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Detection of Multiplicative Noise in Stationary
Random Processes Using Second- and Higher Order

Statistics
Martial Coulon, Jean-Yves Tourneret, and Ananthram Swami, Senior Member, IEEE

Abstract—This paper addresses the problem of detecting the
presence of colored multiplicative noise, when the information
process can be modeled as a parametric ARMA process. For
the case of zero-mean multiplicative noise, a cumulant based
suboptimal detector is studied. This detector tests the nullity of
a specific cumulant slice. A second detector is developed when
the multiplicative noise is nonzero mean. This detector consists
of filtering the data by an estimated AR filter. Cumulants of the
residual data are then shown to be well suited to the detection
problem. Theoretical expressions for the asymptotic probability of
detection are given. Simulation-derived finite-sample ROC curves
are shown for different sets of model parameters.

Index Terms—ARMA processes, detection, higher order statis-
tics, multiplicative noise.

I. INTRODUCTION AND PROBLEM FORMULATION

DDITIVE noise models have been intensively studied in
many signal processing applications. Indeed, these models
allow us to approximate a large class of physical mechanisms
contaminated by measurement noise. Consequently, detection
of known signals with unknown parameters, as well as detec-
tion of random signals embedded in Gaussian or non-Gaussian
additive noise, has received much attention in the literature
(see, for instance, [18] and references therein for an overview).
However, these detectors can fail dramatically when the signal
is corrupted by nonadditive noise components. This paper ad-
dresses the problem of detecting the presence of multiplicative
noise in stationary random processes. Multiplicative noise has
been observed in many signal processing applications, such
as communication systems (e.g., fading channels, where the
amplitude of the signal is modeled as a Rayleigh or Rician
random variable) [32], radar (in particular, weather radar/lidar
observations—see [14]), synthetic aperture radar (SAR) [28],
passive and active sonar [15], [16], and mechanical vibrations
[23], [25], [33], [45], where the multiplicative noise is mainly
caused by nonlinearities in the observed system.

The detection of known signals embedded in multiplicative
noise has been studied recently in several papers. For instance,
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locally optimum detection in multiplicative noise was studied in
[19] and [35] for known signals; suboptimal approaches, based
on ranks, were developed in [2] and [44], and robust detectors
were derived in [6] and [7].

The detection of random signals in multiplicative noise has
been considered in [3] and [36], for instance. These approaches
require knowledge of the noise pdf’s and typically assume that
the noises are i.i.d. The resulting detectors in the known signal
case can be expressed as generalized correlators; in the case
of random signals, the detectors are very complicated [36] and
assume that at least the autocorrelation sequence of the signal is
known. In [3] and [36], the observed process is of the form

and the detection problem is

However, the model we consider [see (1)] is somewhat different
and is motivated by fault detection problems in geared systems.
When the signal models are more specific, it is possible to ob-
tain more concrete results, e.g., the problem of discriminating
random amplitude (i.e., multiplicative noise) from constant am-
plitude harmonics was studied in [29] and [42].

The parameter estimation problem (i.e., when multiplicative
noise is known to be present) has been well studied, see, e.g.,
[1], [5], [24], [37], [39], [43], and references therein.

The detection problem of interest is the following composite
hypothesis testing problem:

(1)

where the signal is modeled as an ARMA process and the
noise processes as an MA process. The problem of detecting
the presence of multiplicative noise that corrupts the signal of
interest (SOI)—here —is of great importance.

1) Appropriate techniques for parameter estimation in the
additive noise environment can fail dramatically (or be
statistically inefficient) when the observed process is con-
taminated by multiplicative noise. For example, if
is an AR process, applying the usual Yule–Walker type
equations would lead to inconsistent estimates under;
the modified equations [37] yield consistent estimates
under both hypotheses but are very inefficient under.
In wireless communications, the multiplicative noise
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represents fading and is usually modeled as a zero-mean
process; the optimal receiver structure for the AWGN
channel differs from that for the fading channel [32], [41];
choosing the incorrect structure would lead to increased
errors in detection. Consequently, it is important to deter-
mine the correct underlying model.

2) The presence of multiplicative noise can be informative
in some applications. For instance, in mechanics, a gear
fault induces multiplicative noise in the vibration signal.
In this case, the detection of the multiplicative noise al-
lows the detection of (localized or distributed) gear faults
[23], [25], [33], [34], [45]. Here, the signal of interest
is modeled as sums of harmonics [25] or as an ARMA
process [4], [22]. In drilling applications, nonlinearities
lead to random amplitude modulation, and timely detec-
tion of the multiplicative noise is important to prevent
failure of the drilling system.

This paper studies a statistical test for the detection of colored
multiplicative noise when the SOI can be modeled as an ARMA
process. The choice of parametric ARMA modeling for the SOI
is motivated by the fact that for any continuous spectral density

, an ARMA process can be found with a spectral density
arbitrarily close to [10, p. 132].

We now state our modeling assumptions for the composite
hypothesis testing problem in (1). The signal of interest is
an ARMA process

(2)

in which is an i.i.d. sequence. The noise processes
and are possibly non-Gaussian with finite memories
and , respectively. In particular, we assume that the sequences

and are (Gaussian or non-Gaussian) MA and
MA processes, respectively, i.e.,

(3)

(4)

in which and are i.i.d. The simple case of the i.i.d.
multiplicative noise case was studied in [13]. However,
colored multiplicative noise occurs in many applications. For
instance, it is more realistic to model the speckle noise in image
processing by a bandlimited process containing only lower spa-
tial frequencies [8]. In this case, the algorithm developed in [13]
cannot be used. We assume that the multiplicative noiseis
an MA process driven by an i.i.d. sequence , whose dis-
tribution is unknown

(5)

The sequences , , , and are assumed to be
mutually independent. Further, the processes , , ,

and are assumed to be weakly mixing (i.e., with abso-
lutely summable cumulants).1

Optimal detectors based on the Neyman–Pearson criterion
can be derived when statistical properties concerning the signal
and noise processes are available. Such detectors were studied in
[38] for detecting and classifying signals corrupted by additive
and multiplicative noise, although the models were rather dif-
ferent. However, the Neyman–Pearson detector can lead to in-
tractable computation and, of course, the signal and noises pdf’s
must be known. This paper studies suboptimal detectors based
on second- and higher-order cumulants (HOCs).

• When the ARMA process and the additive noise
are Gaussian, the observed signal is Gaussian

under hypothesis and generally non-Gaussian under
hypothesis . Any Gaussianity test such as the fre-
quency-domain tests of Hinich or Rao–Gabr [31, p 42]
or the lag-domain tests in [11] and [26] can then be used
for multiplicative noise detection; however, in the colored
noise case, these generic tests may involve hundreds of
thousands of samples [11], and the power (probability
of detection) has been evaluated analytically only in the
i.i.d. case.

• When , or , or both are non-Gaussian, Gaus-
sianity tests are no longer useful for problem (1) since
the observed signal is generally non-Gaussian under
both hypotheses. It should be noted that the process is a
noisy linear process under hypothesis, whereas it is
a nonlinear process under hypothesis. Consequently,
linearity tests for noisy signals such as that in [40] could
be used for detection. However, those tests are quite com-
plicated since they use the bispectrum (or possibly trispec-
trum) and require multiple grids on which a modified bi-
coherence (or tricoherence) function should be computed.
Moreover, they are applicable to arbitrary linear/nonlinear
processes and do not make use of the particular structure
of the processes and . Therefore, we derive
new detectors that are based on the specific structure of
the processes involved in the multiplicative noise detec-
tion problem. The paper focuses on suboptimal multiplica-
tive noise detectors based on cumulants. The main advan-
tage of these detectors is that they only require mild as-
sumptions regarding the distributions of and .
The onlya priori information required is the mean of the
multiplicative noise .

• We can interpret as the signal of interest and
(and the other processes) as noise; in this context, the
problem is similar to that studied in [38]. However, the
scenario of “signal” modulating only one component of
an ever-present two component noise is somewhat restric-
tive.

We develop different detectors for the zero-mean and nonzero
mean cases. The zero-mean case is studied in Section II; we
show that an appropriate vector of cumulants is zero under
and nonzero under . The nonzero mean case is considered in

1The processesx(n), e(n),u (n), andu (n) are modeled as stable ARMA
and MA processes; consequently, these processes are weakly mixing if the mo-
ments/cumulants of their innovation sequences are finite [9, p 26].
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Section III; we first develop an algorithm to estimate the AR
parameters of the ARMA process and inverse filter the
data (i.e., the applied filter is MA); we show that an appropriate
vector of cumulants of this residual process is zero underand
nonzero under . Sample estimates of the cumulants of
are asymptotically Gaussian; this enables to us to show that the
test statistic is central distributed under hypothesis and
noncentral distributed under hypothesis . Closed-form ex-
pression for the ROC are given in Section IV. Simulation ex-
amples are reported in Section V, and some discussion may be
found in Section VI.

II. ZERO-MEAN MULTIPLICATIVE NOISE(ZM DETECTOR)

In this section, we assume that the multiplicative noise
is zero mean. Let denote the mean of the sta-
tionary random process , and its th-order
moment and cumulant computed at the -D lag

. Let define the region of support of
the th-order cumulants of an MA process. Let

Then

Symmetric extensions of (6)

Since the sequences and are independent of the
processes and , it follows that

(7)

where denotes the product process . Let us define
the set of lags

and for (8)

In Appendix A, we show that choosing yields the
following detection problem:

(9)

where means that and . Suppose
that [which is true if the th-order
cumulant of , which is the innovations of the ARMA
process, is nonzero and either and/or ]. Then,
the detector reduces to testing the nullity of an appropriate
vector of the th-order cumulants of computed at
lags [which is nonempty if

]

(10)

It is important to note that this procedure can be used for other
linear processes, as well as for nonlinear processes, since (9)
depends only on the fact that the multiplicative noise is
zero mean. The only requirements are the following:

1) The SOI must have memory strictly greater than
.

2) .
3) Multiplicative noise must be zero mean.

III. N ONZERO MEAN MULTIPLICATIVE NOISE (NZM
DETECTOR)

In this section, we assume that the multiplicative noise
has nonzero mean, i.e., . In this case, the detector de-
rived in the previous section is no longer valid. The proposed
algorithm is a three-step process. First, we derive an algorithm
to estimate the AR parameters of the ARMA process ; we
show that the estimator is consistent under both hypotheses. We
next filter the observed data by the estimated AR filter to
form the residual process , which is noisy MA under ,
but does not have the MA structure under. We then show that
appropriate cumulants of the process are useful for detec-
tion.

A. AR Parameter Estimation

In this section, we derive an estimator for the AR parame-
ters of the ARMA process ; we show that the estimator is
consistent under both hypotheses. This algorithm exploits the
fact that appropriate cumulants of satisfy the same higher
order Yule-Walker equations under both hypotheses. The ad-
ditive noises and are defined in (3) and (4), re-
spectively. For brevity, the study is conducted with covariances,
making the implicit assumption that there are no inherent all-
pass factors in the ARMA model generating . However, it
can be generalized to higher order cumulants if is non-
Gaussian, which would allow us to relax the allpass assump-
tion; further, the additive noises and could be either
non-Gaussian MA processes or arbitrarily colored (i.e., perhaps
MA) Gaussian processes.

Since second-order cumulants are symmetric, only positive
lags will be considered.

i) Under hypothesis , , with
, for since

is an MA process. Consequently, the covari-
ances of satisfy the well-known Yule–Walker equa-
tions

(11)

(with ), provided that and ,
, which will be denoted condition :

condition (12)

ii) Under hypothesis , , with
for . Moreover
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Since is an MA process,
for . Thus, under

for

It follows that

(13)

if and for any .
Thus, the validity condition is

condition (14)

Equations (11)–(14) show that the AR parameter vector
satisfies the same Yule–Walker equations under

both hypotheses

(15)

for some , provided that

condition (16)

is satisfied. In (15), is the full-rank Toeplitz
matrix with entry, , ,

, and

Several remarks are now appropriate.

1) Equation (13) shows that the condition is re-
quired. Indeed, when , , and

.
2) Equation (15) can be obtained for orders , leading

to

provided that appropriate relations between
, , , , , are satisfied. For instance,

for third-order cumulants, we must have and
, ,

which implies and or
and .

3) In practice, sample covariances or cumulants will replace
theoretical covariances or cumulants for AR parameter
estimation; sample estimates of the cumulants, and hence
the AR parameter estimates, are strongly consistent under
the assumed mixing conditions.

4) Equation (15) was derived assuming that model orders,
, , , and were known. However, it can be easily

modified to yield consistent AR parameter estimates
when only upper bounds, , , , and are available.

B. MA Detector

Denote by the output of the FIR filter with -transform
driven by . The detection problem

can be rewritten as

(17)

Equation (17) shows that 1) is the sum of an MA se-
quence and an MA sequence [since is an MA
process], and 2) is the sum of an MA process
and a non-Gaussian and nonlinear sequence; the latter sequence
cannot be modeled as an MA process.

It follows from these two remarks that 1) theth-order
cumulants of are zero except on the finite set of
lags , and the th-order cu-
mulants of are nonzero for a specific set of lags

. It is shown in Appendix B that if

and

in general so that .
The detection procedure consists, then, of testing a cumulant

vector whose lags belong to the set

(18)

provided, of course, that . Indeed, if
[which occurs, for instance, if the noises

, and are i.i.d., or if
], so that second-order cumulants cannot be

used for detection in this case. Thus, in case of uncertainty con-
cerning model orders (in particular, if they are overestimated)
third- or higher order cumulants must be considered.

Moreover, it is interesting to note that (17) was derived as-
suming that the AR parameter vectoris known. In practice,
this vector is unknown and must be estimated, perhaps using
the procedure described in Section III-A. Theth-order cumu-
lant vector is then estimated via the sample cumulants of the
output of the FIR filter with -transform
driven by . Strong consistency of the sample cumulant es-
timators guarantees that is a strongly consistent estimator of

.

IV. STUDY OF THE TEST STATISTICS

In this section, we give the distribution of the test statistics
for our detection problem and obtain closed-form expressions
for the ROC’s.

Equations (10) and (18) show that in both the zero mean and
nonzero mean cases, the detection problem reduces to testing
the nullity of an appropriateth-order cumulant vector

(19)
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Note that hypotheses and in (10) have to be interchanged
to agree with (19). Denote by the vector obtained by re-
placing the true cumulants in by their usual estimates com-
puted from samples (from the procedure given in [27]). The
cumulant estimates of an ARMA process driven by a weakly
mixing input (i.e., with absolutely summable cumulants) are
asymptotically Gaussian with [20, Sec. 10.5]:

The process is weakly mixing, provided that and
are both weakly mixing. Consequently, the asymptotic sta-

tistical behavior of the HOC vector estimate is

(20)

where the matrices and are independent of . If , ,
and are known, the asymptotic statistics of can be used
to derive a likelihood ratio test based on theth-order cumu-
lants (rather than the data whose distribution is unknown). How-
ever, we focus on the composite hypotheses test (19) in which
matrices , , and are all unknown. Consider a segmen-
tation of an -sample signal into segments of samples.
The segment size is assumed to be large enough to obtain ap-
proximately normally distributed cumulant estimates from each
segment. Moreover, any two adjacent slices must be sufficiently
separated to yield approximately independent slices (see [17]
for a segmentation procedure description). Finally, the segmen-
tation gives independent estimates of (denoted for

) (Note, however, that is not supposed to tend
to infinity; it is only assumed that , where denotes the
dimension of the vector ). Define and as the sample
mean and covariance matrix of the sequence

Using the asymptotic normality of vector ,
the generalized likelihood ratio detector for the detection
problem (20) is given by [21]

rejected if (21)

where is a threshold that can be determined from the dis-
tribution of under the null hypothesis and a fixed proba-
bility of false alarm . Giri [21] showed that the statistic

has an -distribution with
degrees of freedom under the null hypothesis. Further, under hy-
pothesis , the distribution of is

noncentral with degrees of freedom and noncen-
trality parameter

Let denote the cumulative distribution func-
tion of a noncentral -distribution with and degrees of
freedom and noncentral parameter, and let
denote its inverse. The probability of detection can then
be obtained from the as follows:

(22)

Analytically, the ROC can be written as

where we recall that
dimension of the statistic ;
number of samples per segment;
number of segments (so that , where is
the total number of samples);
noncentrality parameter.

Note that for a fixed , and a fixed number of slices ,
is an increasing function of the noncentrality parameter

such that . Moreover, for given model
parameters, and are fixed and independent of the
number of samples . Thus, , and

for all model parameters.

V. SIMULATION RESULTS

Many simulations have been performed to validate the theo-
retical results; we report a few representative examples here.

We consider the zero-mean case first, with interchanged hy-
potheses, i.e.,

(23)

andPD are defined for the problem in (23) by

reject is true

multiplicative noise is not detected

multiplicative noise is present

and

accept is true

multiplicative noise is not detected

multiplicative noise is absent

The signal is an ARMA(2,2) process with poles
, and the MA parameters are [1; 0.4; 0.8].

The innovations sequence in (2) is an exponentially dis-
tributed i.i.d. sequence such that and . Additive
noise processes and are MA(1) Gaussian processes

with SNR , . Multiplicative noise
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Fig. 1. ZM detector ROC’s as a function of the number of samplesN .

Fig. 2. ZM detector ROC’s as a function of the poles.

is an MA(2) process with parameters [1; 0.3; –0.2]; the
innovations process in (5) is a zero-mean exponentially
distributed i.i.d. sequence. The number of segments was fixed
at , and the cumulant order is . Two-hundred
Monte Carlo runs were used to study the performance of the
detector.

In Fig. 1, we show the performance of the ZM detector as a
function of the number of samples. Obviously, performance
improves as the amount of data increases. However, it should be
noted that performance is quite satisfactory even for .

We next fixed the number of samples at and varied
the pole locations. Fig. 2 shows the ROC’s obtained for different
set of poles:

• ;
• ;
• ;
• ;
• ;
• .

As the poles move closer to the unit circle, the process becomes
increasingly more narrowband; therefore, the effective memory
of the process increases. In the problem formulation, it helps if
the memory of the SOI is much greater than that of the noise
processes. Consequently, the performance of the detector im-
proves.

We then fixed the number of samples at and
the AR poles at and varied the signal-to-

Fig. 3. ZM detector ROC’s as a function of SNR.

TABLE I
ESTIMATED PFA AND PD FOR THEZM DETECTOR—DESIGNPFA WAS

0.05.x(n) WAS AN ARMA(2,2) PROCESS WITHEXPONENTIALLY DISTRIBUTED

INPUT PROCESS, AND u (n) AND u (n) WWEREGAUSSIAN MA(1) PROCESSES

noise ratio SNR ; results are shown in Fig. 3. It
can be seen that the ZM detector’s performance is insensitive
to SNR (note that for legibility, ROC’s are zoomed in on

). Indeed, the hypotheses of the binary testing
problem (10) have been interchanged in order to agree with the
procedure developed in the previous section. Recall, moreover,
that the probability of detection derived in (22) only de-
pends on the process parameters of the alternative hypothesis via
the noncentrality parameter. Now, these parameters are those
of the process because of the hypothesis
interchange. Therefore, the multiplicative noise parameters do
not appear in the noncentrality parameter. This explains why the
performance of the ZM detector is blind to SNR.

Table I shows the actual for a design .
This table proves that the ZM detector yields good performance
since it maintains the prescribed .

We next consider the nonzero mean case for which we use the
NZM detector:

(24)

and are defined for the problem in (24) by

reject is true

multiplicative noise is detected

multiplicative noise is absent

and

accept is true

multiplicative noise is detected

multiplicative noise is present.
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Fig. 4. NZM detector ROC’s as a function of the number of samplesN

Fig. 5. NZM detector ROC’s as a function of poles.

Fig. 6. NZM detector ROC’s as a function of SNR.

Figs. 4–6 are the counterparts of Figs. 1–3; all the parameters in
the simulations were kept the same, except that the mean of the
multiplicative process was nonzero ( ).

Fig. 4 shows the ROC’s for a different number of samples; as
may be expected, the performance is not as good as that of the
ZM detector for the same number of samples, and the detector
requires many more samples to give a satisfactory. This can
be explained by the greater complexity of the NZM detector.
Indeed, it is based on AR parameter estimation, which needs
the estimation of cumulants (for ). In our
simulations, , which implies that must be large
to ensure the convergence of the parameter estimates. Note also

Fig. 7. NZM detector ROC’s for different multiplicative noise models.

TABLE II
ESTIMATED PFA AND PD FOR THENZM DETECTOR—DESIGNPFA WAS

0.05.x(n) WAS A GAUSSIAN ARMA(2,2) PROCESS, AND u (n) AND

u (n) WERE GAUSSIAN MA(1) PROCESSES

that performance improves as SNRdecreases. Indeed, when
the variance of the multiplicative noise is low, it is close to an
(unknown) scale constant. The AR process is then weakly
disturbed, and detection is difficult.

Next, we studied the robustness of the NZM detector with
respect to the multiplicative noise model. Results are given
in Fig. 7. It presents ROC’s obtained when the multiplicative
noise is supposed to be an MA(2) process, whereas it actually
corresponds to another model (the true ARMA model orders
are shown in the figure). The AR parameters are [1; 0.5] [for
ARMA(1,2) and ARMA(1,3) processes], [1; 0.5; 0.25] [for
AR(2) and ARMA(2, 2) processes], and [1; 0.5; 0.25; –0.125;
–0.06] [for the ARMA(4, 2) process]. The MA parameters are
[1; 0.3; –0.2] [for ARMA(1, 2), ARMA(2, 2) and ARMA(4,
2) processes], and [1; 0.3; –0.2; 0.8] [for the ARMA(1, 3)
process]. The input sequences are identical to those of Fig. 4.
Fig. 7 shows that the algorithm is quite robust with respect to
the multiplicative noise structure as long as the actual model
does not deviate too much from the expected model (note that
ROC’s are zoomed in on ).

Finally, we simulated the case with the Gaussian “carrier”
and Gaussian additive noise. In this particular case, the

observed process is Gaussian under hypothesisand non-
Gaussian under hypothesis . Consequently, any Gaussianity
test can be applied to solve the detection problem. A compar-
ison between the NZM detector and the Moulines–Choukri de-
tector [26] is shown in Tables II and III. In these simulations,
the noise and signal parameters are identical to those leading to
Fig. 4. We fixed the theoretical at 0.05 and computed the
estimated and for different number of samples .
These tables show the following: 1) The NZM detector yields
estimated ’s close to the theoretical and close
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TABLE III
ESTIMATED PFA AND PD FOR THE MOULINES–CHOUKRI

DETECTOR—DESIGNPFA WAS 0.05.x (n) WAS A GAUSSIAN ARMA (2,2)
PROCESS, AND u (n) AND u (n) WEREGAUSSIAN MA(1) PROCESSES

to 1, provided that ; 2) the Moulines–Choukri de-
tector requires far fewer samples than the NZM detector to ob-
tain close to 1. However, the empirical is less accu-
rate. These results allow us to conclude that the NZM detector
and the Moulines–Choukri detector perform very similarly in
the Gaussian context.

VI. CONCLUSION

We studied the detection of colored multiplicative noise in a
stationary setting. The proposed detectors modeled the signal of
interest as a parametric ARMA process and the noises as MA
processes. Suboptimal detectors that do not require any knowl-
edge of the distributions of the processes were derived. The de-
tectors only need to know whether or not the multiplicative noise
has zero mean and some bounds on the model orders. The de-
tection of zero-mean multiplicative noise was achieved using
appropriate cumulants of the observed signal. The detection of
nonzero mean multiplicative noise is a little bit more compli-
cated. It involves

1) AR parameter estimation;
2) filtering by the estimated AR filter;
3) computation of the cumulants of the filtered data.

For both detectors, the problem finally reduces to comparing a
vector of cumulants to the null vector, leading to a test statistic
with central and noncentral distributions under the null and al-
ternative hypotheses, respectively. Closed-form expressions for
the ROC’s were given.

The choice of detector to be used depends on whether or not
the multiplicative noise is zero mean; in this paper, we assume
that we have thisa priori knowledge; it would be of interest
to develop detectors/estimators for this. In addition, in the con-
text of gear-fault detection, quantifying the strength of the mul-
tiplicative noise is also of interest.

APPENDIX A
REGION OFSUPPORT OF

Here, we prove that for if ,
where

and for

Recall that th-order cumulants are related toth-order mo-
ments via

where
partition of ;
number of sets in ;
set of all partitions of ;

and . Since
and are independent processes, it follows that

Moreover

Since , we have .
Thus, and are independent for all

[since is a MA process], which
implies

which establishes the result.
Note, however, that is a sufficient but not nec-

essary condition to ensure . Indeed, we have the
following.

• For , we have, since

and for . Thus, we can take

• For , we have

and if or . Finally, we
can define

or

APPENDIX B
COMPUTATION OF AND

We have

(25)

Denote by and the two terms in the right-hand side
of (25). Since those two processes are independent, it follows
that

Let , and
so that , , and are zero-mean processes. Denote
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by the impulse response of the ARMA process,
and define . We have

(26)

Denote , , and as the three terms on the
right-hand side. We have

Since and are independent and zero-mean, , ,
and are zero-mean, and the cross terms in the development
of are zero. The nonzero mean terms are

Moreover, is an MA process with innovations
and parameters . Thus, is an MA
process with innovations and parameters

with if , and if [note that
if is MA(0), i.e., is i.i.d.]. Thus, we obtain

Finally, the second-order cumulant of is

Obviously, the first and the last terms vanish if and
, respectively. Moreover, it is easy to prove that the

second and the third terms are zero if . Consequently

if

Now, the computation of is long and tedious. Thus,
it is not detailed in this paper. However, it should be noted that

is the sum of 15 terms, of which 13 are zero, except
on a finite set. Now, it can be proved that the two other terms are,
in general, nonzero for all [12].
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