323,442 research outputs found

    Comprehensive Monosynaptic Rabies Virus Mapping of Host Connectivity with Neural Progenitor Grafts after Spinal Cord Injury.

    Get PDF
    Neural progenitor cells grafted to sites of spinal cord injury have supported electrophysiological and functional recovery in several studies. Mechanisms associated with graft-related improvements in outcome appear dependent on functional synaptic integration of graft and host systems, although the extent and diversity of synaptic integration of grafts with hosts are unknown. Using transgenic mouse spinal neural progenitor cell grafts expressing the TVA and G-protein components of the modified rabies virus system, we initiated monosynaptic tracing strictly from graft neurons placed in sites of cervical spinal cord injury. We find that graft neurons receive synaptic inputs from virtually every known host system that normally innervates the spinal cord, including numerous cortical, brainstem, spinal cord, and dorsal root ganglia inputs. Thus, implanted neural progenitor cells receive an extensive range of host neural inputs to the injury site, potentially enabling functional restoration across multiple systems

    Dimensions of Neural-symbolic Integration - A Structured Survey

    Full text link
    Research on integrated neural-symbolic systems has made significant progress in the recent past. In particular the understanding of ways to deal with symbolic knowledge within connectionist systems (also called artificial neural networks) has reached a critical mass which enables the community to strive for applicable implementations and use cases. Recent work has covered a great variety of logics used in artificial intelligence and provides a multitude of techniques for dealing with them within the context of artificial neural networks. We present a comprehensive survey of the field of neural-symbolic integration, including a new classification of system according to their architectures and abilities.Comment: 28 page

    Exploiting Device Mismatch in Neuromorphic VLSI Systems to Implement Axonal Delays

    Get PDF
    Sheik S, Chicca E, Indiveri G. Exploiting Device Mismatch in Neuromorphic VLSI Systems to Implement Axonal Delays. Presented at the International Joint Conference on Neural Networks (IJCNN), Brisbane, Australia.Axonal delays are used in neural computation to implement faithful models of biological neural systems, and in spiking neural networks models to solve computationally demanding tasks. While there is an increasing number of software simulations of spiking neural networks that make use of axonal delays, only a small fraction of currently existing hardware neuromorphic systems supports them. In this paper we demonstrate a strategy to implement temporal delays in hardware spiking neural networks distributed across multiple Very Large Scale Integration (VLSI) chips. This is achieved by exploiting the inherent device mismatch present in the analog circuits that implement silicon neurons and synapses inside the chips, and the digital communication infrastructure used to configure the network topology and transmit the spikes across chips. We present an example of a recurrent VLSI spiking neural network that employs axonal delays and demonstrate how the proposed strategy efficiently implements them in hardware

    The iso-response method

    Get PDF
    Throughout the nervous system, neurons integrate high-dimensional input streams and transform them into an output of their own. This integration of incoming signals involves filtering processes and complex non-linear operations. The shapes of these filters and non-linearities determine the computational features of single neurons and their functional roles within larger networks. A detailed characterization of signal integration is thus a central ingredient to understanding information processing in neural circuits. Conventional methods for measuring single-neuron response properties, such as reverse correlation, however, are often limited by the implicit assumption that stimulus integration occurs in a linear fashion. Here, we review a conceptual and experimental alternative that is based on exploring the space of those sensory stimuli that result in the same neural output. As demonstrated by recent results in the auditory and visual system, such iso-response stimuli can be used to identify the non-linearities relevant for stimulus integration, disentangle consecutive neural processing steps, and determine their characteristics with unprecedented precision. Automated closed-loop experiments are crucial for this advance, allowing rapid search strategies for identifying iso-response stimuli during experiments. Prime targets for the method are feed-forward neural signaling chains in sensory systems, but the method has also been successfully applied to feedback systems. Depending on the specific question, “iso-response” may refer to a predefined firing rate, single-spike probability, first-spike latency, or other output measures. Examples from different studies show that substantial progress in understanding neural dynamics and coding can be achieved once rapid online data analysis and stimulus generation, adaptive sampling, and computational modeling are tightly integrated into experiments

    Automated implementation of rule-based expert systems with neural networks for time-critical applications

    Get PDF
    In fault diagnosis, control and real-time monitoring, both timing and accuracy are critical for operators or machines to reach proper solutions or appropriate actions. Expert systems are becoming more popular in the manufacturing community for dealing with such problems. In recent years, neural networks have revived and their applications have spread to many areas of science and engineering. A method of using neural networks to implement rule-based expert systems for time-critical applications is discussed here. This method can convert a given rule-based system into a neural network with fixed weights and thresholds. The rules governing the translation are presented along with some examples. We also present the results of automated machine implementation of such networks from the given rule-base. This significantly simplifies the translation process to neural network expert systems from conventional rule-based systems. Results comparing the performance of the proposed approach based on neural networks vs. the classical approach are given. The possibility of very large scale integration (VLSI) realization of such neural network expert systems is also discussed

    Neuromorphic analogue VLSI

    Get PDF
    Neuromorphic systems emulate the organization and function of nervous systems. They are usually composed of analogue electronic circuits that are fabricated in the complementary metal-oxide-semiconductor (CMOS) medium using very large-scale integration (VLSI) technology. However, these neuromorphic systems are not another kind of digital computer in which abstract neural networks are simulated symbolically in terms of their mathematical behavior. Instead, they directly embody, in the physics of their CMOS circuits, analogues of the physical processes that underlie the computations of neural systems. The significance of neuromorphic systems is that they offer a method of exploring neural computation in a medium whose physical behavior is analogous to that of biological nervous systems and that operates in real time irrespective of size. The implications of this approach are both scientific and practical. The study of neuromorphic systems provides a bridge between levels of understanding. For example, it provides a link between the physical processes of neurons and their computational significance. In addition, the synthesis of neuromorphic systems transposes our knowledge of neuroscience into practical devices that can interact directly with the real world in the same way that biological nervous systems do

    Algorithm and Hardware Design of Discrete-Time Spiking Neural Networks Based on Back Propagation with Binary Activations

    Full text link
    We present a new back propagation based training algorithm for discrete-time spiking neural networks (SNN). Inspired by recent deep learning algorithms on binarized neural networks, binary activation with a straight-through gradient estimator is used to model the leaky integrate-fire spiking neuron, overcoming the difficulty in training SNNs using back propagation. Two SNN training algorithms are proposed: (1) SNN with discontinuous integration, which is suitable for rate-coded input spikes, and (2) SNN with continuous integration, which is more general and can handle input spikes with temporal information. Neuromorphic hardware designed in 40nm CMOS exploits the spike sparsity and demonstrates high classification accuracy (>98% on MNIST) and low energy (48.4-773 nJ/image).Comment: 2017 IEEE Biomedical Circuits and Systems (BioCAS
    corecore