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ABSTRACT OF THE DISSERTATION

Adaptive OFDM Radar for Target Detection and Tracking

by

Satyabrata Sen

Doctor of Philosophy in Electrical Engineering

Washington University in St. Louis, December 2010

Research Advisor: Dr. Arye Nehorai

We develop algorithms to detect and track targets by employing a wideband orthogonal

frequency division multiplexing (OFDM) radar signal. The frequency diversity of

the OFDM signal improves the sensing performance since the scattering centers of a

target resonate variably at different frequencies. In addition, being a wideband signal,

OFDM improves the range resolution and provides spectral efficiency.

We first design the spectrum of the OFDM signal to improve the radar’s wideband

ambiguity function. Our designed waveform enhances the range resolution and moti-

vates us to use adaptive OFDM waveform in specific problems, such as the detection

and tracking of targets.

We develop methods for detecting a moving target in the presence of multipath, which

exist, for example, in urban environments. We exploit the multipath reflections by

utilizing different Doppler shifts. We analytically evaluate the asymptotic performance

of the detector and adaptively design the OFDM waveform, by maximizing the

noncentrality-parameter expression, to further improve the detection performance.
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Next, we transform the detection problem into the task of a sparse-signal estimation

by making use of the sparsity of multiple paths. We propose an efficient sparse-recovery

algorithm by employing a collection of multiple small Dantzig selectors, and analytically

compute the reconstruction performance in terms of the `1-constrained minimal sin-

gular value. We solve a constrained multi-objective optimization algorithm to design

the OFDM waveform and infer that the resultant signal-energy distribution is in

proportion to the distribution of the target energy across different subcarriers.

Then, we develop tracking methods for both a single and multiple targets. We

propose a tracking method for a low-grazing angle target by realistically modeling

different physical and statistical effects, such as the meteorological conditions in the

troposphere, curved surface of the earth, and roughness of the sea-surface. To further

enhance the tracking performance, we integrate a maximum mutual information based

waveform design technique into the tracker.

To track multiple targets, we exploit the inherent sparsity on the delay-Doppler plane

to develop an computationally efficient procedure. For computational efficiency, we

use more prior information to dynamically partition a small portion of the delay-Doppler

plane. We utilize the block-sparsity property to propose a block version of the

CoSaMP algorithm in the tracking filter.
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diag(· · · ) forms a square matrix with non-zero entries only on the main diagonal
In identity matrix of dimension n
Re{·} real part of a complex quantity
Im{·} imaginary part of a complex quantity
d·e nearest integer greater than a fractional quantity
‖·‖0 number of non-zero elements in a vector
‖·‖p p-th norm of a vector, p = 1, 2

‖·‖∞ maximum of the absolute-valued elements in a vector
〈 , 〉 inner-product operator
⊗ Kronecker product operator
¯ element-wise Hadamard product operator
N Gaussian distribution
CNk complex Gaussian distribution of a vector of length k
CNk,l complex Gaussian distribution of a matrix of dimension k × l
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Chapter 1

Introduction

Radar is an active, remote electromagnetic sensor used to surveil and detect different

reflecting objects (or targets), such as aircrafts, missiles, ships, people, and even the

natural environment. The word radar is derived from the phrase radio detection and

ranging. Being an active sensing system, a radar has three primary functions: (i) it

generates and transmits an electromagnetic signal towards a scene; (ii) it receives a

backscattered portion of the transmitted energy from the scene towards the radar; and

(iii) it processes the received signal to determine the presence of targets (detection)

and their locations (ranging) in the presence of other undesired interfering echoes from

the environment (usually referred to as clutter) [1]. Fig. 1.1 schematically depicts

these functionalities.

During its early inception around the middle of the 1930s, the operational tasks of

radar were limited only to detection and ranging. However, with the advent of World

War II, radar technology developed tremendously, and soon the idea of ranging ex-

tended to include the direction and radial velocity of the target with respect to radar;

see [1, Ch. 1.6], [2] for some historical references on radar. Presently, radar systems are

very sophisticated and advanced, and they can provide more information about the
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Figure 1.1: Basic principle of radar.

target, such as its shape, size, and trajectory. Modern radar signal designs are being

conceived to further improve the resolution, accuracy, detection, discrimination, and

identification capabilities. However, designing a radar signal to satisfy these different

criteria poses a challenging task involving a lot of analytical and practical trade-offs.

In this dissertation, we propose to employ a wideband orthogonal frequency division

multiplexing (OFDM) radar signal primarily for target detection and tracking prob-

lems. An OFDM signal is composed of a set of sub-carriers that are mathematically

orthogonal in the time domain [3]; i.e., each carrier has an integer number of cy-

cles over a symbol period (see Fig. 1.2). Consequently, the spectrum of each carrier

has a null at the center frequency of the other carriers in the system, and thus a

higher level of spectral efficiency can be achieved. In addition, we develop adaptive

waveform design techniques to select the spectral parameters of the OFDM signal

for further improving the sensing performances, as shown in Fig. 1.3. The estimated

target and clutter parameters enable us to adaptively design the parameters of the

next transmitting signal based on some optimality criteria. Recent advances in sensor
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Figure 1.2: An OFDM signal in (a) time and (b) frequency domains.

information processing and flexible digital waveform modulator hardware make it fea-

sible to adjust the transmit waveform on a periodic basis, as often as pulse-by-pulse if

required. Thus, there is a potential to achieve the highest possible performance level

even in a dynamically changing scenario through adaptive waveform design.

In this chapter, we first describe the motivation of using the OFDM signals in radar

processing, along with a brief survey on the existing OFDM radar systems and

methodologies. Then, we present in detail our contributions in this field.

1.1 Motivation of OFDM in Radar Processing

The range resolution of a radar system is inversely proportional to the transmitted

signal bandwidth. Hence, the most obvious way to improve the range resolution is to

shorten the pulse duration, since the bandwidth of a pulse is inversely proportional

to its duration. On the other hand, for good detection capability a radar needs to

transmit higher signal energy, and that is achieved by applying long duration pulses

since the radar transmitters are typically operated near their peak power limitation.
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Figure 1.3: Principle of adaptive waveform design in radar.

Therefore, to overcome this dilemma on the pulse duration, in the late 1950s and early

1960s a new concept was developed, namely pulse compression [1, Ch. 6.5], [4, Ch. 7].

It uses a long duration pulse modulated in frequency or phase, i.e., with increased

effective bandwidth, to simultaneously achieve the resolution of a short duration pulse

and the energy of a long duration pulse.

Traditionally, there have been two classes of pulse compression techniques: linear

frequency modulation (LFM) and phase coding. The basic concept of the LFM was

first described in a patent issued in 1953 [5]. It involves a linear sweep of the carrier

frequency across the desired bandwidth during the pulse duration. Effectively, this

introduces a continuous quadratic phase shift over the duration of the transmit pulse.

Alternatively, in the phase coding technique, a long pulse is divided into multiple

identical segments, and each subpulse is coded with a different phase value. Thus, an

increase in bandwidth is achieved since the rate of phase change over time corresponds

to frequency. The simplest way to impart the phase change is by binary phase coding,

an example of which is the Barker code [6]. When phase coding is done with more
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Figure 1.4: Variations of RCS of a (a) thin dipole and (b) perfectly conducting sphere
with respect to frequency.

than two phase values the coded pulse is called polyphase code, examples of which

are the Frank code [7], [8], four different P-codes [9], [10], etc.

Conventional LFM pulse compression does not have the similar pulse-to-pulse diver-

sity as the phase codes have. It can only change the sign of the linear frequency slope.

However, LFM has better spectral efficiency, since its spectrum is approximately rect-

angular in shape, whereas phase codes can have abrupt phase changes resulting in

unintended spectral spread. Therefore, it is necessary to design a radar signal that

can provide the benefits of both the LFM and phase coding. In this regard, a potential

solution is the multi-carrier radar signals based on OFDM [11] – [16].

Along with providing improved range resolution and spectral efficiency, a multi-carrier

OFDM signal also offers frequency diversity to the radar system. The advantage of

using multiple frequencies has been well established in various radar applications,

such as remote sensing of clouds and precipitation [17], detection of landmines [18],

target-classification [19], interpretation of an urban scene [20], [21], etc. We know that

the target responses strongly depend on the frequency content of the transmitted
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signal [22]. For example, Fig. 1.4 shows the variations of the radar cross section

(RCS) of a thin dipole and perfectly conducting sphere as a function of frequency [22,

Figs. 11.7, 11.3]. Depending on their respective electrical lengths, different scattering

centers of a target resonate at different transmitted frequencies and produce varying

responses that can be exploited by a multi-carrier OFDM signal. Consequently, an

OFDM radar can better discriminate a target from the background clutter when other

standard processing is not effective. For example, Doppler processing cannot be used

to detect a static or slowly moving target.

1.2 Survey of Existing OFDM Radar

The basic principle of OFDM has been in existence for several years as a multi-carrier,

digital modulation technique for high-rate data communication [23]. Over the years, it

has been used in wideband communication over mobile radio FM channels, asymmet-

ric digital subscriber lines (ADSL) [24], European digital audio broadcasting (DAB),

and terrestrial digital video broadcasting (DVB-T) standards [25]. It has also been

chosen as the transmission technique for wireless local and metropolitan area net-

works in the HiperLAN/2, IEEE 802.11, and WiMAX standards [26], [27]; and for

other wireline systems such as power line communication (PLC) [28].

However, the usage of the OFDM signal in radar applications is still in its infancy.

Apart from the seminal work by Levanon on the multi-carrier phase-coded (MCPC)

signal [16, Ch. 11], there have been only a few works on the OFDM-based radar signal

processing. Poullin employed the coded OFDM (COFDM) signals of the European

DAB and DVB standards in a passive radar system to improve the target-detection

capability by canceling the unwanted zero-Doppler clutter effects [29]. Berger et al.
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also followed the same signaling principle in a passive radar framework to estimate

the targets’ bi-static range and velocity using a sparsity-based approach [30], [31].

Several researchers have investigated the possibility of using the OFDM signals jointly

as the communication and radar waveforms. Garmatyuk et al. analyzed the per-

formance of a multi-carrier radar/communication system, based on ultra-wideband

(UWB) waveform obtained using OFDM, for high-resolution synthetic aperture radar

(SAR) imaging [32] – [34] and in the presence of in-band GPS signals [35]. Based on

the OFDM architecture, they designed and built an experimental system that can be

used interchangeably as a radar sensor and communication device without any hard-

ware alterations [36], [37]. Van Genderen et al. also explored the principle of using

OFDM-based multi-carrier signals in a radar plus communication system. They an-

alyzed various aspects of an OFDM waveform in terms of Doppler tolerance [38] and

wideband ambiguity function [39]; demonstrated the capability of Doppler sensitive

OFDM signal to reduce Doppler ambiguity [40], [41]; studied the relation between the

Doppler sidelobes and peak-to-average power ratio (PAPR) of the OFDM signal [42],

and employed Golay complementary sequences to reduce PAPR [43]. Donnett and

Longstaff utilized the OFDM communication technique in coherent MIMO radar ap-

plications to distribute the processed data to remote users [44].

In addition, Paichard et al. developed a wideband OFDM radar prototype named

HYCAM (Hyperfrequency Camera), to measure and analyze the RCS of time-varying

targets [45]. Tran used the OFDM waveform in the detection problems and proposed

the patterns for changing subcarriers to have low interference [46]. Van Caekenberghe

et al. presented an OFDM frequency scanning radar (FSR) concept to reduce the

cost and size of an autonomous landing guidance (ALG) system [47]. Stralka and

Meyer exploited the multi-carrier nature of the OFDM signal to propose a novel
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digital phased-array architecture [48]. Recently, Sebt et al. proposed a least-squared

approach for the ambiguity function synthesis of an OFDM signal [49], and Strum et

al. developed an OFDM symbol-based processing to obtain superior range profiles [50].

1.3 Our Contributions

In this research, we employ an OFDM radar for target detection and tracking prob-

lems and adaptively design the OFDM signal to improve the system performance. In

the following, we present a brief summary of our contributions.

Waveform Design to Improve Wideband Ambiguity Function

We propose an adaptive OFDM waveform design algorithm to improve the radar’s

wideband ambiguity function (WAF) [51] – [53]. Here we emphasize that the received

signal depends on the scattering parameters of the target. Hence, the corresponding

WAF at the output of the matched filter must include the target responses along

with delay and Doppler. This approach enables us to propose a waveform design

technique that adapts to the target parameters. We design the spectrum of the

OFDM signal such that the volume of the corresponding WAF best approximates the

volume of a desired ambiguity function over a region in the delay-Doppler plane. The

designed waveform yields a better auto-correlation function (ACF), which results in

an improved delay (range) resolution for the radar system.

8



Target Detection in Multipath Scenarios

We develop methods for detecting a moving target in the presence of multipath re-

flections, which exist, for example, in urban environments [54], [55]. The multipath

propagations increase the spatial diversity of the radar system by providing extra

“looks” at the target and thus enabling target detection and tracking even beyond

the line-of-sight (LOS) [56], [57]. We take advantage of the multipath propagation by

exploiting the multiple Doppler shifts that correspond to the projections of the target

velocity on each of the multipath components. We develop a parametric measurement

model based on the OFDM signalling technique under the generalized multivariate

analysis of variance (GMANOVA) framework [58], [59], and employ the generalized

likelihood ratio (GLR) tests to detect the presence of a target in a particular range

cell [60, Ch. 6]. In addition, we design the OFDM signal for the next coherent pro-

cessing interval to maximize the expression of the noncentrality parameter, and thus

to improve detection performance.

Waveform Design Based on Multi-Objective Optimization

Exploiting the sparsity of multiple paths and the knowledge of the environment, we

first transform the target-detection problem into the task of estimating the spectrum

of a sparse signal [61], [62]. We employ a collection of multiple small Dantzig se-

lectors (DS) [63] to estimate the sparse vector. Then, we analytically evaluate the

performance characteristics and show that our decomposed DS has advantages over

the standard DS, both in terms of computation and performance.
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Next, we propose a criterion to optimally design the spectral parameters of the OFDM

signal based on the multi-objective optimization (MOO) approach [64] – [67]. We ob-

serve that if the signal parameters are designed to minimize the upper bound on

the sparse-estimation error, then the resultant waveform depends solely on the prop-

erties of the measurement matrix. However, to achieve a better performance, it is

also essential that the signal parameters adapt to the operational scenario involving

dynamic target states and nonstationary environmental conditions. Hence, in addi-

tion to minimizing the upper bound on the estimation error, we propose maximizing

another utility function based on the squared Mahalanobis-distance [68], [69], one

that depends on the target and noise parameters. Based on these arguments, we

develop a constrained MOO problem to simultaneously optimize two objective func-

tions: minimizing the upper bound on the estimation error to improve the efficiency

of sparse-recovery and maximizing the squared Mahalanobis-distance to increase the

performance of the underlying detection problem. We apply the well-known non-

dominated sorting genetic algorithm II (NSGA-II) [70] to obtain the Pareto-optimal

solutions [64] of our MOO problem.

Target Tracking in Low-Grazing Angle Scenarios

We develop methods to track a single target in low-grazing angle (LGA) scenar-

ios [71] – [76]. We consider the effects of the earth’s curvature and of the linear

refractivity gradient of the horizontally stratified atmosphere while modeling the spec-

ular multipath signals. The randomly reflected returns (clutter), which also depend

on the transmitted signal, are statistically modeled as a compound-Gaussian pro-

cess [77], [78]. We employ a co-located multiple-input multiple-output (MIMO) radar

configuration [79]. Additionally, we use polarization-sensitive transceivers to resolve
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the multipath signals with small separation angles [80], [81]. To track the target, we

use a sequential Monte Carlo method (particle filter) [82] – [84]. However, in contrast

to the conventional open-loop tracker, we integrate the tracking procedure with an

information theoretic waveform design algorithm. We propose to design the spectral

parameters of the OFDM signal for the next pulse interval by maximizing the mutual

information [85] between the state and measurement vectors.

Multi-Target Tracking Using Delay-Doppler Sparsity

We exploit the inherent sparsity of targets on the delay-Doppler plane to develop an

efficient multi-target tracking procedure [86], [87]. In our model, the nonzero entries

of the sparse vector, which correspond to the target scattering coefficients at differ-

ent OFDM subcarriers, appear in clusters (blocks). Such vectors are referred to as

block-sparse [88], [89]. Therefore, to maximize accuracy in the sparse-recovery, we de-

sign the spectrum of the OFDM signal for the minimum block-coherence measure [90]

and prove that the maximum accuracy is attainable by transmitting equal amounts

of energy over all the OFDM subcarriers. In the tracking filter, we exploit the same

block-sparsity property in developing a block version of the compressive sampling

matching pursuit (CoSaMP) algorithm [91]. For computational efficiency, instead of

using all the possible delay-Doppler grids for every pulse interval, we dynamically

partitioned a small portion of the delay-Doppler plane around the predicted state

parameters at a particular pulse interval.
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1.4 Outline of the Dissertation

The rest of the dissertation is organized as follows. In Chapter 2, we present an

adaptive OFDM waveform design algorithm to improve the radar’s wideband ambi-

guity function. In Chapter 3, we propose methods for detecting a moving target in

the presence of multipath reflections and design the OFDM signal to improve the

detection performance. We transform the target-detection problem into a sparse es-

timation task in Chapter 4. In this context, we optimally design the OFDM signals

using the multi-objective optimization approach. Chapters 5 and 6, respectively, de-

scribe our work on the tracking algorithms of a single target in LGA scenarios and

multiple targets using delay-Doppler sparsity. Finally, in Chapter 7, we summarize

our contributions and discuss some possible future work.
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Chapter 2

Waveform Design to Improve

Wideband Ambiguity Function1

In this chapter, we consider a multi-frequency radar that employs an OFDM signal,

and compute its wideband ambiguity function (WAF) [51], [52], including the effects

of the target response on the received signal. The motivation for employing multiple

frequencies is that the different scattering centers of a target resonate differently

at each frequency, and this also allows us to demonstrate the effects of the target-

response on the WAF. Moreover, the use of a multi-carrier OFDM signal improves

the delay-resolution by a factor equal to the number of subcarriers [12], [16, Ch.

11]. In addition, we devise an optimization procedure to design the spectrum of

the transmitting OFDM signal such that the volume of the corresponding WAF best

approximates the volume of a desired ambiguity function. The adaptive OFDM signal

yields a better auto-correlation function that results in an improved range resolution

for the radar system.

1Based on S. Sen and A. Nehorai, “Adaptive design of OFDM radar signal with improved wide-
band ambiguity function,” IEEE Trans. Signal Process., vol. 58, no. 2, pp. 928–933, Feb. 2010.
c©[2010] IEEE.
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2.1 Introduction

The ambiguity function for radar was originally introduced by Ville [92]; however,

it is generally referred to as Woodward’s ambiguity function because of his pop-

ular work [93], [94]. According to Woodward, an ambiguity function is defined

as a two-dimensional correlation between the transmitted narrowband signal and

its time-delayed (related to target range) and frequency-shifted (related to target

velocity) received version. Several articles interpret the ambiguity function as a

matched filter response [1, Ch. 6.4], [95, Ch. 4], [96, Ch. 5], whereas a few others

as a two-dimensional point-spread function [97], [98].

In the ideal case, an ambiguity function looks like a two-dimensional Dirac-delta

function (as shown in Fig. 2.1(a)), consisting of a single peak of infinitesimal thickness

at the origin and zero everywhere else on the delay-Doppler plane. However, an

ambiguity function of this kind is not practical, because it does not have any ambiguity

in either delay or Doppler estimation and because it can resolve any two targets no

matter how close they are in terms of range and Doppler. Fig. 2.1(b) depicts a

reasonable approximated version, namely the thumbtack ambiguity function, that

has a narrow mainlobe and a nonzero pedestal (or sidelobes).

The general formulation of the ambiguity function either does not include a scattering

coefficient of the target in the received signal model, or it assumes identical values

for the scattering coefficients corresponding to different directions and/or frequencies.

Additionally, Woodward’s version of the ambiguity function does not hold for large-

bandwidth signals, such as the OFDM signals. Target movements result in either

expansion or compression in time for the wideband transmitted signal, and this effect

can no longer be approximated by a simple “shift” in frequency. Therefore, in this
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Figure 2.1: (a) Ideal and (b) thumbtack ambiguity functions.

work we follow the WAF introduced by Kelley-Wishner [51] and Speiser [52], but

only after including the effect of different target responses at different frequencies.

Different properties of the WAF, similar to those of its narrowband counterpart, can

be found in [99] – [102].

2.2 Signal Model and Wideband Ambiguity Func-

tion

In this section, we first introduce the transmitted and received signal models of an

OFDM signaling system. Along with the delay and Doppler effects, the received

signal model also incorporates the scattering coefficients of the target at multiple

frequencies. Then, we compute the expressions of WAF for a single pulse and a

coherent pulse train.
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2.2.1 Signal Model

We consider a monostatic radar employing an OFDM signaling system with L active

subcarriers, a bandwidth of B Hz, and a pulse duration of T seconds. Let a =

[a0, a1, . . . , aL−1]
T represent the complex weights transmitted over different subcarriers

and satisfying
∑L−1

l=0 |al|2 = 1. Then the complex envelope of a single pulse can be

represented as

s(t) =
L−1∑

l=0

al ϕl(t) where ϕl(t) = e j 2π l∆f t, (2.1)

and ∆f = B/(L + 1) = 1/T denotes the subcarrier spacing. Let fc be the carrier

frequency of operation, the transmitted signal is given by

s̃(t) = 2 Re

{
L−1∑

l=0

al e
j 2π fl t

}
, (2.2)

where fl = fc + l∆f represents the l-th subcarrier frequency. Interchanging the real

and summation operators, we can rewrite (2.2) as

s̃(t) =
L−1∑

l=0

s̃l(t), (2.3)

where

s̃l(t) = 2 Re
{
al e

j 2π fl t
}

(2.4)

represents the transmitted signal at the l-th subcarrier only.
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Considering a far-field point target at distance r and relative velocity v with respect

to the radar, the received signal in a noise-free scenario can be written as

ỹ1(t) = s̃ (γ (t− τ)) , (2.5)

where γ = 1 + β accounts for the stretching or compressing in time of the reflected

signal; β = (2/c)〈u, v〉 represents the Doppler spreading factor; u is the unit DOA

vector; τ = 2r/c is the roundtrip delay between the radar and the target; and c is the

speed of propagation. Substituting (2.2) into (2.5) we get

ỹ1(t) = 2 Re

{
L−1∑

l=0

al e
j 2π fl γ (t−τ)

}

= 2 Re

{
L−1∑

l=0

al e
j 2π l ∆f γ (t−τ) e j 2π fc γ (t−τ)

}

= 2 Re

{
L−1∑

l=0

al φl (γ (t− τ)) e−j 2π fc γ τ e j 2π ν t e j 2π fc t

}
,

where ν = fcβ represents the Doppler frequency. Hence, after demodulation the

complex envelope of the received signal is

y1(t) =
L−1∑

l=0

al φl (γ (t− τ)) e−j 2π fc γ τ e j 2π ν t. (2.6)

However, note that neither (2.5) nor (2.6) includes any parameter related to the target

scattering coefficient. Therefore, denoting x = [x0, x1, . . . , xL−1]
T as a complex vector

containing the scattering coefficients of the target at different subcarriers, we modify

the expressions of the received signal as

ỹ2(t) = 2 Re

{
L−1∑

l=0

xl al e
j 2π fl γ (t−τ)

}
, (2.7)
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and the complex envelope as

y2(t) =
L−1∑

l=0

xl al φl (γ (t− τ)) e−j 2π fc γ τ e j 2π ν t. (2.8)

2.2.2 WAF of a Single Pulse

According to Kelley-Wishner [51], the wideband ambiguity function is defined as

χ(τ, ν) , √
γ

∫ ∞

−∞
sanl(t) s∗anl (γ (t− τ)) dt, (2.9)

where sanl(t) represents the analytic signal corresponding to s(t). On the assumption

that the complex envelope s(t) is perfectly bandlimited in comparison with the carrier

frequency fc, which is true for most radar signals [4], we can consider

sanl(t) = s(t) e j 2π fc t. (2.10)

Therefore, (2.9) can be simplified to

χ(τ, ν) = e j 2π fc γ τ

[√
γ

∫ ∞

−∞
s(t) s∗ (γ (t− τ)) e−j 2π ν t dt

]
. (2.11)

Sometimes the expression in (2.11) is referred to as the output of an optimum detector

filter matched to zero delay and zero Doppler [98], with the term within the square

bracket labeled only as the WAF [103]. Alternatively, in some other literature, the

WAF is defined as the magnitude or magnitude-squared of the term within the square

bracket in (2.11) [104].
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Now, incorporating the effects of the target response in the received signal, we redefine

the WAF at the output of the matched filter as

χ
MF

(τ, ν, a,x)

= e j 2π fc γ τ

[
√

γ

∫ Tmax

Tmin

(
L−1∑

l1=0

al1 φl1(t)

) (
L−1∑

l2=0

x∗l2 a∗l2 φ∗l2(γ (t− τ))

)
e−j 2π ν t dt

]
,

=
L−1∑

l1=0

L−1∑

l2=0

al1 a∗l2 x∗l2 χφl1
φl2

(τ, ν) , (2.12)

where

T
min

= max (0, τ) , Tmax = min (T, T/γ + τ) ,

and

χφl1
φl2

(τ, ν) = e j 2π fc γ τ

[
√

γ

∫ Tmax

Tmin

φl1(t) φ∗l2(γ (t− τ)) e−j 2π ν t dt

]
(2.13)

denotes the cross-ambiguity function between φl1(t) and φl2(t), having a similar form

as (2.11). Note that in (2.12), we explicitly parametrize χ
MF

(·) in terms of x to em-

phasize that it depends on the scattering coefficients of the target. In addition, χ
MF

(·)
also depends on a. This parametrization is realistic and also enables us to adaptively

design the spectrum of the transmitted OFDM signal to improve the corresponding

ambiguity profile, which will be discussed in Section 2.3. Using the definitions of fl,

T
min

, Tmax , and the following integration result

∫ Tmax

Tmin

e−j 2 π f t dt = T
diff

sinc (f T
diff

) e−j 2 π f Tavg , (2.14)
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where

T
diff

= Tmax − T
min

, Tavg =
Tmax + T

min

2
.

we can further simplify (2.12) to

χ
MF

(τ, ν, a,x) = χ(ml)
MF

(τ, ν, a,x) + χ(sl)
MF

(τ, ν, a, x), (2.15)

and

χ(ml)
MF

(τ, ν, a,x) , √
γT

diff

L−1∑

l=0

x∗l |al|2sinc [flβT
diff

] e j2π[flγτ−βflTavg ],

χ(sl)
MF

(τ, ν, a,x) , √
γT

diff

L−1∑

l1=0

L−1∑
l2=0
l2 6=l1

x∗l2al1a
∗
l2
sinc [{fl2β + (l2 − l1)∆f}T

diff
]

· ej 2π[fl2
γτ−{βfl2

+(l2−l1)∆f}Tavg ].

If we plot separately we can see that χ(ml)
MF

(·) produces the mainlobe of the WAF,

while χ(sl)
MF

(·) produces the sidelobes.

Special Case: For a conventional radar employing a single carrier frequency fc, (2.15)

can be simplified to

χ
MF

(τ, ν, a,x) =
√

γ T
diff

x∗|a|2sinc [fcβT
diff

] e j 2 π fc(γτ−βTavg),

and therefore, the expression of the normalized WAF,

χ
MF

(τ, ν, a,x)

χ
MF

(0, 0, a,x)
=

T
diff

T
(0)
diff

sinc (ν T
diff

) e−j 2 π νTavg , (2.16)
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does not depend on the scattering coefficients of the target. Here T (0)
diff

is T
diff

evaluated

at τ = 0.

2.2.3 WAF of a Pulse Train

The Doppler-resolution of the ambiguity function is improved when we transmit a

coherent pulse train. The complex envelope of a train of N identical pulses can be

described as

s
N
(t) =

N−1∑
n=0

s (t− nT
P
) , (2.17)

where T
P

is the pulse repetition interval (PRI). Then, the transmitted signal is given

by

s̃
N
(t) = 2 Re

{
s

N
(t) e j 2π fc t

}
= 2 Re

{
N−1∑
n=0

s (t− nT
P
) e j 2π fc t

}
. (2.18)

Using the expression of the analytic signal corresponding to s̃
N
(t) in (2.9), we can

formulate the WAF of a coherent pulse train as follows:

χ
N
(τ, ν)

=
√

γ

∫ ∞

−∞

[
N−1∑
n1=0

s (t− n1TP
) e j2πfct

][
N−1∑
n2=0

s∗ (γ(t− τ)− n2TP
) e−j2πfcγ(t−τ)

]
dt

=
N−1∑
n1=0

N−1∑
n2=0

χ

(
τ +

(
n2

γ
− n1

)
T

P
, ν

)
e−j2πfc (n2−n1) T

P , (2.19)

where χ(·) is the WAF of a single pulse as defined in (2.11). See Appendix A for the

derivation of (2.19).
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Following a similar type of derivation, including the effects of the target response in

the received signal, we can modify the expression of WAF for a coherent pulse train

as

χ
MFN

(τ, ν, a,x)

=
N−1∑
n1=0

N−1∑
n2=0

χ
MF

(
τ +

(
n2

γ
− n1

)
T

P
, ν, a,x

)
e−j2πfc(n2−n1)TP ,

=
N−1∑
n1=0

N−1∑
n2=0

[
L−1∑

l1=0

L−1∑

l2=0

al1 a∗l2 x∗l2 χφl1
φl2

(
τ +

(
n2

γ
− n1

)
T

P
, ν

)]
e−j2πfc(n2−n1)T

P ,

=
L−1∑

l1=0

L−1∑

l2=0

al1 a∗l2 x∗l2 χφl1
φl2N

(τ, ν), (2.20)

where

χφl1
φl2N

(τ, ν) =
N−1∑
n1=0

N−1∑
n2=0

χφl1
φl2

(
τ +

(
n2

γ
− n1

)
T

P
, ν

)
e−j2πfc(n2−n1)T

P (2.21)

denotes the cross-ambiguity function between two coherent pulse trains of φl1(t) and

φl2(t). In the rest of the chapter, we will consider the magnitude squared of (2.20),∣∣∣χMFN
(·)

∣∣∣
2

, as the expression of WAF.

2.3 Adaptive Waveform Design

In this section, we describe an optimization approach to adaptively design the spec-

trum of an OFDM signal such that the volume of the corresponding WAF best ap-

proximates the volume of a desired ambiguity profile.
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The problem of synthesizing a waveform to satisfy a desired ambiguity function has

been addressed extensively over the years [49], [105] – [111]. Wilcox [105] and Suss-

man [106] approach this problem to approximate the desired ambiguity profile in

the least-squared (LS) sense. Their optimization procedure stretches over the entire

(τ, ν) plane, and hence the resultant waveform can produce an “all-purpose” ambi-

guity function that would be more or less suitable for any radar application [106].

However, in many situations, it is not necessary to have a certain ambiguity shape

for all values of τ and ν. Recently, Gladkova et al. [110], [111] extended Wilcox’s LS

approach, restricting the optimization procedure over some limited subregions in the

(τ, ν) plane, particularly surrounding the mainlobe.

We seek to find an OFDM waveform, satisfying
∑L−1

l=0 |al|2 = 1, such that the er-

ror between the volumes of the resulting WAF and a desired ambiguity function is

minimized. Instead of covering the entire (τ , ν) plane, we also limit the volume com-

putations over a subregion, R, containing the origin. Denoting the desired ambiguity

function as χopt(τ, ν), we can state the optimization problem as follows:

aopt(x) = arg min
a∈CL

∫

R

∣∣∣∣
∣∣χopt(τ, ν)

∣∣2 −
∣∣∣χMFN

(τ, ν, a, x)
∣∣∣
2
∣∣∣∣ dτdν, (2.22)

subject to
L−1∑

l=0

|al|2 = 1 and |al|2 > ε ∀ l,

where ε is a small positive quantity (close to zero) ensuring transmission over all L

frequency channels. We use numerical methods to solve for the optimized variables,

aopt , that depend on the scattering coefficients of the target and hence comply with

the philosophy of “adaptive” design.
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In some particular cases, when
∣∣χopt(·)

∣∣2 <
∣∣∣χMFN

(·)
∣∣∣
2

holds true over the entire

subregion R (e.g., χopt(τ, ν) = δ(τ, ν)), we can further simplify (2.22) to the following:

aopt(x) = arg min
a∈CL

∫

R

∣∣∣χMFN
(τ, ν, a, x)

∣∣∣
2

dτdν,

= arg min
a∈CL

∑

l1,l2,l3,l4

al1 a∗l2 a∗l3 al4 x∗l2 xl4

∫

R
χφl1

φl2N
(τ, ν) χ∗φl3

φl4N
(τ, ν) dτdν .

Hence, this expression leads to a minimization procedure that has a fourth-order form

similar to that presented in [111], but it incorporates the target-scattering coefficients.

However, from a mathematical perspective, our method can be categorized as an

`1–minimization, while that of [111] is an `2–minimization.

The convergence time of (2.22) strongly depends on the area of subregion R and the

shape of the desired ambiguity function χopt(τ, ν). If the knowledge of the target

response is known a priori, we can use an offline computation of (2.22) extending

over a larger area of R and considering an impulse-shaped χopt(·). In real-time pro-

cessing, when we need to compute aopt based on the estimated value of x from the

previous radar dwell, it would be practical to restrict R to a smaller region (e.g.,

|τ | ≤ T, |ν| ≤ 1/(2T
P
)) and not to choose an “idealistic” shape of χopt(·).

2.4 Numerical Results

We present simulation results to demonstrate an improved ambiguity profile due to

the adaptive waveform design. We considered an OFDM radar operating with the

following specifications: carrier frequency fc = 1 GHz; available bandwidth B = 125

MHz; number of subcarriers L = 4; subcarrier spacing ∆f = B/(L + 1) = 25 MHz;
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Figure 2.2: Plots of wideband ambiguity functions for (a) fixed and (b) adaptive
waveforms over a region R = {|τ | ≤ T, |ν| ≤ 1/(2T

PRI
)}.

pulse width T = 1/∆f = 40 ns; pulse repetition interval T
P

= 20 µs; and number of

coherent pulses N = 10. To evaluate aopt , we used R := {|τ | ≤ T, |ν| ≤ 1/(2T
P
)} and

an impulse-like χopt(τ, ν) that has value 1 at the origin but zero everywhere else. We

realized the entries of x from a N (0, 1) distribution. The results presented in Figs. 2.2

and 2.3 were obtained using the numerical optimization solver of MATLAB after

averaging over 50 such independent realizations of x. We compared this adaptively

designed WAF with that obtained from a fixed waveform that employs al = 1/
√

L ∀ l.

Fig. 2.2(b) depicts the WAF obtained from the optimized waveform following (2.22).

This ambiguity function shows a considerable improvement compared to the one

shown in Fig. 2.2(a), which was obtained from a fixed waveform. Numerically, the

normalized volume under the ambiguity profile reduced from unity to 0.806. The

zero-delay and zero-Doppler cut plots of these ambiguity profiles are shown in Fig. 2.3.

From Fig. 2.3(a) it is quite evident that the adaptive waveform resulted in a much

better auto-correlation function. The first sidelobe level of the ambiguity function
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Figure 2.3: (a) Zero-Doppler cuts (auto-correlation functions) and (b) zero-delay
cuts of the wideband ambiguity functions corresponding to the adaptive and fixed
waveforms.

corresponding to the adaptive waveform is 5.5 dB down with respect to that of its

counterpart for fixed waveform. The zero-delay cut plots in Fig. 2.3(b) suggest that

there is no change in the Doppler resolution, as we expect, due to our adaptive

waveform design.

For further insight into the optimization procedure, we looked into the energy distri-

butions of the OFDM waveform and target response over different subcarriers both be-

fore and after the optimization. For example, as shown in Fig. 2.4, in a particular sam-

ple run we had |xl| = {6.42, 1.03, 4.23, 5.66}, and the optimization algorithm (2.22)

resulted in |al| = {0.24, 0.80, 0.42, 0.29} when initialized with al = 1/
√

L = 0.50 ∀ l.

Hence, we noticed that the sample variance of |al xl| reduces from 1.06 to 0.13; i.e., the

redistribution energy occurs with more signal energy to the subcarrier whose target

response is weaker and with less signal energy to the subcarrier whose target response

is already stronger.
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Figure 2.4: Distributions of signal energy and target response over different OFDM
subcarriers (a) before and (b) after the optimization process.

2.5 Summary

We proposed an optimization algorithm to compute an adaptive OFDM radar wave-

form such that the volume of the corresponding wideband ambiguity function best ap-

proximates the volume of a desired ambiguity function over a region in the delay-Doppler

plane. We emphasized that the expression of the wideband ambiguity function at the

output of a matched filter must include the target response along with delay and

Doppler. We numerically demonstrated the advantage of adaptive waveform design

in obtaining much better auto-correlation function. This further motivates us to use

adaptive OFDM waveform for specific radar problems, such as the detection and

tracking of targets, which are described in the following chapters.
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Chapter 3

Target Detection in Multipath

Scenarios2

In this chapter, we develop methods for detecting a moving target in the presence of

multipath reflections, particularly in urban environments. We take advantage of the

multipath propagation that increases the spatial diversity of the radar system and

provides different Doppler shifts over different paths. First, we develop an OFDM

radar measurement model accounting for only a finite number of specularly reflected

multipath signals. We formulate the detection problem as a statistical hypothesis

test to decide about the presence of a moving target in a particular range cell. Then,

we propose an algorithm to optimally design the spectral parameters of the OFDM

transmitting waveform for the next coherent processing interval. In addition, we

extend our models to consider the aspects of temporal correlations in the measurement

noise.

2Based on S. Sen and A. Nehorai, “Adaptive OFDM radar for target detection in multipath
scenarios,” IEEE Trans. Signal Process., vol. 59, no. 1, pp. 78-90, Jan. 2011. c©[2010] IEEE.
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3.1 Introduction

The problem of target-detection in multipath scenarios is becoming increasingly rel-

evant and challenging to radar technologies. The multipath propagations increase

the spatial diversity of the radar system by providing extra “looks” at the target

and thus enabling target detection and tracking even beyond the LOS [56], [57] (see

Fig. 3.1). We take advantage of the multipath propagation by exploiting multiple

Doppler shifts corresponding to the projections of the target velocity on each of the

multipath components. To resolve and exploit the multipath components, short pulse,

multi-carrier wideband radar signals are commonly used. We consider the OFDM sig-

nalling scheme, which is one of the ways to accomplish the simultaneous use of several

subcarriers. The use of an OFDM signal mitigates the possible fading, resolves the

multipath reflections, and provides additional frequency diversity as different scatter-

ing centers of a target resonate at different frequencies.

First, we discuss a detection problem in which the radar has complete knowledge of

the first-order (or single bounce) specularly reflected multipath signals. We assume

that the clutter and measurement noise are temporally white. We develop the mea-

surement model under the generalized multivariate analysis of variance (GMANOVA)

framework [58], [59], to account for the different multipath components as well as for

multiple Doppler shifts. We formulate the detection problem as a hypothesis test to

decide about the presence of a target in a particular range cell. Due to the lack of

knowledge of all the parameters in our models, we employ the generalized likelihood

ratio (GLR) test [60, Ch. 6]. We present numerical results to evaluate the perfor-

mance of these proposed detectors, as we do not have any analytical expressions to

evaluate their performances.
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Figure 3.1: The exploitation of multipath propagations increases the spatial diversity.

Next, we propose a criterion to adaptively compute the spectral parameters of the

next transmitting OFDM waveform. To construct such a criterion, we first look into

the performance characteristics of the GLR test statistics, assuming that the target

velocity is known. However, this analysis does not characterize the performance of

our detectors, in which the target velocity is unknown. Our analysis with known

target velocity shows that the GLR test asymptotically (i.e., with a large number

of temporal samples) results in constant false alarm rate (CFAR) detectors, and the

detection performances depend on the system parameters through the corresponding

noncentrality parameters of the distributions under the alternate hypothesis. This

implies that it is possible to improve the detection performance by maximizing the

noncentrality parameter. We apply this idea to our problem and formulate the op-

timization algorithm to select the parameters of the next transmitting waveform by

maximizing the same expression of the noncentrality parameter subject to a fixed
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transmission-energy constraint. We show that the solution of this optimization prob-

lem results in an eigenvector corresponding to the largest eigenvalue of a matrix that

depends on the target, clutter, and noise parameters.

Later in the chapter, we relax the assumption of temporal whiteness to study the

effects of temporally correlated measurement noise processes on our models. Temporal

correlations exist in certain radar applications, in particular at high pulse repetition

frequencies (PRF) [112], [113]. To model the temporal correlation matrix, we look

into a branch of statistics known as the nearest neighbor analysis [114], [115], and

present the consequent detection tests.

3.2 Problem Description and Modeling

We consider a far-field point target moving with a constant relative velocity v, with

respect to the radar, in a multipath-rich environment. At the operating frequency,

we assume that the reflecting surfaces produce only specular reflections of the radar

signal. We assume that the radar has complete knowledge of the environment under

surveillance. Hence, for every range cell the radar knows the number of possible

multipaths (P ) between the radar and target and the DOA unit-vectors (up, p =

0, 1, . . . , P − 1) along each such path.

Under this scenario, we first introduce the parametric measurement model for the

OFDM signalling technique. Then, we discuss our statistical assumptions on clutter

and noise.
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3.2.1 Measurement Model

We consider an OFDM signalling system with a = [a0, a1, . . . , aL−1]
T represent-

ing the complex transmit-weights over the L subcarriers, as previously described

in (2.1) – (2.4). Then, the received signal along the p-th path (represented by the

DOA vector up) due to the transmission of only the l-th subcarrier can be written as

ỹlp(t) = xlp s̃l (γp (t− τp)) + ẽlp(t), (3.1)

where xlp is a complex quantity representing the scattering coefficient of the target

along the l-th subchannel and p-th path; γp = 1 + βp, where βp = 2〈v, up〉/c is

the relative Doppler shift along the p-th path, and c is the speed of propagation;

τp is the roundtrip delay between the radar and target along the p-th path; and ẽlp

represents the clutter and measurement noise along the l-th subchannel and p-th path.

Therefore, the received signal over all P available paths due to the transmission of

an L-carrier OFDM signal is given by

ỹ(t) =
L−1∑

l=0

P−1∑
p=0

ỹlp(t) = 2 Re

{
L−1∑

l=0

P−1∑
p=0

al xlp e j 2π fl γp (t−τp)

}
+ ẽ(t),

= 2 Re

{
L−1∑

l=0

P−1∑
p=0

al xlp e j 2π fl (1+βp) (t−τp)

}
+ ẽ(t),

= 2 Re

{
L−1∑

l=0

P−1∑
p=0

al xlp e−j2πfl (1+βp) τp ej2πfl βp t ej2π fl t

}
+ ẽ(t), (3.2)

and hence the corresponding complex envelope at the output of the l-th subchannel

is given as

yl(t) =
P−1∑
p=0

al xlp e−j2πfl (1+βp) τp ej2πfl βp t + el(t). (3.3)
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Let us assume at this point that the relative time gaps between any two multipath

signals are very small in comparison to the actual roundtrip delays, i.e., τp ≈ τ0

for p = 0, 1, . . . , P − 1. These assumptions can be justified in systems where the

path lengths of multipath arrivals differ little (e.g., a narrow urban canyon where the

range is much greater than the width). Further, let us denote τ0 as the roundtrip

delay corresponding to the range cell under consideration. Then, the information of

the roundtrip delays are incorporated into (3.3) by substituting t = τ0 + nT
P
, n =

0, 1, . . . , N − 1, where T
P

is the PRI and N is the number of temporal measurements

within a given coherent processing interval (CPI). Hence, corresponding to a specific

range cell containing the target, the complex envelope of the received signal at the

output of the l-th subchannel is

yl(n) =
P−1∑
p=0

al xlp φlp(n,v) + el(n), for l = 0, 1, . . . , L− 1, n = 0, 1, . . . , N − 1, (3.4)

where

φlp(n,v) , e−j2πflτ0 ej2πflβpnT
P . (3.5)

Stacking the measurements of all L subchannels into one column vector of length L,

we get

y(n) = AX φ(n, v) + e(n), for n = 0, 1, . . . , N − 1, (3.6)

where

• y(n) = [y0(n), y1(n), . . . , yL−1(n)]T .
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• A = diag(a) is an L×L complex diagonal matrix that contains the transmitted

weights a.

• X = blkdiag
(
xT

0 , xT
1 , . . . , xT

L−1

)
is an L×LP complex rectangular block-diagonal

matrix where each nonzero block xl = [xl0, xl1, . . . , xlP−1]
T , l = 0, 1, . . . , L− 1,

represents the scattering coefficients of the target at the l-th subchannel over

all P multipath.

• φ(n, v) =
[
φ0(n, v)T ,φ1(n,v)T , . . . φL−1(n,v)T

]T
is an LP × 1 complex vec-

tor where φl(n, v) = [φl0(n, v), φl1(n, v), . . . , φlP−1(n, v)]T , l = 0, 1, . . . , L − 1,

contains the Doppler information of the target at the l-th subchannel over all

P multipath.

• e(n) = [e0(n), e1(n), . . . , eL−1(n)]T is an L × 1 vector of clutter returns, mea-

surement noise, and co-channel interference.

Then, concatenating all the temporal data columnwise into an L × N matrix, we

obtain the OFDM measurement model as

Y = AX Φ(v) + E, (3.7)

where

• Y = [y(0) y(1) · · · y(N − 1)].

• Φ(v) = [φ(0,v) φ(1,v) · · · φ(N − 1, v)] is an LP ×N matrix containing the

Doppler information of the target through the parameter v.

• E = [e(0) e(1) · · · e(N − 1)] is an L × N matrix comprising clutter returns,

noise, and interference.
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3.2.2 Statistical Assumptions

In this problem, any undesired reflections from the environment surrounding and/or

behind the target, or any random multipath reflections from irregularities on a re-

flecting surface (e.g., windows and balconies) that cannot be modeled as specular

components may contribute to the clutter. Therefore, we assume that the clutter and

noise are temporally white and circularly symmetric zero-mean complex Gaussian

process with unknown covariances. In (3.6), the noise vector e(n) contains the clut-

ter returns, noise, and co-channel interference at the output of L subchannels, which

we assume to be correlated with an unknown positive definite covariance matrix Σ.

Hence, the OFDM measurements are distributed as

Y ∼ CNL,N ( AX Φ(v), IN ⊗Σ ) . (3.8)

In this formulation, when the parameter v is known, (3.7) complies with the GMANOVA

structure [58], [116], which has been studied extensively in statistics and applied to

a number of applications in signal processing [59].

3.3 Detection Test

In this section, we develop statistical detection tests for the OFDM measurement

model presented in the previous section. Our goal is to decide whether a target is

present or not in the range cell under consideration.

We construct the decision problem to choose between two possible hypotheses: the

null hypothesisH0 (target-free hypothesis) or the alternate hypothesisH1 (target-present
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hypothesis). The test can be expressed as




H0 : X = 0, Σ unknown

H1 : X 6= 0, v,Σ unknown
. (3.9)

Because of the lack of knowledge about v and Σ we use the generalized likelihood ratio

test [60, Ch. 6] in which the unknown parameters are replaced with their maximum

likelihood estimates (MLE). This approach also provides the information about the

unknown parameters since the first step is to find the MLEs.

Assuming that the parameter v is known in (3.7), the GLR test for (3.9) compares

the ratio of the likelihood functions under the two hypotheses with a threshold as

follows [60, Ch. 6.4.2]:

GLR(v) =
fH1(Y ; v, X̂, Σ̂1)

fH0(Y ; Σ̂0)

H1

>
γ, (3.10)

where fH0 and fH1 are the likelihood functions under H0 and H1, respectively; Σ̂0

and Σ̂1 are the MLEs of Σ under H0 and H1, respectively; X̂ is the MLE of X under

H1; and γ is the detection threshold. After some algebraic manipulations, it can be

shown that the test statistic of this problem is [59]

GLR(v) =

∣∣∣Σ̂0

∣∣∣
∣∣∣Σ̂1

∣∣∣
=

∣∣(1/N)Y Y H
∣∣

∣∣∣∣(1/N)
(
Y −A X̂ Φ(v)

)(
Y −A X̂ Φ(v)

)H
∣∣∣∣
. (3.11)

However, having a block-diagonal structure, the scattering matrix X does not yield

a closed-form MLE expression [117]. So, in this work, we use an approximate ML
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(AML) estimator for X, defined as [117, Eqn. 28]

x̂AML , vecb(X̂) =
(
ΓHΓ

)−1
ΓH vec

(
G− 1

2 Y ΠΦ

)
, (3.12)

where

Γ ,
[
ΦT

1 ⊗ s1 ΦT
2 ⊗ s2 · · · ΦT

L ⊗ sL

]
, (3.13a)

G , Y Π⊥
ΦY H , (3.13b)

Π⊥
Φ , IN −ΠΦ, (3.13c)

ΠΦ , Φ(v)H
(
Φ(v)Φ(v)H

)−
Φ(v), (3.13d)

S ,
[
s1 s2 · · · sL

]
= G− 1

2 A, (3.13e)

Φ(v) ,
[
ΦT

1 ΦT
2 · · · ΦT

L

]T

, (3.13f)

and vecb (·) is a block-diagonal vec operator defined in [117, Eqn. 7]. Additionally,

in (3.13e), sl is the l-th column of an L×L matrix S , G− 1
2 A; and in (3.13f), Φl is

a P ×N matrix representing the l-th block of P rows of Φ(v).

In our problem, however, the parameter v is unknown, and therefore we compare the

GLR test maxv GLR(v) = GLR(v̂) with a threshold.

3.4 Adaptive Waveform Design

In this section, we develop an adaptive OFDM waveform design technique to im-

prove the target-detection performance. To derive a mathematical formulation for

the waveform selection, we first create a utility function according to certain criteria
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and then determine the parameters for the next transmitting waveform by optimizing

this utility function. To construct such a utility function, we first study the detection

performance assuming a known target velocity parameter v. Then, we explicitly state

the optimization problem and its solution.

3.4.1 Distributions of the Test Statistic for Known Target

Velocity

In this subsection, we derive the distribution of GLR(v) when the target velocity is

known. The motivation behind these derivations is to look for a criterion of adaptive

waveform design; but not to analyze the detection performance with a known target

velocity, because in our problem the target velocity is unknown.

When A has full rank L and X is a full matrix, (3.11) can be written in a concise

form as

1

GLR(v)
=

|G|
|G + H| , (3.14)

where G , Y Π⊥
ΦY and H , Y ΠΦY H are two projection matrices.

Under H0, our OFDM measurement model is Y ∼ CNL,N(0, IN ⊗ Σ). Therefore,

provided that (N − r) ≥ L, G is distributed as a complex Wishart matrix of order

L, parameter Σ, and (N − r) complex degrees of freedom. This is denoted as G ∼
CWL(N − r,Σ). Similarly, we get H ∼ CWL(r,Σ) if r ≥ L. Here r = rank(ΠΦ) =

rank[Φ(v)] ≤ LP < N . Since Π⊥
Φ and ΠΦ are orthogonal complements to each other,

we know that Π⊥
ΦΠΦ = 0, and hence, following the Craig-Sakamoto theorem [118],

[119], G and H are independently distributed. Then, the GLR test statistic is given
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by [120, Th. 3.10], [121, Eqn. 4-33]

1

GLR(v)
=

L−1∏

l=0

bl, (3.15)

where bls are mutually independent complex beta distributed random variables with

((N − r)− (L− 1− l)) and r complex degrees of freedom, written as

bl ∼ CB((N − r)− (L− 1− l), r) for l = 0, 1, . . . , L− 1. (3.16)

This is similar to Wilks’ lambda [122] for complex variables.

However, under H1, the distribution of GLR(v) does not have a closed-form expres-

sion in general. Under H1, we have Y ∼ CNL,N(M , IN ⊗Σ), where M = AXΦ(v).

Therefore, the random matrices G and H follow noncentral complex Wishart dis-

tributions, denoted as G ∼ CWL (N − r,Σ;Θ1) and H ∼ CWL (r,Σ;Θ2), respec-

tively; and Θ1 = Σ−1MΠ⊥
ΦMH , Θ2 = Σ−1MΠΦMH are the noncentrality param-

eters [123, Th. 7.8.1, Cor. 7.8.1.1]. Since

Θ1 = Σ−1AXΦ(v)
[
IN −Φ(v)H

(
Φ(v)Φ(v)H

)−
Φ(v)

]
Φ(v)HXHAH ,

= Σ−1AX
[
Φ(v)Φ(v)H −Φ(v)Φ(v)H

(
Φ(v)Φ(v)H

)−
Φ(v)Φ(v)H

]
XHAH ,

= 0, (3.17)

Θ2 = Σ−1AXΦ(v)
[
Φ(v)H

(
Φ(v)Φ(v)H

)−
Φ(v)

]
Φ(v)HXHAH ,

= Σ−1AXΦ(v)Φ(v)HXHAH ,

= Σ−1MMH , (3.18)

we find that G becomes a complex central Wishart matrix, denoted as G ∼ CWL(N−
r,Σ), whereas H remains a complex noncentral Wishart matrix with Σ−1MMH as
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the noncentrality parameter. But, we cannot simplify (3.14) any further such that it

has a distribution with closed-form expression.

In a special case, when rank(M ) = 1 (which is termed the “linear case” after Anderson

[124], [125] in some statistical literature) the test statistic 1/GLR(v) under H1 can

be written as a product of L independent complex beta random variables, where

one of the beta variables is non-central [126], [127]. The noncentrality parameter is

given as the single nonzero root of the equation
∣∣MMH − δΣ

∣∣ = 0, which is same

as tr(Σ−1MMH). Here we remark that to achieve rank(M ) = 1 in our problem, we

have to use a single frequency signal instead of a multi-frequency OFDM signal.

Since, the distribution of the GLR test statistic for the OFDM measurement model

does not have a closed-form expression for a finite value of N , we explore the asymp-

totic performance characteristics of (3.11) assuming known target velocity. Following

an analogous discussion on real Gaussian variables from [69, Ch. 8], [128] we find that

as N → ∞, under H0, N ln GLR(v) has a complex chi-square distribution with rL

complex degrees of freedom, denoted as

N ln GLR(v) ∼ Cχ2
rL. (3.19)

Note that the expression of the chi-square distribution does not depend on the un-

known covariance matrix Σ. Thus, when v is known, (3.11) corresponds to a CFAR

test.

Under H1, the limiting distribution of N ln GLR(v) is a complex noncentral distribu-

tion with rL complex degrees of freedom, denoted as

N ln GLR(v) ∼ Cχ2
rL(λ), (3.20)
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where λ =
∑L−1

l=0 δl is the noncentrality parameter and δ0, δ1, . . . , δL−1 are the roots

of
∣∣MMH − δΣ

∣∣ = 0. Obviously, another way to represent the same noncentral-

ity parameter is λ = tr(Σ−1MMH). We may call the matrix Σ−1MMH as the

“signal-to-noise ratio matrix,” and hence the trace of it can be considered as a sum

of squared Mahalanobis distances [68].

3.4.2 Waveform Design

From the discussion of the previous subsection, it is clear that the GLR test asymptot-

ically results in a CFAR detector when the target velocity is known, and the detection

performance depends on the system parameters through the noncentrality parameter

λ. Therefore, it is possible to improve the detection performance by maximizing this

noncentrality parameter.

However, in our problem the target velocity parameter v is unknown. Moreover, in

the OFDM measurement model the target scattering matrix X is block diagonal.

Still in our adaptive waveform design problem we maximize the same expression of

the noncentrality parameter subject to a pre-defined energy constraint. Thus, we

formulate the optimization problem as

aopt = arg max
a∈CL

tr
(
Σ−1AXΦ(v)Φ(v)HXHAH

)
, (3.21)

subject to aHa = 1.
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Applying the theorem of Appendix B, we can rewrite this problem as

aopt = arg max
a∈CL

aH
[(

XΦ(v)Φ(v)HXH
)T ¯Σ−1

]
a, (3.22)

subject to aHa = 1.

Hence, our optimization problem reduces to a simple eigenvalue-eigenvector prob-

lem, and the optimal solution, aopt, is the eigenvector corresponding to the largest

eigenvalue of
[(

XΦ(v)Φ(v)HXH
)T ¯Σ−1

]
.

Note that in our problem v, X, and Σ are not known. Hence, we use their esti-

mated values to obtain aopt for the next CPI. First, a nonoptimal a is transmitted

and the corresponding measurements are stored over one particular CPI. Then, we

estimate v̂ = arg maxv GLR(v). Substituting v̂ into (3.5), we compute Φ(v̂) and

subsequently X̂ using (3.12) and (3.13). Then, the estimate of Σ is evaluated as

Σ̂ = (1/N)
(
Y −AX̂Φ(v̂)

)(
Y −AX̂Φ(v̂)

)H

. Finally, we choose aopt as the eigen-

vector corresponding to the largest eigenvalue of

[(
X̂Φ(v̂)Φ(v̂)HX̂

H
)T

¯ Σ̂
−1

]
.

3.5 Temporally Correlated Noise

In this section, we extend our model to include temporal correlation among the mea-

surements. Recall that so far we have assumed that the clutter and measurement

noise are the independent realizations of the same Gaussian random process from

pulse to pulse. However, this assumption may not be valid at a high PRF [113]. In

the following, we first present the statistical assumptions of temporally correlated

noise for the OFDM measurement model, presented in (3.6), and then discuss the

detection tests.
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3.5.1 Statistical Assumptions

To develop a statistical model for the temporally correlated noise from pulse to pulse

measurements, we look into a branch of statistics known as the nearest neighbor

analysis [114], [115]. Instead of choosing any unstructured covariance matrix, we

assume a Kronecker product structure of the form V ⊗ Σ, where V is an N × N

unknown positive definite temporal covariance matrix. Based on this assumption, the

modified versions of (3.8) can be written as

Y ∼ CNL,N (AX Φ(v), V ⊗Σ) . (3.23)

The matrix V can have any structure or can even be unstructured. In the statisti-

cal literature, two structured covariance matrices are very common. These are the

compound symmetric (CS) structure [129] and autoregressive structure of order 1

(AR(1)) [130]. The CS covariance structure assumes that all the temporal measure-

ments are equicorrelated and do not depend on the duration between the two time

points, i.e.,

[V (ρ)](i,j) =





1 when i = j

ρ otherwise
, for i, j = 0, 1, . . . , N − 1, (3.24)

where 0 ≤ ρ ≤ 1 is the coefficient of temporal correlation between two time points.

In AR(1) covariance structure, the temporal measurements are assumed to be more

highly correlated if they are close to each other in time duration, i.e.,

[V (ρ)](i,j) = ρ|i−j|, for i, j = 0, 1, . . . , N − 1. (3.25)

43



In our work, we consider the AR(1) model as it is suitable for pulsed radar applications

in which the measurements are collected at equispaced time intervals. Note that

in (3.24) and (3.25) we explicitly write V (ρ) to stress the fact that the temporal

correlation matrix V (and also its inverse) is completely characterized by a single

parameter ρ.

3.5.2 Detection Test Under Temporal Correlations

We construct the decision problem in terms of two possible hypotheses H0 and H1,

to detect the presence of a target in the range cell under consideration, as




H0 : X = 0, ρ,Σ unknown

H1 : X 6= 0, v, ρ,Σ unknown
. (3.26)

As before, since the parameters ρ, v, and Σ are unknown, we apply the GLR test.

The test compares the ratio of the likelihood functions, maximized with respect to

the unknown parameters, under the two hypotheses with a threshold γ′ as follows:

GLR(ρ̂, v̂) =
maxρ,v fH1

(
Y ; ρ, v, X̂, Σ̂1

)

maxρ fH0

(
Y ; ρ, Σ̂0

) H1

>
γ′, (3.27)

where the MLEs of X and Σ are computed by replacing Y and Φ(v) with Y V (ρ)−
1
2

and Φ(v)V (ρ)−
1
2 , respectively.
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3.6 Numerical Results

In this section, we present the results of several numerical examples to illustrate the

performance characteristics of our proposed detector, as the associated GLR test

statistic with unknown target velocity does not have any closed-form analytical ex-

pression. For simplicity we considered a 2D scenario, where both the radar and target

were in the same plane, as shown in Fig. 3.2. Our analyses can easily be extended

to 3D scenarios. First, we provide a description of the simulation setup, and then

discuss different numerical examples.

• Target and multipath parameters:

– The target was moving with velocity v = 7.07̂i + 7.07ĵ m/s. This implies

that v
TRUE

= [7.07, 7.07]T m/s.

– Throughout a given CPI, the target remained within a particular range

cell. We simulated the situation of a range cell centered at 2 km North

and 5m East with respect to the radar (positioned at the origin).

– There were three different paths (i.e., P = 3) between that particular range

cell and the radar: one direct path and two specular multipaths due to a

couple of reflecting surfaces oriented along North-South direction at 10m

East and 10m West.

– The scattering coefficients of the target (i.e., the entries of X) were gen-

erated from a CN (0, 1) distribution.

• Radar parameters:

– Carrier frequency fc = 1 GHz.
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Radar

Target

Reflecting  

surface

v

Reflecting  

surface

5 m

20 m

2 km

Figure 3.2: A schematic representation of the multipath scenario considered for nu-
merical examples.

– Available bandwidth B = 100 MHz.

– Number of subcarriers L = 4.

– Subcarrier spacing ∆f = B/(L + 1) = 20 MHz.

– Pulse width T = 1/∆f = 50 ns.

– Pulse repetition interval T
P

= 20 µs.

– All the transmit weights were equal, i.e., a = (1/
√

L)1L.

We performed Monte Carlo simulations based on 20, 000 independent trials to realize

the following results. The entries of Σ1/2 were realized from the CN (0, 1) distribution
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Figure 3.3: Effects of different SNR values on detection probability as a function of
probability of false alarm.

and then were scaled to satisfy the required SNR, defined as

SNR =

[
(1/N)

∑N
n=1 (AXφ(n, v

TRUE
))H AXφ(n, v

TRUE
)
]

tr (Σ)
. (3.28)

Detector Performance

Fig. 3.3 depicts the variations of the probability of detection (PD) as a function of

the probability of false alarm (PFA) at three different SNR values. As expected, the

detection performance improved as SNR is increased. Being a wideband signal the

OFDM could resolve the multipath and overcome fading. Additionally, it exploited

the target responses at multiple frequencies.

To show the advantage of using a multi-frequency signalling system, we compared the

detection performance at three different values of L, while keeping the SNR fixed at

−5 dB. The results are presented in Fig. 3.4. Hence, it is evident that the frequency

diversity improved the target-detection performance in an OFDM system.
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Figure 3.4: Effects of different number of subcarriers on detection probability as a
function of probability of false alarm.
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Figure 3.5: Effects of different directions of target velocity vector on detection prob-
ability as a function of probability of false alarm.

We also studied the effects of varying the directions of the velocity vector on the

detection performance at three different conditions: vT
TRUE

= [0, 10], [7.07, 7.07], [10, 0]

m/s. The results are depicted in Fig. 3.5. For this simulation we kept the SNR fixed at

−5 dB. As the angle between the target velocity vector and radar LOS was increased,

the performance of the OFDM detector deteriorated.
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Figure 3.6: Effects of exploiting the multipath reflections on detection probability as
a function of probability of false alarm.

Importance of Multipath Modeling

To understand the importance of proper exploitation of multipath reflections, we

devised the following simulations. We changed the velocity of the target such that

it moved perpendicular to the LOS direction. Then, we compared the detection

performances of the two systems: one of them considered all P (= 3) multipath

reflections, and the other considered only the LOS return. Fig. 3.6 shows the results

at SNR = −5 dB. The OFDM signal, being a wideband, could better exploit the

multipath reflections to improve the detection performance.

A similar conclusion can also be drawn from Fig. 3.7. For this simulation, we gener-

ated the measurements for the OFDM signalling scheme in the presence of multipath

using the same setup as described before. However, in the detector, we ignored the

presence of multipaths in the tested range cell. This may happen when the radar

does not have a knowledge of the possible multipath scenario. From Fig. 3.7, we see

that the performance deteriorated when the detector in the OFDM model ignored

the multipath reflections.
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Figure 3.7: Effects of ignoring the multipath reflections at the detector on detection
probability as a function of probability of false alarm.

Adaptive OFDM Waveform Design

To study the improvement in target-detection performance due to the proposed adap-

tive waveform design technique, we devised a simple problem. We assumed a system

in which we transmitted al = 1/
√

L ∀l in the first N pulses. Then, based on the

corresponding measurements we solved (3.22) to compute the optimized values of als

for the next N pulses. We compared this system with another system in which both

the two sets of N pulses transmitted al = 1/
√

L ∀l. We fixed the SNR at −5 dB

for this simulation. From Fig. 3.8 we observe that the detection performance of the

adaptive system was considerably improved for the OFDM model.

Under Temporal Correlation

Fig. 3.9 depicts the detection performance at three different values of the temporal

correlation coefficient. We used the AR(1) covariance structure, described in (3.25),

to introduce temporal correlation among the measurements. For this simulation we
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Figure 3.8: Gain due to adaptive waveform design of detection probability as a func-
tion of probability of false alarm.
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Figure 3.9: Effects of different temporal correlations on detection probability as a
function of probability of false alarm.

kept the SNR fixed at −5 dB. It is evident from this analysis that the target-detection

performance deteriorated as the level of temporal correlation was increased.

Detector Performance for Known Target Velocity

Finally, in Fig. 3.10 we show comparative performance results of the OFDM detector

for known and unknown target velocity v. We plot these results at two different
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Figure 3.10: Loss due to the target-velocity estimation of detection probability as a
function of probability of false alarm.

SNR values. The detection performance for known target velocity may be looked

upon as a hypothetical scenario, because in the underlying detection problem we

try to decide about the presence or absence of a target whose velocity is known

beforehand. However, this analysis showed us quantitatively to what extent the

detection performance (for unknown v) degraded due to the estimation of v. For

example, the value of PD dropped from 0.56 to 0.3 at PFA = 10−2 and SNR = 0 dB

due to the velocity estimation process.

3.7 Summary

We addressed the problem of detecting a moving target by exploiting multipath re-

flections. We demonstrated that the target-detection capability can be significantly

improved by utilizing multiple Doppler shifts corresponding to the projections of

the target velocity on each of the multipath components. First, we developed an

OFDM radar measurement model and formulated the detection problem as a sta-

tistical hypothesis test. Then, we proposed an algorithm to optimally design the
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spectral parameters of the transmitting OFDM waveform for the next coherent pro-

cessing interval. Our numerical examples illustrated the performance characteristics

of the proposed detector and demonstrated the achieved performance improvement

due to the adaptive OFDM waveform design. In the next chapter, we continue our

discussion of the target-detection problem and propose an efficient sparse-signal re-

covery algorithm after transforming the detection problem into the task of estimating

the spectrum of a sparse signal.
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Chapter 4

Waveform Design Based on

Multi-Objective Optimization3

In this chapter, we reformulate the target-detection problem as the task of sparse-

signal spectrum estimation. At a particular range cell, we exploit the sparsity of

multiple paths and the knowledge of the environment to estimate the path along

which target responses are received. To estimate the sparse vector, we employ a col-

lection of multiple small Dantzig selectors (DS) that utilizes more prior structures of

the sparse vector than the standard DS. We use the `1-constrained minimal singu-

lar value (`1-CMSV) of the measurement matrix to analytically evaluate the recon-

struction performance [131]. In addition, we propose a constrained multi-objective

optimization (MOO) based algorithm [64] – [67] to adaptively design the spectral

parameters of the OFDM waveform by simultaneously minimizing the upper bound

on the estimation error to improve the efficiency of sparse-recovery and maximizing

the squared Mahalanobis-distance [68] to increase the performance of the underlying

detection problem.

3Based on S. Sen, G. Tang, and A. Nehorai, “Multi-objective optimization of OFDM radar
waveform for target detection,” IEEE Trans. Signal Process., vol. 59, no. 2, Feb. 2011. c©[2010]
IEEE.
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4.1 Introduction

For a target moving in a multipath-rich environment, we know that the radar receives

the target information through an LOS, several reflected paths, or both. Therefore,

using our knowledge of the geometry, we can determine all the possible paths, be they

LOS or reflected, and the associated target locations corresponding to a particular

range cell. Then, considering the presence of a single target, we can determine the

paths along which the target response is received by solving a simple sparse recovery

algorithm through a linear program, e.g., `1-minimization [132] or second-order cone

programming (SOCP) [133], or through a greedy pursuit, e.g., orthogonal matching

pursuit (OMP) [134] or compressive sampling matching pursuit (CoSaMP) [91]. Thus,

we transform the target-detection problem into the task of estimating the spectrum

of a sparse signal. Other recent applications of the sparsity-based (or compressive

sensing based) signal processing algorithms to different radar problems can be found

in [135] – [139].

First, we develop a parametric OFDM measurement model for a particular range

cell, to detect a far-field point target moving in multipath scenarios. For simplicity,

we consider only first-order (or single bounce) specularly reflected multipath signals.

Then, we convert the model to a sparse model that accounts for the target returns

over all possible signal paths and target velocities. The nonzero components of the

sparse vector in our model correspond to the scattering coefficients of the target at

different OFDM subcarriers. We assume that the clutter and measurement noise are

temporally white.

To estimate the sparse vector, we propose a sparse-recovery algorithm based on a

collection of multiple small Dantzig selectors [63]. The DS approach belongs to the
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class of convex relaxation methods in which the `0 norm is replaced by the `1 norm

that remains a measure of sparsity while being a convex function. Other examples of

convex relaxation methods include the basis pursuit [132] and LASSO estimator [140].

Furthermore, we analytically evaluate the performance characteristics and show that

our decomposed DS has advantages over the standard DS both in terms of compu-

tation and performance. To analyze the reconstruction performance, we consider the

`1-constrained minimal singular value (`1-CMSV) of the measurement matrix [131].

Compared with the traditional restricted isometry constant (RIC) [141], [142], which

is extremely difficult to compute for an arbitrarily given matrix, the `1-CMSV is an

easily computable measure and provides more intuition on the stability of sparse-

signal recovery. More importantly, several algorithms to compute the `1-CMSV of

any given measurement matrix are already designed in [131].

Next, we propose a criterion to optimally design the spectral parameters of the trans-

mitting OFDM waveform for the next coherent processing interval, based on the MOO

approach [64] – [67]. We observe that if the signal parameters are designed to min-

imize the upper bound on the sparse-estimation error, then the resultant waveform

depends solely on the properties of the measurement matrix. However, to achieve

a better performance, it is also essential that the signal parameters are adaptive to

the operational scenario involving dynamic target states and nonstationary environ-

mental conditions. Hence, in addition to minimizing the upper bound on the esti-

mation error, we propose maximizing another utility function based on the squared

Mahalanobis-distance [68], [69], one that depends on the target and noise parameters.

Based on these arguments, we develop a constrained MOO problem to simultaneously

optimize two objective functions: to minimize the upper bound on the estimation er-

ror and to maximize the squared Mahalanobis-distance.
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Often, a MOO problem does not have a single optimal solution but rather a set of

solutions known as Pareto-optimal solutions [64]. This type of optimality was orig-

inally introduced by Francis Ysidro Edgeworth in 1881 [143] and later generalized

by Vilfredo Pareto in 1896 [144]. All the solutions residing on the Pareto-front are

superior to other solutions in the search space when all objectives are considered.

The idea of finding as many Pareto-optimal solutions as possible motivates the use

of evolutionary algorithms (EAs) that generate several solutions in a single run. Fol-

lowing the same motivation, we apply the well-known nondominated sorting genetic

algorithm II (NSGA-II) [70] to solve our MOO problem. Previous work in the appli-

cation of multi-objective evolutionary algorithms (MOEAs) for radar system design

includes [145] – [149] and the references therein.

To illustrate the sparse-estimation performance for a target-detection problem and

to demonstrate the performance improvement due to the adaptive OFDM waveform

design, we present several numerical examples. We evaluate the performance charac-

teristics in terms of the normalized root mean squared error (RMSE) and empirical

receiver operating characteristic (ROC). From the results of the adaptive design, we

observe that the solution of the MOO-based design in general produces the best per-

formance. Assuming that the noise powers over different subcarriers are the same, we

infer that the solution of the MOO distributes the energy of the optimal waveform

across different subcarriers in proportion to the distribution of the target energy; i.e.,

it puts more signal energy to that particular subcarrier in which the target response

is stronger.
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Figure 4.1: A schematic representation of the multipath scenario.

4.2 Problem Description and Modeling

Fig. 4.1 presents a schematic representation of the problem scenario. As before,

we consider a far-field point target in a multipath-rich environment, moving with a

constant relative velocity v with respect to the radar. At the operating frequency

we assume that the reflecting surfaces produce only specular reflections of the radar

signal, and for simplicity we consider only the first-order reflections. We further

assume that the radar has complete knowledge of the environment under surveillance.

This assumption implies that for a particular range cell (shown as the curved line in

Fig. 4.1) the radar knows all the possible paths, be they LOS or reflected. Now, any

target (e.g., Target B) or any image of a target (e.g., Target A or C) residing on

the constant-range curved line has the same roundtrip delay and produces returns in

the same range cell. Our goal here is to decide whether a target is present (out of

all possible paths) at the range cell under test and to determine the corresponding

location of the target by using knowledge of the environment.

58



4.2.1 Sparse Measurement Model

We consider an OFDM signalling system with a = [a0, a1, . . . , aL−1]
T represent-

ing the complex transmit-weights over the L subcarriers, as described previously

in (2.1) – (2.4). Then, similar to (3.1), the complex envelope of the received signal

along the p-th path due to only the l-th subcarrier and corresponding to a specific

range cell (denoted by the roundtrip delay τ) can be written as

ỹlp(t) = xlp s̃l (γp (t− τ)) + ẽlp(t), (4.1)

where all the notations have the same interpretations as described in reference to (3.1).

Following a similar approach as in Section 3.2.1 and incorporating the information of

the known range cell as t = τ + nT
P
, n = 0, 1, . . . , N − 1, we can write the complex

envelope of the received signal at the output of the l-th subchannel as

ylp(n) = al xlp φl(n, p, v) + elp(n), for l = 0, 1, . . . , L− 1, n = 0, 1, . . . , N − 1, (4.2)

where

φl(n, p, v) , e−j2π flτ ej2π fl βp nT
P (4.3)

is a function of the unknown path index p through which the radar receives the infor-

mation about the target, the unknown target-velocity v, and the known target-delay

τ .

Next, we discretize the possible signal paths and target velocities into P and V

grid points, respectively. In general, the values of P and V could be very large.

However, restricting our operation to a narrow region of interest (e.g., an urban
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canyon where the range is much greater than the width) and a few class of targets

that have comparable velocities (e.g., cars/trucks within a city environment), we can

restrict the values of P and V to smaller numbers. Then, considering all possible

combinations of (pi,vj), i = 1, 2, . . . , P, j = 1, 2, . . . , V , we can write the complex

envelope of the received signal at the output of the l-th subchannel as

yl(n) = al φl(n)T xl + el(n), (4.4)

where

• φl(n) = [φl(n, p1 ,v1), . . . , φl(n, p1 ,vV
), φl(n, p2 ,v1), . . . , φl(n, p

P
, v

V
)]T .

• xl is a PV × 1 sparse-vector, having only kl nonzero entries corresponding to

the true signal paths and target velocity; i.e.,

kl = |Il| , where (4.5)

Il =
{

ĩ ∈ [1, P ] : target information is received along the p ĩ -th path
}

.

Stacking the measurements of all subchannels into an L× 1 vector, we get

y(n) = AΦ(n) x + e(n), (4.6)

where

• y(n) = [y0(n), y1(n), . . . , yL−1(n)]T .

• A = diag(a) is an L×L complex diagonal matrix that contains the transmitted

weights a.
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• Φ(n) = blkdiag
(
φ0(n)T ,φ2(n)T , . . . , φL−1(n)T

)
is an L × LPV complex rect-

angular block-diagonal matrix.

• x =
[
xT

0 ,xT
1 , . . . , xT

L−1

]T
is an LPV × 1 sparse-vector that has k =

∑L−1
l=0 kl

nonzero entries representing the scattering coefficients of the target along the

received paths.

• e(n) = [e0(n), e1(n), . . . , eL−1(n)]T is an L × 1 vector of clutter returns, mea-

surement noise, and co-channel interference.

Then, concatenating all the temporal data columnwise into an LN × 1 vector, we

obtain a sparse measurement model as follows:

y = Φx + e, (4.7)

where

• y =
[
y(0)T ,y(1)T , . . . , y(N − 1)T

]T
.

• Φ =
[
(AΦ(0))T · · · (AΦ(N − 1))T

]T

is an LN × LPV matrix containing all

possible combinations of signal path and target velocity.

• e =
[
e(0)T , e(1)T , . . . , e(N − 1)T

]T
is an LN × 1 vector comprising clutter

returns, noise, and interference.
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4.2.2 Statistical Assumptions

We consider the same statistical assumptions as described in Section 3.2.2; i.e., we

assume that e(n) is a temporally white and circularly symmetric zero-mean com-

plex Gaussian vector, correlated between different subchannels with positive definite

covariance matrix Σ. Hence, the OFDM measurements in (4.7) are distributed as

y ∼ CNLN (Φx, IN ⊗Σ) . (4.8)

4.3 Sparse Recovery and Performance Analysis

In this section, we first develop a sparse recovery algorithm for the measurement model

presented in the previous section. Then, we analytically evaluate its performance

characteristics in terms of an upper bound on the `2-norm of the sparse-estimation

error.

4.3.1 Sparse Recovery

Sparsity-based signal processing recently has received significant attention in many

fields. The basic theory tells us that under certain conditions an unknown sparse

vector x, which has only a few nonzero entries (denoted as k = ‖x‖0), can be recovered

exactly with high probability from y = Φx, even if the measurement matrix Φ has far

fewer rows than columns [150] – [152]. One of the most popular approaches of sparse

signal recovery is the Dantzig selector. It provides an estimate of x as a solution to
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the following `1-regularization problem:

min
z∈CLPV

‖z‖1 subject to
∥∥ΦH (y −Φz)

∥∥
∞ ≤ λ · σ, (4.9)

where λ =
√

2 log(LPV ) is a control parameter that ensures that the residual

(y −Φz) is within the noise level and σ =
√

tr(Σ)/L.

However, from the construction of x in (4.4) and (4.6), we observe an additional

structure, described as follows:

x =
[
xT

0 , xT
1 , . . . , xT

L−1

]T
, (4.10)

where each xl, l = 0, 1, . . . , L − 1, is sparse with sparsity level kl = ‖xl‖0, and

k =
∑L−1

l=0 kl. Furthermore, the system matrix Φ in (4.7) can also be expressed as

Φ = [Φ0 Φ1 · · · ΦL−1 ] , (4.11)

where each block-matrix of dimension LN × PV , defined as

Φl = [0 · · · 0 alφl(0)︸ ︷︷ ︸
index =l

0 · · · 0 alφl(1)︸ ︷︷ ︸
index =l+L

0 · · · 0 alφl(N − 1)︸ ︷︷ ︸
index =l+(N−1)L

0 · · · 0]T , (4.12)

is orthogonal to any other block-matrix; i.e., ΦH
l1

Φl2 = 0 for l1 6= l2. Here φl(·) is

the same as the one defined in relation to (4.4). Note also the difference in notation

between Φl (which is a columnwise block-matrix) and Φ(n) (which is a rowwise

block-matrix), defined in (4.6).
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To exploit this additional structure in the sparse-recovery algorithm, we propose a

better reconstruction algorithm that solves L small Dantzig selectors:

min
zl∈CPV

‖zl‖1 subject to
∥∥ΦH

l (y −Φlzl)
∥∥
∞ ≤ λl · σ for l = 0, . . . , L− 1, (4.13)

where λl =
√

2 log(PV ). We show in the next subsection that (4.13) has advan-

tages over (4.9) both in terms of computation and performance, because more prior

structures of the sparse vector are exploited.

4.3.2 Performance Analysis

Many functions of the system matrix Φ have been proposed to analyze the perfor-

mance of methods used to recover x from y, the most popular measure being the

restricted isometry constant (RIC). However, for an arbitrarily given matrix, the

computation of RIC is extremely difficult. Therefore, to assess the reconstruction

performance of an `1-based algorithm we use a new, easily computable measure,

`1-constrained minimal singular value (`1-CMSV) of Φ [131]. According to [131,

Def. 4], we define the `1-CMSV of Φ as

ρs(Φ) = min
x6=0,s1(x)≤s

‖Φx‖2

‖x‖2

, for any s ∈ [1, LPV ], (4.14)

and

s1(x) , ‖x‖2
1

‖x‖2
2

≤ k, when k = ‖x‖0 . (4.15)

Then, the performance of our decomposed DS in (4.13) is given by the following

theorem:
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Theorem 1. Suppose x ∈ CLPV is a k-sparse vector having an additional structure

as presented in (4.10), with each xl ∈ CPV being a kl-sparse vector, and (4.7) is the

measurement model. Choose λl =
√

2 log(PV ) in (4.13). Then, with high probability,

x̂ satisfies

‖x̂− x‖2 ≤ 4

√√√√
L−1∑

l=0

λ2
l kl σ2

ρ4
4kl

(Φl)
, (4.16)

where the concentrated solution x̂ =
[
x̂T

0 , x̂T
1 , . . . , x̂T

L−1

]T

is obtained by using the

individual solutions, x̂l, of (4.13). More specifically, if λl =
√

2 (1 + q) log(PV )

for each q ≥ 0 is used in (4.13), then the bound holds with probability greater than

1− L
(√

π (1 + q) log(PV ) · (PV )q
)−1

.

Proof. Let us define the unobserved measurements yl = Φl xl + e. Note that due to

the orthogonality of Φls,

ΦH
l (y −Φl zl) = ΦH

l

(
L−1∑

l′=0

Φl′ xl′ + e−Φl zl

)
,

= ΦT
l (Φl xl + e−Φl zl) ,

= ΦT
l (yl −Φl zl) . (4.17)

As a consequence, the L small Dantzig selectors in (4.13) are equivalent with

min
zl∈CPV

‖zl‖1 subject to
∥∥ΦH

l (yl −Φlzl)
∥∥
∞ ≤ λl · σ for l = 0, 1, . . . , L− 1.(4.18)
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Then, denoting the individual solutions of (4.13) as x̂l and assuming
∥∥ΦH

l e
∥∥
∞ ≤ λl,

from [131, Th. 2] we have

‖x̂l − xl‖2 ≤ 4
λl

√
kl σ

ρ2
4kl

(Φl)
. (4.19)

Hence, defining the concatenated estimate as x̂ =
[
x̂T

0 , x̂T
1 , . . . , x̂T

L−1

]T

, we get

‖x̂− x‖2 =

√√√√
L−1∑

l=0

‖x̂l − xl‖2
2 ≤ 4

√√√√
L−1∑

l=0

λ2
l kl σ2

ρ4
4kl

(Φl)
. (4.20)

On the contrary, if we use the original DS in (4.9) to obtain an estimate x̂
DS

, then

using [131, Th. 2] we get

‖x̂
DS
− x‖2 ≤ 4

λ
√

k σ

ρ2
4k(Φ)

, (4.21)

where k =
∑L−1

l=0 kl and
∥∥ΦHe

∥∥
∞ ≤ λ =

√
2 log(LPV ). We now have the following

theorem:

Theorem 2. The collection of L small Dantzig selectors in (4.13) performs better

than the original Dantzig selector in (4.9) as it has a smaller upper bound on the

`2-norm of the sparse-estimation error:

4

√√√√
L−1∑

l=0

λ2
l kl σ2

ρ4
4kl

(Φl)
≤ 4

λ
√

k σ

ρ2
4k(Φ)

. (4.22)

Proof. See Appendix C.
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4.4 Adaptive Waveform Design

In this section, we develop an adaptive waveform design technique, based on a multi-

objective optimization approach, to improve the detection and estimation perfor-

mance. From the discussion of the previous section, it follows that we can adaptively

design the spectral parameters, al, to minimize the upper bound on the estimation

error. Note here that the upper bound on the sparse-estimation error depends solely

on the properties of the system matrix Φ. However, to achieve better performance it

is also essential that the signal parameters adapt to the operational scenario involving

dynamic target states and nonstationary environmental conditions. Hence, in addi-

tion to minimizing the upper bound on the estimation error, we propose maximizing

another utility function based on the squared Mahalanobis-distance, which depends

on the target and noise parameters (x and Σ). In the following, we first describe these

two single-objective optimization problems and their respective solutions. Then, we

discuss the multi-objective optimization method.

4.4.1 Minimizing the Error Bound

From (4.11), we first notice that each Φl can be written as Φl = alΦ̃l, and there-

fore we have ρ4
4kl

(Φl) = a4
l ρ4

4kl
(Φ̃l). Then, to minimize the upper bound on the

sparse-estimation error, we construct an optimization problem as

a(1) = arg min
a∈CL

L−1∑

l=0

λ2
l kl σ

2

a4
l ρ4

4kl
(Φ̃l)

subject to aHa = 1. (4.23)
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Using the Lagrange-multiplier approach, we can obtain the solution of (4.23) as

a
(1)
l =

√√√√ (2αl)
1/3

∑L−1
l=0 (2αl)

1/3
, for l = 0, 1, . . . , L− 1, (4.24)

where αl =
λ2

l kl σ2

ρ4
4kl

(Φ̃l)
. However, the computation of ρ4kl

(Φ̃l) is difficult with the complex

variables. Therefore, we use a computable lower bound on ρ4kl
(Φ̃l), defined as

ρ8kl
(Ψ̃) ≤ ρ4kl

(Φ̃l), (4.25)

where

Ψ̃
T
Ψ̃ =




ΨT
1 Ψ1 + ΨT

2 Ψ2 0

0 ΨT
1 Ψ1 + ΨT

2 Ψ2


 , Ψ1 = Re Φ̃l, Ψ2 = Im Φ̃l.(4.26)

See Appendix D for the details of (4.25). Then, similar to (4.24), we can obtain the

adaptive OFDM spectral parameters as

a
(1)
l =

√√√√ (2α̃l)
1/3

∑L−1
l=0 (2α̃l)

1/3
, for l = 0, 1, . . . , L− 1, (4.27)

where α̃l =
λ2

l kl σ2

ρ4
8kl

(Ψ̃)
.

4.4.2 Maximizing the Mahalanobis-Distance

To decide whether a target is present or not in the range cell under test, the standard

procedure is to construct a decision problem to choose between two possible hypothe-

ses: the null hypothesis H0 (target-free hypothesis) or the alternate hypothesis H1
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(target-present hypothesis). The problem can be expressed as




H0 : y = e

H1 : y = Φx + e
. (4.28)

Hence, the measurement y is distributed as CNLN (0, IN ⊗Σ) or CNLN (Φx, IN ⊗Σ).

To distinguish between these two distributions, one standard measure is the squared

Mahalanobis-distance, defined as

d2 = xH ΦH (IN ⊗Σ)−1 Φx,

=
N−1∑
n=0

xH Φ(n)H AH Σ−1 AΦ(n) x. (4.29)

Then, to maximize the detection performance, we can formulate an optimization

problem as

a(2) = arg max
a∈CL

[
N−1∑
n=0

xH Φ(n)H AH Σ−1 AΦ(n) x

]
, (4.30)

subject to aHa = 1.

Since

xH Φ(n)H AH Σ−1 AΦ(n) x = tr
(
xH Φ(n)H AH Σ−1 AΦ(n) x

)
,

= tr
(
Σ−1 AΦ(n) xxH Φ(n)H AH

)
,

we can apply the theorem of Appendix B to rewrite the optimization problem as

a(2) = arg max
a∈CL

aH

[
N−1∑
n=0

(
Φ(n) xxH Φ(n)H

)T ¯Σ−1

]
a, (4.31)

subject to aHa = 1.
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Hence, the optimization problem reduces to a simple eigenvalue-eigenvector problem,

and the solution of (4.31) is the eigenvector corresponding to the largest eigenvalue

of
[∑N−1

n=0

(
Φ(n) x xH Φ(n)H

)T ¯Σ−1
]
.

4.4.3 Multi-Objective Optimization

From the discussions of previous subsections, we notice that if the solution of (4.27)

is used one would achieve an efficient sparse-estimation result. Alternatively, solv-

ing (4.31) we might get improved performance of the underlying detection problem.

Hence, based on these arguments, we devise a constrained MOO problem to design

the spectral parameters of the OFDM waveform, al, such that the upper bound on

the sparse-estimation error is minimized and the squared Mahalanobis-distance of the

detection problem is simultaneously maximized. Mathematically, this is represented

as

aopt =





arg mina∈CL

∑L−1
l=0

λ2
l kl σ2

a4
l ρ4

8kl
(Ψ̃)

,

arg maxa∈CL aH
[∑N−1

n=0

(
Φ(n) xxH Φ(n)H

)T ¯Σ−1
]
a





,(4.32)

subject to aHa = 1.

We employ the standard nondominated sorting genetic algorithm II (NSGA-II) [70]

to solve our MOO problem, imposing a restriction on the solutions to satisfy the

constraint aHa = 1. The use of NSGA-II provides us with multiple Pareto-optimal

solutions in a single run.
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4.5 Numerical Results

In this section, we present the results of several numerical examples to illustrate the

sparse-estimation performance for a target-detection problem and to demonstrate the

performance improvement due to the adaptive OFDM waveform design technique.

First, we provide a description of the simulation setup and then discuss different

numerical examples.

Fig. 4.2 schematically describes a scenario that we used in the simulations. For

simplicity, we again considered a 2D scenario, where both the radar and target were

in the same plane. Our analyses can easily be extended to 3D scenarios. The details

of the target and radar parameters are as follows:

• Target and multipath parameters:

– Throughout a given CPI, the target remained within a particular range

cell. We simulated the situation of a range cell at a distance of 3 km from

the radar (positioned at the origin).

– The target was 13.5 m east from the center line, moving with velocity

v = (35/
√

2) (̂i + ĵ) m/s.

– There were two different paths between the target and radar: one direct

and one reflected, subtending angles of 0.26◦ and 0.51◦, respectively, with

respect to the radar.

• Radar parameters:

– Carrier frequency fc = 1 GHz.

– Available bandwidth B = 100 MHz.
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Figure 4.2: A schematic representation of the multipath scenario considered in the
numerical examples.

– Number of OFDM subcarriers L = 3.

– Subcarrier spacing of ∆f = B/(L + 1) = 25 MHz.

– Pulse width T = 1/∆f = 40 ns.

– Pulse repetition interval T
P

= 4 ms.

– Number of coherent pulses N = 20.

– All the transmit OFDM weights were equal; i.e., al = 1/
√

L ∀ l.

To apply a sparse estimation approach, we partitioned the signal paths and target

velocities into P = 5 and V = 3 uniform grid points. We considered signal paths

that subtended angles of {−0.5◦,−0.25◦, 0◦, 0.25◦, 0.5◦} with respect to the radar

and target velocities of {25, 35, 45} m/s. Hence, according to our description in

Section 4.2.1, we had kl = 2 ∀ l and k = 6. We generated the noise samples from a

CN (0, 1) distribution, and then scaled the samples to satisfy the required target to
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clutter-plus-noise ratio (TCNR), defined as

TCNR =
xH x

N Lσ2
0

. (4.33)

Here we kept the clutter-plus-noise power same across all the subcarriers by consid-

ering Σ = σ2
0 IL. The scattering coefficients of the target, x, were varied to simulate

different operational scenarios, the details of which are described later.

We analyzed the performance characteristics of our proposed technique in terms of

the following two measures:

• Root mean squared error (RMSE): Since we applied a sparse estimation ap-

proach, the standard performance measure is given by the RMSE of the esti-

mated vector with respect to the true sparse vector, i.e., ‖x̂− x‖2. We per-

formed Monte Carlo simulations of 100 independent trials and averaged the

results to obtain the RMSE values.

• Empirical ROC: Since the underlying task was a target-detection problem, we

also computed an empirical ROC to characterize our method. In our simula-

tions, out of the total LPV = 45 grid points, k = 6 grid points contained the

target responses, and the remaining (LPV − k) = 39 grid points did not have

target responses. After each Monte Carlo run, we noted the number of grid

points, n
T
, that corresponds to the estimated target response. Out of these

n
T

grid points, if n
D

grid points lie within the set of true 6 grid points and if

n
FA

= (n
T
−n

D
) lie within the remaining 39 grid points, then we can define the

empirical probabilities of false alarm (P
FA

) and detection (P
D
) as

P
FA

=
n

FA

LPV − k
, P

D
=

n
D

k
. (4.34)
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Figure 4.3: Comparison of performances of the standard Dantzig selector and decom-
posed Dantzig selector to detect Target 1 in terms of the (a) normalized RMSE, (b)
empirical ROC, and (c) computation time with respect to the target to clutter-plus-
noise ratio.

Finally, we averaged the results over 100 independent Monte Carlo runs to plot

the empirical ROC.

Estimation and Detection Performance

We considered two different targets in our simulations. Target 1 had equal scattering

responses across all the subcarriers; i.e., x
(1)
l,d = [1, 1, 1]T and x

(1)
l,r = [0.5, 0.5, 0.5]T were
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the scattering coefficients of Target 1 along the direct and reflected paths, respectively.

For Target 2, we considered varying responses over different subcarriers; i.e., x
(2)
l,d =

[4, 1, 2]T and x
(2)
l,r = [2, 0.5, 2]T . Figs. 4.3 and 4.4 show the performance characteristics

of Target 1 and Target 2, respectively, at different TCNR values. We employed both

the standard DS of (4.9) and our decomposed DS of (4.13) to reconstruct the sparse

vector. We noticed that the decomposed DS performs better than the standard DS

both in terms of normalized RMSE and empirical ROC, although the improvement is

not huge, apart from the low TCNR conditions. However, we got a drastic reduction

in computation time (less than half of that required by the standard DS) when we

used the decomposed DS.

Adaptive Waveform Design

To study the improvement in performance due to the adaptive waveform design

techniques, we separately considered both the single-objective optimization problems

in (4.27) and (4.31), and the multi-objective optimization method in (4.32) for two

different targets.

Minimizing the upper bound on the sparse-estimation error, i.e., as a solution of

(4.27), yielded a(1) = [0.54, 0.16, 0.83]. This solution depends only on the properties

of the system matrix Φ. It implies that we can expect an improved performance due

to the use of this a(1) irrespective of the target and noise parameters, which is evident

from Figs. 4.7 and 4.8 for Targets 1 and 2, respectively.

In (4.31), the matrix
[∑N−1

n=0

(
Φ(n) xxH Φ(n)H

)T ¯Σ−1
]

became diagonal due to

the choice of Σ = σ2
0IL. Therefore, the eigenvector corresponding to the largest

eigenvalue had only one entry equal to 1 with all others 0. For example, in the
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Figure 4.4: Comparison of performances of the standard Dantzig selector and decom-
posed Dantzig selector to detect Target 2 in terms of the (a) normalized RMSE, (b)
empirical ROC, and (c) computation time with respect to the target to clutter-plus-
noise ratio.
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Figure 4.5: Results of the NSGA-II for Target 1: (a), (b) optimal solutions and values
of the objective functions at the 0-th generation; (c), (d) optimal solutions and values
of the objective functions at the 5-th generation; and (e), (f) optimal solutions and
values of the objective functions at the 50-th generation.
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Figure 4.6: Results of the NSGA-II for Target 2: (a), (b) optimal solutions and values
of the objective functions at the 0-th generation; (c), (d) optimal solutions and values
of the objective functions at the 5-th generation; and (e), (f) optimal solutions and
values of the objective functions at the 50-th generation.
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Figure 4.7: Comparison of performances due to the fixed and adaptive waveforms to
detect Target 1 in terms of the (a) normalized RMSE and (b) empirical ROC with
respect to the target to clutter-plus-noise ratio.

case of Target 1, all the diagonal entries were equal, and so the solution of (4.31)

could be either a(2) = [1, 0, 0]T or [0, 1, 0]T or [0, 0, 1]T . For Target 2, which had a

stronger reflection along the first subcarrier, the solution of (4.31) was a(2) = [1, 0, 0]T .

To check whether the solution of (4.31) puts all the transmitted energy along the

subcarrier that has the strongest target reflection energy, we devised Target 3 to

have reflection coefficients x
(3)
l,d = [1, 10, 1]T and x

(3)
l,r = [0.5, 5, 0.5]T , and found the

optimal solution to be a(2) = [0, 1, 0]T . Hence, we concluded that the maximization

of the Mahalanobis distance provided an adaptive waveform with all the signal energy

transmitted over a single subcarrier that had the strongest target response. However,

while doing so, we were effectively using a single-carrier waveform that could not

provide any frequency diversity. Therefore, we did not analyze the performance of

our system with this type of adaptive waveform.

To solve the MOO problem (4.32), we employed the NSGA-II with the following

parameters: population size = 500, number of generations = 50, crossover proba-

bility = 0.9, and mutation probability = 0.1. We applied the constraint aHa = 1
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Figure 4.8: Comparison of performances due to the fixed and adaptive waveforms to
detect Target 2 in terms of the (a) normalized RMSE and (b) empirical ROC with
respect to the target to clutter-plus-noise ratio.

in a relaxed way by ensuring that the solutions satisfy 0.999 ≤ aHa ≤ 1.001. We

plotted the results of the optimal solutions and corresponding values of the two ob-

jective functions (at three different generations) in Figs. 4.5 and 4.6 for Targets 1

and 2, respectively. The constraint aHa = 1 ensured that all the solutions could

be represented on the surface of a sphere, restricted to the first octant, when
∣∣a1opt

∣∣,
∣∣a2opt

∣∣, and
∣∣a3opt

∣∣ constitute the axes in Cartesian coordinates. We further noticed

that the solutions reached the optimal Pareto-front very quickly. By the end of

the 5-th generation, almost all the solutions resided on or close to the Pareto-front.

We took one of the solutions from the Pareto front after the 50-th generation (e.g.,

aopt = [0.60, 0.40, 0.70]T for Target 1 and aopt = [0.98, 0.11, 0.17]T for Target 2) and

evaluated the performance characteristics of our system. The results are shown in

Figs. 4.7 and 4.8 for Targets 1 and 2, respectively. We observed that due to its depen-

dance on the target parameters the NSGA-II optimized waveform, aopt, performed

better than both the `1-CMSV–based adaptive waveform, a(1), and a fixed waveform

having al = 1/
√

L ∀ l.
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Figure 4.9: Results of the NSGA-II for Target 3: (a), (b) optimal solutions and values
of the objective functions at the 50-th generation.

From the results of the MOO problem, we could also understand that there is some

relationship between the energy distribution of the optimal waveform, aopt, and that

of the target response, x, along different subcarriers. To investigate further, we

took the average over the whole population of 500 solutions and found aopt,avg =

[0.61, 0.39, 0.68]T for Target 1 and aopt,avg = [0.88, 0.20, 0.36]T for Target 2. Though

it was not clear for Target 1, from the results of Target 2 we observed that the

averaged energy-distribution of the optimal waveform across different subcarriers were

in proportion to the energy-distribution of the target. As further confirmation, we

ran the NSGA-II for Target 3 as well. Fig. 4.9 depicts the optimal solutions and

corresponding values of the objective functions at the end of the 50-th generation. In

this case, the average over all 500 solutions was aopt,avg = [0.13, 0.96, 0.15]T . Hence,

in general, we can conclude that the solution of the MOO distributes the energy of

the optimal waveform across different subcarriers in proportion to the distribution of

the target energy; i.e., it puts more signal energy into that particular subcarrier in

which the target response is stronger. Since in our simulation we kept the noise power

fixed and varied only the target energies over different subcarriers, we can extend our
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Figure 4.10: Comparison of performances due to the fixed and adaptive waveforms
to detect Target 3 in terms of the (a) normalized RMSE and (b) empirical ROC with
respect to the target to clutter-plus-noise ratio.

conclusion by drawing synonymity between the target energy and TCNR value. In

Fig. 4.10, we also demonstrated the performance of our system for Target 3 using

fixed and adaptive waveforms.

4.6 Summary

We proposed a multi-objective optimization technique to design the spectral param-

eters of the OFDM signal for detecting a moving target in the presence of multipath

reflections. We first developed a sparse measurement model that accounts for the

target returns over all possible signal paths and target velocities. To estimate the

sparse vector, we employed a collection of multiple small Dantzig selectors that ex-

ploit more prior structures of the sparse vector than the standard DS. Then, we

proposed a criterion to optimally design the spectral parameters of the transmitting
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OFDM waveform by solving a constrained MOO problem, which simultaneously opti-

mizes two objective functions: minimizing the upper bound on the estimation error to

improve the efficiency of sparse-recovery and maximizing the squared Mahalanobis-

distance to increase the performance of the underlying detection problem. When the

noise powers over different subcarriers were the same, we inferred that the solution of

the MOO distributes the energy of the optimal waveform across different subcarriers

in proportion to the distribution of the target energy.

In the next chapters, we study the usage of an adaptive OFDM radar for track-

ing problems: single-target tracking in low-grazing angle scenarios and multi-target

tracking by exploiting the inherent delay-Doppler sparsity.
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Chapter 5

Target Tracking in Low-Grazing

Angle Scenarios4

In this chapter, we propose an information theoretic waveform design algorithm for

target tracking in a low-grazing angle (LGA) scenario [71] – [73]. To develop an

accurate tracking method, we incorporate realistic physical and statistical effects,

such as the earth’s curvature, vertical refractivity gradient of the lower atmosphere,

and compound-Gaussian characteristics of sea-clutter, into our model. We employ

a co-located multiple-input multiple-output (MIMO) radar configuration [79] using

a wideband OFDM signalling scheme. Additionally, we use polarization-sensitive

transceivers to resolve the multipath signals with small separation angles [80], [81].

We apply a sequential Monte Carlo method (particle filter) to track the target. Our

tracker works in a closed-loop fashion with an integrated optimal waveform design

technique based on maximum mutual information criterion [85].

4Based on S. Sen and A. Nehorai, “OFDM MIMO radar with mutual-information waveform
design for low-grazing angle tracking,” IEEE Trans. Signal Process., vol. 58, no. 6, pp. 3152-3162,
Jun. 2010. c©[2010] IEEE.
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Figure 5.1: Low-grazing angle tracking is a challenging problem in maritime applica-
tions.

5.1 Introduction

Tracking targets in an LGA scenario [71] – [73] is one of the most challenging prob-

lems in radar. To develop an accurate tracking method, it is important to incorporate

the underlying physical phenomena. In an LGA scenario, the radar measurements

are affected by many factors [153] – [155], such as the ever-changing meteorological

conditions in the troposphere (the lowest portion of earth’s atmosphere), curved sur-

face of the earth, roughness of the sea-surface, etc. Therefore, the challenge is to

consider these complex physical behaviors as realistically as possible, yet keep the

model amenable to signal processing. In this work, we consider the effects of both

the earth’s curvature and linear refractivity gradient of the horizontally stratified at-

mosphere [153] while modeling specular multipath signals. The randomly reflected

returns (clutter), which also depend on the transmitted signal [113], are statistically

modeled as a compound-Gaussian process [77], [78].

Furthermore, to resolve the specular multipath components, it is useful to use short

pulse, multi-carrier wideband radar signals [71], [156], [157]. Therefore, we employ an

OFDM signalling scheme, which is one of the ways to accomplish simultaneous use of
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several subcarriers. The frequency diversity of OFDM also provides richer informa-

tion about the target. To achieve such waveform diversity, we employ a co-located

MIMO radar configuration [79], with each transmitter operating at one of the OFDM

subcarrier frequencies. Additionally, in [80], [81], it is shown that polarization al-

lows identification of correlated source signals (e.g., multipath) with small separation

angles. Hence, we include polarization-sensitive transceivers in this work.

To track the target we use a sequential Monte Carlo method (particle filter) [82] –

[84], which is known to be effective for solving nonlinear and non-Gaussian Bayesian

inference problems. In addition to target position and velocities, we also track the

polarimetric parameters of the target at different frequencies. However, in contrast

to the conventional open-loop tracker, we integrate the tracking procedure with an

information theoretic waveform design algorithm. The idea of combining a waveform

design procedure into a radar tracking system was first introduced in [158]. This type

of integration (closed-loop system) enables us to achieve better tracking performance

by matching the waveform with the operational scenario involving dynamic target

states and nonstationary environmental conditions.

We propose the waveform design criterion based on mutual information (MI) [85]

between the state and measurement vectors. The choice of MI criterion provides a

computationally more efficient approach than the posterior Cramér-Rao bound based

waveform design technique [113]. We select the optimal OFDM waveform at the

k-th pulse interval to maximize the MI between the state and measurement vectors

at the (k + 1)-th pulse interval, utilizing all the measurement history up to k-th

pulse. Furthermore, the computation of our MI criterion does not depend on the

specific value of the measurement at the (k + 1)-th pulse duration; see also [159],

[160]. This makes our algorithm more practical. Our numerical examples demonstrate
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the importance of realistic physical modeling, effects of frequency diversity through

the OFDM MIMO configuration, and achieved performance improvements due to

adaptive OFDM waveform design.

5.2 Tropospheric Propagation Models

In vacuum or free space, the refractive index n of the medium remains constant, and

therefore the rays traced by electromagnetic (EM) waves travel in straight lines. This

type of situation may happen only under very stable atmospheric conditions and at

sufficiently high altitude. However, in LGA scenarios, both the curvature of the earth

and variability of the refractive index affect the EM propagation. According to [153],

for frequencies less than 10 GHz, the variation of the refractive index with other

physical parameters of the atmosphere can be represented as

N = 106(n− 1) = 77.6
P

T
+

(
3.73× 105

) e

T 2
, (5.1)

where N is called the radio refractivity; P and e are the total atmospheric pressure

and partial pressure of the water vapor in millibars; and T is the absolute temperature

in degrees Kelvin. Since these atmospheric effects take place at the molecular scale,

it is noted that N remains independent of frequency and polarization up to at least

15 GHz [155].

In normal atmospheric conditions, the pressure decreases exponentially with height,

which primarily causes a reduction in the value of N with respect to height h.

For the standard atmosphere, the gradient of such variation is considered to be

−79 ≤ dN/dh ≤ 0 N -units/km [154]. Under this condition, a radio ray will diffract
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downward, but with a curvature less than earth’s radius. Apart from this stan-

dard (normal) atmosphere, there are substandard (worse than normal) and super-

standard (better than normal) propagation conditions corresponding to dN/dh ≥ 0

and −157 ≤ dN/dh ≤ −79 N -units/km, respectively [154, Table 1].

Furthermore, in a maritime environment, due to the strong humidity gradients im-

mediately above (within first few meters) the air-sea boundary, one may find an

evaporation duct, in which dN/dh ≤ −157 N -units/km [154]. This makes a radio

ray bend downward with a curvature more than earth’s radius and ultimately cre-

ates a trapping layer like a waveguide. Therefore, only certain modes of EM waves

satisfying the required boundary conditions can propagate through such layers even

beyond the radio horizon. The frequencies of such modes depend strongly on the

existing duct height, with a practical lower limit of about 3 GHz [161]. The evap-

oration duct heights are in turn highly variable in space and time, depending on a

number of factors including the temperature difference between the air and sea, and

the wind speed [162], [163]. Various other effects and experimental results related

to the evaporation duct on radar and communication have been discussed in [164]

– [168].

In addition to these atmospheric effects, LGA propagations are affected also by the

fact that the earth is curved. The curvature of the earth decreases the path length

difference between the direct and reflected waves, and it also reduces the amplitude of

the reflected waves [169]. The classical way to deal with this problem is to replace the

actual earth with radius a = 6378.1 km with an imaginary flat earth with equivalent

radius

ae = a

(
1 + a

dN

dh
10−6

)−1

. (5.2)
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Figure 5.2: Equivalent representations of curved and flat earth models.

Then, for any two points at heights h and z and separated from each other by ground

distance r, as shown in Fig. 5.2, we can write an equivalent version of the modified

heights over the flat-earth model as [169], [170]

h′ ' h− r2
1

2ae

, (5.3)

z′ ' z − (r − r1)
2

2ae

, (5.4)

where the point of reflection r1 is evaluated by solving the following cubic equa-

tion [153]

2r3
1 − 3rr2

1 +
[
r2 − 2ae(h + z)

]
r1 + 2aehr = 0. (5.5)

Here, if h denotes the height of a radar, then from (5.3) we can also compute the

radar horizon, rh, by equating h′ to zero [153], [169]; i.e.,

rh =
√

2aeh. (5.6)

In the rest of the chapter, whenever we mention h′ and z′ we implicitly mean that we

use the equivalent flat-earth transformations given in (5.3) and (5.4).
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5.3 Problem Description and Modeling

In this section, we first present a dynamic state model for target tracking. In the

state vector we include target position, velocity, and scattering coefficients at different

frequencies. Then, we develop an OFDM MIMO radar signal model accounting for

polarimetric measurements over multiple frequencies.

5.3.1 Dynamic State Model

We consider the position, velocity, and scattering parameters at different frequencies

of the target into our state model. The scattering matrix of the target at a particular

frequency can be represented as

Xt
l =




xhh
l xhv

l

xvh
l xvv

l


 , (5.7)

where xhv
l is the complex scattering coefficient of the target in the horizontally po-

larized component of the received signal due to the vertically polarized component of

the transmitted signal at the l-th frequency; similarly for the other quantities. From

Huynen’s work [171], we also know that

Xt
l , U ∗

l DlU
H
l , (5.8)

where
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• U l is a unitary matrix

U l =




cos ϑl − sin ϑl

sin ϑl cos ϑl







cos εl j sin εl

j sin εl cos εl


 , (5.9)

where ϑl is the orientation angle of the target ellipse at the l-th frequency with

respect to line of sight and relative to the radar (−90◦ ≤ ϑl ≤ 90◦); εl is the

ellipticity of the target at the l-th frequency (−45◦ ≤ εl ≤ 45◦) [172].

• Dl is a diagonal matrix

Dl = ml e
j%l




ejςl 0

0 e−jςl tan2 $l


 , (5.10)

where ml is the maximum target amplitude at the l-th frequency (representing

an overall measure of target RCS); %l is the absolute phase of the scattering

matrix at the l-th frequency (−180◦ ≤ %l ≤ 180◦); ςl is called the target skip

angle at the l-th frequency (−45◦ ≤ ςl ≤ 45◦); and $l is called the target char-

acteristic angle at the l-th frequency (0◦ ≤ $l ≤ 45◦) [172].

In general, all of these six target variables ϑl, εl, ml, %l, ςl, and $l are functions of

frequency and aspect direction [171].

Considering a target at position (x, y, z) and moving with velocity v (= ẋî+ ẏĵ+ żk̂),

we construct the state vector as follows:

ζ =
[
x, y, z, ẋ, ẏ, ż, ϑT , εT ,mT , %T , ςT ,$T

]T
, (5.11)
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where ϑ = [ϑ1, . . . , ϑL
]T , ε = [ε1, . . . , εL

]T , m = [m1, . . . ,mL
]T , % = [%1, . . . , %L

]T ,

ς = [ς1, . . . , ςL
]T , and $ = [$1, . . . , $L

]T .

Assuming constant velocity movement, we obtain a linear dynamic state equation at

the k-th pulse duration as

ζk =







I3 T
P
I3

0 I3


 0

0 I6L




ζk−1 + wk, for k = 1, 2, . . . , (5.12)

where T
P

denotes the PRI and w represents the state noise. In this model, we consider

that the scattering coefficients of the target are almost constant temporally. This is

true, for example, when the target is far away from the radar. We assume w to be

a zero-mean Gaussian distributed random vector with covariance matrix [173, Ch.

6.2.2]

Σw =




qpv




T 3
P

3
I3

T 2
P

2
I3

T 2
P

2
I3 T

P
I3


 0

0 qscatI6L




,

where qpv and qscat are constants. Hence, the position and velocity of the target are

statistically independent of the scattering coefficients.

5.3.2 Measurement Model

We consider a linear array of L transceivers forming an L × L co-located MIMO

configuration. Each of the transceivers is positioned at (0, 0, hl) , l = 0, 1, . . . , L − 1,

and transmits a carrier frequency fl forming an OFDM signal. Each of the transceivers
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Figure 5.3: (a) Direct-direct, (b) direct-reflected, (c) reflected-direct, and (b)
reflected-reflected signal paths.

is capable of transmitting and receiving polarized signals. We formulate the complex

envelope of the signal at the j-th receiver due to the i-th transmitter during the k-th

pulse duration as a summation of three terms:

yij(t, ζk) = µij(t, ζk) + cij(t) + eij(t), for i, j = 0, . . . , L− 1, t = 0, . . . , N − 1,(5.13)

where µij(t, ζk) represents a coherent sum of the direct and specularly reflected signals

(see Fig. 5.3), and it depends on the target state vector ζk; cij(t) represents the clutter,

comprising of any randomly reflected returns within the time-span of interest; eij(t) is

the thermal noise; and N is the number of temporal samples per pulse. Observe that

to simplify the notations we omit the dependence of cij(t) and eij(t) on k in (5.13).

This is justified because the dependence on k will not play a role in our statistical

analysis of Section 5.3.4, since we will assume that the statistical properties of the

clutter return and measurement noise are temporally white. Furthermore, though the

mathematical notation of the number of temporal samples is inconsistent with that

of the electrical refractivity, the exact meaning can always be understood from the

context.
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From Fig. 5.3, we can represent µij(t, ζk) as

µij(t, ζk) = µdd
ij (t, ζk) + µdr

ij (t, ζk) + µrd
ij (t, ζk) + µrr

ij(t, ζk), (5.14)

where

µdd
ij (t, ζk) = B(θd

j , φ) Xt
i ξ

(
τdd
ij , fdd

Dij

)
,

µdr
ij (t, ζk) = B(θr

j, φ)Γj Xt
i ξ

(
τdr
ij , fdr

Dij

)
,

µrd
ij (t, ζk) = B(θd

j , φ) Xt
i Γi ξ

(
τ rd
ij , f rd

Dij

)
,

µrr
ij(t, ζk) = B(θr

j, φ)Γj Xt
i Γi ξ

(
τ rr
ij , f

rr
Dij

)
,

with

ξ (τ, fD) , p(αi, βi), ai e
−j2π (fi+fD) τ ej2π fD t, (5.15)

and

• φ = arctan (y/x), θd
j = arctan

(
(z′ − h′j)/

√
x2 + y2

)
, θr

j = arctan
(
(z′ + h′j)/

√
x2 + y2

)
.

• B(θ, φ) denotes the array factor for a two-dimensional polarimetric sensor, de-

fined as [80]

B(θ, φ) =



− sin φ − cos φ sin θ

0 cos θ


 . (5.16)

• Xt
i is the scattering matrix of the target. Here we consider same Xt

i for both

the direct and reflected paths, assuming that their angular separation is not

large for every receiver in a co-located MIMO setup.
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• The reflection matrix due to the reflecting surface is given as

Γj =




γh
j 0

0 γv
j


 , (5.17)

where

γh
j ,

sin θr
j −

√
ε0 − cos2 θr

j

sin θr
j +

√
ε0 − cos2 θr

j

≈ −1 when θr
j ≈ 0◦,

γv
j ,

ε0 sin θr
j −

√
ε0 − cos2 θr

j

ε0 sin θr
j +

√
ε0 − cos2 θr

j

≈ −1 when θr
j ≈ 0◦,

and ε0 is the relative permittivity at the reflecting surface.

• The transmitting polarization vector is given as [80]

p(αi, βi) ,




cos αi sin αi

− sin αi cos αi







cos βi

j sin βi


 , (5.18)

with αi and βi are the orientation and ellipticity of the i-th polarization ellipse.

• a ,
[
a0, a1, . . . , aL−1

]T
represents the complex weights transmitted over L trans-

mitters (and also subcarriers).

• The delays and Doppler frequencies are expressed as

τdd
ij = τ (h′i) + τ

(
h′j

)
, τdr

ij = τ (h′i) + τ
(−h′j

)
,

τ rd
ij = τ (−h′i) + τ

(
h′j

)
, τ rr

ij = τ (−h′i) + τ
(−h′j

)
,

fdd
Dij = fD (h′i) + fD

(
h′j

)
, fdr

Dij = fD (h′i) + fD

(−h′j
)
,

f rd
Dij = fD (−h′i) + fD

(
h′j

)
, f rr

Dij = fD (−h′i) + fD

(−h′j
)
,
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where

τ (h) , 1

c

[√
x2 + y2 + (z′ − h)2

]
,

fD (h) , fi

c

[
xẋ + yẏ + (z′ − h)ż′√

x2 + y2 + (z′ − h)2

]
,

and fi = fc + i ∆f denotes the i-th transmitting frequency.

Stacking the measurements of all L × L transmitter-receiver pairs and N temporal

instants into a 2L2N × 1 column vector we get

yk = µ(ζk) + c + e, (5.19)

where y(tn, ζk) =
[
y00(tn, ζk)

T , . . . , y0L−1(tn, ζk)
T , . . . , yL−1L−1(tn, ζk)

T
]T

and yk =
[
y(t0, ζk)

T ,y(t1, ζk)
T , . . . , y(tN−1, ζk)

T
]T

; similarly for µ, c, and e.

5.3.3 Clutter Model

We model the clutter component, which also depends on the transmitted signal [113],

as follows:

cij(t) = B(θc
j , φ) Xc

i (t) ξ
(
τ c
ij, 0

)
, (5.20)

where θc indicates the direction of the radar beam; Xc
i (t) is the scattering matrix of

the clutter; τ c
ij is the corresponding average clutter delay; ξ (·) is defined in (5.15).

Here we assume that the clutter does not introduce any Doppler shift. Following [174],
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we define

xc
i (t) ,

[
xhh,c

i , xvv,c
i , xhv,c

i , xvh,c
i

]T

, (5.21)

P̃
c

ij ,




p̃c
1 0 p̃c

2 0

0 p̃c
2 0 p̃c

1


 , (5.22)

[p̃c
1, p̃

c
2]

T , ξ
(
τ c
ij, 0

)
= p(αi, βi) ai e

−j2πfiτ
c
ij . (5.23)

Hence, we can rearrange (5.20) to express the clutter scattering coefficients in a vector

form as

cij(t) = B(θc
j , φ) P̃

c

ij xc
i (t). (5.24)

5.3.4 Statistical Assumptions

In LGA scenarios, it is known that the clutter from the sea surface produces spikes

or higher amplitude returns, and therefore the probability density function of the

complex envelope of the sea-clutter returns exhibits heavy tails, which is significantly

deviated from a standard Gaussian model [112], [175], [176]. Hence from the physical

mechanism, a two-scale sea-surface scattering model, termed compound-Gaussian

model, is developed [77], [78]. According to this model, the complex envelope of the

sea-clutter returns can be written as a product of two components

xc
i (t) =

√
u(t) χ(t), (5.25)

where u(t), referred to as texture, is a slow-changing component that describes the

underlying mean power level, and χ(t), referred to as speckle, is a fast-changing
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component that accounts for local backscattering. Various distributions are used

to appropriately characterize the texture component [112]. We model the texture

component as an inverse gamma random variable, since this distribution fits well with

the real sea-clutter data [177]. The speckle component is assumed to be a stationary

complex Gaussian process with zero mean and covariance Σc, which is parameterized

as [174]

Σc =




σ2
p p(αc, βc) p(αc, βc)H + σ2

u I2 0

0 pxI2


 , (5.26)

where σ2
p and σ2

u are the power of the polarized and unpolarized components of the

clutter, respectively; αc and βc are the orientation and ellipticity of the clutter polar-

ization ellipse, respectively; the polarization vector p(·) is defined in (5.18); and px is

the power of the cross-polarized clutter components.

We assume that the thermal noise component, eij, is a complex Gaussian vector with

zero mean and covariance σ2
eI2, and it is uncorrelated with the clutter return. We

further assume that the clutter and noise responses are uncorrelated among different

frequency channels, and are spatially and temporally white. Under these assumptions,

we can write the conditional distribution of the measurement vector as

yk|u, µ(ζk) ∼ CN2L2N ( µ(ζk), Σ) , (5.27)

where

Σ = IN ⊗
(
Q (IL2 ⊗ uΣc) QH + σ2

eI2L2

)
,

Q , blkdiag
(
B(θc

0, φ)P̃
c

00, . . . , B(θc
L−1, φ)P̃

c

L−1L−1

)
.
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5.4 Tracking Filter

We employ a sequential Monte Carlo method [82] – [84], which is known to be powerful

for solving nonlinear and non-Gaussian Bayesian inference problems. In this approach

the key idea is to represent the posterior density function by a set of random sample

points with associated weights and to compute the required estimates based on these

samples and weights.

Let ζ
(i)
k , i = 1, 2, . . . , Nζ , denote the sample points with associated weights w

(i)
k , i =

1, 2, . . . , Nζ , that characterize the posterior density function at the k-th time instant.

Mathematically

p(ζk|yk) ≈
Nζ∑
i=1

w
(i)
k δ

(
ζk − ζ

(i)
k

)
. (5.28)

However, in practice the samples ζ
(i)
k , i = 1, 2, . . . , Nζ , are generated from a proposal

(or importance) density function q
(
ζ

(i)
k |ζ(i)

k−1,yk

)
, which is easier to sample from.

Then, the corresponding weights are updated as [82]

w
(i)
k ∝ w

(i)
k−1

p
(
yk|ζ(i)

k

)
p
(
ζ

(i)
k |ζ(i)

k−1

)

q
(
ζ

(i)
k |ζ(i)

k−1, yk

) . (5.29)

In this work, we use the transitional prior, p
(
ζ

(i)
k |ζ(i)

k−1

)
, i = 1, 2, . . . , Nζ , as the

importance density function. Since we include the target position, velocity, and scat-

tering coefficients into the state vector, the dimension of our state space is very large.

So we apply the Gibbs sampling technique [178] to draw samples from p
(
ζ

(i)
k |ζ(i)

k−1

)
.

We partition our state vector into seven parts as ζ =
[
ζ̃

T
,ϑT , εT ,mT ,%T , ςT , $T

]T

,
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where ζ̃ includes only the target position and velocity. This partitioning is done fol-

lowing the statistical independence of each part with others. Then, we draw the

corresponding seven sets of particles as ζ̃
(i)

k ∼ p
(
ζ̃k|ζ̃

(i)

k−1

)
, ϑ

(i)
k ∼ p

(
ϑk|ϑ(i)

k−1

)
,

and so on to obtain ζ
(i)
k =

[
(ζ̃

(i)

k )T , (ϑ
(i)
k )T , (ε

(i)
k )T , (m

(i)
k )T , (%

(i)
k )T , (ς

(i)
k )T , ($

(i)
k )T

]T

.

The importance weights are realized as w
(i)
k ∝ w

(i)
k−1p

(
yk|ζ(i)

k

)
. However, since our

likelihood function does not have a closed-form expression, we use the generalized

Gauss-Laguerre quadrature formula [179, Ch. 5.3] to numerically evaluate

p(yk|ζ(i)
k ) =

∫

U
p(yk|u, ζ

(i)
k ) p(u) du ≈

G∑
g=1

w̃g p(yk|ug, ζ
(i)
k ), (5.30)

where G is the quadrature order, and ug and w̃g are the abscissas and weights of the

generalized Gauss-Laguerre quadrature. The key steps of this tracking algorithm is

explained using a flowchart in Fig. 5.4.

5.5 Adaptive Waveform Design

In this section, we propose an information theoretic waveform design technique for

improved tracking performance. Previous work in the application of information

theoretic criteria for radar waveform design includes [180] – [184] and the references

therein. Our approach is to mathematically formulate a utility function based on mu-

tual information of the target state and measurement vectors, and then to determine

the parameters of the next pulse by maximizing this utility function.
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5.5.1 Mutual Information

In probability theory and information theory, the mutual information of two random

variables is a quantity that measures the mutual dependence of the two variables.

Mathematically, the mutual information of two random variables X and Y is defined

as [85]

I(X; Y ) = EX,Y

[
log

p(X,Y )

p(X)p(Y )

]
, (5.31)

where p(X,Y ) is the joint probability distribution function and p(X), p(Y ) are the

marginal probability distribution functions of X and Y , respectively. Intuitively,

mutual information measures the information that X and Y share. For example, if

X and Y are independent, then their mutual information is zero, so knowing X does

not give any information about Y and vice versa. At the other extreme, if X and

Y are identical, then all information conveyed by X is shared with Y , i.e., knowing

X determines the value of Y and vice versa. We can get more insight about mutual

information from the following relationship

I(X; Y ) = H(X)−H(X|Y ), (5.32)

where H(X) is the marginal entropy of X and H(X|Y ) is the conditional entropy of

X given Y . H(X) quantifies the amount of uncertainty in X, and H(X|Y ) gives the

measure of the uncertainty remaining in X after Y is known. Thus, the difference

of these two quantities corroborates the intuitive meaning of mutual information as

the reduction of uncertainty (i.e., amount of information) in X after knowing Y .

Furthermore, from the notion of Bayesian inference, the mutual information can also

be expressed as the expectation (over the measurements Y ) of the Kullback-Leibler
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(KL) divergence [185] between the posterior and prior distributions, i.e.,

I(X; Y ) = EY [D
KL

( p(X|Y ) || p(X) )] . (5.33)

The more different the posterior and prior distributions, the greater is the information

gain due to the measurements.

5.5.2 Waveform Design

We develop a criterion that selects the optimal waveform at the k-th pulse duration

such that the mutual information between the state and measurement vectors at

the (k + 1)-th pulse duration is maximized. However, because of their availability

we must also exploit the measurement history y1:k = {y1, y2, . . . , yk} to improve our

optimization procedure. Hence, we formulate a utility function in terms of conditional

mutual information as follows:

Ĩ(ζk+1; yk+1|y1:k) = Eζk+1,yk+1|y1:k

[
log

p(yk+1|ζk+1,y1:k)

p(yk+1|y1:k)

]
. (5.34)

Defining

Λ(ζk+1, yk+1) , log
p(yk+1|ζk+1,y1:k)

p(yk+1|y1:k)
,

= log
p(yk+1|ζk+1)∫

ζ
p(yk+1|ζk+1)p(ζk+1|y1:k)dζk+1

, (5.35)

we can explicitly write (5.34) as

Ĩ(ζk+1; yk+1|y1:k) =

∫

ζ

[∫

y

Λ(ζk+1,yk+1) p(yk+1|ζk+1)dyk+1

]
p(ζk+1|y1:k)dζk+1.(5.36)
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We use Monte Carlo integration to compute this integral. To calculate the outer

integral we need samples of the state ζk+1. From the posterior density function at

the k-th time step, p(ζk|y1:k), we obtain Nζ samples ζ
(i)
k and associated weights w

(i)
k .

Then, the corresponding samples and weights at the (k +1)-th time instant are given

as ζ
(i)
k+1 and w

(i)
k , where ζ

(i)
k+1 ∼ p(ζk+1|ζ(i)

k ) [113]. To calculate the inner integral,

we need samples of the measurement yk+1. We draw Ny independent and identically

distributed samples for each ζ
(i)
k+1 from the likelihood function p(yk+1|ζ(i)

k+1). Then we

approximate (5.36) as

Ĩ(ζk+1; yk+1|y1:k) ≈ 1

Ny

Nζ∑
i=1

Ny∑
j=1

wi
k Λ( ζ

(i)
k+1,y

(j)
k+1 ), (5.37)

where

Λ(ζ
(i)
k+1,y

(j)
k+1) = log

p( y
(j)
k+1|ζ(i)

k+1 )
∑Nζ

l=1 w
(l)
k p( y

(j)
k+1|ζ(l)

k+1 )
,

and obtain the optimal waveform to be transmitted at the (k + 1)-th time instant as

aopt(k + 1) = arg max
a∈CL

Ĩ(ζk+1; yk+1|y1:k), subject to aHa = 1, (5.38)

where the constraint aHa = 1 ensures constant energy transmission. The lower block

of the flowchart in Fig. 5.4 describes the key steps involved in this waveform design

algorithm.
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5.6 Numerical Results

We present the results of several numerical examples to demonstrate the performance

of our tracker due to the incorporation of the realistic physical effects, frequency di-

versity of the OFDM signalling through MIMO configuration, and proposed adaptive

waveform design technique. First, we provide a description of the simulation setup

and then discuss different numerical examples.

• Target and clutter parameters:

– The target started at a position (x, y, z) = (17.32 km, 10 km, 20 m) and

was moving with velocity of 1000 (= 1000 cos(π/9)̂i+1000 sin(π/9)ĵ) m/s.

– The scattering parameters of the target were considered to be partially

known (ϑl = 45◦, εl = 36◦, %l = 0◦, νl = 0◦, $l = 0◦, for l = 0, . . . , L− 1)

except for m. Hence, the unknown state parameters that we tracked were

[x, y, z, ẋ, ẏ, ż,m0,m1, . . . ,mL−1]
T .

– In the target state model, we used qpv = 4.5× 10−3 and qscat = 4× 10−5.

– The parameters of the clutter covariance matrix were assumed to be al-

ready estimated (αc = 85◦, βc = 5◦, σ2
p = 0.6, σ2

u = 0.3, px = 0.1, and the

shape parameter of the inverse-gamma texture distribution = 4) and then

scaled to satisfy the required TCR and CNR, defined as

TCR , (1/N) µHµ

tr
{
Q (IL2 ⊗ uΣc) QH

} , (5.39)

CNR ,
tr

{
Q (IL2 ⊗ uΣc) QH

}

2L2σ2
e

. (5.40)

In our simulations, we used TCR = 5 dB and CNR = 10 dB.
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Figure 5.5: Comparison of the (a) true and estimated trajectories and (b) associ-
ated errors in position estimation due to the earth’s curvature and standard lower
atmosphere modeling.

• Radar parameters:

– Carrier frequency fc = 1 GHz.

– Total bandwidth B = 100 MHz.

– Number of OFDM subcarriers L = 3.

– Subcarrier spacing ∆f = B/(L + 1) = 25 MHz.

– All the transmit weights were equal, i.e., al = 1/
√

L ∀ l.

– Pulse width T = 1/∆f = 40 ns.

– Pulse repetition interval T
P

= 2 ms.

– Number of temporal samples per pulse N = 5.

– Number of transceivers L = 3 (forming a 3× 3 co-located MIMO configu-

ration).

– Positions of the transceivers were (0, 0, 40), (0, 0, 40.15), and (0, 0, 40.3) m,

maintaining an inter-sensor spacing of λc/2.

– Transmission polarization ellipses had αl = 0, βl = 45◦ ∀ l.
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Figure 5.6: Absolute error in scattering coefficients at three different frequencies with
(solid lines) and without (dotted lines) considering earth’s curvature and standard
lower atmosphere modeling.

Importance of Realistic Modeling

Fig. 5.5 depicts the tracking performance and associated errors in position estimation

with and without considering the effects of the earth’s curvature and standard lower

atmosphere (having dN/dh = −39 N -units/km) modeling. The plot with the trajec-

tories are typical, i.e., based on a single realization of the noise processes; whereas

the results on the position error estimation were averaged over 50 independent re-

alizations (with the same initial condition mentioned under the target parameters

but different realizations of the noise processes), and hence imply RMSE. In this

simulation, we did not consider the presence of any evaporation duct. In Fig. 5.6,

we plot the resultant absolute error associated with the target scattering coefficients

(m) at three different frequencies. It is evident from these plots that we achieved

better tracking accuracy, both for the target trajectory and scattering coefficients, by

incorporating the underlying physical effects.

We also studied the effects of an evaporation duct on the tracking performance and the

results are shown in Figs. 5.7 and 5.8. We changed the carrier frequency to 10 GHz,
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Figure 5.7: Comparison of the (a) true and estimated trajectories and (b) associ-
ated errors in position estimation due to the earth’s curvature and evaporating duct
modeling.
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Figure 5.8: Absolute error in scattering coefficients at three different frequencies with
(solid lines) and without (dotted lines) considering earth’s curvature and evaporation
duct modeling.
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Figure 5.9: Comparison of the (a) true and estimated trajectories and (b) associated
errors in position estimation due to the OFDM MIMO configurations.

and considered a trapping layer with dN/dh = −393 N -units/km [155, Table 2.1] and

with height enough to cover both the radar and target within it. Comparing Figs. 5.5

and 5.7 we noticed that the tracker, which ignored the effects of the earth’s curvature

and atmosphere, committed larger errors in estimating the target trajectory under

the presence of an evaporation duct compared to that in a standard atmosphere.

Effect of OFDM MIMO Configuration

In Fig. 5.9, we plot the estimated target trajectories along with the true trajectory and

associated position errors for two MIMO and one single-input-single-output (SISO)

configurations. We varied the power per transmitter accordingly to ensure that all of

these three configurations transmitted the same amount of power per pulse. We sim-

ulated this under a standard atmospheric condition with dN/dh = −39 N -units/km

and zero evaporation duct height. The results clearly demonstrated the improvement

gained due to the frequency diversity of the OFDM signalling through the MIMO

configuration.
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Figure 5.10: Comparison of the (a) true and estimated trajectories and (b) associated
errors in position estimation due to the polarization-sensitive transceivers.

Effect of Polarization

To understand the importance of polarimetric measurements, in Fig. 5.10(a) we show

a comparative plot of the estimated target trajectories along with the true trajectory

while considering only horizontal, then only vertical, and then jointly horizontal and

vertical polarizations. Fig. 5.10(b) depicts the associated position errors for these

three scenarios. While simulating with only horizontal or only vertical polarization,

we increased the power per transmitter by two so that all three setups employed the

same amount of power per pulse. We considered a standard atmospheric condition

with dN/dh = −39 N -units/km and zero evaporation duct height. The results clearly

demonstrated the improvement gained due to the polarization diversity.

Effect of Adaptive Waveform Design

Figs. 5.11 and 5.12 demonstrate the improvement in tracking performance due to

the adaptive waveform design in comparison with a fixed waveform. The adaptive
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Figure 5.11: Comparison of the (a) true and estimated trajectories and (b) associated
errors in position estimation due to the fixed and adaptive waveforms.
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Figure 5.12: Absolute error in scattering coefficients at three different frequencies
with fixed (dotted lines) and adaptive (solid lines) waveforms.

radar transmitted al = {0.3568, 0.4982, 0.7902}, which were computed using (5.38),

whereas the fixed radar used al = 1/
√

L = 0.5774 ∀ l. The constraint aHa = 1 in

(5.38) ensured that both the adaptive and fixed radars transmitted the same amount

of power per pulse. For this simulation too we considered a standard atmospheric

condition with dN/dh = −39 N -units/km and zero evaporation duct height.
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5.7 Summary

We developed an OFDM MIMO adaptive waveform design algorithm for low-grazing

angle target tracking based on mutual information criterion. We incorporated into the

model complex physical behaviors and statistical characteristics as realistically as pos-

sible, yet kept the model amenable to signal processing. We developed the parametric

measurement model of an OFDM MIMO radar system employing polarization-sensitive

transceivers. Based on the state and measurement models, we employed a particle

filter in a closed-loop fashion by integrating the adaptive waveform design procedure

with it. We selected the optimal OFDM waveform by maximizing the mutual in-

formation between the state and measurement vectors for one time-step ahead. In

the next chapter, we extend our work on tracking for multiple targets. However, for

simplicity, we do not consider any effects of multipath reflections.
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Chapter 6

Multi-Target Tracking Using

Delay-Doppler Sparsity5

In this chapter, we propose a sparsity-based approach to track multiple targets in

a region of interest using an OFDM radar. We observe that in a particular pulse

interval the targets lie at a few points on the delay-Doppler plane, and hence we

exploit that inherent sparsity to develop a tracking procedure. The use of an OFDM

signal not only increases the frequency diversity of our system, but also decreases

the block-coherence measure [90] of the equivalent sparse model. To maximize the

accuracy in the sparse-recovery we design the OFDM signal for the minimum block-

coherence measure. In the tracking filter, we used the same block-sparsity property

to propose a block version of the CoSaMP algorithm [91].

6.1 Introduction

For a number of years, the problem of simultaneous tracking of multiple targets has

been one of the most relevant and challenging issues in a wide variety of military

5Based on S. Sen and A. Nehorai, “Sparsity-based multi-target tracking using OFDM radar,”
IEEE Trans. Signal Process., to appear. c©[2010] IEEE.
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and civilian systems [186], [187]. Multi-target tracking is of primary interest in many

applications, such as radar tracking of airborne or ground moving vehicles, sonar

tracking of submarines, tracking of people for security purposes, and mobile robotics.

The situation becomes even more complicated when the tracks of two targets cross.

A large number of algorithms have been proposed in the literature to tackle the

multi-target tracking problem. The probabilistic data association (PDA) [188] and

joint probabilistic data association (JPDA) [189] algorithms employ a multi-hypothesis

approach per time step, in which several hypotheses are considered per target. How-

ever, at each time step, all the hypotheses per target are merged into one to provide a

single-hypothesis approach between time instances. On the other hand, the multiple

hypotheses tracking (MHT) [190] algorithm keeps track of all the possible data asso-

ciation hypotheses over time. However, this is an NP-hard problem, as the number

of association hypotheses grows over time [191]. To avoid an explicit data association

step, track before detect (TBD) [192], [193] algorithms have been developed using

particle filter theory [84], [194]. However, these may lead to large computational

complexity. With an increase in the number of targets, the dimensionality of the

joint state-space increases exponentially.

In this work, we look into the multi-target tracking problem from a different perspec-

tive. We observe that a multi-target scene is generated by keeping track of the range

and velocity (delay and Doppler, respectively) of each target over time. Suppose we

discretize the delay-Doppler plane into Nτ×Nβ grid points. Then, if number of targets

M ¿ Nτ Nβ, the target scene will be sparse in the delay-Doppler plane. This enables

us to efficiently track the targets by applying a sparse-recovery algorithm [91], [132]

– [134].
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First, we present a state model describing the dynamic behavior of the targets. Then,

we develop a parametric measurement model considering an OFDM radar. The use

of an OFDM radar increases the frequency diversity of the system and decreases the

block-coherence measure of the system matrix of the equivalent sparse measurement

model.

Next, by exploiting the sparsity in the delay-Doppler plane, we convert the OFDM

measurement model to an equivalent sparse measurement model, in which the nonzero

components of the sparse vector correspond to the scattering coefficients of the tar-

gets. However, due to the use of a multi-carrier OFDM signal, each target produces

multiple scattering coefficients, not a single value. Hence, our sparse vector exhibits

an additional structure in the form of the nonzero coefficients occurring in clusters.

Such vectors are referred to as block-sparse [88], [89]. We also study the proper-

ties of the associated block-sparse measurement matrix by deducing the expressions

of its sub-coherence and block-coherence measures [90]. From the expression of the

block-coherence, we prove that the minimum value of block-coherence is attainable

when equal amounts of energy are transmitted over the available OFDM subcarriers

and further prove that the minimum value is inversely proportional to the number of

OFDM subcarriers. Hence, this reconfirms the advantage of using the OFDM signals.

As pointed out in [88], the conventional CoSaMP algorithm provides two benefits.

It ensures speedy and robust recovery and provides tight error bounds by including

the ideas from the combinatorial algorithms [91]. Further, it has a simple, iterative

greedy structure that can be modified easily to incorporate the block-sparsity nature

of the sparse vector, instead of treating it as a conventional sparse vector and thereby

ignoring the additional structure in the problem. Therefore, in the tracking filter, we

propose to employ a block version of the CoSaMP algorithm, termed BCoSaMP.

115



At each pulse interval, we dynamically partition a smaller portion of the delay-Doppler

plane, depending on the predicted state parameters. We compare the performance of

our sparsity-based tracking method with that of a particle filter (PF) based tracking

procedure. Our results show that the sparsity-based tracking algorithm not only

takes much less time (about one order less) than the PF-based tracking procedure,

but also achieves equal (and sometimes better) tracking performance. In addition,

we find similar results when we apply compressive sensing (CS) to our sparse model,

by pre-multiplying the measurements with a Gaussian random matrix.

6.2 Problem Description and Modeling

Fig. 6.1 presents a schematic representation of the problem scenario. We consider an

OFDM radar system that overlooks a region of interest containing multiple moving

targets. We assume that the targets are at far-field with respect to the radar, i.e.,

the relative distance between any two targets is much smaller than their individual

distances with respect to the radar. Hence, at a particular pulse interval all the

targets can be associated with the same DOA unit vectors u.

6.2.1 Dynamic State Model

Suppose there are M targets in the region of interest. Each target’s dynamics are de-

scribed with individual states composed of its position and velocity. At the k-th pulse

interval, we denote the position coordinates of the m-th target as pm
k = [ xm

k , ym
k , zm

k ]T

and its velocity components as vm
k = [ ẋm

k , ẏm
k , żm

k ]T . Then, the state vector of the

m-th target at the k-th pulse interval is ζm
k , [ (pm

k )T , (vm
k )T ]T .
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Figure 6.1: A schematic representation of a multi-target tracking scenario (not drawn
to scale).

Assuming constant velocity movement, we obtain a linear dynamic state equation of

the m-th target at the k-th pulse interval as

ζm
k =




I3 T
P
I3

0 I3


 ζm

k−1 + wm
k , for m = 1, 2, . . . ,M, k = 1, 2, . . . , (6.1)

where T
P

denotes the sampling interval, which in our case is equal to the PRI. How-

ever, in practice the targets could exhibit accelerations or decelerations, which are

represented as the state noise vector w.

However, instead of the position and velocity, the radar tracks the targets using their

associated delays (τ) and Doppler factors (β). If we consider the radar to be at

position p0
k = [ x0

k, y0
k, z0

k ]T and moving with velocity v0
k , ẋ0

k î + ẏ0
k ĵ + ż0

k k̂, then we

can write the delay and Doppler expressions as

τm
k =

2

c
‖pm

k − p0
k‖2, (6.2)

βm
k =

2

c
〈uk,v

m
k 〉 −

2

c
〈uk,v

0
k〉, (6.3)
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Figure 6.2: Description of a particular target dynamics for two consecutive pulse
intervals.

where c is the speed of propagation; uk is the DOA unit vector, defined as uk ,

uxk î+uyk ĵ +uzk k̂ and ‖uk‖2 = 1; and vm
k is the target velocity represented in vector

form as vm
k , ẋm

k î + ẏm
k ĵ + żm

k k̂. Therefore, we can form a modified state dynamic

equation, similar to (6.1), by considering a modified state vector of the m-th target

at the k-th pulse interval, i.e., ζ̄
m
k , [τm

k , βm
k ]T .

Note that under the far-field assumption, as shown in Fig. 6.2, we can approximate

that uk ≈ uk−1, and due to the constant velocity movement we have vm
k ≈ vm

k−1.

Therefore, in terms of the Doppler factor we get

βm
k ≈ βm

k−1. (6.4)

Moreover, from Fig. 6.2 we can write

‖pm
k − p0

k‖2 ≈ ‖pm
k−1 − p0

k−1‖2 + |vm
k−1|T cos θ, (6.5)

where |vm
k−1| is the magnitude of the target velocity vector and θ is the angle between

the DOA and target velocity vectors. Now, since |vm
k−1| cos θ = 〈uk−1,v

m
k−1〉, we can
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rewrite (6.5) as

‖pm
k − p0

k‖2 ≈ ‖pm
k−1 − p0

k−1‖2 + T 〈uk−1, vm
k−1〉, (6.6)

and hence

τm
k =

2

c
‖pm

k − p0
k‖2 ≈ 2

c
‖pm

k−1 − p0
k−1‖2 + T

(
2

c
〈uk−1, v

m
k−1〉

)
,

= τm
k−1 + T βm

k−1 + T βr
k−1, (6.7)

where βr
k−1 , (2/c) 〈uk−1, v

0
k−1〉 denotes the Doppler effect only due to the motion of

the radar, which is obviously known to the radar. Then, combining (6.4) and (6.7),

we get a modified state dynamic model, in terms of the delay and Doppler parameters

of the target, as

ζ̄
m
k =




1 T

0 1


 ζ̄

m
k−1 +




T

0


 βr

k−1 + w̄m
k , (6.8)

where w̄ represents the model error associated with the approximations involved in

(6.4) and (6.7).

6.2.2 Measurement Model

We consider an OFDM signalling system with a = [a0, a1, . . . , aL−1]
T represent-

ing the complex transmit-weights over the L subcarriers, as previously described

in (2.1) – (2.4). Then, similar to (3.1), the received signal due to only the l-th
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subcarrier at the k-th pulse interval can be written as

ỹl(t, ζ̄k) =
M∑

m=1

xm
l s̃l (γ

m
k (t− τm

k )) + ẽl(t), when T ≤ t < T
P
, (6.9)

where all the notations have the same interpretations as described in reference to

(3.1), but modified to include multiple targets.

Next, denoting an indicator function as Im(t) = I (γm
k (t− τm

k )), which is nonzero

only when τm
k ≤ t < τm

k + T/γm
k , we obtain the complex envelope of the received

signal at the output of the l-th subchannel (similar to (3.3)) as

yl(tn, ζ̄k) =
M∑

m=1

al x
m
l φl(tn, τ

m
k , βm

k ) + el(tn), for l = 0, . . . , L− 1, n = 0, . . . , N − 1,(6.10)

where

• φl(·) is defined as

φl(tn, τ
m
k , βm

k ) , e−j2π fl (1+βm
k )τm

k ej 2πfl βm
k tn I[τm

k ](tn),

= e−j2π fl τm
k ej 2πfl βm

k (tn−τm
k ) I[τm

k ](tn). (6.11)

• N denotes the number of temporal samples per pulse transmission, covering the

range of delays corresponding to a region of interest (T < t0 < t1 < · · · <

tN−1 < T
P
).

• The sampling interval or time resolution ∆t , ti−ti−1 depends on the bandwidth

of the signal transmitted by the radar; i.e., ∆t = 1/(2B) = T/ (2(L + 1)).
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• Assuming T/γm
k ≈ T , the indicator function I[τm

k ](tn) can be represented as an

approximated version of Im(t) in the discrete-time domain; i.e.,

I[τm
k ](tn) =





1, when τm
k ≤ tn < τm

k + T

0, otherwise
. (6.12)

• el(tn) represents an aggregation of any static clutter returns, co-channel inter-

ference, and measurement noise at baseband.

From the definition of I[τm
k ](tn), we find that for each target there will be Ns ,

T/∆t = 2(L + 1) temporal samples corresponding to target returns plus clutter

and noise. For example, in (6.10) the m-th target responses will be found at n =

nm, nm +1, . . . , nm +Ns−1, where nm = dτm
k /∆te− t0/∆t. Hence, out of the total N

temporal measurements, at most MNs samples will bear the target responses along

with the clutter and noise, while the rest of N−MNs samples will correspond to only

clutter and noise.

Stacking the measurements of all subchannels into one vector of length L, we get

y(tn, ζ̄k) =
M∑

m=1

Φ(tn, τm
k , βm

k ) Axm + e(tn), (6.13)

where

• y(tn, ζ̄k) =
[
y0(tn, ζ̄k), y1(tn, ζ̄k), . . . , yL−1(tn, ζ̄k)

]T
.

• Φ(tn, τm
k , βm

k ) = diag (φ0(tn, τm
k , βm

k ), φ1(tn, τ
m
k , βm

k ), . . . , φL−1(tn, τ
m
k , βm

k )) is an

L×L matrix containing the delay and Doppler information of the m-th target.
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• A = diag(a) is an L×L complex diagonal matrix that contains the transmitted

weights a.

• xm =
[
xm

0 , xm
1 , . . . , xm

L−1

]T
is an L × 1 vector having the scattering coefficients

of the m-th target over all L subchannels.

• e(tn) = [e0(tn), e1(tn), . . . , eL−1(tn)]T is an L× 1 vector composed of any static

clutter returns, measurement noise, or co-channel interference.

Then, concatenating all the temporal data columnwise into a long column vector of

length LN , we obtain the OFDM measurement model at the k-th pulse interval as

yk =
M∑

m=1

Φ(τm
k , βm

k ) A xm + ek, (6.14)

where

• yk =
[
y(t0, ζ̄k)

T , y(t1, ζ̄k)
T , . . . , y(tN−1, ζ̄k)

T
]T

.

• Φ(τm
k , βm

k ) =
[
Φ(t0, τ

m
k , βm

k )T · · · Φ(tN−1, τ
m
k , βm

k )T
]T

is an LN × L matrix

containing the delay and Doppler information of the m-th target.

• ek =
[
e(t0)

T , e(t1)
T , . . . e(tN−1)

T
]T

is an LN×1 vector comprising static clutter

returns, measurement noise, and interference.

Hence, with respect to our modified state vector ζ̄
m
k = [τm

k , βm
k ]T , the measurement

vector yk in (6.14) depends on the state variables at the k-th pulse interval through

the matrix Φ(·), represented as

yk =
M∑

m=1

Φ(ζ̄
m
k ) Axm + ek. (6.15)
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6.3 Sparse Modeling

Exploiting the inherent sparsity on the delay-Doppler plane, we develop an equiv-

alent sparse representation of our OFDM measurement model (6.14). Due to the

multi-carrier OFDM signal, the resultant model shows block-sparsity properties. Hence,

in the following, we first present a brief overview of block sparsity. Then we construct

our block-sparse equivalent model and discuss the properties of the corresponding

block-sparse measurement matrix.

6.3.1 Block Sparsity

There are certain practical scenarios in which the sparse vector displays some addi-

tional structures. For example, the nonzero entries can appear in blocks (or clusters)

instead of spreading out arbitrarily throughout the sparse vector. Such vectors are

referred to as block sparse [88] – [90]. Assuming equal block length b, a block-sparse

vector s of dimension P × 1 can be represented as a concatenation of Q blocks of

entries; i.e.,

s = [ s1, . . . , sb︸ ︷︷ ︸
s(1)T

, sb+1, . . . , s2b︸ ︷︷ ︸
s(2)T

, . . . , sP−b+1, . . . , sP︸ ︷︷ ︸
s(Q)T

]T , (6.16)

where P = Qb. Then, the measurement matrix A of dimension R × P can also be

represented as a concatenation of Q blocks of columns (each block representing a

submatrix of dimension R× b); i.e.,

A = [a1 · · · ab︸ ︷︷ ︸
A(1)

ab+1 · · · a2b︸ ︷︷ ︸
A(2)

· · · aP−b+1 · · · aP︸ ︷︷ ︸
A(Q)

]. (6.17)
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The vector s is called block S-sparse if s(q) has nonzero Euclidean norm at no more

than S indices q, where q = 1, 2, . . . , Q. As in [88] – [90], if we denote the number of

nonzero block-entries as

‖s‖2,0 =

Q∑
q=1

I (‖s(q)‖2 > 0) , (6.18)

where I(·) denotes an indicator function

I (‖s(q)‖2 > 0) =





1, if ‖s(q)‖2 > 0

0, otherwise
,

then a block S-sparse vector s is defined as a vector that satisfies ‖s‖2,0 ≤ S.

To assess the block-sparse recovery conditions, we must characterize the measure-

ment matrix, A, in terms of two different coherence measures: sub-coherence and

block-coherence [90]. Sub-coherence captures the local properties by computing the

coherence measure within a particular block; i.e.,

ν = max
q

max
i,j 6=i

∣∣aH
i aj

∣∣ , where ai, aj ∈ A(q), q = 1, 2, . . . , Q. (6.19)

Block-coherence describes the global properties by calculating the coherence measure

between two different blocks; i.e.,

µ = max
q1,q2 6=q1

1

b
ρ

(A(q1)
HA(q2)

)
, for q1, q2 = 1, 2, . . . , Q, (6.20)

where ρ(·) is the spectral radius.
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6.3.2 Sparse Measurement Model

Consider that at the k-th pulse interval we can discretize the possible range of values

of delay and Doppler in Nτ and Nβ grid points, respectively, and denote NG = Nτ Nβ.

Recognizing that each of the M targets can occupy one such delay-Doppler grid point,

we can rewrite (6.14) as

yk =
Nτ∑
i=1

Nβ∑
j=1

Φ(τ i
k, β

j
k) A x̃ij + ek, (6.21)

where

x̃ij =





xm, if τ i
k = τm

k and βj
k = βm

k

0, otherwise
. (6.22)

Therefore, considering all possible combinations of (τ i
k, β

j
k), i = 1, 2, . . . , Nτ , j =

1, 2, . . . , Nβ , we can form an equivalent sparse measurement model as

yk = Φ̃kx̃ + ek, (6.23)

where

• x̃ is an LNG × 1 block-sparse vector, having in total LM nonzero entries, dis-

tributed over M blocks, with each of length L (i.e., the number of OFDM

subcarriers). Hence, the block-sparsity level is equal to the number of targets,

i.e., S = M ¿ NG.

• Φ̃k =
[
Φ(τ 1

k , β1
k) · · · Φ(τNτ

k , β
Nβ

k )
]
⊗ A is an LN × LNG matrix representing

the block-sparse measurement matrix, with all possible combinations of delay
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and Doppler, where each block of columns, Φ(τ i
k, β

j
k)A, i = 1, 2, . . . , Nτ , j =

1, 2, . . . , Nβ, is of dimensions LN × L.

6.3.3 Properties of the Measurement Matrix and Coherence

Measures

In this subsection, we study the properties of the block-sparse measurement matrix

Φ̃k and associated coherence measures under the following two categories.

Within a Block

Within any (i, j)-th block of columns of the measurement matrix, the l-th column

has the following form:

[0, . . . , al φl(t0, τ
i
k, β

j
k)︸ ︷︷ ︸

index =l

, 0, . . . , al φl(t1, τ
i
k, β

j
k)︸ ︷︷ ︸

index =2l

, 0, . . . , al φl(tN−1, τ
i
k, β

j
k)︸ ︷︷ ︸

index =Nl

, . . . , 0]T , (6.24)

where φl(·) is defined in (6.11). As explained before in Section 6.2.2, the responses of

a target will be found only at Ns temporal samples, denoted as n = ni, ni +1, . . . , ni +

Ns− 1, where ni = dτ i
k/∆te− t0/∆t. Hence, the terms al φl(tn, τ

i
k, β

j
k) will be zero for

all other temporal points.

Property 1. Column-norm: The norm of the l-th column is given as

ncol(l) =

√√√√
N−1∑
n=0

(
al φl(tn, τ i

k, β
j
k)

)∗ (
al φl(tn, τ i

k, β
j
k)

)
=

√√√√
ni+Ns−1∑

n=ni

|al|2

=
√

Ns |al| =
√

2(L + 1) |al| , for l = 0, . . . , L− 1. (6.25)
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Property 2. Sub-coherence: From the structure of (6.24), it is evident that the

columns within a particular block are orthogonal to each other, and hence from (6.19)

we find that the sub-coherence of Φ̃k is zero, i.e.,

ν = 0. (6.26)

Between Two Different Blocks

For two separate blocks of columns (either i 6= i′ or j 6= j′) of the measurement

matrix, we get

[
Φ(τ i

k, β
j
k)A

]H
[
Φ(τ i′

k , βj′
k )A

]
= AHQA, for i, i′ = 1, . . . , Nτ , j, j′ = 1, . . . , Nβ,(6.27)

where Q is an L× L diagonal matrix having the following form [see Appendix E for

the derivation]

Q = diag
(
. . . , α(l) ej 2π θ(l), . . .

)
, l = 0, 1, . . . , L− 1, (6.28)

and

α(l) = Ñ sinc
(
Ñ fl (β

j
k − βj′

k ) ∆t
)
≈ Ñ = Ns −

(
ni′ − ni

)
,

θ(l) = fl

[
(1 + βj

k) τ i
k − (1 + βj′

k ) τ i′
k − (βj

k − βj′
k ) (tni′ + tni+Ns−1)/2

]
,

with ni = dτ i
k/∆te−t0/∆t and ni′ = dτ i′

k /∆te−t0/∆t. Therefore, from the definitions

of A and Q, it follows that AHQA is also an L×L diagonal matrix whose eigenvalues
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are equal to the entries on the main diagonal; i.e.,

λl(A
HQA) = |al|2 α(l) ej 2π θ(l), for l = 0, 1, . . . , L− 1, (6.29)

and hence the corresponding spectral radius is

ρ(AHQA) = max
l
|al|2 |α(l)| ,

≈
[
Ns −

(
ni′ − ni

)]
max

l
|al|2 ,

=
[
2(L + 1)−

(
ni′ − ni

)]
max

l
|al|2 . (6.30)

Property 3. Block-coherence: From (6.20) and (6.30), we compute the block-coherence

of Φ̃k as

µ = max
(i,j),(i′,j′):

i6=i′ or j 6=j′

1

L

[
2(L + 1)−

(
ni′ − ni

)]
max

l
|al|2 ,

=
2(L + 1)

L
max

l
|al|2 , when i = i′ but j 6= j′. (6.31)

6.3.4 Minimizing the Block-Coherence

The block-coherence measure, µ, of the block-sparse system matrix in (6.23) plays a

role similar to the coherence of the conventional sparse measurement matrix. There-

fore, to maximize accuracy in the sparse-recovery, it is desirable to have its value

as small as possible. To minimize the value of µ, we have to minimize the effect of

maxl |al|2 in the numerator of (6.31). The minimum value of µ can be achieved

when we transmit equal amounts of energy over all the OFDM subcarriers, i.e.,

|al|2 = 1/L, ∀ l. This is the consequence of the following theorem.
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Theorem 3. Given L complex coefficients {a0, . . . , aL−1} such that
∑L−1

l=0 |al|2 = 1,

min
{a0,...,aL−1}

max
l
|al|2 =

1

L
,

and it is achievable when |al|2 = 1/L ∀ l.

Proof. Contrary to the statement of the theorem, assume that it is possible to select

al’s in such a way that maxl |al|2 < 1/L. However, from the constraint equation
∑L−1

l=0 |al|2 = 1 we note that if |al|2 < 1/L is satisfied for any l, then there would

exist at least another l′ for which |al′|2 > 1/L, and therefore maxl |al|2 < 1/L would

not be satisfied. Hence, the minimum value of maxl |al|2 could be only 1/L, and that

could be achieved when |al|2 = 1/L ∀ l.

Therefore, considering one of the simplest choices with al = 1/
√

L ∀ l, we can write

a modified version of (6.23) as

yk =
˜̃
Φk x̃ + ek, (6.32)

where
˜̃
Φk = (1/

√
L)

[
Φ(τ 1

k , β1
k) · · ·Φ(τNτ

k , β
Nβ

k )
]
. Consequently, the block-coherence

of this modified version of the block-sparse measurement matrix,
˜̃
Φk, becomes µ̃ =

2(L + 1)/L2.

Note that µ̃ = 2(L + 1)/L2 implies that it would be advantageous to increase the

value of L (i.e., the number of OFDM subcarriers) as much as possible. However,

given a fixed bandwidth of operation, as we increase the value of L, the subcarrier

spacing ∆f decreases, i.e., two adjacent subcarriers come closer to each other on

the frequency axis. Then it may happen that the variations of the target responses
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become insignificant over the adjacent subcarriers, and hence we do not achieve any

improvement. Therefore, the value of L is to be chosen as a compromise between

the expected variability of the target responses over different frequencies and the

block-coherence measure of the measurement matrix.

6.4 Tracking Filter

Any tracking procedure is a sequential method consisting of repeated applications

of two sub-procedures: prediction and update. In the prediction stage, the previous

estimated state
(
ζ̄k−1

)+
is substituted into the state dynamic equation (6.8) to obtain

a predicted state
(
ζ̄k

)−
at the k-th pulse interval. Then, in the update stage, the new

measurement yk from (6.15) is used to modify the predicted state
(
ζ̄k

)−
and obtain

the estimated state
(
ζ̄k

)+
at the k-th pulse interval.

To exploit the inherent sparsity on the delay-Doppler plane, we employ a block version

of the conventional CoSaMP recovery algorithm, called block-CoSaMP or BCoSaMP,

in the update stage. Our approach stems from [195, Algo. 1]. From the discussion

in the previous section, we notice that the sparse vector in our model shows a block

structure, which is important to incorporate in the recovery algorithm. The simple

and iterative greedy structure of the conventional CoSaMP algorithm helps us to

easily integrate the block-sparsity nature of the sparse vector into our algorithm, the

pseudocode of which is given in Table 6.1.

For the notations used in Table 6.1, please refer to Section 6.3.1 and [91]. Given a

vector s of length P , s[S] denotes another vector, having the same length, that is

formed by restricting s to those S blocks of components that have largest Euclidean
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Table 6.1: BCoSaMP Recovery Algorithm

Inputs: System matrix
˜̃
Φk, measurement vector yk, block-sparsity level S.

Output: A block S-sparse estimation
(
ζ̄k

)+
of the true state vector ζ̄k.

Initializations:

ζ̂0 =
(
ζ̄k

)− { Initial estimate as the predicted state }
r = yk { Initial residue as the current measurement }
i = 0
repeat

i ← i + 1

p ← ˜̃
Φ

H

k r { Form state proxy }
Ω ← bsupp(p[2S]) { Identify the 2S largest blocks of the proxy }
T ← Ω ∪ bsupp(ζ̂i−1) { Merge block-supports }
b|T ← (

˜̃
Φk)

†
T yk, b|T c ← 0 { Form state estimate by least-squares }

ζ̂i ← b[S] { Prune to get block S-sparse approximation }
r ← yk − ˜̃

Φk ζ̂i { Update the residue }
until halting criterion true

return
(
ζ̄k

)+
= ζ̂i

norms. In other words, s[S] corresponds to the best block S-sparse approximation

of s. If s has blocks of equal length b, then s[S] will have bS nonzero components.

Denoting T as a subset of {1, 2, . . . , Q}, we define a restriction of the vector, s|T ,

and a restriction of the measurement matrix, (
˜̃
Φk)T , as the blocks of components

and blocks of columns, respectively, whose block-indices are specified by the set T .

We define the block support of the vector s as the set of block-indices where the

block-norm is not zero; i.e.,

bsupp(s) = {q : ‖s(q)‖2 > 0}.
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Finally, as the halting criterion we use the difference in norms of the residue vectors

at two consecutive iterations. Whenever that difference is smaller than a pre-defined

threshold value, we stop the algorithm.

6.5 Numerical Results

We present the results of several numerical examples to demonstrate the performance

of our proposed sparsity-based tracking approach. First, we provide a description of

the simulation setup, and then discuss different numerical examples.

Fig. 6.3 schematically describes a scenario that we used in the simulations. The radar

was at height z = 1 km above the ground and moving with a velocity 33.33 (= 33.33 ĵ)

m/s, which is approximately 120 kph. We considered that it was looking over an area

whose center was at (x, y) = (3, 2) km. There were two moving targets within the

region of interest, which was designated by a range of roundtrip delays (t0, tN−1) with

N = 120. Any other backscattering from ground-based objects were considered as

static clutter returns (with respect to the radar). In our simulation, we kept the SNR

fixed at 10 dB. Assuming the noise e(tn) in (6.13) to be a zero-mean Gaussian vector

with covariance matrix Σ, and temporally independent, we defined the SNR as

SNR =
(1/N)

∑N−1
n=0

∥∥∥ ∑M
m=1 Φ(tn, τm

k , βm
k ) Axm

∥∥∥
2

2

tr (Σ)
. (6.33)

The details of the target and radar parameters are as follows:

• Target parameters:
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Figure 6.3: A schematic representation of the simulation scenario (not drawn to scale).

– The first target started at a position (x1
0, y

1
0, z

1
0) = (3000, 2000, 0) m and

was moving with a velocity of 16.67 (= 16.67 cos(5◦) î + 16.67 sin(5◦) ĵ)

m/s, which is approximately 60 kph. The scattering parameters of this tar-

get were assumed to be the same for all subchannels, i.e., x1 = [1, 1, 1, 1]T .

– The second target started at a position (x2
0, y

2
0, z

2
0) = (3010, 2006, 0) m and

was moving with a velocity of 12.5 (= 12.5 cos(−5◦) î + 12.5 sin(−5◦) ĵ)

m/s, which is approximately 45 kph. The scattering parameters of the

second target were assumed to be quite different across the subchannels,

i.e., x2 = [0.01, 0.5, 1.1, 1.6]T .

• Radar parameters:

– Carrier frequency fc = 1 GHz.

– Total bandwidth B = 100 MHz.

– Number of OFDM subcarriers L = 4.

– Subcarrier spacing ∆f = B/(L + 1) = 20 MHz.

– Pulse width T = 1/∆f = 50 ns.
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– Pulse repetition interval Tp = 10 ms.

– All the transmitted OFDM weights were equal, i.e., a = (1/
√

L)1L.

We used the BCoSaMP algorithm, as described in Section 6.4, to track the targets,

and compared the resultant tracking performance with that of a particle filter (PF).

The following are some specific parameterizations used in these two approaches:

• Sparsity-based approach:

– To partition the delay-Doppler plane, we used the regular (uniform) grids

having a delay resolution of ∆τ = 3.33 ns (i.e., corresponding to a range

grid of 0.5 m) and a Doppler resolution of ∆β = 2.46 × 10−9 (i.e., corre-

sponding to a velocity grid of 1 m/s).

– Instead of using all the possible delay-Doppler grids for every pulse interval,

we dynamically partitioned a small portion of the delay-Doppler plane at

a particular pulse interval. This could be done because at every pulse

interval the predicted state provides a rough approximation of the new

estimated state. Therefore, we first used (6.8) to compute the predicted

values of delay, (τm
k )−, and Doppler, (βm

k )−, for both the targets at the

k-th pulse interval. Then, to form the grids, we selected a small region of

the delay-Doppler plane as

R :=
⋃

i=1,2

[
(τ i

k)
− − τ̄ /2, (τ i

k)
− + τ̄ /2

]× [
(βi

k)
− − β̄/2, (βi

k)
− + β̄/2

]
,(6.34)

where τ̄ and β̄ defined the total possible area around ((τ i
k)
−, (βi

k)
−) in

which we expected to get the state estimates at the k-th pulse.
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Figure 6.4: Comparison of the (a) true and estimated trajectories and (b) associated
root-mean-squared errors in position estimation of two non-crossing target paths using
the sparsity-based and PF-based tracking algorithms.

– Note here that the choice of the values of τ̄ and β̄ depends mainly on two

factors: the SNR of the measurement scenario and relative length of the

sparse vector with the actual sparsity level. For example, in a low SNR

condition we would like to choose larger values of τ̄ and β̄, which however

increase the length of the sparse vector. Then, it becomes inefficient to

estimate a few nonzero values from a lengthier sparse vector. On the

contrary, if we reduce the length of the sparse vector, i.e., we choose smaller

values of τ̄ and β̄ and hence a smaller region R, then the true values of the

state variables might lie outside R and this dynamic grid-based approach

would fall apart. In our simulations, we chose τ̄ = 40∆τ and β̄ = 4∆β.

• Particle filter approach:

– We used an augmented state vector in which we incorporated the scat-

tering coefficients of the targets along with their positions and velocities.

The temporal evaluation of the scattering coefficients was assumed to be
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Figure 6.5: Comparison of the (a) true and estimated trajectories and (b) associated
root-mean-squared errors in position estimation of two crossing target paths using
the sparsity-based and PF-based tracking algorithms.

constant, i.e., xm(k) = xm(k−1), m = 1, 2. This assumption is in general

true when the target is far away from the radar, as in our case.

– Both the state and measurement noise processes were assumed to be zero-mean

Gaussian processes.

– The state particles were generated from an importance density function,

which we chose to be the transitional prior p
(
ζ

(i)
k |ζ(i)

k−1

)
, i = 1, 2, . . . , Nζ ,

where Nζ was the number of state particles. In our simulations, we con-

sidered Nζ = 800 state particles.

– The importance weights were formulated as w
(i)
k ∝ w

(i)
k−1p

(
yk|ζ(i)

k

)
.

Figs. 6.4 and 6.5 depict the tracking performance and associated root-mean-squared

errors in position estimation for two non-crossing and crossing target paths, respec-

tively. It is evident from these plots that, compared to the PF-based approach, the

sparsity-based tracking approach provided equivalent tracking performances, and par-

ticularly even better when the target paths do not cross. In addition, our sparsity-based
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Figure 6.6: Comparison of the (a) true and estimated trajectories and (b) associated
root-mean-squared errors in position estimation of two non-crossing target paths using
the sparsity-based (with 50% measurements) and PF-based tracking algorithms.

approach provided estimation results much quicker than the PF-based algorithm. We

found that on average the PF-based approach took 131.25 s to estimate the target

state per pulse interval; whereas the sparsity-based technique took only 17.87 s (for

non-crossing target paths) and 6.85 s (for crossing target paths), which was one order

less than that of the PF-based tracking. The difference in times in the sparsity-based

approach, corresponding to the non-crossing and crossing target paths, occurred due

to the dynamic computation of the delay-Doppler grids over region R, as specified

in (6.34). When the target paths crossed each other, the size of R was smaller, and

hence it took less time to calculate the grid values.

Compressive Sensing

To investigate the potential advantage of computational efficiency of compressive

sensing (CS), we pre-multiplied the measurement vector in (6.32) with a zero-mean
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Figure 6.7: Comparison of the (a) true and estimated trajectories and (b) associated
root-mean-squared errors in position estimation of two crossing target paths using
the sparsity-based (with 50% measurements) and PF-based tracking algorithms.

Gaussian random matrix Ψ of dimensions LNr × LN (Nr < N) as

zk = Ψyk = Ψ
˜̃
Φk x̃ + Ψ ek. (6.35)

Then, we used the compressed measurement vector zk, instead of the original mea-

surements yk, in our sparsity-based tracking algorithm. As before, we compared the

resultant performance with that of a PF-based tracking procedure using the original

measurements yk.

Figs. 6.6 and 6.7 show the tracking performance and associated root-mean-squared

errors in position estimation for two non-crossing and crossing target paths, respec-

tively. For these simulations we worked with only 50% of the total measurements

(i.e., Nr = d0.5Ne) in the CS-based tracking technique. Figs. 6.8 and 6.9 represent

similar tracking results, apart from the fact that we used only 10% of the total mea-

surements (i.e., Nr = d0.1Ne) in the CS-based tracking. Hence, we observe from

these results that our sparsity-based tracking algorithm demonstrated approximately
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Figure 6.8: Comparison of the (a) true and estimated trajectories and (b) associated
root-mean-squared errors in position estimation of two non-crossing target paths using
the sparsity-based (with 10% measurements) and PF-based tracking algorithms.

equivalent tracking performance, except when the target paths were crossing, but we

still worked with only 10% of all measurements. The advantage of our sparsity-based

tracking was even more noticeable in the speed of estimation results, which are tab-

ulated in Table 6.2. As we explained before, the difference of execution times in the

sparsity-based approach, corresponding to the non-crossing and crossing target path

scenarios, occurred due to the dynamic computation of the delay-Doppler grids.

6.6 Summary

We addressed the problem of tracking multiple targets in a region of interest by

exploiting sparsity on the delay-Doppler plane (since, the targets lie only at a few

delay-Doppler points). In our model, the nonzero components of the sparse vec-

tor correspond to the scattering coefficients of the targets at different OFDM sub-

carriers, and hence we had a block-sparse measurement model. We designed the
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Figure 6.9: Comparison of the (a) true and estimated trajectories and (b) associated
root-mean-squared errors in position estimation of two crossing target paths using
the sparsity-based (with 10% measurements) and PF-based tracking algorithms.

Table 6.2: Average time (in seconds) to compute the estimated state per pulse interval

Sparsity based tracking Particle filter based tracking
Fraction of Non-crossing Crossing target

measurements used target paths paths
Nr = N 17.87 6.85

Nr = d0.5Ne 8.21 4.71
Nr = d0.1Ne 4.69 2.37

131.25

OFDM signal for the minimum block-coherence measure (i.e., maximum accuracy in

the sparse-recovery), and proved that is attainable by transmitting equal amounts

of energy over all the OFDM subcarriers. In the tracking filter, we used the same

block-sparsity property to propose a block version of the CoSaMP algorithm. We pre-

sented numerical examples to show the performance of our sparsity-based tracking

approach and compared it with the performance of a PF-based tracking procedure.

The sparsity-based tracking algorithm took much less time and provided equivalent

tracking performance in comparison to the PF-based tracking.
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Chapter 7

Conclusions

In this dissertation, we employed a wideband OFDM radar signal for target detection

and tracking problems. The frequency diversity of the OFDM signal improved the

sensing performance as the scattering centers of a target resonate differently at differ-

ent frequencies. Being a wideband signal, OFDM also improved the range resolution

and provided spectral efficiency. In addition, we developed adaptive waveform design

techniques to select the spectral parameters of the OFDM signal. In contrast to a

conventional system, the adaptive waveform design (in a closed loop) enabled us to

achieve better performance by fitting the operational scenario. In the following, we

first summarize the key contributions of our work, and then provide some discussion

on the possible future work.

7.1 Key Contributions

Our key contributions can be summarized as follows:

We first analyzed the OFDM waveform in terms of its wideband ambiguity function

(WAF). Here we emphasized that the received signal depends on the scattering pa-

rameters of the target. Hence, the corresponding WAF at the output of the matched
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filter must include the target responses, along with delay and Doppler. This is dif-

ferent from a conventional formulation of the WAF, which either does not include a

scattering coefficient of the target in the received signal model, or assumes identical

values for the scattering coefficients at different frequencies. This explicit formulation

of WAF in terms of target scattering coefficients enabled us to adaptively design the

OFDM signal such that the volume of the corresponding WAF best approximates the

volume of a desired ambiguity function over a region in the delay-Doppler plane. The

improved delay (range) resolution of the designed OFDM waveform further motivated

us to use it for specific radar problems, such as the detection and tracking of targets.

We developed methods for detecting a moving target in the presence of multipath

reflections, particularly in urban environments. We exploited the multipath propa-

gation by utilizing multiple Doppler shifts that correspond to the projections of the

target velocity on each of the multipath components. We developed a parametric

measurement model under the generalized multivariate analysis of variance frame-

work and applied the generalized likelihood ratio test to detect the presence of a

target. We adaptively designed the spectral parameter of the OFDM signal by first

evaluating the asymptotic performance analysis of the detector and then maximizing

the expression of the noncentrality parameter.

Next, we transformed the target-detection problem into the task of sparse-signal

spectrum estimation by exploiting both the sparsity of multiple paths and the knowl-

edge of the environment. To estimate the sparse vector we employed a collection

of multiple small Dantzig selectors, and used the `1-constrained minimal singular

value of the measurement matrix to analytically evaluate the reconstruction perfor-

mance. In addition, we proposed a constrained multi-objective optimization (MOO)

based algorithm to adaptively design the spectral parameters of the OFDM waveform
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by simultaneously minimizing the upper bound on the estimation error to improve

the efficiency of sparse-recovery and maximizing the squared Mahalanobis-distance

to increase the performance of the underlying detection problem. We applied the

nondominated sorting genetic algorithm II to solve our MOO problem.

Then, we developed tracking methods for both a single and multiple targets. For the

single-target case, we considered the low-grazing angle tracking, which is one of the

most challenging problems in radar due to the ever-changing meteorological condi-

tions in the troposphere, curved surface of the earth, roughness of the sea-surface,

etc. We employed a co-located multiple-input multiple-output radar configuration

with polarization-sensitive transceivers to achieve the waveform diversity and to bet-

ter resolve the multipath signals. To track the target, we used a sequential Monte

Carlo method and integrated an adaptive waveform design technique based on the

maximization of the mutual information between the state and measurement vectors.

For the multi-target tracking problem, we exploited the inherent sparsity on the

delay-Doppler plane to develop an efficient tracking procedure. In our model, the

nonzero components of the sparse vector appeared in blocks. Hence, in the tracking

filter, we utilized the same block-sparsity property to propose a block version of the

CoSaMP algorithm. For computational efficiency, instead of using all the possible

delay-Doppler grids, we used more prior information to dynamically partition a small

portion of the delay-Doppler plane.

7.2 Future Work

In our future work, we will extend our model to incorporate more realistic physical

phenomena. A multipath environment, for example an urban scene, contains not
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only the specular multipath reflection, but also diffractions, refractions, and atten-

uations due to the sharp edges and corners of buildings or rooftops. Similarly, in

a low-grazing angle scenario, multiple horizontally stratified atmospheric layers with

different refractivity gradients may exist between the transmitter and receiver pairs.

Therefore, it is important to include these underlying physical behaviors into the

model as realistically as possible.

We will develop statistical signal processing methods by integrating the detection

procedure with the target tracking algorithm. This approach could be useful when

the targets appear and disappear within the observation period, particularly in a mul-

tipath rich environment. Additionally, we will extend the sparsity-based algorithms

to study the effects of nonuniform grids on the delay-Doppler plane.

To design more realistic signals that are particularly suitable for radar applications,

we will impose some other constraints in the waveform-optimization problem: con-

stant modulus, limited transmit energy, peak-to-average power ratio (PAPR), and

similarity constraint. We will generalize OFDM to nonorthogonal frequency channels

using the concept of frames for robustness. We will also check the practical viability

of the designed waveform. For example, while using a two-dimensional polarimetric

transceiver system, we cannot arbitrarily choose a polarization pair because the prac-

tical systems support only horizontal and vertical polarizations. Therefore, in such

a case, we can select the relative weights of the horizontal and vertical polarizations

to realize different types of signals. Furthermore, we will validate the performance of

our proposed techniques with real data.
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Appendix A

In this appendix, we show the derivation of (2.19) as follows:

χ
N
(τ, ν) =

√
γ

∫ ∞

−∞

[
N−1∑
n1=0

s (t− n1TP
) e j2πfct

][
N−1∑
n2=0

s∗ (γ(t− τ)− n2TP
) e−j2πfcγ(t−τ)

]
dt

=
√

γe j2πfcγτ

N−1∑
n1=0

N−1∑
n2=0

∫ ∞

−∞
s (t− n1TP

) s∗ (γ(t− τ)− n2TP
) e−j2πνtdt.

Using a change of variable with p = t− n1TP
we get

χ
N
(τ, ν)

=
√

γe j2πfcγτ

N−1∑
n1=0

N−1∑
n2=0

e−j2πνn1T
P

∫ ∞

−∞
s̃ (p) s̃∗ (γ(p + n1TP

− τ)− n2TP
) e−j2πνpdp

=
N−1∑
n1=0

N−1∑
n2=0

e−j2πνn1T
P

[√
γe j2πfcγτ

∫ ∞

−∞
s̃ (p) s̃∗ (γ(p− [τ + (n2/γ + n1)TP

])) e j2πνpdp

]

=
N−1∑
n1=0

N−1∑
n2=0

e−j2πνn1T
P e−j2πfcγ(n2/γ−n1)T

P

·
[√

γ e j2πfcγ(τ+(n2/γ−n1)T
P

)

∫ ∞

−∞
s̃ (p) s̃∗ (γ(p− [τ + (n2/γ + n1)TP

])) e j2πνpdp

]
.

The term in the square bracket has a similar form as (2.11) when τ is replaced with

[τ + (n2/γ − n1)TP
]. In addition, the argument of the exponential term outside the

square bracket can be simplified as νn1TP
+ fcγ(n2/γ − n1)TP

= fc (n2 − n1) T
P
.

Hence, we get the expression in (2.19).
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Appendix B

In this appendix, we state and prove a theorem that we use to simplify (3.21) to

(3.22) and (4.30) to (4.31).

Theorem 4. Suppose a ∈ CL is a vector that forms an L × L complex diagonal

matrix A = diag(a). Then, we have the following:

tr
(
S1 AS2 AH

)
= aH

[
ST

2 ¯ S1

]
a, (B.1)

where S1 and S2 are two square matrices of dimension L× L.

Proof. First, using the relationship between a trace and vec operator, tr (UV ) =

vec
(
UT

)T
vec (V ), we get

tr
(
S1 AS2 AH

)
= tr

(
AH S1 AS2

)
= vec

(
(AH)T

)T
vec (S1 AS2) . (B.2)

Then, we apply one of the properties of the vec operator, vec (UQV ) =
(
V T ⊗U

)
vec (Q),

to get

vec
(
(AH)T

)T
vec (S1 A S2) = vec

(
(AH)T

)T [
ST

2 ⊗ S1

]
vec (A) . (B.3)
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Since A is a diagonal matrix, vec (A) can be written as

vec (A) =




C1

C2

...

C
L




a, (B.4)

where C l is an L×L matrix that has a 1 only at (l, l)-th position and zero elsewhere.

Similarly, we have

vec
(
(AH)T

)T
= vec ((A∗))T = aH




C1

C2

...

C
L




T

. (B.5)

Additionally, from [196, Th. 1] we have




C1

C2

...

C
L




T

[
ST

2 ⊗ S1

]




C1

C2

...

C
L




= ST
2 ¯ S1. (B.6)

Therefore, substituting the results of (B.4)-(B.6) into (B.3) we get

vec
(
(AH)T

)T [
ST

2 ⊗ S1

]
vec (A) = aH

[
ST

2 ¯ S1

]
a, (B.7)

and hence (B.1) is proved.
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Appendix C

In this appendix, we provide a proof of Theorem 2.

Consider vectors zl ∈ CPV satisfying

s1(zl) =
‖zl‖2

1

‖zl‖2
2

≤ 4kl, (C.1)

and a long vector z ∈ CLPV obtained after concatenating these zls. Then, using the

Cauchy-Schwartz inequality, we get

‖z‖1 =
L−1∑

l=0

‖zl‖1 ,

≤ 2
L−1∑

l=0

√
kl ‖zl‖2 ,

≤ 2

√√√√
L−1∑

l=0

kl

√√√√
L−1∑

l=0

‖zl‖2
2 ,

= 2
√

k ‖z‖2 ,

that is,

s1(z) =
‖z‖2

1

‖z‖2
2

≤ 4k. (C.2)
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As a consequence, for any such constructed z, we have

ρ2
4k(Φ) ≤ zH ΦH Φ z

zH z
=

L−1∑

l=0

zH
l ΦH

l Φl zl

zH z
.

Taking a zl such that ‖zl‖2
2 = ωl ≥ 0 with ‖z‖2

2 =
∑L−1

l=0 ωl = 1, and

ωl ρ
2
4kl

(Φl) = zH
l ΦH

l Φl zl,

we get

ρ2
4k(Φ) ≤

L−1∑

l=0

ωl ρ
2
4kl

(Φl). (C.3)

In particular, we have

ρ2
4k(Φ) ≤ ρ2

4kl
(Φl). (C.4)

Moreover, noticing that λl ≤ λ, we obtain

L−1∑

l=0

λ2
l kl σ

2

ρ4
4kl

(Φl)
≤

L−1∑

l=0

λ2 kl σ
2

ρ4
4k(Φ)

=
λ2 k σ2

ρ4
4k(Φ)

. (C.5)
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Appendix D

In this appendix, we provide the details of the relationship presented in (4.25), i.e.,

how to obtain a computable lower bound on the original complex `1-CMSV.

In (4.24), ρ4kl
(Φ̃l) corresponds to a solution of the following problem:

min
zl∈CPV

zH
l Φ̃

H

l Φ̃l zl subject to ‖zl‖1 ≤
√

4kl, ‖zl‖2 = 1. (D.1)

However, zl being a complex vector, ‖zl‖1 =
∑PV

i=1

√
(Re zl,i)

2 + (Im zl,i)
2 is not

everywhere differentiable with respect to Re zl and Im zl. Defining g = Re zl, h =

Im zl, and Ψ1 = Re Φ̃l, Ψ2 = Im Φ̃l, we have

zH
l Φ̃

H

l Φ̃l zl = gT
(
ΨT

1 Ψ1 + ΨT
2 Ψ2

)
g + hT

(
ΨT

1 Ψ1 + ΨT
2 Ψ2

)
h, (D.2)

and note that

‖zl‖1 =
PV∑
i=1

√
g2

i + h2
i ≥

√
2

2

PV∑
i=1

(|gi|+ |hi|) =
1√
2

∥∥∥
[
gT ,hT

]T
∥∥∥

1
, (D.3)

‖zl‖2 =
PV∑
i=1

(
g2

i + h2
i

)
=

∥∥∥
[
gT ,hT

]T
∥∥∥

2
. (D.4)
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Therefore, we can compute a lower bound on the original complex `1-CMSV as a

solution of the following problem:

min
g∈RPV , h∈RPV

[
gT hT

]



ΨT
1 Ψ1 + ΨT

2 Ψ2 0

0 ΨT
1 Ψ1 + ΨT

2 Ψ2







g

h


 ,

subject to

∥∥∥∥∥∥∥




g

h




∥∥∥∥∥∥∥
1

≤
√

8kl and

∥∥∥∥∥∥∥




g

h




∥∥∥∥∥∥∥
2

= 1. (D.5)

Then, denoting the solution of (D.5) as ρ8kl
(Ψ̃), where

Ψ̃
T
Ψ̃ =




ΨT
1 Ψ1 + ΨT

2 Ψ2 0

0 ΨT
1 Ψ1 + ΨT

2 Ψ2


 ,

we get

ρ8kl
(Ψ̃) ≤ ρ4kl

(Φ̃l). (D.6)
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Appendix E

In this appendix, we derive the expressions of Q, given in (6.28). From (6.27), we

have

Q =

[
Φ(t0, τ

i
k, β

j
k)

H Φ(t1, τ
i
k, β

j
k)

H · · · Φ(tN−1, τ
i
k, β

j
k)

H

]




Φ(t0, τ
i′
k , βj′

k )

Φ(t1, τ
i′
k , βj′

k )

...

Φ(tN−1, τ
i′
k , βj′

k )




,

=

[
N−1∑
n=0

Φ(tn, τ
i
k, β

j
k)

H Φ(tn, τ i′
k , βj′

k )

]
.

Now, out of total N temporal points, Φ(tn, τ i
k, β

j
k) will have non-zero entries corre-

sponding to n = ni, ni+1, . . . , ni+Ns−1, and Φ(tn, τ
i′
k , βj′

k ) will have non-zero entries

for n = ni′ , ni′ + 1, . . . , ni′ + Ns − 1.
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Without loss of generality, assume that τ i
k < τ i′

k , and consequently we have ni < ni′ .

Then, the (l, l)-th entry of Q is given as

N−1∑
n=0

φl(tn, τ i
k, β

j
k)
∗φl(tn, τ i′

k , βj′
k )

= e
j 2π fl

[
(1+βj

k) τ i
k−(1+βj′

k ) τ i′
k

] ni+Ns−1∑

n=ni′
e
−j 2π fl

(
βj

k−βj′
k

)
tn , provided ni′ ≤ ni + Ns − 1,

= e
j 2π fl

[
(1+βj

k) τ i
k−(1+βj′

k ) τ i′
k

]
· e−j 2π fl (βj

k−βj′
k ) t

ni′ · 1− e−j 2 Ñ π fl (βj
k−βj′

k )∆t

1− e−j 2π fl (βj
k−βj′

k )∆t
,

= e
j 2π fl

[
(1+βj

k) τ i
k−(1+βj′

k ) τ i′
k −(βj

k−βj′
k ) t

ni′−(βj
k−βj′

k ) (Ñ−1)∆t/2
]
·
sin

(
Ñ π fl (β

j
k − βj′

k ) ∆t
)

sin
(
π fl (β

j
k − βj′

k ) ∆t
) ,

where Ñ = Ns −
(
ni′ − ni

)
. Since fl (β

j
k − βj′

k ) ∆t ≈ 0, we get

N−1∑
n=0

φl(tn, τ
i
k, β

j
k)
∗φl(tn, τ

i′
k , βj′

k )

≈ e
j 2π fl

[
(1+βj

k) τ i
k−(1+βj′

k ) τ i′
k −(βj

k−βj′
k ) (t

ni′+(Ñ−1)∆t/2)
]
·
sin

(
Ñ π fl (β

j
k − βj′

k ) ∆t
)

π fl (β
j
k − βj′

k ) ∆t
,

= e
j 2π fl

[
(1+βj

k) τ i
k−(1+βj′

k ) τ i′
k −(βj

k−βj′
k ) (t

ni′+tni+Ns−1)/2
]
· Ñ sinc

(
Ñ fl (β

j
k − βj′

k ) ∆t
)

,

and hence the expressions of α(l) and θ(l).
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