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Abstract: In this work, a new heuristic computing design is presented with an artificial intelligence
approach to exploit the models with feed-forward (FF) Gudermannian neural networks (GNN)
accomplished with global search capability of genetic algorithms (GA) combined with local con-
vergence aptitude of active-set method (ASM), i.e., FF-GNN-GAASM to solve the second kind of
Lane–Emden nonlinear singular models (LE-NSM). The proposed method based on the computing
intelligent Gudermannian kernel is incorporated with the hidden layer configuration of FF-GNN
models of differential operatives of the LE-NSM, which are arbitrarily associated with presenting an
error-based objective function that is used to optimize by the hybrid heuristics of GAASM. Three
LE-NSM-based examples are numerically solved to authenticate the effectiveness, accurateness, and
efficiency of the suggested FF-GNN-GAASM. The reliability of the scheme via statistical valuations
is verified in order to authenticate the stability, accuracy, and convergence.

Keywords: Gudermannian kernel; Lane–Emden model; Gudermannian neural networks; active-set
method; numerical solutions; genetic algorithms

1. Introduction

The singular models have many appreciated applications in physics, physiology,
engineering, and mathematics. The paramount Lane–Emden model is a historical model,
which is famous due to singularity and presented by Lane and Emden [1,2] a few centuries
ago by working on the performance of thermal gas and the state of thermodynamics [3].
The generic form of the Lane–Emden nonlinear singular models (LE-NSM) is written as [4]:{

u′′ (t) + η
t u′(t) + g(t, u) = 0, η ≥ 0, 0 < t ≤ 1,

u(0) = I1, u′(0) = I2,
(1)
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where the shape factor is η, g(t, u) is the real-valued continuous function, and I1 and I2
represent constants values.

The LEM singular nonlinear models define a collection of phenomena in the gaseous
star density [5], the physical area of science [6], the theory of electromagnetic [7], stellar
construction system [8], morphogenesis [9], physics-based mathematical model [10], oscil-
lating magnetic areas [11], an isotropic medium [12] and models of dusty fluid [13]. Solving
the singular models is found to be grim and tough due to a singular point at the origin.
Few analytical and numerical schemes are accessible to handle such singular nonlinear
models are presented in these references [14–16].

All presented above schemes have their individual sensitivity, potential, efficiency,
and correctness, as well as weaknesses, flaws, and demerits over each other. The exten-
sive computing heuristic approach potential is to solve the singular systems applying the
widespread capacity of artificial neural networks (ANNs) collectively with local and global
based search approaches [17–23]. Few noteworthy illustrations contain neuro-intelligent
computing approach to study the dynamics of convective heat transfer involving carbon
nanotubes [24], dusty plasma nonlinear model [25], model of mosquito release in the het-
erogeneous atmosphere [26], Navier Stokes problems [27], singular functional differential
model [28], HIV infection system of CD4+ T cells [29], plasma-based physics investi-
gations [30], Thomas-Fermi singular system [31], prey-predator biological system [32],
nanotechnology [33], killing well control system [34], biological model based on corneal
shape [35], Jeffery Hamel flow problem [36], parameter estimation in biodiesel studies [37]
and model of atomic physics model [38]. These potential applications proved the sig-
nificance of the stochastic solvers on the basis of stability, convergence, and exactitude.
Therefore, the novel design of the Gudermannian neural network (GNN) is exploited using
the genetic algorithm (GA) and active-set method, i.e., GNN-GAASM for the second kind
of LE-NSM.

The basic aim of this study is to solve the second kind of LE-NSM by introducing a
new intelligent scheme based on combined heuristics of GNN-GAASM. Few pioneering
topographies of the designed GNN-GAASM are briefly listed as follows:

• A novel GNN-GAASM computing-based stochastic solver is designed, implemented,
and exploited using differential continuous mapping of GNNs together with optimiza-
tion with the hybrid combined heuristics of GAs and ASM;

• The presented GNN-GAASM solver is tested accurately to effectively solve the three
different examples of the nonlinear singular model;

• The overlapping of the results obtained by the GNN-GAASM from the exact solutions
show the consistency, precision, and correctness of GNN-GAASM to approximate the
solution of the second kind of the LE-NSMs;

• The obtained outcomes of proposed GNN-GAASM for multiple executions via differ-
ent performance measures of mean, Nash Sutcliffe efficiency (NSE), semi-interquartile
range (S.I.R), median, and variance account for (VAF) further enhanced the compe-
tence of the designed GNN-GAASM.

The other paper parts are provided as: Section 2 describes the model structure,
Section 3 gives the optimization model detail, Section 4 gives the information of per-
formance indices, Section 5 relates the detail of numerical solutions together with interpre-
tations of the outcome. The conclusion details and future research clarifications are given
in the final section.

2. Methodology

The current section describes the GNN operators, which are designed with the neces-
sary explanation to solve the second kind of LE-NSM. The operations of the differential
system, merit function (MF), and optimization procedures through the GAASM are also
discussed.



Appl. Sci. 2021, 11, 4725 3 of 16

2.1. Designed Methodology: GNN

The neural networks are familiar with delivering standardized as well as reliable
solutions for numerous applications arising in a variety of diverse fields. In this modeling,
û(t) shows the obtained results through GNN-GAASM and its nth derivatives, written as:

û(t) =
m
∑

k = 1
qkz(wkt + pk)

û(n) =
m
∑

i=1
qkz(n)(wkt + pk),

(2)

where, n and m indicate the derivative order and number of neurons, respectively. The MF
is z, while,q,w,p are the unknown weight vectors, which are defined as W = [q, w, p], for
q = [q1, q2, q3, . . . , qm],w = [w1, w2, w3, . . . , wm] and p = [p1, p2, p3, . . . , pm]. The Guder-
mannian function (GF) is written as:

u(t) = 2 tan−1[exp(t)]− 1
2

π (3)

Using the GF given in the above equation, the approximate continuous mapping of
differential operations is written as:

û(t) =
m
∑

k=1
qk

(
2 tan−1 e(wkt+pk) − π

2

)
,

û′(t) =
m
∑

k=1
2qkwk

(
e(wkt+pk)

1+
(

e(wkt+pk)
)2

)
,

û′′ (t) =
m
∑

k=1
2qkwk

2

 e(wkt+pk)

1+
(

e(wkt+pk)
)2 − 2e(wkt+pk)

3(
1+
(

e(wkt+pk)
)2
)2


(4)

For solving the second kind of the LE-NSM, the formulation of MF using the mean
squared error metric is given as:

E = E1 + E2, (5)

where E denotes an unsupervised error function associated to the second kind of the LE-
NSM, whereas, E1 and E2 are the respective error functions linked to boundary conditions
of the model (1) as:

E1 =
1
N

N

∑
k=1

(
û′′ (tk) +

η

tk
û′(tk) + g(tk, u(tk))

)2

, (6)

E2 =
1
2

(
(û0 − I1)

2 +
(
û′0 − I2

) 2
)

, (7)

where Nh = 1, ûk = u(tk), g(t, u) = g(tk, u(tk)), and tk = kh.

2.2. Network Optimization

The numerical solutions of the second kind of LE-NSM are acquired to optimize the
GNN by applying the hybrid computing scheme, i.e., GAASM.

GA is one of the intelligent evolutionary computing schemes that is based on natural
development. In the 7th decade of the 19th century, GA is discovered with the innovator’s
work of Holland [39], and later it is employed as a key leading derivative to optimize the
models based on constrained/un-constrained arrangements. GA works through the opti-
mal process of mutation, selection, heuristic, and crossover. GA is widely applied in many
areas such as robotics, astrophysics, optics, digital communication, bioinformatics, signal
processing, financial mathematics, nuclear power system, economics, chemical industry,
and materials. Some recent submissions of GAs that works as an optimization model are
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wind power model [40], heart disease prediction [41], intrusion detection performance
model [42], energy managing systems [43], metal-organic constructions [44], heterogeneous
celebration [45], heartbeat systems [46], a study of military systems [47], aquatic weed
model [48]. These presented applications inspired the authors to apply the GA as an
optimization process using the GNN to find the approximate outputs of the second kind of
LE-NSM.

GA hybridizes with local search ASM, i.e., local search approach to use the quick
convergence by assigning the best GA values as a start/initial point. Hence, ASM is suitable
to regulate the parameters. ASM has been implemented in many recent submissions, such
as trade and industry load dispatch models [49], short-term hydrothermal supervision [50],
bipedal walking robot dynamics [51], economic multiproduct manufacture [52], LNG
process [53], model of heating in the thermal blow frame cycling [54], aircraft transporta-
tion [55], wind turbine support structures [56] and quadratic convex bilevel programming
models [57]. In this study, the combination of GAASM is implemented to solve the second
kind of LE-NSM, and the optimization process of GAASM is provided in Table 1. The
variety of the procedure is introduced for selection, i.e., stochastic uniform, remainder,
roulette, and tournament, for mutation, i.e., Gaussian, uniform and adaptive feasible, as
well as for crossover, scattered, single point, two points, intermediate, arithmetic and
heuristic, however, we set stochastic uniform for the selection, heuristics for the crossover
and adaptive feasible for mutation. These parameter settings are adopted after a lot of ex-
periments, knowledge, experience, and performance advantages on different applications
in the presented study.

Table 1. Pseudocode for the optimization GNN-GAASM for solving the second kind of LE-NSM.

GA procedure
Inputs: Indicate the chromosomes with equal number of model entries as:

W = [q, w,p]
Population: The chromosomes set is signified as:

q = [q1, q2, q3, . . . , qm], w = [w1, w2, w3, . . . , wm] and p = [p1, p2, p3, . . . , pm].
Output: GA best global weights are symbolized as WGA-Best
Initialization: Create a W called a weight vector containing real entries to select a

chromosome. ‘W’ is applied to design an initial population with [Population Size = 270]. Regulate
the values of generation as well as assertion for the ga optimset.

Fitness valuation: Accomplished the fitness (E) in the population for all the weight
vectors using the Equations (5)–(7).
Stopping criteria: Terminate, when any of the value is achieved

• [Fit = 10−19], [StallLimit = 100], [Generations = 75], [TolCon = TolFun = 10−22],

• Other: default

Move to storage, when meets the stopping standards
Ranking: Rank the weight vector of Population for the brilliance of Fit

Reproduction:

• [Selection = @ uniform],

• [Crossover:@ heuristic],

• [Mutations:@adapt feasible].

Store: Save WGA-Best, E, Generations, function counts and time for the existing GAs runs.
GA process Ends
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Table 1. Cont.

Process of ASM Starts
Inputs: Starting point: WGA-Best
Output: Best GAASM weights are signified as WGAASM
Initialize: Take WGA-Best, assignments, Bounded constraints,
generations and other values of the deceleration.
Terminate: The process stops, when any of the below criteria meets

[Fit = eFIT = 10−17], [Iterations = 500], [Max Evals Fun = 272,000],
[TolX = TolCon= TolFun = 10−18]

While [Terminate]
Fitness assessment: Assess the Fit, W, using Equations (5)–(7).
Modifications: For the SQP scheme, Invoke [fmincon]. Adjust‘W’ For the Fit calculation
by taking Equations (5)–(7).
Accumulate: Regulate function counts, WGA-Best, time, iterations and Fit for the current
trials of ASM.

End of ASM
Data Generations

Replicate the GAASM 100 times for a larger dataset to optimize the variables for the
second kind of LE-NSM by using the GNN-GAASM for functioning the statistical interpretations.

3. Performance Procedures

The demonstration actions to solve the second kind of LE-NSM to authenticate the
GAASM are constructed in terms of the Nash Sutcliffe efficiency (NSE) and variance
account for (VAF), mathematically given as:

NSE =

1−

n
∑

k=1
(uk−ûk)

2

n
∑

k=1
(uk−uk)

2 , uk =
1
n

n
∑

k=1
uk,

ENSE = 1−NSE.

(8)

{
VAF =

(
1− var(uk−ûk)

var(uk)

)
× 100,

EVAF = |VAF− 100|,
(9)

4. Result and Simulations

The comprehensive simulations for the numerical outcomes using GNN-GAASM to
solve the second kind of LE-NSM are presented in this section.

Problem I: Consider the second kind of LE-NSM involving exponential functions is
written as: {

u′′ (t) + 0.5
t u′(t) + (e2u(t) − 0.5eu(t)) = 0, t ∈ (0, 1),

u(0) = ln(2), u(1) = 0.
(10)

For the above equation, the MF is given as follow:

E =
1
N

N

∑
k=1

(
tkû′′ (tk) + 0.5û′(tk)+

tk(e2û(tk) − 0.5eû(tk))

)2

+
1
2

(
(û0 − ln(2))2 + (ûN)

2
)

. (11)

The exact solution is ln
(

2
(t2+1)

)
.

Problem II: Consider the second kind of LE-NSM is written as:{
u′′ (t) + 2

t u′(t) + u5(t) = 0, t ∈ (0, 1),
u(1) = 0.75, u′(0) = 0.

(12)
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For the above equation, the MF is given as follow:

E = 1
N

N
∑

k=1

(
tkû′′ (tk) + 2û′(tk) + tkû5(tk)

)2

+ 1
2

(
(ûN − 0.75)2 + (û′0)

2
)

.
(13)

The exact solution is
√

3
t2+3 .

Problem III: Consider the second kind of LE-NSM having an exponential function is
written as: {

u′′ (t) + 1
t u′(t) + eu(t) = 0, t ∈ (0, 1),

u′(0) = 0, u(1) = 0.
(14)

For the above equation, the MF is given as follow:

E =
1
N

N

∑
k=1

(
tkû′′ (tk) + û′(tk) + tkeû(tk)

)2

+
1
2

((
û′0
)2

+ (ûN)
2
)

. (15)

The exact solution is 2 ln
(

4−2
√

2
1+(3−2

√
2)t2

)
.

To optimize the second kind of LE-NSM based on all problems by functional the
GAASM system using the activation GF for independent hundred executions to find the
system parameter variables. The set of best weight validates the estimated numerical
outcomes for 10 neurons. The mathematical form of the obtained results is given as:

û1(t) = 0.7360(2 tan−1 e(1.5572t+0.2711) − 0.5π)− 1.3828(2 tan−1 e(0.0176t+1.1785) − 0.5π)+

3.1285(2 tan−1 e(−0.320t−0.1422) − 0.5π)− 0.5492(2 tan−1 e(−0.0149t−0.104) − 0.5π)−
0.3260(2 tan−1 e(−0.261t−1.2335) − 0.5π)− 0.8072(2 tan−1 e(0.6869t−0.8473) − 0.5π)+

1.8626(2 tan−1 e(1.0913t+0.6683) − 0.5π)− 1.2435(2 tan−1 e(1.3372t−0.1917) − 0.5π)−
0.2982(2 tan−1 e(−1.018t+1.7279) − 0.5π) + 0.445(2 tan−1 e(0.3368t+0.5995) − 0.5π),

(16)

û2(t) = −5.627(2 tan−1 e(4.107t+13.776) − 0.5π) + 19.796(2 tan−1 e(−1.1441t+2.700) − 0.5π)

−16.9872(2 tan−1 e(−1.825t−5.530) − 0.5π) + 18.171(2 tan−1 e(1.1842t−2.7152) − 0.5π)

−1.1341(2 tan−1 e(10.9932t+17.9253) − 0.5π) + 9.3739(2 tan−1 e(0.2126t−13.113) − 0.5π)

+14.154(2 tan−1 e(6.1138t+17.6261) − 0.5π) + 8.7317(2 tan−1 e(−6.7862t−16.019) − 0.5π)

+5.2472(2 tan−1 e(−4.4685t−6.8103) − 0.5π) + 1.7752(2 tan−1 e(9.4095t−19.1893) − 0.5π),

(17)

û2(t) = 0.7499(2 tan−1 e(−0.5392t+0.7869) − 0.5π) + 0.435(2 tan−1 e(0.2239t−0.3881) − 0.5π)

+1.3708(2 tan−1 e(−0.3328t+0.3684) − 0.5π) + 0.9967(2 tan−1 e(−0.034t−0.269) − 0.5π)

+1.3307(2 tan−1 e(0.0317t−1.9519) − 0.5π)− 0.2491(2 tan−1 e(−1.0871t−0.2457) − 0.5π)

+0.0744(2 tan−1 e(0.0144t−18.028) − 0.5π) + 2.1415(2 tan−1 e(−0.1161t−0.1017) − 0.5π)

−1.6038(2 tan−1 e(−0.8301t−1.3457) − 0.5π) + 0.0044(2 tan−1 e(−0.445t+0.4301) − 0.5π),

(18)

The best weights set for 10 neurons and comparison of the mean, exact, and the best
results for all the problems of the second kind of LE-NSM is shown in Figure 1. The set
of best weight is drawn by using Equations 16 to 18. It is seen that the overlapping of the
mean, exact, and best results are performed for all the problems of the second kind of LE-
NSM. These results assessment shown in Figure 1 indicates the correctness and exactness of
the suggested GNN-GAASM. Figure 2 shows the performance investigations based on the
TIC, ENSE, and EVAF operator together with the best, worst, and mean values of AE for
all variants of the second kind of LE-NSM. In order to evaluate the performance measures
for Problem I, the calculations of the best Fit, ENSE, and EVAF values lie 10−10–10−12, and
the mean values of the Fit, ENSE and EVAF lie 10−4–10−6. The performance of the best Fit,
ENSE, and EVAF values for Problem 2 and 3 lie 10−10–10−15, 10−6–10−10, and 10−7–10−10,
respectively, while the mean Fit, ENSE, and EVAF are close to 10−5. In order to measure the
absolute error (AE), the best values have been calculated around 10−6 to 10−7 for Problem



Appl. Sci. 2021, 11, 4725 7 of 16

I, while for another two problems, the best AE lie 10−5–10−6. The mean AE values have
also been noticed in suitable measures for all variants of the second kind of LE-NSM.
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The plots of the convergence measures for the Fit, ENSE, and EVAF together with the
boxplots and histogram are given in Figures 3–5 for for all variants of the second kind of
LE-NSM. It is indicated that most of the Fit, EVAF, and ENSE values for all the problems
lie around 10−5 to 10−10, 10−6 to 10−9, and 10−7 to 10−9, respectively. One can determine
that the accurate, precise, and specific values of the ENSE and EVAF operators have been
obtained for all variants of the second kind of LE-NSM.
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The statistical presentations have been examined using the GNN-GAASM to solve all
variants of the second kind of LE-NSM for 100 executions based on the maximum (Max),
minimum (Min), semi-interquartile range (S.I.R), median (MED), mean, and standard
deviation (STD). The Min values show the best outcomes, while Max values are calculated
based on worst runs using the GNN-GAASM are given in Table 2. The mathematical form
of the S.I.R is one-half of the difference between the third and first quartiles, respectively.
These statistics-based performances for all variants of the second kind of LE-NSM are found
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to be satisfactory and endorse the precision/accuracy of the proposed GNN-GAASM. The
global demonstrations for all the variants of the second kind of LE-NSM using the proposed
GNN-GAASM are given in Table 3. [G.FIT], [G.EVAF] and [G.ENSE] based Min values
lie in the ranges of 10−11–10−12, 10−9–10−12, and 10−8–10−9, respectively, while the MED-
based values for all the operators are examined around 10−8 to 10−9 for the second kind
of LE-NSM using GNN-GAASM. These optimum obtained values from the mentioned
statistical performances based on global operators authorize the accuracy of the GNN-
GAASM. The convergence measures for all variants of the second kind of LE-NSM using
GNN-GAASM are given in Table 4. The complexity analysis for the designed second kind
of LE-NSM using GNN-GAASM using the generation, implemented time, and function
calculations are given in Table 5. It is concluded that the average generations, implemented
time together with the function calculations are around 39.1709, 383.0966, and 29,623.3967,
respectively, for the second kind of LE-NSM using GNN-GAASM.

Table 2. Statistical performances for all variants of the second kind of LE-NSM.

Index Gages
The Projected GNN-GAASM Outcomes of the Second Kind of LE-NSM

0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.0

P I

Min 1 × 10−7 5 × 10−7 7 × 10−7 1 × 10−6 1 × 10−6 1 × 10−6 1 × 10−6 1 × 10−6 9 × 10−7 9 × 10−7 7 × 10−7

Med 5 × 10−6 2 × 10−5 4 × 10−5 5 × 10−5 5 × 10−5 5 × 10−5 5 × 10−5 4 × 10−5 3 × 10−5 3 × 10−5 2 × 10−5

Max 2 × 10−3 1 × 10−3 3 × 10−3 4 × 10−3 5 × 10−3 5 × 10−3 4 × 10−3 4 × 10−3 3 × 10−3 2 × 10−3 2 × 10−3

Mean 1 × 10−4 2 × 10−4 3 × 10−4 4 × 10−4 5 × 10−4 5 × 10−4 4 × 10−4 4 × 10−4 3 × 10−4 3 × 10−4 2 × 10−4

S.I.R 4 × 10−5 1 × 10−4 2 × 10−4 3 × 10−4 3 × 10−4 3 × 10−4 3 × 10−4 3 × 10−4 2 × 10−4 2 × 10−4 1 × 10−4

STD 4 × 10−4 3 × 10−4 5 × 10−4 8 × 10−4 9 × 10−4 9 × 10−4 8 × 10−4 7 × 10−4 6 × 10−4 5 × 10−4 4 × 10−4

P II

Min 1 × 10−7 5 × 10−7 7 × 10−7 1 × 10−6 1 × 10−6 1 × 10−6 1 × 10−6 1 × 10−6 9 × 10−7 9 × 10−7 7 × 10−7

Med 5 × 10−6 2 × 10−5 4 × 10−5 5 × 10−5 5 × 10−5 5 × 10−5 5 × 10−5 4 × 10−5 3 × 10−5 3 × 10−5 2 × 10−5

Max 2 × 10−3 1 × 10−3 3 × 10−3 4 × 10−3 5 × 10−3 5 × 10−3 4 × 10−3 4 × 10−3 3 × 10−3 2 × 10−3 2 × 10−3

Mean 1 × 10−4 2 × 10−4 3 × 10−4 4 × 10−4 5 × 10−4 5 × 10−4 4 × 10−4 4 × 10−4 3 × 10−4 3 × 10−4 2 × 10−4

S.I.R 4 × 10−5 1 × 10−4 2 × 10−4 3 × 10−4 3 × 10−4 3 × 10−4 3 × 10−4 3 × 10−4 2 × 10−4 2 × 10−4 1 × 10−4

STD 4 × 10−4 3 × 10−4 5 × 10−4 8 × 10−4 9 × 10−4 9 × 10−4 8 × 10−4 7 × 10−4 6 × 10−4 5 × 10−4 4 × 10−4

P III

Min 1 × 10−7 5 × 10−7 7 × 10−7 1 × 10−6 1 × 10−6 1 × 10−6 1 × 10−6 1 × 10−6 9 × 10−7 9 × 10−7 7 × 10−7

Med 5 × 10−6 2 × 10−5 4 × 10−5 5 × 10−5 5 × 10−5 5 × 10−5 5 × 10−5 4 × 10−5 3 × 10−5 3 × 10−5 2 × 10−5

Max 2 × 10−3 1 × 10−3 3 × 10−3 4 × 10−3 5 × 10−3 5 × 10−3 4 × 10−3 4 × 10−3 3 × 10−3 2 × 10−3 2 × 10−3

Mean 1 × 10−4 2 × 10−4 3 × 10−4 4 × 10−4 5 × 10−4 5 × 10−4 4 × 10−4 4 × 10−4 3 × 10−4 3 × 10−4 2 × 10−4

S.I.R 4 × 10−5 1 × 10−4 2 × 10−4 3 × 10−4 3 × 10−4 3 × 10−4 3 × 10−4 3 × 10−4 2 × 10−4 2 × 10−4 1 × 10−4

STD 4 × 10−4 3 × 10−4 5 × 10−4 8 × 10−4 9 × 10−4 9 × 10−4 8 × 10−4 7 × 10−4 6 × 10−4 5 × 10−4 4 × 10−4

Table 3. Global demonstrations for all variants of the second kind of LE-NSM using the GNN-GAASM.

Problem
[G.FIT] [G.EVAF] [G.ENSE]

Min MED Min MED Min MED

1 5.227610 × 10−11 1.028782 × 10−8 2.535194 × 10−12 3.717371 × 10−9 2.312817 × 10−12 3.756261 × 10−9

2 3.099837 × 10−11 3.760316 × 10−8 1.690676 × 10−9 4.479814 × 10−9 3.557807 × 10−8 6.170927 × 10−8

3 3.994743 × 10−12 1.372601 × 10−9 1.096359 × 10−9 7.456837 × 10−9 1.590472 × 10−9 1.006110 × 10−8

Table 4. Convergence measures for all variants of the second kind of LE-NSM using the GNN-
GAASM.

Problem
FIT≤ EVAF≤ ENSE≤

10−4 10−5 10−6 10−4 10−5 10−6 10−7 10−8 10−9

I 100 93 81 100 100 72 100 100 100
II 98 93 78 97 93 77 100 100 100
III 99 97 93 99 99 93 100 100 100
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Table 5. Complexity presentations for all variants of the second kind of LE-NSM using the GNN-GAASM.

Problem
Iterations Implemented Time Function Computations

Mean STD Mean STD Mean STD

I 28.42678858 7.64904008 396.38000000 136.03213970 30,490.24000000 8905.29769705
II 73.21185177 583.79311938 366.69000000 156.81486833 28,517.91000000 9840.05489852
III 15.87415954 5.49982366 386.22000000 143.77371249 29,862.04000000 9239.89403599

5. Conclusions

The current research work is related to design a novel Gudermannian neural network
for solving the nonlinear Lane–Emden singular model of the second kind using GNN-
GAASM containing the singular point at the origin using 10 neurons. The optimization
is produced by the global skill of genetic algorithms and rapid modification of applicant
solutions by working the local search through the active-set scheme. The solver based on
Gudermannian computing intelligent neural network is designed with the layer structure
neural network models for solving the second kind of nonlinear Lane–Emden singular
model. The precision, convergence, and accuracy of the stochastic numerical solver are
anticipated to attain the matching/overlapping results with the exact solutions having 6 to
8 decimal levels of accuracy for the second kind of nonlinear Lane–Emden singular model.
Furthermore, statistical interpretations based on 100 executions for the second kind of
nonlinear Lane–Emden singular model, in the form of maximum, minimum, median, mean,
standard deviation, and semi-interquartile range, validate the trustworthiness, exactness,
robustness, and correctness of the proposed GNN-GAASM that is specified further by the
procedures of ENSE and EVAF.

In the future, the designed ANN-PSOIPA can be functional to apply to the biological
models [58,59] and fluid dynamics models [60–63].
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