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ABSTRACT In this study a new machine learning technique is presented to solve singular multi-pantograph
differential equations (SMDEs). A new optimized type-3 fuzzy logic system (T3-FLS) by unscented Kalman
filter (UKF) is proposed for solution estimation. The convergence and stability of presented algorithm are
ensured by the suggested Lyapunov analysis. By two SMDEs the effectiveness and applicability of the
suggestedmethod is demonstrated. The statistical analysis show that the suggestedmethod results in accurate
and robust performance and the estimated solution is well converged to the exact solution. The proposed
algorithm is simple and can be applied on various SMDEs with variable coefficients.

INDEX TERMS Machine learning, artificial intelligence, fuzzy systems, Lyapunov stability, learning
algorithm, multi-pantograph differential equations.

I. INTRODUCTION
The numerical solving of singular multi-pantograph differ-
ential equations (SMDEs) has been one of the interesting
research topic, due to the potential application of SMDEs
in various science field such as: electrodynamics, quantum
mechanics, chemical engineering, astrophysics and many
others [1], [2].

Many numerical techniques have been designed for solv-
ing SMDEs. For example, Jiang et al. [2] propose Galerkin
method for solving of SMDE and the global convergence is
studied. In [1], by the use of variational theorem and Laplace
transform the analytical solution is estimated. A numerical
method on basis of the multistage homotopy technique has
also been suggested and its accuracy has been examined [3].
Bilal et al. [4], present the Boubeker polynomial approach
to construct a numerical solver for SMDEs and its conver-
gence is studied. In [5], the Legendre–Gauss collocation
approach is presented in contrast to Hermite collocation
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method and its versatility and convergence are examined.
Doha et al. [6], suggest the Jacobi rational-Gauss function
and a semi-analytical method. In [7], by the use of Adams and
Runge–Kutta methods a numerical technique is developed
and its performance is evaluated by some numerical exam-
ples. In [8], the reduction of SMDEs into algebraic equations
using Chelyshkov wavelet basis is studied and then by the
use of Galerkin approach a solver is proposed. Rayal and
Verma [9], propose Legendre wavelet to solve SMDEs and
the behaviour of SMDEs using different fractional derivative
definitions is studied.

One of the recently developed approach for solving defer-
ential equations is the use of intelligent systems and learning
techniques [10]. Combination of fuzzy logic systems (FLSs)
and learning methods is applied in wide engineering prob-
lems, due to the strong capability of this approach [11]–[17].
However, on the best knowledge of authors, this powerful
tool has not been applied for solving SMDEs. However, quite
rarely techniques on basis neural networks (NNs) have been
applied on solving a simple class of differential equations.
For example, in [18], NNs and evolutionary based algorithms
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such as genetic and pattern search algorithms are employed
to solve pantograph differential equations (PDE). Similar
to [18], in [19], interior-point method is combined with NNs
to find a solution for PDEs. In [20], the Lagaris method is
developed to estimate the real solution of PDEs by a simple
NN. In [21], NNs are used to solve Painlevé equations and
the effectiveness of NNs is shown. In [22], similar to above
mentioned approaches, the solving of a class of differential
equations by NN is investigated and the genetic algorithm is
used to optimize NNs.

In the most of above reviewed NN based solvers, only
PDEs have been studied and the singular PDEs needs more
studies. Also in the most of NN based solvers, evolutionary
methods have been used that are not suitable for online appli-
cations and also these algorithms suffer heavy computational
cost. Furthermore, in the most of the aforementioned numer-
ical methods the stability is not guaranteed. Recently, it has
been shown in literature that FLSs, specially high-order FLSs
have more capability than NNs. In various engineering appli-
cations the superiority of type-2 and type-3 FLSs have been
shown such as: decision making [23], control systems [24],
identification [25], chaotic synchronization [26], multi-agent
control systems [27], among many others.

In addition to structure of NN and FLS, the optimization
and learning approaches are also important in effectiveness.
Many optimizationmethods have been developed for learning
of NNs and various applications such as kernel extreme learn-
ing, support vector machine, chaotic optimization, bacterial
foraging optimization, among many others [28]–[35]. The
UKF algorithm is also widely used in many nonlinear prob-
lems [36]–[38], because of its more accurate performance.
However, literature review shows that UKF has been rarely
used in optimization of FLSs and problem of SMDEs.

Considering above motivations, in this study, a new
approach on criteria of T3-FLSs and UKF algorithm is pre-
sented for solution approximation of SMDEs. By the several
statistical examinations the well performance of the sug-
gested solver is demonstrated. The main contributions are:
• A new approach is presented to solve SMDEs.
• For the best knowledge of authors, for the first time a
T3-FLS approach is presented for solving SMDEs.

• A new cost function and a new learning algorithm
are presented to optimize the suggested T3-FLS based
solver.

• The closed-loop stability is proved.
• Several statistical analysis are presented to examine the
accuracy and robustness of the suggested T3-FLS based
solver.

II. PROBLEM DESCRIPTION
The suggested approach designs FLSs and UKF algorithm.
A general view on suggested solution method is depicted
in Fig. 1. A SMDE is given as:

ẍ (t)+
n∑

k=1

ẋ (rk t) /Pk (t)+ x (t) /Qk = G (t) (1)

FIGURE 1. A general view of the proposed solver.

where x (0) = A1 and ẋ (0) = A2. Pk (t) and G (t) are
continues function. The objective is tuning the parameters of
T3-FLS such that the output of T3-FLS x̂ (t) to be converged
to x (t). Then the following equation is solved:

¨̂x (t)+
n∑

k=1

˙̂x (rk t) /Pk (t)+ x̂ (t) /Qk = G (t) (2)

To solve (2), the following cost function is considered:

J =
1
N

N∑
i=1

 ¨̂x i (t)+ n∑
k=1

˙̂x i (rk t) /Pk,i (t)

+x̂i (t) /Qi − G (t)

2

+
1
2

(
x̂20 + ˙̂x

2
0

)
(3)

where i = 1, . . . ,N , k = 1, . . . , n, Nh = 1 and t = kh.
Remark 1: It should be noted that, the Volterra integral

equations can be considered as a special case of multi-
pantographic differential equations (see [39]–[41]).

The problem is that the parameters of T3-FLS are tuned
such that (3) to be minimized and the convergence error to be
stable. The parameters are of T3-FLS are tuned through the
UKF algorithm and the convergence is ensured by Lyapunov
method.

III. TYPE-3 FLS
In this section the suggested T3-FLS solution estimator is
illustrated. The suggested structure is depicted in Fig. 2.
The computations are explained as follows. 1) For input, M
type-3 membership function (MF) Ãl|α as shown in Fig. 3 is
considered. Each MF is divided into ι α-cuts.
2) Compute the rule firings:

ψ̄ l
ᾱj
(u) = exp

(
−

(
u− cÃl|α

)2
/ϑ̄2

Ãl|ᾱj

)
(4)

ψ̄ l
αj
(u) = exp

(
−

(
u− cÃl|α

)2
/ϑ̄2

Ãl|αj

)
(5)

ψ l
ᾱj
(u) = exp

(
−

(
u− cÃl|α

)2
/ϑ2

Ãl|ᾱj

)
(6)

ψ l
αj
(u) = exp

(
−

(
u− cÃl|α

)2
/ϑ2

Ãl|αj

)
(7)

where l = 1, . . . ,M , ᾱ ∈ ᾱ1, . . . , ᾱι, α ∈ α1, . . . , αι, cÃl|α
and cÃl|α are the center of Ãl|α , ϑ̄Ãl|ᾱ and ϑ̄Ãl|α are the upper
standard divisions at upper and lower α-cut, respectively,
ϑ Ãl|ᾱ

and ϑ Ãl|α are the lower standard divisions at upper and
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FIGURE 2. A general view of the proposed T3-FLS solution estimator.

FIGURE 3. Suggested type-3 MF.

lower α-cut, respectively. 3) Compute the normalized rule
firing (first type-reduction):

φ̄l|ᾱj =
ψ̄ l
ᾱj

M∑
l=1

(
ψ̄ l
ᾱj
+ ψ l

ᾱj

) (8)

φ̄l|αj =
ψ̄ l
αj

M∑
l=1

(
ψ̄ l
αj
+ ψ l

αj

) (9)

φ
l|ᾱj
=

ψ l
ᾱj

M∑
l=1

(
ψ l
ᾱj
+ ψ l

ᾱj

) (10)

φ
l|αj
=

ψ l
αj

M∑
l=1

(
ψ l
αj
+ ψ l

αj

) (11)

4) Compute the second type-reduction:

F̄l =

ι∑
j=1
ᾱjφ̄l|ᾱj

ι∑
j=1

(
ᾱj + αj

)

+

ι∑
j=1
αjφ̄l|αj

ι∑
j=1

(
ᾱj + αj

) , l = 1, . . . ,M (12)

F l =

ι∑
j=1
ᾱjφl|ᾱj

ι∑
j=1

(
ᾱj + αj

)

+

ι∑
j=1
αjφl|αj

ι∑
j=1

(
ᾱj + αj

) , l = 1, . . . ,M (13)
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5) Compute output as:

x̂ (u, θ) = θTF (u) ,

θ =
[
θ1, . . . , θM , θ̄1, . . . , θ̄M

]T
F (u) =

[
F1, . . . ,FM , F̄1, . . . , F̄M

]T (14)

where θ represents the vector of trainable parameters. From
(14), ˙̂x (u, θ) is obtained as:

˙̂x (u, θ) =
∂ x̂ (u, θ)
∂u

= θT
∂F (u)
∂u

(15)

where

∂F (u)
∂u

=

[
∂F1

∂u
, . . . ,

∂FM
∂u

,
∂F̄1
∂u

, . . . ,
∂F̄M
∂u

]T
(16)

From (15,) for ∂F l
∂u and ∂F̄l

∂u , one has:

∂F l
∂u
=

ι∑
j=1
ᾱj

∂φ
l|ᾱj
∂u

ι∑
j=1

(
ᾱj + αj

)

+

ι∑
j=1
αj

∂φ
l|αj
∂u

ι∑
j=1

(
ᾱj + αj

) , l = 1, . . . ,M (17)

∂F̄l
∂u
=

ι∑
j=1
ᾱj
∂φ̄l|ᾱj
∂u

ι∑
j=1

(
ᾱj + αj

)

+

ι∑
j=1
αj
∂φ̄l|αj
∂u

ι∑
j=1

(
ᾱj + αj

) , l = 1, . . . ,M (18)

From (17) and (18), the terms
∂φ̄l|ᾱj
∂u ,

∂φ̄l|αj
∂u ,

∂φ
l|ᾱj
∂u and

∂φ
l|αj
∂u ,

are computed as:

∂φ̄l|ᾱj

∂u
=

−2
(
u− cÃl|α

)
/ϑ̄2

Ãl|ᾱ
ψ̄ l
ᾱj

M∑
l=1

(
ψ̄ l
ᾱj
+ ψ l

ᾱj

)
[
M∑
l=1

(
ψ̄ l
ᾱj
+ ψ l

ᾱj

)]2

−

ψ̄ l
ᾱj

M∑
l=1

2
(
u− cÃl|α

) [
ψ̄ l
ᾱj
/ϑ̄2

Ãl|ᾱ
+ ψ l

ᾱj
/ϑ2

Ãl|ᾱ

]
[
M∑
r=1

(
ψ̄ l
ᾱj
+ ψ l

ᾱj

)]2
(19)

∂φ̄l|αj

∂u
=

−2
(
u− cÃl|α

)
/ϑ̄2

Ãl|ᾱ
ψ̄ l
αj

M∑
l=1

(
ψ̄ l
αj
+ ψ l

αj

)
[
M∑
l=1

(
ψ̄ l
αj
+ ψ l

αj

)]2

−

ψ̄ l
αj

M∑
l=1

2
(
u− cÃl|α

) [
ψ̄ l
αj
/ϑ̄2

Ãl|ᾱ
+ ψ l

αj
/ϑ2

Ãl|ᾱ

]
[
M∑
r=1

(
ψ̄ l
αj
+ ψ l

αj

)]2
(20)

∂φ
l|ᾱj

∂u
=

−2
(
u− cÃl|α

)
/ϑ2

Ãl|ᾱ
ψ l
ᾱj

M∑
l=1

(
ψ̄ l
ᾱj
+ ψ l

ᾱj

)
[
M∑
l=1

(
ψ̄ l
ᾱj
+ ψ l

ᾱj

)]2

−

ψ l
ᾱj

M∑
l=1

2
(
u− cÃl|α

) [
ψ̄ l
ᾱj
/ϑ̄2

Ãl|ᾱ
+ ψ l

ᾱj
/ϑ2

Ãl|ᾱ

]
[
M∑
r=1

(
ψ̄ l
ᾱj
+ ψ l

ᾱj

)]2
(21)

∂φ
l|αj

∂u
=

−2
(
u− cÃl|α

)
/ϑ2

Ãl|ᾱ
ψ l
αj

M∑
l=1

(
ψ̄ l
αj
+ ψ l

αj

)
[
M∑
l=1

(
ψ̄ l
αj
+ ψ l

αj

)]2

−

ψ l
αj

M∑
l=1

2
(
u− cÃl|α

) [
ψ̄ l
αj
/ϑ̄2

Ãl|ᾱ
+ ψ l

αj
/ϑ2

Ãl|ᾱ

]
[
M∑
r=1

(
ψ̄ l
αj
+ ψ l

αj

)]2
(22)

Similarly, from (15), ¨̂x (t) is computed as:

¨̂x (u, θ) =
∂ ˙̂x (u, θ)
∂u

= θT
∂Ḟ (u)
∂u

(23)

where

∂Ḟ (u)
∂u

=

[
∂Ḟ1

∂u
, . . . ,

∂ḞM
∂u

,
∂ ˙̄F1

∂u
, . . . ,

∂ ˙̄FM
∂u

]
(24)

From (24), ∂Ḟ l
∂u and ∂ ˙̄F1

∂u , are computed as:

∂Ḟ l
∂u
=

ι∑
j=1
ᾱj

∂φ̇
l|ᾱj
∂u

ι∑
j=1

(
ᾱj + αj

)

+

ι∑
j=1
αj

∂φ̇
l|αj
∂u

ι∑
j=1

(
ᾱj + αj

) , l = 1, . . . ,M (25)
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∂ ˙̄F l
∂u
=

ι∑
j=1
ᾱj
∂ ˙̄φl|ᾱj
∂u

ι∑
j=1

(
ᾱj + αj

)

+

ι∑
j=1
αj
∂ ˙̄φl|αj
∂u

ι∑
j=1

(
ᾱj + αj

) , l = 1, . . . ,M (26)

where
∂ ˙̄φl|ᾱj
∂u ,

∂ ˙̄φl|αj
∂u ,

∂φ̇
l|ᾱj
∂u and

∂φ̇
l|αj
∂u , are computed as:

∂ ˙̄φl|ᾱj

∂u

=



−2u
ϑ̄2
Ãl|ᾱj

ψ̄ l
ᾱj

M∑
l=1

(
ψ̄ l
ᾱj
+ψ l

ᾱj

)
−2

(
u−cÃl|α

)
/ϑ̄2

Ãl|ᾱj
·−2

(
u−cÃl|α

)
/ϑ̄2

Ãl|ᾱj
ψ̄ l
ᾱj

M∑
l=1

(
ψ̄ l
ᾱj
+ψ l

ᾱj

)
+

ψ̄ l
ᾱj

M∑
l=1

2
(
u−cÃl|α

) [
ψ̄ l
ᾱj
/ϑ̄2

Ãl|ᾱj
+ψ l

ᾱj
/ϑ2

Ãl|ᾱj

]


[
M∑
l=1

(
ψ̄ l
ᾱj
+ ψ l

ᾱj

)]2

−


−2

(
u− cÃl|α

)
/ϑ̄2

Ãl|ᾱ
ψ̄ l
ᾱj

M∑
l=1

(
ψ̄ l
ᾱj
+ ψ l

ᾱj

)
.

M∑
l=1

2
(
u− cÃl|α

) [
ψ̄ l
ᾱj
/ϑ̄2

Ãl|ᾱj
+ ψ l

ᾱj
/ϑ2

Ãl|ᾱj

]
[

M∑
l=1

(
ψ̄ l
ᾱj
+ ψ l

ᾱj

)]4 (27)

∂ ˙̄φl|αj

∂u

=



−2u
ϑ̄2
Ãl|αj

ψ̄ l
αj

M∑
l=1

(
ψ̄ l
αj
+ψ l

αj

)
−2

(
u−cÃl|α

)
/ϑ̄2

Ãl|αj
·−2

(
u−cÃl|α

)
/ϑ̄2

Ãl|αj
ψ̄ l
αj

M∑
l=1

(
ψ̄ l
αj
+ψ l

αj

)
+

ψ̄ l
αj

M∑
l=1

2
(
u−cÃl|α

) [
ψ̄ l
αj
/ϑ̄2

Ãl|αj
+ψ l

αj
/ϑ2

Ãl|αj

]


[
M∑
l=1

(
ψ̄ l
αj
+ ψ l

αj

)]2

−


−2

(
u− cÃl|α

)
/ϑ̄2

Ãl|αj
ψ̄ l
αj

M∑
l=1

(
ψ̄ l
αj
+ ψ l

αj

)
.

M∑
l=1

2
(
u− cÃl|α

) [
ψ̄ l
αj
/ϑ̄2

Ãl|αj
+ ψ l

αj
/ϑ2

Ãl|αj

]
[

M∑
l=1

(
ψ̄ l
αj
+ ψ l

αj

)]4 (28)

∂φ̇
l|ᾱj

∂u

=



−2u
ϑ2
Ãl|ᾱj

ψ l
ᾱj

M∑
l=1

(
ψ̄ l
ᾱj
+ ψ l

ᾱj

)
− 2

(
u− cÃl|α

)
/ϑ2

Ãl|ᾱj
·−2

(
u− cÃl|α

)
/ϑ2

Ãl|ᾱj
ψ l
ᾱj

M∑
l=1

(
ψ̄ l
ᾱj
+ ψ l

ᾱj

)
+

ψ l
ᾱj

M∑
l=1

2
(
u− cÃl|α

) [
ψ̄ l
ᾱj
/ϑ̄2

Ãl|ᾱj
+ ψ l

ᾱj
/ϑ2

Ãl|ᾱj

]


[
M∑
l=1

(
ψ̄ l
ᾱj
+ ψ l

ᾱj

)]2

−


−2

(
u− cÃl|α

)
/ϑ2

Ãl|ᾱ
ψ l
ᾱj

M∑
l=1

(
ψ̄ l
ᾱj
+ ψ l

ᾱj

)
.

M∑
l=1

2
(
u− cÃl|α

) [
ψ̄ l
ᾱj
/ϑ̄2

Ãl|ᾱj
+ ψ l

ᾱj
/ϑ2

Ãl|ᾱj

]
[

M∑
l=1

(
ψ̄ l
ᾱj
+ ψ l

ᾱj

)]4 (29)

∂φ̇
l|αj

∂u

=



−2u
ϑ2
Ãl|αj

ψ l
αj

M∑
l=1

(
ψ̄ l
αj
+ψ l

αj

)
−2

(
u−cÃl|α

)
/ϑ2

Ãl|αj
·−2

(
u−cÃl|α

)
/ϑ2

Ãl|αj
ψ l
αj

M∑
l=1

(
ψ̄ l
αj
+ψ l

αj

)
+

ψ l
αj

M∑
l=1

2
(
u−cÃl|α

) [
ψ̄ l
αj
/ϑ̄2

Ãl|αj
+ψ l

αj
/ϑ2

Ãl|αj

]


[
M∑
l=1

(
ψ̄ l
αj
+ ψ l

αj

)]2

−


−2

(
u− cÃl|α

)
/ϑ2

Ãl|αj
ψ l
αj

M∑
l=1

(
ψ̄ l
αj
+ ψ l

αj

)
.

M∑
l=1

2
(
u− cÃl|α

) [
ψ̄ l
αj
/ϑ̄2

Ãl|αj
+ ψ l

αj
/ϑ2

Ãl|αj

]
[

M∑
l=1

(
ψ̄ l
αj
+ ψ l

αj

)]4 (30)

IV. LEARNING METHOD
The parameters are of T3-FLS are tuned through the UKF
algorithm. To applyUKF algorithm, the following state-space
model is considered:

w (t + 1) = w (t)+ ψ (t)
ν (w (t + 1) , t + 1) = ν (w (t) , t)+ χ (t) (31)

where

ν (w, t)

=
∂Ḟ (t)
∂t

(∣∣∣ ¨̂x (w (t) , t)∣∣∣+ ∣∣∣ ¨̂x (w (t − 1) , t − 1)
∣∣∣)

+

n∑
k=1

∂F (t)
∂t

 ∣∣∣ ˙̂x (w (t) , rk t)∣∣∣
+

∣∣∣ ˙̂x (w (t − 1) , rk (t − 1))
∣∣∣
 /P2k (t)

+
[
F (t)

(∣∣x̂ (w (t) , t)∣∣+ ∣∣x̂ (w (t − 1) , t − 1)
∣∣)] /Q2 (t)

(32)
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where ψ (t)/χ (t) are measurement/process noise with
covariance ζ /ξ and zeros mean andw is the vector of trainable
parameters that is defined as:

w =
[
θ1, . . . ., θM

]T (33)

The training algorithm is explained step-by-step in below.
1) The sigma points are computed as:

wh = wh + w̃h, h = 1, . . . , 2M (34)

where w̃h is:

w̃h =
(√

Mπ (t)
)T
, h = 1, . . . ,M (35)

w̃h+M = −
(√

Mπ (t)
)T
, h = 1, . . . ,M (36)

where π represents the covariance matrix. 2) For each wh in
(34), compute the cost function ν as:

νh (w̃h, t)

=
∂Ḟ (t)
∂t

(∣∣∣ ¨̂x (w̃h (t) , t)∣∣∣+ ∣∣∣ ¨̂x (w̃h (t − 1) , t − 1)
∣∣∣)

+

n∑
k=1

∂F (t)
∂t

∣∣∣ ˙̂x (w̃h (t) , rk t)∣∣∣
+

∣∣∣ ˙̂x (w̃h (t − 1) , rk (t − 1))
∣∣∣
 /P2k (t)

+
[
F (t)

(∣∣x̂ (w̃h (t) , t)∣∣+∣∣x̂ (w̃h (t−1) , t−1)∣∣)] /Q2 (t)

(37)

3) From (37), compute the mean of νh, h = 1, . . . , 2 (M) as:

νm =

M∑
h=1

νh/ (2M) (38)

4) From (38) for the covariance of forecasted measurements
(πx), one has:

πx =
1
2M

2M∑
h=1

(νh − νm)
2
+ ζ (39)

5) Compute cross-covariance πwx as:

πwx =
1
2M

2M∑
h=1

(
w̃h − ŵ

)
(νh − νm) (40)

where

ŵ =
1
2M

2M∑
h=1

w̃h (41)

6) The Kalman gain is obtained as:

K (t) = πwxπ−1x (42)

7) Update the vector of parameters w as:

w (t + 1) = w (t)− K (t) νm (t) (43)

8) Update the covariance matrix π as:

π (t + 1) = π (t)− K (t) πxKT (t) (44)

V. STABILITY AND CONVERGENCE ANALYSIS
The main results for the stability analysis is summarized in
Theorem V:
Theorem 1: By the proposed adaptation law (43),

the dynamic of the convergence error is stable.
Proof:

To stability and convergence analysis the following Lya-
punov function is taken to account:

V (t) =

 ¨̂x (θ (t) , t)+ n∑
k=1

˙̂x (θ (t) , rk t) /Pk (t)

+x̂ (θ (t) , t) /Q (t)− G (t)

2

(45)

Then time difference of V (k) in (45), yields:

V (t)− V (t − 1)

=

 ¨̂x (θ (t) , t)+ n∑
k=1

˙̂x (θ (t) , rk t) /Pk (t)

+x̂ (θ (t) , t) /Q (t)− G (t)

2

−


¨̂x (θ (t − 1) , (t − 1))+
n∑

k=1

˙̂x (θ (t − 1) , rk (t − 1)) /Pk (t − 1)+

x̂ (θ (t − 1) , (t − 1)) /Q (t − 1)− G (t − 1)


2

(46)

Considering the fact that sample time is enough small the
equation (46) can be simplified as:

V (t)− V (t − 1)

≤

∣∣∣ ¨̂x (θ (t) , t)∣∣∣2 − ∣∣∣ ¨̂x (θ (t − 1) , t − 1)
∣∣∣2

+

n∑
k=1

[∣∣∣ ˙̂x (θ (t) , rk t)∣∣∣2 − ∣∣∣ ˙̂x (θ (t − 1) , rk (t − 1))
∣∣∣2]

/P2k (t)+
[∣∣x̂ (θ (t) , t)∣∣2−∣∣x̂ (θ (t−1) , t−1)∣∣2] /Q2 (t)

(47)

From (23) and (47), one has:∣∣∣ ¨̂x (θ (t) , t)∣∣∣2 − ∣∣∣ ¨̂x (θ (t − 1) , t − 1)
∣∣∣2

= [θ (t)− θ (t − 1)]T
∂Ḟ (t)
∂t

 ∣∣∣ ¨̂x (θ (t) , t)∣∣∣+∣∣∣ ¨̂x (θ (t − 1) , t − 1)
∣∣∣

(48)

Similarly, from (15) and (47), one has:∣∣∣ ˙̂x (θ (t) , rk t)∣∣∣2 − ∣∣∣ ˙̂x (θ (t − 1) , rk (t − 1))
∣∣∣2

≤ [θ (t)− θ (t − 1)]T
∂F (t)
∂t

 ∣∣∣ ˙̂x (θ (t) , rk t)∣∣∣+∣∣∣ ˙̂x (θ (t − 1) , rk (t − 1))
∣∣∣


(49)

Also, from (14) and (47), one can writes:∣∣x̂ (θ (t) , t)∣∣2 − ∣∣x̂ (θ (t − 1) , t − 1)
∣∣2

≤ [θ (t)− θ (t − 1)]TF (t)
(∣∣x̂ (θ (t) , t)∣∣

+
∣∣x̂ (θ (t − 1) , t − 1)

∣∣) (50)
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Then from equations (48-50), the inequality (47), becomes:

V (t)− V (t − 1)

≤ [θ (t)− θ (t − 1)]T

·
∂Ḟ (t)
∂t

(∣∣∣ ¨̂x (θ (t) , t)∣∣∣+ ∣∣∣ ¨̂x (θ (t − 1) , t − 1)
∣∣∣)

+

n∑
k=1

∂F (t)
∂t

 ∣∣∣ ˙̂x (θ (t) , rk t)∣∣∣+∣∣∣ ˙̂x (θ (t − 1) , rk (t − 1))
∣∣∣
 /P2k (t)

+

[
F (t)

( ∣∣x̂ (θ (t) , t)∣∣+∣∣x̂ (θ (t − 1) , t − 1)
∣∣ )] /Q2 (t) (51)

From tuning rules (43), the inequality (51), becomes:

V (t)− V (t − 1)

≤ −Kυm

·



∂Ḟ(t)
∂t

(∣∣∣ ¨̂x (θ (t) , t)∣∣∣+ ∣∣∣ ¨̂x (θ (t − 1) , t − 1)
∣∣∣)+

n∑
k=1

 ∂F(t)
∂t

 ∣∣∣ ˙̂x (θ (t) , rk t)∣∣∣+∣∣∣ ˙̂x (θ (t−1) , rk (t−1))∣∣∣
 /P2k (t)

+

[
F (t)

( ∣∣x̂ (θ (t) , t)∣∣+∣∣x̂ (θ (t−1) , t−1)∣∣
)]
/Q2 (t)



2

(52)

From (52), it is realized that V (t) − V (t − 1) ≤ 0 and then
from Laypunov theorem the stability is proved.

VI. SIMULATIONS
In this section the proficiency of the suggested solver is
evaluated in two examples. To evaluate the performance of
the suggested scenario, the following measures are taken to
account.

RMSE =

√√√√ 1
N

N∑
i=1

(
xi − x̂i

)2 (53)

VAR =
N∑
i=1

(
x − x̂i

)2
/ (N − 1) (54)

TIC =

√
1
N

N∑
i=1

(
xi − x̂i

)2
√

1
N

N∑
i=1

x2i +

√
1
N

N∑
i=1

x̂2i

(55)

where N represents the number of data, xi is the real solution
at i − th sample, x̂i is the estimated solution by T3-FLS
at i − th sample and RMSE , VAF and TIC represent-root-
mean-square-error, variance and Theil’s inequality coeffi-
cient, respectively. �
Example 1: In this example, the following SMDE is con-

sidered:

ẍ (t)+
1
t
ẋ (t/2)+

1
t2
ẋ (t/4)+

1
1−t

x (t)=H (t) 0< t≤1

(56)

FIGURE 4. Example 1: (a): Solution performance; (b): Rule parameters of
T3-FLS.

FIGURE 5. Example 1: (a): Trajectories of AE; (b): The values of VAR, FIT,
TIC and RMSE.

where

H (t) = et +
1
t
et/2 +

1
t2
et/4 +

1
1− t

et (57)

The number rules is considered to be 10. The centers of MFs
are in [0, 0.25, . . . , 1]. The number of α-cuts is considered
to be 4. After 15 runs the results are presented as follows.
The trajectories of the best estimated and real solutions and
mean of estimations are given in Fig. 4(a) and the parameters
of T3-FLS are given in Fig. 4(b). The trajectory of absolute
error (AE) is shown in Fig. 5(a) and values of other indexes
are given in Fig. 5(b). The results of statistical analysis for
TIC, RMSE, VAR and FIT are depicted in Figs 7- 9. It is
observed that the value of RMSE is significantly small and
the trajectory of output of T3-FLS x̂ is well converged to the
real solution x(t) = exp(t).
To better show the robustness and accuracy of the sug-

gested method, the values of interquartile range (IR), mean of
AE, median (Med) and minimum (Min) are given in Table 1.
It is observed that the values of mean item are in range of
10−3 to 10−2 and the values of IR item are in the range of
10−3, that indicates an accurate performance.
Example 2: For the second examination, we consider a

SMDE as:

ẍ (t)+
1
t
ẋ (t/2)+

1
t2
ẋ (t/4)+

1
1−t

x (t)=R (t) , 0< t≤1

(58)
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FIGURE 6. Example 1: TIC examination: (a): Trajectory; (b): Histogram; (c):
Box plot.

FIGURE 7. Example 1: RMSE examination: (a): Trajectory; (b): Histogram;
(c): Box plot.

FIGURE 8. Example 1: VAR examination: (a): Trajectory; (b): Histogram;
(c): Box plot.

where

R (t) = −
1
t
sin (t/2)−

1
t2

sin (t/4)+
t

1− t
cos (t) (59)

The simulation parameters are same as Example 1. After
15 runs the results are presented as follows. The trajectories of
the best estimated and real solutions and mean of estimations
are given in Fig. 10(a) and the parameters T3-FLS are given
in Fig. 10(b). The trajectory of AE is shown in Fig. 11(a) and
value of other indexes are given in Fig. 11(b). The results of
statistical analysis for FIT, TIC, VAR and RMSE are depicted
in Figs 13- 15. It is observed that the value of RMSE is

FIGURE 9. Example 1: FIT examination: (a): Trajectory; (b): Histogram; (c):
Box plot.

TABLE 1. Example 1: Statistical analysis.

FIGURE 10. Example 2: (a): Solution performance; (b): Rule parameters of
T3-FLS.

significantly small and the trajectory of output of T3-FLS x̂
is well converged to the real solution x(t) = cos(t).
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FIGURE 11. Example 2: (a): Trajectories of AE; (b): The values of FIT, TIC,
RMSE and VAR.

FIGURE 12. Example 2: TIC examination: (a): Trajectory; (b): Histogram;
(c): Box plot.

FIGURE 13. Example 2: RMSE examination: (a): Trajectory; (b): Histogram;
(c): Box plot.

To better show the robustness and accuracy of the sug-
gested method, the values IR, mean of AE, Med and Min are
given in Table 2. It is realized that the values mean item are
in range of 10−3 to 10−2 and the values of IR index are small
enough that indicate an accurate solution.
Example 3: In this example a comparison is given to

better show the superiority of the suggested scheme. The
performance is compared with NN based approach that has
been presented in [18]. In [18], NNs and evolutionary based
algorithms such as genetic and pattern search algorithms
(G-PSAs) are employed to solve PDEs. In this example the
method of [18] is applied on the equations of Examples 1–2.

FIGURE 14. Example 2: VAR examination: (a): Trajectory; (b): Histogram;
(c): Box plot.

FIGURE 15. Example 2: FIT examination: (a): Trajectory; (b): Histogram;
(c): Box plot.

TABLE 2. Example 2: Statistical analysis.

The values of mean of RMSE after 10 epoches are given
in Table 3. From Table 3, the superiority the suggested fuzzy
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TABLE 3. Example 3: RMSE comparison for different methods.

based solver is demonstrated. It should be noted that the
computational cost of the learning method in [18] is more
than the suggested method in this paper.
Remark 2: Concerning the numerical analysis, the read-

ers can observe the CESTAC method and the CADNA library.
Remark 3: In this study only the rule parameters are

updated. Then the main drawback is that, the structure is not
tuned. For the future studies, the structure optimality of the
suggested fuzzy system can be taken into account.

VII. CONCLUSION
In this study, a new robust and stable approach using T3-
FLS and UKF is presented for solving of SMDEs. Two
numerical simulations are given to show the applicability of
the suggested solver. The stability is proved by Lyapunov
approach. Several statistical examination are provided to
show the superiority of the suggested algorithm such as:
studding of RMSE, TIC, Interquartile Range and Variance,
metrics. It is shown that the values of RMSE in two examples
are significantly small and the trajectories of output of FLSs
are well converged to the real solutions.
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