709 research outputs found

    Developmental disorders of vision

    Get PDF
    This review of developmental disorders of vision focuses on a few of the many disorders that disrupt visual development. Given the enormity of the human visual system in the primate brain and complexity of visual development, however, there are likely hundreds or thousands of potential types of disorders affecting high-level vision. The rapid progress seen in developmental dyslexia and Williams syndrome demonstrates the possibilities and difficulties inherent in researching such disorders, and the authors hope that similar progress will be made for congenital prosopagnosia and other disorders in the near future

    Neural Mechanisms for Combinatorial Semantics in Language and Vision: Evidence From FMRI, Patients, and Brain Stimulation

    Get PDF
    Throughout our daily experience, humans make nearly constant use of semantic knowledge. Over the last 20-30 years, the majority of work on the neural basis of semantic memory has examined the representation of semantic categories (e.g., animate versus inanimate). However, a defining aspect of human cognition is the ability to integrate this stored semantic information to form complex combinations of concepts. For example, humans can comprehend “plaid” and “jacket” as separate concepts, but can also effortlessly integrate this information to create the idea of a “plaid jacket.” This process is essential to human cognition, but little work has examined the neural regions that underlie conceptual combination. Many models of semantic memory have proposed that convergence zones, or neural hubs, help to integrate the semantic features of word meaning to form coherent representations from stored semantic knowledge. However, few studies have specifically examined the integrative semantic functions that these high-level hub regions carry out. This thesis presents three experiments that examine lexical-semantic combinatorial processing (as in the “plaid jacket” example above): 1) a study in healthy adults using fMRI, 2) a study in healthy adults using brain stimulation, and 3) a study examining impairments of lexical-semantic integration in patients with neurodegenerative disease. The fourth and final experiment of this thesis examines semantic aspects of combinatorial codes for visual-object representation. This study identifies neural regions that encode the feature combinations that define an object’s meaning. The findings from these four experiments elucidate specific cortical hubs for semantic-feature integration during language comprehension and visual-object processing, and they advance our understanding of the role of heteromodal brain regions in semantic memory

    Phylogenetic reorganization of the basal ganglia: A necessary, but not the only, bridge over a primate Rubicon of acoustic communication

    Get PDF
    In this response to commentaries, we revisit the two main arguments of our target article. Based on data drawn from a variety of research areas – vocal behavior in nonhuman primates, speech physiology and pathology, neurobiology of basal ganglia functions, motor skill learning, paleoanthropological concepts – the target article, first, suggests a two-stage model of the evolution of the crucial motor prerequisites of spoken language within the hominin lineage: (1) monosynaptic refinement of the projections of motor cortex to brainstem nuclei steering laryngeal muscles, and (2) subsequent “vocal-laryngeal elaboration” of cortico-basal ganglia circuits, driven by human-specific FOXP2 mutations. Second, as concerns the ontogenetic development of verbal communication, age-dependent interactions between the basal ganglia and their cortical targets are assumed to contribute to the time course of the acquisition of articulate speech. Whereas such a phylogenetic reorganization of cortico-striatal circuits must be considered a necessary prerequisite for ontogenetic speech acquisition, the 30 commentaries – addressing the whole range of data sources referred to – point at several further aspects of acoustic communication which have to be added to or integrated with the presented model. For example, the relationships between vocal tract movement sequencing – the focus of the target article – and rhythmical structures of movement organization, the connections between speech motor control and the central-auditory and central-visual systems, the impact of social factors upon the development of vocal behavior (in nonhuman primates and in our species), and the interactions of ontogenetic speech acquisition – based upon FOXP2-driven structural changes at the level of the basal ganglia – with preceding subvocal stages of acoustic communication as well as higher-order (cognitive) dimensions of phonological development. Most importantly, thus, several promising future research directions unfold from these contributions – accessible to clinical studies and functional imaging in our species as well as experimental investigations in nonhuman primates

    Cortical Dynamics of Language

    Get PDF
    The human capability for fluent speech profoundly directs inter-personal communication and, by extension, self-expression. Language is lost in millions of people each year due to trauma, stroke, neurodegeneration, and neoplasms with devastating impact to social interaction and quality of life. The following investigations were designed to elucidate the neurobiological foundation of speech production, building towards a universal cognitive model of language in the brain. Understanding the dynamical mechanisms supporting cortical network behavior will significantly advance the understanding of how both focal and disconnection injuries yield neurological deficits, informing the development of therapeutic approaches

    Conserved Sequence Processing in Primate Frontal Cortex.

    Get PDF
    An important aspect of animal perception and cognition is learning to recognize relationships between environmental events that predict others in time, a form of relational knowledge that can be assessed using sequence-learning paradigms. Humans are exquisitely sensitive to sequencing relationships, and their combinatorial capacities, most saliently in the domain of language, are unparalleled. Recent comparative research in human and nonhuman primates has obtained behavioral and neuroimaging evidence for evolutionarily conserved substrates involved in sequence processing. The findings carry implications for the origins of domain-general capacities underlying core language functions in humans. Here, we synthesize this research into a 'ventrodorsal gradient' model, where frontal cortex engagement along this axis depends on sequencing complexity, mapping onto the sequencing capacities of different species

    Physical mechanisms may be as important as brain mechanisms in evolution of speech [Commentary on Ackerman, Hage, & Ziegler. Brain Mechanisms of acoustic communication in humans and nonhuman primates: an evolutionary perspective]

    No full text
    We present two arguments why physical adaptations for vocalization may be as important as neural adaptations. First, fine control over vocalization is not easy for physical reasons, and modern humans may be exceptional. Second, we present an example of a gorilla that shows rudimentary voluntary control over vocalization, indicating that some neural control is already shared with great apes

    Overnight consolidation aids the transfer of statistical knowledge from the medial temporal lobe to the striatum

    Get PDF
    Sleep is important for abstraction of the underlying principles (or gist) which bind together conceptually related stimuli, but little is known about the neural correlates of this process. Here, we investigate this issue using overnight sleep monitoring and functional magnetic resonance imaging (fMRI). Participants were exposed to a statistically structured sequence of auditory tones then tested immediately for recognition of short sequences which conformed to the learned statistical pattern. Subsequently, after consolidation over either 30min or 24h, they performed a delayed test session in which brain activity was monitored with fMRI. Behaviorally, there was greater improvement across 24h than across 30min, and this was predicted by the amount of slow wave sleep (SWS) obtained. Functionally, we observed weaker parahippocampal responses and stronger striatal responses after sleep. Like the behavioral result, these differences in functional response were predicted by the amount of SWS obtained. Furthermore, connectivity between striatum and parahippocampus was weaker after sleep, whereas connectivity between putamen and planum temporale was stronger. Taken together, these findings suggest that abstraction is associated with a gradual shift from the hippocampal to the striatal memory system and that this may be mediated by SWS

    Brain mechanisms of acoustic communication in humans and nonhuman primates: An evolutionary perspective

    Get PDF
    Any account of “what is special about the human brain” (Passingham 2008) must specify the neural basis of our unique ability to produce speech and delineate how these remarkable motor capabilities could have emerged in our hominin ancestors. Clinical data suggest that the basal ganglia provide a platform for the integration of primate-general mechanisms of acoustic communication with the faculty of articulate speech in humans. Furthermore, neurobiological and paleoanthropological data point at a two-stage model of the phylogenetic evolution of this crucial prerequisite of spoken language: (i) monosynaptic refinement of the projections of motor cortex to the brainstem nuclei that steer laryngeal muscles, presumably, as part of a “phylogenetic trend” associated with increasing brain size during hominin evolution; (ii) subsequent vocal-laryngeal elaboration of cortico-basal ganglia circuitries, driven by human-specific FOXP2 mutations.;>This concept implies vocal continuity of spoken language evolution at the motor level, elucidating the deep entrenchment of articulate speech into a “nonverbal matrix” (Ingold 1994), which is not accounted for by gestural-origin theories. Moreover, it provides a solution to the question for the adaptive value of the “first word” (Bickerton 2009) since even the earliest and most simple verbal utterances must have increased the versatility of vocal displays afforded by the preceding elaboration of monosynaptic corticobulbar tracts, giving rise to enhanced social cooperation and prestige. At the ontogenetic level, the proposed model assumes age-dependent interactions between the basal ganglia and their cortical targets, similar to vocal learning in some songbirds. In this view, the emergence of articulate speech builds on the “renaissance” of an ancient organizational principle and, hence, may represent an example of “evolutionary tinkering” (Jacob 1977)

    Music and the brain: a review of neuroscientific and clinical applications

    Get PDF
    My research examines the relationship between neuroscience and music, exploring its clinical applications. I extensively review the specific neuroanatomic structures implicated in musical perception. Knowing the function of each brain structure as it relates to musical perception provides insight as to how music is able to elicit certain physical and emotional responses. As music interacts with the human brain, it is also able to provide social, cognitive, and emotional benefits. Given these benefits, my research argues that music is an effective therapeutic intervention for vulnerable populations. I examine the impact of music therapy on preterm infants, hearing impaired individuals, intellectually disabled individuals, and Parkinson\u27s and Alzheimer’s Disease patients. My research also proposes that continuous musical exposure throughout the lifespan may prevent the acquisition of neurodegenerative disorders later in life. As the literature generally appears to support this proposition, I ultimately urge for an increased emphasis on music-based education programs
    • …
    corecore