48 research outputs found

    Neuro-swarm computational heuristic for solving a nonlinear second-order coupled Emden–Fowler model

    Get PDF
    The aim of the current study is to present the numerical solutions of a nonlinear second-order coupled Emden–Fowler equation by developing a neuro-swarming-based computing intelligent solver. The feedforward artificial neural networks (ANNs) are used for modelling, and optimization is carried out by the local/global search competences of particle swarm optimization (PSO) aided with capability of interior-point method (IPM), i.e., ANNs-PSO-IPM. In ANNs-PSO-IPM, a mean square error-based objective function is designed for nonlinear second-order coupled Emden–Fowler (EF) equations and then optimized using the combination of PSO-IPM. The inspiration to present the ANNs-PSO-IPM comes with a motive to depict a viable, detailed and consistent framework to tackle with such stiff/nonlinear second-order coupled EF system. The ANNs-PSO-IP scheme is verified for different examples of the second-order nonlinear-coupled EF equations. The achieved numerical outcomes for single as well as multiple trials of ANNs-PSO-IPM are incorporated to validate the reliability, viability and accuracy.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. The authors have not disclosed any funding

    Integrated computational intelligent paradigm for nonlinear electric circuit models using neural networks, genetic algorithms and sequential quadratic programming

    Full text link
    © 2019, Springer-Verlag London Ltd., part of Springer Nature. In this paper, a novel application of biologically inspired computing paradigm is presented for solving initial value problem (IVP) of electric circuits based on nonlinear RL model by exploiting the competency of accurate modeling with feed forward artificial neural network (FF-ANN), global search efficacy of genetic algorithms (GA) and rapid local search with sequential quadratic programming (SQP). The fitness function for IVP of associated nonlinear RL circuit is developed by exploiting the approximation theory in mean squared error sense using an approximate FF-ANN model. Training of the networks is conducted by integrated computational heuristic based on GA-aided with SQP, i.e., GA-SQP. The designed methodology is evaluated to variants of nonlinear RL systems based on both AC and DC excitations for number of scenarios with different voltages, resistances and inductance parameters. The comparative studies of the proposed results with Adam’s numerical solutions in terms of various performance measures verify the accuracy of the scheme. Results of statistics based on Monte-Carlo simulations validate the accuracy, convergence, stability and robustness of the designed scheme for solving problem in nonlinear circuit theory

    Optimal type-3 fuzzy system for solving singular multi-pantograph equations

    Get PDF
    In this study a new machine learning technique is presented to solve singular multi-pantograph differential equations (SMDEs). A new optimized type-3 fuzzy logic system (T3-FLS) by unscented Kalman filter (UKF) is proposed for solution estimation. The convergence and stability of presented algorithm are ensured by the suggested Lyapunov analysis. By two SMDEs the effectiveness and applicability of the suggested method is demonstrated. The statistical analysis show that the suggested method results in accurate and robust performance and the estimated solution is well converged to the exact solution. The proposed algorithm is simple and can be applied on various SMDEs with variable coefficients

    Optimal Type-3 Fuzzy System for Solving Singular Multi-Pantograph Equations

    Get PDF
    In this study a new machine learning technique is presented to solve singular multi-pantograph differential equations (SMDEs). A new optimized type-3 fuzzy logic system (T3-FLS) by unscented Kalman filter (UKF) is proposed for solution estimation. The convergence and stability of presented algorithm are ensured by the suggested Lyapunov analysis. By two SMDEs the effectiveness and applicability of the suggested method is demonstrated. The statistical analysis show that the suggested method results in accurate and robust performance and the estimated solution is well converged to the exact solution. The proposed algorithm is simple and can be applied on various SMDEs with variable coefficients.publishedVersio

    Integrated neuro-evolution-based computing solver for dynamics of nonlinear corneal shape model numerically

    Get PDF
    [EN]In this study, bio-inspired computational techniques have been exploited to get the numerical solution of a nonlinear two-point boundary value problem arising in the modelling of the corneal shape. The computational process of modelling and optimization makes enormously straightforward to obtain accurate approximate solutions of the corneal shape models through artificial neural networks, pattern search (PS), genetic algorithms (GAs), simulated annealing (SA), active-set technique (AST), interior-point technique, sequential quadratic programming and their hybrid forms based on GA–AST, PS–AST and SA–AST. Numerical results show that the designed solvers provide a reasonable precision and efficiency with minimal computational cost. The efficacy of the proposed computing strategies is also investigated through a descriptive statistical analysis by means of histogram illustrations, probability plots and one-way analysis of variance

    Synthesis of the neuro-fuzzy regulator with genetic algorithm

    Get PDF
    Real-acting objects are characterized by the presence of various types of random perturbations, which significantly reduce the quality of the control process, which determines the use of modern methods of intellectual technology to solve the problem of synthesis of control systems of structurally complex dynamic objects, allowing to compensate the influence of external factors with the properties of randomness and partial uncertainty. The article considers issues of synthesis of the automatic control system of dynamic objects by applying the theory of intelligent control. In this case, a neural network based on radial-basis functions is used at each discrete interval for neuro-fuzzy approximation of the control system, allowing real-time adjustment of the regulator parameters. The radial basis function is designed to approximate functions defined in the implicit form of pattern sets. The neuro-fuzzy regulator's parameter configuration is accomplished using a genetic algorithm, enabling more efficient computation to determine the regulator's set parameters. The regulator's parameters are represented as a vector, facilitating their application to multidimensional objects. To determine the optimal tuning parameters of the neuro-fuzzy regulator, characterized by high convergence and the possibility of determining global extrema, a genetic algorithm was used. The effectiveness of the neuro-fuzzy regulator is explained by the possibility of providing quality control of the dynamic object under random perturbations and uncertainty of input data

    Design of neuro-computing paradigms for nonlinear nanofluidic systems of MHD Jeffery–Hamel flow

    Full text link
    © 2018 Taiwan Institute of Chemical Engineers In this paper, a neuro-heuristic technique by incorporating artificial neural network models (NNMs) optimized with sequential quadratic programming (SQP) is proposed to solve the dynamics of nanofluidics system based on magneto-hydrodynamic (MHD) Jeffery–Hamel (JHF) problem involving nano-meterials. Original partial differential equations associated with MHD–JHF are transformed into third order ordinary differential equations based model. Furthermore, the transformed system has been implemented by the differential equation NNMs (DE-NNMs) which are constructed by a defined error function using log-sigmoid, radial basis and tan-sigmoid windowing kernels. The parameters of DE-NNM of nanofluidics system are optimized with SQP algorithm. To illustrate the performance of the proposed system, MHD–JHF models with base-fluid water mixed with alumina, silver and copper nanoparticles for different Hartman numbers, Reynolds numbers, angles of the channel and volume fractions with three different proposed DE-NNMs are designed to evaluate. For comparison purpose, the proposed results with reference numerical solutions of Adams solver illustrate their worth. Statistical inferences through different performance indices are given to demostrate the accuracy, stability and robustness of the stochastic solvers

    Evolutionary Integrated Heuristic with Gudermannian Neural Networks for Second Kind of Lane–Emden Nonlinear Singular Models

    Get PDF
    In this work, a new heuristic computing design is presented with an artificial intelligence approach to exploit the models with feed-forward (FF) Gudermannian neural networks (GNN) accomplished with global search capability of genetic algorithms (GA) combined with local convergence aptitude of active-set method (ASM), i.e., FF-GNN-GAASM to solve the second kind of Lane–Emden nonlinear singular models (LE-NSM). The proposed method based on the computing intelligent Gudermannian kernel is incorporated with the hidden layer configuration of FF-GNN models of differential operatives of the LE-NSM, which are arbitrarily associated with presenting an error-based objective function that is used to optimize by the hybrid heuristics of GAASM. Three LE-NSM-based examples are numerically solved to authenticate the effectiveness, accurateness, and efficiency of the suggested FF-GNN-GAASM. The reliability of the scheme via statistical valuations is verified in order to authenticate the stability, accuracy, and convergence
    corecore