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Detection of Multiplicative Noise in Stationary
Random Processes Using Second- and Higher Order
Statistics

Martial Coulon, Jean-Yves Tourneret, and Ananthram Sw&anior Member, IEEE

Abstract—This paper addresses the problem of detecting the locally optimum detection in multiplicative noise was studied in
presence of colored multiplicative noise, when the information [19] and [35] for known signals; suboptimal approaches, based

process can be modeled as a parametric ARMA process. For o yanks were developed in [2] and [44], and robust detectors
the case of zero-mean multiplicative noise, a cumulant based . .
were derived in [6] and [7].

suboptimal detector is studied. This detector tests the nullity of . . . oL .
a specific cumulant slice. A second detector is developed when The detection of random signals in multiplicative noise has

the multiplicative noise is nonzero mean. This detector consists been considered in [3] and [36], for instance. These approaches

of filtering the data by an estimated AR filter. Cumulants of the require knowledge of the noise pdf’s and typically assume that

residual data are then shown to be well suited to the detection e 1y5ises are i.i.d. The resulting detectors in the known signal

problem. Theoretical expressions for the asymptotic probability of . .

detection are given. Simulation-derived finite-sample ROC curves case can be_ expressed as generalized correla_tors, in the case

are shown for different sets of model parameters. of random signals, the detectors are very complicated [36] and
Index Terms—ARMA processes, detection, higher order statis- assume that at least the autocorrelation sequence of the signal is

tics, multiplicative noise. known. In [3] and [36], the observed process is of the form

y(n) = 0z(n)(1 + c(n)) + u(n)
|. INTRODUCTION AND PROBLEM FORMULATION

. , . _.and the detection problem is
DDITIVE noise models have been intensively studied in

many signal processing applications. Indeed, these models Hy:0=0, Hi:0>0.
allow us to approximate a large class of physical mechanisms
contaminated by measurement noise. Consequently, detectitiyvever, the model we consider [see (1)] is somewhat different
of known signals with unknown parameters, as well as deted2d is motivated by fault detection problems in geared systems.
tion of random signals embedded in Gaussian or non-Gaussi¥Ren the signal models are more specific, it is possible to ob-
additive noise, has received much attention in the literatui@in more concrete results, e.g., the problem of discriminating
(see, for instance, [18] and references therein for an overviefigndom amplitude (i.e., multiplicative noise) from constant am-
However, these detectors can fail dramatically when the sigrigitude harmonics was studied in [29] and [42].
is corrupted by nonadditive noise components. This paper ad-The parameter estimation problem (i.e., when multiplicative
dresses the problem of detecting the presence of multiplicati¥ise is known to be present) has been well studied, see, e.g.,
noise in stationary random processes. Multiplicative noise hidd. [5], [24], [37], [39], [43], and references therein.
been observed in many Signa| processing app"ca’[ionS, Sucﬂ—he detection prOblem of interest is the fO"OWing ComDOSite
as communication systems (e.g., fading channels, where fy@othesis testing problem:
amplitude of the signal is modeled as a Rayleigh or Rician
random variable) [32], radar (in particular, weather radar/lidar Ho: y(n) = yo(n)
observations—see [14]), synthetic aperture radar (SAR) [28], Hi:y(n) =51(n)
passive and active sonar [15], [16], and mechanical vibrations
[23], [25], [33], [45], where the multiplicative noise is mainlywhere the signat(n) is modeled as an ARMA process and the
caused by nonlinearities in the observed system. noise processes as an MA process. The problem of detecting

The detection of known signals embedded in multiplicativié@€ presence of multiplicative noise that corrupts the signal of
noise has been studied recently in several papers. For instafiti€rest (SOl)—here(n)—is of great importance.

1) Appropriate techniques for parameter estimation in the
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represents fading and is usually modeled as a zero-meard «,(n) are assumed to be weakly mixing (i.e., with abso-
process; the optimal receiver structure for the AWGNMNitely summable cumulants).

channel differs from that for the fading channel [32], [41]

; Optimal detectors based on the Neyman—Pearson criterion

choosing the incorrect structure would lead to increasedn be derived when statistical properties concerning the signal
errors in detection. Consequently, it is important to deteand noise processes are available. Such detectors were studied in
mine the correct underlying model. [38] for detecting and classifying signals corrupted by additive

2) The presence of multiplicative noise can be informativ@nd multiplicative noise, although the models were rather dif-
in some applications. For instance, in mechanics, a gdarent. However, the Neyman—Pearson detector can lead to in-
fault induces multiplicative noise in the vibration signaltractable computation and, of course, the signal and noises pdf’s
In this case, the detection of the multiplicative noise amust be known. This paper studies suboptimal detectors based
lows the detection of (localized or distributed) gear faultsn second- and higher-order cumulants (HOCs).

[23], [25], [33], [34], [45]. Here, the signal of interest

* When the ARMA process:(n) and the additive noise

is modeled as sums of harmonics [25] or as an ARMA  ,(n) are Gaussian, the observed sigp@l) is Gaussian

process [4], [22]. In drilling applications, nonlinearities  under hypothesisd, and generally non-Gaussian under
lead to random amplitude modulation, and timely detec-  hypothesisH;. Any Gaussianity test such as the fre-
tion of the multiplicative noise is important to prevent quency-domain tests of Hinich or Rao—Gabr [31, p 42]

failure of the drilling system.
This paper studies a statistical test for the detection of color

or the lag-domain tests in [11] and [26] can then be used
ed  for multiplicative noise detection; however, in the colored

multiplicative noise when the SOI can be modeled as an ARMA noise case, these generic tests may involve hundreds of
process. The choice of parametric ARMA modeling for the SOl thousands of samples [11], and the power (probability

is motivated by the fact that for any continuous spectral density  of detection) has been evaluated analytically only in the
S(f), an ARMA process can be found with a spectral density i j.d. case.

arbitrarily close toS(f) [10, p. 132].

We now state our modeling assumptions for the compos
hypothesis testing problem in (1). The signal of intergst) is
an ARMA(p, q) process

p

wn) ==Y amn =5+ bigh—ji) (2

=1 =0

in which g(n) is an i.i.d. sequence. The noise processgs)
andu; (n) are possibly non-Gaussian with finite memorigs

andgq, , respectively. In particular, we assume that the sequences

ug(n) anduy (n) are (Gaussian or non-Gaussian) M4 and
MA (q1) processes, respectively, i.e.,

uo(n) =Y bo, vo(n — ) 3)
i=0
ql

ui(n) =>_ 61 v1(n—j) 4
i=0

in whichvg(n) andw, (n) are i.i.d. The simple case of the i.i.d.
multiplicative noisee(n) case was studied in [13]. However,

* Whenz(n), or up(n), or both are non-Gaussian, Gaus-

ite  sianity tests are no longer useful for problem (1) since
the observed signa{») is generally non-Gaussian under
both hypotheses. It should be noted that the process is a
noisy linear process under hypothedls, whereas it is
a nonlinear process under hypothe&is. Consequently,
linearity tests for noisy signals such as that in [40] could
be used for detection. However, those tests are quite com-
plicated since they use the bispectrum (or possibly trispec-
trum) and require multiple grids on which a modified bi-
coherence (or tricoherence) function should be computed.
Moreover, they are applicable to arbitrary linear/nonlinear
processes and do not make use of the particular structure
of the processego(n) andy;(n). Therefore, we derive
new detectors that are based on the specific structure of
the processes involved in the multiplicative noise detec-
tion problem. The paper focuses on suboptimal multiplica-
tive noise detectors based on cumulants. The main advan-
tage of these detectors is that they only require mild as-
sumptions regarding the distributions of») and e(n).
The onlya priori information required is the mean of the
multiplicative noisec(n).

» We can interpret(n) as the signal of interest andn)

colored multiplicative noise occurs in many applications. For  (and the other processes) as noise; in this context, the

instance, it is more realistic to model the speckle noise in ima

9€  problem is similar to that studied in [38]. However, the

p_rocessing by a bandlimited process con_taining only Iow_er SPa-  gcenario of “signal” modulating only one component of
tial frequencies [8]. In this case, the algorithm developed in [13]  ap ever-present two component noise is somewhat restric-

cannot be used. We assume that the multiplicative ndisgis
an MA(q.) process driven by an i.i.d. sequente), whose dis-
tribution is unknown

on) =Y fetn— ) (5)

The sequenceg(n), vo(n), v1(n), ande(n) are assumed to be
mutually independent. Further, the processes), e(n), ug(n),

tive.

We develop different detectors for the zero-mean and nonzero
mean cases. The zero-mean case is studied in Section II; we
show that an appropriate vector of cumulants is zero uitier
and nonzero unddid,. The nonzero mean case is considered in

1The processes(n), e(n), uo(n), andu, (n) are modeled as stable ARMA
and MA processes; consequently, these processes are weakly mixing if the mo-
ments/cumulants of their innovation sequences are finite [9, p 26].
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Section Ill; we first develop an algorithm to estimate the AR 1) The SOlx(n) must have memory strictly greater than
parameters of the ARMA proceagn) and inverse filter the max(qgo, q1)-

data (i.e., the applied filter is MA); we show that an appropriate 2) g. > max(qo, q1).

vector of cumulants of this residual process is zero ufieaind 3) Multiplicative noisee(n) must be zero mean.

nonzero undef; . Sample estimates of the cumulants6f)

are asymptotically Gaussian; this enables to us to show that the ||| N onzEro MEAN MULTIPLICATIVE NOISE (NZM

test statistic is centrat’ distributed under hypothes&, and DETECTOR

noncentralf” distributed under hypothesi#; . Closed-form ex-
pression for the ROC are given in Section IV. Simulation ex-
amples are reported in Section V, and some discussion ma
found in Section VI.

In this section, we assume that the multiplicative neise)
nonzero mean, i.ei. # 0. In this case, the detector de-
rived in the previous section is no longer valid. The proposed
algorithm is a three-step process. First, we derive an algorithm

to estimate the AR parameters of the ARMA proce§s); we

show that the estimator is consistent under both hypotheses. We
In this section, we assume that the multiplicative neige) next filter the observed datgn) by the estimated AR filter to

is zero mean. Lei, = E[s(n )] denote the mean of the staform the residual procesg ), which is noisy MA undetH,,

tionary random procesg(n), M} (p) andC;(p) its kth-order  put does not have the MA structure und&r. We then show that

moment and cumulant computed at tle— 1)-D lag p = appropriate cumulants of the process) are useful for detec-
(p1, p2---, pr_1)- Let Ny (r) define the region of support of jgn.
the kth-order cumulants of an M) process. Let

Il. ZERO-MEAN MULTIPLICATIVE NOISE (ZM DETECTOR

n A. AR Parameter Estimation
NS ={pl0<pp1<---<pp <7} _ _ _ _
- In this section, we derive an estimator for the AR parame-

Then ters of the ARMA process(n); we show that the estimator is
consistent under both hypotheses. This algorithm exploits the
Ni(r) = NjF (r) U Symmetric extensions ¥;f (r).  (6) fact that appropriate cumulants gfn) satisfy the same higher
] order Yule-Walker equations under both hypotheses. The ad-
Since the sequences(n) andu, (n) are independent of the y;tive noisesuo(n) andu, (n) are defined in (3) and (4), re-
processes(n) andz(n), it follows that spectively. For brevity, the study is conducted with covariances,
, making the implicit assumption that there are no inherent all-
Ho: Cz(ﬁ) - Ck( L), £ ¢ Ni(a) pass factors in the ARMA model generating). However, it
Hy: C(p) = Ci*(p), p ¢ Ni(a) (7)  can be generalized to higher order cumulants(if) is non-
Gaussian, which would allow us to relax the allpass assump-
tion; further, the additive noiseg(n) andw, (n) could be either
non-Gaussian MA processes or arbitrarily colored (i.e., perhaps

whereez denotes the product process)z(n). Let us define

the set of lags
. ‘ p MA) Gaussian processes.
Silae) =dpllpil > g Vi€ {1, o kb_ 1 Since second-order cumulants are symmetric, only positive
and|p; — p;| > g. fori # j}. (8)  Jagsp will be considered.
i) Under hypothesid,, C3(p) = C3(p) + C3°(p), with
Cy(p) = a5, 221 60, 300, j+p = 0, for p > go since
uo(n) is an MA (go) process. Consequently, the covari-

In Appendix A, we show that choosing € Si.(q.) yields the
following detection problem:

Ho: CY(p) = Ci(p), p € Si(qe)\Ni(qo) ances ofy(n) satisfy the well-known Yule—Walker equa-
Hi: Ci(p)=Ci"(p) =0,  p€ Sige)\Wilar) (9) tions
'y

wherea € A\B means that € Aanda ¢ B. Suppose Z a;CYp—75)=0 (11)
that C/(p) # 0Vp € Si(qe) [which is true if thekth-order =0
cumulant of g(n), which is the innovations of the ARMA
process, is nonzero and either> 1 and/orqg > ¢.]. Then, (with ¢ = 1), provided thato > g andp — j > qo,
the detector reduces to testing the nullity of an appropriate Vj =0, ---, p, which will be denoted conditiof’; :
vector C}, of the kth-order cumulants of(n) computed at
lagsp € Si(ge)\(Wa(g0) U Ni(q1)) [which is nonempty if conditionC;: p > max(p + qo, q). (12)

ge > max(qo, q1)]
ii) Under hypothesis?;, CY(p) = C57(p) + Cy*(p), with

Hy:C,=Cp#0 Hi:C,=Cy=0. (10) Oy (p) = 0 for p > ¢;. Moreover
It is important to note that this procedure can be used for other o o
i i i C5"(p) = M3*(p) — Ne
linear processes, as well as for nonlinear processes, since (9) . 5 o
depends only on the fact that the multiplicative noige) is =M;3(p) M5 (p) — pep
zero mean. The only requirements are the following: =MS$(p)(C5(p) + p2) — p2p.
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Sincee(n) is an MA(q.) processMs5(p) =
for p > g.. Thus, undeH;

Cs(p) + p2 = 2

CY(p) = u2C5(p),  for p> max(qr,qc)-

It follows that

p
Z iC3(p —7) ueZ%CQp—l =0 (13)
=0

if p > gand|p — j| > max(qi, g.) foranyj € {0, ---, p}.
Thus, the validity condition is
conditionCs: p > max(p + q1, p + ge, q)- (14)

Equations (11)—(14) show that the AR parameter vegtct

2569

B. MA Detector

Denote byz;(n) the output of the FIR filter witlZ -transform
A(z) = Y% _, axz~" driven byy;(n). The detection problem
can be rewritten as

Hy: 2(n) = 20(n) bjgln —3j)+ Z a;uo(n — J)

i=0

[l
\MQ

<,
Il
o

Hy: z(n) =z1(n) aje(n — j)az(n — j)

[l

.
Il
o

17)

P
+ Z a;ui(n — 7).
=0

Equation (17) shows that t)(n) is the sum of an MAg) se-
quence and an M+ go) sequence [sincey(n) is an MA(go)
process], and 2};(n) is the sum of an MAp + ¢;) process

[ai, ---, a,]* satisfies the same Yule-Walker equations und@pd a non-Gaussian and nonlinear sequence; the latter sequence

both hypotheses

QQ(m7 p)Q = _QQ(mv p) (15)

for somem > p, provided that

.. A
conditionCs: p > po = max(p+qo, p+q1, P+ qe, q) (16)

is satisfied. In (15)C,(m, p) is them x p full-rank Toeplitz

matrix with (z, j) entry,C3(p — i +4), 5 = 1, -+, p, & =
0,---,m-—1,and
QQ(m’ p) = [Cg(p)v T C’é’(p—i—m - 1)]t'

Several remarks are now appropriate.
1) Equation (13) shows that the conditipn # 0 is re-

quired. Indeed, whep, = 0, Cy(m, po) = 0, and
QQ(mv pO) = 0.

2) Equation (15) can be obtained for ordérs- 2, leading
to
Qk(m7 P1, =y pkfl)Q = _Qk(mv P1, =y pk—l)

provided that appropriate relations between, o2,

L Pk—1, Py 4, e, Qo, q1 are satisfied. For instance

for third-order cumulants, we must haye > ¢ and
(p1 — 4, p2) € S5\(N3(q0) UN3(q1)),j = 0, -, p,
which implies(p; > po andps > max(qo, ¢1)) Or(p1 >
max(qo + p, q1 + p, ¢) andpz > max(qe, qo, q1))-

3) In practice, sample covariances or cumulants will replace

cannot be modeled as an MA process.

It follows from these two remarks that 1) thigh-order
cumulants of zo(n) are zero except on the finite set of
lags AY 2 Ai(q)UNi(p + o), and the kth-order cu-
mulants of z;(n) are nonzero for a specific set of lags
Aj. It is shown in Appendix B thatCi'(p) = 0 if

p¢ AL 2 Na(max(g, p + a1, p + ¢c)) andC5 (pu, p2) # 0
in general so thazl&1 z2.

The detection procedure consists, then, of testing a cumulant
vectorC; whose lags belong to the s&f, 2 AL\A?

provided, of course, that, # §. Indeed, ifmax(p + qo, q) =
max(p+q1, p+q., g) [which occurs, for instance, if the noises
uo(n), u1(n) ande(n) are i.i.d., or ifg > max(p + qo, p +

a1, p+ ¢.)], A2 = 0 so that second-order cumulants cannot be
used for detection in this case. Thus, in case of uncertainty con-
cerning model orders (in particular, if they are overestimated)
third- or higher order cumulants must be considered.

Moreover, it is interesting to note that (17) was derived as-
suming that the AR parameter veciotis known. In practice,
this vector is unknown and must be estimated, perhaps using
the procedure described in Section IlI-A. Thi-order cumu-
lant vectorC;, is then estimated via the sample cumulants of the
output of the FIR filter withZ-transformA(z) = 30 _ a2z ~*

"driven byy,(n). Strong consistency of the sample cumulant es-

timators guarantees thét is a strongly consistent estimator of
ag.

IV. STUDY OF THE TEST STATISTICS

theoretical covariances or cumulants for AR parameter In this section, we give the distribution of the test statistics
estimation; sample estimates of the cumulants, and herige our detection problem and obtain closed-form expressions
the AR parameter estimates, are strongly consistent unf@rthe ROC’s.

the assumed mixing conditions.

Equations (10) and (18) show that in both the zero mean and

4) Equation (15) was derived assuming that model orgersnonzero mean cases, the detection problem reduces to testing
4, ge, 9o, andg; were known. However, it can be easilythe nullity of an appropriatéth-order cumulant vector
modified to yield consistent AR parameter estimates

when only upper bounds 7, 7., g,, andg, are available.

H():C:COIO H1:CIC17$0. (19)
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Note that hypothesdd, andH; in (10) have to be interchangednoncentralF" with (d, M — d) degrees of freedom and noncen-
to agree with (19). Denote b@’A the vector obtained by re- trality parameter

placing the true cumulants i@ by their usual estimates com-

puted fromN samples (from the procedure given in [27]). The v=MKC¥ 'C.

cumulant estimates of an ARMA process driven by a weak]y - . N
mixing input (i.e., with absolutely summable cumulants) arg et f(f‘X’ d, da, f;gedno;[ebtkf cumtlﬁllztlve glztn;)utlon funfc-
asymptotically Gaussian with [20, Sec. 10.5]: lon of a noncentrat: -distribution with ¢, andd; degrees o

freedom and noncentral paramegeand letf —*(xz; dy, da, &)
denote its inverse. The probability of detectidPD) can then

Nl_igrloo E |:CN:| =C be obtained from thé@F A as follows:
N N t —
JJim NE [(CN - C) (CN - C) } -3 A= % FY1—PFA; d, M —d,0)
M—d
The process(n)z(n) is weakly mixing, provided that(n) and PD=1-f <m)‘? d, M —d, ”) : (22)
x(n) are both weakly mixing. Consequently, the asymptotic sta-
tistical behavior of the HOC vector estimatby is Analytically, the ROC can be written as

N PD=1-f(f7*(1— PFA;d, M —d,0);d, M—d, v
Ho: \/NCNNN(O, Eo) f(f ( ) l)

Hy: VN (@N _ Cl) ~N(0, %) (20) Where we recall that o
d dimension of the statistiC’;
K number of samples per segment;

where the matrices, andX; are independent aVv. If 3, X1, .
M number of segments (so thd K < N, whereN is

andC; are known, the asymptotic statistics@f can be used
to derive a likelihood ratio test based on tha-order cumu- the total number of samples);

lants (rather than the data whose distribution is unknown). How-» _noncentrality parameter. _
ever, we focus on the composite hypotheses test (19) in Whmﬂte_ that _for a f|>_<edPFA,_ and a fixed number_ of sliced,
matricesY, 31, andC; are all unknown. Consider a segmenPD is an !ncreasmg function of the noncentrallty parameter
tation of anN-sample signal intd/ segments of¢ samples. SUch thatim, .. PD(v) = 1. Moreover, for given model
The segment siz& is assumed to be large enough to obtain ap2rametersCy and =, are fixed and independent of the
proximately normally distributed cumulant estimates from ead¥Mber of samplesV. Thus, limy_. o v(V) = +o0, and
segment. Moreover, any two adjacent slices must be suﬁicien]ﬂﬁ}”\’*roo PD(N) = 1 for all model parameters.

separated to yield approximately independent slices (see [17]

for a segmentation procedure description). Finally, the segmen- V. SIMULATION RESULTS

tation givesM independent estimates©f; (denoted’ ; for Many simulations have been performed to validate the theo-
Jj=1,---, M) (Note, however, that/ is not supposed to tend retical results; we report a few representative examples here.

to infinity; it is only assumed that/ > d, whered denotes the  We consider the zero-mean case first, with interchanged hy-
dimension of the vecto€y). Define C' and S as the sample potheses, i.e.,

mean and covariance matrix of the seque(rfdg,j)jzl, e M

2

Hj: y(n) =y1(n)

M ’. _ a
C— % Z Cr.; Hi:y(n) =yo(n) = z(n) + vo(n). (23)
3=1 PF A andPD are defined for the problem in (23) by
M
. 1 . N\ /- —\* . .
S=ar71 Z (CK,j - C) (CK,j - C) : PFA = PlrejectH}/H}, is trug
=1 = P[multiplicative noise is not detected
.t ot Itiplicati isei ]
Using the asymptotic normality of vect(:@'}a ITRER C}Q )b /multiplicative noise is presept
the generalized likelihood ratio detector for the detectiofd
problem (20) is given by [21] PD = PlacceptH; /H] is trug
= P[multiplicative noise is not detected
Hy rejected ifT2 2 MC'§—1C > A (21) /multiplicative noise is abseht

where \ is a threshold that can be determined from the didhe signal z(n) is an ARMA(2,2) process with poles
tribution of 72 under the null hypothesis and a fixed probae = 0.7¢£727<%1 ‘and the MA parameters are [1; 0.4; 0.8].
bility of false alarm(PF A). Giri [21] showed that the statistic The innovations sequenggn) in (2) is an exponentially dis-
((M —d)/((M —1)d))T? has an’-distribution with(d, M —d) tributed i.i.d. sequence such that = 5 ands? = 1. Additive
degrees of freedom under the null hypothesis. Further, under Rgise processes,(n) andu, (n) are MA(1) Gaussian processes
pothesisH,, the distribution of (M — d)/((M — 1)d))T? is with SNR, ,,, 2 02/02 = 10,7 = 0, 1. Multiplicative noise
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0.9

E 0.8
— SNI{{,E =0dB;1
L A S SNR ,=10dB
e SNRX,e =20dB|
0 - : : : 0. . - . .
0 0.2 04 ., 08 0.8 1 0 01 pry 0.2
Fig. 1. ZM detector ROC'’s as a function of the number of samples Fig. 3. ZM detector ROC's as a function of SNR.
1 TABLE |
ESTIMATED PF A AND PD FOR THEZM DETECTOR—DESIGN PF' A WAS
0.05.z(n) WAS AN ARMA(2,2) PROCESS WITHEXPONENTIALLY DISTRIBUTED
0.8} INPUT PROCESS AND () AND u1 (1) WWERE GAUSSIAN MA(1) PROCESSES
N estimated PF A | estimated PD
0.1 1000 0.045 0.975
2 3000 0.050 1.000
0.4 5000 0.045 1.000
8000 0.046 1.000
ozl 10000 0.054 1.000
0 . - noise ratio SNR . £ 02/02; results are shown in Fig. 3. It
0 0.2 04 ppa 06 0.8 1 can be seen that the ZM detector’s performance is insensitive
_ _ to SNR, . (note that for legibility, ROC’s are zoomed in on
Fig. 2. ZM detector ROC's as a function of the poles. PFA € [0;0.25]). Indeed, the hypotheses of the binary testing

problem (10) have been interchanged in order to agree with the
e(n) is an MA(2) process with parameters [1; 0.3; —0.2]; thprocedure developed in the previous section. Recall, moreover,
innovations process(n) in (5) is a zero-mean exponentiallythat the probability of detectio#D derived in (22) only de-
distributed i.i.d. sequence. The number of segments was fixgehds on the process parameters of the alternative hypothesis via
at M = 7, and the cumulant order is = 3. Two-hundred the noncentrality parameter Now, these parameters are those
Monte Carlo runs were used to study the performance of tbéthe procesgo(n) = x(n) + uo(n) because of the hypothesis
detector. interchange. Therefore, the multiplicative noise parameters do
In Fig. 1, we show the performance of the ZM detector asret appear in the noncentrality parameter. This explains why the
function of the number of sample€$. Obviously, performance performance of the ZM detector is blind to SNR
improves as the amount of data increases. However, it should b&able | shows the actudlF'A for a designPFA = 0.05.
noted that performance is quite satisfactory everiMoe 1000. This table proves that the ZM detector yields good performance
We next fixed the number of samplesat= 2000 and varied since it maintains the prescribéti A.
the pole locations. Fig. 2 shows the ROC'’s obtained for different We next consider the nonzero mean case for which we use the

set of poles: NZM detector:
¢ p = 0'26:|:j27r><0.1; )
. oo = 0 4cEizEX0L. Ho: y(n) =yo(n) = 2(n) + uo(n)
* p3 = (l(;eijzﬂig'i; Hi:y(n) =y1(n) 2 e(n)z(n) +wui(n). (24)
* py = 0.7eF47X02
o p5 = 0.9ct2mx0-1. PF A andPD are defined for the problem in (24) by

¢ ps = 0.99¢LIZTx0-L,
As the poles move closer to the unit circle, the process becomes
increasingly more narrowband; therefore, the effective memory = P[multiplicative noise is detected
of the process increases. In the problem formulation, it helps if /multiplicative noise is abseft
the memory of the SOI is much greater than that of the noiggq
processes. Consequently, the performance of the detector im-

PP A = PlrejectHy/Hy is trud

PD = PlacceptH,/H, is trug

proves. S o
We then fixed the number of samples &t = 2000 and = P[multiplicative noise is detected
the AR poles afp = 0.7¢%27*0-1 and varied the signal-to- /multiplicative noise is preseijt.
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Fig. 4. NZM detector ROC's as a function of the number of samples

Fig. 7. NZM detector ROC'’s for different multiplicative noise models.

1 TABLE 1l
ESTIMATED PF A AND PD FOR THENZM DETECTOR—DESIGN PF' A WAS
0.05.x(n) WAs A GAUSSIAN ARMA(2,2) PROCESS AND uo(n) AND
0.8+ w1 (n) WERE GAUSSIAN MA(1) PROCESSES
o6l N estimated PF A | estimated PD
A 1000 0.047 0.171
A 3000 0.061 0.692
04r 5000 0.052 0.8980
8000 0.060 0.9880
0.2l 10000 0.059 0.9960

0 0.2 0.4 0.6 0.8 1
PFA

Fig. 5. NZM detector ROC's as a function of poles.

1

0.8 SNR=15dB

osl SNR=10dB

that performance improves as SNRdecreases. Indeed, when
the variance of the multiplicative noise is low, it is close to an
(unknown) scale constant. The AR proce$s) is then weakly
disturbed, and detection is difficult.

Next, we studied the robustness of the NZM detector with
respect to the multiplicative noise model. Results are given
in Fig. 7. It presents ROC'’s obtained when the multiplicative
noise is supposed to be an MA(2) process, whereas it actually
corresponds to another model (the true ARMA model orders
are shown in the figure). The AR parameters are [1; 0.5] [for

g SNR=8dB ARMA(1,2) and ARMA(1,3) processes], [1; 0.5; 0.25] [for
0.4 SNR=5dB AR(2) and ARMA(2, 2) processes], and [1; 0.5; 0.25; —0.125;
—0.06] [for the ARMA(4, 2) process]. The MA parameters are
0.2f SNR=0dB [1; 0.3; —0.2] [for ARMA(1, 2), ARMA(2, 2) and ARMA(4,

0 0.2 0.4 0.6 0.8 1
PFA

Fig. 6. NZM detector ROC's as a function of SNR.

2) processes], and [1; 0.3; —0.2; 0.8] [for the ARMA(1, 3)
process]. The input sequences are identical to those of Fig. 4.
Fig. 7 shows that the algorithm is quite robust with respect to
the multiplicative noise structure as long as the actual model
does not deviate too much from the expected model (note that
ROC's are zoomed in o F' A € [0;0.25]).

Figs. 4-6 are the counterparts of Figs. 1-3; all the parameters ifrinally, we simulated the case with the Gaussian “carrier”
the simulations were kept the same, except that the mean of thén)) and Gaussian additive noise. In this particular case, the

multiplicative process was nonzere.(= 1).

observed process is Gaussian under hypothEgisand non-

Fig. 4 shows the ROC'’s for a different number of samples; &aussian under hypothedi . Consequently, any Gaussianity

may be expected, the performance is not as good as that of k&t can be applied to solve the detection problem. A compar-
ZM detector for the same number of samples, and the detedswn between the NZM detector and the Moulines—Choukri de-
requires many more samples to give a satisfacttby This can tector [26] is shown in Tables Il and Ill. In these simulations,
be explained by the greater complexity of the NZM detectdhe noise and signal parameters are identical to those leading to
Indeed, it is based on AR parameter estimation, which nedeig. 4. We fixed the theoreticdt ' A at 0.05 and computed the
the estimation ofp + m + 1 cumulants (form > p). In our estimatedPF A and PD for different number of sampled’.
simulationsp +m+1 = 5, which implies thatV must be large These tables show the following: 1) The NZM detector yields
to ensure the convergence of the parameter estimates. Note altonatedP ' A’s close to the theoreticdP 7 A and PD close
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TABLE 1II where
ESTIMATED PFA AND PD FOR THE MOULINES-CHOUKRI X it AN
DETECTOR—DESIGN PF A WAS 0.05.24(n) WAS A GAUSSIAN ARMA (2,2) P(k) partition of {1, 2.’ ’ k}’
PROCESS AND u(n) AND u1 (1) WERE GAUSSIAN MA(1) PROCESSES r number of sets if>(k);
i _ P(k) setofall partitions of 1, 2, ---, k};
N estimated PFA | estimated PD andi; € {n, n+p1, ---, n+pp_1}¥l € {1, ---, m}. Since

;1;388 8%;3 8332 e(n) andz(n) are independent processes, it follows that

5000 0.189 1.00 M (ex(in), ex(iz), -+, ex(im))

8000 0.209 1.00 = M, (e(i1), e(iz), -, e(im))

1000 .1 1.

0000 0.197 90 X Myn(@(ir), 2(iz), -+, @(im))-
to 1, provided thatV > 5000; 2) the Moulines—Choukri de- Moreover . . .
tector requires far fewer samples than the NZM detector to ob- M (e(in), e(iz), -+, e(in))
tain PD close to 1. However, the empiric&l£'A is less accu- = M (e(0), e(ia — 1), -+, e(tm — 41)).
rate. These results allow us to conclude that the NZM detecgthcep € Su(q.), we haveli — i1| > ¢V € {2, ---, m}
and the Moulines—Choukri detector perform very similarly if, o ~e(0) ar?d’ ofi i) are i;dependént for _ all
the Gaussian context. I € {2,---,m} [sincec(n) is a MA(q.) process], which

implies
VI. CONCLUSION ) . . .
. . S L M (e(0), (2 — i1), + -+, e(im —41))
We studied the detection of colored multiplicative noise in a Mi(e(0)) M1 (e(is — iy) ofi i)
= 1 m—1 2 — 1), ", tm — 11

stationary setting. The proposed detectors modeled the signal of
interest as a parametric ARMA process and the noises as MA = preMp—1(c(iz — 1), -, e(im —11)) =0
processes. Suboptimal detectors that do not require any knowhich establishes the result.

edge of the distributions of the processes were derived. The deNote, however, thap € Sk(ge) is a sufficient but not nec-
tectors only need to know whether or not the multiplicative noisgssary condition to eﬁsu@;w(p) = 0. Indeed, we have the
has zero mean and some bounds on the model orders. Thef@gowing. a
tection of zero-mean multiplicative noise was achieved using . Forj = 2, we have, sincg..,

) . : = petts =0
appropriate cumulants of the observed signal. The detection of

nonzero mean multiplicative noise is a little bit more compli-
cated. It involves

1) AR parameter estimation;

2) filtering by the estimated AR filter;

C5%(p) = M5*(p) = M5(p)M5 (p) = C5(p)M5 (p)
andCs(p) = 0 for|p| > g.. Thus, we can take

S> = {pllpl > ge}-
e Fork = 3, we have

3) computation of the cumulants of the filtered data.
For both detectors, the problem finally reduces to comparing a
vector of cumulants to the null vector, leading to a test statistic
with central and noncentral distributions under the nulland al-
ternative hypotheses, respectively. Closed-form expressions for
the ROC's were given.

The choice of detector to be used depends on whether or not
the multiplicative noise is zero mean; in this paper, we assume
that we have this priori knowledge; it would be of interest
to develop detectors/estimators for this. In addition, in the con-
text of gear-fault detection, quantifying the strength of the mul-
tiplicative noise is also of interest.

C3"(p1, p2) = M3"(p1, p2)
= M3 (p1, p2) M3 (p1, p2)
=C5(p1, p2) M3 (p1, p2)
andC5(p1, p2) = 0if [p1| > ge O |p2| > ge. Finally, we
can define

S3 = {pllp1] > qe O [p2] > qc}-

APPENDIX B
COMPUTATION OF C3' (p) AND C3' (p1, p2)

We have

z1(n) = Z a;y1(n —J)
§=0

APPENDIX A
REGION OF SUPPORT OFC."(p)

Here, we prove that’;”(p) = 0 for p € Si(g.) if g = 0, r . . P .
where - - =Y aje(n—izn -5+ Y ajui(n—j). (25)
=0 =0

Denote byz(n) andzy(n) the two terms in the right-hand side
of (25). Since those two processes are independent, it follows

Si(qe) =1pllpil > g Vie{l, -, k—1}
and|p; — p;| > g fori # j}.

Recall thatkth-order cumulants are related koh-order mo- that
ments via 3 () = CE(p) + CF (1)
e . 5 (p) = C3(p) + C3*(p).
D DN G I ) | | 2 2 2

P(k)yeP (k) (i1, 5 im )EP (k)
X My (ex(iy), ex(iz), -+, ex(im))

Leté(n) = e(n) — e, &(n) = e(n) — - andg(n) = g(n) — s
so thaté(n), €(n), andg(n) are zero-mean processes. Denote
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by (h;) =0, ..., +oc the impulse response of the ARMA procesdFinally, the second-order cumulant af(n) is
and defineH (0) = 375 h;. We have

CQZI( ) ueagz b; bJ'H’ +u2 2H2(0)

p p
_ . ~ . . 7=0
2(n) =pe Y age(n—j)+ Y a;é(n — jla(n - j) S
,'_ j—O €
p x Z Z Z ajlajzﬁlﬁp+l+j1*j2
—uezbjgn—J +gH(0) Y aje(n —j) 71=0 52=0 1=0
=0 =0 r P ge oo
P +O’§O’§ Z Z Z ajlajzﬁkﬁp+k+j1*j2
+ Z Z a;lue(n — j)gln —j —1). (26) J1=0 j2=0 k=0 =0
J=0 1=0 rtau
_ _ — Xhihpyivsi—jo | + 00 Z &pti-
Denote g(n), é(n), and w(n) as the three terms on the pritiL—ie v ’
right-hand side. We have =0
Obviously, the first and the last terms vanishdf > ¢ and
C3(p) = Cum(g(n) +e(n) +w(n), lol > p+ q1, respectively. Moreover, it is easy to prove that the
G(n + p) +E(n + p) +T(n + p)). second and the third terms are zerp{f> p+q¢.. Consequently

OZI - 0 |f > d 3 e .
Sinces(n) andg(n) are independent and zero-meaf), 2(n), 2'(p) lp| > max(q, p+ge, p+q1)

andw(n) are zero-mean, and the cross terms in the developm&@w, the computation of3* (1, p2) is long and tedious. Thus,

of CZ(p) are zero. The nonzero mean terms are it is not detailed in this paper. However, it should be noted that
C3+(p1, p2) isthe sum of 15 terms, of which 13 are zero, except
on afinite set. Now, it can be proved that the two other terms are,

(n). @ — 2,2 b
Cum(g(n), g(n+p)) = POy Z;) bibitp, in general, nonzero for aflp;, ps) € 7*[12].
j=
Cum(z(n), e(n + p)) ACKNOWLEDGMENT
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