28 research outputs found

    Application of machine learning and artificial intelligence techniques to improve autonomy in maritime surveillance radar systems

    Get PDF
    Executive Summary. Current maritime radar surveillance missions are typically carried out using an airborne platform with one or more operators on board. The workload of human operators is a bottleneck in surveillance performance as they can only perform on a single platform discontinuously. Additionally, with progress being made towards the use of remotely operated UAVs for radar surveillance missions, an increase in radar operational autonomy is required to maximise the UAV’s surveillance potential. Consequently, the focus of this research is to improve the autonomy of current maritime radar surveillance missions. By reducing the workload of the current radar operator, then surveillance missions can be performed for longer. This research breaks the autonomy of the radar surveillance mission into two aspects: the platform operator autonomy and the radar operator autonomy. However, the implemented autonomous methods must “complement rather than compete with one another". In order to implement algorithms for the platform operator autonomy and radar operator autonomy, a maritime radar surveillance simulation and user interface is required. Consequently, this work outlines a real-time maritime surveillance radar simulation and graphical user interface which can be used to carry out missions in the same manner as an operator would with a real system. For the platform operator autonomy aspect, there is a trade-off between maximising information obtained from the surveillance search area and minimising fuel consumption. The research presented here provides an approach for the optimisation of a UAV’s trajectory for maritime radar wide area persistent surveillance to simultaneously minimise fuel consumption, maximise mean probability of detection, and minimise mean revisit time. Quintic polynomials are used to generate UAV trajectories due to their ability to provide complete and complex solutions while requiring few inputs. A wide area search radar model is used within this article in conjunction with a discretised grid in order to determine the search area’s mean probability of detection and mean revisit time. The trajectory generation method is then used in conjunction with a multi-objective particle swarm optimisation algorithm to obtain a global optimum in terms of path, airspeed (and thus time), and altitude. The performance of the approach is then tested over two common maritime surveillance scenarios and compared to an industry recommended baseline. In terms of the radar operator autonomy, imitation learning, as opposed to other forms of machine learning, are advantageous as they act in the same manner as the operator, thus reducing the deviation from the current operational standard and allowing for easier system qualification and human operator interaction. The developed radar simulation and interface is used to obtain operator decision data from a human operator. The operator data is then used with two imitation learning methods, namely Bayesian networks and inverse reinforcement learning, with the methods used in place of the operator with their performance compared and their suitability discussed

    Deep-Sea Model-Aided Navigation Accuracy for Autonomous Underwater Vehicles Using Online Calibrated Dynamic Models

    Get PDF
    In this work, the accuracy of inertial-based navigation systems for autonomous underwater vehicles (AUVs) in typical mapping and exploration missions up to 5000m depth is examined. The benefit of using an additional AUV motion model in the navigation is surveyed. Underwater navigation requires acoustic positioning sensors. In this work, so-called Ultra-Short-Baseline (USBL) devices were used allowing the AUV to localize itself relative to an opposite device attached to a (surface) vehicle. Despite their easy use, the devices\u27 absolute positioning accuracy decreases proportional to range. This makes underwater navigation a sophisticated estimation task requiring integration of multiple sensors for inertial, orientation, velocity and position measurements. First, error models for the necessary sensors are derived. The emphasis is on the USBL devices due to their key role in navigation - besides a velocity sensor based on the Doppler effect. The USBL model is based on theoretical considerations and conclusions from experimental data. The error models and the navigation algorithms are evaluated on real-world data collected during field experiments in shallow sea. The results of this evaluation are used to parametrize an AUV motion model. Usually, such a model is used only for model-based motion control and planning. In this work, however, besides serving as a simulation reference model, it is used as a tool to improve navigation accuracy by providing virtual measurements to the navigation algorithm (model-aided navigation). The benefit of model-aided navigation is evaluated through Monte Carlo simulation in a deep-sea exploration mission. The final and main contributions of this work are twofold. First, the basic expected navigation accuracy for a typical deep-sea mission with USBL and an ensemble of high-quality navigation sensors is evaluated. Secondly, the same setting is examined using model-aided navigation. The model-aiding is activated after the AUV gets close to sea-bottom. This reflects the case where the motion model is identified online which is only feasible if the velocity sensor is close to the ground (e.g. 100m or closer). The results indicate that, ideally, deep-sea navigation via USBL can be achieved with an accuracy in range of 3-15m w.r.t. the expected root-mean-square error. This also depends on the reference vehicle\u27s position at the surface. In case the actual estimation certainty is already below a certain threshold (ca. <4m), the simulations reveal that the model-aided scheme can improve the navigation accuracy w.r.t. position by 3-12%

    Temporal integration of loudness as a function of level

    Get PDF

    Shortest Route at Dynamic Location with Node Combination-Dijkstra Algorithm

    Get PDF
    Abstract— Online transportation has become a basic requirement of the general public in support of all activities to go to work, school or vacation to the sights. Public transportation services compete to provide the best service so that consumers feel comfortable using the services offered, so that all activities are noticed, one of them is the search for the shortest route in picking the buyer or delivering to the destination. Node Combination method can minimize memory usage and this methode is more optimal when compared to A* and Ant Colony in the shortest route search like Dijkstra algorithm, but can’t store the history node that has been passed. Therefore, using node combination algorithm is very good in searching the shortest distance is not the shortest route. This paper is structured to modify the node combination algorithm to solve the problem of finding the shortest route at the dynamic location obtained from the transport fleet by displaying the nodes that have the shortest distance and will be implemented in the geographic information system in the form of map to facilitate the use of the system. Keywords— Shortest Path, Algorithm Dijkstra, Node Combination, Dynamic Location (key words

    Aerospace Medicine and Biology: A cumulative index to the 1974 issues of a continuing bibliography

    Get PDF
    This publication is a cumulative index to the abstracts contained in supplements 125 through 136 of Aerospace Medicine and Biology: A Continuing Bibliography. It includes three indexes--subject, personal author, and corporate source

    Modern Telemetry

    Get PDF
    Telemetry is based on knowledge of various disciplines like Electronics, Measurement, Control and Communication along with their combination. This fact leads to a need of studying and understanding of these principles before the usage of Telemetry on selected problem solving. Spending time is however many times returned in form of obtained data or knowledge which telemetry system can provide. Usage of telemetry can be found in many areas from military through biomedical to real medical applications. Modern way to create a wireless sensors remotely connected to central system with artificial intelligence provide many new, sometimes unusual ways to get a knowledge about remote objects behaviour. This book is intended to present some new up to date accesses to telemetry problems solving by use of new sensors conceptions, new wireless transfer or communication techniques, data collection or processing techniques as well as several real use case scenarios describing model examples. Most of book chapters deals with many real cases of telemetry issues which can be used as a cookbooks for your own telemetry related problems

    Sensors, measurement fusion and missile trajectory optimisation

    Get PDF
    When considering advances in “smart” weapons it is clear that air-launched systems have adopted an integrated approach to meet rigorous requirements, whereas air-defence systems have not. The demands on sensors, state observation, missile guidance, and simulation for air-defence is the subject of this research. Historical reviews for each topic, justification of favoured techniques and algorithms are provided, using a nomenclature developed to unify these disciplines. Sensors selected for their enduring impact on future systems are described and simulation models provided. Complex internal systems are reduced to simpler models capable of replicating dominant features, particularly those that adversely effect state observers. Of the state observer architectures considered, a distributed system comprising ground based target and own-missile tracking, data up-link, and on-board missile measurement and track fusion is the natural choice for air-defence. An IMM is used to process radar measurements, combining the estimates from filters with different target dynamics. The remote missile state observer combines up-linked target tracks and missile plots with IMU and seeker data to provide optimal guidance information. The performance of traditional PN and CLOS missile guidance is the basis against which on-line trajectory optimisation is judged. Enhanced guidance laws are presented that demand more from the state observers, stressing the importance of time-to-go and transport delays in strap-down systems employing staring array technology. Algorithms for solving the guidance twopoint boundary value problems created from the missile state observer output using gradient projection in function space are presented. A simulation integrating these aspects was developed whose infrastructure, capable of supporting any dynamical model, is described in the air-defence context. MBDA have extended this work creating the Aircraft and Missile Integration Simulation (AMIS) for integrating different launchers and missiles. The maturity of the AMIS makes it a tool for developing pre-launch algorithms for modern air-launched missiles from modern military aircraft.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Unmanned Aircraft Systems in the Cyber Domain

    Get PDF
    Unmanned Aircraft Systems are an integral part of the US national critical infrastructure. The authors have endeavored to bring a breadth and quality of information to the reader that is unparalleled in the unclassified sphere. This textbook will fully immerse and engage the reader / student in the cyber-security considerations of this rapidly emerging technology that we know as unmanned aircraft systems (UAS). The first edition topics covered National Airspace (NAS) policy issues, information security (INFOSEC), UAS vulnerabilities in key systems (Sense and Avoid / SCADA), navigation and collision avoidance systems, stealth design, intelligence, surveillance and reconnaissance (ISR) platforms; weapons systems security; electronic warfare considerations; data-links, jamming, operational vulnerabilities and still-emerging political scenarios that affect US military / commercial decisions. This second edition discusses state-of-the-art technology issues facing US UAS designers. It focuses on counter unmanned aircraft systems (C-UAS) – especially research designed to mitigate and terminate threats by SWARMS. Topics include high-altitude platforms (HAPS) for wireless communications; C-UAS and large scale threats; acoustic countermeasures against SWARMS and building an Identify Friend or Foe (IFF) acoustic library; updates to the legal / regulatory landscape; UAS proliferation along the Chinese New Silk Road Sea / Land routes; and ethics in this new age of autonomous systems and artificial intelligence (AI).https://newprairiepress.org/ebooks/1027/thumbnail.jp
    corecore