4,352 research outputs found

    Detection of multiplicative noise in stationary random processes using second- and higher order statistics

    Get PDF
    This paper addresses the problem of detecting the presence of colored multiplicative noise, when the information process can be modeled as a parametric ARMA process. For the case of zero-mean multiplicative noise, a cumulant based suboptimal detector is studied. This detector tests the nullity of a specific cumulant slice. A second detector is developed when the multiplicative noise is nonzero mean. This detector consists of filtering the data by an estimated AR filter. Cumulants of the residual data are then shown to be well suited to the detection problem. Theoretical expressions for the asymptotic probability of detection are given. Simulation-derived finite-sample ROC curves are shown for different sets of model parameters

    Passive MIMO Radar Detection

    Get PDF
    Passive multiple-input multiple-output (MIMO) radar is a sensor network comprised of multiple distributed receivers that detects and localizes targets using the emissions from multiple non-cooperative radio frequency transmitters. This dissertation advances the theory of centralized passive MIMO radar (PMR) detection by proposing two novel generalized likelihood ratio test (GLRT) detectors. The first addresses detection in PMR networks without direct-path signals. The second addresses detection in PMR networks with direct-path signals. The probability distributions of both test statistics are investigated using recent results from random matrix theory. Equivalence is established between PMR networks without direct-path signals and passive source localization (PSL) networks. Comparison of both detectors with a centralized GLRT for active MIMO radar (AMR) detection reveals that PMR may be interpreted as the link between AMR and PSL sensor networks. In particular, under high direct-path-to-noise ratio (DNR) conditions, PMR sensitivity and ambiguity approaches that of AMR. Under low-DNR conditions, PMR sensitivity and ambiguity approaches that of PSL. At intermediate DNRs, PMR sensitivity and ambiguity smoothly varies between that of AMR and PSL. In this way, PMR unifies PSL and AMR within a common theoretical framework. This result provides insight into the fundamental natures of active and passive distributed sensing

    Passive detection of correlated subspace signals in two MIMO channels

    Get PDF
    In this paper, we consider a two-channel multiple-input multiple-output passive detection problem, in which there is a surveillance array and a reference array. The reference array is known to carry a linear combination of broadband noise and a subspace signal of known dimension, but unknown basis. The question is whether the surveillance channel carries a linear combination of broadband noise and a subspace signal of the same dimension, but unknown basis, which is correlated with the subspace signal in the reference channel. We consider a second-order detection problem where these subspace signals are structured by an unknown, but common, p-dimensional random vector of symbols transmitted from sources of opportunity, and then received through unknown M Ă— p matrices at each of the M-element arrays. The noises in each channel have spatial correlation models ranging from arbitrarily correlated to independent with identical variances. We provide a unified framework to derive the generalized likelihood ratio test for these different noise models. In the most general case of arbitrary noise covariance matrices, the test statistic is a monotone function of canonical correlations between the reference and surveillance channels.I. SantamarĂ­a and J. VĂ­a have received funding from Ministerio de EconomĂ­a y Competitividad (MINECO) of Spain, and AEI/FEDER funds of the E.U. under projects TEC2013-47141-C4-3-R (RACHEL), TEC2016-75067-C4-4-R (CARMEN) and TEC2016-81900-REDT (KERMES). The research of Haonan Wang was partially supported by NSF grant DMS-1521746

    Biologically Inspired Sensing and MIMO Radar Array Processing

    Get PDF
    The contributions of this dissertation are in the fields of biologically inspired sensing and multi-input multi-output: MIMO) radar array processing. In our research on biologically inspired sensing, we focus on the mechanically coupled ears of the female Ormia ochracea. Despite the small distance between its ears, the Ormia has a remarkable localization ability. We statistically analyze the localization accuracy of the Ormia\u27s coupled ears, and illustrate the improvement in the localization performance due to the mechanical coupling. Inspired by the Ormia\u27s ears, we analytically design coupled small-sized antenna arrays with high localization accuracy and radiation performance. Such arrays are essential for sensing systems in military and civil applications, which are confined to small spaces. We quantitatively demonstrate the improvement in the antenna array\u27s radiation and localization performance due to the biologically inspired coupling. On MIMO radar, we first propose a statistical target detection method in the presence of realistic clutter. We use a compound-Gaussian distribution to model the heavy tailed characteristics of sea and foliage clutter. We show that MIMO radars are useful to discriminate a target from clutter using the spatial diversity of the illuminated area, and hence MIMO radar outperforms conventional phased-array radar in terms of target-detection capability. Next, we develop a robust target detector for MIMO radar in the presence of a phase synchronization mismatch between transmitter and receiver pairs. Such mismatch often occurs due to imperfect knowledge of the locations as well as local oscillator characteristics of the antennas, but this fact has been ignored by most researchers. Considering such errors, we demonstrate the degradation in detection performance. Finally, we analyze the sensitivity of MIMO radar target detection to changes in the cross-correlation levels: CCLs) of the received signals. Prior research about MIMO radar assumes orthogonality among the received signals for all delay and Doppler pairs. However, due to the use of antennas which are widely separated in space, it is impossible to maintain this orthogonality in practice. We develop a target-detection method considering the non-orthogonality of the received data. In contrast to the common assumption, we observe that the effect of non-orthogonality is significant on detection performance

    Adaptive OFDM Radar for Target Detection and Tracking

    Get PDF
    We develop algorithms to detect and track targets by employing a wideband orthogonal frequency division multiplexing: OFDM) radar signal. The frequency diversity of the OFDM signal improves the sensing performance since the scattering centers of a target resonate variably at different frequencies. In addition, being a wideband signal, OFDM improves the range resolution and provides spectral efficiency. We first design the spectrum of the OFDM signal to improve the radar\u27s wideband ambiguity function. Our designed waveform enhances the range resolution and motivates us to use adaptive OFDM waveform in specific problems, such as the detection and tracking of targets. We develop methods for detecting a moving target in the presence of multipath, which exist, for example, in urban environments. We exploit the multipath reflections by utilizing different Doppler shifts. We analytically evaluate the asymptotic performance of the detector and adaptively design the OFDM waveform, by maximizing the noncentrality-parameter expression, to further improve the detection performance. Next, we transform the detection problem into the task of a sparse-signal estimation by making use of the sparsity of multiple paths. We propose an efficient sparse-recovery algorithm by employing a collection of multiple small Dantzig selectors, and analytically compute the reconstruction performance in terms of the ell1ell_1-constrained minimal singular value. We solve a constrained multi-objective optimization algorithm to design the OFDM waveform and infer that the resultant signal-energy distribution is in proportion to the distribution of the target energy across different subcarriers. Then, we develop tracking methods for both a single and multiple targets. We propose an tracking method for a low-grazing angle target by realistically modeling different physical and statistical effects, such as the meteorological conditions in the troposphere, curved surface of the earth, and roughness of the sea-surface. To further enhance the tracking performance, we integrate a maximum mutual information based waveform design technique into the tracker. To track multiple targets, we exploit the inherent sparsity on the delay-Doppler plane to develop an computationally efficient procedure. For computational efficiency, we use more prior information to dynamically partition a small portion of the delay-Doppler plane. We utilize the block-sparsity property to propose a block version of the CoSaMP algorithm in the tracking filter
    • …
    corecore