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Abstract
The aim of the current study is to present the numerical solutions of a nonlinear second-order coupled Emden–Fowler

equation by developing a neuro-swarming-based computing intelligent solver. The feedforward artificial neural networks

(ANNs) are used for modelling, and optimization is carried out by the local/global search competences of particle swarm

optimization (PSO) aided with capability of interior-point method (IPM), i.e., ANNs-PSO-IPM. In ANNs-PSO-IPM, a

mean square error-based objective function is designed for nonlinear second-order coupled Emden–Fowler (EF) equations

and then optimized using the combination of PSO-IPM. The inspiration to present the ANNs-PSO-IPM comes with a

motive to depict a viable, detailed and consistent framework to tackle with such stiff/nonlinear second-order coupled EF

system. The ANNs-PSO-IP scheme is verified for different examples of the second-order nonlinear-coupled EF equations.

The achieved numerical outcomes for single as well as multiple trials of ANNs-PSO-IPM are incorporated to validate the

reliability, viability and accuracy.
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Abbreviations
EF Emden–Fowler

ANNs Artificial neural networks

PSO particle swarm optimization

IPM interior-point method

RMSE Root mean square error

VAF Variance account for

SI Semi interquartile

EVAF Error in VAF

PSO-IPM PSO aided with IPM

ANNs-PSO-IPM ANNs optimized with PSO and IPM

MIN Minimum

SD Standard deviation

1 Introduction

The historical Emden–Fowler (EF) system is considered

very important for the research community because of

singularity at the origin and has various applications in

wide-ranging fields of applied science and engineering.

Some well-known applications are catalytic diffusion

reactions using the error estimate models (Burdyny and

Smith 2019), stellar configuration (Abbas et al. 2019),

density profile of gaseous star (Bacchini et al. 2019),

spherical annulus (Soliman 2019), isotropic continuous

media (Adel and Sabir 2020), extrinsic thermionic maps

(Barilla et al. 2020), the theory of electromagnetic (Guirao
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et al. 2020) and morphogenesis (Dridi and Trabelsi 2022).

Due to the specialty of the singular point and extensive

applications, the researcher has always shown keen interest

to solve these models all the time. These models are not

easy to solve due of this singular model, nonlinearity and

stiff nature, and only a few techniques are available in the

literature to solve these models. Few of them are Legendre

spectral wavelets scheme (Dizicheh et al. 2020), Adomian

decomposition scheme (Abdullah Alderremy et al. 2019),

Haar quasilinearization wavelet scheme (Singh et al. 2020;

Verma and Kumar 2019), an analytic algorithm approach

(Arqub et al. 2020), rational Legendre approximation

scheme (Dizicheh et al. 2020), modified variational itera-

tion scheme (Verma et al. 2021), differential transforma-

tion scheme (Xie et al. 2019), fourth-order B-spline

collocation scheme (Roul and Thula 2019), Chebyshev

operational matrix scheme (Sharma et al. 2019) and vari-

ation of parameters scheme with an auxiliary parameter

(Khalifa and Hassan 2019). Beside these, the numerical

methodologies introduced in (Abdelrahman and Alharbi

2021; Alharbi et al. 2020; Almatrafi et al. 2021; Lotfy

2019; Sabir 2022a, Sabir et al. 2022c) can be exploited for

EF equations-based systems.

All these mentioned schemes have their specific merits/

advantages and demerits/imperfections, whereas soft

computing stochastic solver is used to manipulate the

artificial neural networks (ANNs) strength optimized by

global/local search proficiencies of particle swarm opti-

mization (PSO) and interior-point method (IPM), i.e.,

ANNs-PSO-IPM, have not been implemented for the

nonlinear coupled EF model of second kind. The

researchers have been generally practiced the numerical

computing meta-heuristic schemes along with the neural

network strengths for solving the various mathematical

linear/nonlinear models (Guerrero-Sánchez et al. 2021;

Guirao et al. 2022; Lu et al. 2019, 2021; Mehmood et al.

2020; Sabir et al. 2020a, e). Few recent applications of the

stochastic solvers are financial market forecasting (Bukhari

et al. 2020), food chain model (Sabir 2022b), nonlinear

smoking models (Saeed et al. 2022), nonlinear fractional

Lane–Emden systems (Sabir et al. 2022d), nonlinear sec-

ond-order Lane–Emden pantograph delay differential sys-

tems (Nisar et al. 2021), peristaltic motion of a third-grade

fluid involving planar channel (Mahmood et al. 2022),

nonlinear predator–prey system (Umar et al. 2019), elliptic

partial differential model (Fateh et al. 2019), mathematical

form of the Leptospirosis system (Botmart et al. 2022),

HIV mathematical models (Sabir et al. 2021c, 2022a),

nonlinear multiple singularity-based systems (Raja et al.

2019), singular Thomas–Fermi equation (Sabir et al. 2018),

heartbeat dynamics (Malešević et al. 2020), a corneal

model for eye surgery (Umar et al. 2019; Wang et al. 2022)

and heat conduction model of the human head (Raja et al.

2018). These proposed stochastic solvers verified the val-

ues of the exactness, convergence, and accurateness of the

ANNs-PSO-IPM.

Keeping in view all the consequences of above pro-

posals, authors are interested to exploit the numerical

stochastic solvers for consistent, stable, and efficient

scheme for nonlinear second-order coupled EF system. The

literature form of the coupled EF model of second kind is

written as (Sabir et al. 2020b):

d2U

dW2
þ a
W

dU

dW
þ H1ðWÞG1ðU;VÞ ¼ F1ðWÞ; Uð0Þ ¼ A;

dUð0Þ
dW

¼ 0;

d2V

dW2
þ b
W

dV

dW
þ H2ðWÞG2ðU;VÞ ¼ F2ðWÞ; Vð0Þ ¼ B;

dVð0Þ
dW

¼ 0;

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð1Þ

where G1 and G2 are the nonlinear functions, a and b are

the constants, while F1 and F2 are designated as a source

functions. The aim of this current study is to solve the

model given in Eq. (1) through intelligent computing

schemes based on ANN-PSO-IP scheme. Some inventive

inspiration of the current study is presented as:

• A neuro-swarm novel intelligent computing ANNs-

PSO-IPM is designed and presented to solve second-

order nonlinear coupled EF model.

• The overlapping results of the proposed ANNs-PSO-

IPM with the exact solutions for four different examples

of the nonlinear-coupled EF-based model of second

kind establish the consistency, exactness and

convergence.

• Ratification of the precise performance is authenticated

via statistical calculations/observations on multiple runs

of ANN-PSO-IP scheme in terms of root mean square

error, Variance Account For, Semi Interquartile Range

and Theil’s inequality coefficient metrics.

• Beside essentially precise continuous results on whole

interval, ease in the concept, stability, the smooth

implementable practice and extendibility are well-

intentioned declarations for the presented ANNs-PSO-

IPM.

The remaining forms of the present work are shown as;

Sec 2 presents the detailed methodology of the neural

networks using the optimization process ANNs-PSO-IP

scheme. Sec 3 presents the performance measures. Sec 4

indicates the numerical measures of the ANNs-PSO-IPM

together with the statistical measures. Finally, some con-

cluding remarks along with future work plans are

described.
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2 Methodology

This section presents the design of ANNs-PSO-IPM for

second-order nonlinear coupled EF model in two stages as

given below:

Stage 1: A mean square error-based objective/fitness

function is constructed for nonlinear coupled EF model

Stage 2: The training/learning of the networks is pre-

sented with the help of hybrid PSO-IPM.

2.1 ANNs modeling

The neural networks are extensively applied to solve the

diverse applications arising in sundry domains of engi-

neering and applied sciences (Nasirzadehroshenin et al.

2020; Sabir et al. 2021b, 2022e; Umar et al. 2020). The

proposed results are indicated as ÛðWÞ and V̂ðWÞ, while
dnÛ
dWn and dnV̂

dWn are the derivatives of nth order, respectively,

and are given as follows:

ÛðWÞ; V̂ðWÞ
� �

¼
Xm

i¼ 1

/U;iPðwU;iWþ aU;iÞ;
"

Xm

i¼ 1

/V;iPðwV;iWþ aV ;iÞ
#

;

dnÛ

dWn ;
dnV̂

dWn

� �

¼
Xm

i¼ 1

/U;i

dn

dWn PðwU;iWþ aU;iÞ;
"

Xm

i¼ 1

/V;i

dn

dWn PðwV ;iWþ aV ;iÞ
#

;

ð2Þ

where /; w and a are the unknown weight vectors, while

m and n are the number of neurons and the order of

derivative, respectively.

W ¼ ½WU ; WV �, for WU ¼ ½/U ;wU ; aU � and

WV ¼ ½/V ;wV ; aV �. The weight vector components are

shown as:

/U ¼ ½/U;1;/U;2; � � � ;/U;m�; wU ¼ ½wU;1;wU;2; � � � ;wU;m�;
aU ¼ ½aU;1; aU;2; � � � ; aU;m�;

/V ¼ ½/V ;1;/V ;2; � � � ;/V ;m�; wV ¼ ½wV ;1;wV;2; � � � ;wV ;m�;
aV ¼ ½aV ;1; aV;2; � � � ; aV ;m�:

The log-sigmoid PðWÞ ¼ 1

1þe�Wð Þ is as an activation

function and the simplified form of the network (2) using

the ÛðWÞ and V̂ðWÞ along with their derivatives are shown

as:

The mean square error-based objective/fitness formula-

tion is formulated as follows:

EFit ¼ EFit�1 þ EFit�2 þ EFit�3; ð4Þ

EFit�1 ¼ 1

N

XN

m¼1

Wm
d2Û

dW2
m

þ a
dÛ

dWm
þWmH1G1ðÛ; V̂Þ �WmF1

 !2

;

ð5Þ

EFit�2 ¼ 1

N

XN

m¼1

Wm
d2V̂

dW2
m

þ b
dV̂

dWm
þWmH2G2ðÛ; V̂Þ �WmF2

 !2

;

ð6Þ

EFit�3 ¼ 1

6
Û � A1

� �2þ dÛ

dWm

� 	2

þ V̂ � A2

� �2þ dV̂

dWm

� 	2
 !

;

ð7Þ

ÛðWÞ; V̂ðWÞ
� �

¼
Xm

i¼1

/U; i

1 þ e� wU; iWþaU; ið Þ ;
Xm

i¼1

/V ; i

1 þ e� wV; iWþaV; ið Þ

" #

;

dÛ

dW
;
dV̂

dW

� �

¼
Xm

i¼1

/U; iwU; ie
� wU; iWþaU; ið Þ

1 þ e� wU; iWþaU; ið Þ

 �2

;
Xm

i¼1

/V; iwV ; ie
� wV; iWþaV; ið Þ

1 þ e� wV ; iWþaV; ið Þ

 �2

2

6
4

3

7
5;

d2Û

dW2
;
d2V̂

dW2

� �

¼

Xm

i¼1

/U; iw
2
U; i

2e�2 wU; iWþaU; ið Þ

1 þ e� wU; iWþaU; ið Þ

 �3

� e� wU; iWþaU; ið Þ

1 þ e� wU; iWþaU; ið Þ

 �2

8
><

>:

9
>=

>;
;

Xm

i¼1

/V ; iw
2
V ; i

2e�2 wV; iWþaV; ið Þ

1 þ e� wV; iWþaV; ið Þ

 �3

� e� wV ; iWþaV; ið Þ

1 þ e� wV; iWþaV ; ið Þ

 �2

8
><

>:

9
>=

>;

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

:

ð3Þ
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where hN ¼ 1 ; Wm ¼ mh; F1ðWÞ ¼ F1 and F2ðWÞ ¼ F2.

The objective functions EFit�1 and EFit�2 are linked with

coupled differential systems, and EFit�3 is used for the

initial conditions.

2.2 Optimization: PSO-IPM

The optimization to solve the second-order nonlinear-

coupled EF system is ratified by the hybrid-computing of

PSO-IPM.

PSO is a well-organized search algorithm used as a

global search methodology like genetic algorithms (GAs).

The PSO algorithm introduced by Eberhart and Kennedy

(Hussain and Ismail 2020; Sibalija 2019) and works as an

easy procedure that needs minor memory. In search space,

an applicant single solution of decision variables by

applying optimization is known as a particle and these

particles set formulate a swarm. The PSO operates via local

Pq�1
LB and global Pq�1

GB best particle positions in a swarm.

The position Xi and velocity Vi are mathematical expressed

as follows:

Xv
i ¼ Vv�1

i þ Xv�1
i ; ð8Þ

Vv
i ¼ rVv�1

i þ n1ðPv�1
LB � Xv�1

i Þc1 þ n2ðPv�1
GB � Xv�1

i Þc2;

ð9Þ

here v stands for iteration/flight index, r is for inertia

weight vector varying between [0. 1], n1 and n2 are the

cognitive/social constant accelerations, while, c1 and c2 are

the vectors lie between [0, 1]. Some recent applications of

PSO are parameter estimation (Özsoy et al. 2020), robotics

(Mai et al. 2019; Yang et al. 2019), nonlinear electric

circuits (Qu et al. 2020), systems of equation-based

physical models (Kuntoji et al. 2020), and optimization of

permanent magnets synchronous motor (Mesloub et al.

2020).

The convergence performance of PSO quickly achieved

by using the combination with local search procedure by

taking the global best particle of PSO as an initial weight.

Consequently, an operative and quick local search

approach named as interior-point method (IPM) is

oppressed for rapid refinement of the outcomes obtained

via PSO scheme. The integrated heuristics of PSO-IPM is

exploited to train the networks, while the essential

parameter settings of importance elements for PSO-IPM

are given in Table 1. Few recently IP scheme applications

are power flow security constraint optimization (Casacio

et al. 2019), image processing (Chouzenoux et al. 2020),

multistage nonlinear nonconvex problems (Zanelli et al.

2020) and nonlinear benchmark models (Wambacq et al.

2021). The PSO-IP scheme is used to train the networks as

per process and parameter settings provided in Table 1.

3 Performance indices/metrics

The performances is measured using RMSE, VAF, TIC

indices along their globals, i.e., mean values. The mathe-

matical forms of these statistical operatives are given as:

4 Results and discussions

The detail for presenting the solving the four examples of

second-order coupled EF model is presented in this section.

RMSEU ;RMSEV½ �¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

k¼1

Uk � Ûk

� �2

s

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

k¼1

Vk � V̂k

� �2

s" #

; ð10Þ

[TICU ,TICV � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Pn

k¼1

UðWkÞ � ÛðWkÞ
� �2

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Pn

k¼1

U2ðWkÞ
s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Pn

k¼1

Û2ðWkÞ
s ! ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Pn

k¼1

VðWkÞ � V̂ðWkÞ
� �2

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Pn

k¼1

V2ðWkÞ
s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Pn

k¼1

V̂2ðWkÞ
s !

2

6
6
6
6
6
4

3

7
7
7
7
7
5

; ð11Þ

[VAFU ;VAFV � ¼ 1 �
var UðWkÞ � ÛðWkÞ
� �

var UðWkÞð Þ

 !

� 100; 1 �
var VðWkÞ � V̂ðWkÞ
� �

var VðWkÞð Þ

 !

� 100

" #

EVAFU ;EVAFV½ � ¼ VAFU � 100j j; VAFV � 100j j½ �:

8
>><

>>:

; ð12Þ
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Problem I Consider the second-order nonlinear-coupled

EF model is given as:

d2U

dW2
þ 1

W
dU

dW
� ð4W2 þ 5ÞU ¼ 0; Uð0Þ ¼ 1;

dUð0Þ
dW

¼ 0;

d2V

dW2
þ 2

W
dV

dW
� ð4W2 � 5ÞV ¼ 0; Vð0Þ ¼ 1;

dVð0Þ
dW

¼ 0:

8
>><

>>:

ð13Þ

The exact solutions of Eq. (13) are [eW
2

; e�W2

], whereas

the fitness function becomes as:

EFit ¼
1

N

XN

m¼0

Wm
d2Û

dW2
m

þ dÛ

dWm
�Wmð4W2

m þ 5ÞÛ
 !2

þ

Wm
d2V̂

dW2
m

þ 2
dV̂

dWm
�Wmð4W2

m � 5ÞV̂
 !2

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

þ 1

4

Û � 1
� �2þ dÛ

dWm

� 	2

þ V̂ � 1
� �2þ dV̂

dWm

� 	2

0

B
B
B
B
@

1

C
C
C
C
A
;

ð14Þ

here N =20, 25 and 30 for input span [0, 1], [0, 1.25] and

[0, 1.5], respectively.

Problem II Consider the second-order nonlinear-coupled

EF system is written as:

d2U

dW2
þ 2

W
dU

dW
� U2 þ V2 þ 6V ¼ 6W2 þ 6;

Uð0Þ ¼ 1;
dUð0Þ
dW

¼ 0;

d2V

dW2
þ 2

W
dV

dW
þ U2 � V2 � 6V ¼ �6W2 þ 6;

Vð0Þ ¼ �1;
dVð0Þ
dW

¼ 0:

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð15Þ

The exact solutions of Eq. (15) are

W2 þ eW
2

;W2 � eW
2

h i
, and the error function is given as:

here, N =20, 25 and 30 for input span [0, 1], [0, 1.25]

and [0, 1.5], respectively.

Problem III Consider the second-order nonlinear-coupled

EF model is given as:

d2U

dW2
þ 3

W
dU

dW
� 4ðU þ VÞ ¼ 0; Uð0Þ ¼ 1;

dUð0Þ
dW

¼ 0;

d2V

dW2
þ 2

W
dV

dW
þ 3ðU þ VÞ ¼ 0; Vð0Þ ¼ 1;

dVð0Þ
dW

¼ 0:

8
>><

>>:

ð17Þ

The exact solutions of Eq. (17) are 1 þW2; 1 �W2
� �

,

and the fitness/objective function is given as follows:

EFit ¼
1

N

XN

m¼0

Wm
d2Û

dW2
m

þ 3
dÛ

dWm
� 4WmðÛ þ V̂Þ

 !2

þ

Wm
d2V̂

dW2
m

þ 2
dV̂

dWm
þ 3WmðÛ þ V̂Þ

 !2

0

B
B
B
B
B
@

1

C
C
C
C
C
A

þ 1

4

Û � 1
� �2þ dÛ

dWm

� 	2

þ V̂ � 1
� �2þ dV̂

dWm

� 	2

0

B
B
B
B
@

1

C
C
C
C
A
:

ð18Þ

here N =20, 25 and 30 for input span [0, 1], [0, 1.25] and [0,

1.5], respectively.

Problem IV Consider the second-order nonlinear-coupled

EF model is given as:

d2U

dW2
þ 1

W
dU

dW
� ð1 þ U2ÞV3 ¼ 0; Uð0Þ ¼ 1;

dUð0Þ
dW

¼ 0;

d2V

dW2
þ 3

W
dV

dW
þ ð3 þ U2ÞV5 ¼ 0; Vð0Þ ¼ 1;

dVð0Þ
dW

¼ 0:

8
>><

>>:

ð19Þ

The exact solutions of Eq. (17) are
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þW2

p
; 1ffiffiffiffiffiffiffiffiffi

1þW2
p

� �

,

and the fitness/objective function is given as follows:

EFit ¼
1

N

XN

m¼0

Wm
d2Û

dW2
m

þ 2
dÛ

dWm
�WmÛ

2 þWmV̂
2 þ 6WmV̂ ¼ 6W3

m þ 6Wm

 !2

þ

Wm
d2V̂

dW2
m

þ 2
dV̂

dWm
þWmÛ

2 �WmV̂
2 � 6WmV̂ ¼ �6W3

m þ 6Wm

 !2

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

þ 1

4
Û � 1
� �2þ dÛ

dWm

� 	2

þ V̂ þ 1
� �2þ dV̂

dWm

� 	2
 !

;

ð16Þ
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EFit ¼
1

N

XN

m¼0

Wm
d2Û

dW2
m

þ dÛ

dWm
� V̂3WmðÛ2 þ 1Þ

 !2

þ

Wm
d2V̂

dW2
m

þ 3
dV̂

dWm
þ V̂5WmðÛ2 þ 3Þ

 !2

0

B
B
B
B
B
@

1

C
C
C
C
C
A

þ 1

4

Û � 1
� �2þ dÛ

dWm

� 	2

þ V̂ � 1
� �2þ dV̂

dWm

� 	2

0

B
B
B
B
@

1

C
C
C
C
A
;

ð20Þ

here N =20, 25 and 30 for input span [0, 1], [0, 1.25] and

[0, 1.5], respectively.

To calculate/determined the proposed numerical out-

comes for the Problems I to IV based on the second-order

nonlinear-coupled EF model using the proposed PSO-IPM

executed for 50 multiple runs to attain the

adjustable weights. The numerical values of the weights

are presented in Fig. 1 for Û and V̂ . These parameters are

applied to get the estimated results for all four variants

based on the second-order nonlinear-coupled EF model and

the mathematical representations becomes as:

ÛP�I ¼
1:6758

1 þ e�ð1:425Wþ1:998Þ �
3:8309

1 þ e�ð�4:376Wþ5:970Þ

þ 2:3451

1 þ e�ð1:5452W�3:003Þ þ � � �

� 6:8234

1 þ e�ð�7:387Wþ11:211Þ ; ð21Þ

ÛP�II ¼
6:0315

1 þ e�ð0:578Wþ0:192Þ þ
9:0343

1 þ e�ð6:155W�9:503Þ

þ 1:297

1 þ e�ð�2:206W�1:560Þ þ � � �

þ 4:6126

1 þ e�ð�2:220W�1:921Þ ; ð22Þ

Table 1 Comprehensive pseudocode of PSO-IP scheme for solving the second-order nonlinear coupled EF model

cFig. 1 Best weight sets and results comparison for all the Problems of

second-order nonlinear-coupled EF model
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(a) Results of ˆ ( )U Ψ for Problems I to IV

(b) P-I weights for ˆ ( )U Ψ (c) P- II weights for ˆ ( )U Ψ (d) P-III weights for ˆ ( )U Ψ (e) P-IV weights for ˆ ( )U Ψ

(f) Results of ˆ ( )V Ψ for Problems I to IV

(g) P-I weights for ˆ ( )V Ψ (h) P-II weights for ˆ ( )V Ψ (i) P-III weights for ˆ ( )V Ψ (j): P-IV weights for ˆ ( )V Ψ
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ÛP�III ¼
�6:8663

1 þ e�ð�1:574Wþ3:654Þ �
1:0189

1 þ e�ð�0:492W�1:299Þ

� 2:1697

1 þ e�ð�0:194W�4:339Þ þ � � �

þ 2:6387

1 þ e�ð�0:331Wþ2:246Þ ;

ð23Þ

ÛP�IV ¼ �0:2821

1 þ e�ð�0:533Wþ2:368Þ þ
0:3969

1 þ e�ð2:391Wþ1:929Þ

� 3:3036

1 þ e�ð�0:038W�3:927Þ þ � � �

� 2:1545

1 þ e�ð�2:484W�2:701Þ ; ð24Þ

V̂P�I ¼
�4:3366

1 þ e�ð�1:990W�0:338Þ þ
4:8079

1 þ e�ð�0:598W�3:336Þ

� 2:9912

1 þ e�ð0:600Wþ2:518Þ þ � � � þ 1:1862

1 þ e�ð2:928Wþ1:879Þ ;

ð25Þ

(a) AE of Problems I- IV for ˆ ( )U Ψ (b) AE of Problem s I - IV for ˆ ( )V Ψ

(c) Performance indices of Problem I-IV for ˆ ( )U Ψ (d) Performance indices of  Problem  I-IV for ˆ ( )V Ψ

Fig. 2 Absolute error and performance measures for all Problems of second-order nonlinear-coupled EF model
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V̂P�II ¼
�1:2095

1 þ e�ð1:812W�1:701Þ �
1:4677

1 þ e�ð�3:875W�2:842Þ

� 5:4743

1 þ e�ð�0:276Wþ2:736Þ þ � � �

� 4:5921

1 þ e�ð1:927Wþ2:108Þ ; ð26Þ

V̂P�III ¼
2:237

1 þ e�ð0:454W�0:035Þ �
0:825

1 þ e�ð1:564Wþ0:541Þ

� 0:249

1 þ e�ð1:204W�0:301Þ þ � � �

� 0:7721

1 þ e�ð�1:792Wþ0:440Þ ; ð27Þ

V̂P�IV ¼ �0:6548

1 þ e�ð2:202Wþ2:856Þ þ
3:6090

1 þ e�ð5:003Wþ2:080Þ

� 1:4197

1 þ e�ð5:548Wþ1:859Þ þ � � � þ 3:1940

1 þ e�ð�0:815þ2:385Þ :

ð28Þ

The optimization is performed for all the problems of

the nonlinear-coupled EF system with ANNs-PSO-IPM for

50 independent runs. A set of the best weights along with

proposed and exact outcomes are shown in Fig. 1. It is

stated that all the problems of the nonlinear-coupled EF

system of second kind, the exact/reference solution and

ANNs-PSO-IPM results overlapped consistently for ÛðWÞ
and V̂ðWÞ. This overlapping of the outcomes depicts the

(a)  results for U (Ψ)

(b) results for V (Ψ)

Fig. 3 Comparison of proposed solutions for all Problems of second-order nonlinear-coupled EF model in case of input interval [0, 1.25]
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correctness/exactness of the proposed ANNs-PSO-IP

scheme. Figure 2 shows the absolute error (AE), compar-

ison of the proposed results and exact solutions as well as

analysis on different performance metrics. The approxi-

mate solutions for N = 25 and N = 30 are plotted in Figs. 3

and 4 along with the reference exact values. One may see

that results are consistently overlapping for small as well as

large interval. The AE plots for ÛðWÞ and V̂ðWÞ are drawn

in Fig. 2a and b for N = 20, while the performance

measures for ÛðWÞ and V̂ðWÞ are provided in Fig. 2c and d

for N = 20. It is observed that the AE values of ÛðWÞ lie

around 10-05–10-06, 10-04–10-05, 10-06–10-08 and

10-06–10-07 for Problem I, II, III and IV in case of N =

20, 25 and 30. While the AE values of V̂ðWÞ lie around

10-05–10-06, 10-04–10-05, 10-06–10-09 and 10-06–10-07

for Problems I–IV for N = 20. The performance measures

of ÛðvÞ and V̂ðWÞ based on FIT, RMSE, TIIC and EVAF

are plotted in Fig. 2c and d. It is seen that the FIT for ÛðWÞ
and V̂ðWÞ lie close to 10-08–10-10

, for problems I, III and

IV, and similarly the FIT for Problem II lies around 10-06–

10-08. The RMSE and TIC for ÛðWÞ and V̂ðWÞ lie around

to 10-04–10-06
, for all the problems. The TIC values lie

around 10-06–10–08 for both indexes of all the Problems.

The values of the EVAF for both indices of all the

problems lie around 10–10–10–12. The convergence mea-

sures for the Problems I–IV based on the second-order

nonlinear-coupled EF model using the fitness values,

boxplots and histograms with 10 neurons are plotted in

(a) results for U(Ψ) 

(b) results for V(Ψ)

Fig. 4 Comparison of proposed solutions for all Problems of second-order nonlinear-coupled EF model in case of input interval [0, 1.5]
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Fig 5. It is seen that the fitness lies around 10-04–10-08 for

the Problems I–IV.

For more satisfaction, accuracy and precision examina-

tion of the ANNs-PSO-IP scheme, statistical measures are

made based on minimum (MIN), mean, standard deviation

(SD), median and semi interquartile range (S-IR). S-IR

range is 0.5 times of the difference of the third quartile, i.e.,

Q3 = 75% data and first quartile, i.e., Q1 = 25% data, is

calculated for 50 runs of ANNs-PSO-IP scheme to solve

four different examples of the nonlinear-coupled EF

system of second kind. These statistical results for

Problems I–IV are provided in Tables 2 as well as 3 for

Û and V̂ , respectively. It is perceived that both ÛðWÞ and

V̂ðWÞ for Problems I–IV lie in the good range. The global

performance, i.e., G-FIT, G-EVAF, G-RMSE and G-TIC

(a) Convergence analysis of second order nonlinear-coupled EF model based on the independent trials 
ANNs-PSO-IP scheme along x-axis and Fitness values on y-axis 

(b) Histogram for 
Problem I

(c) Histogram for 
ProblemII

(d) Histogram for 
Problem III

(e) Histogram for 
Problem IV

(f) Boxplot for Problem 
I

(g) Boxplot for Problem 
II

(h) Boxplot for Problem 
III

(i) Boxplot for Problem
IV

Fig. 5 Convergence indices for all the Problems of second-order nonlinear-coupled EF model using the Fitness, boxplots and boxplots for 10

neurons
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123



Ta
bl
e
2

S
ta

ti
st

ic
s

o
n
Û
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of ÛðWÞ and V̂ðWÞ for Problems I–IV is provided in

Table 4. In the said Table, the presentations of the global

performance for all problems based on second-order

nonlinear-coupled EF model for 50 independent executions

are provided. The magnitude as well as median values of

each Problems based on the second-order nonlinear-

coupled EF model using the indexes ÛðWÞ and V̂ðWÞ
proven good. The time complexity of the proposed

scheme ANNs-PSO-IPM for all four problems in terms

of time consume for learning of weights of neural network

is around 50 ± 25 for N = 20, while in case of N = 25 and

30 time consumed are around 55 ± 25 and 60 ± 20,

respectively.

5 Conclusion

In this investigation, a reliable, stable, consistent and pre-

cise numerical ANNs-PSO-IPM is presented for solving

the nonlinear-coupled EF system by using the ANNs

strength. The objective function is optimized of these

networks using the global as well as local search compe-

tences of PSO-IPM. The suggested ANNs-PSO-IPM is

viably executed to solve four different examples of the

nonlinear-coupled EF system. The detailed, precise and

particular presentation is obtained for ANNs-PSO-IPM in

terms of AE with steadfast precision that is measured

around 4–7 decimals of accurateness of the present refer-

ence solutions for all four problems of the nonlinear-cou-

pled EF system of second kind. Furthermore, the statistical

clarifications achieved good measures using the Min,

standard deviation, Mean, S-IR and Median to check the

convergence, robustness and accuracy of the ANNs-PSO-

IPM for solving the second-order nonlinear-coupled EF

model-based problems I–IV.

6 Future research directions

In the future, one can exploit/explore the knacks of ANNs-

PSO-IPM to solve the singular higher order models (Sabir

et al. 2020c, d; 2021a), fractional order models (İlhan and

Kıymaz 2020; Sabir et al. 2022b; Sulaiman et al. 2019;

Touchent et al. 2020; Yokuş and Gülbahar 2019; Ziane

et al. 2019) and many other applications of utmost

importance (Kouider and Polat 2020; Xie et al. 2020; Xue

et al. 2021; Yao 2021).
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Table 4 Results for global performance on both ÛðWÞ and V̂ðWÞ in case of Problems I to IV

Index Problem G.FIT G.RMSE G.TIC G.EVAF

MAG Median MAG Median MAG Median MAG Median

ÛðWÞ 1 2.95 9

10-06
4.71 9

10-07
2.06 9

10-01
2.28 9

10-04
2.77 9

10-02
4.16 9

10-05
2.71 9

10-01
4.20 9

10-08

2 4.47 9

10-06
3.29 9

10-06
2.15 9

10-04
1.69 9

10-04
3.95 9

10-02
4.27 9

10-05
1.82 9

10-08
8.89 9

10-09

3 3.73 9

10-07
6.71 9

10-08
2.26 9

10-05
1.01 9

10-05
5.41 9

10-02
5.44 9

10-05
1.80 9

10-09
1.43 9

10-10

4 4.42 9

10-05
9.90 9

10-08
2.62 9

10-02
4.77 9

10-05
5.87 9

10-02
6.05 9

10-05
2.94 9

10-01
2.22 9

10-08

V̂ðWÞ 1 6.6 9 10-06 3.1 9 10-07 6.3 9 10-05 4.2 9 10-06 1.9 9 10-05 9.1 9 10-07 3.6 9 10-08 5.8 9 10-09

2 3.5 9 10-04 4.8 9 10-06 5.1 9 10-02 2.4 9 10-02 1.2 9 10-05 7.3 9 10-06 3.3 9 10-01 2.1 9 10-03

3 1.7 9 10-06 3.1 9 10-07 1.8 9 10-05 8.1 9 10-06 1.7 9 10-05 1.1 9 10-05 3.2 9 10-09 9.5 9 10-11

4 2.3 9 10-05 2.1 9 10-07 5.8 9 10-02 3.5 9 10-06 5.8 9 10-03 7.5 9 10-06 3.5 9 10-02 2.5 9 10-03
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