  is the m-th entry of column vector c , which is defined and derived in next 

paragraph. 
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 From a subspace point of view, a mismatched vector m̂θ  has two components: 

one in signal subspace and the other one in noise subspace [36]. Mathematically, 

ˆ s n n
m m m m= + = +θ θ θ Ac θ .                    (3-40) 

where s
mθ  and n

mθ  stand for the signal-subspace and noise-subspace components, 

respectively; and vector c is the coordinate vector of s
mθ  when signal subspace is 

spanned by A. Besides, it is easy to see that 

1

Δ Δˆ
U

m m m m mu u u
u=

⎛ ⎞= + = + ⎜ ⎟
⎝ ⎠
∑θ θ θ Ae eD H M ,           (3-41) 

where Δ mθ  stands for the mismatch between m̂θ  and mθ , Δ uH  is the estimation 

error on CIR. Combing (3-40) and (3-41), it follows that 

1

Δ
U

n
m m mu u u

u=

⎛ ⎞+ = + ⎜ ⎟
⎝ ⎠
∑Ac θ Ae eD H M .              (3-42) 

Premultiplying (3-42) by HA  and solving the resulting equation yields 

( ) 1

1

Δ
U

HH
m mu u u

u

−

=

⎛ ⎞= + ⎜ ⎟
⎝ ⎠
∑c e A eD H MA A .            (3-43) 

The property that signal subspace is orthogonal to noise subspace, or H n
m =A θ 0 , has 

been used to obtain (3-43). Substituting (3-43) into (3-38), the post-ZF SINR (or the 

asymptotic post-MMSE SINR) is obtained as a function of the channel estimation 

error. 

3.5 Numerical Results and Discussions 

In this section, numerical results will be given through simulations. System setup 

and parameters used in the simulations are as below: 

1. 64-subcarrier 4-user OFDMA system using interleaved subcarrier allocation. 
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2. QPSK is used to modulate uncoded information bits. 

3. Doubly selective 3-ray Rayleigh fading channel, with a 4.2μs delay spread. 

4. Unless otherwise specified, normalized Doppler spread df T  is set to be 0.05, 

where T  is the duration of one OFDMA block. 

5. Unless otherwise specified, CFO of the four users are 0.15, -0.1, 0.2 and 0.1. 

6. CIR is assumed to be perfectly known. 

Example 1. Comparison between MF, ZF, MMSE and MMSE-SD 

In Fig.3.7, average Symbol Error Rate (SER) is plotted versus SNR for MF, ZF, 

MMSE and MMSE-SD schemes. As can be seen, MF suffers from ICI and shows a high 

error floor. ZF performs much better than MF, but worse than MMSE due to noise 

enhancement. MMSE-SD outperforms MMSE and gives the best performance. The 

results imply that using MF is not feasible in the scenario being studied, and thus this 

scheme will not be discussed any further. 
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Fig.3.7: Average symbol error rates versus SNR with perfect CIR, normalized Doppler spread 
0 05.df T = . 
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Example 2. SER versus normalized Doppler spread df T  

In Fig.3.8, average SER is plotted against normalized Doppler spread df T  for ZF, 

MMSE and MMSE-SD schemes. As a benchmark, theoretical SER for QPSK 

modulation is also plotted in the same figure. The theoretical SER is calculated through 

( ) ( )2 1 0 5.m m mP Q Qγ γ⎡ ⎤= −⎣ ⎦ ,    for m=1, 2…N-1,          

on every subcarrier and the theoretical SER is obtained by averaging mP  over all the 

subcarriers. 

As can be seen, ZF has the worst performance due to noise enhancement. MMSE 

gives much better performance since both ICI and noise are suppressed. As channel 

changes faster, MMSE is also slightly degraded since residual ICI increases. MMSE-SD 

produces the best performance. More importantly, by using MMSE-SD, an 

improvement in performance can be seen as channel changes faster. As will be shown 

later in Chapter 4, a time-selective channel gives rise to not only ICI, but also a form of 

time diversity – Doppler diversity. While ICI degrades performance, Doppler diversity 

improves performance. Provided that ICI can be effectively eliminated, the higher the 

channel variation is, the larger the Doppler diversity and the better the performance are. 

The results in Fig.3.8 demonstrate that the MMSE-SD scheme is able to effectively 

exploit gain from Doppler diversity in OFDMA uplink. With this result, the MMSE and 

MMSE-SD schemes are proposed for possible use in OFDMA systems uplink as an ICI 

suppressor. 
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Fig.3.8: Average symbol error rates versus df T  with perfect CIR, SNR=20dB. 

Example 3. Near-far Resistance 

To examine immunity of the proposed detection techniques to near–far effects, we 

fix the power of user 1 at the BS and assume the other three interfering users to have the 

same Interference Signal power Ratio (ISR) over user 1. The SER of user 1 is then 

simulated and plotted versus ISR in Fig.3.9. As can be seen, if perfect CIR is available, 

both MMSE and MMSE-SD are resistant to near-far effects. Particularly, since 

successive detection scheme detects strong users prior to weak users, weak users will 

encounter less interference in the MMSE-SD detection. As a result, the MMSE-SD 

scheme earns more performance gain than the MMSE scheme for weak users. 
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Fig.3.9: Symbol error rate against Interference Signal power Ratio, SNR = 20 dB, 0 05.df T = . 
Every interfering user induces the same ISR over user 1. 

Example 4. Sensitivity to Channel Estimation Error 

Using the result obtained in Section 3.4.2, we model channel estimation error as 

complex white Gaussian noise ( )20, eσCN , with 2
eσ  being the estimation Mean Square 

Error (MSE). The post-MMSE SINR is plotted versus 2
eσ  in Fig.3.10. Apparently 

performance degradation is insignificant when 2 0 01.eσ < . As will be shown soon, this 

accuracy can be readily obtained by a properly designed estimator. It is also interesting 

to note that, the detection performance becomes more sensitive to channel estimation 

error when SNR increases. This can be explained from (3-38). Specifically, channel 

estimation error gives rise to extra ICI, and from the denominator of (3-38), the 

post-MMSE SINR is primarily limited by ICI at high SNR. Therefore, degradation due 

to channel estimation error is more obvious at high SNR region. On the other hand, if 

SNR is low, SINR is primarily limited by noise and thus the degradation caused by ICI is 

relatively small. 
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Fig.3.10: Post-MMSE SINR versus channel estimation MSE, 0 05.df T = . 
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Chapter 4  

Basis Expansion Model (BEM) based Channel 

Estimation for OFDMA Uplink 

As can be seen in Chapter 3, channel information is prerequisite to ICI 

suppression techniques. Therefore, further investigation should be given to the issue of 

doubly selective channel estimation in OFDMA uplink, which is the subject of this 

chapter. In this chapter, a Basis Expansion Model (BEM) is chosen to reformulate 

OFDMA uplink signal, on the basis of which the BEM-based channel estimation 

techniques are investigated. 

Section 4.1 presents a review of previous studies on OFDMA uplink channel 

estimation. In Section 4.2, existing time-varying channel modeling schemes are 

reviewed. An oversampled basis expansion model is formulated for OFDMA uplink. In 

Section 4.3, BEM-based channel estimation algorithms are developed under both 

time-domain and frequency-domain pilot patterns. Finally in Section 4.4, numerical 

results and discussions are presented to demonstrate the performance. 

4.1 Current OFDMA Uplink Channel Estimation Schemes 

OFDMA uplink channel estimation lately received considerable research interest 

and has been investigated in several studies. In [72], a searching algorithm based on 

maximum-likelihood has been developed to jointly estimate multiuser CFO and CIR. 

To reduce the high complexity of searching over multidimensional domain, alternating 
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projection method was used to search in a series of mono-dimensional searches. In 

[73], iterative algorithms were developed to accomplish channel and CFO estimation 

as well as signal detection. In [75], a subspace method was developed to track 

OFDMA uplink channels. It solves error floor in highly frequency-selective channels. 

In [76], irregular sampling techniques are developed to estimate OFDMA uplink 

channels. In [77], the BEM was independently studied for the purpose of OFDMA 

uplink channel estimation. However, the studies given in [72][73][75]-[77] are all 

based on the assumption that channel is semi-static. As on of few studies provided for 

doubly selective channels, [74] investigated the impact of mobility on OFDMA uplink 

channel estimation. A general doubly selective fading channel was considered and the 

ICI is considered as a noise component. Linear MMSE and Gauss-Markov techniques 

were investigated to estimate channel in frequency domain. Obviously, till now most 

of the studies on OFDMA uplink channel estimation are still in static or semi-static 

channels. Explicit study on estimation of time-selective channels is called for. 

In this chapter, accuracy improvement on channel estimation is obtained from a 

simple consideration: estimating channel in time domain. As ICI always shows up in 

frequency domain and degrades estimation accuracy, time domain estimation is able to 

prevent the degradation and obtain more accurate estimates. 

With this in mind, an appropriate signal model and pilot pattern should be 

formulated to enable channel estimation in time domain. 
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4.2 Basis Expansion Model for OFDMA Uplink Channels 

4.2.1 An Overview on Modeling Doubly Selective Fading Channels 

A doubly selective fading channel can be illustrated by a tapped-delay line shown in 

Fig.4.1. 

 

Fig.4.1: Delay-tapped line representation of a doubly selective fading channel. Each delay 
branch stands for a path. 

For a channel whose coherence time is in the order of hundreds of symbol 

durations, static assumption is reasonable and adaptive algorithms are usually 

deployed to track the variation. On the other hand, for the channel whose coherence 

time is only about several symbols, static assumption is invalid. In this scenario, 

on-line channel estimation and equalization are normally required. 

To mathematically describe temporal evolution of path gains, channel modeling 

methods have been extensively studied. Different modeling schemes may lead to 

different estimation algorithms. Existing channel modeling schemes can be roughly 

categorized as Statistical Modeling and Deterministic Modeling. Specifically, in 

1z −  1z −  

( ),1h t ( ),2h t ( ), 1h t L −  

∑  

( ),0h t

AWGN 

( )s t  

Channel Output 

1z −  …
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statistical modeling schemes, uncorrelated stationary random processes are employed 

to describe time evolution of the channel. The random process is generally assumed to 

be Gaussian with nonzero mean for Rician fading or zero mean for Rayleigh fading, 

depending on whether line of sight paths exist or not [79]-[82]. To track a channel 

under such a modeling method, Kalman filter is used to estimate the taps [83]-[87]. 

Specifically, if the time-varying taps can be modeled as AR or ARMA processes, both 

the model parameters and the model order can be known, then the channel can be 

optimally tracked using the Kalman filter. However, these primary parameters may not 

easy to acquire in practice. 

On the other hand, as a deterministic modeling scheme, Basis Expansion 

Modeling (BEM) has recently received considerable interest in cellular radio 

applications [65]-[71]. BEM assigns time evolution of a channel to a series of bases 

and the resultant basis coefficients can be considered as invariant in a prolonged period 

of time. In other words, BEM transforms a fast fading channel path gain into a series 

of slow fading bases coefficients. So far, both exponential bases [65][68][69] and 

polynomial bases [88][89] have been studied for such a purpose. Deterministic 

modeling and associated channel estimation schemes release the requirements in 

statistical modeling that training sequence should be white or random. Moreover, 

unlike the statistical approach, reliable channel identification can be obtained with 

short training sequence as long as SNR is high enough. Motivated by these advantages, 

it is the objective of this chapter that formulating exponential BEM and developing the 

corresponding channel estimation for OFDMA system uplink. Henceforth, for the ease 
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of statement and without any confusion, the term BEM is used to refer the exponential 

bases expansion model. 

4.2.2 Basis Expansion Model 

The BEM is essentially a Fourier bases approximation of channel variation. 

Specifically, Fourier transform of a CIR over time (also known as Spread Function) 

completely characterizes the nature of its variation, and moreover, the spread function 

is bandlimited within [ ]d df f− , with 

c
d

vf
f

c
= ,                         (4-1) 

where v  is velocity of the mobile station, cf  is central carrier frequency of the band 

and c  stands for the speed of light. Therefore, Fourier bases sampled in the Doppler 

frequency domain admit an enough accurate approximation of CIR [79][90]. A path 

( ),h t τ  can be approximated by a linear superposition of finite Fourier bases over a 

time period [ ]0 T , as given by 

( ) ( ) ( )

( ) ( )

, exp 2π

exp 2π

q q
q

Q

q q
q Q

h t t a j tf

t a j tf

τ δ τ

δ τ

+∞

=−∞

=−

= −

−

∑

∑
, 

  0 t T≤ ≤ ,   (4-2) 

where qf  is the sampled Doppler frequency and qa  is the associated basis coefficient. 

Principle of BEM is illustrated in Fig.4.2. 
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Fig.4.2: Sampling in Doppler frequency domain and BEM representation of time-varying 
channel. 

With sampling in time domain, the discrete-time version of (4-2) is given by 

( ) ( )

( ) ( )

, ,

exp 2π

 S S

Q

q S q
q Q

h n l h t nT lT

n l a j nT f

τ

δ
=−

= = =

= − ∑
, 

0 1 Sn N T T≤ ≤ − = ⎢ ⎥⎣ ⎦ , max0 1 Sl L Tτ≤ ≤ − = ⎢ ⎥⎣ ⎦  (4-3) 

where ST  stands for time-domain sampling period, maxτ  stands for delay spread and 

Q is the highest Fourier basis order. If the BEM bases are selected as to be 

q

q
f

gT
= ,   max maxgf T q gf T− ≤ ≤⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ , (4-4) 

(4-3) can be written as 

( ),h t τ  

t

f

f
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Frequency Sampling 

( ) ( ), exp 2π
Q

q q
q Q

h t a j tfτ
=−
∑

( ) ( ) ( )2exp, ,h dtf τ j ftt τ
+∞

−∞
= − π∫H

0              T 

df−               df  
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( ) ( ) 2π, exp
Q

q
q Q

j nq
h n l n l a

gN
δ

=−

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∑ ,                (4-5) 

where g  is a positive integer defining the sampling resolution in Doppler domain. If 

1g = , (4-5) is termed as conventional BEM. If 1g > , (4-5) is termed oversampled 

BEM. For the convenience of statement, g  is referred to as oversampling index in the 

following discussions. Intuitively, larger oversampling index leads to higher frequency 

domain resolution, and thus higher modeling accuracy. This is demonstrated by 

simulation results shown in Fig.4.3. 
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Fig.4.3: Mean Square Error (MSE) of BEM modeling versus oversampling index. 

From (4-5), for a signal ( )s n , it is easy to see that after transmission the received 

signal can be expressed as 

( ) ( ) ( ) ( )

( ) ( )

,

2πexp
Q

q
q Q

r n h n l s n z n

j nq
a s n l z n

gN=−

= ∗ +

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
∑

,              (4-6) 

where the operator ∗  stands for linear convolution. 
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4.2.3 BEM-based Signal Model for OFDMA Uplink 

Following (4-6), each OFDMA block received from user u can be written as 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

0

1

,
0

2πexp ,

,

L
u

u u u
l

Q L

u q u u
q Q l

j n
r n h n l x n l z n

N

d n a q l x n l z n

ε −

=

−

=− =

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

= − +

∑

∑ ∑
,   0 1n N≤ ≤ − , (4-7) 

where 

( ) 2 ε⎡ ⎤⎛ ⎞+π⎢ ⎥⎜ ⎟= ⎝ ⎠⎢ ⎥
⎣ ⎦

, exp u
u q

q
j n

d n g

N

 

is the phase offset induced by both CFO εu  and channel variations. As can be seen, 

one time-selective path introduces 2 1Q +  replicas of the original signal ( )ux n . This 

is identified as a sort of diversity - Doppler diversity [90]-[94]. On the other hand, time 

selectivity also gives rise to more CFOs q g . Although the Doppler diversity brings 

diversity gain to improve system performance, CFO induces ICI and cancels the gain. 

Therefore, the diversity gain can be exploited to improve system performance provided 

that ICI can be effectively suppressed. This is in line with and supports the findings 

presented in Chapter 3. 

(4-7) can be re-written in matrix form as given by 

( ) ( ) ( )
Q

u u uu
q Q

q q
=−

= +∑r D C a zx ,                 (4-8) 

where 

( ) ( ) ( ) ( )0 1 1, , ,diag ...u u q u q u qd d d Nq = ⎡ − ⎤⎣ ⎦D ,           (4-9) 
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( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

0 1 1
1 0 2

1 2

...

...

... ... ... ...

...

u u u

u u u
u

u u u

x x N x N L

x x x N L

x N x N x N L

⎡ − − + ⎤
⎢ ⎥− +⎢ ⎥=
⎢ ⎥
⎢ ⎥

− − −⎢ ⎥⎣ ⎦

C x ,       (4-10) 

( ) ( ) ( ) ( )0 1 1..., , ,
T

u u u ua a aq q q q L= −⎡ ⎤⎣ ⎦a .          (4-11) 

By forming augmented matrices 

( ) ( ) ( ) ( ) ( ) ( )... ...u u u uu u uQ Q= ⎡ ⎤−⎣ ⎦D D C D C D Cx x x0 ,      (4-12) 

( ) ( ) ( ),  ... ,  ... 
TTT T

u u u uQ Q⎡ ⎤= −⎣ ⎦a a a a0 ,            (4-13) 

(4-8) can be rewritten as 

u u u= +r D a z .                      (4-14) 

Similarly, by forming augmented matrices 

[ ]1 2| | ... U=D D D D ,                  (4-15) 

1 2 ...
TT T T

U= ⎡ ⎤⎣ ⎦a a aA ,                  (4-16) 

Finally, each OFDMA block due to all the users is given by 

1

U

u
u=

= = +∑r r D zA .                   (4-17) 

Note that column vector A  contains all the BEM coefficients instead of channel 

responses. Under the above framework, BEM coefficients vector A  will be 

estimated first and then used to calculate users’ CIR as given by (4-5). 
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4.3 BEM-based Channel Estimation for OFDMA Uplink 

To track time selective channels, pilots or preamble symbols are usually needed. 

Pilots can be placed on time grid or frequency grid or both. In this dissertation, based on 

the consideration mentioned at the end of Section 4.1, a time domain pilot pattern used 

in [95]-[97] is adopted for OFDMA system uplink. The pilot pattern is shown in Fig.4.4 

as below. 

 

Fig.4.4: Pilot pattern for time-domain estimation, ‘P’ stands for pilot blocks, an data block 
corresponds to an OFDMA block. 

Using this pilot pattern, multiuser CIR is first estimated from pilot blocks. The 

estimate is then used to reconstruct CIR in data blocks via an interpolation algorithm. 

It is also noted that a time-frequency pilot pattern is adopted in IEEE802.16e 

standard [39] for WiMAX systems. The use of BEM under such a pilot pattern will 

also be considered in this section. 

4.3.1 Time-domain Estimation 

Under the pilot pattern shown in Fig.4.4, the matrix D  in (4-17) is a piece of 

pre-knowledge to the receiver, and thus estimation can be performed before FFT 

demodulation. Typical estimators that can be used are Least Square (LS), 

Maximum-Likelihood (ML) and Linear Minimum Mean Square Error (LMMSE). 

A. Least Square 

The use of Least Square corresponds to solving the problem 2
min

LS
LS −

G
G DA A , 

P Data … P … … t Data P Data Data …Data 
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and the solution is given by 

( ) 1 HH
LS

−=G DD D ,                     (4-18) 

which is essentially the Moore-Penrose pseudo inverse of D . Consequently, the 

estimated BEM coefficient vector is 

( ) 1ˆ HH
LS

−= = +G r D zD DA A .               (4-19) 

Since mean value of Gaussian noise z  is zero and ( ) 1 HH − DD D is deterministic, the 

LS estimator is unbiased. In addition, according to the result in [98], it is easy to see 

that the LS estimator (4-18) is the Best Linear Unbiased Estimator. 

B. Maximum-Likelihood 

As the noise is assumed to be Gaussian, the likelihood function associated with 

(4-17) is given by 

( ) ( )
( ) ( )

222 22ln ln|
H

n

N

n
f e σπσ

− −−−
⎡ ⎤= ⎢ ⎥⎣ ⎦

r D r D
r

A A
A .           (4-20) 

It is then readily to show that the ML estimate solved by maximizing (4-20), or, 

( ) 0
ln |f∂

=
∂
r A
A

,                    (4-21) 

is the same as the LS estimate given by (4-19). Therefore, for the time-domain pilot 

pattern, LS and ML estimators are the same. 

C. Linear MMSE 

In general, estimation MSE consists of errors due to variance and bias [99][100]. 

Although LS and ML have zero bias, they cannot guarantee the minimum MSE. A 

LMMSE estimator attempts to minimize the overall MSE by solving 
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2
min

M
M−

G
G rAE . It is easy to show that the estimator is given by 

( ) 12H H
M nσ

−
= +G RD DRD I ,                (4-22a) 

where { }H=R AAE  is the autocorrelation matrix of the BEM coefficients and can 

be pre-calculated as shown in Appendix C. Note that the matrix D  given by (4-15) 

has dimension ( )2 1PL Q LU× + , where PL  is the length of each pilot block and 

( )2 1Q LU+  is the number of parameters to be estimated. Correspondingly, a 

P PL L×  matrix inverse is needed in (4-22a). As will be shown later, PL  should be 

equal to or larger than ( )2 1Q LU+  to guarantee estimation accuracy. By using the 

lemma given in Chapter 3, an equivalent estimator with lower matrix inversion 

complexity is given by 

( ) 12 1H H
M nσ

−−= +G D D R D .                (4-22b) 

Clearly, in contrast to unbiased estimators, LMMSE is biased. The overall MSE, 

however, is minimized. In other words, LMMSE obtains the optimal trade-off between 

variance and bias. 

4.3.2 Interpolation Algorithms 

After estimating multiuser CIR through pilot blocks, making use of the correlation 

in time domain, there are a number of interpolation algorithms can be used to construct 

multiuser CIR in data blocks. Two typical algorithms: linear interpolation and MMSE 

interpolation are addressed below. 

A. Linear Interpolation 

If channel variation is obvious but not severe, it can be regarded as linear. This 
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applies to mobile communications with low to moderate speed. Mathematically, the 

CIR of each path in a data block is constructed as 

( )

( ) ( ) ( )
( ) ( )( )1 10

1 1 1
1

,

, ,
,

,

,,
,

u d

P gu p u p
P g gu p g

g g

h n l

L N lh hl
L N l N Nh d N n

N NM N
+ + −−

+ − +⎡ ⎤= + − + + +⎣ ⎦+ + +

, 

1 2, ...u U= , 0 1 1, ...l L= − , 1 d M≤ ≤ , 0 1n N≤ ≤ − , (4-23) 

where d  is the data block index, n is the sample index within each data block, p is 

the pilot block index and M is the number of data blocks between two successive pilot 

blocks. Linear interpolation scheme is shown as below. 

 

 

 

Although it is the simplest method to reconstruct the CIR of data blocks, its 

performance is guaranteed only if the Doppler effect is not too severe. For the scenario 

with severe Doppler effect ( 0 1.df T > , [96]), more advanced interpolation scheme can 

be used. 

B. MMSE Interpolation 

MMSE interpolation makes use of channel statistics to reconstruct CIR for data 

blocks. In the time-domain pilot pattern shown in Fig.4.4, taking K  pilot blocks and 

P Data P Data … 

( ), ,u dh t τ

t  
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the ( )1K M−  data blocks located between the pilot blocks, supposing estimation of 

the l-th path in the p-th pilot blocks is denoted by ( )ˆ ,u p lh , 

( )1 1,   ... p j j M j K M= + + + + , CIR of the l-th path in the d-th data block 

( 1p d p M+ ≤ ≤ + ) can be reconstructed by solving the MMSE problem 

( )
2

ˆmin ,uE d l −
m

h mH ,                   (4-24a) 

where 

( ) ( ) ( )1ˆ ˆ ˆˆ , , , ... ,
TT T T

u u uj l j M l j KM K l⎡ ⎤= + + + +⎣ ⎦h h hH ,      (4-24b) 

is the augmented vector formed by CIR estimate of path l in all the K pilot blocks. The 

solution of (4-24) is the MMSE interpolation weight vector, as given by 

1
ˆ ˆ ˆd

−=m R R
H HH

,                      (4-25) 

where 

( )ˆ
ˆ, H

ud
d l⎡ ⎤= ⎣ ⎦R hE

H
H ,                   (4-26) 

ˆ ˆ
ˆ ˆ H⎡ ⎤= ⎣ ⎦R E

HH
HH .                     (4-27) 

Provided that channel statistics are known, (4-26) and (4-27) can be easily determined 

as shown in Appendix D. 

4.3.3 Frequency-domain Estimation 

As one of the latest standards using OFDMA, IEEE 802.16e (also known as mobile 

WiMAX) deploys the uplink channel pilot pattern shown in Fig.4.5(a). The basic unit in 

this pattern is a tile shown in Fig.4.5(b). In subcarrier allocation, each user is allocated 
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with 6 tiles. 

 
(a) 

 
(b) 

Fig.4.5: (a) Pilot pattern in mobile WiMAX uplink, (b) A tile. 

By using this pilot pattern, estimation will be carried out after FFT demodulation. 

Moreover, the matrix D  in (4-17) will be unknown to the receiver. Therefore, the 

signal model given by (4-17) should be revised. More specifically, ICI will appear after 

FFT demodulation and the ICI induced by data introduces extra uncertainty in addition 

to the Gaussian noise, since data are unknown at the stage of channel estimation. For 

this reason, data should be separated from pilots in the new signal model. 

First, it is easy to see that (4-7) can be rewritten into another form in terms of 

frequency-domain symbols, as given by 

( )

( ) ( ) ( )
( )

( )

( ) ( ) ( )

2π1 1

,
0 0

2π 2π1 1

,
0 0

1,

1 , ( )

u

j n l kQ L N
N

u q u u
q Q l k

j nk j lkQ N L
N N

u q u u
q Q k l

r n

d n a q l X k e z n
N

d n X k e a q l e z n
N

−− −

=− = =

−− −

=− = =

= +

⎧ ⎫⎡ ⎤⎪ ⎪= +⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

∑ ∑ ∑

∑ ∑ ∑

, 

O
FD

M
A

 B
lo

ck
s 

Pilot Data 

Subcarriers 
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0 1n N≤ ≤ − , (4-28) 

Following (4-28), an OFDMA block received from user u can be written in matrix 

form given by 

( ) [ ] ( ) ( )1 1diag : , :
Q

H
u u u u

q Q

q N N L q
=−

= +∑r D F X F a z ,      (4-29) 

where ( )1 1: , :H N LF  is the FFT matrix with rows 1 to N and columns 1 to L 

selected, ( )u qD  and ( )u qa  have been defined in (4-9) and (4-11). Separating the 

pilot and data components, (4-29) can be rewritten as 

( ) [ ] ( ) ( )

( ) [ ] ( ) ( )

1 1

1 1

diag : , :

diag : , :

Q
H

u u u u
q Q

Q
H

u u u
q Q

q N N L q

q N N L q

=−

=−

=

+ +

∑

∑

r D F F a

D F F a z

P

D
,      (4-30) 

where uP  and uD  represent the pilot and data vectors associated with user u. 

Specifically, u u u= X∪P D  and u u =∅∩P D . Following (4-30), an OFDMA block 

due to all the users is given by 

( ) [ ] ( ) ( )

( ) [ ] ( ) ( )

1

1

1

1 1

1 1

diag : , :

diag : , :

U

u
u

QU
H

u u u
u q Q

QU
H

u u u
u q Q

q N N L q

q N N L q

=

= =−

= =−

=

=

+ +

∑

∑ ∑

∑∑

r r

D F F a

D F F a z

P

D

.    (4-31) 

After FFT demodulation, (4-31) becomes 
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( ) [ ] ( ) ( )

( ) [ ] ( ) ( )

[ ] ( ) [ ] ( )

1

1

1 1

1 1

1 1

, ,

diag : , :

  diag : , :

H

QU
H H

u u u
u q Q

QU
H H

u u u
u q Q

Q QU U

P u D uu q u q
u q Q u q Q

q N N L q

q N N L q

q q

= =−

= =−

= =− = =−

=

=

+ +

= + +

∑ ∑

∑∑

∑∑ ∑∑

y

F r

F D F F a

F D F F a Z

E a E a Z

P

D

,    (4-32) 

where 

[ ] ( ) [ ] ( )1 1
,

diag : , :H H
P u uu q

q N N L=E F D F FP , 

[ ] ( ) [ ] ( )1 1
,

diag : , :H H
D u uu q

q N N L=E F D F FD . 

By forming an augmented matrix 

[ ] [ ] [ ] [ ]1 1, , , ,
... ... ...P P P P PQ Q U Q U Q− −

⎡ ⎤= ⎣ ⎦E E E E E  

and 

( ) ( ) ( ) ( )1 1... ... ...
TT T T T

U UQ Q Q Q⎡ ⎤= − −⎣ ⎦a a a aA , 

the OFDMA block given by (4-32) can be rewritten as 

P D= + +y E E ZA A .                    (4-33) 

In (4-33), it is obvious that the second item, which contains all the data symbols, 

appears as intractable interference, unless the channel is static or semi-static. Therefore, 

the estimation accuracy using frequency-domain pilot is generally lower than using 

time-domain pilot, as will be shown by simulation results. 

Similar to the scenario of time-domain pilot, LS, LMMSE techniques can be used 

to estimate CIR on the basis of (4-33). The feasibility of Maximum-Likelihood 
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depends on the statistic characteristic of the interference item DE A .  

As an example and to avoid the need of channel statistics, the LS technique is 

considered. From the signal model given by (4-33), a LS channel estimator is the 

solution of the least square problem 2
min

LS F
LS F P

−
− −

G
EG A , and is given by 

( ) 1H H
LS F P P P

−

− =G E E E .                   (4-34) 

According to the study in [101], to give reasonably good LS estimations in the 

presence of ICI from data, not all the N symbols in y  are necessary, since using more 

symbols also collects more interference power from data. However, it is necessary that 

all the pilot symbols are collected for channel estimation, since these samples have the 

largest power from pilot symbols and lack of any of them may result in accuracy 

degradation. From this point of view, channel estimation can be performed based on cy , 

which is a portion of one whole OFDMA block y , with at least all the pilot positions 

included. This is shown in Fig.4.6. 

 

Fig.4.6: Samples selection for channel estimation from the FFT-demodulated OFDMA block 

From (4-33), the collected samples cy  is mathematically expressed as 

c P D= + +y E E ZA A ,                   (4-35) 

uu
X∪

y  

cy  

pilots 
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where PE , DE  and Z  are carved from PE , DE  and Z , by selecting the rows 

leading to the entries in cy . The resultant LS estimation algorithm has the same form 

as (4-34) except that PE  replaces PE . 

So far BEM-based channel estimation has been considered for OFDMA Uplink for 

both time-domain and frequency domain estimation. Before moving on to simulation 

results, it is worthwhile to analytically study performance of the above estimation 

algorithms. 

 

4.4 CRLB Analysis for LS Estimators 

Cramer-Rao Lower Bound (CRLB) is the lowest MSE that an unbiased estimator 

can attain. In this section, CRLB will be derived for the LS estimators.  

For the convenience of statement, the LS used in time-domain estimation will be 

referred to as LS-T. Similarly, the LS used in frequency-domain estimation will be 

mentioned as LS-F. CRLB of BEM coefficients estimation will be first derived, CRLB 

of CIR estimation can be then calculated as to be shown soon. 

Generally for a complex signal 

= +α Φλ η                         (4-36) 

where Φ  is known, white complex noise η  admits Gaussian distribution 

( )0, ηRCN  and λ  contains the parameters to be estimated from α . The CRLB of 

unbiased estimation is given by 

( )1
e e

−− ≥λC J λ 0 ,                     (4-37) 
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with 

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

2 2
Re ImRe Im

Im Re Im Re
e

⎡ ⎤−⎡ − ⎤
= + ⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦

P PP P
J λ

P P P P
,     (4-38) 

where 

[ ] [ ][ ]Re Im
T

T T
e =λ λ λ ,                 (4-39) 

and matrices P  and P  are given by 

( ) ( ) ( ) ( )
1 1 1

* *,
, trace

H

H

m n
e e

m n
m n

− − −
⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂
⎜ ⎟= + ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

η η
η η η

R R
P Φ R Φ R R

λ λ
,   (4-40) 

( ) ( ) ( )
1 1

* *, trace

H

e e

m n
m n

− −
⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂
⎜ ⎟= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

η η
η η

R R
P R R

λ λ
.          (4-41) 

Note that the operator ' '≥  stands for positive semi-definite. 

A. CRLB for LS-T 

In time-domain estimation, the received signal ( )2, nσr D I∼ ACN . 

Correspondingly, 

2 H
nσ
−=P D D ,                        (4-42) 

=P 0 .                           (4-43) 

The CRLB for LS-T is thus given by 

( )1
e e

−− ≥C JA A 0                        (4-44) 

with 

( ) ( ) 11 2
T

H
e nσ

−− =J D DA .                    (4-45) 

where 

[ ] [ ]Re Im
T

T T
e = ⎡ ⎤⎣ ⎦A A A .                  (4-46) 

B. CRLB for LS-F 
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For the frequency-domain estimation, in (4-36), we have 

F=Φλ P A ,                        (4-47) 

( ) 2H H
F F nσ= +η X

R ID AA DE .               (4-48) 

To determine the CRLB, it is necessary to solve ( )H H
F FX
D AA DE  and its partial 

derivative with respect to ( )* iA  for ( )1 2 2 1, ...i Q LU= + . 

First, starting from (4-28), it is easy to show that FD A  can be also expressed as 

( )

( ) ( )( ) ( )( )
1

2 1 2 1

1

1

d
,

d
Aug

diag :, :

diag :, :

QU
H H

F q u q u
u q Q

H
Q U Q U

N L

L

= =−

+ +

⎡ ⎤= ⎣ ⎦

⎡ ⎤= ⊗ ⊗⎣ ⎦

∑ ∑ F D F F a M X

I F M X

D A

E A 1
,       (4-49) 

where 

( )...T H
U Q Q−⎡ ⎤= ⊗ ⎣ ⎦F D F D FE 1 ,                 (4-50) 

( )

( )

12 1

2 1

d

d
Aug

d

Q

UQ

+

+

⎡ ⎤⊗
⎢ ⎥

= ⎢ ⎥
⎢ ⎥⊗⎢ ⎥⎣ ⎦

I M O

M

O I M

,             (4-51) 

and d
uM  is the masking matrix that identifies data symbols of user u. Following this 

result, the variance matrix is given by 

( ) ( )( ) ( )( ) ( ) ( )( )2
2 1 2 1 2 1

2

1 1
H

H H H H
s NQ U Q U Q U

n N

L L+ + +
⎡ ⎤⎡ ⎤= ⊗ ⊗ ⊗⎢ ⎥⎣ ⎦ ⎣ ⎦

+

ηR

I F M I M I F

I

σ

σ

d d
Aug Augdiag :, : diag :, :

  

E A A E1

(4-52) 

Following (4-52), the partial derivative 
( )* i

∂
∂

ηR

A
 can be easily shown to be given 

by 
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( )

( ) ( )( ) ( )( ) ( ) ( )( )2
2 1 2 1 2 11 1

*

*
d d
Aug Augdiag :, : diag :, :H H H

s N iQ U Q U Q U

i

L Lσ + + +

∂

∂

⎡ ⎤⎡ ⎤= ⊗ ⊗ ⊗⎢ ⎥⎣ ⎦ ⎣ ⎦

ηR

I F M I M I F e

A

E A E1

(4-53) 

where ie  is the i-th column of an identity matrix ( )2 1Q LU+I . Substituting (4-52) and 

(4-53) into (4-37) and (4-38), the CRLB for LS-F can be obtained. 

After the CRLB of BEM coefficients estimation is obtained as shown above, the 

CRLB of CIR estimation can be determined. Specifically, the channel responses is 

calculated from eA  by 

[ ]  e ej= =h B B BA A ,                    (4-54) 

where 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

11 1 1

1 11 1

2 11 1

11 1 1

...

... ...

... ...

... ... ...

... ...

Q N Q N Q NL L L

N Q N Q NL L

N Q N Q NU L L

N Q N Q NL L L

− × − + × ×− − −

× − × − + ×− −

× − × − + ×− −

× − × − + ×− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⊗
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

b b b

b b

b bB I

b b

0 0 0
0 0 0
0 0 0

0 0 0

, (4-55) 

with column vector 

1

0

2π
exp

N

q

n

j qn
gN

−

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
b . 

The matrix B  transforms BEM coefficients back to CIR. 

With (4-54) and (4-55), the CRLB of CIR estimation is given by [98]: 

ˆ ˆ
e

T ≥
h
C BC B－

A
0 .                      (4-56) 

4.5 Numerical Results and Discussion 

In this section, numerical results will be presented to evaluate and compare the 

aforementioned channel estimators. 
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System setup and parameters used in this part of simulation is as below: 

1. 64-subcarrier interleaved OFDMA Uplink with 4 users. 

2. QPSK modulated random symbols are used as pilots. 

3. 3-ray multipath time-selective Rayleigh fading channel. 

4. Unless otherwise specified, the normalized Doppler spread 0 05.df T = . 

5. Unless otherwise specified, CFO of the four users are 0.15, -0.1, 0.2 and 0.1. 

4.5.1 Performance of Estimation 

Example 1. Comparison between LS-T and LMMSE-T 

 In this example, LS-T and LMMSE-T are compared. The oversampling index 

g  is taken to be 10 when 0 1.df T ≤  and 1 when 0 1.df T > . In Fig. 4.7, average 

estimation MSE (MSE averaged over the 4 users, 3 paths and 64 symbols) is plotted 

versus normalized Doppler spread df T . From this result, it can be seen that: First, 

the LS-T estimator performs considerably close to the CRLB-T. Second, although 

having estimation bias, the LMMSE-T estimator always performs better than 

unbiased estimators in the range of Doppler spread examined. Finally, the 

LMMSE-T has its performance more and more close to the LS estimator when df T  

increases. 
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Fig. 4.7: MSE performance of LS-T and LMMSE, SNR=15dB. 

Example 2. Comparison between LS-T and LS-F 

In Fig. 4.8, average MSE is plotted versus df T  for the LS-T and LS-F estimators. 

As a benchmark, their CRLB are also plotted. The oversampling index g  is taken to be 

10 when 0 1.df T ≤  and 1 when 0 1.df T > . Only pilot symbols are collected for 

channel estimation when using LS-F. Clearly, using time-domain pilot pattern gains 

significant performance improvement. As channel changes faster, performance of the 

LS-F strays away from the CRLB-F. 
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Fig. 4.8: Comparison between LS-T and LS-F, SNR=20dB 

From the results shown in Fig. 4.7 and Fig. 4.8, the LMMSE channel estimator 

using the time-domain pilot will be proposed for possible use in OFDMA uplink, and the 

following simulations will be mainly aimed at examining this estimation scheme. 

Example 3. Investigation on the length of pilot block 

In practice, it is preferable to use a pilot block as short as possible. In this 

example, average MSE is plotted against the length of pilot block PL  to see how long 

the pilot block should be to acquire favorable estimation. The results are shown in 

Fig.4.9. 
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Fig.4.9: Average MMSE versus pilot block length. 0 05.df T = , 20g = , using linear 
interpolation with interpolation length M = 1. 

From the result in Fig.4.9, it can be seen that, when the pilot block length exceeds a 

certain value, using longer pilot blocks will not give significant performance 

improvement. This phenomenon can be interpreted by analyzing the rank of matrix D . 

Specifically, from (4-22b), it can be seen that estimation accuracy is closely related to 

the rank of the matrix HD D . Specifically, if ( )2 1PL Q LU≥ + , the matrix HD D  has 

full rank and thus the performance will not be much improved by increasing the pilot 

block length. On the other hand, if ( )2 1PL Q LU< + , the matrix HD D  is rank 

deficient and thus performance improvement will be significant when the pilot length 

increases. In this example, ( )2 1Q LU+  is 36. Thus, performance improvement from 

using longer pilots will be insignificant when 36PL > . Clearly, this is in line with the 

results shown in Fig.4.9. 

According to this result, instead of an entire OFDMA block, a pilot block with 

length equal to the number of BEM coefficients ( )2 1Q LU+  can be used. Since 
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( )2 1Q LU+  is normally smaller than the OFDMA block length N, transmission 

efficiency can be increased by using shortened pilot blocks. 

4.5.2 Performance of ICI Suppression with Channel Estimation 

In this part of simulations, the ICI suppression schemes proposed in Chapter 3 is 

implemented in conjunction with the proposed LMMSE channel estimation. System 

setup and parameter are the same as those used in Section 4.5.1. Channel coding has 

not been used. 

Example 1. Average Symbol Error Rate 

In Fig.4.10, average SER is plotted against SNR with LMMSE channel estimation. 

The results are also compared with that acquired from perfect CIR. Specifically, the 

normalized Doppler spread df T  is 5% and the pilot block length PL  is 36. It can be 

seen that the proposed channel estimation scheme gives a performance close to the ideal 

case when the interpolation length is M=1. 
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Fig.4.10: Average symbol error rates of MMSE and MMSE-SD with channel estimation 
at 0 05.df T = , 36PL = . ‘CE’ in the figure and hereafter stands for ‘Channel Estimation’. 
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Example 2. Random CFO Test 

In this simulation, detection performance is examined in a more realistic scenario. 

Users’ CFOs are modeled as independent random variables uniformly distributed in the 

range ( ),−ε ε , and average SER is simulated for 0=ε , 0.35 and 0.5. From the results 

presented in Fig.4.11, it can be seen that, when CFO reaches 35% of the subcarrier 

spacing, performance loss compared with no CFO scenario is only 1dB and 0.5dB for 

MMSE and MMSE-SD, respectively. Hence, by using the proposed estimation and 

detection schemes, the strict requirement on the accuracy of coarse synchronization, 

such as the 2% limit stated in IEEE802.16 standard, can be dramatically relaxed. 
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Fig.4.11: Average symbol error rates of MMSE and MMSE-SD under different CFO ranges 
with channel estimation, 0 05.df T = , 36PL = , M = 1. 

Example 3. Immunity to CFO Estimation Errors 

CFO estimation error is inevitable in real applications and it affects estimation 

and detection performance. In this simulation, users’ CFO estimation error is modeled 
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as independent white Gaussian random variables ( )20,σN , where 2σ  is equal to the 

mean square error (MSE) in CFO estimation. Average SER is plotted against CFO 

standard deviation σ  (root MSE) in Fig.4.12. 
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Fig.4.12: Immunity to CFO estimation errors with channel estimation, SNR = 20 dB, 
0 05.df T = , M = 1, 36PL = . 

Clearly, both MMSE and MMSE-SD have insignificant performance loss until the 

CFO estimation errors exceed 0.1, which is quite a large value in CFO estimation. This 

result shows that the proposed MMSE and MMSE-SD schemes are sufficiently robust 

to the CFO errors arising from commonly used CFO estimation algorithms. 

Example 4. Immunity to Near-Far Effects 

To demonstrate the immunity to near–far effects when channel information is not 

perfect, the same simulation shown in Fig.3.9 is rerun. Apparently, if channel estimation 

is used, the near–far resistance is degraded due to channel estimation errors. One 

approach to maintain the performance is using power control. If this is difficult to be 
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implemented, a more advanced interpolation scheme can be used to reduce channel 

estimation errors and improve the near-far resistance. 
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Fig.4.13: Symbol error rate against Interference Signal power Ratio, SNR = 20 dB, 
0 05.df T = , 36PL = . Every interfering user induces the same ISR over user 1. 
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Chapter 5  

Low Complexity ICI Suppression in Interleaved 

OFDMA System Uplink 

Interleaved OFDMA is the system that deploys interleaved subcarrier allocation†. 

It owns the largest frequency diversity. As discussed in [7], sufficient frequency 

diversity is crucial to system capacity in delay sensitive applications. Therefore, 

interleaved OFDMA is a popular choice for real-time systems, such as multimedia 

broadcasting system. Moreover, interleaved OFDMA system has a particular signal 

structure, which can be made use of to develop low-complexity ICI suppression 

algorithms. 

In this chapter, a novel detection structure with lower complexity in ICI 

suppression is studied for interleaved OFDMA system uplink. Specifically, the 

interleaved signaling in frequency domain shows a periodic feature in time domain 

[20][28][29]. By making use of this periodic structure, dimension of FFT 

demodulation and detection can be considerably reduced. 

In Section 5.1, the temporal periodicity of an interleaved OFDMA block is 

introduced and signature vectors are formulated. Based on the signal model, a 

signature vector-based multiuser detector is proposed and investigated in Section 5.2. 

Comparative studies on complexity and performance are given in Section 5.3 and 5.4, 

respectively. 
                                                        
 
† The study in this work is based on the regular interleaving used in static OFDMA systems 
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5.1 Signature Vectors in Interleaved OFDMA Signaling 

Supposing there are N subcarriers accommodating U users, with each user using P 

subcarriers. An interleaved OFDMA system deploys interleaved subcarrier allocation as 

illustrated in Fig.5.1. 

 

Fig.5.1: Interleaved OFDMA subcarrier allocation, each bar stands for one subcarrier. 

Mathematically, an arbitrary user u will be assigned with the subcarriers indexed by 

u pU+ , 0 1 1, ..p P= − . Therefore, an OFDMA block transmitted from user u is given 

by 

( ) ( ) ( )1

0

21
exp

P

u u
p

j u pU n
x n X p

NN

−

=

⎡ π + ⎤
= ⎢ ⎥

⎣ ⎦
∑ ,   1gN n N− ≤ ≤ − ,  (5-1) 

where gN  stands for the length of cyclic prefix. After transmission in a doubly 

selective fading channel and front processing, the signal received from user u is given 

by 

( ) ( ) ( ) ( )
1

0

2
exp ,

L
u

u u u
l

j n
r n x n l h n l z n

N
ε −

=

π⎛ ⎞= − +⎜ ⎟
⎝ ⎠

∑ ,   0 1n N≤ ≤ − ,   (5-2) 

where uε  is the CFO of user u, normalized by subcarrier spacing 1 T . Due to the 

same reason as stated in Section 3.2, time delay has been omitted in (5-2). Using the 

BEM channel model developed in Chapter 4, (5-2) can be rewritten as 
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with 

( )u uq q gε ε= + ,                        (5-4) 

( ) ( )
( )2π1

0
, ,

j u pU lL
N

u q u l
l

H p a q e
− +−

=

=∑ ,                 (5-5) 

where ( ),u la q  stands for the q-th BEM coefficient describing path l of user u, and g  

is the oversampling index. In (5-3), denoting sample index n  by 

on n mP= + , 

  0 1on P≤ ≤ −  and 0 1m U≤ ≤ − ,  (5-6) 

it follows that 

( ) ( ) ( ), ,

Q

u o u q u q o
q Q

r n mP b m s n
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+ = ∑ ,                (5-7) 

where 

( )
( )2π1

,

uj u q m

U
u qb m e

U

ε⎡ + ⎤⎣ ⎦

= ,                   (5-8) 
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s n H p X p e
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As can be seen, for each BEM basis index q, ( ) ( ), ,u q u q ob m s n  with 0 1on P≤ ≤ −  

and 0 1m U≤ ≤ −  shows a periodic feature. Following (5-7), each OFDMA block can 

be rearranged into a Q P×  matrix, as given by 
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, ,

Q
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u u q u q
q Q=−
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with 

( ) ( ) ( )2π 2π 11 1, ...
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( )( ), ,u q u u u q uqε=s D F H X ,                  (5-12) 

where 
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contain CFO and channel frequency response associated with the q-th basis, and 
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is the IFFT modulation matrix corresponding to user u. It is easy to show that 

H H
u u u u P= =F F F F I , which indicates that matrix H

uF  is the corresponding FFT 

demodulation matrix to user u. 

Following (5-10), an OFDMA block received due to multiuser signals is 

1
, ,

Q U
T

u q u q
q Q u

Q
T

q q
q Q

=− =

=−

= +

= +

∑ ∑

∑

r b s z

B S z

,                  (5-13) 

where 

1 2, , ,...q q q U q⎡ ⎤= ⎣ ⎦B b b b , 

1 2, , ,...q q q U q⎡ ⎤= ⎣ ⎦S s s s . 

According to the definition given by (5-11), it can be shown that 
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Clearly if all the users have no CFO or exactly the same CFO, (5-14) becomes 

1
0,

H
q q i j

i j

i j

=⎧
⎡ ⎤ = ⎨⎣ ⎦ ≠⎩
B B .                   (5-15) 

This result implies that, in ideal case, the vectors ,u qb , u=1,2…U, are orthonormal 

vectors that can be opted for identifying users. For this reason, the vector ,u qb  is 

referred to as signature vector of user u, on basis q. Note that the subscript q indexes a 

signal replica associated with the q-th BEM basis. All the 2 1Q +  replicas can be 

combined with a diversity technique, such as Equal Gain Combining (EGC), Maximum 

Ratio Combing (MRC) and so on. Motivated by these findings, a novel detection 

structure can be used to suppress ICI and exploit Doppler diversity, as shown in 

Fig.5.2(a) and (b). 
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(b) 

Fig.5.2: (a) Novel parallel detection structure for the interleaved OFDMA uplink (b) ICI 
suppression and Doppler diversity combining for each user. 

In the detection scheme shown above, there are a total of U branches, each of which 

detects one user. In the ICI suppression and Doppler diversity combining unit shown in 

Fig.5-2(b), the signature vector is used to suppress MAI (or cross ICI), then self ICI is 

suppressed and Doppler diversity is exploited by combining multiple replicas (weights 

circled in the dashed square are used to exploit diversity gain). After ICI suppression and 

diversity combining, P-point FFT demodulates the information symbols. For 

convenience, the detector shown in Fig.5.2 is referred to as the signature-vector based 

detector in following discussions. 

Apparently, the crucial issue to be considered at the moment is how to suppress 

MAI by taking advantage of signature vectors. It is easy to see that the MAI 

suppression modules in parallel diversity branches would have no difference but tuning 

to different BEM bases. To this end, for clarity and convenience, the signature-vector 

detector will be particularly studied in static and quasi-static frequency selective fading 
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channels in the remainder of this chapter. In such a scenario, only one branch is needed 

in diversity combining. Mathematically, over static and quasi-static fading channels, 

BEM basis index Q  is equal to zero. (5-13) thus degenerates to 

1

U
T

u u
u=

= +∑r b s z .                      (5-16) 

Note that the subscript index 0q =  is omitted in (5-16). The integrated detection 

procedure under such a case of scenario is redrawn in Fig.5.3 for the convenience to the 

sequent discussion. 

 

Fig.5.3: Signature-vector based detector in static and quasi-static fading channels. 

5.2 Signature Vector-based Multiuser Detection 

As shown in Fig.5.3, ICI suppression in the signature-vector based detector is 

formed of two steps, which cancel cross ICI and self ICI in a row. Unlike current MAI 

suppression schemes, which normally attempt to suppress MAI in the frequency domain 

after self ICI suppression and FFT demodulation, the signature-vector detector 

suppresses MAI in time domain prior to self ICI suppression and FFT demodulation. 

With the help of signature vectors, MAI can be suppressed by both linear and nonlinear 
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schemes, similar to those discussed in Chapter 3. In what follows, the linear suppression 

schemes: Matched Filtering, Zero Forcing and MMSE will be investigated and 

compared with the schemes proposed in previous work. 

5.2.1 Matched Filtering 

In Matched Filtering (MF), signature vectors are directly used as weight vectors in 

MAI suppression. Output of detection branch u is given by 

( )( )
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u u u u
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As was discussed in Chapter 3, using matched filtering leads to a detection output 

equal to that generated by a conventional OFDMA detector, named as single-user 

detector in [24]. Using this equivalence, (5-17) will be used to analytically evaluate the 

residual MAI of a conventional detector in the presence of near-far effects. This is 

particularly interesting in an interleaved OFDMA system since the system is most 

vulnerable to MAI. As in Chapter 3, a simple statistical large-scale fading model is 

used to induce near-far effects. Specifically, a propagation loss 1 ud β  is used to 

scale the signal received from user u, with ud  standing for the distance between the 
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user and the base station, β  being the attenuation index (ranges from 2 to 4 in radio 

channels). Following this, (5-17) can be rewritten into 

( )

( )

1 1
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H
u u u uv u v u v v v

v uu v

H
u u u

d dβ β
ρ ε ε

ε

≠

= + −
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∑y H X F D F H X

F D Z b

.        (5-18) 

From (5-18), output SIR of a conventional OFDMA detector for user u is given by 
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=
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∑

H H

H H

.               (5-19) 

Using (5-19), Probability Density Function (PDF) of post-MF SIR in a 3-ray Rayleigh 

multipath slow fading channel is simulated and plotted in Fig.5.4. 
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Fig.5.4: output SIR Probability Density Function (PDF) of the conventional OFDMA detector. 
A total of 16 users are uniformly distributed within a circle centered at the base station. The 
radius of the circle is 10m and the desired user is placed d  meters away from the BS. 

Apparently, the conventional OFDMA detector has poor immunity to the near-far 

problem. As a matter of fact, the detection schemes that attempt to further clean the 

residual MAI on the top of matched filtering are also affected by the near-far problem. 
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For example, the Parallel Interference Cancellation (PIC) [27] and Successive 

Interference Cancellation (SIC) [27], may suffer from the near-far problem for the 

following reasons: 

1. PIC itself also has poor immunity to the near-far problem. The use of PIC to 

reinforce a conventional detector usually does not help improving near-far 

immunity. 

2. Although SIC has immunity to the near-far problem, the immunity highly depends 

on the accuracy of hard decision in each round of cancellation. Due to the poor 

performance of a conventional detector, SIC may suffer from serious error 

propagation problem, which cancels its near-far immunity. 

A straight way to avoid performance degradation caused by the near-far problem, as in 

CDMA systems, is power control. Generally speaking, the use of power control may 

introduce a new concern on extra processing delay and computational load. For 

example, the use of power control in high mobility environments usually suffers from 

the processing delay, with the result that control information may become outdated 

when received by mobile stations. For this reason, it is worthwhile to develop 

detection schemes with sufficient immunity to the near-far problem. Fortunately, the 

signal structure given in (5-16) enables us to implement Zero Forcing and MMSE 

schemes, which are near-far resistant as shown in Chapter 3. 

5.2.2 Zero Forcing 

In this chapter, zero forcing is not obtained by solving a least square problem. 

Instead, for the multiuser signal given by (5-16), as proved in [36], a zero-forcing MAI 
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suppression weight vector associated with user u can be solved from 

2

, S
ZF,min

ZF u u

H
u=w U d

w BSE  subject to 1ZF,
H

u u =w b             (5-20) 

where [ ]1 2 ... U=B b b b  contains the signature vectors of all the users, and SU  

contains signal subspace eigenvectors of autocorrelation matrix { }H=R rrE . 

Specifically, the signal subspace eigenvectors are those associated with eigenvalues 

which are larger than noise power (see Appendix E). The relation , SZF u u=w U d  

conveys that the weight vector lies in the signal subspace spanned by ( )SRange U , 

with ud  containing all the coordinates. Solving (5-20), a subspace ZF MAI 

suppression weight vector for user u is given by 

( )
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u H H
u n u

σ

σ

−

−

−

−

U Λ I U b
w

b U Λ I U b
,                (5-21) 

where SΛ  contains all the signal subspace eigenvalues associated with SU , and 2
nσ  

stands for the power of background noise. Derivation of (5-21) is given in Appendix E. 

It is worthwhile to point out that the solution of (5-20) is not necessarily expressed in 

terms of subspace parameters. But the subspace expression given by (5-21) helps 

revealing the relation between zero forcing and MMSE MAI suppression schemes, and 

also helps analyze the detector’s resistance against CFO estimation errors, as will be 

shown soon. 

To implement the ZF MAI suppression (5-21), autocorrelation matrix R  is first 

approximated by calculating 
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1

ˆ
l

H
i i

i=

=∑R rr ,                       (5-22) 

where ir , 1 2, ...i l= , are successively collected reception matrix. As discussed in [36], 

(5-22) is an asymptotically exact estimation of the autocorrelation matrix, with 

bounded estimation error. The estimate R̂  is then decomposed into subspace 

parameters, which are shared by all the detection branches for MAI suppression. 

5.2.3 MMSE 

As have been discussed in Section 3.3, the MMSE cancellation scheme normally 

obtains better performance than ZF by decreasing the enhancement on background 

noise. MMSE MAI suppression is designed as solution of the optimization problem: 

( )( )
2

M,
M,min

u

TH H
u u u u uε− −

w
H X F D w YE  subject to 1M,

H
u u =w b .     (5-23) 

By resorting to the Lagrange multiplier method, the solution can be shown to be 

1

1M,
u

u H
u u

−

−=
R b

w
b R b

,                     (5-24) 

where R  is the autocorrelation matrix { }HrrE , as given in last section. At the 

moment, it is noteworthy that an unconstrained MMSE MAI suppression has been 

studied in [28], where the linear constraint 1M,
H

u u =w b  is not added, and the 

corresponding solution is given by 

1
M,u u

−=w R b .                      (5-25) 

In fact, the MAI suppression schemes given by (5-24) and (5-25) would give the same 
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detection performance since they are almost the same except for a scalar scaling 

coefficient, which does not affect the SINR after MAI suppression. However, the use 

of linear constraint makes some difference when the above two MAI suppression 

schemes are implemented by adaptive algorithms, as will be shown soon. 

For the constrained MMSE scheme, substituting 

1 1 1
S S S N N N

H H− − −= +R U Λ U U Λ U  

into (5-24) yields 

1

1
S S S

M,
S S S

H
u

u H H
u u

−

−=
U Λ U b

w
b U Λ U b

,                   (5-26) 

where the orthogonality between the signal and noise subspaces, i.e., 0N
H

u =U b , has 

been used. By comparing this subspace expression with (5-21), it is clear that zero 

forcing and MMSE MAI suppression schemes are asymptotically the same at high 

SNR region. 

5.2.4 Performance Analysis and Discussion 

Before moving along to numerical results, there are still some important 

discussion and analysis worthy of deeper investigation. In this section, the ZF and 

MMSE MAI suppression schemes will be studied on their: 1. resistance against CFO 

estimation error and, 2. computational complexity. At the end of this section, an 

adaptive algorithm will also be developed and discussed. 

A. Performance in the Presence of Erroneous CFO Estimation 

As can be seen from (5-11), a signature vector is a function of CFO. Therefore, 
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CFO estimation errors will give rise to signature vector mismatch. To examine 

robustness to erroneous CFO estimation, output SINR of the ZF and MMSE MAI 

suppression schemes can be derived as a function of CFO estimation error. Without 

loss of generality, user 1 is assumed to be the desired user in the derivation below. 

From a subspace point of view, a mismatched signature vector 1̂b  (i.e., the 

signature vector calculated from estimated CFO) can be decomposed into two 

components, with one in signal subspace and the other in noise subspace [36]. 

Mathematically, 

1 1 1 1
ˆ s n n= + = +b b b Bc b ,                    (5-27) 

where 1
sb  and 1

nb  correspond to the signal and noise subspace components, 

1 2[ , ... ]U=B b b b , and c  is the coordinates vector of 1
sb  in the signal subspace 

spanned by B . If the mismatched signature vector given by (5-27) is used to suppress 

MAI, weight vectors of the zero forcing and MMSE schemes can be uniformly 

expressed in terms of subspace parameters as given by 

1

1 1

S S S S

S SS S

ˆ

ˆ ˆ

H H

H H HH H
= =
U ΛU b U ΛU Bc

w
c B U ΛU Bcb U ΛU b

,              (5-28) 

where 2
S nσ= −Λ Λ I  for ZF and S=Λ Λ  for MMSE. From (5-28), the SINR of 

detection output can be easily shown to be 

( )
( )

2 2
1 1 1 1

2 22 2

2

μ trace
SINR

μ trace

H

U
H

v v v v n
v

σ

σ σ
=

=
⎡ ⎤ +⎣ ⎦∑

H H

H H w
,            (5-29) 

where 1 2μ ,  , ,...H
u u u U= =w b . Using the method presented in [36], μu  and 2

w  
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can be obtained for the zero-forcing scheme, as given by 

    
2*

S S

μ u u
u H H H

c σ −

=
c B U ΛU Bc

 ,                     (5-30) 

( ) 11 1
2

2

S S

H H

H H H

−− −

=
c P B B P c

w
c B U ΛU Bc

,                   (5-31) 

where uc  is the u-th entry of coordinates vector c , and 2 2 2
1 2diag ... Uσ σ σ⎡ ⎤= ⎣ ⎦P . 

Correspondingly, 

( )
( ) ( )

22
1 1 1 1
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trace
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−− − −

=

=
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H H

H H c P B B P c

.       (5-32) 

Obviously, only the coordinate vector c  is needed to finally obtain output SINR. 

Fortunately, c  can be easily derived as a function of the CFO estimation error. Let 

1ε + εΔ  denote estimated CFO and εΔ  denote CFO estimation error, according to 

(5-11), the mismatched signature vector 1b̂  is given by 

( ) ( )( )1 12π 2π 1

1

1

1
Δ Δ

...
ˆ

T
j j U

U Ue e

U
    =

ε ε ε ε+ − +⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦=b

Eb

,            (5-33) 

where 
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2πΔ

2π 1 Δ
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j U

j U U

e

e
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0

E

0

 

contains the CFO estimation error. From (5-27) and (5-33), we have 

1 1 1
ˆ n= + =b Bc b EBe ,                    (5-34) 

where ke  is the k-th column of a U U×  identity matrix. Premultiplying (5-34) 

by HB yields 
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1 1
H H n H H+ = =B Bc B b B Bc B EBe ,              (5-35) 

and thus 

( ) 1

1
H H−

=c B B B EBe ,                   (5-36) 

where the first equation in (5-35) results from the orthogonality between signal and 

noise subspaces. Substituting (5-36) into (5-32) gives the output SINR of the 

zero-forcing detector as a function of CFO estimation error. Note that (5-32) also 

applies to the MMSE detector at high SNR region since the MMSE and ZF schemes 

are asymptotically the same. 

As a special case, if there is no CFO estimation error, 0εΔ = , the CFO estimation 

error matrix E  will become an identity matrix. In such a scenario, according to 

(5-36), 1 0 0[ , ... ]T=c , and thus the system becomes MAI-free with an output SINR 

given by 

( )
2
1

12

1 1,

SINR
H

n

σ

σ
−

=
⎡ ⎤
⎢ ⎥⎣ ⎦
B B

.                    (5-37) 

Consequently, the zero-forcing detector is MAI-free provided that the CFO 

estimation is accurate enough. According to the relation between MMSE and 

zero-forcing schemes, MMSE can be also regarded as MAI-free in high SNR region. 

B. Complexity Analysis 

System complexity is an important concern in practical implementations. As an 

expected advantage, the proposed zero forcing and MMSE detectors, including MAI 

suppression, CFO compensation and FFT demodulation, have low complexity due to 

the reduced processing dimension. To demonstrate this, complexity will be analyzed 
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and compared with the PIC detector proposed in [27]. The number of complex 

multiplications involved in FFT demodulation, CFO compensation and MAI 

suppression is adopted as the metric for complexity comparison. 

With u active users in system, the amount of complex multiplications required by 

the zero-forcing and MMSE detectors are shown in Table 5-1. 

TABLE 5-1. COMPLEXITY IN TERMS OF MULTIPLICATIONS 

Zero Forcing ( )3 2 3 2 2 2
23 logU U P u Uu U U P P P u+ + + + + + +  

MMSE ( )3 2 2 2
22 logU U P U U P P P u+ + + + +  

U is the number of subchannels, P is the number of subcarriers used by each user. 

With the same system setup, the PIC detector [27] normally has higher complexity 

because it deploys circular convolution, instead of FFT, for CFO compensation. The 

study tried to reduce complexity by truncating the convolution vector, and obtained a 

complexity of 

2 I2
2

log
N

N x PuJ+ ,                     (5-38) 

where J  is the length of the truncated convolution vector, and Ix  is the number of 

PIC iterations. As described therein, (5-38) is valid provided that J  is much smaller 

than N . However, the value of J  depends on users’ CFO. If the users’ CFOs exceed 

20% of the subcarrier spacing, the value of J  becomes large and the complexity will 

be much larger than that given by (5-38). 

To illustrate the complexity advantage of the proposed detectors, a 512-subcarrier 

16-subchannel interleaved OFDMA system is considered. Fig.5.5 plots the number of 

complex multiplications against the number of users for the PIC, ZF and MMSE 
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detectors. Obviously, ZF and MMSE detectors have much lower complexity than PIC 

detector. Moreover, it can be seen that the proposed schemes is particularly suitable for 

the system with a relatively large number of users. 
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Fig.5.5: Complexity comparison for the PIC, SB-ZF and MMSE detectors in an interleaved 
OFDMA system with N = 512, Q = 16 and P = 32. 

C. Adaptive Implementation of MMSE MAI Suppression 

Adaptive MMSE algorithms attract considerable interest due to its lower 

complexity and its capability to track slow channel variations. Adaptive algorithms have 

been extensively studied since early 1940s, and widely used in the signal processing and 

communication fields. In this dissertation, an adaptive Least Mean Square (LMS) 

algorithm is developed for the unconstrained MMSE and constrained MMSE schemes 

to find out the difference made by the a linear constraint. Table 5-2 presents the LMS 

algorithm for these two MMSE schemes. 
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TABLE 5-2. LMS ALGORITHMS FOR MAI SUPPRESSION 

UNCONSTRAINED LMS 

Set ( )0u u=w b , for all u = 1,2,…U 

( ) ( ) ( ) ( ) ( )1 *H H
u u u u u u u uk k μ σ kε⎡ ⎤+ = + − −⎣ ⎦w w YD F H X YY w  

CONSTRAINED LMS 

Set ( )0u u=w b , for all u = 1, 2…U 

( )
( ) ( ) ( ) ( ) ( ) ( )

1

1*

u

H H H H
u u u u u u u u u u u u

k

k μ k kε σ

+

⎡ ⎤ ⎡ ⎤= + − − − + −⎣ ⎦⎣ ⎦

w

w I b b Y D F H X Y w b b w
 

 

To compare, the constrained and unconstrained LMS algorithms are simulated in a 

decision-directed† mode in a 3-ray multipath slow Rayleigh fading channel. Fig.5.6(a) 

shows their output SINR convergence curves. Due to the error propagation problem, 

unconstrained LMS takes much longer time to converge. In Fig.5.6(b), an abrupt 

channel change is added in the simulation. Again, as a result of error propagation, the 

unconstrained LMS converges to a solution quite far away from the optimum, whereas 

the constrained algorithm is able to efficiently recover and converge to a favorable 

solution close to the optimum. The robustness of the constrained algorithm stems from 

the linear constraint, which protects the energy of the desired signal from deteriorating 

severely when decision errors occur. 

                                                        
 
† Decision directed adaptation: an adaptive method that uses the hard decisions into the training sequence. 
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(b) 

Fig.5.6. Performance comparison between the constrained and unconstrained LMS algorithms 
in a decision-directed mode. (a) Convergence curve in a static channel. (b) Recovery curve in 
the presence of channel change. 

5.3 Numerical Results 

This section presents some simulation results to demonstrate performance of the 

proposed detectors. A 128-subcarrier 4-subchannel interleaved OFDMA system is used 

in the simulation. In Example 1, Example 2, Example 3, the proposed MMSE detector 
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is simulated with CFO values fixed as 0.12, -0.15, 0.2 and 0.25 for the four users. The 

PIC scheme proposed in [27] is also simulated and compared with the MMSE scheme. 

When simulating the PIC scheme, two PIC iterations are used to suppress MAI. In 

Example 4, to demonstrate performance in a more realistic scenario, the MMSE 

scheme is simulated by modeling users’ CFOs as independent random variables. 

Finally in Example 5, the proposed ZF and MMSE schemes are compared. Channel 

coding has not been used in all the results to be presented. 

Example 1. Multipath Rayleigh Fading Channel with QPSK Modulation 

In this simulation, the wireless channel is modeled as multipath Rayleigh fading 

with 3-ray delay spread. QPSK is used for modulation. All the users locate within a 

circular area of 10m radius surrounding the BS. Specifically, the desired user locates at a 

distance of 5m from the BS, and the other three users are uniformly distributed. To 

examine the immunity to near-far effects, BER is simulated under both perfect and 

imperfect power control. From the results shown in Fig.5.7, it can be seen that the PIC 

scheme has an error floor, which becomes much higher in the absence of power control. 

In contrast, the MMSE scheme has no error floor, and is able to maintain its performance 

when there is no power control. This result reveals that the MMSE scheme is able to 

effectively combat near-far effects, and using such a scheme, the stringent requirement 

on power control can be relaxed. 
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Fig.5.7: BER performance comparison of the MMSE and PIC detectors with and without 
power control. 

In order to see how system load affects performance, BER is simulated for different 

number of users under perfect power control and shown in Fig.5.8. Clearly, compared 

with the PIC scheme, the MMSE scheme has smaller performance degradation when 

system load increases. Thus, by using the proposed MMSE detector, an existing user in 

the system will be less affected by the admission of new users. 
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Fig.5.8: BER performance for different number of users under perfect power control 
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Example 2. Multipath Rayleigh Fading Channel with π 4 - DQPSK modulation 

In this example, time-varying multipath fading channel is considered. The channel 

is modeled as 2-ray Rayleigh fading with 1-sample delay spread and 20Hz Doppler 

frequency offset. π 4 -DQPSK modulation with differential demodulation is used to 

avoid channel estimation. BER performance is simulated at 0dB input SIR (perfect 

power control) and -20dB input SIR (imperfect power control). As can be seen from 

results shown in Fig.5.9, under perfect power control, the MMSE scheme outperforms 

the PIC scheme by 3dB at 35 10−×  BER. Furthermore, under imperfect power control, 

the MMSE scheme is able to give roughly the same performance, while the PIC scheme 

has a severely degraded performance. 
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Fig.5.9: BER performance in a time-selective multipath Rayleigh fading channel with 
differential modulation 

Example 3. Performance in the presence of CFO estimation error 

To illustrate robustness of the proposed scheme to erroneous CFO estimation, users’ 

CFO estimation error is modeled as independent zero mean Gaussian random variables 
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with a variance equal to the mean square error in CFO estimation. With the same setup 

as in Example 1, output SINR is plotted versus the CFO estimation standard deviation in 

Fig. 5.10.  
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Fig. 5.10: Output SINR versus CFO estimation errors, 0 20dBbE N = , Under imperfect power 
control, each of the interference users has a power 20dB higher than the desired user. 

As can be seen, under perfect power control, the MMSE and PIC schemes have 

approximately the same resistance to CFO estimation errors. However, when power 

control is imperfect, the MMSE scheme becomes more robust to CFO estimation errors 

than the PIC scheme. Furthermore, by comparing the resistance of MMSE in the two 

scenarios, it can be seen that the MMSE scheme becomes less resistant to CFO 

estimation errors when the interference becomes weaker. This is because the MMSE 

scheme attempts to minimize the output power and retain the desired user’s signal. 

When there is a CFO estimation error, the desired user may therefore also appear as 

interference and get cancelled out in an effect similar to that of incidental cancellation in 

antenna arrays [102][103]. To further improve the resistance, quadratic constraints can 

be introduced to give a more reasonable response to the desired user even if its signature 
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vector is not perfect [104]. 

To see how the interference power affects the resistance of the proposed scheme, it 

is assumed that the desired user has the same input SIR over each of the interference 

users at the receiver. Output SINR is plotted against input SIR with CFO estimation in 

Fig. 5.11. Specifically, the deterministic CFO estimation scheme proposed in [20] is 

used. As can been seen, the MMSE detector has a reasonably good performance over a 

broad range of input SIR. In the weak interference region, degradation caused by CFO 

estimation errors is insignificant. Note that, when the interference is weak, the PIC 

scheme outperforms the MMSE scheme by 2dB. This reveals a small noise 

enhancement price paid by using the MMSE scheme. 
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Fig. 5.11: Output SINR versus input SIR with CFO estimation, 0 20dBbE N = . 

Example 4. Random CFO Test 

To demonstrate the feasibility of the proposed scheme in a realistic scenario, users’ 

CFOs are modeled as independent random variables uniformly distributed in the 

range ( ),ε ε− . BER is plotted against b oE N  for different values of ε . System setup is 
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the same as that in Example 1. As can be seen from Fig.5.12, with CFO up to 25% of the 

subcarriers spacing, BER performance exhibits only 0.5dB degradation. In IEEE802.16 

standard, the requirement on the CFO after coarse synchronization is limited to 2%. 

Clearly, by using the proposed scheme, stringent requirement on coarse frequency 

synchronization can also be relaxed. 
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Fig.5.12: BER performance under random CFO test. When 0.5| ε |→ , different users may 
become so close that they can hardly be separated, and severe performance degradation can be 
seen. 

Example 5. Comparison between ZF and MMSE 

Finally, performance of the proposed ZF and MMSE detectors are compared. It is 

assumed that the desired user has the same input SIR over each of the interference users. 

BER is plotted against the input ISR at different b oE N  in Fig.5.13. It can be seen that 

the ZF scheme has a constant BER over the whole ISR range, whereas BER of the 

MMSE scheme has an upper bound lay by ZF in strong interference region. Moreover, 

performance gap between the two schemes decreases as b oE N  increases. This is in 



 101

agreement with our discussion in Section 5.2.3 that the ZF and MMSE schemes have the 

same asymptotic performance. 
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Fig.5.13: BER performance of the SB-ZF and the MMSE scheme under different 0bE N . 
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Chapter 6  

Conclusions and Future Work 

6.1 Conclusions 

This dissertation mainly considered the physical layer design of OFDMA systems 

uplink, with the emphasis on two crucial issues: channel estimation and signal 

detection. 

The study started from the issue of ICI suppression. The first contribution of this 

work is that the scope of study has been extended from static or semi static multipath 

fading channels to time-variant multipath fading channels. This extension has its 

practical significance since OFDMA has been appointed to support mobile 

communications in 4G systems and the channel cannot be assumed to be static or 

semi-static if velocity of motion is moderate or high. A signal model has been 

formulated in the presence of channel variations. Particularly, an OFDMA symbol 

block received at the base station has a linear relation with the transmitted multiuser 

OFDMA symbol block. Based on this signal model, typical linear detection schemes 

and nonlinear schemes have been investigated. MMSE and MMSE-SD techniques are 

proposed to suppress ICI, as they are capable of effectively suppressing ICI and 

background noise from the multiuser signal. Moreover, the MMSE-SD scheme is able 

to exploit the time diversity owned by time-variant channels. By using MMSE-SD, 

faster channel variation will lead to better system performance. It has also been found 
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that most of the current CFO compensation-based ICI suppression schemes are in fact 

performing matched filtering and thus become a special case of the framework built in 

this dissertation. In Chapter 5, the interleaved OFDMA system is particularly 

considered, as this system has been shown to be preferred for most of the mobile 

applications [7][10]. In such a system, each received OFDMA block can be rearranged 

into a matrix form and the ICI suppression schemes formulated on the basis of this 

novel signal model has much smaller detection dimension and thus lower complexity. 

A parallel detection structure, in which the MAI suppression is performed prior to FFT 

demodulation, is proposed. Since CFO and CIR are requisite knowledge to ICI 

suppression, post-suppression SINR has also been analytically studied in the presence 

of erroneous CFO and channel estimation. The results demonstrate that the proposed 

ICI suppression scheme is robust to the estimation error raised from commonly used 

CFO and channel estimators. 

In Chapter 4, another crucial issue in physical layer design, channel estimation, is 

considered. BEM-based signal model has been developed to transform rapid 

time-varying CIR into slow varying BEM coefficients. A time-domain pilot pattern has 

been proposed for possible use in OFDMA uplink to avoid accuracy drop caused by 

interference in frequency domain. Least Square, Maximum Likelihood and LMMSE 

channel estimation schemes have been studied and compared. As one example of the 

frequency-domain pilot patterns, a BEM-based Least Square estimator is also 

developed upon the pilot pattern used in WiMAX systems. Cramer-Rao Lower Bounds 

have been derived for the Least Square estimators. Both analytical and simulation 
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results demonstrate the performance improvement can be obtained from the proposed 

time-domain estimation. 

6.2 Future Work 

Although this dissertation tried to completely study the issue of physical layer 

design for OFDMA systems uplink transmission. There are still some open topics or 

possible problems worthy of further research. 

First, as mentioned in Chapter 3, the proposed MMSE and MMSE-SD ICI 

suppression schemes obtain significant performance improvement at the cost of 

complexity. To make them practically feasible, low-complexity algorithms should be 

further developed. Notable studies that may help on solving this issue can be found in 

[105]-[108]. 

Second, in the discussion of BEM-based estimation schemes, it has been shown 

that the oversampling index g  is related to the estimation accuracy. Specifically, if 

the value of g  is too large, the number of BEM coefficients will exceed the number 

of pilots and thus the performance will be decreased. On the other hand, for a channel 

that shows obvious but not severe Doppler spread, if g  is too small, the number of 

bases may not be enough to well approximate the CIR, and again the performance will 

be affected. Therefore, the value of g  should be carefully selected for different 

channel conditions. How to choose this value based on Doppler spread df T  , and 

whether there is an optimal value for g  are worthy of further investigation. 

Third, the time-domain pilot pattern proposed in this dissertation only makes use 
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of the timer-domain correlation. Making use of frequency-domain correlation has not 

been considered yet. In OFDMA system, this is important because: 

1. Exploiting frequency-domain correlation saves time that used transmitting 

pilots and thus helps increasing data efficiency. 

2. In OFDMA systems, subcarrier allocation is a popular strategy used to 

exploit the multiuser diversity and increase system capacity. If adaptive 

subcarrier allocation is enabled, a subcarrier may be used by different users 

at different moments. 

Therefore, how to design a flexible frequency-domain pilot pattern so that it can be 

used with adaptive subcarrier allocation schemes is an important and interesting issue 

to be further studied. Some notable recent studies on the issue of pilot design for 

OFDMA systems can be found in [109]-[111]. 

Finally, all the study in this dissertation is based on a single antenna system. The 

use of multiple antennas (or antennas array) has not been covered yet. A wireless 

transmitter or receiver equipped with multiple antennas is able to exploit the spatial 

diversity via space-time coding or suppress the interference via beamforming. The use 

of multiple antennas extends the two-dimension radio resource (time, frequency) to 

three-dimension (space, time and frequency). A benefit introduced by spatial 

processing is that the data rate and spectrum efficiency can be significantly increased 

[112]. Therefore, combining antennas array is a clear trend in developing future 

wireless systems, especially OFDM-based systems. For example, in latest 

IEEE802.16e standard Multiple Input Multiple Output (MIMO) is introduced as a 
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physical layer technique to be used with OFDMA. To this end, it is of considerable 

interest to study the use of antennas array in OFDMA systems, particularly in the 

following directions: 

1. ICI suppression through Beamforming 

The study presented in this work has covered suppressing ICI in the time and 

frequency domain. When antennas array is available, array processing techniques, 

which have been widely studied in the last several decades [113]-[115], can be 

borrowed to suppression ICI in the spatial domain. More specifically, for one desired 

user, the ICI from other users can be blocked by placing the array’s zero-lobe towards 

interference users. Clearly, this will disable the simultaneous multiuser detection. How 

to make use of TDMA together with beamforming in OFDMA system, or, how to 

arrange the user detection in space, time and frequency domains is still to be 

investigated. 

2. Low-complexity Channel Estimation in a MIMO-OFDMA system 

Although MIMO is capable of bringing an amount of benefits, it also brings more 

channel parameters to estimate. How to design a proper pilot pattern for a 

MIMO-OFDMA system and estimate the channel with reasonable computational load 

deserves further investigation. A recent notable contribution on this issue can be found 

in [117] and [118]. 

All the issues discussed in this section are still open or developing. Undoubtedly, 

deeper investigations on these issues will help accelerate the commercialization of 

OFDMA-based technologies in wireless industry. 
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Appendix A 

Noise Power after Linear Detection 

 For N N×  matrix A  given in (3-19), its rank r N≤ . It can be decomposed via 

Singular Value Decomposition (SVD) into 

H=A UΛV ,                        (A-1) 

where Λ  is a diagonal matrix containing all the singular values, U and V are unitary 

matrices contains left- and right-singular vectors. From (A-1), the power of noise after 

linear detection can be derived as below: 

1. Matched Filtering 

After MF detection, noise vector is given by ,MF
H

p =z A Z , and its autocorrelation 

matrix is given by 

( )
2

2

MF
H H

H
n

H H
n

σ

σ

=

=
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.                      (A-2) 

2. Zero Forcing 

The noise vector after ZF detection is given by 

( ) 1
,ZF

HH
p

−=z A ZA A .                     (A-3) 

Autocorrelation matrix of this noise is given by 

( )

( )

12

12
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3. MMSE 
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For MMSE, the weight matrix can be re-written as 

12

2MMSE
H HHn

s

σ
σ

−
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

W V Λ UI Λ Λ .               (A-5) 

The noise autocorrelation matrix is given by 

( ) 12

2
1

2

MMSE mmse mmse
H

n

Hn H H
n

s

σ

σ σ
σ

−

−
−

=

⎛ ⎞+= ⎜ ⎟
⎝ ⎠

R W W

I Λ ΛUΛ Λ U
.              (A-6) 

Eigenvalues of (A-2), (A-4) and (A-6) are the noise power on different subcarriers. 

□ 
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Appendix B 

Proof of the Lemma 

Since matrix G  is invertible, premultiplying 1−G  on both sides of the lemma 

leads to 

  ( ) ( )1 12 2H H H Hσ σ
− −

+ = +E EGE I E EG I E ,          (B-1) 

which will be proved below as an equivalent of the lemma. 

1. If E  is nonsingular 

From the Right Hand Side (RHS) of (B-1), we have 

( )
( )

12

12

RHS

LHS

H H H H

H H H H

σ

σ

−−

− −

= +

= + =

E EGE E I E

E EGE I E E
 

Therefore, (B-1) is true if E  is nonsingular. 

2. If E  is singular 

It follows from Woodbury matrix inverse formula that 

( ) ( )1 12 2
2 2

1 1H H Hσ σ
σ σ

− −
+ = − +EGE I I EG E EG I E ,       (B-2) 

( ) ( )1 12 2
2 2

1 1H H Hσ σ
σ σ

− −
+ = − +E EG I I E EGE I EG .       (B-3) 

Let 1B  and 2B  denote the LHS and RHS of (B-1). It then follows from (B-2) and 

(B-3) that 

1 22 2

1 1H H

σ σ
= −B E E EGB ,                  (B-4) 

2 12 2

1 1H H

σ σ
= −B E B EGE .                  (B-5) 

Cancelling 2B  in (B-4) and 1B  in (B-5), we have 
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1 12 4 4

1 1 1H H H H H

σ σ σ
= − +B E E EGE E EGB EGE ,         (B-6) 

2 22 4 4

1 1 1H H H H H

σ σ σ
= − +B E E EGE E EGB EGE .         (B-7) 

Denoting 1 2−B B  by Δ , subtracting (B-7) from (B-6) leads to 

4

1 H H

σ
=Δ E EGΔEGE .                   (B-8) 

Since E  has full column rank, HE EG  is invertible. (B-8) implies that 

( ) ( )rank rank H=Δ ΔEGE .                 (B-9) 

Since E is singular, (B-9) is true iff 

( ) 0rank =Δ ,                      (B-10) 

which indicates =Δ 0 , and thus 1 2=B B . Therefore, (B-1) is also true if E  is 

singular, and thus the lemma follows. 

□ 
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Appendix C 

Calculation of the BEM Autocorrelation Matrix R 

The BEM coefficients can be modeled as zero-mean complex Gaussian random 

variables. Since BEM coefficients of different paths are assumed to be independent, it 

is obvious that in matrix R, only the entries associated with the same path is nonzero. 

Therefore, calculating the autocorrelation matrix for each path will generate all the 

non-zero entries in R. For the l-th path of user u, one can collect the CIR samples 

during the time interval [ ], tN0  to form a column vector. From (4-5), this vector is 

mathematically given by 

( ) ( )u ul l=h Ta ,                      (C-1) 

where 

( ) ( ) ( ) ( )1; , ; ,... ;
T

u u u ul a Q l a Q l a Q l= ⎡ − − + ⎤⎣ ⎦a           (C-2) 

is the BEM coefficients of the l-th path of user u, and 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

0 0 1 0
1 1 1 1

1

, , ... ,

, , ... ,

... ... ... ...

, , ... ,t t t

t Q t Q t Q

t Q t Q t Q

t N Q t N Q t N Q

⎡ − − + ⎤
⎢ ⎥− − +⎢ ⎥=
⎢ ⎥
⎢ ⎥

− − +⎢ ⎥⎣ ⎦

T            (C-3) 

is the bases matrix corresponding to the time interval [ ], tN0 , with the q-th basis 

given by 

( ) 2
, exp

j qn
t n q

N
π⎛ ⎞= ⎜ ⎟λ⎝ ⎠

.                    (C-4) 

Following this, the relation between the CIR autocorrelation matrix and the BEM 

coefficient autocorrelation matrix is given by 
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( ) ( ){ } ( )H H
u u ul l l=h h TR TE .                  (C-5) 

where ( ) ( ) ( ){ }H
u u ul l l=R a aE  is the BEM autocorrelation matrix of the l-th path 

of user u. In (C-5), the autocorrelation matrix ( ) ( ){ }H
u ul lh hE  can be calculated for 

different models of the time-varying channel. For the most well-known Jake’s model, 

the entries in ( ) ( ){ }H
u ul lh hE  can be calculated from 

 ( ) ( )0 2t dJ f ttφ = π ΔΔ ,                      (C-6) 

where J0  is the zero-order Bessel function of the first kind. Consequently, by taking 

2tN Q> , ( )u lR  can be calculated by 

( ) ( ) ( ){ }( )H H
u u ul l l

++=R T h h TE ,                (C-7) 

where +T  is the Moore-Penrose pseudo inverse of matrix T . From (C-6) and (C-7), 

( )u lR  can be calculated for all the paths. Therefore, all the nonzero entries in the 

matrix R  can be finally determined. 

□ 
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Appendix D 

Calculation of Correlation Matrices (4-26) and (4-27) 

The definition of Ĥ  given by (4-24b) can be rewritten as 

ˆ = + ΔH H H ,                         (D-1) 

where 

( ) ( ) ( )1, , , ... ,
TT T T

u u uj l j M l j KM K l⎡ ⎤= + + + +⎣ ⎦h h hH       (D-2) 

is the same vector formed by actual channel responses and ΔH  stands for the 

estimation error vector. Specifically, the elements in ΔH  can be modeled as 

zero-mean complex Gaussian random variables with variance 2σ  being MSE of the 

CIR estimation in pilot blocks. 

Following (D-1), the correlation matrices given by (4-26) and (4-27) can be 

calculated as 

2

ˆ ˆ
ˆ ˆ H

H H

⎡ ⎤= ⎣ ⎦
⎡ ⎤ ⎡ ⎤= + Δ Δ⎣ ⎦ ⎣ ⎦

= +

R

R I

E

E E
HH

HH

HH

HH H H

σ

,                (D-3) 

( )

( ) ( )
( )

ˆ
ˆ,

, ,

,

H
ud

H H
u u

H
u

d l

d l d l

d l

⎡ ⎤= ⎣ ⎦
⎡ ⎤ ⎡ ⎤= + ⎡ ⎤ Δ⎣ ⎦⎣ ⎦ ⎣ ⎦
⎡ ⎤= ⎣ ⎦

R h

h h

h

E

E E E

E

H
H

H H

H

,     (D-4) 

where the second equalities in (D-3) and (D-4) follow the reasonable assumption that 

H  and ΔH , ( ),u d lh  and ΔH  are statistically independent. In (D-3) and (D-4), 

RHH  and ( ), H
u d l⎡ ⎤⎣ ⎦hE H  simply consist of channel correlation coefficients, which 

can be easily calculated based on the knowledge of channel statistics. For example, in 
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the well-known Jake’s model, correlation coefficient can be determined as given by 

( ) ( )0 2 dJ fΔ = π Δφ t t .                       (D-5) 

□ 
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Appendix E 

Derivation of Subspace ZF MAI Suppression 

First, using Lagrange multiplier, solution of (5-20) can be easily shown to be 

{ }( )
{ }( )

1

1ZF=
H H

u

H H H
u u

−

−

A SS A a
w

a A SS A a

E

E
.                 (E-1) 

Second, the autocorrelation matrix R can be expressed in a subspace 

decomposition form as 

     
{ } 2H H

n

H H

σ= +

= +

R A SS A I

U U U US S S N N N   

E

Λ Λ
,                    (E-2) 

and thus 

{ } ( )2H H H
nσ= −A SS A U Λ I US S SE ,               (E-3) 

where 

2 2 2
1 2S diag[ , ,... ]n n U nλ σ λ σ λ σ= + + +Λ  

contains the eigenvalues of the signal subspace, 2
nσ=Λ IN  contains the eigenvalues 

of the noise subspace; SU  and NU  contain the corresponding eigenvectors. 

Substituting (E-3) into (E-1), a Subspace Zero-Forcing (SB-ZF) solution can be 

obtained as given by 

( )
( )

12

12

S S S

SB-ZF

S S S

=
H

n u

H H
u n u

σ

σ

−

−

−

−

U Λ I U b
w

b U Λ I U b
.                 (E-4) 

□ 
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