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Abstract—Axonal delays are used in neural computation to
implement faithful models of biological neural systems, and
in spiking neural networks models to solve computationally
demanding tasks. While there is an increasing number of software
simulations of spiking neural networks that make use of axonal
delays, only a small fraction of currently existing hardware neu-
romorphic systems supports them. In this paper we demonstrate
a strategy to implement temporal delays in hardware spiking
neural networks distributed across multiple Very Large Scale
Integration (VLSI) chips. This is achieved by exploiting the
inherent device mismatch present in the analog circuits that
implement silicon neurons and synapses inside the chips, and
the digital communication infrastructure used to configure the
network topology and transmit the spikes across chips. We
present an example of a recurrent VLSI spiking neural network
that employs axonal delays and demonstrate how the proposed
strategy efficiently implements them in hardware.

I. INTRODUCTION

Spiking neural networks are typically characterized by their
network topology (e.g. multi-layer, feed-forward, recurrent,
etc.) and by their distributions of synaptic weights, while they
seldom make use of temporal delays to carry out information
processing tasks. However, temporal delays can provide an ex-
tra degree of complexity for solving computationally demand-
ing problems, and can be used to implement faithful models of
real neural networks, as they account for the spike propagation
delays that takes place along the neuron’s axon. Indeed, axonal
delays are often modeled to describe the temporal dynamics
of biologically realistic spiking neural networks [1]–[3]. For
example, it has been shown that transmission/conductance
delays help enhance neural synchrony [4] and that axonal
delays provide the anatomical and physiological basis for a
neuronal map of inter-aural time differences in the nucleus
laminaris of barn owls [5].

While there have been sporadic attempts at implementing
axonal delays in hardware spiking neural networks [6]–[9],
most VLSI neuromorphic setups do not support them, either
at the single VLSI device level, or in multi-chip setups. Recent
developments in the construction of VLSI spiking neural net-
works focus increasingly more on distributed, multi-chip se-
tups [10]–[12]. These setups typically consist of several multi-
neuron chips comprising hybrid analog/digital neuromorphic
circuits, interfaced among each other using asynchronous event

based digital communication modules. A common commu-
nication protocol used in these setups is the Address Event
Representation (AER) [13], [14]. In this representation spikes
(address events produced by neurons) are routed from one
chip to the other using a specified addressing schemes via
custom digital boards, typically comprising one or more Field
Programmable Gate Arrays (FPGAs) [15], [16]. In principle,
one could therefore exploit the digital domain used in the
event-based communication across chips to emulate axonal
delays, but this is not an optimal solution, as it requires
additional dedicated hardware overhead. For example, in [17]
axonal delays are implemented by accumulating address events
in pulse packets, time-stamping them, and transmitting them
to a dedicated digital network chip. Here the events are held,
sorted, and buffered until a target delay is reached (after which
they are sent to their target destination). While this approach is
flexible and accurate, it requires specialized hardware for the
computationally intensive real-time event sorting, and looses
the efficient representation of time in the AER, where events
are transmitted as they happen, and time represents itself.

An alternative approach that does not require to explicitly
time-stamp each event and that can reduce these overhead
costs, is to exploit both the digital domain used for the
inter-chip communication and the analog one used with the
silicon neurons and synapses inside the chips [9]. In this
paper we follow this approach by making use of inherent
device mismatch present in the analog neuromorphic circuits to
implement axonal delays, and exploit the AER communication
digital infrastructure to (re)configure the placement of these
delays in the neural network.

Device mismatch in neuromorphic multi-neuron chips pro-
duces inhomogeneities in the response of the synapses and
neurons present in the chip. An example of this effect is
evident in Fig. 1, where we show a raster plot of spiking
activity measured from a neuromorphic chip comprising 128
putatively identical silicon neurons [18]. In this example the
neurons are stimulated with constant current injection, set by a
common global bias. Ideally, all neurons should have the same
firing rates, but given that the neuron circuits are analog and
that the transistors operate in the weak-inversion regime [19],
their response properties vary substantially. Device mismatch
effects in these chips also affect several other neural network
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Fig. 1. Raster plot of spiking activity and output firing rate measured from a
chip comprising 128 neurons stimulated by the same constant input current.

properties, such as synaptic weights and time constants.
Device mismatch can be minimized using standard elec-

trical engineering approaches and appropriate analog VLSI
design techniques. But this leads to very large transistor sizes
and large layout designs, which can significantly reduce the
number of neurons and synapses that can be integrated onto
a single chip. Rather than attempting to reduce mismatch
using brute-force engineering approaches, neuromorphic ap-
proaches should try to exploit the adaptation mechanisms and
learning strategies that they seek to model and implement
in hardware. For example this has already been a successful
strategy in neuromorphic vision sensors that employ adaptation
(adaptive photoreceptor circuits), in each individual pixel
rather than the single/global auto-gain mechanisms used in
standard imagers [20]–[23]. Learning and plasticity are also
very effective mechanisms for compensating the effects of
device mismatch [24], [25], or homeostatic mechanisms [26].
Hardware neural networks can also employ population coding
approaches and make use of redundancy, exploiting the large
number of parallel elements present in these devices [27]. The
use of these strategies would allow designers to implement
large arrays of compact, redundant, possibly plastic synapses,
that can carry out robust computation even if they are affected
by mismatch. And mismatch can then be used as a feature,
rather then being something to try to minimize.

In the next Section we show how we used mismatch to
produce a range of variable response properties that can be
exploited for efficiently modeling axonal delays.

II. MATERIALS AND METHODS

Our methodology can be used to realize arbitrary connectiv-
ity patterns with axonal delays. To demonstrate our approach
we chose a recurrent network architecture of the type shown
in Fig. 2.

A. Network model

The network consists of a population A of 32 recurrently
connected leaky Integrate and fire (I&F) neurons receiving
spikes as input, and arranged as shown in Fig. 2. Each neuron

Fig. 2. A recurrent neural network with axonal delays. Spiking input
is sent to the population of neurons from the bottom. The neurons are
recurrently connected with excitatory synapses. The synaptic projections have
transmission delays that vary with distance between the source and destination.
Projections from only one of the neurons in the population are shown here,
with their corresponding transmission delays.

projects to its nearest neighbors with excitatory connections,
and each projection incurs a propagation time delay ∆ti pro-
portional to the connection distance i. Equation (1) describes
this relationship:

∆ti = ∆T + i/v (1)

where v represents the propagation velocity and ∆T is the
minimum possible propagation delay.

B. Hardware setup

The hardware setup used to implement the network de-
scribed in Fig. 2 is outlined in Fig. 3. It consists of two multi-
neuron chips connected in daisy-chain to an AER mapper [16].
A workstation is used to inject the input spikes in the network
and log the network’s output activity. The first multi-neuron
chip (CHIP-1) houses 128 leaky I&F neurons, equipped with
excitatory, inhibitory, and plastic synapses [18]. The second
multi-neuron chip (CHIP-2) houses 2048 leaky I&F neurons,
equipped with excitatory and inhibitory synapses. Both chips
send and receive spikes using the AER. The chips were
fabricated using a standard 0.35µm CMOS technology and
occupy an area of 10mm2 and 15mm2 respectively. The AER
mapper is a custom digital FPGA board that can route spikes
from source neuron to the destination synapse, with a latency
of 0.8µs and supports 66MHz peak event rates [16].

While this setup can efficiently support the implementation
of fairly large networks of hardware neurons, there is no
explicit mechanism dedicated to the implementation of axonal
delays. In order to implement the network or Fig. 2 with the
appropriate delays we have to resort to a second a population
of neurons, and use them as intermediate delay elements. We
call these neurons delay neurons.

C. Delay neurons

A common way of implementing temporal delays in elec-
trical engineering is by using low-pass filters. We follow the
same approach and use the low-pass filtering properties of the
synapse circuits [28] present on the multi-chip labeled CHIP-2.
We configure the synapse parameters such that the integration
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Fig. 3. The multi-chip setup used in this work. Two spiking multi-neuron
chips transmit AER spikes to each other via a digital mapper board. A PC
workstation is used to generate the input stimuli and log the network output
spikes.

Fig. 4. Distribution of delays measured from the multi-neuron chip labeled
CHIP-2.

of a single pulse (the input spike) produces an output spike,
after a set delay ∆t. The neurons connected to these synapses
that have this behavior are the delay neurons.

Figure 4 shows the delays measured for all the neurons
on CHIP-2. These delays depend on the synapse circuit time
constant, on the synaptic weight, as well as the neuron’s mem-
brane time constant and firing threshold. These parameters
shared among all delay neurons in the chip and ideally should
produce a single common delay. As can be seen from the
histogram, this is far from ideal: the neurons exhibit a broad
range of delays, due to device mismatch. The distribution of
delays can be modified by changing one or more of the four
parameters mentioned above. For the set of biases used for
this measurement, only a portion of the delay neurons produce
usable delays. The rest of the neurons either have too strong
or too weak synaptic efficacy leading to multiple or no spikes
at their output.

D. Network Implementation

The population of neurons (population A in Fig. 2) was
modeled using 32 silicon neurons of CHIP-1. The recur-
rent connectivity was implemented via the AER mapper and
transmission delays were obtained by placing a delay neuron
from CHIP-2 between each projection of the CHIP-1 I&F
neurons. The routing of the address events is as follows:

Fig. 5. Measured transmission delays in the hardware neural network. The
delays increase linearly with distance between the neurons. A maximum
distance of 16 was imposed on the network connectivity. Delays with the
minimum value of 0 in this figure represents no connection.

(Ai → Delayneuron(∆tij) → Aj), thereby producing
the desired transmission delays. The choice of the desired
transmission delay is done by indexing the appropriate delay
neuron, chosen from the histogram of Fig. 4. Every projection
therefore passes through a dedicated delay neuron.

III. RESULTS

We selected the appropriate set of delay neurons from
CHIP-2 to implement the desired axonal delays in the network.
We stimulated the neurons of the network with input spikes
and measured the time they took to produce an output spike.
The delays measured from the network are shown in Fig. 5.
The axonal delay increases linearly with increasing distance
between the source and destination neurons, as expected.

The strategy of choosing the delay neurons by programming
the AER mapper appropriately, in order to set the desired
axonal delays in the network can be used to implement
arbitrary delay profiles. As an example, Fig. 6 shows the
measurements from a recurrent network analogous to that
of Fig. 2, but with random axonal delays on its recurrent
connections.

In the networks described above we chose axonal delays
comparable to the time constants of the delay neurons. Axonal
delays longer than the typical time constant of the delay
neurons can be achieved by stacking several delay neurons in a
sequence. Specifically, by stacking N delay neurons together,
it is possible to implement N different axonal delays with
lower and upper bounds defined as:

min(∆ti) ∀ i ∈ (1 . . . N) ≤ ∆ti ≤
N∑
j=1

∆tj (2)

where ∆ti is the axonal delay of the ith delay neuron.
This strategy is used to implement time delays that range up

to 125ms (rather than the 8ms of the previous example), in
the network of Fig. 2. Figure 6 shows the expected measured
delays in this condition. The approach of stacking in sequence
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Fig. 6. The figure shows the resultant transmission delays for a connectivity
as implemented and measured on the hardware setup. The transmission delays
between the neurons are randomly chosen from the available pool of delay
neurons.

Fig. 7. Silicon neurons are stacked among each other to generate long
delays (top): the first neuron A1 projects to A2 neuron with a delay of ∆t1
via a delay neuron. This delay neuron also projects to A3 with a delay ∆t2
making the effective delay from A1 to A3 equal to ∆t1 +∆t2. This process
is repeated for every projection to gain incremental delays. Measurements
of transmission delays from a hardware recurrent network that uses such a
connectivity is shown on the bottom.

delay neurons would allows the implementation of arbitrary
delays without necessarily requiring mismatch in the circuits.

By choosing the right set of delay neurons, one can im-
plement a wide range of neural network architectures with
arbitrary axonal delay profiles, provided the availability of a
large enough pool of inhomogeneous silicon neurons in an
AER VLSI setup.

A. Limitations

There is a limitation to the approach of using delay neurons
for generating axonal delays: as this approach relies on the

Fig. 8. Dependence of effective delay on the inter-spike-interval. With
decreasing ISIs the effective delay of a delay neuron decreases. The top line
shows the neuron’s asymptotic delay value (4.82± 0.216ms), i.e. the delay
at very long ISIs.

integration time of the delay neuron input synapse (used as
a low-pass filter), there is an upper-bound on the maximum
input firing rate. If a spikes arrives at the delay neuron’s
input synapse before the delay neuron finished processing the
first spike (i.e. before the delay neuron produces an output
spike), the effective transmission delay is disrupted. In Fig. 8
we plot the measured the dependence of effective delays
on the input Inter-Spike Intervals (ISIs). The effective delay
decreases with decreasing ISI (increasing firing rate). This
happens because of accumulation of residual synaptic currents
after the spike generation of a delay neuron. Coincidentally,
a similar relationship between transmission delays and firing
rates was observed in physiological recordings of voluntary
discharge properties of extensor motor units in humans [29].
Fast spiking neurons were reported to exhibit smaller axonal
delays and slower ones longer.

Therefore we argue that this technique of generating delays
is appropriate in biologically plausible conditions. But, with
the constraint that the pre-synaptic ISI has to be greater than
the set delay. This limitation can be overcome by stacking
multiple delay neurons, each having a delay shorter than the
minimum input ISI, also allowing the generation of longer
propagation delays.

Another limitation is the variability of the delays, due to the
noise present in the CMOS circuits and in the AER infrastruc-
ture. Figure 9 shows the delays generated by neurons on CHIP-
2, sorted by delay value. The error bars show the standard
deviation of generated delays over 20 trial measurements and
is approximately 10% on average. This variability is very hard
to overcome but is compatible with variability observed in
biological systems.
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Fig. 9. The distribution of delays and variance across 1070 neurons on
CHIP–2. Ordered according to the delays. The error bars show the variance
in delay over 20 measurements. Longer delays are produced by smaller pre-
synaptic current which are more sensitive to noise. This produces a higher
variance for long delays.

IV. CONCLUSIONS

We implemented propagation delays using a population of
silicon neurons whose time constants were comparable to the
desired time delay. We were able to select delay neurons with
different time constants by exploiting the mismatch effect in
their analog circuit implementations.

Our methodology allows to implement arbitrary recurrently
connected networks of I&F neurons with axonal delays. The
results described in this paper show that this approach is
suitable for implementing architectures used to demonstrate
polychronization by Izhykevich [30].

This is a promising approach that can allow the construction
of complex multi-chip neural processing systems, and is
currently being used to implement a hardware model of an
auditory processing system that can learn spectro-temporal
correlations in its input stimuli [10].
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