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Executive Summary

Current maritime radar surveillance missions are typically carried out using an airborne plat-
form with one or more operators on board. The workload of human operators is a bottleneck
in surveillance performance as they can only perform on a single platform discontinuously.
Additionally, with progress being made towards the use of remotely operated UAVs for radar
surveillance missions, an increase in radar operational autonomy is required to maximise the
UAV’s surveillance potential.

Consequently, the focus of this research is to improve the autonomy of current maritime
radar surveillance missions. By reducing the workload of the current radar operator, the
surveillance missions can be performed for longer. This research breaks the autonomy of the
radar surveillance mission into two aspects: the platform operator autonomy and the radar
operator autonomy. However, the implemented autonomous methods must “complement
rather than compete with one another".

In order to implement algorithms for the platform operator autonomy and radar operator
autonomy, a maritime radar surveillance simulation and user interface is required. Conse-
quently, this work outlines a real-time maritime surveillance radar simulation and graphical
user interface which can be used to carry out missions in the same manner as an operator
would with a real system.

For the platform operator autonomy aspect, there is a trade-off between maximising infor-
mation obtained from the surveillance search area and minimising fuel consumption. The
research presented here provides an approach for the optimisation of a UAV’s trajectory
for maritime radar wide area persistent surveillance to simultaneously minimise fuel con-
sumption, maximise mean probability of detection, and minimise mean revisit time. Quintic
polynomials are used to generate UAV trajectories due to their ability to provide complete
and complex solutions while requiring few inputs. A wide area search radar model is used
within this article in conjunction with a discretised grid in order to determine the search
area’s mean probability of detection and mean revisit time. The trajectory generation method
is then used in conjunction with a multi-objective particle swarm optimisation algorithm to
obtain a global optimum in terms of path, airspeed (and thus time), and altitude. The perfor-
mance of the approach is then tested over two common maritime surveillance scenarios and
compared to an industry recommended baseline.

In terms of the radar operator autonomy, imitation learning, as opposed to other forms of
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machine learning, are advantageous as they act in the same manner as the operator, thus
reducing the deviation from the current operational standard and allowing for easier system
qualification and human operator interaction. The developed radar simulation and interface
is used to obtain operator decision data from a human operator. The operator data is then used
with two imitation learning methods, namely Bayesian networks and inverse reinforcement
learning, with the methods used in place of the operator with their performance compared
and their suitability discussed.
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system. Specifically, a comparison would have been done between the operator’s perceived
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Increasing Autonomy

Throughout history, humans have looked towards tools and technology for ways of reducing
their workload, and in recent years there has been a surge in the implementation of autonomy
and artificial intelligence in order to do so. Every industry from healthcare [1], transport [2],
and finance [3] has implemented some form of artificial intelligence to their operations.
These implementations have increased operational performance, by some metric, relative to
humans in their respective industries.

As per Parasuraman and Riley [4], automation is defined as a machine performing a task that
was once performed by humans. What is considered automation will therefore change over
time and consequently their definition of automation will eventually encompass high-level
autonomy. Generally, there are two reasons to automate a task [5]. The first is to remove
human error for high-risk tasks. For example, automation has successfully been used to
reduce the rate of accidents [6] during the high-risk landing and take-off stages of flight[7].
The second reason for automating a task is to reduce human operator workload.

However, in order for an autonomous system to be used in place of a human operator there
are several questions that must be asked. First and foremost, does the autonomous system
offer a benefit (e.g. cost or performance) over the human operator? This question encom-
passes whether or not the autonomous system offers at least equal performance to the human
operator. Secondly, does the system perform any roles that are safety or mission critical?
Historically, humans have performed roles where there is a concern to the safety of others
(e.g. driving a car) or where mission failure would result in some form of loss (e.g. pre-
venting financial loss from illegal fishing operations). Human operators are often afforded
margins of errors for these tasks, and while these errors are mitigated with various safety
and operational procedures, mistakes are taken to be part of the operational process. For
autonomous systems there is an expectation that these operational errors happen far less

1
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often. Consequently, the autonomous system must go through rigorous testing and qualifi-
cation processes to ensure that it meets the operational requirements set by customers and
regulations.

Ideally, an artificially intelligent agent would be developed such that the correct decision is
always made. In practice, this is not feasible as there will always be some form of error that
results in incorrect decisions being made. For an autonomous system performing safety and
mission critical tasks, there are concerns such as the political and societal backlash [8] that
may occur if the system fails the task. Additionally, if there is to remain a human in the
operational loop then how the remaining operator(s) interact with the system influences how
the algorithm should be implemented in the first place. If the operator is in conflict with the
autonomous agent, despite the agent’s high task performance, the overall gain from the agent
is negative.

There are certain industries such as defense where, despite successful testing, actually im-
plementing an autonomous system that replaces a human is a long way off [9]. An additional
consideration for an autonomous system with an industrial application is the validation and
qualification requirements. However, even in the ideal scenario where the AI agent always
makes the correct decision, the validation and qualification process will still have to capture
the newly implemented technology and its operational behaviour. If there is a large techno-
logical leap and/or a significant deviation from the current operational standards, the system
may have a far longer and more rigorous process to go through.

This work outlined in this thesis looks at applying machine learning to increase autonomy in
a maritime surveillance radar system. It is therefore important that the algorithms considered
minimises the concerns outlined in this section while also obtaining a useful increase in
performance.

1.1.2 Operator and System Interaction

When implementing AI to a sub-system to improve autonomy for the whole system, it is
important to ensure that the rest of the system does not have any bottlenecks that will limit the
performance of the AI. In the case of radar surveillance, replacing the human radar operator
with machine learning algorithms leaves the airborne platform as a bottleneck. Specifically,
the machine learning algorithm can only carry out the decision making processes for as long
as the airborne platform is able to maintain surveillance on the search area. Since current
airborne radar surveillance methods also have a human piloting the airborne platform, the
logical step is to then use an autonomous unmanned aerial vehicle (UAV) in place of a human
piloted platform.

UAVs have already been employed for radar surveillance missions [10] with the goal of in-
creasing performance in some manner (e.g. reduced running costs, increased surveillance
performance, lower operational risks). However, these missions have involved a radar oper-
ator acting from a remote location (see section 4.3 for example operator tasks) rather than
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an autonomous system replacing the human radar operator. Consequently, research has been
carried out on the human-UAV interaction [11], specifically the remote operator’s interface
with the UAV and onboard systems.

For the foreseeable future of autonomous radar systems, it is still expected that a human
operator will remain in the loop, even if remotely. The remote operator will be able to view
a display similar to those in current operations, and the operator will command the system
at a mission level whilst still having the ability to control and/or override the autonomous
system at a lower level (i.e. the current radar operator standard). The ability to control
the system at a lower level can also be used to train any machine learning aspects of the
system. The machine learning aspects of the system can then operate with partial autonomy
and eventually full autonomy as the system is further trained and learns from the experience.
Consequently, the operator’s input is reduced over time, though the operator will also be
tasked with monitoring the system in case intervention is required.

However, there is also the question of which type of UAV to use. Since no human operators
are on-board, a UAV that is similar to the current maritime radar surveillance platform may
not be optimal. Furthermore, given a UAV and radar, there is then the question of what
trajectory the UAV should take to obtain the best surveillance performance.

1.1.3 Improvements made by Introducing Autonomy

While some tasks are easier to replace than others, recent advancements in machine learn-
ing algorithms has allowed even the most complex tasks to be able to be performed au-
tonomously. The advantage of an artificially intelligent agent over a human operator is the
potential to carry out tasks faster, longer, simultaneously, more accurately, and at reduced
operational costs.

In applying an autonomous system to surveillance radars, some of the current roles of the
time-limited and cost-limited operators would be performed by the system. The omnipresent
nature of an autonomous agent allows for the agent to operate at any time of the day on
any suitable platform, without break. Consequently, the agent can be deployed to increase
surveillance time and/or coverage. Additionally, the computational nature of an autonomous
agent allows for decisions making far faster than that of a human operator. The increased
rate at which information can be processed and decisions made further increases surveillance
performance while also providing faster decision making in time-critical scenarios.

For long surveillance missions, radar operators are often tasked with analysing a constant
stream of data from surveilling largely featureless areas of sea/ocean. This type of task can
result in operators suffering from an overload of information, and the length of doing this
type of task can also result in fatigue [10]. In comparison, an autonomous agent removes
human elements such as fatigue from the process resulting in a more more constant per-
formance. Additionally, in a study by Ruff [12], autonomous systems have been shown to
reduce workload for operators whether the system is fully autonomous or simply suggesting
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actions to the operator. In the study, the system was able to maintain this performance under
situations too complex for the operator to handle.

As surveillance missions move towards UAVs, the concern of network disruptions, or even
attacks, become significant. From tests and studies done for remote UAV operations, data
droputs and delays were of a critical issue, preventing information getting to the operator on
time [10], [13]. In the case of radars, the remote radar operator would lose communication
and control of the radar, impairing mission operations. If an autonomous agent was onboard
and ready to take-over if a data dropout occurs, the mission operations can continue.

1.1.4 Challenges of Introducing Autonomy

After a series of studies by Riley [14], an operator’s reliance on automation was found to
be influenced by the operator’s confidence in their own abilities, the trust in the autonomous
system, operator workload and fatigue, and the perceived level of risk. Whilst most of these
characteristics are not directly affected by the way in which an autonomous system is imple-
mented, the trust of the system certainly is.

Increasing autonomy in a system further removes the operator from the system and generally
reduces the transparency between the system and the operator. This reduction in transparency
can be caused by a number of factors, though they are mostly centered around the system’s
autonomous decision making. Specifically, the system may process information and make
decisions faster than a human could, thus an operator would not be able to supervise the
autonomous system as it operates. Additionally, the system may not explain each of the
decisions it makes to the operator.

The lack of transparency can lead to the operator unable to interpret the system’s decisions
or the operator may not even notice that decisions are being made. Consequently, the opera-
tor might wrongly interpret the current situation thus reducing his situational awareness and
reducing his ability to detect failures in the system’s operation [15]. In addition to reducing
the operator’s situational awareness, the lack of transparency can reduce the operator’s trust
in the system. If the operator has little trust in the system’s autonomous operations, they may
be more likely to override the system, negating the benefits of autonomy whilst introducing
operator confusion. The converse is also true where the lack of transparency leads the oper-
ator to believe the autonomous system performs better than it actually does. The operator’s
overestimation of the system’s performance can result in a reduction in system monitoring by
the operator, and thus a reduction in detecting system operational errors [16]. If the operator
does not detect these system operational errors, not only can the operator not respond with
appropriate corrective actions, machine learning algorithms in the system might learn from
flawed data, potentially increasing the likelihood that such an error occurs again.

A infamous case of operator over-trust in an autonomous system is the fatal Airbus A330
crash in 1994. The crash investigation committee concluded that the crew appeared over-
confident in the autopilot and had the pilot reacted 4 seconds earlier, the accident would
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have been prevented [17]. Conversely, an infamous case of operator distrust of autonomy is
the Chernobyl nuclear power plant accident. One of the primary factors that influenced the
accident was the operators ability to manually disable automatic scram trips, certain safety
systems, and alarm signals [18]. Additionally, it was found [19] that it is harder for an au-
tonomous system to regain trust from the operator after a failure than it is for the autonomous
system to build that trust initially.

It is therefore apparent that both the operator’s awareness of the system and the system’s
transparency are vital in maintaining the correct level of operator trust in the system which
results in the individual benefits of the operator and the system being fully achieved whilst
minimising their individual disadvantages. As previously stated, the first argument for au-
tomating a task is to eliminate human error in high-risk operations. Consequently, it is
necessary for the operator to correctly trust the system in order to reduce the human error
that remains in the loop.

The second argument for automating a task is to reduce operator workload. For example, a
study by Dixon, Wickens, and Chang on pilots controlling UAVs [20] showed that automa-
tion allowed the pilots to reallocate their resources to perform higher-level tasks. However,
increasing automation with an operator in the loop can actually increase operator workload
and also result in reducing both the operator’s situational awareness and trust in the system
[12]. In the case of the pilots controlling UAVs, the pilots take on a supervisory role which
involves monitoring the system over a long period of time which is a role humans gener-
ally perform poorly at [21]. If the system is autonomous and the operator is to be used to
supervise the system’s operations, new problems will arise from shifting the operator to a
role which requires long periods of monitoring. In particular, the move to a supervisory role
introduces failures from a lack of vigilance and an over-trust in the autonomous system [22].
Research has already been carried out regarding the training of operators to maintain situa-
tional awareness in a role that requires long periods of monitoring and would be considered
"boring" [23]. Furthermore, if the surveillance is to be persistent then there may be han-
dovers between human operators. In maritime radar surveillance, the information provided
to the operator is the culmination of numerous radar scans which varies from scan to scan.
There may be issues in the hand-over as the next operator is required to catch up on the
information that had previously been built up over time. In the UAV domain, the hand-over
between operators has resulted in major accidents [7].

From Ruff et al. [12] management-by-consent refers to an automated system whose actions
require consent by the operator before they can be carried out. Conversely, management-
by-exception refers to an automated system that carries out actions without requiring the
operator’s permission, but the operator can still interrupt and override the system’s actions.
From Ruff’s study, it was found that under certain conditions management-by-exception
performed worse than management-by-consent, thus negating the benefits provided by in-
creased autonomy. This reduction in performance was largely due to the operator being
further removed from the decision-making process in the management-by-exception system,
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resulting in a lower situational awareness and increased difficulty for the operator making
decisions when eventually required. For the manage-by-consent system, the operator’s be-
gan to second-guess decisions made by the autonomous system since it did not have perfect
accuracy, resulting in a higher perceived workload than the manage-by-exception system. In
the manage-by-exception system, however, the operators missed those decision errors. Their
study concluded by highlighting the importance of an active role for the human operator
when increasing autonomy in a complex decision-making processes. Furthermore, they state
that the level of automation which is of most benefit depends on how they system interacts
with the operator.

In summary, the less transparent an autonomous system is, the less trust the operator will
have in the system. And if the operator doesn’t trust the system, they will be less likely to
use it, negating the benefits of the autonomous system. Additionally, the operator’s lack of
trust in the system will result in conflict, increasing their workload, thus further negating one
of the main benefits of autonomy. The previous section described the potential benefits of an
autonomous radar system, but those benefits can only be realised if the human factor issues
outlined in this section are carefully considered in the design of such a system. Consequently,
in order to gain the most benefit from automating a system, it is necessary to consider the
order in which tasks should be automated and to what level [6]. Specifically, the interaction
between the human operator and the autonomous radar system should be designed such that
the advantages of the human operator and the autonomous radar system are maximised whilst
the disadvantages minimised.

1.1.5 Levels of Autonomy

While the recent surge in high-level autonomous systems and applications of artificial intel-
ligence have shown their performance benefits, there is often no real consensus on the best
way to increase autonomy from an industrial point of view. Specifically, the new systems
need to navigate existing regulations and potentially bring these regulations up to a suitable
standard. Consequently, the new autonomous system will have to transition between the cur-
rent operational standard and the end-goal of a fully autonomous system. This is particularly
the case for safety critical and mission critical applications where current regulations are
strict and rigorous. The levels of autonomy therefore provides a series of transition points
between a system with no autonomy and a fully autonomous system.

Generally, levels of autonomy indicate a level where the operator has full governance of
the system, a level where automation of low level tasks is introduced to enhance and aid the
operator, and a level where autonomous operations are introduced which will, either partially
or fully, take over higher level operations. Whilst there are several other definitions for levels
of autonomy [24], the definition used in the field of self-driving cars is the most widely used
and concise.

There are similarities between the goal of replacing human operator carrying out surveil-



CHAPTER 1. INTRODUCTION 7

lance radar tasks and that of replacing a human driver with a self-driving car. Relative to
an autonomous radar system, self-driving cars are a close real-world application that has
made significant steps towards autonomy—while also having similar political and qualifica-
tion issues outlined above. However, radar surveillance applications typically fall under the
military domain, for which there is an even greater concern for not only validation but also
the way system performance and behaviour.

Self-driving cars have been one of the pillars of the use of AI in society as well as the
focus of much AI research. For automated-driving cars, SAE international’s J3016 [25]
provides a common definition of the levels of automation that a car can have, ranging from
"no automation" to "full automation". The report specifies 6 levels of autonomy (outlined in
table 1.1) with the human driver monitoring the driving environment in the first three levels
whilst the automated driving system monitors the driving environment in the last 3 levels.
These levels have been widely adopted within industry, media, and politics [26].

Report J3016 also provides a few key definitions relating to the automated driving task. A
"dynamic driving task" involves the operational (e.g. steering, pedals, and monitoring the
vehicle and road) and tactical aspects of the driving (e.g. responding to events, lane changes,
turn signals), but not the strategic elements (e.g. determining waypoints and destinations).
"Driving mode" is a scenario with requirements for the dynamic driving task (e.g. cruise
speed, low-speed traffic jam). "Request to intervene" is a notification by the automated
system to the human that they should take over from the system with regards to the dynamic
driving tasks.

Table 1.1: SAE Levels of Autonomy

SAE
Level

Description

0 "No Automation" whereby the human driver performs all aspects of the
dynamic driving task at all times, even with warning or intervention sys-
tems enabled. Additionally, the human must monitor the driving environ-
ment at all times.

1 "Driver Assistance" whereby a system provides assistance to either steer-
ing or acceleration under certain driving modes by using driving environ-
ment information. An example of such a task would be lane keep assist
or adaptive cruise control. In this level, there is an expectation that the
human driver perform all remaining aspects of the dynamic driving tasks

whilst monitoring the driving environment at all times, and that the human
is the fallback of the assistance system via a request to intervene.
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2 "Partial Automation" whereby one or more systems provide assistance to
both steering and acceleration. In other words, the system can control the
steering and accelerating simultaneously. For example, lane keep assist
and adaptive cruise control operating simultaneously. Again, there is an
expectation that the driver performs the remaining aspects of the dynamic

driving tasks whilst monitoring the driving environment at all times, and
responding to a request to intervene.

3 "Conditional Automation" whereby all aspects of the dynamic driving

tasks are handled by the system. For this level the system is able to re-
place the system at monitoring the driving environment with the expecta-
tion that the human driver responds to a request to intervene. A car with
level 3 autonomy should be able to drive by itself but under limitations
and certain conditions (e.g. in certain weather or certain driving modes).

4 "High Automation" whereby all aspects of the dynamic driving tasks are
handled by the system. For this level the system monitors the driving
environment, however the system must be able to perform if the human
does not respond appropriately to a request to intervene. In other words,
the driver does not have to take over at any point. However, there are
still some restrictions on certain driving modes of the system relative to a
human driver. An example of a level 4 vehicle would be a local driverless
taxi.

5 "Full Automation" whereby the system has full control over all aspects
of the dynamic driving tasks under all conditions with all driving modes

enabled. At this level, the system has the same restrictions that a human
driver would have.

In terms of radar mission tasks, the dynamic driving task could be equated to the radar user
interface, monitoring of search area, and response to tracks, but not the determination of the
mission itself (i.e. where to search and formulated search strategies). The work presented
in this thesis looks at methods that can move the maritime radar surveillance mission from
partial automation (level 2) to conditional automation (level 3). Specifically, the current oper-
ationally standard has the radar operator assisted through various automatic algorithms (e.g.
filtering, tracking), but the operator remains in control of the control aspects, particularly the
decision making. If a radar system were to become a level 3 autonomous system, all aspects
of the radar mission would have to be handled by the radar system with an operator expected
to be able to respond to a "request to intervene".
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1.2 Operation of an Artificially Intelligent System for Mis-
sion Critical Applications

There is a wide choice of machine learning algorithms that could be applied to increase the
decision making autonomy for maritime radar surveillance missions. Whilst the obvious
choice of algorithm would be the one that obtains the highest accuracy of decision making,
the concerns outlined previously need to be heavily considered when choosing the algorithm.
As per a report from the DSTO [10]:“The actions of operators and the automated system
complement rather than compete with one another". In order to avoid any conflict, it is nec-
essary that the operator is aware of and understands the decisions made by the autonomous
system.

Several algorithms that fall into the imitation learning category of machine learning algo-
rithms were chosen for this research. In simple terms, imitation learning learns to perform a
task in the same way as the expert demonstrations that it learns from. This section outlines
the benefits imitation learning algorithms offer over other machine learning algorithms in
regards to their application to radar surveillance autonomy.

For certain processes, data collection can be a difficult and expensive process. This is partic-
ularly the case for a maritime radar surveillance mission due to the cost incurred by flying the
platform. Furthermore, there is also the chance that on a particular flight, there will be few
meaningful interactions for the radar operator to make (e.g. few samples will be collected if
there are few vessels at sea on the chosen day). Certain machine learning algorithms that use
a “trial and error" approach (e.g. reinforcement learning) which can require numerous trials
to obtain even a basic operational performance. Imitation learning approaches use expert
demonstrations which typically require far fewer runs, or even no runs at all, to achieve a
basic operational standard [27]. Consequently, using an imitation learning approach also re-
duces, or removes, the required trials leading to faster learning in terms of flight time.

In the case of the Global Hawk UAV, automation was found to be central [7] to many of the
human factor issues, as the operators found it difficult to closely monitor the autonomous sys-
tem for long periods of time. This inattention resulted in a reduction in situational awareness
and a decreased ability to handle any faults or failures caused by the autonomous system.
Furthermore, the human operator typically monitors areas they would expect to see issues or
actions appear, and if the autonomous system does not behave in the same way, the human
operator will not pick up any faults as easily [28]. If the operator is part of the autonomous
system’s training process as well as monitoring its behaviour post-training, then the oper-
ator may be more engaged, thus increasing their situational awareness, as they are taking
on an additional role of acting as a teacher. Additionally, the operator may be more likely
to determine if the system is behaving correctly if the operator is trying to determine if the
system’s behaviour matches their own, rather than if the system’s behaviour is objectively
correct.
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Returning to concern of data dropouts for remote radar operations. If the autonomous agent
acts in the same manner as the human radar operator, then the current operational methods
will be maintained during the dropout making the mission operations more synchronous.
This benefit also applies to the issue of operator hand-over, as an AI agent can continue
operation whilst the next operator reviews the current information.

If the machine behaves differently, even slighty, then this can cause operator confusion
which, when there are tasks and decisions that need to be made within seconds, is an overall
detriment to the operation. This concern is still the case when an engineer has determined
that the machines behaviour is more optimal than the human’s behaviour which it replaced.
Similarly, if the behaviour of the system deviates too far from the current operational stan-
dard, the operator’s situational awareness can be reduced. For example, the operator might
expect to observe radar tracks in a particular search area, but with the ‘new’ system, the de-
tections were correctly deemed to be spurious and not therefore not tracked. This changed
behaviour may go against the operator’s typical understanding of the situation leading to the
operator to doubt or mistrust the system [29]. Consequently, in terms of increasing auton-
omy in radar systems, the main hurdle is building the trust of the operator that the machine
will behave in an expected and wanted manner. Additionally, if the AI can be shown to act
as per the current operational standard, the validation and qualification processes may be
more streamlined [30] as there is less of a change from current methods. Imitation learning
is therefore an appealing option as it’s operational behaviour is the behaviour expected by
the radar operator, thus does not deviate from the current operational standard.

When the autonomous solution is replacing a human, it is nearly always necessary that the
autonomous solution offers at least equal performance by some metric. Furthermore, for
certain types of tasks (e.g. mission critical applications) it is important that the solution has
transparency in the way it operates. Not only is it important for the system to be transparent
for the benefit of the operator, it is also important for the system to be transparent to get an
accurate view of the decision making process. Specifically, increased system transparency
allows for an accurate view of the system’s learning leading to the ability to easily diagnose
and correct when and where incorrect decisions were made.

1.3 Background

1.3.1 Machine Learning and Artificial Intelligence

In order to define artificial intelligence (AI), it is first required to define intelligence itself.
Whilst AI researchers have provided many varied answers to the question of ’what is intel-
ligence?’ [31], a comprehensive definition is provided by Poole, Mackworth, and Goebel
[32] as: "[An intelligent agent does what] is appropriate for its circumstances and its goal,
it is flexible to changing environments and changing goals, it learns from experience, and it
makes appropriate choices given perceptual limitations and finite computation."
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As per Poole, Mackworth, and Goebel, AI is then defined as the study of the design of in-
telligent agents. “The methodology is to design, build, and experiment with computational
systems that perform tasks commonly viewed as intelligent." A common misconception is
that the goal of AI is to simulate intelligence. In actual fact, “The goal is to understand real
(natural or synthetic) intelligent systems by synthesising them. A simulation of an earth-
quake isn’t an earthquake; however, we want to actually create intelligence, as you could
imagine creating an earthquake." In other words, the created AI is to be used functionally
within the real world.

Machine learning is a subset of AI that involves the machine utilising algorithms to learn how
to preform a task using experience, without being explicitly programmed. As per Mitchell
[33], [34], “A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T, as measured by
P, improves with experience E."

The task T is not the process of learning itself, but rather the learning is the means of attain-
ing the ability to perform the task T. Machine learning tasks are usually described by how
they would process an example, where an example is defined by a collection of quantitively
measured features. Common examples include the pixels within an image or, in the radar do-
main, the measurements (distance, speed, SNR) of a target or targets. Additionally, common
machine learning tasks include classification, regression, and decision processes.

The performance P of a task T must be quantified. Typically this is done by measuring the
accuracy of the program carrying out the task T. The accuracy is often simply the proportion
of examples for which the program produces the correct output. Note that typically the
performance of a program on unseen data is of more interest than the performance on already
seen data. Specifically, the performance on unseen data is a better measure of how the
program will perform when applied in practice to the real world. As such, the set of data
used to test the performance P of the program is usually separate from the data used for
training the program [33].

There are a variety of machine learning methods, each suited to their own niche of problems.
Figure 1.1 shows some of the machine learning branches and their corresponding algorithm
types. Though, in general, problems that are solved using machine learning algorithms can
be broken down into the following three categories: supervised learning, unsupervised learn-
ing, and reinforcement learning. Furthermore, it is the type experience E that the program
learns from that defines which category the learning falls under.

Supervised learning problems experience a labelled data set (where a knowledgable external
supervisor labels each example in the data set). Each example (such as the pixels or radar
measurements mentioned above) is paired with a label, which indicates the correct action
the program should take. The overall objective of the supervised learning program is to be
able to respond correctly to any given example. Specifically, this means acting correctly to
examples not seen whilst training. The supervised learning problems include the regression
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and classification problems. From figure 1.1, methods used to solve these types of problems
include neural networks, deep learning, regularisation, decision trees, Bayesian methods,
and ensemble methods.

Conversely, unsupervised learning problems experience unlabelled datasets. Unsupervised
learning algorithms learn useful properties of the structure of this dataset without supervision
(i.e. no information is provided beyond the data itself). From figure 1.1, the unsupervised
learning problems include the clustering and dimensionality reduction categories.

Lastly, reinforcement learning is a category where the program does not experience a fixed
data set. Instead, the algorithm explores a state-action-reward space with aim of maximising
a user-defined reward in which there is feedback loop between the program learning and its
experience.

1.3.2 Optimisation

Optimisation is a field closely related to machine learning with many machine learning al-
gorithms utilising an optimisation sub-routine to learn parameters that optimise the given
objective function from the given data. Additionally, certain subsets of optimisation fall
under the banner of artificial intelligence. Namely, evolutionary optimisation algorithms
(e.g. genetic algorithms (GA)) and swarm intelligence optimisation algorithms (e.g. par-
ticle swarm optimisation (PSO)). Chapter 3 provides an in-depth overview of optimisation
algorithms.

1.3.3 Radar Surveillance Autonomy

Surveillance of a given search area is a task with many useful applications. In a broad sense,
example missions include exploring a new area or patrolling an existing area. In comparison
to other sensors, radars can operate in low visibility conditions and at long ranges, thus mak-
ing them ideal for surveillance missions. Consequently, radars have been used in surveillance
missions ranging from space, maritime, and air scenarios. The wide variety of applications
of surveillance radar highlights their importance in modern society.

For security classification and availability of information, the research presented here fo-
cuses on maritime radar surveillance. A typical maritime surveillance mission carried out
today involves a manned airborne platform navigating a defined search with a radar opera-
tor performing actions based on information observed from the radar display. Specifically,
the radar would perform a 360◦ search scan, pick up detections, then form tracks based on
those detections. The radar operator would then use the track information and decide which
tracks required further investigation. When a track is investigated, the radar operator uses
parameters such as the track’s position, velocity, and abnormalities in order to determine
whether or not a closer look is required on the target. When a closer look is required, the
radar operator requests the manned platform to move towards the target. By moving closer,
the radar operator can increase the radar resolution and potentially get a synthetic aperture
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radar (SAR) image or inverse synthetic aperture radar (ISAR) image on the target. When
moving towards a target, there is a point at which the operator has confidence in what the
target it and what action is required for the target. This whole process would need to be per-
formed by an autonomous agent replacing the human(s). Section 4.3.3 outlines the process
of an autonomous agent performing this task. Currently, applications of machine learning to
radar systems have generally been in the form of classification problems, cognitive radar, or
in tracking.

Recent developments in convolution neural networks and deep learning that have allowed
for human-level performance at image classification tasks [36], and these developments have
been applied in many forms to radar classification tasks. For surveillance radar, the classifi-
cation problems focus on determining target types typically using a synthetic aperture radar
(SAR) image [37].

Most radar systems employ a feed-forward processing chain in which they first perform some
low-level processing of received sensor data to obtain target detections and then pass the pro-
cessed data on to some higher-level processor such as a tracker, which extracts information
to achieve a system objective. The concept behind cognitive radar [38], [39] is that system
performance can be improved using adaptation between the information extracted from the
sensor/processor and the design and transmission of subsequent illuminating waveforms. Es-
sentially, information present in a single dwell is insufficient for controlling the radar, and
by employing long and short term memory the system can adapt to new environments. Cog-
nitive radar techniques using reinforcement learning [40], [41] have been applied to adaptive
waveform as well as improving the tracking and detection process.

However, to the author’s knowledge, there has been no work done with regards to replacing
the human operator for any type of aerospace application decision process. Furthermore,
to the author’s knowledge there has been no research into the use of imitation learning as
a means of reducing operator mistrust in an autonomous system, and also as a means of
streamlining the validation phase of the system. Chapter 4 provides greater insight into the
algorithms and applications of imitation learning.
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1.4 Aims

The problem statement of this research is: to increase autonomy in radar surveillance systems
to allow for increased surveillance performance. This performance can come in many forms
such as surveillance time, surveillance coverage, surveillance reliability, or even the cost of
running a surveillance mission. However, increasing autonomy needs to be done in a way
that meets the rigorous qualification process, navigates any potential societal or political
pressure, and is able to compliment, not compete, with the remaining operator(s) in the
loop.

The overall aim of this research is to provide a method in which the task of radar surveillance
can move towards a greater level of autonomy. By considering the previously mentioned is-
sues, imitation learning methods provide an appealing solution, one which increases auton-
omy, compliments the remaining operator in-the-loop, streamlines the qualification process,
and potentially navigates any societal or political issues. The imitation learning methods will
then be investigated for their suitability as a replacement to a human operator, in terms of
decision making accuracy and also their suitability to address the issues outlined.

As previously mentioned, there is the question of what trajectory a UAV should fly for a
radar surveillance mission with a remote operator. Whilst there has been work done on UAV
trajectory optimisation for radar coverage, to the author’s knowledge, none of this work
deals with large area surveillance or uses a sufficient radar model within the optimisation.
Consequently, another aspect of this research is to develop an algorithm that will determine
optimal trajectories for an autonomous UAV carrying out a maritime surveillance radar mis-
sion. This algorithm will consider the UAV in terms of dynamics and fuel consumption, and
radar surveillance requirements in terms of probability of detection and revisit time.

In order to apply the imitation learning algorithms for radar surveillance, a radar simula-
tion is required. This radar simulation and operator interface is required to replicate the
experience that a human operator would have, such that a human operator could then use
the simulation in order to obtain training data for the imitation learning algorithms. Once
data is obtained, the imitation learning algorithms can be applied and results obtained and
conclusions drawn.

1.5 Contributions of Research

1.5.1 Simulation and GUI for Maritime Radar Surveillance Missions

1. A radar simulation is derived for maritime wide area surveillance. This model in-
cludes the power returns, target detections, target tracking, and accounts for the earth’s
curvature and the radar’s sector scan.

2. A radar GUI is developed to run complex maritime surveillance missions with the
ability to capture both the scenario information and the human operator’s decisions.
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1.5.2 Trajectory Optimisation for Radar Surveillance

1. Firstly, a polynomial trajectory generation method is derived that provides complex
trajectories while requiring few inputs. This method accounts for the fixed-wing plat-
form dynamics and propulsion while also accounting for the requirements of a persis-
tent surveillance mission (i.e. the start pose is equal to the end pose).

2. A method for determining the search area coverage in terms of probability of detection
and revisit time is outlined.

3. The considerations of the required platform for this mission type are accounted for.
These considerations include the high altitude region of operation, long mission time,
and high fuel to weight ratio of the platform.

4. Lastly, the surveillance trajectory is used with a multi-objective global optimisation
algorithm. Results are compared to an industry recommended baseline which shows
the performance of this method. Additionally, the geometric similarity of trajectories
within the Pareto front are highlighted.

1.5.3 Imitation Learning for Radar Surveillance

1. Firstly, the requirements of an autonomous radar system at the operational level are de-
fined. Primarily, this includes the required behaviour of radar as well as the interaction
between the autonomous radar and the operator.

2. Three typical maritime surveillance radar tasks, representing various stages of the
surveillance process, are outlined and setup within the simulation.

3. Two imitation learning approaches, namely Bayesian Networks and Inverse Reinforce-
ment Learning, were implemented to imitate the radar operator’s decision making pro-
cess from the collected operator data.

4. The two approaches are then compared relative to each other in terms of accuracy of
decisions made relative to the operator.

The following publications have resulted from the work shown in this thesis:

• A. Brown and D. Anderson, “Trajectory optimization for high-altitude long endurance
UAV maritime radar surveillance," IEEE Transactions on Aerospace and Electronic
Systems, 2019. DOI: 10.1109/TAES.2019.2949384. [42]

• A. Brown and D. Anderson, “Imitating Radar Operator Decisions for Maritime Surveil-
lance Missions Using Bayesian Networks." 2019 International Radar Conference, Toulon,
France, 23-27 Sept 2019. DOI: 10.1109/RADAR41533.2019.171229. [43]
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1.6 Thesis Outline

Chapter 2 outlines the real-time radar simulation and user interface developed. This includes
an outline of the radar mathematical model, specifically the equations used for the radar re-
turns, detection, and tracking. Additionally, the outline includes an overview of the graphical
user interface (GUI) that the operator uses to interact with the radar simulation and thus carry
out typical maritime surveillance radar missions.

Chapter 3 describes the first step in improving autonomy for maritime surveillance radar.
This chapter outlines an algorithm developed to obtain optimal trajectories for wide area
persistent maritime surveillance using a radar on board a high-altitude long endurance plat-
form. Specifically, the trajectory generation method is formulated, a method of obtaining the
probability of detection and revisit time for a given trajectory is shown, and the optimisa-
tion problem is mathematically defined. The simulation results for the optimisation of the
trajectory is then presented.

Chapter 4 gives a literature review of imitation learning and specifies the choice of algorithms
and why they were chosen. Additionally, the tasks which the human operator perform for
data collection are outlined in this chapter.

Chapter 5 outlines the specific Bayesian network algorithm chosen and the reasoning behind
the choice. A derivation of the algorithm is also presented with assumptions noted. Addi-
tionally, this chapter states how the tasks were represented within the Bayesian network and
how the network is implemented within the radar simulation.

Chapter 6 outlines the specific inverse reinforcement algorithms chosen and the reasoning
behind the choice. A derivation of each algorithm is also presented with assumptions noted.
Additionally, this chapter states how the tasks were represented within the framework of a
Markov Decision Process (MDP) and how the algorithms were implemented within the radar
simulation.

Chapter 7 presents the results of the algorithms and compares their performance in terms of
how well they imitate the actions of a typical maritime radar operator. The results are also
discussed in terms of the algorithms suitability for operation.

Chapter 8 summarises the thesis and conclusions. Additionally, avenues of potential future
work are suggested.



Chapter 2

Radar Modelling

2.1 Introduction

Maritime surveillance radar operations are complex and often require an operator to control
the radar system with the aide of a graphical user interface (GUI). This chapter outlines a rep-
resentative real-time maritime surveillance radar simulation in conjunction with a GUI which
is used to control the radar system, and consequently perform the surveillance mission. This
simulation allows for the testing of such a maritime radar system, or even a supplementary
system, which would otherwise require not only the radar system itself, but a platform and
operational environment.

This simulation was developed and integrated as part of the MAVERIC (Modelling of Au-
tonomous VEhicles using Robust, Intelligent Computing) simulation engine [44], [45] for
the purpose of simulating real-time maritime radar surveillance missions. MAVERIC allows
for the simulation of multiple entities (e.g. UAVs, helicopters, and boats) within a set 3D
operational environment. Each entity can contain multiple sub-entities (e.g. sensors and
payload) with the ability for both the entity and the sub-entities to have simulation models of
varying fidelity. MAVERIC, and consequently this simulation, was developed in C++ with
the use of Qt [46] for the graphical components. Note that the simulation and GUI were
tested with a i7-6700 processor and 16GB of RAM.

The real-time radar simulation includes power returns from targets with the use of the radar
range equation, an approximated beam pattern, and the curvature of the earth accounted for.
Sea clutter is also modelled by considering the grazing angle to the surface and using a ‘con-
stant gamma’ model. Targets are then detected using both local area average (LAA) and
binary integration, after which a Kalman filter is used to track the detected targets. Further-
more, the entities under surveillance (i.e the boats) have the ability to contain a transpon-
der. The operator can then fuse the radar tracks with the transponder data to obtain further
information—or lack of information—on the track.

In addition to the radar simulation, a graphical user interface (GUI) was simultaneously de-
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veloped. This interface allows for an operator to carry out a maritime radar surveillance
mission in a similar way to an operator using an actual radar system within a real environ-
ment. The GUI contains a plan position indicator (PPI) to display the radar returns after
LAA detection has occurred. The current tracks are overlayed on the PPI display with the
operator able to select a track resulting in its information being displayed. The GUI also
contains radar controls to allow, for example, the operator to set the range resolution and/or
the angular position and width of the radar sector scan. For the maritime radar missions
considered here, the platform is airborne and mobile, and in an actual mission, the platform
position would be influenced by the radar operator (e.g. requesting a direction of movement
or requesting movement to a specific coordinate). Consequently, the simulation developed
here also allows for the operator to input guidance commands to change the platform’s tra-
jectory.

2.1.1 Main Contributions

The contribution of this chapter is the definition of a real-time maritime surveillance radar
simulation, display and interface. Specifically, the contributions are as follows:

1. A radar simulation is derived for maritime wide area surveillance. This model in-
cludes the power returns, target detections, target tracking, and accounts for the earth’s
curvature and the radar’s sector scan.

2. A radar GUI is developed to run complex maritime surveillance missions with the
ability to capture both the scenario information and the human operator’s decisions.

3. This radar simulation and GUI builds upon and contributes to the MAVERIC frame-
work. Consequently, any number of radar simulations and GUIs can be deployed
within a MAVERIC scene containing multiple autonomous and human agents.

2.2 Simulation Outline

2.2.1 Overview

Fig. 2.1 shows an overview of the radar simulation and interface. The core of the simulation
lies within the ‘Scene’ component. This component houses all of the entities including the
radar and its platform.

The ‘Radar Power Returns’ component requests the absolute entity positions from the ‘Scene’
in order to ascertain the entity positions relative to the radar for the radar power measurement
calculations. These power measurements are then passed through several components (‘LLA
Detection’ and ‘Binary Integration’) in order to determine target detections. The target de-
tections are then passed to the Kalman filter tracker where the ‘Associate Track’ component
either creates a new track or requests an update to an existing track via the ‘Kalman Filter
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Update’ component. The ‘Kalman Filter Predict’ component provides a track pose estimate
for the current simulation time which is then passed to the ‘GUI’ component.

The ‘GUI’ component displays the radar tracks in addition to the radar LAA detections. Ad-
ditionally, the ‘Scene’ component provides the ‘GUI’ component with the entities’ transpon-
ders. These can then be observed by the operator and the information used in conjunction
with the radar data.

The operator’s main interface is with the GUI. The operator’s radar commands (e.g. chang-
ing the radar sector scan) are passed to the ‘Radar Power Returns’ component where the
radar system is updated. Additionally, the operator’s platform commands (e.g. changing
the platform direction) are passed to the ‘Platform Guidance’ component. This component
determines the required guidance commands which are then passed to the ‘Platform Con-
trol’ component. This component determines the required platform control inputs in order
to achieve the guidance commands.

Lastly, the ‘Platform Dynamics’ component uses the control inputs from the ‘Platform Con-
trol’ component to calculate the platform pose at the current simulation time. This pose is
then used to update the scene. Note that the entities beside the radar platform also have their
own guidance, control, and dynamics which update the scene. These components were hid-
den from the diagram for simplicity and are not discussed in detail within this thesis. Infor-
mation on the other vehicle guidance, control, and dynamics can be found in the MAVERIC
documentation [44], [45].
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Figure 2.1: Overview of the radar simulation and interface within MAVERIC.

2.2.2 Scenario

It is assumed that the operational environment is completely at sea with the earth assumed
to be spherical with a radius re = 6318137m. Furthermore, it is assumed that the scene is
initialised at a latitude of φ0 = 0 rad and a longitude of λ0 = 0 rad. The scene consists of N

targets (where in this case all the targets are maritime vessels) and a single UAV containing
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the radar system (though any number of radar system and platform pairs can exist within
the scene). Thus, there are M entities (where M = N + 1) within the scene. The entities’
dynamic controls consist of a commanded velocity, heading, and elevation which is used
to update the entity’s position in north east down (NED) coordinates. In the case of the
vessels, the elevation angle and commanded elevation angle are assumed to be 0 rad while
the platform height is assumed 0 m (i.e. sea level).

A UAV is are considered as the radar platform for this research, and UAVs typically operate
at high altitudes. Consequently, the variation in speed of sound, air density, and air temper-
ature with altitude needs to be accounted for as these properties affect various aspect of the
overall system. For example, the atmospheric temperature affects the radar’s thermal noise,
and the air density affects the UAV’s aerodynamics. Within the simulation, the variation
in temperature follows the International Standard Atmosphere (ISA) model and as a result
varies linearly from 288.15 K at sea level to 216.65 K at an altitude of 11000 m—with the
temperature assumed constant until an altitude of 20000 m. Note that it also assumed that
the platform’s altitude does not exceed 20000 m.

The state of entity m is given by xxxm = [xe
m,y

e
m,z

e
m,Vm,ψm,γm]. where xe

m, ye
m, ze

m are the north
east down (NED) coordinates of the platform. Vm is the forward speed of the entity, while
ψm and γm are the heading and elevation angles respectively. The state derivatives are then
obtained as

ẋxxm =



Vm cos(γm)cos(ψm)

Vm cos(γm)sin(ψm)

−Vm sin(γm)

(Vcm−Vm)/Vτm

(ψcm−ψm)/ψτm

(γcm− γm)/γτm


, (2.1)

where, for entity m, Vτm is the velocity time constant and Vcm is the commanded forward
speed. Similarly, ψτm and γτm are the heading and elevation time constants respectively,
whilst ψcm and γcm are the commanded heading and elevation angles respectively. Note that
a time constant characterises the response of an input to a first order system.

Given a simulation time step ∆t, the state of entity m at time step k can then be updated with
the use of Euler’s integration method as follows:

xxxmk+1 = xxxmk + ẋxxmk∆t. (2.2)

The radar dynamics consist of a scan rate ω̇ . Similarly to the entity dynamics, the radar
boresight azimuth position at time step k is updated as ψBk+1 = ψBk + ω̇∆t. It should be
noted that when sector scan is in use, the radar azimuth angular position instantaneously
moves to the lower sector scan angle once the upper sector scan limit is reached.

A commonly used feature of maritime radar systems is the incorporation of transponders. A
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transponder is on board a maritime vessel which relays information such as the vessel type
and position to the radar system. Within the simulation, there is the option for each maritime
vessel to have–or not have–a transponder on board. In the case that a vessel has a transponder,
the transponder then continually transmits the current state xxxm of the vessel.

Lastly, each vessel is assumed as a Swerling 1 target [47], consequently, the radar cross
section (RCS) of the target changes on a scan-to-scan basis. Thus, each vessel has a mean
and standard deviation for its RCS which is used to update the current RCS on each new radar
scan. Williams, Cramp, and Curtis [48] outline the typical RCS range for various maritime
vessels, and the results from this study were used to set the RCS values of the vessels within
this simulation, depending on their size and type.

2.2.3 Radar Power Returns

For a radar performing a search on a sea surface, the radar is pointed towards the sea surface
and at a set interval emits a series of bursts of energy, also known as a dwell, in the form of
radio waves. After a time, the emitted bursts bounce off either the sea surface or an entity
at sea, and return to the radar. The length of time it takes the bursts to return to the radar
and the energy with which they return is dependant on several factors. These factors broadly
include the range to point at which the burst reflected, how reflective the object which the
burst intersected was, and how easily the burst was able to pass through the atmosphere at
time of emission.

The dwell time of a radar is the time the radar beam is on a given target. In other words, it is
the time it takes for the radar to scan an angular width equal to the azimuth 3dB beamwidth.
This can be stated as Td = ψ3dB/ω̇ . Within a dwell, several bursts of pulses are transmitted
by the radar with the pulse repetition interval equated as PRI = (2rmax)/c, where c is the
speed of light (taken to be 3e8 ms−1). Therefore, the number of pulses within a dwell is
obtained as Nd = Td/PRI. Furthermore, the number of pulses in a burst is given by Np which
is also the coherent integration factor. Therefore, the number of bursts in a dwell is simply
NB = Nd/Np. As a result, the time step of the radar simulation is set to the time taken to
complete one burst: ∆t = NpPRI.

The radar within the simulation was based on a typical maritime surveillance radar [49] with
the specifications for this radar stated in table 2.1. For maritime surveillance radars, the
main operational mode is ‘search and track’. The aim of this mode is to search a defined
area on the sea surface and form tracks on any detections. Additionally, tracks in this mode
are only updated with repeat detections from the search scan, so no additional antenna time
is dedicated to the tracks and the radar maintains a continuous rotation. Note that this mode
is non-coherent and thus has no doppler processing. For this simulation, ’search and track’
is the primary mode used, though inverse synthetic aperture radar (ISAR) is partially con-
sidered (and outlined in section 4). ISAR allows for a high-resolution image to be formed
using a target’s motion, thus giving the operator a visual on the target and allowing for target
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Table 2.1: Radar specifications

Parameter Unit Value

Power, Ptx W 3000
Wavelength, λ m 0.031
Antenna height, Ah m 0.33
Antenna length, Al m 0.875
Pulse compression factor, η 185.2
Coherent integration factor, Np [128 / 32 / 16]
Noise figure, Fn dB 7
System losses, Lsys dB 7.5
Probability of false alarm, PFA 1e−6
Maximum range, rmax km [18.52 / 92.6 / 185.2]
Range bin, rb m [10 / 50 / 100]
Noise Bandwidth, Bn Hz [15 / 3 / 1.5] × 106

recognition.

Rather than simulate the radar emissions and their reflections within the environment, it is
typical to use the radar range equation for both simplicity and real-time requirements in order
to calculate the radar power returns. The radar equations outlined in this section are based
on basic principles of radar [50]–[53].

The power returned from a target is partially dependant on the range, elevation from radar
boresight, and azimuth from radar boresight. In order to obtain these variables, the NED
coordinates of both the platform and the target are converted into earth-centered, earth-fixed
coordinates (ECEF). For a given entity m, the ECEF coordinates (denoted by Xm, Ym, and
Zm) are converted from the NED coordinates as follows:

Xm = (ra− ze
m)cos(xe

m/ra +φ0)cos(ye
m/ra +λ0) ,

Ym = (ra− ze
m)cos(xe

m/ra +φ0)sin(ye
m/ra +λ0) ,

Zm = (ra− ze
m)sin(xe

m/ra +φ0) ,

(2.3)

where the commonly used ‘four-thirds earth model’ is used to account for atmospheric
refraction. Thus, for the radar equations the value of the radius of the earth is given by
ra = (4/3)re.

For brevity, the majority of the remaining derivation for obtaining the range and azimuth
from boresight is summarised instead. The platform position in ECEF coordinates and in
latitude, longitude, and height can be used to translate and rotate the target ECEF coordinate
to obtain a local Cartesian position (denoted by ∆X , ∆Y , and ∆Z). This local Cartesian
coordinate can then be used to obtain the range to target n from the platform as follows:

rtn =
√

(∆Xn)2 +(∆Yn)2 +(∆Zn)2 . (2.4)
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The azimuth from the target is then obtained as

Ψtn =−(ψB +ψp)+ arctan2(∆Yn,∆Zn) , (2.5)

where ψB is the current azimuth of the radar boresight and ψp is the heading angle of the
platform.

Centre of Earth

UAV

ra

hp

rh
rc

θc

Figure 2.2: Geometry of UAV radar boresight with respect to Earth. ra, rh, and rc, are the
radius of the earth (accounting for atmospheric refraction), the slant range to the horizon,
and the slant range for a given elevation θ from the UAV respectively. Furthermore, hp is the
platform altitude equal to −ze.

Obtaining the elevation from boresight requires the use of the geometry outlined in Fig.
2.2. Firstly, the slant range to the horizon rh is simply obtained using Pythagoras’ theorem
as:

rh =
√

(ra +hp)2− r2
a . (2.6)

Continuing, if the slant range rc to a point on the ground is known then the elevation angle
from the UAV to that point can be obtained with the use of the cosine rule:

θc =−arcsin
(

r2
c +(ra +hp)2− r2

a
2rc(ra +hp)

)
, (2.7)

where it should be noted that elevation is taken as negative in the downward direction. Alter-
natively, (2.7) can be rearranged and solved for rc using the quadratic formula. As a results,
for a given elevation angle θc the slant range to a point on the ground can be calculated
as

rc =−(ra +hp)sinθc−
√
(ra +hp)2 sin2

θc− r2
h . (2.8)

For surveillance operations, the boresight of the radar beam is usually set such that it max-
imises the area of coverage. This is done by pointing the lower edge of the 3dB beam in
elevation at the maximum range. By setting rc = rmax (and accounting for the beamwidth),
equation (2.7) can be used to set the boresight for maximum area for a given altitude as
follows:

θB =−θ3dB

2
− arcsin

(
r2

max +(ra +hp)2− r2
a

2rmax(ra +hp)

)
. (2.9)

For target n, the elevation from boresight can then be obtained with further use of equation
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(2.7). This is simply obtained by setting r = rtn and subtracting the radar boresight eleva-
tion:

Θtn =−θB− arcsin
(

r2
tn +(ra +hp)2− r2

a

2rtn(ra +hp)

)
. (2.10)

The radar cross section σ is a measure of how much radar energy an object reflects back to
the source. The factors that affect the radar cross section include the object’s size, materials,
and angle relative to the source. For the scenarios considered here, a given target n is assumed
to have a radar cross section σn of 100 m2.

The radar gain G is a function of elevation and azimuth from radar boresight [53]. An
approximation for the radar gain in both azimuth and elevation is made by firstly scaling the
elevation from boresight (assuming the radar’s length is greater than its height) as follows:
Θ̂tn = Θtn(Ah/Al). Another approximation is made by taking the hypotenuse of both angles:

Γtn =
√

Θ̂2
tn +Ψ2

tn . The radar gain G is then approximated as

G(Γtn) =


4πAlAh

λ 2 sinc2(π Al
λ

sin(Γtn)), if Γtn <
π

4

0, otherwise
(2.11)

Note that angles Γ further than 45◦ from the boresight are not considered to reduce compu-
tational load.

The radar used here is assumed to have a rectangular antenna, and thus the beamwidth in
elevation and azimuth is approximated with θ3dB = 0.88(λ/Ah) and ψ3dB = 0.88(λ/Al) re-
spectively. The radar sensor is represented using the radar range equation and consequently,
the power received by the radar from target n is given by

Ptn =
ηN2

p PtxG2(Γtn,Ψtn)σnλ 2

(4π)3Lsysr4
tn

, (2.12)

Power emitted by the radar is returned from all reflective surfaces. In addition to any mar-
itime vessels, power is also returned from the sea surface, known as sea clutter. The clutter
power is obtained by discretising the surface in both range and azimuth to create cells for
which the returned power can be calculated for each range bin rb. The step size in range is
simply the range bin width rb while the step size in azimuth is the azimuth beamwidth ψ3dB.
To reduce computational load, the number of steps in azimuth nψ was set to 9 (i.e. 4 steps
on either side of the beam centre). Furthermore, range cells less than the platform height hp

were ignored.

The range value of the radar range bins start at rb and end at rmax resulting in a total of nr

range bins. This is also the case for the radar clutter cells where a given clutter cell range rc

can be used to obtain the area covered on the ground by that cell. This area is then obtained
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by accounting for the curvature of the earth as

A =
ψ3dB

2

(
(rc + rb)

2− r2
c

)
ra

ra +hp . (2.13)

Besides range, another significant factor that determines the returned surface clutter power
is the grazing angle Φ to that surface. The grazing angle (also known as the angle of inci-
dence) is defined as the angle to the surface along slant range rc. Further use of Fig. 2.2
provides the following equation for a clutter cell indexed in range and azimuth with u and v

respectively:

Φcuv =−arcsin
(

r2
cuv
− (hp + ra)

2 + r2
a

2rcuvra

)
. (2.14)

For the power returned by the surface clutter, the ‘constant gamma’ model [53] is used to
approximate the radar cross section of each clutter cell using the grazing angle:

σc(Φc) = γAsin(Φc) , (2.15)

where γ is a value from a Gaussian distribution dependant on the sea state. Within the
simulation, the sea state can vary from dead calm to stormy waters, which, in terms of the
distribution results in a mean that varies from 1e−5 to 1e−4 and a standard deviation that
varies from 2.5e−6 to 2.5e−5.

In a similar manner to the target power, the clutter power is obtained as:

Pcuv =
ηN2

p PtxG2(Θcuv,Ψcuv)σcuv(Φcuv)λ
2

(4π)3Lsysr4
cuv

, (2.16)

where Θcuv is obtained with the use of equation (2.10). Ψcuv is dictated by the clutter cell
index number (for example, if nψ = 9 and v = 5, then the azimuth from boresight would
equal 0 rad).

The total clutter power for each range bin is obtained by summing along the azimuth of each
range bin to form the following vector:

PPPc =
nψ

∑
v=1

Pcuv . (2.17)

The power received by the radar is also susceptible to thermal noise within the receiver itself.
This incoherent noise power is formulated as

PPPn =−NpkBT BnFn loge(1− ppp) , (2.18)

where ppp is a vector containing nr uniform random numbers with interval [0,1]. kB is Boltz-
mann’s constant with value 1.38064852e− 23 JK−1 and T is the current air temperature at
the platform’s altitude.
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The vector containing the total power received by the radar for each range bin for a given
burst is therefore obtained with:

PPPr =
N

∑
n=1

PPPtm +PPPc +PPPn . (2.19)

2.2.4 Detection

In order to discern targets from the sources of noise (i.e. clutter or receiver noise), the power
received by the radar requires post processing. The simplest way is to introduce a threshold
for which a detection can be declared if a power value exceeds this threshold. There will still
be spikes in noise that will exceed the threshold value, but the value can be set to achieve
a particular false alarm rate (FAR). The false alarm rate is related to the probability of the
power recieved from any range cell exceeding the threshold over the dwell time:

FAR =
nrPFA

Td
, (2.20)

where PFA (probability of false alarm) is the probability that a single range cell exceeds the
threshold.

Assuming the noise fluctuation is of a Rayleigh distribution, a detection is then declared if
the received power Pru for range cell u is greater than the threshold DTu. The threshold for
every range cell is obtained as [50]:

DT =−P̄PP loge(PFA) , (2.21)

where P̄PP is the vector containing the interference level for each range cell obtained with a
local area average (LAA). For range cell u, the local area average takes the average Pr of
the surrounding cells excluding the cell under test (i.e. range cell u) and the guard cells.
The number of surrounding cells was taken to be 3 in each direction. The guards cells are
simply the cells directly neighbouring the cell under test, and in this case 1 guard cell in each
direction was chosen. This is illustrated in Fig. 2.3.

As a result, the detected signal-to-interference ratio SIR for range cell u after post processing
is given by

SIRu =

Pru/P̄u, if P̄u > DTu

0, otherwise
(2.22)

The PFA affects the LAA threshold which determines whether or not a given radar bin’s SIR

is considered a detection. A high PFA will result in a lower threshold and thus more receiver
noise and clutter will be detected, but there is also more potential for targets to be detected.
Conversely, a low PFA results in less receiver noise and clutter being detected at the cost of
a decreased chance of a potential target detection.
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...

...

Figure 2.3: Diagram of local area average detection where each cell represents a range bin.
The blue cell is the cell under test, the red cells are the surrounding cells, and the green cells
are the guard cells.

For surveillance operations, tracking and predicting a specific target’s path is of significant
use. One use, for example, could be determining if a target is heading towards a zone that
is off limits. Accurate and precise target measurements are therefore required to maintain
an accurate track, allow for missed detections, and reduce the false alarm rate. Whilst the
LAA threshold reduces the PFA, detections from non-target sources will still be declared. A
further detection method is therefore applied to the detections being passed to the tracker in
order to reduce spurious tracks being formed.

Since several bursts are transmitted in a dwell, several target detections can also be made
during the dwell. As previously mentioned, there are NB bursts in a dwell. The ’binary
integration’ method can then be applied across this dwell to further refine the detections for
the tracker. This method results in a detection being passed to the tracker if it has been
detected using the LAA method M out of NB times.

Before the detections from the ’binary integration’ method are passed to the tracker, the
measurements in azimuth can be further refined to improve tracking accuracy. As the radar
steps in azimuth, it is unlikely that the boresight will perfectly align with the target resulting
in bursts to either side of the target. This is illustrated in Fig. 2.4. The centroid method
can therefore be used to refine the azimuth measurement by weighting the detection azimuth
values against their corresponding power value as follows:

ψd =
∑

M
i=1 Pri ·ψri

∑
M
i=1 Pri

, (2.23)

where ψd is the refined azimuth of the target detection, and Pri and ψri are the power and
azimuth for detection i out of M respectively.
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Figure 2.4: Illustration of bursts relative to a target.

2.2.5 Tracking

The processed detection in terms of target azimuth ψd and the range bin rd is received by
the tracker. These values are converted to latitude and longitude using the radar platform’s
navigational data. The detection is compared with the gates of existing tracks to determine
if it is a new target or if the detection can be associated with an existing track.

A Kalman filter [54] is used to track the position of the target in terms of latitude and longi-
tude. For brevity, the workings of the Kalman filter will not be discussed here as extensive
work has already been carried out for radar target tracking with Kalman filters and other filter
types [55]. The Kalman filter is outlined in algorithm 1. The ’predict’ stage is called at each
simulation time step to obtain an up-to-date track position estimate whilst the ’update’ stage
is only called when there is a new measurement for that track. Note that a given detection
was associated to an existing track if its position was within a radius of 200 m of the track.
If a given detection was not within any track’s radius, a new track was created.

The global position estimate in latitude and longitude of track i at time-step k is then given
by x̂xxi

k = [φ ,λ ]ik. The full state of the Kalman filter track i at time-step k is given by equation
(2.24). Note that a linear motion model was used for the Kalman filter in these scenarios,
however different motion models could be used [56].
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Algorithm 1: KALMAN FILTER

Input: x̂xx−k−1, PPP−k−1

Output: x̂xxk, PPPk

Predict:
A priori state estimate: x̂xx−k = FFFkx̂xx−k−1

A priori error covariance: PPP−k = FFFkPPP−k−1FFFT
k +QQQk

end
Update:

Innovation matrix: SSSk = HHHkPPP−k HHHT
k +RRRk

Optimal Kalman gain: KKKk = PPP−k HHHT
k SSS−1

k

A posteriori state estimate: x̂xxk = x̂xx−k +KKKk(zzzk−HHHkx̂xx−k )

A posteriori error covariance: PPPk = PPP−k −KKKkHHHkPPP−k
end

State estimate, x̂xxi
k =

[
φ̂ i

k λ̂ i
k

]

State transition matrix, FFFk =


1 ∆t 0 0
0 1 0 0
0 0 1 ∆t

0 0 0 1



Process noise covariance matrix, QQQk =


ζ 2

φ
ζφ ζ

φ̇
0 0

0 ζ 2
φ̇

0 0

0 0 ζ 2
λ

ζλ ζ
λ̇

0 0 0 ζ 2
λ̇


Observation noise matrix, RRRk =

[
δφ 0
0 δλ

]
Observation model matrix, HHHk = III2

(2.24)

Note that the values for δ were set by transforming the local coordinate errors as a result of
range bin size and the centroid method into global coordinates. Furthermore, the values for
ζ were heuristically chosen.

2.2.6 Graphical User Interface

In order for an operator to carry out typical maritime radar missions using this simulation, it
was necessary to develop a graphical user interface. The controls for this interface are shown
in Fig. 2.5 while a section of the display is shown in Fig. 2.6.

A plan position indicator (PPI) is used to display the radar data in terms of SIR for a given
range and azimuth. In a similar manner to the radar range bins and azimuth step size, the
PPI display is discretised into cells in range and azimuth. The PPI circular display has a
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Figure 2.5: Radar GUI within MAVERIC. In addition to the described controls, the operator
can also opt to show or hide the track and zone overlays.

500 pixel radius and as such, there are effectively 500 display range bins for each displayed
azimuth sector. The angular resolution of the display ∆ψd is the angular distance covered by
the radar within a burst: ∆ψd = ψ̇∆t = ψ̇NpPRI. However, given that there are 500 display
range bins while the radar itself has 1852 range bins, there is thus more radar range bins than
can be displayed for a given azimuth sector. As such, the maximum SIR from the range bins
that are within the current display range space is plotted. In figure 2.6, it appears as if there
is more noise at further ranges. These ranges are further off the main-beam so the thermal
noise starts to have a greater affect on the LLA. However, the thermal noise is completely
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Figure 2.6: Radar PPI display within the GUI. The yellow solid line indicates the current
azimuth of the radar boresight while the green lines indicate the current sector scan limits.

random, and it would be very unlikely for the binary integration to declare a detection.

The GUI receives the tracks from the tracker which are subsequently converted back to range
and azimuth to be overlayed on the PPI display. From figure 2.6, the pink dot (shown on the
outside of the bottom left of the red box) indicate tracks while the blue dot (shown centrally
on the inside of the red box) indicates the track currently selected by the operator.

The operator has several options in terms of controls, one of which is the ability to select the
range resolution. Changing the range resolution also changes the maximum range resulting
in the operator being able to perform long range surveillance of a large area at low resolution
or performing short range surveillance of a small area at high resolution.

It is often the case that the operator wishes to scan a small section of the area covered by
the radar. This is done with the use of sector scan where within the simulation the operator
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Figure 2.7: An example of an actual maritime radar display [49].

controls the angular segment to be scanned by setting its angular position and width.

As previously mentioned, the PFA affects the detection threshold which in turn affects the
SIR values displayed on the operator’s screen. Consequently, the controls allow for the op-
erator to set the value of the PFA.

The operator can also create a number of zones defined by coordinates in latitude and lon-
gitude. The operator can then visually determine a target’s location relative to a given zone.
For example, the operator can determine if a boat performing a fishing operation is within an
illegal area. From figure 2.6, the red polygon outlines an operator defined zone.

Using a cursor, the operator can select a track. The current track information is displayed
in the ‘Tracks’ box with the operator able to display the targets position in either range and
azimuth (‘Local’) or latitude and longitude (‘Global’). In addition to the track position, the
information also indicates whether or not a track is within any of the defined zones. Further-
more, the operator can fuse the current tracks with the available transponders and the display
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indicates if a track does or does not have a transponder. A track without a transponder, for
example, could potentially indicate an illegal operation.

Fig. 2.7 shows an example of a typical maritime radar display. Note that this is not intended
to match the simulation as there will be various differences in operational parameters (e.g.
altitude, target types). Furthermore, the simulation’s intent is to provide representative be-
haviour of a maritime radar and control system rather than provide a realistic performance
model.

In terms of platform controls, the operator can either select a global coordinate to move to-
wards. This coordinate could be either a track or an operator designated zone. Alternatively,
the operator can move in the direction of a track in terms of increasing and decreasing the
range to the target, or the operator can maintain range but increase or decrease the heading
towards the target. Both options allow the operator to get a better/alternative view of a target
which can help the operator determine the target’s intent and therefore the actions that should
be taken.

2.3 Conclusion

This chapter outlines a simple and computationally efficient maritime radar simulation in
conjunction with a graphical user interface to allow for an operator to control a radar system,
for surveillance scenarios, in a similar manner to an actual system. The scene consists of a
number of targets and a radar platform (though multiple platforms can simultaneously exist).
The radar was modelled with the use of the range equation, by accounting for the curvature
of the earth, and approximating a radar beam pattern in order to compute power returns from
both targets and sea clutter.

Detections were obtained with the use of a local area average and consequently displayed
on the user’s interface. Binary integration was then applied to further refine the detections
which could then be passed to the Kalman filter tracking algorithm. The tracks can be shown
on the display with the operator able to use a cursor to select a specific track which results in
that track’s information being shown. This information contains the position (in either local
or global coordinates) of the track, whether or not the track has an associated transponder
(after fusion), and whether the track is in any of the user designated zones. In addition
to selecting track information, the operator can change range resolution, set the angular
position and width of a sector scan, set the probability of false alarm, and fuse tracks with
available transponders. Lastly, the operator has the ability to input guidance commands to
the simulated platform. This allows for the operator to move towards a specific target or to
move to a specific position.



Chapter 3

Trajectory Optimisation for Radar
Surveillance

3.1 Introduction

3.1.1 Motivation

If the decisions of an operator are to be imitated, and to make full use of that autonomy, it is
necessary for the platform itself to be autonomous. Specifically, if the artificially intelligent
agent that replaces the human operator can operate at all times and operate on multiple
platforms simultaneously, then the overall mission is limited by the availability of pilots in
terms of both maximum flight time for an individual pilot and number of pilots. The use of
autonomous platforms removes this bottleneck and frees the artificially intelligent agent to
operate at all times and on multiple platforms.

In order for the platform to be autonomous, the required control inputs to the platform are
needed. These control inputs represent the operator trajectory commands shown in Fig.
2.1. While classic radar surveillance trajectories (e.g. circular path, race track) could be
used, surveillance time as well as the revisit time and probability of detection are of the
highest importance. Additionally, obtaining a trajectory that achieves optimal surveillance
performance will reduce the surveillance down time, making full use of the AI. Furthermore,
as mentioned in 1.1.2, the chosen platform for this work was a high altitude UAV which
differs significantly from typical radar surveillance platforms such as helicopters. As such,
finding the trajectories that are optimal for the this platform type for various search areas is
of benefit in order to maximise the benefit of the artificially intelligent agent.

For an unmanned aerial vehicle (UAV) carrying out a maritime radar surveillance mission,
there is a trade-off between maximising information obtained from the search area and min-
imising fuel consumption. This chapter presents an approach for the optimisation of a UAV’s
trajectory for maritime radar wide area persistent surveillance to simultaneously minimise
fuel consumption, maximise mean probability of detection, and minimise mean revisit time.

36
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Quintic polynomials are used to generate UAV trajectories due to their ability to provide
complete and complex solutions while requiring few inputs. Furthermore, the UAV dynam-
ics and surveillance mission requirements are used to ensure a trajectory is realistic and mis-
sion compatible. A wide area search radar model is used within this research in conjunction
with a discretised grid in order to determine the search area’s mean probability of detection
and mean revisit time. The trajectory generation method is then used in conjunction with a
multi-objective particle swarm optimisation (MOPSO) algorithm to obtain a global optimum
in terms of path, airspeed (and thus time), and altitude. The performance of the approach is
then tested over two common maritime surveillance scenarios and compared to an industry
recommended baseline (outlined in 3.4.1 and 3.4.2).

Airborne surveillance is of significant interest for both military and civilian applications. A
radar, in comparison to other remote sensors, provides large area surveillance in both adverse
weather conditions (e.g. rain, fog) and varying light conditions (i.e. day and night). An
airborne platform is often required for large area maritime radar surveillance. As such, the
length of surveillance time is dependent on the fuel consumption of said platform, which in
turn is dependent on the platform trajectory. However, the platform trajectory also affects the
surveillance of the search area. In particular, it affects the visibility of the radar and where
the main beam intersects the surface. Specifically, the platform airspeed, altitude, and path
will affect the fuel consumption and how long the radar’s beam stays within a given area,
thus affecting both the probability of detection and revisit time.

For persistent surveillance missions, the aim is not necessarily to search for a specific target
but to patrol a region of interest where complete coverage is required (i.e. every point in the
search area is visited to some degree at least once during the trajectory). Furthermore, the
platform trajectory is required to be as continuous as possible with little to no down time to
allow for constant surveillance. Therefore, minimising the fuel consumption of the platform
allows for a given surveillance trajectory to be flown on for longer. High altitude UAVs are
typically designed for long endurance, and as such are able to perform surveillance missions
for significant amounts of time before a refuel is required [57]. Additionally, UAVs have a
significant advantage over other airborne platforms, in that they are able to fly any time of day
with minimal human input. For both these reasons, a high altitude UAV was selected as the
platform for this problem. Note that high altitude is generally defined as above commercial
altitudes (taken as 11000 m).

There is therefore a trade-off between minimising the UAV fuel consumption and maximis-
ing search area coverage, where the coverage is defined in terms of both the probability of
detecting a given target and the revisit time (i.e. the time between covering the same point in
the search area). Increasing the coverage of the surveillance area requires a larger trajectory,
resulting in more fuel consumed. However, there is also a trade-off between the revisit time
and the probability of detection. If the trajectory covers a large area at a low speed, a lot of
time is spent at each point in the search area which increases the overall probability of detec-
tion. However, this trajectory type results in a greater time between revisiting a given point
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in the search area. Thus, the aim is to obtain a trajectory that simultaneously minimises fuel
consumption, maximises the average probability of detection, and minimises average revisit
time for a given search area. These three criteria were quantified with cost functions for
which a multi-objective global optimisation algorithm was used to obtain trajectories that
minimise the costs. Currently within industry [58], only specific trajectories are considered,
which may not be optimal for a given search area and mission. The optimised trajectories
were compared with industry recommended trajectories to highlight the performance of this
approach.

Note that this problem deals with finding an optimal trajectory for the surveillance of a pre-
specified area (e.g. a fishing zone). As such, the solution for a given area does not need to
be solved in real-time [59], and consequently an offline solution is adopted. Additionally,
in reference to section 1.1.4, it is vital that the autonomous system replacing a human is
transparent in its operations. By having the algorithm work offline, the exact route of the
UAV will be known beforehand. In contrast to an offline algorithm, the UAV trajectory
generated by an online algorithm is subject to change as it is being performed. An offline
solution therefore removes the unpredictability and ambiguity that could potentially lead to
operator confusion.

Finding an optimal trajectory is an optimisation problem with many coupled variables under
complex constraints. As such, the cost function associated with this problem is multimodal
and local search algorithms (e.g. hill climbing) are unsuited [60]–[64]. Instead, global op-
timisation algorithms were explored for this problem. It should be noted that for complex
global optimisation problems, finding the absolute optimal variables is usually impossible
due to the large and complex search space. Instead, it is common to use global optimisation
algorithms to obtain solutions that are more optimal than a baseline.

Global optimisation problems are generally solved with the use of modern metaheuristic
algorithms. These algorithms are typically biologically inspired and exploit two important
features of evolution: intensification and diversification [65]–[67]. Intensification attempts
to improve on the nearby current best solutions, whereas diversification attempts to explore
the search space in an efficient manner. Within nature, these features of evolution have led to
biological systems becoming the fittest within their environment, so algorithmically imitating
these features allows for more optimal solutions to be found within the problem search space.
The most commonly used metaheuristic algorithms for solving global optimisation problems
are genetic algorithms (GA) [68] and particle swarm optimisation (PSO) [69].

3.1.2 Related Work

A simple way to define a UAV trajectory is to use polynomials in time [70]. In particular,
quintic polynomials provide a simple method for the representation of velocities and accel-
erations for a complete trajectory of a given platform. The main advantage of polynomials,
relative to other trajectory methods, is the ability to specify the start and end conditions which
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is a requirement in this case. These polynomials have been used for modelling both fixed-
wing UAV [71] and multi-rotor [72], [73] trajectories. For optimising a UAV’s trajectory
for surveillance, it would be typical to consider the problem as 4D (space and time). How-
ever, for maritime surveillance the surface is level, thus there would be no need to change
altitude which is therefore assumed constant throughout a given trajectory. There have been
numerous implementations of polynomials for the use of trajectory optimisation. The ma-
jority of the work focuses on minimising path risk [74], minimising path length in the face
of objects [75], maximising threat avoidance while minimising fuel consumption [76], or a
combination of fuel minimisation, threat avoidance, and reconnaissance [77]. In addition,
multi-objective optimisation has been implemented for polynomial UAV trajectory optimi-
sation in order to maximise threat avoidance while also incorporating terrain constraints [78]
and also fuel consumption [79].

Both genetic algorithms (GA) [80] and particle swarm optimisation (PSO) [81] have been
used for trajectory optimisation and path planning. From Hassan [82], PSO appears to out-
perform GA in terms of computational efficiency when applied to constrained nonlinear
problems with continuous design variables, as is the case with the proposed problem. For
these problems, PSO also achieves higher quality solutions in general. While GA generally
outperforms PSO [83] for discrete trajectory optimisation cases, according to Besada-Portas
[84] PSO outperforms the GA for continuous trajectory scenarios which involve a series of
waypoints and areas of significance. Additionally, when a polynomial trajectory generation
method has been used, PSO has been found to outperform GA [85], [86]. Similarly, [81]
uses PSO for b-spline trajectory optimisation. For these reasons, PSO was chosen.

Current literature has not considered sensor trajectory optimisation for a large area under
persistent surveillance. For sensor trajectory optimisation (with sensor modelling), up to
now the work has focused on either a downward looking sensor [87]–[90] or synthetic aper-
ture radar (SAR) [91]. In the aforementioned studies, the input to the UAV is some form of
discrete series of heading changes or waypoints. This method generates continuous polyno-
mials for smooth, efficient circular turns. Additionally, in the above papers, the trajectory
is optimised for searching certain locations of interest within the search area. This prob-
lem differs from the problem presented in this chapter, where trajectories are obtained that
maximise coverage for a whole search area. Additionally, due to the cyclic nature of the
requirement that the UAV returns to its starting pose, the type of search algorithm that can
be used is limited.

For the papers mentioned above, both the search area and sensor are modelled at a much
lower resolution. For large area problems, higher resolution is required which is a source of
great computational cost. This chapter outlines the trajectory optimisation method in a way
that makes obtaining optimal solutions practicable.

Specifically, in both Li [91] and Ergezer [87], there are multiple small regions with the start
point, end point, and visiting order of the regions pre-specified. In the case of Li [91], an
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A* search algorithm is employed which cannot be applied to this problem for a multitude
or reasons, primarily due to the problems cyclic nature. In the case of Ergezer [87], the
optimiser is pre-seeded which, while increasing computational efficiency, does not perform
a truly global search. This chapter presents the surveillance trajectory problem as a global
optimisation problem by allowing a large degree of freedom in terms of path, altitude, and
airspeed.

In Perez-Carabaza [90], a receding horizon approach is used which does not provide a global
search. Additionally, the UAV height, commanded airspeed, initial position, and initial head-
ing are fixed. These constraints sacrifice potential solutions in favour of computational
efficiency as the computational efficiency is more advantageous in their case. However,
in the cases presented within this chapter, optimality is a priority over computational effi-
ciency.

3.1.3 Main Contributions

The contribution of this chapter is the optimisation of trajectories for large area radar surveil-
lance using the following:

1. Firstly, a polynomial trajectory generation method is derived that provides complex
trajectories while requiring few inputs. This method accounts for the fixed-wing plat-
form dynamics and propulsion while also accounting for the requirements of a persis-
tent surveillance mission (i.e. the start pose is equal to the end pose).

2. The radar mathematical model in 2 is expanded upon for use in optimising trajectories.
This model includes the earth’s curvature and sector scan. Furthermore, a method for
determining the search area coverage in terms of probability of detection and revisit
time is outlined.

3. The considerations of the required platform for this mission type are accounted for.
These considerations include the high altitude region of operation, long mission time,
and high fuel to weight ratio of the platform.

4. Lastly, the surveillance trajectory is used with a multi-objective global optimisation
algorithm. Results are compared to an industry recommended baseline which shows
the performance of this method. Additionally, the geometric similarity of trajectories
within the Pareto front are highlighted.

Section 3.2 outlines the trajectory generation method and formulates the fuel consumption
for a given trajectory. This section also derives the maritime radar wide area surveillance
model, and how it is used to obtain the probability of detection and revisit time at a given
point in the search area. Section 3.3 describes the cost function and the optimisation method.
Section 3.4 presents simulation results, and conclusions are drawn in section 3.5.
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3.2 UAV Surveillance Trajectory Generation

3.2.1 Polynomial Trajectory

The polynomials used to define the UAV’s trajectory can be a function of either position on
a constant altitude plane with Cartesian coordinates (x,y), or velocity which is defined by
airspeed and heading, with each method having their advantages and disadvantages. The
advantage of using a polynomial in x and y is that specific coordinates can be defined such
that the UAV passes through them. In the case of a surveillance trajectory, a polynomial in
x and y allows for the UAV to return to its initial coordinate, thus allowing for a continuous
trajectory. However, one of the most common UAV manoeuvrers is the banked turn where
a polynomial defined in x and y essentially approximates sinusoidal functions. For banked
turns that result in a large change in heading, the polynomial can not approximate the large
trigonometric segment as effectively as it can for a shorter segment. This insufficient ap-
proximation can result in unrealistic trajectories.

For a polynomial in heading and velocity, the banked turns are easily represented. However,
the major drawback of these polynomials is the inability to control specific coordinates.
This drawback prevents a repeated surveillance trajectory where the start and end position
and heading are equal. Thus, both polynomials will be used here with the majority of the
trajectory defined by a series of nh heading polynomials with an x and y polynomial used to
return the UAV to the starting coordinate. In this case, the velocity polynomial is ignored to
simplify the problem given that there would be little reason for the UAV to change airspeed
during a surveillance mission.

Starting with the return polynomial defined in x and y (where x and y are in NED (north,
east, down) coordinates with x parallel to lines of constant latitude and y parallel to lines
of constant longitude), the position ppp, velocity vvv, and acceleration aaa can be obtained as
follows:

ppp(τ) = cccτ
5 +dddτ

4 + eeeτ
3 + fff τ

2 +gggτ +hhh , (3.1)

vvv(τ) =
dppp(τ)

dτ
= 5cccτ

4 +4dddτ
3 +3eeeτ

2 +2 fff τ +ggg , (3.2)

aaa(τ) =
dvvv(τ)

dτ
= 20cccτ

3 +12dddτ
2 +6eeeτ +2 fff , (3.3)

where ppp(τ) = [x(τ),y(τ)], vvv(τ) = [ẋ(τ), ẏ(τ)], and aaa(τ) = [ẍ(τ), ÿ(τ)]. In addition, τ ∈ [0,τ f ]

where τ f = t f − t0 with t0 and t f being the respective start and end times of the polynomial.
The 1×2 vectors, ccc, ddd, eee, fff , ggg, and hhh, define the polynomial with the first column defining
the x-axis and the second column defining the y-axis.

The start point of the polynomial consists of a position, velocity, and acceleration denoted
by ppp0, vvv0, and aaa0. Similarly, the end point consists of ppp f , vvv f , and aaa f . These values can be
obtained by recalling that the return polynomial connects the last coordinate from the heading
polynomials to the initial starting coordinate. As a result the following can be stated: ppp0 = pppE

where pppE indicates the last coordinate reached by the heading polynomials; ppp f = pppS where
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pppS is the initial starting coordinate of the whole trajectory; vvv0 = [VE cos(ψE), VE sin(ψE)]

where VE and ψE are the airspeed and heading of the UAV at the last coordinate reached;
vvv f = [VE cos(ψS), VE sin(ψS)] where ψS is the initial heading of the UAV for the whole
trajectory; aaa0 = [a∥E cos(ψE)−a⊥E sin(ψE), a∥E sin(ψE)+a⊥E cos(ψE)] where a∥E and a⊥E

are the respective parallel and normal accelerations to the UAV’s forward direction at the last
coordinate reached; aaa f = [a∥S cos(ψS)− a⊥S sin(ψS), a∥S sin(ψS)+ a⊥S cos(ψS)] where a∥S

and a⊥S are the initial UAV’s respective parallel and normal accelerations (where a∥S is taken
to be 0). Fig. 3.1 outlines the components of the return polynomial trajectory.

yg

xg

p0pxE

pyE

pfpxS

pyS

VE

a⊥E

ψE

VS

a⊥S

ψS

a‖E

a‖S

Figure 3.1: Illustration of the return polynomial components. pxE and pyE indicate the last
x and y position of the combined heading polynomials while pxS and pyS indicate the initial
starting position of the whole trajectory.

Using the 3 polynomial start conditions in conjunction with equations (3.1), (3.2), and (3.3),
the following can be obtained:

ppp(0) = ppp0 = hhh , (3.4)

vvv(0) = vvv0 = ggg , (3.5)

aaa(0) = aaa0 = fff . (3.6)

Substituting the 3 polynomial end conditions (ppp(τ f ) = ppp f , vvv(τ f ) = vvv f , and vvv(τ f ) = vvv f )
and the 3 polynomial start conditions ((3.4), (3.5), and (3.6)) into equations (3.1), (3.2),
and (3.3) gives 3 simultaneous equations. Solving the simultaneous equations gives the
following:

eee =(−τ f
2(aaa0−3aaa f )−4τ f (3vvv0 +2vvv f )

−20(ppp0− ppp f ))/(2τ f
3) ,

(3.7)

ddd =(τ f
2(3aaa0−2aaa f )+2τ f (8vvv0 +7vvv f )

+30(ppp0− ppp f ))/(2τ f
4) ,

(3.8)

ccc =(−τ f
2(aaa0 +aaa f )−6τ f (vvv0 + vvv f )

−12(ppp0− ppp f ))/(2τ f
5) .

(3.9)
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For the heading polynomials, similar methods are used. The polynomials obtained are for
ψi(τi), ψ̇i(τi), and ψ̈i(τi) for i = 1, ...,nh. Note that for each segment ψ̈0 and ψ̈ f are taken to
be 0. Also note that the end conditions of a given polynomial i are equal to the start conditions
of subsequent polynomial i+1. This continuity allows for each polynomial to be defined in
the time domain by τ given that the initial polynomial starts at time 0. Furthermore, given
continuity at the polynomial boundaries, the nh heading polynomials can be combined to
form one continuous entity. Additionally, including the return polynomial (for a total of nw

polynomials) forms another continuous entity. It is necessary to differentiate between the
two as certain properties are evaluated differently for the return polynomial (in x and y) but
the full trajectory is still required.

In order to obtain various properties (such as the aerodynamic and propulsive components)
along the trajectory in a computationally efficient manner, both the combined heading poly-
nomials and the return polynomial were discretised with a spacing of ∆τf (taken to be 1 s).
The total number of discrete points along the combined heading polynomials is given by
kh = ⌊tnh f /∆τf⌋+1 while the total number of discrete points along the full trajectory is given
by kw = ⌊tnw f /∆τf⌋+1. The evaluated position and velocity vectors for the combined head-
ing polynomials at discrete point h (for h = 1, ...,kh) in x and y are then given by ppph and vvvh

respectively.

For the heading polynomials, the velocity in x and y can be obtained for a given heading ψh

and airspeed Vh (equation (3.12)) at a given step h with the following:

vvvh = [Vh cos(ψh),Vh sin(ψh)] . (3.10)

In order to determine the return polynomial, the final coordinate in x and y needs to be
calculated. With the use of the trapezoidal rule for numerical integration applied to equation
(3.10), the position can be updated as follows:

ppph = ppph−1 +∆τ
vvvh + vvvh−1

2
. (3.11)

As previously stated, each polynomial is defined by its start and end conditions as well as
the value of τ . For the polynomial in x and y, the start and end conditions are already known,
and as such the polynomial is simply defined by the value of τ which for this polynomial
is denoted as τR. A drawback of heading polynomials not previously mentioned is that the
nature of a polynomial makes transitions overly smooth and slow (i.e. a change in heading
lasting the whole segment). These transitions are not representative of UAV flight and so for
this reason it is assumed that each segment has a constant heading rate such that a singular
segment is defined by τ and ∆ψ (which is equivalent to ψ f −ψ0). The heading rate is then
taken as ∆ψ/τ . However, this assumption results in discontinuous segments. In order to
remedy this discontinuity, transitional segments were introduced to blend the heading rates.
These segments are defined as having a fixed value of 20 s for τtr with the start and end
heading rates for the transitional segments defined as ψ̇tr0 = ψ̇i f and ψ̇tr f = ψ̇i+10 . The
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average heading rate between polynomial i and polynomial i+1 can then be used to obtain
the change in heading for the transitional segment: ∆ψtr = τtr(ψ̇i f + ψ̇i+10)/2.

For the sake of computational time, ways of reducing the search space were explored. One
such way was to replace the setting of the speed with a normalised value µV using the stall
speed Vstall and the minimum drag speed Vmd. The commonly used formulations for these
speeds were used. The normalization was done on a linear scale such that for µV = 0, the
speed would equal the stall speed, and for µV = kV , the speed would equal the minimum drag
speed. The value of kV was set to 0.288 and was chosen as such because it allows the UAV to
reach the maximum airspeed Vmax at any altitude. The equation to obtain the UAV airspeed
from the normalised value at a given step k along the combined heading polynomials is given
as follows:

Vh =Vstallh +µV
Vmdh−Vstallh

kV
, {µV ∈ R|µV ∈ [0,1]} . (3.12)

This equation would allow for the optimiser to change altitude without offsetting the UAV’s
speed while also being used to update the UAV’s airspeed throughout the heading polyno-
mials. Given that the return polynomial is defined in x and y, it is not simple to adjust the
velocity throughout its trajectory. Therefore, for the return segment it is assumed that both
the start and end velocity will be equal to the value of the velocity at the end of the last
heading polynomial.

To further heuristically reduce the search space, the value of τR for the return segment can
be replaced with a τ modifier value kτ . Since the start and end velocities are equal, the
straight line distance between the start and end coordinates of the return segment can be
used to estimate a straight line time tsl. The value of kτ is then used to modify the straight
line distance such that the value of τR is obtained as

τR = kτtsl , {kτ ∈ R|kτ ∈ [1,1.1579]} , (3.13)

where the upper value of kτ is set such that the UAV can perform a 45◦ turn with constant
speed.

In conjunction with the value of kτ for the return polynomial and the values of τi and ∆ψi

for the heading polynomials, additional parameters are used to define the trajectory. These
consist of the initial coordinate pppS, normalised airspeed µV , initial heading ψS, and altitude
of platform operation hp. The whole polynomial trajectory can then defined by vector xxx such
that

xxx = [τττ,∆∆∆ψψψ, pppS,µV ,ψS,kτ ,hp] , (3.14)

where τττ = [τ1, ...,τnh], ∆∆∆ψψψ = [∆ψ1, ...,∆ψnh], and pppS = [x10,y10].

3.2.2 Fixed-Wing UAV Fuel Consumption

For surveillance missions, the UAV will fly for as long as possible while carrying a radar
unit. For this reason, the UAV specifications were loosely based on the Northrop Grumman
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Table 3.1: UAV specifications

Parameter Unit Value

Operational ceiling, hp
max m 19800

Minimum altitude, hp
min m 11000

Maximum airspeed, Vmax ms−1 186
Maximum load factor, nmax 1.035
Maximum coefficient of lift, Clmax 1.65
Wing reference area, S m2 50
Wing aspect ratio, AR 25
Zero-lift drag coefficient, Cd0 0.0135
Oswald efficiency, e0 0.75
Take-off thrust, T0 N 34000
Take-off mass, mTOW kg 11600
Fuel capacity, mfuel kg 6500

RQ-4 Global Hawk [57], [92]. Further to these specifications, it is also necessary to consider
some mission specific limits. Primarily, the UAV needs to fly above commercial aircraft
altitudes, and so the minimum altitude was set to 11000 m. It is also assumed that there is no
wind acting on the UAV. The UAV specifications are then outlined in table 3.1.

From take-off to landing, the flight is assumed to be broken into 3 stages. The first stage
encompasses the process of take-off, climb, and cruising to the start of the surveillance mis-
sion. The second stage involves carrying out the surveillance mission and the third and
final stage encompasses the process of returning to base and landing. It is assumed that the
fuel fraction (i.e. the fraction of fuel consumed during a given stage of flight) for the first
and third stage is 0.9. These fractions also account for any excess fuel required for safety.
Therefore, the initial mass of the UAV at the start of the trajectory is denoted by mI which
is equal to m2

m1
mTOW, where mTOW is the take-off mass of the UAV. Furthermore, the mini-

mum required weight of the UAV at the end of the trajectory is denoted by mF and equals
mI(mTOW−mfuel)/(

m2
m1

m4
m3

mTOW).

The rate of fuel consumption of the UAV can be calculated (equation (3.15)) as the product
of the thrust specific fuel consumption TSFC and the required thrust Trequired, both of which
are dependent on the setting of the UAV. The rate of fuel consumption can then be integrated
to obtain the total fuel consumed for a given trajectory. Given the large fuel-to-weight ratio
along with the potentially long flight times, it is important to consider the effects of the
change in UAV mass along the trajectory. This effect is achieved by incorporating the current
UAV mass mC into the required thrust equation. Since the path is discretised, the trapezoidal
method for numerical integration is then applied to update the current UAV mass at each
point in the discretised trajectory using the rate of fuel consumption as shown below.

ṁfw = Trequiredw
TSFCw , (3.15)

mCw = mCw−1−∆τf
ṁfw + ṁfw−1

2
. (3.16)
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The required thrust depends on the setting of the UAV which includes the altitude, airspeed,
current mass, bank angle, and acceleration. For the heading polynomials, the acceleration is
obtained with respect to the local coordinates. In other words, the tangential component is
tangent to the path curvature defined by the heading polynomial and is simply given by a∥h

=

(vh−vh−1)/∆τ f . The centripetal component is defined along the outward normal to the curve
and is obtained with the radius of curvature (ν = v/ψ̇) as follows: a⊥h =−vh

2/νh.

For the return segment, the polynomial is defined in x and y coordinates. However, the UAV
will fly with forward velocity along the longitudinal axis. It is then necessary to resolve the
return polynomial in the direction of the velocity vector [93]. By denoting a given velocity
vector as vvv and a given acceleration vector as aaa, the airspeed V for the return polynomial is
then simply calculated as V = ∥vvv∥.

The x and y acceleration of the UAV can be resolved along the longitudinal axis (parallel to
the airspeed) to obtain the forward acceleration for the return polynomial as follows:

a∥ =
aaaT vvv
∥vvv∥

. (3.17)

Using Pythagoras’ theorem, the centripetal acceleration for the return polynomial can then
be obtained with

a⊥ =
√
∥aaa∥2−a2

∥× sgn(axvy−ayvx) , (3.18)

where the term sgn(axvy− ayvx) is used to determine the direction of the centripetal ac-
celeration with the x and y subscripts indicating the x and y component of the respective
vector.

For obtaining the radar pointing direction, it is necessary to obtain the UAV heading. For
the return polynomial, the heading is obtained as: ψp = arctan2(py, px) where py and px

refer to the respective x and y elements of ppp (the position of the UAV), and arctan2 is the
four-quadrant inverse tan.

It is then necessary to determine the required thrust for a given setting of the UAV [93].
For a fixed-wing UAV, a banked turn is used to change heading. By banking, a horizontal
component of the lift force is generated which forms the centripetal acceleration. The UAV’s
drag during a steady level flight banked turn is then defined as

D = c1V 2 +
c2n2

V 2 , (3.19)

where

c1 =
1
2

ρSCd0, c2 =
2W 2

πe0ARρS
, n =

√
1+a2

⊥/g2 , (3.20)

where W = mCg, and g is the gravitational acceleration with value 9.80665 ms−2, and ρ is
the air density. The required thrust is then obtained as follows:

Trequired = D+mCa∥ , (3.21)
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Equation (3.15) stated that the rate of fuel consumption is the product of the required thrust
and the thrust specific fuel consumption. The next steps are to determine the available thrust
in order to determine that the required thrust does not exceed it, and also to obtain the thrust
specific fuel consumption.

The engine is assumed to be a high-bypass turbofan with an available thrust that decreases
with altitude and Mach number M. The thrust available is assumed to vary linearly with
Mach number given that the UAV operates within a fairly small band of Mach numbers
(roughly between 0.3 and 0.6). It is assumed that at M = 0.3 there is 75% of the take-off
thrust T0 and at M = 0.6 there is 60% of T0. These values were selected to provide sufficient
thrust at maximum altitude in order to maintain the maximum speed while also fitting within
reasonable variations of thrust [94]. The variation in available thrust as a function of altitude
and Mach number [95] is given by:

Tavailable = T0(µ(M−0.3)+0.6)σb1
1 σ

b2
2 , (3.22)

where σ1 = ρt/ρ0 with ρ0 the air density at sea level (with value 1.225 kgm−2) and ρt the
air density at the end of the troposphere (with value 0.3639 kgm−2). Similarly, σ2 = ρ/ρt.
Significant lack of engine data resulted in the values for b1 and b2 assumed to be 0.5 and 0.8
respectively. These values were selected in a similar manner to the values of M. The gradient
of the thrust-Mach line is denoted as µ with value (0.6− 0.75)/(0.6− 0.3), and M = V/a,
where a is the speed of sound which is assumed constant given the UAV’s region of altitude
operation.

The thrust specific fuel consumption can be obtained as a function of altitude and Mach
number [95]. However, the effect of altitude on TSFC is a function of temperature and in
this case (within the region of 11000 m and 20000 m) the temperature is taken as constant.
Thus, the thrust specific fuel consumption can be calculated as

TSFC = TSFC0Mα , (3.23)

where TSFC0 was taken to be 2.55e−5 kgN−1 s−1 and α was taken to be 0.6 which is typical
for a high-bypass turbofan.

The value of TSFC and Trequired can now be evaluated at any point on the whole trajectory,
and thus the equations to obtain fuel consumed and change in UAV mass (equations (3.15)
and (3.16) respectively) can be used to obtain the total fuel consumed:

mconsumed = mI−mCkw
, (3.24)

where mCkw
is the UAV weight at the end of the trajectory.
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3.2.3 Radar Coverage

To obtain the coverage of the radar, a method of representing the sensor and how it cov-
ers a given area needs to be implemented. Two aspects will be considered with regards to
coverage. The first, the probability of detection at a point within the area, and the second,
the revisit time to a point within the area. The probability of detection, as the name sug-
gests, mathematically encapsulates the probability of detecting a specific target. The revisit
time is the time between repeated coverage of a given point in the search area. As the UAV
moves around the search area, the main beam of the radar will intersect the surface, thus
increasing the probability of detection and resetting the current revisit time to zero for those
points within the beam. Ideally, the probability of detection is to be maximised while the
revisit time is to be minimised. There is thus an inherit trade off between the two. It should
be noted that the target interest and probability of target location are uniformly distributed
across the search area.

In order to determine the global coverage for a given trajectory in an efficient manner, the
search area was discretised into an evenly spaced x-y search grid consisting of ng nodes
(where x is along north, y is along east, and z is assumed sea level (i.e. 0 m)). The search
grid is defined in terms of the node spacing ∆G (which sets in meters how far apart each
node is along each axis), and the number of nodes ng

x and ng
y in the x and y axis respectively.

Both node numbers are taken to be odd such that there is a definite center node (note that the
center of the search grid is always taken to be 0 rad in latitude and longitude, and (0,0,0)
in NED coordinates). The total number of nodes ng in the search grid is therefore equal to
ng

xng
y .

At each node in the search grid, the probability of detection and revisit time needs to be
evaluated for the full trajectory. These components can be evaluated by firstly representing
the probability of detection grid and the revisit time grid as matrices DDD and TTT respectively,
both of which have dimensions ng

y×ng
x .

For efficiency, the radar was similarly discretised into an x-y radar grid (and as before z is
taken to be 0) with nr nodes. Each node represents the probability of detecting a specific
target on the ground at a given relative NED coordinate to the UAV. Furthermore, due to
the relatively small size of search grids, it is assumed that the radar grid is calculated at a
latitude and longitude of 0 rad. To account for the curvature of the earth, the nodes in NED
coordinates are converted to ECEF (earth-centered, earth-fixed) coordinates to obtain the
absolute range to the UAV as outlined by equations (3.25) and (3.26).

For both the search grid and the radar grid, it is accepted that there will be some warping
effects (i.e. the spacing between nodes will not be equal) particularly near the poles of the
earth. However, there is warping effects for all methods of mapping a sphere to a 2D grid,
and this effect is only of concern if the search area (or radar range) is significantly large. In
this case, the diagonal distance between the cells of the grid deviated less than 1 m when
wrapped around the earth. This error was deemed well within reasonable limits.
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As is often the case, the full 360◦ scan of the radar may not be needed. For example, if a
thin coastal stretch is to be monitored, the maximum angular sector of the radar need only
cover the length of the coastal strip. Accordingly, sector scan is introduced to allow for this
scenario, and is defined by the sector scan angular position δ and the sector scan angular
width γ .

The radar grid represents a full scan of the radar (for any γ). Given the radial nature of a
radar scan, the number of nodes in the x-axis is equal to the number of the nodes in the y-
axis, and is given by nr

xy = 2⌊rmax/∆G⌋+1. Thus, nr = nr
xynr

xy. The matrices containing the
range, elevation from boresight, elevation from UAV, signal-to-noise ratio, and probability
of detection are denoted rrr, ΘΘΘ, θθθ

r, SNR, and PPPd respectively.

The ECEF coordinates (denoted by X , Y , and Z) of each node in the radar grid, converted
from NED coordinates (denoted xr and yr), are obtained by modifying equation (2.3) as
follows:

Xuv = ra cos(xr
uv/ra)cos(yr

uv/ra) ,

Yuv = ra cos(xr
uv/ra)sin(yr

uv/ra) ,

Zuv = ra sin(xr
uv/ra) ,

for u = 1, ...,nr
xy and for v = 1, ...,nr

xy ,

(3.25)

where subscripts u and v indicate the row and column index of a given node in the radar
grid.

The range from the UAV to an individual radar grid node in matrix rrr is obtained by modifying
equation (2.4) as follows (recalling that the radar is calculated at a latitude and longitude of
0 rad):

ruv =

√
(Xuv−hp)2 +Yuv

2 +Zuv
2 . (3.26)

The radar system outlined in section 2 was based on a typical airborne maritime surveillance
radar suitable for a long range UAV mission. This chapter deals with wide area surveil-
lance. Hence, the radar range was set to the maximum value (i.e. 185200 m), however any
combination of radar parameters could be used with this method.

For computational requirements, the surface clutter was omitted. This omission has no effect
on the optimisation problem as clutter would only affect the absolute probability of detection
and not the relative probability of detection. Consequently, the radar signal-to-noise ratio
SNR is considered rather than the signal-to-interference ratio SIR. With the use of equation
(2.12) and equation (2.19), each element in matrix SNR is given by

SNRuv =
ηNpPtxG2(Θuv)σtgtλ

2

(4π)3kBT BnFnLsysruv4 , (3.27)

where σtgt is taken to be 100 m2.

Since the radar grid represents a full scan of the radar, equation (2.11) can be modified to
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remove the azimuth component. Consequently, the radar gain G is a function of elevation
from radar boresight given in matrix form as

G(ΘΘΘ) =
4πAlAh

λ 2 sinc2(π
Ah

λ
sin(ΘΘΘ)) , (3.28)

where ΘΘΘ = θθθ
r−θB. θθθ

r is a matrix containing the elevation angle of each node from the UAV,
and θB is the the radar boresight elevation angle. Using the range to each node in the radar
grid ruv in conjunction with equation (2.8) and equation (2.7), the elevation from boresight
for each node can be obtained.

The SNR can now be obtained for any node, and thus the probability of detection PPPd can be
obtained (an example of which is shown in Fig. 3.2). Given that the target can be approx-
imated by Swerling 1 models, each element in the matrix can then be approximated [47]
as

Pduv = PFA(1+SNRuv)
−1
. (3.29)

Figure 3.2: Probability of detection radar grid at altitude hp = 15000 m. The gray area
indicates excluded nodes.

It should be noted that in order to improve computational time, several conditions were
applied during the creation of matrix PPPddd . The first of which was to disregard the radar side
lobes and ensure that only the main beam of the radar was considered. This consideration
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Figure 3.3: An example of the probability of detection radar grid with the following pa-
rameters: δ = π/2 rad, γ = π/4 rad, and hp = 15000 m. In this case, the scan time
∆τr = γ/ω̇ = 3s.

was implemented by removing any nodes that had a range ruv less than the upper and lower
slant range of the radar main beam such that r−3dB ≤ ruv ≤ r+3dB. In order to obtain the slant
ranges, equation (2.8) was used where θ

−
3dB = θ3dB + θ3dB/2 and θ

+
3dB = θ3dB− θ3dB/2.

The probability of detection for the ignored nodes was 0.

When sector scan is applied only the nodes within the sector need to be considered. The
following condition can then be used on each node in the radar grid to determine if it lies
within the sector: |ψ r

uv−ψp−δ |≤ γ/2.

The matrix PPPd provides the probability of detection for the radar grid at a given point in the
trajectory. However, it is necessary to obtain the accumulated probability of detection at each
node in the global search grid for a given trajectory. In order to calculate the accumulated
probability of detection, it is first necessary to obtain the current search grid nodes that are
aligned with the current radar grid nodes.

Given the long surveillance range, the maximum speed of the UAV, and the fast scan rate, it
is assumed that a full sector scan (for any γ) is applied at a time step equal to the equivalent
scan time. Note that the distance covered by the UAV during the time taken to scan is not
significant relative to the range covered by the radar. This assumption greatly improves
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computational efficiency by allowing the radar to be represented by one matrix. Similar to
obtaining the fuel consumption, the trajectory is discretised in τ . In this case however, the
spacing ∆τr was set to match the scan rate of the radar and was thus equal to γ/ω̇ .

A given discrete position (ppp and hp) in NED coordinates along the trajectory can be projected
to determine the NED position on the ground that is equivalent to the position of the center
of the radar grid. This ground position, obtained with equation (3.30), is then rounded to the
nearest node on the global search grid. At this point, the radar grid will be aligned with the
global search grid and thus the current probability of detection of the radar grid can be used
to update the global search grid probability of detection (or revisit time).

pppg = ppp
re

re +hp . (3.30)

For a given discrete position of the UAV projected to the ground pppg, the lower and upper
matrix indices of the global search grid that are occupied by the radar grid are given by the
1× 2 vectors mmm and nnn respectively. The index of the center node for the search grid and
the radar grid are denoted by gggg = ⌈[ng

x/2,ng
y/2]⌉ and gr = ⌈nr

xy/2⌉ respectively, where ⌈x⌉
denotes the ceiling function which returns the lowest integer greater than or equal to x. mmm

and nnn are then obtained as follows:

mmm = nint(
pppg

∆G
)+gggg−gr +1 , (3.31)

nnn = nint(
pppg

∆G
)+gggg +gr−1 , (3.32)

where, for example, m1 and m2 indicate the respective column and row index of the lower
bounds of the global search grid that is within the radar grid. Note that the function nint,
obtains the nearest integer.

The probabilities of detection for the current radar grid can then be combined with the
probabilities of detection for the global search grid. Noting that for events that are inde-
pendent and not mutually exclusive, the probability of event A or B occurring is given by
P(A∪B) = P(A)+P(B)−P(A)P(B). The appropriate nodes in the probability of detection
search grid can then be updated as

DDD jk← DDD jk +PPPdw−DDD jk ◦PPPdw , (3.33)

where j = m1, ...,n1 and k = m2, ...,n2 which indicate the respective row and column indices
of the search grid nodes that are within the radar grid. Note that the Hadamard product is
used for element wise multiplication. An additional check of j and k is applied to ensure
that each value lies within the bounds of the search grid such that 1≤ j≤ ng

y and 1≤ k≤ ng
x .

Values that do not satisfy this condition are ignored. PPPdw indicates the radar grid probability
of detection PPPd at discrete point w on the trajectory (with a time step of ∆τr used).



CHAPTER 3. TRAJECTORY OPTIMISATION FOR RADAR SURVEILLANCE 53

In order to obtain the average revisit time, three quantities are required for each node in the
search area grid: the number of visits by the radar T n, the total revisit time T t, and the current
revisit time T c.

Due to the discretisation of the search area, radar area, and scan time, it is possible for a node
to enter coverage, then exit coverage, then re-enter coverage all within 3 simulation steps.
While this event is rare, a smoothing technique was nevertheless employed. This technique
ensures that nodes will only have their visit number incremented if there has been two steps
since the last increment. The update rules for the number of visits and total revisit time for
each node in the search area grid are given in equation (3.34) and (3.35) respectively.

TTT n
pq← TTT n

pq +1 , (3.34)

TTT t
pq← TTT t

pq +TTT c
pq . (3.35)

On the first step of the simulation, p and q are equal to j and k respectively. These indices
result in the visit count T n of each search grid node within radar coverage being incremented
by 1, in addition to the total visit time T t being incremented by the current revisit time T c.
On the second step of the simulation, p and q indicate the respective row and column indices
of the search grid nodes which have newly entered radar coverage. From step 3 until the end
of the simulation, p and q indicate the respective row and column indices of the search grid
nodes which have newly entered coverage and have not been incremented in the previous
2 steps. To update the revisit time search grid, the whole grid is firstly incremented by the
current scan time (i.e. the time that has passed since the previous scan) as follows:

TTT c← TTT c +∆τr . (3.36)

The current revisit time search nodes that are within the radar grid are then multiplied by
either 0 or 1 depending on whether the probability of detection is 0 or greater than 0 respec-
tively. The current revisit time for these nodes is therefore equated as follows:

TTT c
jk← TTT c

jk ◦⌊(1−PPPdw)⌋ . (3.37)

In order to obtain the average revisit time for the whole search area, the remaining revisit
time at the the end of the trajectory needs to be accounted for. As such, the nodes which
were covered at both the start and end of the trajectory have their visit counts reduced by
1. This criteria does not include those nodes which were within radar coverage for the full
trajectory (i.e. having a visit count equal to 1). Additionally, the nodes within TTT t which
were not covered at the start/end have their corresponding elements from TTT r added, with ∆τr

subtracted from these nodes to account for the start and end step being equivalent. With
the remaining revisit time accounted for, the average revisit time T for a given node is then
simply the total revisit time divided by the number of visits:
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T = T t/T n . (3.38)

3.3 Optimisation

3.3.1 Cost Function

The objective is to find trajectories that simultaneously minimise fuel consumption, max-
imise the probability of detection within the search grid, and minimise the revisit time within
the search grid. In order to achieve this objective, a cost function must be defined for each
of the 3 criteria.

The cost for probability of detection is 1 minus the mean probability of detection for a given
search grid (recalling equation 3.33). Note that PSO is not a gradient descent method, and
so the derivative of the cost formulation has no affect on the optimisation. This cost can be
equated as follows:

JD = 1− 1
ng

ng
y

∑
j=1

ng
x

∑
k=1

DDD jk . (3.39)

Similarly, the cost for revisit time is given by the mean revisit time for a given search grid
(recalling equation 3.38)

JT =
1
ng

ng
y

∑
j=1

ng
x

∑
k=1

TTT jk . (3.40)

For the fuel consumption cost, the cost is simply the mass of the fuel consumed (recalling
equation 3.24):

Jm = mconsumed = mI−mCnτ
. (3.41)

The input to the cost function was the UAV trajectory xxx defined by equation (3.14) in section
3.2.1 where most of the upper and lower values were outlined in either section 3.2.1 or in
table 3.1. For a constrained optimisation problem there needs to be limits placed on all
inputs. The limits for τττ , ∆∆∆ψψψ , and pppS are heuristically chosen to allow for a singular segment
to cover either a relatively short or relatively long distance.

However, certain constraints can not be applied to the cost function input and instead must
be applied within. For example, in order to ensure that the UAV does not stall, each value for
the velocity along a given polynomial must be checked. The constraints that are within the
cost function are outlined in equation (3.42). The first of these checks that the airspeed of
the UAV at each discrete point along the trajectory neither stalls nor exceeds the maximum
airspeed. The second, checks that the thrust is greater than or equal to zero (i.e. no reverse
thrust) and less than or equal to the available thrust. The third, checks that the load factor
of the UAV is less than the maximum load factor. The final constraint checks that the UAV
weight is not less than the minimum required UAV weight at the end of the trajectory. All of
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these combined are used to determine if a given polynomial is feasible.

vstall ≤vw ≤ vmax, w = 1, ...,kw ,

0≤Tw ≤ Tavailable, w = 1, ...,kw ,

nw ≤ nmax, w = 1, ...,kw ,

mF ≤mCkw
.

(3.42)

Rather than check each discrete point, the maximum or minimum of each value (excluding
the minimum load factor and maximum UAV weight) was used as the input to either equation
(3.43) or (3.44) depending on whether the upper or lower bounds are being checked. These
equations penalize the violation of a given constraint such that the further the value exceeds
the bounds, the greater the violation cost. This penalty helps guide the optimisation algorithm
towards feasible solutions.

cl(x) =

ε
(
1+ xmin−x

xmax−xmin

)2
, if x < xmin

0, otherwise
(3.43)

cu(x) =

ε
(
1+ x−xmax

xmax−xmin

)2
, if x > xmax

0, otherwise
(3.44)

where cl(x) and cu(x) are the violation costs for the lower and upper bounds respectively. ε

influences the magnitude of violation cost and was heuristically chosen to be 1e5.

Recalling the issues that a polynomial in x and y has for changes in heading approximately
greater than 45◦, an additional violation cost is added. This cost is denoted as cψ and is
obtained with equations (3.43) and (3.44) where the minimum and maximum values were
set to −45◦ and 45◦ respectively.

To avoid a trajectory appearing within a trajectory, an additional violation cost was added.
This cost ensured that the total absolute change in heading was less than 720◦ which pre-
vented 2 full 360◦ rotations occurring within the trajectory. The total change in heading was
obtained by summing the absolute change in heading for each segment. The cost is denoted
by c∆ψ and obtained with (3.44) with the condition changed to x≥ xmax.

Lastly, for the surveillance of a given area it is required that the whole area is covered.
Therefore, an additional violation cost is applied to ensure that every node is visited. This
cost is simply the sum of the total unvisited nodes scaled by a factor of ε and is denoted by
cR.

Since these constraints are not applied on the input, there is no absolute guarantee that a
trajectory can be obtained that will satisfy them. However, the cost for violating these con-
straints can be set to a degree that near guarantees that the solution will fall within the con-
straints (assuming such a trajectory is possible). The total violation cost Jc is then the sum
of each violation cost for every polynomial in the trajectory. This cost is equated as fol-
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lows:
Jc = cR + c∆ψ + cψ + cl

V + cu
V + cl

T + cu
T + cu

n + cl
mC

, (3.45)

where, for example, cl
V is the violation cost for the lower bounds of the UAV airspeed

V .

The vector of cost functions is given in equation (3.46). Only solutions that do not violate
the constraints within the cost function are desired and thus the violation cost is added to the
cost vector. This approach ensures that feasible solutions are considered more optimal than
non-feasible solutions.

JJJ = [JD,JT ,Jm]+ Jc (3.46)

The multi-objective optimisation problem is then formulated as follows:

minimise
xxx

JJJ(xxx)

subject to τmin ≤ τi ≤ τmax, i = 1, ...,nh,

∆ψmin ≤ ∆ψi ≤ ∆ψmax, i = 1, ...,nh,

pppmin ≤ pppS ≤ pppmax,

0≤ µV ≤ 1,

ψSmin ≤ ψS ≤ ψSmax,

1≤ kτ ≤ 1.1579,

hp
min ≤ hp ≤ hp

max

(3.47)

3.3.2 Multi-Objective Particle Swarm optimisation

Outlined by Kennedy and Eberhart [69], particle swarm optimisation is based on social be-
havior of swarms and can be used for global optimisation. For a swarm of p particles, the
position of particle d within the variable space is given by xxxd . At each iteration, the position
is updated with a velocity based on its own best position as well as the best position of the
swarm. The position update is equated as follows:

xxxd
k+1 = xxxd

k + vvvd
k+1 , (3.48)

where the velocity is updated as follows:

vvvd
k+1 = ωvvvd

k + c1rrr1 ◦ (pppd
k − xxxd

k )+ c2rrr2 ◦ (pppg
k− xxxd

k ) . (3.49)

c1 and c2 represent the cognitive learning factor and the social learning factor respectively.
In essence, these represent the weighting of the attraction between particle d’s best position
(pppd

k ) and the swarm’s best position (pppg
k), both of which are the best position in the variable

space from all previous iterations. ω is the inertia value which weights the affect of the
previous velocity. rrr1 and rrr2 are vectors of the same length as x, containing random numbers
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Table 3.2: Multi-objective particle swarm optimisation parameters

Parameter Value

c1 1.5
c2 1.5
ω 0.3
Maximum iterations 1000
Swarm size 3600
Maximum Pareto front size 250
Mutation probability 1/length(xxx)

with range [0,1] with uniform distribution.

The original PSO algorithm only optimises for one variable so given the nature of the prob-
lem, a multi-objective PSO (MOPSO) algorithm was required. The algorithm selected for
in this instance is OMOPSO [96] which was shown to be the most salient [97] of several
MOPSO algorithms. Given that more than one cost function is being optimised for, there is
more than one solution that could be considered optimal. A solution is considered Pareto-
optimal if there exists no alternative solution where any of the costs will be further minimised
whilst none of the costs are further maximised. The set of Pareto-optimal solutions is known
as the Pareto front. OMOPSO uses crowding distance to reduce the size of the Pareto front
and also uses mutation to diversify the swarm search. For the mutation, the swarm is sub-
divided into three sets of equal size with each subset having a different mutation scheme
applied (no mutation, uniform mutation, and non-uniform mutation). The global best used
in equation (3.49) is then selected using the particle with the least particles dominated, and in
the case that multiple particles meet this criteria, then the particle with the maximum crowd-
ing distance is chosen (failing a singular choice, a particle is then chosen randomly from
those that meet both criteria).

For high dimensional search spaces, the initialization of the particles can have a significant
effect. A method to improve the initialization is outlined by Richards and Ventura [98] which
uses centroidal Voronoi tessellations. The parameters used within the OMOPSO algorithm
are outlined in table 3.2.

3.4 Results

This section outlines the results for two commonly seen scenarios for airborne maritime
radar surveillance. The first, scenario A, is a large square area whilst the second, scenario B,
is a thin curved coastal strip. For these scenario, the number of heading polynomials nh was
taken to be 6 and 7 respectively with a grid spacing ∆G taken to be 2000 m. Furthermore, it
is assumed for both scenarios that the radar was stabilised against platform motion.

For each of these scenarios, a Pareto front is obtained with several examples plotted. The
Pareto front would allow a trajectory to be selected for a given mission based on further
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criteria (e.g. minimum revisit times, minimum probability of detection, and total surveillance
time required).

The results were obtained with the use of MATLAB used in conjunction with a i7-6700 pro-
cessor and 16GB of RAM. For each scenario, the simulation was run several times in order
to ensure repeatability amongst the solutions. The average execution time for scenario A
was 709171s ( 8.2 days) while for scenario B it was 611845s ( 7.1 days). Whilst these times
show the significant computational cost, this method is intended to be used with predefined
search areas where the optimisation is performed once in advance. It is also worth recall-
ing that the persistent surveillance trajectories optimised here are several hours longs, which
partially explains the computational cost. The execution time could be improved by using
more powerful hardware, a compiled programming language, and/or reducing several of the
scenario and optimisation parameters.

3.4.1 Scenario A

The scenario being optimised for in this case involves a large rectangular grid, specifically
400 km by 400 km, such that the full radar beam (γ = 360◦) fits within the area. For this
scenario, the constraints for τi were heuristically chosen as τmin = 300s, τmax = 2500s.

For this search area, constraining the start position to one quadrant of the area has zero effect
on the results. As such, the upper and lower limits on pppS were simply set to 200000 m and
0 m respectively. For the same reason, the upper and lower limits for the initial heading ψS

were set to π/4 and −3π/4 (i.e. along the diagonal of the search area). Additionally, and
since trajectories with a total absolute change in heading greater than 720◦ were undesired,
the limits of ∆ψ were heuristically set to π and−π/4 to prevent the trajectory doubling back
on itself.

The Pareto front obtained from the optimisation is shown in Fig. 3.5. It was observed that
the majority of the trajectories fell under three broad archetypes based on their geometric
similarity. Each archetype consists of a series of segments which alternate between a large
turn and a small turn (or no turn). The archetypes are differentiated by the number of turning
segments which is 2, 3, and 4 for the racetrack, the rounded triangle, and the rounded square
respectively. The fact that every trajectory within each archetype shared a common geometric
theme is an interesting result as opposed to their being a large variety of differing solutions.
Furthermore, the geometrical simplicity of the archetypes would make them more likely to
be accepted for practical use over intricate trajectories that are far removed from the current
industry standards.

In general, each archetype occupied an area within the Pareto front. Specifically, for prob-
ability of detection, revisit time, and fuel consumption, the rounded square offered low to
medium values for each. Additionally, the rounded triangle provided medium to high val-
ues, whilst the racetrack only offered high values. Three trajectories were selected from the
Pareto front to highlight these archetypes as shown in Fig. 3.4.
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Trajectory (a) shows a rounded square path which provides low fuel consumption and low
revisit times at the cost of low probability of detection. By flying close to the center of
the search area, the total distance traveled is minimised. For this trajectory, the UAV flies
at an altitude of 12715 m and an airspeed of 128.84 ms−1 which is slightly above than the
airspeed for maximum endurance. This airspeed further reduces the fuel consumption while
also improving the revisit time.

Trajectory (b) shows a rounded triangle path which has both a high probability of detection
and low revisit time at the cost of high fuel consumption. The path covers a large distance
thus increasing the probability of detection while also maintaining a short distance to the
center which lowers the revisit time. With an altitude of 11021 m, the area covered by the
radar is nearly maximised at the cost of fuel consumption. However, the UAV flies at an
airspeed of 112.31 ms−1 which is just below the maximum endurance speed. This speed
helps minimise the fuel lost due to the low altitude and large path.

Trajectory (c) shows a large but narrow racetrack path. The narrowness allows for the radar
to cover regions of the area to both sides at a given point in time. However, the path must
travel nearly the length of the area in order to cover the central regions. This results in a
high probability of detection at the cost of higher revisit time and higher fuel consumption.
Similar to trajectory (b), the altitude is 11007 m which maximises the area covered by the
radar. Conversely, the UAV flies at an airspeed of 93.07 ms−1 which is 19.33 ms−1 lower
than the maximum endurance speed. As a result of this speed, the probability of detection is
further increased with both the revisit time and fuel consumption increased.

To highlight a trajectories behavior, the time history of trajectory (b) is shown in Fig. 3.6.
Most notably, there are fluctuations in the return segment polynomials which is the main
drawback of the x and y polynomial. However, this drawback is accepted due to the need for
the UAV to return to the initial position with the same heading as the initial heading.

In order to highlight the performance of these trajectories within this scenario, a baseline
trajectory was used for comparison. Based on industry recommendations, a circular trajec-
tory was used as a baseline with the diameter equal to half the length of the square area.
This trajectory is shown in Fig. 3.10 and Fig. 3.11. Additionally, the UAV was flown at the
maximum endurance speed at an altitude of 11000 m. It was found that 3 trajectories from
the Pareto front were better than the baseline trajectory with regards to all 3 cost functions.
This few number of trajectories shows that the baseline is not too far from the optimised
trajectories, though there is still improvement that can be made. For example, one of these
trajectories (not shown) offered a 2.54 % decrease in revisit time, a 2.40 % decrease in fuel
consumption, and a 0.16 % increase in probability of detection. Additionally, the Pareto front
offers trajectories in any direction in terms of cost (e.g. a trajectory which saves more fuel at
the cost of probability of detection).
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3.4.2 Scenario B

In this scenario, the trajectory is to be optimised for the surveillance of a coastal strip. A
curved coastal strip was set up where the curvature was assumed to be circular. For this
scenario, it is commonly required for the radar to operate with a sector scan pointing to one
side of the UAV. Based on this scenario, the angular position δ was set to π/2 rad, the angular
width γ set to π/3rad, and the scan rate set to π/18rads−1. For this case, the trajectory
will simply move around the coastal strip. As a result, several heuristics were employed to
reduce the search space and thus execution time. The starting position pppS was constrained
to start at some point on the north-west side of the coast with the initial heading ψS fixed
in the direction of the coastal curvature. The upper and lower bounds of τi and ∆ψi were
then set such that there would be two large segments (for turning around the coastal strip)
and several smaller segments on either side. The turning segments were heuristically set
with the following lower and upper bounds: τmin = 1500s, τmax = 3500s, ∆ψmin = −190◦,
∆ψmax = −160◦. Similarly for the smaller segments, the lower and upper bounds were set
as τmin = 100s, τmax = 1000s, while the bounds for ∆ψi were set such that the value would
be between 0◦ and ±0◦.

The Pareto front for this scenario is shown in Fig. 3.8 with three selected trajectories shown
in Fig. 3.7. Trajectory (a) provides low fuel consumption and low revisit times at the cost of
lower probability of detection. The UAV maintains a close distance to the search area which
means a smaller area of the radar beam intersects the area. This close proximity results
in a higher revisit time as less search area is covered by the radar at each point along the
trajectory. In this trajectory, the UAV flies at an altitude of 110059 m which allows for the
radar beam to intersect the surface at closer distances, thus allowing the UAV to maintain a
close course. Additionally, the UAV flies at 125.23 ms−1 which is well above the maximum
endurance speed. The result of this speed is a sacrifice of some fuel for a decrease in revisit
time.

Trajectory (b) provides both high probability of detection and low revisit time at the cost of
high fuel consumption. By maintaining a distance that allows for the center beam to intersect
the search area, the probability of detection is maximised. Furthermore, the UAV flies at a
low altitude (11006 m) which further increases the probability of detection by reducing both
the distance to the beam center and the range. With an airspeed (100.61 ms−1) less than the
airspeed for maximum endurance, there is more time on area for the radar at the cost of fuel
consumption.

Trajectory (c) provides high probability of detection by sacrificing fuel consumed and revisit
time. The UAV flies at an altitude of 11000 m which provides the maximum probability of
detection for the radar. With an airspeed of 92.91 ms−1 (well below the maximum endurance
speed), more time is spend on each point within area, thus maximising the probability of
detection at the cost of fuel.

In terms of path, the biggest difference between trajectory (a), (b), and (c) is the distance
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between the turns at the tips. Trajectory (a) turns sharply around the tips, to the point where
there is significantly less probability of detection at the tips. Conversely, trajectory (c) keeps
a distance that allows the radar beam to intersect more of the outer edges of the search area.
However, by keeping a far distance from the edges, the flight time is significantly increased
which increases the revisit time and the fuel consumed. Trajectory (b) provides a medium
between (a) and (c).

The time history of trajectory (b) is shown in Fig. 3.9. Notably, there are larger fluctuations
in the return polynomial relative to the fluctuations shown in Fig. 3.6. This difference is
largely due to the return polynomial having more curvature relative to the return polynomial
in trajectory (b) in scenario A. However, the fluctuation in airspeed for this case is still less
than 1 ms−1 which has little impact on performance.

The industry recommended trajectory (shown in Fig. 3.12 and Fig. 3.13) for this scenario
was such that the center of the beam intersects the center-line of the curved strip. Addi-
tionally, circular turns are performed at the ends of the area with the beam still intersecting
the center-line. As with scenario A, the UAV was flown at the maximum endurance speed
at an altitude of 11000 m. It was found that 97 trajectories from the Pareto front were bet-
ter than the baseline in all 3 cost functions. This number suggests a great improvement in
performance. For example, one of these trajectories offered a 74.33 % decrease in revisit
time, a 9.05 % decrease in fuel consumption, and a 26.71 % increase in probability of detec-
tion.

In both scenario A and B, none of the trajectories had an altitude above 14500 m. This
observation suggests that at higher altitudes, too much fuel is consumed in making up for the
lost coverage than would otherwise be saved flying at these high altitudes.
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Figure 3.5: Pareto front for scenario A. Trajectories (a), (b), and (c) from Fig. 3.4 are
indicated by larger dots with the baseline trajectory indicated by the square.
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Figure 3.6: Time history for trajectory (b) in scenario A. The dots indicate the end points
of each polynomial. Note that the timescale hides the continuous nature of the transition
between polynomials. Also note that the apparent discontinuity in heading between −180◦

and 180◦ is only due to plotting the heading within these limits.



CHAPTER 3. TRAJECTORY OPTIMISATION FOR RADAR SURVEILLANCE 65

Fi
gu

re
3.

7:
Se

le
ct

ed
Pa

re
to

fr
on

tp
ro

ba
bi

lit
y

of
de

te
ct

io
n

gr
id

s
(t

op
ro

w
)

an
d

re
vi

si
tt

im
e

gr
id

s
(b

ot
to

m
ro

w
)

fo
r

sc
en

ar
io

B
.T

he
bl

ac
k

lin
e

in
di

ca
te

s
th

e
U

AV
’s

pa
th

,w
hi

le
th

e
do

ts
in

di
ca

te
th

e
tr

an
si

tio
n

po
in

ts
be

tw
ee

n
po

ly
no

m
ia

ls
.

N
ot

e
th

at
a

lo
w

er
va

lu
e

in
th

e
pr

ob
ab

ili
ty

of
de

te
ct

io
n

gr
id

m
ea

ns
hi

gh
er

pr
ob

ab
ili

ty
of

de
te

ct
io

n
w

hi
le

a
lo

w
er

va
lu

e
in

th
e

re
vi

si
tt

im
e

gr
id

m
ea

ns
m

or
e

fr
eq

ue
nt

re
vi

si
t.



CHAPTER 3. TRAJECTORY OPTIMISATION FOR RADAR SURVEILLANCE 66

Figure 3.8: Pareto front for scenario B. Selected values shown in Fig. 3.7 are indicated by
larger dots with the baseline trajectory indicated by the square.
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Figure 3.9: Time history for trajectory (b) in scenario B. The dots indicate the end points
of each polynomial. Note that the timescale hides the continuous nature of the transition
between polynomials. Also note that the apparent discontinuity in heading between −180◦

and 180◦ is only due to plotting the heading within these limits.
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Figure 3.10: The probability of detection grid for the baseline circular trajectory.
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Figure 3.11: The revisit time grid for the baseline circular trajectory.
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Figure 3.12: The probability of detection grid for the baseline curved area trajectory.
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Figure 3.13: The revisit time grid for the baseline curved area trajectory.
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3.5 Conclusions

This chapter outlines a method for trajectory optimisation for airborne maritime radar wide
area persistent surveillance using a polynomial trajectory generation method. The considera-
tions of the dynamics, propulsion, and mission requirements of a fixed-wing UAV, as well as
a maritime surveillance radar, provide a method to obtain the fuel consumption, probability
of detection, and revisit time for a given trajectory. The polynomial trajectory generation
method provides a simple method to produce complex trajectories necessary to obtain the
UAV dynamics for the fuel consumption, dynamic limitations of the UAV, and path. By
discretising the search area and radar coverage area into grids, a computationally efficient
way of obtaining the probability of detection and revisit time for each point in the grid is
outlined.

Multi-objective particle swarm optimisation was used in conjunction with the cost function
for probability of detection, revisit time, and fuel consumption, resulting in a Pareto front of
trajectories that provide several suitable options for various UAV maritime radar surveillance
mission requirements. The results are not just in terms of path, but also in terms of the
altitude of operation and airspeed of the UAV. Results are obtained for two commonly seen
scenarios. For scenario A, the results showed repeated geometrically similar paths within
the Pareto front as opposed to a variety of differing paths. Additionally, 3 trajectories were
found that were better than the industry recommended baseline in all three cost functions.
For scenario B, 97 trajectories were found to be better than the baseline which suggests
a significant improvement. For scenario B, the main advantage of the trajectories on the
Pareto front is their sharp turns around the corner, increasing the relative time spent covering
the long sides of the search area.



Chapter 4

Imitation Learning for Radar
Operations

4.1 Introduction

4.1.1 Background

Chapter 1 outlined the need and benefits of a form of artificial intelligence that not only
learns from an operator, but acts in the same manner. This branch of AI is known as im-
itation learning (also known as learning from demonstration, apprenticeship learning, be-
haviour cloning) which encompasses a wide variety of applications. Early surveys of imi-
tation learning [99]–[102] focus primarily on robotics applications. Specifically, Schaal et
al. [99] surveyed the imitation problem to motor learning with consideration to the follow-
ing problems: movement recognition, pose estimation, pose tracking, body correspondence,
coordinate transformation from external to egocentric space, matching of observed against
previously learned movement, resolution of redundant degrees-of-freedom that are uncon-
strained by the observation, suitable movement representations for imitation, and modular-
ization of motor control. In Billard et al. [100], the imitation learning problem is surveyed
by separating the approaches into engineering-oriented approaches and biologically-oriented
approaches. This survey is weighted heavily towards the robot motor learning problem. Ar-
gall et al. [101] attempt to establish a categorical structure to the imitation learning problem,
with focus on robotics applications. In this survey, the problem is split into two phases:
the demonstration and derivation phases. In the demonstration phase, the method of gather-
ing demonstrations is categorised according to how the demonstration is executed and how
the demonstration is recorded. In the derivation phase, the policy derivation methods are
categorised according to what is learned: the state–action mapping (mapping function), a
model of the world dynamics and/or reward (system model), or a model of action pre and
post-conditions (plans). Ijspeert et al. [102] present and review the imitation learning prob-
lem with regards to non-linear dynamic systems, with particular regard to motor control and
robotics.

73
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However, these early surveys are weighted heavily towards the robotics and motor control
domain. Whilst there is overlap between the imitation learning problem in robotics and radar
operator imitation (such as acquiring demonstrations and sensory issues), the key difference
is the level at which the imitation is applied. For the robotics applications, the imitation
is at the low-level control in order to, for example, imitate joint manipulation. Recent ad-
vancements in computational power and increased demand for artificial intelligence has seen
imitation learning applied to other domains. More recent surveys by Hussein et al. [103] and
Bagnell [104] applies greater focus on these other domains which typically deal with high-
level operational imitation. Specifically, these surveys focus on the computational meth-
ods used to learn policies that solve problems according to demonstrated behaviour. These
methods can then be applied to forms of intelligent agents ranging from the aforementioned
physical robot to a software agent.

In the robotics domain, imitation learning has been used such that a robotic arm imitates
human demonstrations for object manipulation [105]–[107] and ball hitting [108], [109].
For robots with high degree of freedom such as humanoid robots, imitation learning have
been applied [110], [111] such that these robots can learn discrete actions such as standing
up, and cyclic tasks such as walking. Imitation learning has also been applied to learn low-
level control from demonstrations in other platforms such as UAVs [112]–[115] and ground
vehicles [116]–[121]. Navigational problems are one example of bridging the gap between
the low-level actuator control and the high-level decision making. Imitation learning has
been applied to this problem [118], [122], [123] in order to get a robot/vehicle to traverse
complex uncertain terrain. More recently, imitation learning has been applied to video games
[103], [124], [125].

Within the current literature, there are several reasons for using imitation learning algorithms.
One reason is that imitation learning can outperform typical non-imitation machine learning
methods. For example, in Guo et al. [126] imitation learning is applied (specifically a deep
learning method) to the same Atari benchmark in Bellemare et al. [127] with greater perfor-
mance achieved. Note that in this case, the demonstrations were from a high-performance
non-real-time agent and not a human. Another reasons for the use of imitation learning meth-
ods is to try and understand and solve problems where the goals is hard to quantify. In other
words, problems which are hard to programme but humans can easily provide demonstra-
tions [108], [114], [128], [129]. Another reason that was previously mentioned in chapter
1 is that imitation learning can provide suitable performance with far less training required
than traditional machine learning methods [27]. This reason is particularly useful where
running the task itself comes at some form of cost. However, to the author’s knowledge,
there is no literature on the use of imitation learning as a means to streamline the validation
process.
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4.1.2 Problem Formulation

Imitation learning is somewhat analogous to supervised learning in that in supervised learn-
ing the examples are represented with features and labels much like the examples in imitation
learning are represented with states and actions. In imitation learning, however, the state-
action pairs are often part of a larger collective known as a trajectory. Though, similar to
supervised learning, imitation learning aims to obtain a general mapping between the states
and actions. Below are several definitions that relate to the imitation learning problem.

Definition 4.1. As per Russel and Norvig [130], "An agent is anything that can be viewed
as perceiving its environment through sensors and acting upon that environment through
actuators".

Definition 4.2. A policy is a mapping between any state to an action. In other words, the
agent will always know which action to take for a given state if it has a policy.

Definition 4.3. A demonstration is a pair of states and actions. The state is a vector of
features describing the state at the instance the action was taken. The action is simply the
action performed by the demonstrator.

Definition 4.4. The process of imitation learning is one by which an agent uses instances of
demonstrations in order to learn a policy that performs the given task in the same manner as
the demonstrator.

One of the most difficult aspects of any machine learning problem, and imitation learning
is no exception, is the the problem representation. There are few problems where all po-
tential states and actions can be accurately accounted for in a machine learning problem.
For example, even in a simple task such as driving a remote controlled (RC) car there are
countless variables beyond the obvious that may influence the actions taken by the operator.
The operator will likely base his inputs to the RC car on the car’s current position and any
nearby obstacles. However, the operator might also use intuition to factor in the wind speed
(if it is particularly strong), or the surface type. The RC car’s position and any obstacles are
easy to measure and represent within the problem, however, wind speed and surface type are
difficult and impractical to measure accurately and their effects just as difficult to represent
mathematically. Additionally, there may be environmental information that is irrelevant. In
short, sacrifices and considerations have to be made in the problem representation such that
the state representation is adequate for training but also efficient with regards to the learning
time and any computational requirements.

4.1.3 Main Contributions

The contributions of this chapter are as follows:

1. Literature review of imitation learning algorithms and outlining the considerations re-
quired for the task of imitating a human radar operator. Suitable algorithms for this
problem are then selected.
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2. Definition of three typical maritime radar surveillance missions and how these are
consequently simulated within an interactive radar model in order to collect demon-
strations for the imitation learning algorithm.

4.2 Imitation Learning Methods

4.2.1 Overview

This sections gives an overview of the different types of imitation learning methods. Fig-
ure 4.1 shows a Venn diagram of these different imitation learning methods, outlining the
different data sources used by the methods. The purely ’trial and error’ methods (i.e. re-
inforcement learning and optimisation) rely on the agent being able to repeatedly test its
actions within the state-space and compare its performance with the operator’s performance.
The purely ’human expert’ methods (i.e. active learning) requires a dedicated demonstrator
that can be constantly queried for demonstrations. There are obviously no purely ’obser-
vation’ methods as this would be equivalent to purely observing the state with no operator
input of any form.

From the Venn diagram, transfer learning lies between ’observation’ and ’trial and error’.
The transfer learning method uses knowledge learnt from other tasks or agents in order to
learn a policy for the given task. Apprenticeship learning combines all three sections by us-
ing operator demonstrations and observations of the environment in order to learn a reward
function. An inner-loop use of reinforcement learning (’trial and error’) is then used in order
to obtain a policy from that reward function. Between ’human expert’ and ’observation’ lies
the supervised learning and structured learning methods. Structured learning (or structured
prediction) encapsulates machine learning methods that learn structured objects rather than
scalar values. For example, if the machine learning method is required to output a sentence
(i.e. a series of words), then every possible combination of words could form the output,
as would be the case in a classic supervised learning problem. However, the output could
also be defined as a structure of words, in which each word is mutually dependent on each
other word. In this case, structured learning methods can be used. These methods are more
of an expansion to the supervised learning methods as they typically use a supervised learn-
ing sub-routine. Due to the compounding error induced by the covariate shift [125], [131],
supervised learning tends to only achieve acceptable results when large amounts of data are
used. A technique to overcome this is to frame the problem as a structured prediction [125],
[132], and then query the demonstrator in order to create new training data whilst the agent
is performing within the state-space. This technique is known as structured learning. How-
ever, structured learning suffers from the same issue as active learning: the demonstrator
is required to be available to be queried by the imitation learning algorithm, which is often
not possible. Le et al. [133] provide an algorithm that uses a "virtual" expert to provide
feedback and thus "smooth" the state-trajectory, negating the use of continuous demonstra-
tor feedback. However, this algorithm is designed for dynamic and continuous state-spaces
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which are not the types of problems considered here.

Figure 4.2 shows the flow of the imitation learning process with the methods associated with
each stage. In particular, the distinction between the ’learning from demonstration’ stage and
the ’refining policy stage’ is worth noting. The ’refining policy’ stage is particularly advan-
tageous when there are errors in the demonstrations or their acquisition, or the application
of the task significantly differs from the demonstrated task due to environmental or agent
differences. However, these types of methods often require the agent to be able to carry out
many trials within the state space which can be costly and difficult.

Figure 4.1: A Venn diagram of imitation learning methods [103].

4.2.2 Algorithm Selection

In addition to requiring the agent to carry out many trials, the purely ’trial and error’ im-
itation methods are typically used for refining a policy rather than actual policy determi-
nation itself. For these reason, the purely ’trial and error’ methods are not considered for
this research. As mentioned previously, active learning and structured learning require the
demonstrator to be constantly available to be queried. This is not possible given the setup for
the problems considered in this research and, consequently, active learning and structured
learning are not considered. Furthermore, since the problem dealt with in this research has
not been considered before, transfer learning is not possible since there are no similar tasks
and demonstrations to learn from.

By the process of elimination, supervised learning and apprenticeship learning (also known
as inverse reinforcement learning) are the two remaining method types that are suitable for
the tasks considered in this research.
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Figure 4.2: A flow chart outlining the stages of imitation learning and the respective methods
used. [103].

In addition to whether the algorithm would work with the considered task setup, there are ad-
ditional features to consider when selecting an algorithm for the use of imitation learning for
the ease of qualification and validation processes. As mentioned in chapter 1, the algorithm
needs to be transparent in its decision making in order to ensure the trust of the operator.
This allows the operator to diagnose where in the process the wrong decision occurred and
why that wrong decision was taken.

Additionally, the state-action policy generated by the algorithm is required to be determin-
istic. This requirement is an extension of the required transparency mentioned above as the
policy cannot be transparent if it provides a different action for the exact same state. Further-
more, for defence applications such as the problem considered here, there is often a blanket
ban on any non-deterministic algorithms replacing an aspect of operation currently under
control by the human radar operator. Therefore, requiring the algorithm to be deterministic
meets the requirements for transparency, but primarily allows the algorithm to be considered
for operation in the first place.

As mentioned in chapter 1, for the case of radar operator data, obtaining data is a difficult
and expensive procedure. Ideally the algorithm would require as few samples as possible in
order to reach an operational performance deemed close enough to that of the operator.

4.2.3 Supervised Learning

Supervised learning methods map an input state to an output, and are categorized into clas-
sification and regression methods. A supervised learning method will learn this mapping
between input and output by inferring a function from labelled training data. Ideally, the
supervised learning algorithm will produce a function that can generalise for unseen input
data.
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Regression

Regression methods are used for problems that deal with a continuous action space, for
example a robotic actuator. If the training data consists of independent state values si and
continuous action values ai (for i = 1, . . . ,n, where n is the number of samples in the training
data), then the regression algorithm will produce a function mapping any value of s to y.
From the imitation learning examples mentioned above, some of the problems that deal with
low-level actuator control use a regression method. For example, in Muelling et al. [134] a
mapping to a continuous action space provides a smooth trajectory given that the state-space
is a high degree-of-freedom robot operating in a 3-dimensional space.

However, since the tasks considered here deal with actions in the discrete space, regression
methods are not considered.

Classification

Classification methods are used for problems where the agent’s actions can be categorised
into a finite set of discrete classes. The training data consists of n independent state value
vectors sssi where sss ∈ {s1, . . . ,sm} (with m being the length of the state value vector) and n

action classes ai where a ∈ {a1, . . . ,ak} (with k being the number of action classes). The
classification algorithm then learns from the training data to obtain a mapping between any
input state value vector iii and an action class ai.

As previously mentioned, these methods are used to deal with problems where the agent’s
actions can be considered part of a set of discrete classes. A simple example would be a
human radar operator observing targets (such as their position and speed) and consequently
pressing buttons (such as applying a sector scan on a track). Within the literature, classifi-
cation methods, of many forms, have seen abundant use for imitation learning. In Chernova
and Veloso [120], a Gaussian mixture model is used as a classifier for a corridor naviga-
tion problem and a car lane changing problem where both problems have uncertain human
demonstrations. In Sammut et al. [112], decision trees are used in order to learn flight con-
trols from a pilot flying an aircraft. Meta classifiers containing neural networks are used by
Ross and Bagnell [131] in order to learn how to play certain computer games. In Raza et al.
[135], neural network approaches and decision trees are used as classifiers for a multi-agent
soccer simulation. The classifiers take input states such as distances from the ball, goal,
and teammates in order to obtain actions such as ‘go to penalty area’ and ‘dribble towards
goal’.

Whilst there are many forms of classification algorithms, there are certain considerations re-
quired for this application of imitation learning, namely the need for transparency. Neural
network based approaches (particular deep learning methods) are not well suited to this type
of task due to their lack of transparency, and for this reason, were not considered. Decision
trees, whilst transparent break each decision into binary options, which is not suited to the
problems considered here. Additionally, the structure of the decision tree is similar to that
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of the Bayesian networks, with Bayesian networks having the flexibility to have any number
of inputs and outputs to a decision node. Gaussian mixture models assume the inputs are of
a Gaussian distribution which cannot be assumed for the problems considered here. Conse-
quently, Bayesian networks (discussed in chapter 5) were considered for this research due to
their transparency and well-suited structure.

4.2.4 Apprenticeship Learning

As previously mentioned, another imitation learning approach that is suitable to the prob-
lems considered here is apprenticeship learning, otherwise known as inverse reinforcement
learning (IRL) [136], [137]. Unsurprisingly, this approach involves reinforcement learning,
and so it is necessary to cover the fundamentals of reinforcement learning. At the core of
reinforcement learning is the Markov decision process:

Definition 4.5. A Markov decision process (MDP) is a discrete-time stochastic process rep-
resenting a given state-action space. A finite MDP typically consists of a tuple (S,A,Ta,Ra),
where S is the set of states, A is the set of actions, Ta contains the probabilities of transition-
ing between states given action a, and Ra is the set of rewards obtained from taking action a

at state s.

In reinforcement learning, the aim is to take the action that maximises the expected reward
at each step in the process. In inverse reinforcement learning, the aim is to use operator
demonstrations to infer a reward function. The inferred reward function can then be used
with reinforcement learning to obtain a policy that imitates the operator. A more complete
overview of a Markov decision process, reinforcement learning, and inverse reinforcement
learning is provided in chapter 6.

As previously mentioned, there are some problems where the goal can be hard to quantify but
easy to obtain expert demonstrations. IRL has been extensively used in various car driving
problems such as lane changing [137], [138]. In Lee et al. [139], inverse reinforcement
learning is used for the game of Super Mario. And in robotics, IRL has been applied to
helicopter aerobatics [128] and robotic manipulators [140].

4.3 Task Setup

National fishing areas are sometimes infiltrated by fishing boats performing illegal fishing
operations. The monitoring of these fishing areas is therefore required to prevent future
illegal operations and intercept ongoing illegal operations. With a surveillance radar onboard
an airborne platform, there are several tasks that the human operator does as part of this
monitoring process. The first step of the imitation learning work flow is to therefore define
these tasks for which the imitation learning algorithms learn to perform. This section outlines
three tasks which were selected for testing and analysis that fully encapsulate the maritime
radar surveillance process. The first task involves selecting a track from the search area to
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investigate based on its properties. The second task involves the investigation of the track
itself, which results in decisions made on the track and consequently interacting with the
track. The final tasks involves the movement towards a track based on the returns from an
ISAR image.

The second step in the imitation learning process is to acquire the operator demonstrations.
This section also outlines the use of the real-time radar simulation outlined in chapter 2 in
order to obtain the scenario and radar information that would be observed by a human oper-
ator carrying out a real mission, and also to obtain operator decisions for the given maritime
surveillance radar missions. This scenario/radar information and the corresponding operator
decisions compromise the state-action pairs for the imitation learning algorithms.

4.3.1 Task 1

The first task in the maritime surveillance radar mission starts with the operator being pre-
sented with the plan position indicator (PPI) display with several tracks and outlined fishing
zones. The operator is then tasked with choosing which tasks to investigate and in what
order. The operator observes the position, direction, and transponder information for each
track which is displayed next to each track marker as shown in Fig. 4.3. The operator se-
lects a track by clicking the marker with the mouse, and the operator’s decision to further
investigate this track is saved. Specifically, further track investigation means if the operator
decides to apply a sector scan or communicate with the vessel. At the time of saving the data,
the information the selected track as well as the remaining tracks is saved as the operator is
deciding to select that track from as opposed to the other remaining tracks. Within the GUI,
previously selected tracks will appear green to avoid confusion.

It is desirable to investigate the tracks in fishing zones first and then only investigate tracks
outside the fishing zone when there are no tracks in the zones left to investigate. Addition-
ally, it is desirable to investigate tracks that are unknown (i.e. the track has no transponder
information). If all the remaining tracks are known, it is advantageous to look at the abnor-
malities in the size and speed of the track. The abnormalities are where the measured size
and/or speed differ from the AIS information. Tracks which differ in both size and speed
would likely be of greater priority than a track which only differs in either size or speed.
If there are no abnormalities, the tracks with certain size and speeds may indicate certain
behaviour. For example, if the track is moving fast and moving towards a fishing zone, the
operator is more likely to investigate track rather than a slow track.

4.3.2 Task 2

The second tasks deals with the track selected for investigation. Given the tasks properties,
the operator has to decide whether sector scan and/or communication with the track is re-
quired. If only sector scan is required, the decision process stops and the operator returns to
select another track. If the operator decides to communicate with the track, the response—or
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Figure 4.3: An example of the PPI display presented to the operator in task 1.

lack of—is another piece of information used to decide whether even further investigation
is required. The vessel’s reponse is shown as part of the track marker information (this is
shown in Fig 4.4). Specifically, the operator uses vessel’s response as well as the track speed
and direction in order to decide to move the radar platform towards the track in order to get
a better view.

For example, if the operator applies a sector scan to the track but does not communicate, the
operator may be wanting to keep an eye on the track without interrogating. If the operator
does want to communicate with the track, and the track does not respond, this may indicate
the vessel is performing an illegal operation.

In figure 4.4, ‘Track Velocity Vector’ shows the magnitude and direction of the track’s speed,
and ‘Transponder Vessel Type’ shows how the vessel identifies itself. There are 3 vessel
types in this scenario: not a fishing boat, fishing boat, or none (in the case of no AIS in-
formation). And ‘Transponder Typical Speeds’ fall into three categories: S_0_10 indicates
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speeds in the range of 0-10m/s, S_10_20 indicates 10-20m/s, and S_20_plus indicates speeds
greater than 20m/s. ‘Transponder Typical Size’ falls into three categories: small, medium,
and large. ‘Measured Size’ is calculated based on the SNR and range, and is scaled to rep-
resent the RCS of the vessel. The typical values for ‘Measured Size’ are: small indicates
an RCS less than 50, medium indicates and RCS greater than 50 and but less than 100, and
large indicates an RCS greater than 100.

Figure 4.4: An example of the information attached to a track marker for task 2.

4.3.3 Task 3

In the current operation of a maritime surveillance mission, the radar platform would be
flown by a pilot along a fixed trajectory allowing the radar to cover the search area. The
radar operator would then observe the target’s returns in terms of either high resolution radar
returns or as a SAR or ISAR image, and if necessary, the operator would request that the
pilot move the aircraft in a specific direction towards the target based on the radar output.
As mentioned in the section 3, the control of the platform itself must be automated in order
to realise the full capability of the autonomous radar operator. Section 3 outlines how to
automate and optimise the radar platform trajectory, but the remote radar operator may still
require the platform to deviate from the surveillance path in order to get a closer look at
a target. In this case, the UAV can fly the fixed surveillance trajectory until decisions are
requested by the system to the remote operator, where the operator can, if necessary, send
the UAV simple movement commands (e.g. forward, left, right) rather than telling a pilot
where to move.

The third task deals with the movement commands requested by the operator based on the
radar returns from track. The operator is still considering the single track which they decided
to move towards. Since the operator is interacting with the simulation as if it were the ac-
tual maritime radar surveillance system, the simulation is therefore required to be real-time.
Due to this requirement, an ISAR image generation method in conjunction with an ATR al-
gorithm was avoided. Instead, the ISAR image was represented by a probability matrix in
terms of sea state, relative azimuth and elevation between the track and the platform, SNR,
number of revisits, and vessel type. In essence, the output probability could be thought of
as the output from an ISAR image classifier. A low probability indicates that the observed
track is unlikely to be performing any illegal operations whilst a high probability indicates
that the track is likely performing an illegal operation. Furthermore, a probability such as
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0.5 indicates uncertainty in whether the track is performing illegal operations or not. This
probability that the track is performing an illegal activity is shown in the GUI next to the
track marker (as shown in Fig. 4.6). Each time the operator requests the platform to either
move towards, to the right, or to the left of the track, the probability is updated. In addition
to these three movements, the operator can also decide to declare the vessel as performing an
illegal operation or to move away from the vessel if the activity is legal. All of the platform
controls available to the operator are shown in Fig. 4.7. The platform moves a fixed distance
regardless of the movement selected. For clarity, the movement of the platform towards the
target can be considered like moving between concentric circles around the target’s position
as shown in Fig. 4.5.

Target
x

y

Figure 4.5: Diagram showing two movements made by the operator (in blue) and the respec-
tive options available to the operator at the time the decisions were made.

4.3.4 Data Collection

In order to make the most of the operator’s time, the simulation was setup for fast data
collection. Specifically, the scene for task 1 was randomised (within limits) with tracks of
varying position, heading, RCS, and vessel type. Once the operator has exhausted all tracks,
the scene was reset with a new set of randomised tracks. Additionally, there is a button for
the operator to reset the platform position to the starting point if the operator moved the
platform in task 3.

Fig. 4.8 shows the data collection process whereby both the scene information available
to the operator and the operator’s inputs are combined to form the state-action pair and then
saved. Due to the COVID-19 pandemic (see chapter ), an actual radar operator was no longer
able to use this simulation in order to collect the state-action pairs. Consequently, the author
of this thesis acted as an operator based on operational advice provided by Leonardo UK
[141].

Chapter 5 and 6 outline how the data collected with this GUI and simulation are used within
a Bayesian network framework and a inverse reinforcement learning framework respectively.
Additionally, example operator data samples are tabulated in section 5.3.



CHAPTER 4. IMITATION LEARNING FOR RADAR OPERATIONS 85

Figure 4.6: An example of the track marker showing the probability that the track is per-
forming an illegal operation. Recalling from 2.2.6, the yellow solid line indicates the current
azimuth of the radar boresight, the green lines indicate the current sector scan limits, and the
red lines indicate a designated search zone.

Figure 4.7: The platform controls available to the remote operator.
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Simulation Update

GUIOperator Inputs

Saved Data

Figure 4.8: Flowchart outlining how and where the operator data is collected.



Chapter 5

Bayesian Networks

5.1 Introduction

This chapter presents the use of Bayesian networks for learning decisions made by a human
radar operator carrying out the typical maritime surveillance missions as outlined in section
4.3. For maritime scenarios, current literature has only focused on using a Bayesian network
(BN) for identification and assessment, and often assumes inputs from a generic surveillance
sensor rather than a specific sensor such as a radar. Furthermore, in both the maritime surveil-
lance and radar operations domain, there has been no investigation into the use of operator
data in order to learn the decisions made throughout the mission. This chapter outlines the
maximum likelihood approach used to obtain BN probabilities for the decisions of a given
maritime surveillance mission. The BN is then used in place of the operator for interfacing
with the simulation in real-time in order to test the suitability of this method.

Bayesian networks, a form of AI, have been used for a wide variety of tasks in both radar
operations and in maritime surveillance. For example, investigation has been done on the use
of a Bayesian network (BN) for autonomous radar control for polar ice sheet measurements
[142]. In terms of maritime surveillance scenarios, a BN has been used for the identification
and assessment of maritime objects [143], [144]. Furthermore, a maritime simulation of
vessels was used to generate scenarios in which a BN was applied to identify suspicious
ships [145].

A BN has also been used to assist a surveillance system operator for maritime situational
assessment [146], [147]. Expert knowledge has been used to inform the contextual and
behavioural information within a scenario in which a dynamic Bayesian network was used
for behavioural based classification of maritime vessels [148]. Additionally, a BN was used
for the detection of unusual maritime activity where experts were used to set the network’s
conditional probability tables [149].

However, while some of the above works leverage expert knowledge, they don’t learn from
operator data on the scenario nor do they attempt to imitate the operator’s decisions. Fur-

87
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thermore, they don’t deal with real-time scenarios in which the operator has a sequence of
decisions to make where each decision results in more situational information. The use of a
BN for this type of imitation task has seen little use [150].

5.1.1 Main Contributions

The contributions of this chapter are as follows:

1. The design of a BN in order to imitate an operator performing several maritime surveil-
lance radar tasks.

2. The testing and analysis of the Bayesian Network approach in imitating an operator
performing several maritime surveillance radar tasks as outlined in chapter 7.

5.2 Bayesian Networks

5.2.1 Fundamentals

A Bayesian network [151]–[155] represents a series of connected nodes in the form of a
directed acyclic graph (DAG) with each node representing a variable (or event). Additionally,
each connection (or edge) represents a conditional dependency between two nodes. It is
worth noting Bayesian networks are a form of factor graphs [156] that contain probabilistic
models.

Given two events A and B, the probability of A occurring given that B has occurred can
be written as P(A|B). This probability can be obtained with the used of the conditional
probability formula which is stated as:

P(A|B) = P(A,B)
P(B)

(5.1)

Using the chain rule, the conditional probability formula can be expanded to account for any
number of events (e.g. A1, A2, ..., An):

P(An|An−1, . . . ,A1) =
P(An, . . . ,A1)

P(An−1, . . . ,A1)
(5.2)

Equation 5.2 is the fundamental equation within a Bayesian network and allows for proba-
bilities for unknown node states to be obtained given the state of any number of other nodes.
In terms of replicating an operator’s behaviour, this equation can be used to obtain the prob-
ability of an operator performing an action given information known to the operator or even
previously made decisions in the decision network.
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Table 5.1: List of the example Bayesian network decision nodes and information nodes with
their corresponding descriptions.

Node Description

IZ Track in zone
T Target has transponder
TS Track’s speed
MTT Move to track

5.2.2 Example

A simple example in the radar operator domain would be a node that represents whether or
not an operator would move towards a track. This decision could be based on, for example,
whether the track in one of the designated zones, whether the track has a transponder or not,
and the track’s speed. An example Bayesian network of this decision process is shown in
Fig. 5.1 with the node descriptions shown in table 5.1. The decision to move towards a
track is represented by the node ‘MTT’ which has two states, ‘true’ and ‘false’. This node
is dependant on whether the track has a transponder, represented in the network by node
‘T’ with states ‘true’ and ‘false’. The ‘MTT’ node is also dependant on the track’s speed,
represented by the node ‘TS’ which has states 0–10 m, 10–20 m, and ≥ 20 m which are
denoted by 0, 1, and 2 respectively. Additionally, node ‘T’ is dependant on whether a track
is in one of the designated zones which is represented by the ‘IZ’ node with states ‘true’ and
‘false’.

MTT

T TS

IZ

Figure 5.1: An example Bayesian network.

Equation 5.2 can then be used to obtain the probabilities of this network. The following is
an example for obtaining the probability of moving towards a track given that the track is
within a designated zone.

P(MTT = T |IZ = T ) =
P(MTT = T, IZ = T )

P(IZ = T )

=
∑T∈{T,F},TS∈{0,1,2}P(MTT = T,T,TS, IZ = T )

P(IZ = T )

(5.3)

It is worth highlighting that the numerator summation is effectively the marginalising of T
and TS. Equation 5.4 shows a simplification of the numerator in equation 5.3. This sim-
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IZ
T F

T
T 0.7 0.6
F 0.3 0.4

Table 5.2: An example conditional probability table for the example Bayesian network.
Specifically, this table contains the decision probabilities learned from operator data.

plification is the result of the chain rule of probability calculus (i.e. equation 5.2) as well
as reducing probabilities to only include dependant nodes as per the example Bayesian net-
work.

P(MTT = T,T,TS, IZ = T ) = P(MTT = T |T,TS, IZ = T )P(T,TS, IZ = T )

= P(MTT = T |T,TS)P(T|TS, IZ = T )P(TS, IZ = T )

= P(MTT = T |T,TS)P(T|IZ = T )P(TS|IZ = T )P(IZ = T )

= P(MTT = T |T,TS)P(T|IZ = T )P(TS)P(IZ = T )

(5.4)

The individual probabilities on the right hand side of equation 5.4 are obtained from the
conditional tables of each node. These tables are either defined manually or learned from
data. An example conditional probability table for this example is shown in 5.2.

5.2.3 Bayesian Network Parameters

The nodes within the BN are represented by the vector xxx of length m with each node xi having
parents denoted by vector uuui. In this case, the nodes are assumed to be discrete with the total
values for node xi denoted by ni. Whilst a variable in a Bayesian Network can be taken to be
continuous, this requires an assumption on its probability distribution. This distribution can
be difficult or impossible to know beforehand, and its assumption can lead to a poor repre-
sentation of the variable’s actual probability. Additionally, if any variable has a continuous
probability distribution this can still be approximated with discrete variables.

The data set obtained from the scenario and the operator’s decisions is denoted by the N×m

table DDD, where N is the number of data instances, and a given data instance is denoted by the
vector dddi of length m.

It is often the case that the data set is not complete. In other words, at least one of the data
instances dddi has a missing value. For example, if the radar operator does communicate with
the vessel, then the vessel reply is not known for that track. In the case where the data set is
not complete, it is first important to determine why data is missing. Firstly, if the data being
missing is unrelated to the missing data and unrelated to any other variable, then the data is
missing completely at random (MCAR). Secondly, in the case where the data being missing
is dependent on the data itself, then the data is said to be missing not at random (MNAR).
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For the tasks considered in this thesis, the missing data is missing at random (MAR). That
is, the fact that the data is missing is unrelated to missing data itself, but it is related to the
observed data of other variables. For example, whether or not an operator choses to fuse a
track is irrelevant to the whether or not the fuse track data is missing, though it is relevant
to whether or not the track is in the zone. An example of missing data within an instance of
operator decision data is shown in table 5.10.

There are several reasons why the collected data for a given run might be missing datum.
In the case that a decision was made that didn’t lead to information being collected (e.g. if
the operator opts not to communicate with a track, then no further information is obtained).
Or, at the time of the operator making decisions, certain information wasn’t available (e.g. a
new track appears and the operator makes decisions before all the track information has been
obtained). This case is likely to happen when an operator encounters a new track where the
available information requires an immediate decision.

The network estimates θ represent the estimated conditional probabilities for each node.
Specifically, the parameter estimate θx|uuu is used to define the probabilities of node x given
the values of the node’s parents uuu.

In the case where the operator’s data is complete (i.e. there are no missing values for each
vector dddi within the data set DDD), the empirical distribution can be used to obtain the proba-
bility of a given event x | uuu from data set D.

PDDD(x | uuu)≜
C(x | uuu)

C(uuu)
, (5.5)

where the term C(x | uuu) is the number of data instances dddi that satisfy event x | uuu.

The likelihood of the network estimates θ is defined as the probability of observing the data
set DDD under the estimates. Intrinsically, this value can be used as an overall measure of the
network’s performance in imitating the operator’s decisions. For a given setting of θ , the
likelihood of observing the data set DDD is defined as:

L(θ |DDD)≜
N

∏
i=1

Pθ (dddi) , (5.6)

Using the log-likelihood is often more convenient allowing for summations in place of prod-
ucts. The log-likelihood function is the defined as follows:

LL(θ |DDD)≜ logL(θ |DDD) =
N

∑
i=1

logPθ (dddi) , (5.7)

where Pθ (.) is the probability distribution induced by the network structure and the network
estimates θ .
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5.2.4 Expectation Maximisation

As mentioned in the previous section, the conditional probability tables which are used to
obtain decision probabilities from the Bayesian network can be learned from data. This
section outlines the expectation maximisation approach used to learn the tables from operator
decision data.

For the complete data set case, the probabilities obtained with empirical distribution (as per
equation 5.8) are, by definition, the values of θ that maximises the likelihood and thus log-
likelihood. Therefore, the network estimates θ that maximise the likelihood are obtained
as:

θx|uuu = PDDD(x | uuu)≜
C(x | uuu)

C(uuu)
, (5.8)

It is only when data is MNAR that a mechanism needs to be incorporated to account for the
missing data. Under either the MAR/MCAR scenario, the maximum likelihood approach can
be directly expanded to account for the missing data by using a local search method. The
problem described thus far involves maximising a function (in this case, the log-likelihood)
which depends on missing data. Therefore, the expectation maximisation (EM) algorithm
[152] was chosen as the local search method due to its suitability for these types of prob-
lems.

This method starts with an initial set of values for the estimates (denoted by θ 0). Using these
initial estimates, the data set is completed by obtaining the probabilities of each possible
completion for instances with missing data. Mainly, θ k is used to complete the data set
with the resulting completed data set used to obtain the new set of parameters θ k+1. This
algorithm guarantees that the new set of parameters has a log-likelihood no less than that of
the previous set of parameters. As such, this process can be iterated until some convergence
criteria is met.

For the complete data case, the counts of each instantiation were summed and divided by
the size of the data set. In the incomplete data case, rather than summing the counts, the
probabilities of each instantiation being in the completed data set are summed and divided
by the data set size. For data instance dddi, the probability of a given completion ccci being in
the data set is denoted as Pθ k(ccci|dddi) where the current set of parameters θ k is used to obtain
the completion probabilities.

For parameter set θ k, the expected empirical distribution of data set DDD is defined as:

PDDD,θ k(α)≜
1
N ∑

dddi,ccci⊨α

Pθ k(ccci | dddi) , (5.9)

where α is an event and dddi,ccci ⊨ α states that the combination of dddi and ccci satisfies α . In this
case, the summation is therefore summing over all possible cases dddi and their completions ccci
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that satisfy the event α.

Rather than obtain the expected empirical distribution which can then be used to obtain the
set of parameters, it is simpler to iterate over each data set and summing the probability of
event α given data instance dddi.

PDDD,θ k(α) =
1
N

N

∑
i=1

Pθ k(α | dddi) , (5.10)

The next step in the EM algorithm is to update the set of parameters θ k+1 which obtains the
parameter estimates at step k+1 for node x (with parents uuu). This is defined as

θ
k+1
x|uuu ≜ PDDD,θ k(x | uuu) , (5.11)

Using the conditional probability formula in conjunction with equation 5.10, equation 5.11
can be rewritten as follows:

θ
k+1
x|uuu =

∑
N
i=1 Pθ k(xuuu | dddi)

∑
N
i=1 Pθ k(uuu | dddi)

, (5.12)

In practice, the data is looped over with a ‘for’ loop, and within, a counter cxuuu at each step is
incremented by the probability Pθ k(xuuu | dddi) at step i of the loop. It should also be noted that
another counter cuuu can be obtained by summing cxuuu for all values x. This maximum like-
lihood expectation maximisation algorithm in outlined in algorithm 2 where θmll represents
the algorithm’s parameter estimates that maximise the log-likelihood.

Since the algorithm is a local search, it may converge on different parameter estimates based
on the initial parameter estimates θ0. As such, the algorithm was ran 10 times with the
values for θ0 normalised on the first run and randomised on subsequent runs. The run which
provided the highest log-likelihood was then chosen as the final network. Additionally, each
run was terminated when the log-likelihood for the network was less than a set tolerance
which in this case was heuristically set to 1e−6. In practice, only unique samples from the
data set were used where the values for cxuuu and cuuu were scaled according to the number of
times that unique samples was within the data set.
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Algorithm 2: ML Expectation Maximisation
Input:
G: Bayesian network structure (X and UUU)
θ 0: inital parameters
DDD: Data set of size N
η : Tolerance for change in log-likelihood value
Output:
θmll:
begin

k← 0
λ ← ∞

while λ > η do
cxuuu← 0
for i = 1; i < N; i← i+1 do

foreach xuuu do
cxuuu← cxuuu +Pθ k(xuuu | dddi)

end
end
cuuu = ∑

nx
i=1 cxiuuu

θ
k+1
x|uuu = cxuuu/cuuu

λ = LL(θk+1 | DDD)−LL(θk | DDD)
k← k+1

end
θ mll = θ k

end

Table 5.3: Expectation Maximisation Parameters

Parameter Value

Number of runs, nr 20
Log-likelihood tolerance, η 1e−6

5.3 Maritime Radar Surveillance Task Setup

5.3.1 Task 1

As mentioned in chapter 4, three tasks representing the stages of a maritime surveillance
mission were used to test this method. The first task involves selecting a track from a scene
containing many tracks. Since the BN outlined requires discrete inputs, a decision has to be
made on how to discretise these inputs. The operator will consider the distance of the tracks
to one of the designated zones, and so the inputs to the BN were discretise to the following
three binary input nodes:

1. Whether or not there are tracks within any of the zones

2. Whether or not there are tracks in a 10 km border of the zones.

3. Whether or not there are tracks outwith the 10 km border of the zones.
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This decision removes all other tracks not in the chosen group from consideration. For ex-
ample, the operator will likely consider the tracks within the zones first. Consequently, only
the information from the remaining tracks is used for the next decision node in the BN. The
next decision is based on whether or not any of the remaining tracks have AIS information.
Within the BN, the inputs are two binary decision nodes, where the track either does or does
not have transponder information (i.e. known or unknown). If there are unknown tracks, the
third decision node in the BN is skipped. Note that this has no effect on the probabilistic
model, and is in effect the equivalent to unknown tracks having their own input to the third
decision node. If there are no unknown tracks, an additional decision node in the BN is used
on the available tracks based on whether any of the tracks display abnormalities. In this
case, the abnormalities are whether the track speed and/or size does not fall within the typi-
cal values ranges obtained from the AIS. Whether there were known or unknown tracks, the
final decision node in the BN takes the binary input for whether or not any of the remaining
tracks are heading towards the nearest designated zone. This task is represented by the BN
shown in Fig. 5.2 with the node descriptions given in table 5.4. Three instances of operator
decision data are given for each decision node in tables 5.5, 5.6, 5.6, and 5.8. Note that the
white nodes indicate information obtained by the operator while the grey nodes indicate de-
cisions from the operator. The dotted lines indicate that the nodes are not connected within
the Bayesian network, but the decision influences the information available to that node.
The first decision node TS1 represents the decision to select the tracks within a given region
based on the observed information nodes WZ (within zone), W10 (within 10 km), NW (not
within 10 km). The next decision node TS2 represents the decision to select tracks based on
the observed information nodes K (known) and UK (unknown). The additional decision TS3
represents the decision to further select known tracks based on anomalous information. The
observed information nodes for anomalous AIS information ASAS (abnormal size, abnor-
mal speed), ASNS (abnormal size, normal speed), NSAS (normal size, abnormal speed), and
NSNS (normal size, normal speed) are determined depending on whether or not the observed
size and speed are within the normal operational bounds provided by the AIS. The final deci-
sion node TS4 represents the decision to select tracks based on the tracks’ directions relative
to their respective nearest zone. The observed information zones are T (heading towards the
nearest zones) and A (heading away from the nearest zone).
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Table 5.4: List of the Bayesian network decision nodes and information nodes for task 1 with
their corresponding descriptions.

Node Description

WZ Track is in one of the designated zones
W10 Track is within 10 km of one of the designated zones
NW Track is not in one of the designated zones
TS1 Decision to select tracks based on the connecting nodes
TS2 Decision to select tracks based on the connecting nodes
TS3 Decision to select tracks based on the connecting nodes
TS4 Decision to select tracks based on the connecting nodes
K Track is known (i.e. has AIS)
UK Track is unknown (i.e. does not have AIS)
ASAS Track has abnormal size and abnormal speed
ASNS Track has abnormal size and normal speed
NSAS Track has normal size and abnormal speed
NSNS Track has normal size and normal speed
A Track is heading away from its nearest zone
T Track is heading towards its nearest zone

TS1

WZ W10 NW

TS2

K UK

TS3

ASAS ASNS NSAS NSNS

TS4

TA

Figure 5.2: Task 1 represented as a Bayesian network. The dotted lines indicate that this
node is potentially skipped depending on previous decisions.

Table 5.5: Example radar operator data for the decision to select a set of tracks to further
investigate given where they lie relative to one of the designated zones.

WZ W10 NW TS1

True True True WZ
False True True W10
False False True NW
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Table 5.6: Example radar operator data for the decision to select a set of tracks to further
investigate given whether or not they have an AIS.

TS1 K UK TS2

WZ True True UK
NW False True UK
W10 True False K

Table 5.7: Example radar operator data for the decision to select a set of tracks to further
investigate given their speed and size abnormalities.

TS2 ASAS ASNS NSAS NSNS TS3

UK True True True True ASAS
UK False False False True NSNS
UK False True False True ASNS

Table 5.8: Example radar operator data for the decision to select a set of tracks for further
investigation.

TS2 TS3 T A TS4

UK NSAS True True T
K NSAS False True A

UK ASNS True False T
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5.3.2 Task 2

Table 5.9: List of Bayesian network decision nodes and information nodes for task 2 with
their corresponding descriptions.

Node Description

IZ Track is in one of the designated zones
AIS Target has automatic identification system
SS Apply sector scan on track
CMV Communicate with the vessel
VR Vessel’s response
TD Track’s speed
TS Track’s direction
MTT Move towards track

Table 5.10: Example radar operator data for the decision to apply sector scan and/or com-
municate with the track.

AIS IZ SS CMV VR TD TS MTT

True True False False * * * *
False True True True No AIS Towards 10–20 ms−1 True
False True True True Fishing Boat Towards 0–10 ms−1 False

Using the track selected by the first decision process, the operator will further investigate the
track. The operator then uses the track’s AIS data in conjunction with the zone region the
track lies within and decides whether or not to apply a sector scan on that particular track.
Additionally, the operator also decides whether or not to communicate with the vessel (in
the case where the vessel may have their AIS switched off, for example). The vessel’s reply
to the operator provides further information about the track’s AIS data (e.g. the lack of a
vessel reply may indicate suspicious activity). Lastly, based on the vessel’s reply, the track
direction, and track speed, the operator will make a decision about whether or not to move
towards the track in order to get a closer look.

This task is represented by the BN shown in Fig. 5.3 with the nodes summarised in table
5.9. Three instances of radar operator decision data are given in table 5.10. The observed
information nodes IZ, AIS, VR, TD, TS represent the track being in one of the fishing zones,
the track AIS data, the tracked vessel’s reply, the track direction, and the track speed respec-
tively. The state of both AIS and VR indicate whether or not the vessel type is shown as being
a fishing boat, not a fishing boat, or that there is no AIS data. The track direction indicates
whether or not the track is heading towards the nearest fishing zone. For the BN, the track
speed is discretised into three possible states: 0–10 ms−1, 10–20 ms−1, and above 20 ms−1.
The operator decision nodes SS, CMV, MTT represent the decision to apply a sector scan to
the track, communicate with the track, and move towards the track respectively.
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AIS IZ

SS CMV

VR

MTT

TD TS

Figure 5.3: Task 2 represented as a Bayesian network.

5.3.3 Task 3

The final decision process occurs when the operator decides to move towards the track in
order to get a closer look. The operator has the option of moving towards the track, to the
left of the track, or to the right of the track. For the BN, this decision is based on the previous
two movement directions as well as whether or not the change in probability was positive,
negative, or remained the same. Within a real mission, the change in position influences the
ISAR image seen by the operator which determines the decision made regarding whether or
not the track is likely to be performing an illegal operation.

Task 3 is represented by the BN shown in Fig. 5.4 with the network nodes summarised in
table 5.11. Three example instances of operator decision data are shown in table 5.12. The
first decision node M represents the move made in terms of left, forward, and right. This
decision is based on the information nodes PI1, PD1, PI2, and PD2. PD1 represent the move
made at the previous step, and PI1 represents the change in probability at the previous step.
Similarly, PD2 and PI2 represent the move made and change in probability two steps ago. For
the BN, the upper and lower limits for determining if the probability had changed positively
or negatively were 0.05 and −0.05 respectively. The final decision node A represents the
action performed based on the updated probability I. The action consists of three options:
continue moving towards the track, return to the surveillance path and note that the track is
not likely to be performing an illegal operation, or declare the track as potentially carrying
out an illegal operation. For node I, the probability was discretised into probability bands of
0.05 with a two larger bands of 0.2 in the middle as it was assumed that the operator was
likely to continue move towards the track when the uncertainty was high.
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Table 5.11: List of Bayesian network decision nodes and information nodes for task 3 with
their corresponding descriptions.

Node Description

PI1 Change in probability of performing an illegal operation one step previously
PD1 Movement made one step previously
PI2 Change in probability of performing an illegal operation two steps previously
PD2 Movement made two steps previously
M Decision for which movement to make towards the track
I Probability of the target performing an illegal operation
A Action taken based on the newly obtained target information

PD1PI1

M

PI2 PD2

I

A

Figure 5.4: Task 3 represented as a Bayesian network.

Table 5.12: Example radar operator data for the movement and action decisions relating to a
target potentially performing an illegal operation.

PD2 PI2 PD1 PI1 M I A

Forward Increase Forward Increase Forward 0.7-0.75 Continue Moving
Forward Decrease Left Increase Left 0.05-0.1 Move Away

Right Increase Right Increase Right 0.95-1.0 Declare Illegal

5.4 Conclusions

In this chapter, the use of a Bayesian network for imitating a radar operator carrying out a
maritime surveillance mission has been outlined. The network’s probabilities were learned
from operator decision data with the used of a real-time radar simulation for three common
surveillance tasks. The results of this network for the three tasks is shown in chapter 7 and
compared and contrasted with a different machine learning approach.



Chapter 6

Inverse Reinforcement Learning

6.1 Introduction

This chapter presents the use of an inverse reinforcement learning (IRL) method for learning
decisions made by a human radar operator carrying out a maritime surveillance mission. For
radar applications, the current literature has only focused on using IRL methods within spe-
cific sub-components of the radar. For example, applied to tracking [157], or as in Krishna-
murthy et al. [158], IRL is used to determine if an "enemy" radar is cognitive by considering
its sequence of emissions. However, neither of these examples use IRL in a form that lever-
ages radar operator knowledge. Specifically, the examples don’t learn from operator data on
the scenario nor do they attempt to imitate the operator’s decisions.

6.1.1 Main Contributions

The contributions of this chapter are as follows:

1. The design of a Markov decision process (MDP) to be used with an IRL method in
order to imitate an operator performing several maritime surveillance radar tasks.

2. The testing and analysis of IRL for imitating an operator performing several maritime
surveillance radar tasks as outlined in chapter 7.

6.2 Inverse Reinforcement Learning Overview

IRL can be considered a fusion of both the supervised learning problem as well as the rein-
forcement learning problem: a data set of expert actions is provided however, the algorithm
still explores the state-action space. Unsurprisingly, inverse reinforcement learning is the
inverse of reinforcement learning (RL). Reinforcement learning deals with the optimisation
of a control policy given an environment and a reward function. The result is therefore a con-
trol policy (i.e. a mapping from states to actions) for the agent that maximises the expected
reward when acting within the environment. This process is shown in Fig. 6.1.

101
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Reinforcement Learning Control Policy

Environment

Reward Function

Figure 6.1: Reinforcement learning block diagram.

Inverse Reinforcement
Learning

Control Policy

Environment

Reward Function

Figure 6.2: Inverse reinforcement learning block diagram.

Conversely, in IRL, the control policy is the input and the reward function is the output.
However, it is often the case that the control policy is inferred from sampled trajectories of
operator state-action pairs, rather than the control policy passed into the algorithm directly.
This process is shown in figure 6.2. Typically, the obtained reward function is then used in a
RL sub-routine to obtain a control policy from the reward function, and the control policy is
generalised to handle any potential state.

6.3 Reinforcement Learning

In order to discuss the fundamentals of IRL, the fundamentals of RL must be discussed
beforehand. At the core of a reinforcement learning algorithm is the Markov decision process
(MDP) [159]–[162].

6.3.1 Markov Decision Process

Definition 6.1. A finite-state MDP is comprised of a tuple (S,A,P(s′|s,a),R,γ):

• S is a finite state space (N states).

• A = {a1,a2, ...,ak} is a finite action space.

• {P(s′|s,a)} is a set of transition probabilities where P(s′|s,a) is the probability of
transitioning from state s to state s′ given action a.

• R : S→R is a reward function where R(s) determines the immediate reward at state s.
Rmax is the maximum bound for R.

• γ ∈ [0,1) is the discount factor which determines the weighting of future rewards. E.g.
a discount factor of 0.5 would mean a reward one step into the future is worth half as
much as a reward now.
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A typical Markov decision process is shown in figure 6.3 with 3 states and 2 actions. One
transition probability is shown above its respective action, and one reward is shown above
its respective state. For example, the probability of the agent transitioning to state s0 after
taking action a0 at state s1 is P(s0|s1,a0). If the agent transitions to s0, a reward of R(s0) is
obtained.

s0a0 a1 s1

R(s1)

a0 a1

s2

P(s0|s1,a0)

Figure 6.3: Example Markov Decision Process.

A policy within an MDP is defined as π : S→ A. In other words, π(s) = a describes the
policy π whereby given a state s, an action a is returned.

Definition 6.2. The value function for policy π is defined as the expected sum of (discounted)
rewards from state s.

Mathematically, the value function is stated as:

V π(s) = E
[

∞

∑
t=0

γ
tR(st)

]
(6.1)

where E is the expectation function and the value of t is the number of iterations into the
future. This can be rewritten by separating the already obtained reward of the current state
from the future states:

V π(s) = R(s)+E
[

∞

∑
t=1

γ
tR(st)

]
(6.2)

By expanding, the above can be written as:

V π(s) = R(s)+∑
s∈S

P(s′|s,π(s))
∞

∑
t=1

γ
tR(st) (6.3)

A recursive definition of the value function can then be written as:

V π(s) = R(s)+ γ ∑
s′∈S

P(s′|s,π(s))V π(s′) (6.4)

Definition 6.3. The Q-function is defined as the expected sum of rewards of policy π after
taking action a but before the transitional probabilities are considered.
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Mathematically the Q-function is formulated in equation 6.5. Note that the Q-function does
not consider the optimal policy, and is therefore a function of action a.

Qπ(s,a) = R(s)+ γ ∑
s′∈S

P(s′|s,a)V π(s′) (6.5)

Equations 6.4 and 6.5 are one form of the Bellman Equations. Note that the optimal policy
is denoted as π∗, and therefore V π∗(s) and Qπ∗(s,a) are the respective value function and
Q-function for the optimal policy. Consequently, the value function of the optimal policy at
state s will be equal to the maximum Q-function return:

V π∗(s) =
a

max Qπ∗(s,a) (6.6)

The Bellman Optimality states that for an MDP M = S,A,P(s′|s,a),R,γ , then a given policy
π : S→ A is optimal if for all s ∈ S the following is satisfied:

π(s) ∈ arg max
a∈A

Qπ(s,a) (6.7)

By subbing equation 6.5 into 6.6, the value function for the optimal policy at state s can then
be written as:

V π∗(s) = max
a

[
R(s)+ γ ∑

s′∈S
P(s′|s,a)V π∗(s′)

]
(6.8)

Since the value function has been defined iteratively, the value for each state in a finite state
space can be then be calculated. The optimal policy π∗(s) can then be found by taking the
action at state S that has the highest value for Q(s,a). A commonly used method for solving
the values is known as value iteration outlined in algorithm 3.
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Algorithm 3: Value Iteration
Input:
η : Tolerance for change in V (s)
(S,A,P(s′|s,a),R,γ): MDP Tuple
Output:
V π∗(s)
π∗(s)
begin

V (s)← 000
k← 0
λ ← ∞

while λ > η do
foreach s ∈ S do

Vk+1(s)← max
a

[
R(s)+ γ ∑s′∈S P(s′|s,a)Vk(s′)

]
end
λ = |VVV k+1(s)−Vk(s)∥
V π∗(s)←Vk+1(s)
k← k+1$

end
foreach s ∈ S do

π(s)← arg max
a∈A

[
R(s)+ γ ∑s′∈S P(s′|s,a)V π∗(s′)

]
end

end

6.4 Inverse Reinforcement Learning

Inverse reinforcement learning was initially described by Russell et al. [163] as follows:

Definition 6.4. Inverse reinforcement learning:
Given: 1) measurements of an agent’s behaviour over time, in a variety of circumstances;
2) measurements of the sensory inputs to that agent; 3) a model of the physical environment
(including the agent’s body).
Determine: the reward function that the agent is optimizing.

However, the initial formulation of the inverse reinforcement learning problem was done by
Ng and Russell [136]. It is assumed that the expert is trying to optimise an unknown reward
function, and IRL uses the expert’s sampled decisions to learn this reward function.

One of the primary challenges of IRL is that the problem of obtaining a reward function from
observations is ill-posed [136], [137], [164], [165]. In other words, there can be many reward
functions that explain the observations. For example, a reward function with all zeros RRR = 000
(or any other constant vector) results in every action producing the same reward which means
any policy is optimal. Furthermore, even multiple non-constant vector reward functions
could explain the same observations. This is due to the observations usually being in the form
of small and finite trajectories and therefore many reward functions can generate policies that
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fit the observed trajectories. Section 6.4.1 outlines how Ng and Russell address this problem.
Inverse reinforcement learning has seen a significant amount of research since the seminal
papers. However, this research largely focusses on control problems [128], [140] with, to the
author’s knowledge, no work done on decision making for mission critical systems such as
a maritime surveillance radar.

Another primary challenge of IRL is that the computational complexity grows exponen-
tially with the size of the problem. In particular, the solving an MDP suffers from the curse
of dimensionality—its size is exponential to the number of dimensions of the state-space.
This curse becomes of particular issue when the problem has an effective discretisation of a
continuous state. Additionally, the computational complexity is affected by the length and
number of trajectories provided by the operator, and the larger the state-space, the longer and
more numerous trajectories that are required in order to maintain the same level of coverage
as would be required for a smaller state-space. Section 6.4.2 outlines how Ng and Russell re-
duced the computational complexity, however, the computational complexity is not of great
concern for the the tasks considered here as the learning is done offline.

6.4.1 Linear Programming Formulation for Finite State Spaces

Ng and Russell [136] provide a characterisation for a set of reward functions for which a
given policy is optimal. Firstly, note that equation 6.4 can be written in vectorial form as
follows:

VVV π = RRR+ γPPPaVVV π (6.9)

where PPPa is an S× S matrix with element (s,s′) indexing P(s′|s,a). VVV π and RRR are vectors
with length S with element s indexing V π(s) and R(s) respectively.

For the optimal policy π∗(s), the optimal action is a∗ for any given state and thus π∗(s)≡ a∗.
By rearranging equation 6.9 and substituting in the optimal policy π∗ and the optimal action
a∗, the following can be obtained:

VVV π∗ = (III− γPPPa∗)−1RRR (6.10)

Recalling equation 6.7, and using the fact that the optimal action a∗ is identical to the optimal
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policy at state s the following can be said:

a∗ ≡ π
∗(s) ∈ arg max

a
Q∗(s,a) ∀s ∈ S

= arg max
a

[
R(s)+ γ ∑

s′
P(s′|s,a)V π∗(s′)

]
∀s ∈ S

= arg max
a

∑
s′

P(s′|s,a)V π∗(s′) ∀s ∈ S

⇔∑
s′

P(s′|s,a∗)V π∗(s′)≥∑
s′

P(s′|s,a)V π∗(s′) ∀s ∈ S,a ∈ A

⇔ PPPa∗VVV π∗ ⪰ PPPaVVV π∗ ∀a ∈ A\a∗

⇔ PPPa∗(III− γPPPa∗)−1 ⪰ PPPa(III− γPPPa∗)−1 ∀a ∈ A\a∗

This can then be rearranged to give the following condition:

(PPPa∗−PPPa)(III− γPPPa∗)−1RRR⪰ 0 ∀a ∈ A\a∗ (6.11)

This condition holds true if π(s) is optimal, however there are many cases (e.g. RRR being a
constant vector) where a solution is degenerate and consequently any policy will be optimal.
Furthermore, there are often multiple reward vectors that satisfy the above condition. Ng
and Russell applied a further constraint to favour solutions that reduce the total reward by
as much as possible when deviating from the optimal policy. This is done by finding the
solution (out of those that satisfy 6.11) which maximises the following:

∑
s

(
Qπ∗(s,a∗)− max

a∈A\a∗
Qπ∗(s,a)

)
(6.12)

By replacing the max inside the brackets with a min out of the brackets the above can be
rewritten as:

maximise∑
s

min
a∈A\a∗

[
Qπ∗(s,a∗)−Qπ∗(s,a)

]
(6.13)

In a similar manner to the derivation for equation 6.11, this can be further rewritten as:

maximise∑
s

min
a∈A\a∗

[
(PPPa∗−PPPa)(III− γPPPa∗)−1RRR

]
(6.14)

Additional criteria applied by Ng and Russell introduces L1 regularisation in order to favour
solutions with small rewards with the intuition being that they are “simpler”. Note that for L1
regularisation, ∥RRR∥1 =∑

N
i |RRRi| and it is typically applied in the form of a weight decay penalty

term i.e. −λ∥RRR∥1 where λ is adjustable. This then gives the following linear programming
formulation to obtain a reward function:

maximise
N

∑
i=1

min
a∈A\a∗

[
(PPPa∗(i)−PPPa(i))(III− γPPPa∗)−1RRR

]
−λ∥RRR∥1 (6.15)
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s.t. (PPPa∗−PPPa)(III− γPPPa∗)−1RRR⪰ 0 ∀a ∈ A\a∗, |RRRi| ≤ Rmax

Where PPPa(i) indicates the ith row of PPPa.

6.4.2 Large or Infinite State Spaces

For large or infinite state spaces the formulation outlined in the previous section becomes
problematic and it is instead easier to use linear approximations in conjunction with feature
vectors. The feature vectors φφφ(s) are composed of features (or basis functions) φi(s) which
describe the current state (e.g. distance to an object). The reward function is then just the
linear combination of the features such that:

R(s) = α1φ1(s)+α2φ2(s)+ ...+αdφd(s) = ααα ·φφφ(s) (6.16)

Where αi are unknown weighting parameters with |αi| ≤ 1 .

V π
i is denoted as the value function for the policy π when the reward function is R = φi.

Using the linearity of expectations in conjunction with this definition and equation 6.16 the
value function can then also be written as a linear function:

V π(s) = α1V π
1 (s)+α2V π

2 (s)+ ...+αdV π
d (s) (6.17)

It can be recalled from the derivation for equation 6.11 that:

∑
s′

P(s′|s,a∗)V π∗(s′)≥∑
s′

P(s′|s,a)V π∗(s′) ∀s ∈ S,a ∈ A (6.18)

Using this, the condition for the optimal policy can be generalised for the linear approxima-
tions (note the difference in the action for the transition probabilities):

EEE
s′∼P(s′|s,a∗)

[
V π∗(s′)

]
≥ EEE

s′∼P(s′|s,a)

[
V π∗(s′)

]
∀s ∈ S, ∀a ∈ A\a∗ (6.19)

This condition gives rise to two problems in particular. The first problem is that for an infinite
state space, the above condition becomes difficult or impossible to check for all possible
states. Ng and Russell instead sample a large but finite subset of states S0 and then apply
the condition for all s ∈ S0. The second problem is that the linear approximation prevents
any reward function from being expressed such that the policy π is optimal. Ng and Russell
opt to relax the above condition by introducing a function p that penalises the violation of
the condition. In the same vein as 6.15, the linear programming formulation for infinite state
spaces is then written as:

maximise ∑
s∈S0

min
a∈A\a∗

p
(

EEE
s′∼P(s′|s,a∗)

[V π∗(s′)]− EEE
s′∼P(s′|s,a)

[V π∗(s′)]
)

(6.20)
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s.t. |αi| ≤ 1, i = 1, ...,d

Where p(x) = x when x ≥ 0 and p(x) = 2x when x < 0. The penalty coefficient of 2 was
chosen heuristically by Ng and Russell.

6.4.3 Sampled Trajectories

For practical cases, access to the expert policy will not be direct but rather through a sample
of trajectories. A single trajectory is, for example, the series of actions that are captured
whilst the operator is performing a task. For the sake of simplicity, it is assumed that there
is only one start state s0 from a given fixed state distribution D. Note however, that this
assumption is without loss of generality as s0 can be a “dummy" state with any action from
s0 leading to the next state distribution D).

Given policy π , it is necessary to find an estimate for V π(s0) given any values for αi. If there
are M trajectories with policy π then the average return, if the reward was R = φi, is given by
V̂ π

i (s0). For example, for the case where M = 1 and the sequence of states for the trajectory
is (s0,s1,s2, ...) then the average V̂ π

i (s0) is given by:

V̂ π
i (s0) = φi(s0)+ γφi(s1)+ γ

2
φi(s2)+ ... (6.21)

More generally V̂ π
i (s0) would then be the average over the M trajectories. By recalling

equation 6.17 the estimate for V π(s0) is then given by:

V̂ π(s0) = α1V̂ π
1 (s0)+α2V̂ π

2 (s0)+ ...+αdV̂ π
d (s0) (6.22)

Using 6.16 and 6.1, another way of formulating this is as follows:

V̂ π(s0) =
1
M

M

∑
m=1

∞

∑
t=0

γ
tR(sm

t ) (6.23)

At the start of the algorithm [136], [166] the value estimates are calculated for the given set
of trajectories provided by the expert. Since it is assumed that the expert will provide optimal
policy trajectories, V̂ π∗

i (s0) will then be the average of over the given trajectories:

V̂ π∗(s0) = α1V̂ π∗
1 (s0)+α2V̂ π∗

2 (s0)+ ...+αdV̂ π∗
d (s0) (6.24)

The value estimates are also calculated for a “base case" random policy π1 which is used as
the first entry of Π. On the kth iteration of the algorithm, Π will be appended with policy
πk+1.

For the true reward function, the value of the expert policy V π∗(s0) should be at least greater
than or equal to any other policy V π(s0) (since it assumed that the expert provides the optimal
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policy). Thus, the aim of the algorithm is to find a reward function (specifically a setting for
the αi coefficients) that satisfies the following condition:

V π∗(s0)≥V π(s0) ∀π ∈Π (6.25)

This requires modification of the previous optimisation function to give a new linear pro-
gramming formulation:

maximise ∑
π∈Π

p
(

V̂ π∗(s0)−V̂ π(s0)

)
(6.26)

s.t. |αi| ≤ 1, i = 1, ...,d

Where as before:

p(x) =

x, x≥ 0

2x, x < 0

This optimisation obtains a reward function (specifically a setting for the αi coefficients).
The rest of the algorithm is then formed of a loop consisting of the above. Explicitly, a new
policy πk+1 is obtained that is optimal for the newly obtained reward function (this can be
solved for example using the value iteration algorithm described previously). πk+1 is then
appended to Π and the linear programming formulation is solved to obtain a new reward
function. The algorithm ends when V̂ π∗(s0)−V̂ πk+1(s0)≤ ε where ε is a set tolerance. This
algorithm is further explained in appendix A.

6.4.4 Feature Expectations

Abbeel and Ng [137] expand on the previously outlined algorithms but instead focused on
obtaining a policy rather than a reward function. However, it is still assumed that an under-
lying unknown reward function is being optimised by the expert, just that the success of this
is not necessary. Abbeel and Ng also expand on the idea of ‘features’ by introducing ‘feature
expectations’: recalling 6.16 and 6.1,

V π(s0) = EEE
[

∞

∑
t=0

γ
tR(st)

]
= EEE

[
∞

∑
t=0

γ
t
ααα ·φφφ(st)

]
= ααα ·EEE

[
∞

∑
t=0

γ
t
φφφ(st)

]
= ααα ·µ(π)
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where feature expectations µ are then defined as:

µ(π) = EEE
[

∞

∑
t=0

γ
t
φ(st)

]
(6.27)

As before, the expert’s policy is typically obtained through a set of trajectories. Expanding
on 6.23 with the use of 6.27, the feature expectations of the expert can then be estimated
with the following:

µ̂(π∗) =
1
M

M

∑
m=1

∞

∑
t=0

γ
t
φ(sm

t ) (6.28)

The key difference from the previous algorithm is that the aim is to obtain a policy which,
in terms of performance on the unknown reward function, is close to that of the expert’s. By
using feature expectations, the obtained policy will not only mimic the expert’s policy but
will also be able to perform in the manner of the expert within unseen states. Putting these
together, the aim is to obtain a policy π which satisfies the following condition:

∥µ(π∗)−µ(π)∥2 ≤ ε (6.29)

The next step is to frame the above into optimisation problem. Starting in a similar manner
to 6.25:

|V π∗(s0)−V π(s0)|= |ααα ·µ(π∗)−ααα ·µ(π)|

= |ααα · (µ(π∗)−µ(π))|

≤ ∥ααα∥2∥µ(π∗)−µ(π)∥2

≤ ∥µ(π∗)−µ(π)∥2

(6.30)

For the above, note that |xxxT yyy| ≤∥xxx∥2∥yyy∥2 and that ∥xxx∥2≤∥xxx∥1≤ 1. This shows that for
condition 6.29 to hold true then ∥ααα∥2 ≤ 1 must also hold true. Using the first line in the
above, the optimisation problem can then be given as:

maximise
t,α

t (6.31)

s.t. ααα ·µ(π∗)≥ ααα ·µ(π)+ t ∀π ∈Π, ∥ααα∥2 ≤ 1

The optimisation is trying to obtain a reward function (specifically a setting of the values of
αi) such that V π∗(s0)≥V π(s0)+ t. In other words, a reward function with which the expert
has a greater performance than any previously determined policy by a margin of t.

The max-margin approach to inverse reinforcement learning is outlined in algorithm 4 where
the concatenation of a policy π to the policy set Π is donated by Π⌢⟨π⟩:

Algorithm 4 returns a set of policies, of which at least one policy whose performance under
R∗ is at least as good as the expert’s performance minus ε . The policies in the set can be
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Algorithm 4: Inverse Reinforcement Learning: Max-Margin Algorithm
Input:
Π: Empty set of policies
ε: Tolerance for t
µE : Feature expectations from expert trajectories
(S,A,P(s′|s,a),γ): MDP\R Tuple
Output:
Π

begin
π0← random initial policy
Π←Π⌢⟨π0⟩
µ0 = µ(π0)
i← 1
while t i > ε do

Obtain t i by solving optimisation 6.31
Set ααα i to be the ααα that maximises the margin t
Obtain optimal policy π i using algorithm 3 with the MDP where R = ααα iii ·φ
Append π i to Π

µ i = µ(π i)
i← i+1

end
end

“mixed” using mixture weights λi by finding the point closest to µE in the convex closure of
µ0, ...,µn (where n is the number of policies in Π). This point, and therefore the policy, can
be obtained by solving the following quadratic programming formulation:

min∥µE −µ∥2 (6.32)

s.t. µ =
n

∑
i

λiµ
i, λi ≥ 0,

n

∑
i

λ = 1

This optimisation problem outlined in equation 6.31 can be equated to the SVM (support
vector machine) problem by assigning a label of +1 to the expert’s feature expectations µ(π∗)

while all the other policies µ(π)∀π ∈Π can be given a label of -1. The vector α in the context
of an SVM is the vector describing the normal of the hyperplane which is to be optimised to
obtain the maximum margin hyperplane. The linear SVM problem can be equated as:

minimise
ααα,b

1
2
∥www∥2 (6.33)

s.t. yi(ααα
T · xxxi +b)≥ 1 f or i = 1,2, ..., l

Note that since this formulation introduces the Euclidean norm, the formulation is no longer
linear and as such cannot be solved using linear programming methods. Instead the optimi-
sation problem is solved with quadratic programming methods. A quadratic programming
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solver provides the solution to the following:

minimise
x

1
2

xT Px+qT x (6.34)

s.t. Gx⪯ h

Therefore the SVM problem can be written in the quadratic programming form as fol-
lows:

x = [ααα,b]T

P =

[
III 0
0 0

]
q = [0, ...,0]T

G =


−y1xxxT

1 −y1
...

...
−ylxxxT

l −yl


h = [−1, ...,−1]T

The weight vector can then be normalised to ensure that the condition ∥ααα∥2 ≤ 1 is satis-
fied.

An alternative to the max-margin approach is the projection method outlined in algorithm 5.
In summary, this method replaces the optimisation step in the max-margin algorithm with
a orthogonal projection of the expert’s feature expectations onto a line through the previous
estimated expectations and the calculated expectations. The full derivation of this algorithm
is provided in Abbeel and Ng [137].
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Algorithm 5: Inverse Reinforcement Learning: Projection Algorithm
Input:
ε: Tolerance for t
µE : Feature expectations from expert trajectories
(S,A,P(s′|s,a),γ): MDP\R Tuple
Output:
π∗(s)
begin

π0← random initial policy
µ0 = µ(π0)
µ̂0 = µ0

ααα0 = µE −µ0

i← 1
while t i > ε do

ααα i = µE − µ̂ i

Obtain optimal policy π i with the MDP where R = ααα iii ·φ
µ i = µ(π i)

µ̂ i = µ̂ i−1 + (µ i−µ̂ i−1)T (µE−µ̂ i−1)
(µ i−µ̂ i−1)T (µ i−µ̂ i−1)

(µ i− µ̂ i−1)

t i = ∥µE − µ̂ i∥2
i← i+1

end
π∗← π i

end

6.5 Maritime Radar Surveillance Task Setup

Following on from section 5.3, this section outlines how the maritime radar surveillance
tasks are represented within the MDP framework.

6.5.1 Task 1

In this example, state s1
1 to sN

1 represents all possible combinations of whether a there are
tracks within, within 10 km, or not within 10 km of one of the designated zones. Action
aNW, aW10, and aW10 therefore represent the decision to select the tracks that are within one
of these states.

State sK
2 and sUK

2 represent whether or not the track has a transponder respectively (i.e. known
or unknown track). Consequently, action aK

2 and aUK
2 represents the decisions to select the

known or unknown tracks respectively.

State s1
3 to sN

3 represent all possible combinations of whether or not any of the selected tracks
have abnormal sizes and whether or not any of the selected tracks have abnormal speeds.
These actions are summarised in table 6.1.

State s1
4 to sN

4 represent all possible discrete directions each of the remaining tracks could
be heading in. In this example, these discrete directions are taken to be towards or away
from one of the designated zones, hence action aT

4 represents the decision to select the tracks
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Table 6.1: The actions for all possible track abnormality combinations.

Action Description

aAN
3 Select the tracks with abnormal speeds but normal sizes

aAA
3 Select the tracks with abnormal speeds but abnormal sizes

aNA
3 Select the tracks with normal speeds but abnormal sizes

aNN
3 Select the tracks with normal speeds but normal sizes

heading towards whilst action aA
4 represents the decision to select the tracks away.

aWZ
1aW10

1aNW
1

s1
1 sN

1

sK
2 sUK

2

aK
2 aUK

2

s1
3 sN

3

aAA
3aAN

3 aNA
3 aNN

3

s1
4 sN

4

aT
4 aA

4

. . .

. . .

. . .

Figure 6.4: Task 1 represented as a MDP.

6.5.2 Task 2

State s1
1 to sN

1 represents all possible combinations of whether the selected track’s transponder
information is anomalous or conforming and whether or not the track is within one of the
designated zones. Action a1

1 to a4
1 represent the decisions to further investigate a track with

or without anomalous transponder information and whether or not the track is within one
of the designated zones. In this context, investigate means to apply sector scan on the track
and/or to communicate with the vessel.

State s1
2 to sN

2 represents all possible combinations of the vessel’s response, the track’s di-
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rection, and the track’s speed. Correspondingly, action aMT represents the decision to move
towards the track for closer inspection, and aMA represents the decision to move away from
the track and consider another track as per task 1.

s1
1 sN

1

a2
1a1

1 a3
1 a4

1

s1
2 sN

2

aMT
2 aMA

2

. . .

. . .

Figure 6.5: Task 2 represented as a MDP.

6.5.3 Task 3

State s1
1 to sN

1 represents all possible combinations of the change in probability of the track
performing an illegal operation and the change in direction made by the operator on the
previous decisions. Consequently, a1

1 to aN
1 represent the discrete direction of movement the

operator commands the platform in.

s1
2 to sN

2 represent the discrete probability of detection bins for whether or not the track is
performing an illegal operation. The action aCM

2 represents the decision to continue moving
towards the track in order to get a better view, action aCM

2 represents the decision to return to
the surveillance path and note that the track is not likely to be performing an illegal operation,
and action aDI

2 represents the decision to declare the track as potentially carrying out an illegal
operation.
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s1
1 sN

1

a1
1 aN

1

s1
2 sN

2

aRS
2aCM

2 aDI
2

. . .

. . .

. . .

Figure 6.6: Task 3 represented as a MDP.

6.6 Conclusions

In this chapter, the use of inverse reinforcement learning algorithms for imitating a radar
operator carrying out a maritime surveillance mission has been outlined. The Markov deci-
sion networks’ policies were learned from operator decision data with the used of a real-time
radar simulation for three common surveillance tasks. The results of this network for the
three tasks is shown in chapter 7 and compared and contrasted with the previously outlined
Bayesian network approach.



Chapter 7

Comparison of Methods

7.1 Introduction

In this section, the Bayesian network approach is compared against the IRL approach for the
tasks outlined in section 4. The comparison is done in terms of their accuracy in decision
making relative to that of the radar operator as well as their suitable in terms of qualifica-
tion for operation. Additionally, different decision discretisation configurations are com-
pared.

Each maritime radar surveillance task was simulated and ran a task-specific number times in
order to capture both the information observed by the operator and the operator’s decisions.
When comparing the decisions made by the chosen algorithm relative to the operator, the
recorded operator decision data was split into training data and test data. The reason for
this is so the AI agent’s decisions are compared against situations it was not trained with.
The training data is the data instances used to train the network/policy, with the size of the
training data equal to N. The size of the test data was fixed at 100 data instances for all tasks.
The size of training data (i.e. N) was varied and the results for each variation plotted.

For each value of N, 20 networks/policies were obtained (with the order of the training
data randomised for every network) in order to ascertain a mean accuracy and error for
each method. Each of these networks/policies was tested within the simulation against the
operator’s decisions using the test data. In other words, given the same observed information,
the decisions of the AI agent were compared with the decisions previously made by the
operator. The accuracy for each decision was simply the number of correct decisions relative
to the operator divided by N.

Upon testing the different IRL methods outlined in section 6, there was no apparent dif-
ference in the policies learned for the tasks considered here. Consequently, the projection
method was selected as it did not require the additional step of policy selection.

A study [167] showed that a system must have a correctness of at least 95% to be useable
by operators. Consequently, this number was used to determine if a task was successfully

118
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learned by the chosen algorithm.

7.1.1 Main Contributions

The contributions of this chapter are as follows:

1. Firstly, two algorithms are compared in their efficacy in imitating a human radar oper-
ator.

2. The accuracy of each decision for each task are compared and contrasted.

3. Several different task variable discretisation configurations are outlined with their ac-
curacies compared and contrasted.

4. The sources of error in the AI decision making process are then discussed.

5. Lastly, the two algorithms are then discussed in terms of how well they meet the system
qualification requirements.

7.2 Results for Each Decision in Each Task

For the Bayesian network approach, the results of task 1, task 2, and task 3 in terms of
accuracy and error margins are shown in Fig. 7.1, 7.3, 7.5 respectively. And for the IRL
approach, the results of task 1, task 2, and task 3 in terms of accuracy and error margins are
shown in Fig. 7.2, 7.4, 7.6 respectively. These graphs shown the mean accuracy of each
decision node for a given number of data instances with error bars shown representing 1
standard error. Note that the difference between the two approaches is presented in section
7.4.

7.2.1 Task 1

For task 1, the decision node with the lowest initial accuracy is the selection of tracks based
on anomalous AIS information. This is due to the fact that this node is only used when the
AIS data is known, and consequently data for this node is often missing. Additionally, if the
scene has few tracks available, the track is occasionally selected before the fourth decision
is required. As such, with few data instances, the AI agent performs the fourth decision
poorly, but with high data instances is able to perform accurately. It is also unsurprising
that decisions further down the process required more data to achieve the same performance.
Data would only be seen for nodes further down the network if previous decisions were made
that led to those nodes. As such, any missions with a long sequence of decisions will require
significantly more operator data than a mission with a comparable number of decisions but
performed in parallel. However, both approaches still provided high levels of accuracy for
this mission.

The decision to select tracks with a transponder (known) or without a transponder (unknown)
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Figure 7.1: Accuracy and error in each Bayesian network decision node for task 1.

has the highest accuracy as well as requiring few data instances to reach this accuracy. This
is, recalling from section 5.3, due to the decision only having two options, as well as the fact
that the operator, baring any errors, will always select the unknown tracks. Specifically, both
approaches were able to achieve an accuracy of 0.9625 after only 10 data instances.
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Figure 7.2: Accuracy and error in each IRL decision for task 1.

7.2.2 Task 2

For task 2, it is surprising that the node furthest down the decision process performs slightly
better than the other decisions. However, this is due to the fact that this decision is more
deterministic than the other two decisions for the operator. In other words, the operator will
likely only move towards the track when the track is in specific and defined situations.

The sector scan (SS) decision initially performs worse than the CMV decision in both the
Bayesian network and the IRL approach, despite being connected to the same nodes. This
is likely due to to the operator being more deterministic in the CMV decision than the SS
decision, as the SS decision takes far less effort and has far less impact on the operational
environment than communicating with the vessel.
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Figure 7.3: Accuracy and error in each Bayesian network decision node for task 2.
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Figure 7.4: Accuracy and error in each IRL decision for task 2.
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7.2.3 Task 3
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Figure 7.5: Accuracy and error in each Bayesian network decision node for task 3.

For task 3, initially the Action decision has a higher accuracy, but at a greater number of data
instances the Move decision is higher. This is likely due to the more stochastic nature of the
move decision which results in a reduced accuracy due to the deterministic manner of the
AI.

Additionally, the Action decision plateaus around an accuracy of 0.9 with few data instances.
This is likely due the decision being simplistic in terms of there being only one input that
the operator considers, i.e. the probability of the target performing an illegal operation.
As a consequence of there only being one input for the operator to consider, the way this
input is discretised for the given imitation learning approach will greatly affect how many
data instances are required to achieve a given accuracy as well as the limit of the decision
accuracy.



CHAPTER 7. COMPARISON OF METHODS 125

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of data instances, N

ac
cu

ra
cy

M
A

Figure 7.6: Accuracy and error in each IRL decision for task 3.

7.3 Results for Each Decision for Each Discretisation

In this section, different discretisation configurations are compared for each decision in each
task. Note that in task 1, the decision to select known or unknown tracks can only have one
form of discretisation, so there are no results in this section for this decision.

For the decisions that involve a track’s distance to the nearest designated zone, the following
three different discretisation configurations were used:

• Discretisation 1

– track is within one of the designated zones

– track is within 10 km of one of the designated zones

– track is outwith 10 km of any of the designated zones

• Discretisation 2:

– track is within one of the designated zones

– track is within 5 km of one of the designated zones
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– track is within 10 km of one of the designated zones

– track is outwith 10 km of any of the designated zones

• Discretisation 3:

– track is within one of the designated zones

– track is within 3 km of one of the designated zones

– track is within 6 km of one of the designated zones

– track is within 10 km of one of the designated zones

– track is outwith 10 km of any of the designated zones

For the decisions that involve a track’s abnormalities, the following three different discreti-
sation configurations were used:

• Discretisation 1:

– track measured speed is within or not within ±15 ms−1 of the transponder value

– track measured size is within or not within ±100 m2 of the transponder value

• Discretisation 2:

– track measured speed is within ±7.5 ms−1 of the transponder value, track mea-
sured speed is not within ±7.5 ms−1 but is within ±15 ms−1 of the transponder
value, and track measured speed is not within±15 ms−1 of the transponder value

– track measured size is within ±50 m2 of the transponder value, track measured
size is not within ±50 m2 but is within ±100 m2 of the transponder value, and
track measured size is not within ±100 m2 of the transponder value

• Discretisation 3:

– track measured speed is within ±5 ms−1 of the transponder value, track mea-
sured speed is not within ±5 ms−1 but is within ±10 ms−1 of the transponder
value, track measured speed is not within ±10 ms−1 but is within ±15 ms−1 of
the transponder value, and track measured speed is not within ±15 ms−1 of the
transponder value

– track measured size is within ±30 m2 of the transponder value, track measured
size is not within ±30 m2 but is within ±60 m2 of the transponder value, track
measured size is not within ±60 m2 but is within ±100 m2 of the transponder
value, and track measured size is not within ±100 m2 of the transponder value

For the decisions that involve a track’s heading towards the nearest designated zones, the
following three different discretisation configurations were used:

• Discretisation 1:
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Figure 7.7: A polar plot showing the discretisation of the track’s heading relative to its nearest
zone. The range represents which discretisation configuration is being used, and the colour
represents which discretisation band the heading is in.

– the track’s heading is within ±90◦ in the direction the nearest designated zone
(as indicated with green in Fig. 7.7)

– the track’s heading is outwith ±90◦ in the direction the nearest designated zone
(as indicated with red in Fig. 7.7)

• Discretisation 2:

– the track’s heading is within ±45◦ in the direction of the nearest designated zone
(as indicated with green in Fig. 7.7)

– the track’s heading is between 45◦ and 135◦ or between −45◦ and −135◦ in the
direction of the nearest designated zone (as indicated with orange in Fig. 7.7)

– the track’s heading is outwith ±135◦ in the direction of the nearest designated
zone (as indicated with red in Fig. 7.7)

• Discretisation 3:

– the track’s heading is within ±30◦ in the direction of the nearest designated zone
(as indicated with green in Fig. 7.7)

– the track’s heading is between 30◦ and 60◦ or between −30◦ and −60◦ in the
direction of the nearest designated zone (as indicated with light green in Fig.
7.7)

– the track’s heading is between 60◦ and 90◦ or between −60◦ and −90◦ in the
direction of the nearest designated zone (as indicated with yellow in Fig. 7.7)
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– the track’s heading is between 90◦ and 120◦ or between −90◦ and −120◦ in the
direction of the nearest designated zone (as indicated with orange in Fig. 7.7)

– the track’s heading is between 120◦ and 150◦ or between −120◦ and −150◦ in
the direction of the nearest designated zone (as indicated with purple in Fig. 7.7)

– the track’s heading is outwith ±150◦ in the direction of the nearest designated
zone (as indicated with red in Fig. 7.7)
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Figure 7.8: A chart showing the three discretisation configurations for the target’s speed.

For the decisions that involve a track’s speed, the following three different discretisation
configurations were used:

• Discretisation 1: the track’s speed falls within one of the following ranges [0-10, 10-
20, ≥ 20]ms−1 (as indicated with the red to green scale in Fig. 7.8)

• Discretisation 2: the track’s speed falls within one of the following ranges [0-5, 5-10,
10-15, 15-20, ≥ 20]ms−1 (as indicated with the red to green scale in Fig. 7.8)

• Discretisation 3: the track’s speed falls within one of the following ranges [0-3, 3-6,
6-9, 9-12, 12-15, 15-18, 18-20, ≥ 20] ms−1 (as indicated with the red to green scale
in Fig. 7.8)

For the decision that involves the direction of movement towards a track based on its prob-
ability of performing an illegal operation, the change in probability was discretised into the
following ranges [≤−0.05, −0.05-0.05, ≥ 0.05]. The three different discretisation configu-
rations used were as follows:

• Discretisation 1: Only the previous movement direction and change in probability was
used

• Discretisation 2: The previous two movement directions and changes in probability
were used
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• Discretisation 3: The previous three movement directions and changes in probability
were used
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Figure 7.9: A chart showing the three discretisation configurations for the probability of a
target performing an illegal operation.

For the decision that involves the action to take given a track’s probability of performing an
illegal operation, the following three different discretisation configurations were used:

• Discretisation 1: the track’s probability is in one of the following ranges [0-0.25, 0.25-
0.5, 0.5-0.75, 0.75-1.0] (as indicated with the red to green scale in Fig. 7.9)

• Discretisation 2: the track’s probability is in one of the following ranges [0.125-0.25,
0.125-0.25, 0.25-0.5, 0.5-0.75, 0.75-0.875, 0.875-1.0] (as indicated with the red to
green scale in Fig. 7.9)

• Discretisation 3: the track’s probability is in one of the following ranges [0-0.05, 0.05-
0.1, 0.1-0.15, 0.15-0.2, 0.2-0.25, 0.25-0.5, 0.5-0.75, 0.75-0.8, 0.8-0.85, 0.85-0.9, 0.9-
0.95, 0.95-1.0] (as indicated with the red to green scale in Fig. 7.9)

7.3.1 Task 1 - Decision 1

For this decision, the discretisation with wider ranges (discretisation 1) is able to obtain a
higher initial accuracy but immediately levels off with an accuracy below the desired 0.95.
The discretisation with narrower ranges (discretisation 3) is has a accuracy lower than that
of discretisation 1 and discretisation 2 until around 90 data instances are used, at which
point this discretisation is able to achieve a high accuracy of 0.99. In short, the narrow
discretisation ranges allow for high accuracy only when a large number of data instances are
provided whereas wide discretisation ranges allow for the highest initial accuracy but this
accuracy sees no improvement with more data instances. Given that there are few real-world
missions in which operator data and scenario data for these mission can be obtained, it is
important that the discretisation is adjusted after each new data set in order to maximise the
imitation accuracy. Alternatively, or in addition, the use of a simulation such as the one



CHAPTER 7. COMPARISON OF METHODS 130

0 20 40 60 80 100 120 140 160 180 200
0.5

0.6

0.7

0.8

0.9

1

Number of data instances, N

A
cc

ur
ac

y

Discretisation 1
Discretisation 2
Discretisation 3

Figure 7.10: Accuracy and error in the Bayesian network approach of each discretisation for
task 1 decision 1.

outlined in this thesis (see chapter 2) could be used to increase the imitation accuracy by
obtaining operator decision data on realistic simulated scenario data.



CHAPTER 7. COMPARISON OF METHODS 131

0 20 40 60 80 100 120 140 160 180 200
0.5

0.6

0.7

0.8

0.9

1

Number of data instances, N

A
cc

ur
ac

y

Discretisation 1
Discretisation 2
Discretisation 3

Figure 7.11: Accuracy and error in the IRL approach of each discretisation for task 1 decision
1.

7.3.2 Task 1 - Decision 3

For this decision, the discretisation with wider ranges (discretisation 1) is able to obtain a
high accuracy of 0.955 with as few data instances as 40. Furthermore, it is only after 180 data
instances that a discretisation with narrower ranges is able to achieve a higher accuracy. After
200 data instances, the discretisation with the narrowest ranges (discretisation 3) achieves the
lowest accuracy of the three discretisation types with an accuracy of 0.84. With more data
instances the accuracy for discretisation 3 might improve beyond the other two due to there
being more resolution in the data, but the resolution might not be the limiting source of
error.
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Figure 7.12: Accuracy and error in the Bayesian network approach of each discretisation for
task 1 decision 3.
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Figure 7.13: Accuracy and error in the IRL approach of each discretisation for task 1 decision
3.
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7.3.3 Task 1 - Decision 4
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Figure 7.14: Accuracy and error in the Bayesian network approach of each discretisation for
task 1 decision 4.

Similar to task 1 decision 3, the discretisation with the narrowest ranges (discretisation 3) has
the lowest accuracy after 200 data instances, and the discretisation with the widest ranges has
the highest initial accuracy. However, discretisation 2 is able to surpass discretisation 1 after
80 data instances in the case of the Bayesian network or 60 data instances in the case of IRL.
Additionally, in both the Bayesian network and IRL, the accuracy of discretisation 1 never
exceeds 0.935 which is below the required threshold.
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Figure 7.15: Accuracy and error in the IRL approach of each discretisation for task 1 decision
4.

7.3.4 Task 2 - Decision 1

For this decision, discretisation 1 levels off at an accuracy of 0.88 and discretisation 2 levels
off at an accuracy of 0.935. Neither of these accuracies is greater than the required 0.95.
After 190 data instances, discretisation 3 reaches an accuracy greater than that of discreti-
sation 2 and surpasses the required accuracy of 0.95. At 200 data instances discretisation 3
achieves an accuracy of 0.98 in the Bayesian network case and an accuracy of 0.995 in the
IRL case.
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Figure 7.16: Accuracy and error in the Bayesian network approach of each discretisation for
task 2 decision 1.
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Figure 7.17: Accuracy and error in the IRL approach of each discretisation for task 2 decision
1.
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7.3.5 Task 2 - Decision 2
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Figure 7.18: Accuracy and error in the Bayesian network approach of each discretisation for
task 2 decision 2.

Similar to task 2 decision 1, only discretisation 3 is able to surpass the required accuracy
with an accuracy of 0.995 and 0.96 achieved in the case of IRL and the Bayesian network
respectively.
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Figure 7.19: Accuracy and error in the IRL approach of each discretisation for task 2 decision
2.

7.3.6 Task 2 - Decision 3

In this task, both discretisation 2 and 3 are able to surpass the required accuracy of 0.95 in
both the Bayesian network and IRL cases. However, discretisation 2 was able to achieve the
required accuracy in 140 data instances in the Bayesian network case and 170 data instances
in the IRL case. Additionally, even at 200 data instances, the accuracy in discretisation 3 is
only equal to that of discretisation 2 (with an accuracy of 0.98 in the Bayesian network case
and 0.995 in the IRL case).
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Figure 7.20: Accuracy and error in the Bayesian network approach of each discretisation for
task 2 decision 3.
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Figure 7.21: Accuracy and error in the IRL approach of each discretisation for task 2 decision
3.
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7.3.7 Task 3 - Decision 1
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Figure 7.22: Accuracy and error in the Bayesian network approach of each discretisation for
task 3 decision 1.

In discretisation 1, where only the previous movement direction and change in probability
were used, the decision accuracy levelled off at an accuracy of 0.57 in both the IRL and
Bayesian network case. In discretisation 3, by using the previous three movement directions
and the corresponding changes in probability, an accuracy of only 0.5 is achieved in the
Bayesian network case after 500 data instances. However, even after 500 data instances the
accuracy is still increasing. With significantly more data, discretisation 3 might not even
reach the same level of accuracy as discretisation 2 if the operator does not factor in what
happened three decisions ago.

By using only the information from only the previous two decisions, the required accuracy of
0.95 was able to be achieved after 400 data instances in both the IRL case and the Bayesian
network case.



CHAPTER 7. COMPARISON OF METHODS 143

10 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of data instances, N

A
cc

ur
ac

y

Discretisation 1
Discretisation 2
Discretisation 3

Figure 7.23: Accuracy and error in the IRL approach of each discretisation for task 3 decision
1.

7.3.8 Task 3 - Decision 2

In this decision, all three discretisation configurations levelled off at 60 data instances or
less. The operator is only likely to make the decision to declare the target as performing
an illegal operation when they are fully confident, and consequently this decision is highly
deterministic resulting in each of the discretisation configurations levelling off with few data
instances.

Furthermore, due to the operator only taking actions when they are completely confident
in the decision then this requires narrow discretisation ranges that only discretisation 3 pro-
vides. Consequently, discretisation 3 is able to achieve an accuracy of 1.0 in both the IRL and
Bayesian network case, whereas discretisation 1 and 2 do not achieve the required accuracy
of 0.95.
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Figure 7.24: Accuracy and error in the Bayesian network approach of each discretisation for
task 3 decision 2.
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Figure 7.25: Accuracy and error in the IRL approach of each discretisation for task 3 decision
2.
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7.3.9 Task 3 - Learned Trajectories

A sample of the trajectories learned by AI agent is shown in Fig. 7.26. Note that the target
is shown as a black star, the start point of the trajectory is shown by the green circle, and
the point at which the agent performs decision 2 is shown as a red circle. The black dots
represent the positions along the trajectory. Lastly, the trajectories have been normalised
such the target and radar platform start in the same position for each run.
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Figure 7.26: A sample of the trajectories performed by the AI agent (specifically, the
Bayesian network approach) in task 3.

7.4 Comparison

In this section, the differences in accuracy between the Bayesian network approach and the
IRL approach are shown for each discretisation configuration. A negative difference occurs
when the mean accuracy of the IRL approach is greater than the Bayesian network approach
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and vice versa.

7.4.1 Task 1

In decision 1, the IRL approach performs slightly better than the Bayesian Network ap-
proach. At the number of data instances in which both approaches were greater than 0.95,
the accuracy was the same for discretisation 1 and 2. For discretisation 3, the IRL approach
is able to achieve an accuracy of 0.96 after 50 data instances whereas the Bayesian network
approach achieved the same accuracy after 80 data instances.

Due to decision 2 being highly deterministic, both approaches were able to achieve the same
accuracy with the same data instances.

In decision 3, the difference between the two approaches was negligible for all three discreti-
sation configurations.

In decision 4, the IRL approach achieved a slightly higher accuracy for discretisation 2 at
a lower number of data instances. However, at the number of data instances at which IRL
outperforms the Bayesian network, the IRL accuracy is below the required accuracy of 0.95
except at 70 data instances. Furthermore, at 70 data instances, the difference in accuracy
between the two approaches falls well within the standard error of both approaches.
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Figure 7.27: Difference in accuracy between the Bayesian network and IRL approaches for
each discretisation configuration in task 1 decision 1.
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Figure 7.28: Difference in accuracy between the Bayesian network and IRL approaches in
task 1 decision 2.
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Figure 7.29: Difference in accuracy between the Bayesian network and IRL approaches for
each discretisation configuration in task 1 decision 3.
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Figure 7.30: Difference in accuracy between the Bayesian network and IRL approaches for
each discretisation configuration in task 1 decision 4.
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7.4.2 Task 2

In decision 1, there is no significant difference between the two approaches after 40 data
instances for any discretisation with neither approach surpassing the required accuracy of
0.95 in the first 40 data instances. Specifically, a maximum accuracy of 0.77 was achieved
by the Bayesian network at 40 data instances for discretisation 1.

For decision 2, the IRL approach achieves a slightly greater accuracy on average for each
discretisation. However, for this decision, discretisation 1 and 2 never surpass the required
accuracy of 0.95 for either the IRL approach or the Bayesian network approach. For discreti-
sation 3, the required accuracy is surpassed at 200 and 190 data instances for the Bayesian
network and IRL approach respectively.

For decision 3, the Bayesian network approach initially outperforms the IRL approach, but
with more data instances the IRL approach achieves a greater accuracy for all three discreti-
sation configurations. However, the difference when more data instances were used is within
the standard error of both approaches.
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Figure 7.31: Difference in accuracy between the Bayesian network and IRL approaches for
each discretisation configuration in task 2 decision 1.
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Figure 7.32: Difference in accuracy between the Bayesian network and IRL approaches for
each discretisation configuration in task 2 decision 2.
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Figure 7.33: Difference in accuracy between the Bayesian network and IRL approaches for
each discretisation configuration in task 2 decision 3.
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7.4.3 Task 3

In task 3 decision 1, the difference between the two approaches initially seems significant.
However, the biggest differences occur for discretisation 1 and 3 in which the accuracy never
exceeds 0.6, far below the required accuracy of 0.95. Additionally, the accuracy in discretisa-
tion 2 surpasses the required accuracy after 400 data instances in both the IRL and Bayesian
network case. After 400 data instances the difference between the two approaches is within
the standard error of both approaches.

For decision 2, there is no significant difference between the IRL approach and the Bayesian
network approach for discretisation 2 and 3. For discretisation 1, the Bayesian network
initially has a greater accuracy, however neither approach exceeds an accuracy of 0.775 for
discretisation 1.
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Figure 7.34: Difference in accuracy between the Bayesian network and IRL approaches for
each discretisation configuration in task 3 decision 1.
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Figure 7.35: Difference in accuracy between the Bayesian network and IRL approaches for
each discretisation configuration in task 3 decision 2.

7.5 Sources of Error

For each task considered, several sources of error became apparent when comparing the
operator’s decisions to both of the algorithm’s decisions.

Firstly, the largest source of error was discretisation size used. For task 1 decision 3, moving
between the three discretisation configurations meant an additional discretisation bin was
added with each discretisation. In other words, discretisation 1 had 2 ranges each for abnor-
mal size and abnormal speed, whilst there was 3 and 4 ranges each for discretisation 2 and
3 respectively. From Fig. 7.12 and Fig. 7.13, using discretisation 1 allows for an accuracy
greater than the required 0.95 after only 40 data instances whilst discretisation 2 and 3 had
an accuracy of around 0.55 and 0.35 respectively. In summary, by adding an additional bin,
the accuracy after only 40 data instances dropped by around 0.4 and then dropped a further
0.2 with one more bin.

On the other hand, in certain discretisation configurations the ranges were too wide and did
not sufficiently capture the operator’s process. For example, in Fig. 7.16 and Fig. 7.17, only
by using the discretisation configuration with the narrowest ranges was the AI agent able
to surpass the required 0.95 accuracy. However, by increasing the number of discretisation
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ranges, the more training data the AI agent requires to achieve the required accuracy.

Another source of error is superfluous data. As shown in Fig. 7.12 and Fig. 7.13, discreti-
sation 3 follows the same learning rate as discretisation 2 but has a constant negative offset
in accuracy. This is likely due to the increase in data resolution offered by discretisation 3
providing no benefit to the AI agent’s decision accuracy whilst requiring more data instances
to reach the same accuracy.

A lack of information used during the decision making process is also a source of error.
For example, if the operator made a decision to move towards a track based on whether its
velocity was decreasing, then this would not be factored into the decision. However, there
is an obvious trade-off between adding more variables for the AI agent to act upon and the
number of data instances required to obtain sufficient performance.

Sensor error is another source of error in the decision making process. Whilst the operator
and the AI agent are viewing the same sensor data, fluctuations in the radar returns can
result in the data saved when the decision was made not being fully representative of the
information the operator made the decision on. For example, if the operator makes a decision
not to investigate a track as there is no abnormalities in the track’s size or speed, but at the
time the decision was made there was a spike in the radar return resulting in a track appearing
to have a larger estimated size.

Another source of error is errors associated with the operator. The operator does not know
the exact information of the full scenario. For example, when viewing the PPI display and
deciding which track to further investigate, the operator might select a track that is slightly
further away from one of the zones than another track is. Alternatively, the operator might
miss a track entirely. Lastly, the operator is human and is subject to human error. Even under
perfect circumstances, the operator will still make errors.

Continuing, the stochastic nature of the operator in certain tasks results in the accuracy
plateauing at the same value for both approaches. Whilst this may seem to offer lower
performance than other tasks, the Bayesian network approach, for example, is capable of
learning the probabilities for these decisions, but it is desirable for any form of AI to be
deterministic rather than stochastic. In other words, the AI will perform the same action
given the same inputs, and as such, the accuracy is reduced by the AI agent operating in a
deterministic manner.

7.6 Qualification of System

Beyond the decision accuracy of the AI agent, there is also the AI agent’s decision making
transparency to consider. As mentioned in the chapter , the initial plan was to use actual
radar operator from Leonardo MW Ltd to interact with the GUI in order to obtain data. This
plan would also have included questions posed to the operator on how well they trusted the
autonomous system and how transparent they found the autonomous system. Specifically, a
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comparison would have been done between the operator’s perceived trust and transparency in
each algorithm. Results would include the percentage of data instances in which the operator
overrode each algorithm. The results would also have included a measure of the operator’s
understanding of the algorithm’s decisions, based on the questions posed.

However, in the absence of an actual radar operator there are still some points to be made
with regards to algorithm transparency and trust. Fig. 7.36 shows how a Bayesian network
can be visualised to the benefit of an operator. This visualisation allows the operator to
inspect each decision’s probabilities to see why a decision was made as well as the Bayesian
network’s learned probability of making each decision. Conversely, there is no concept of
decision uncertainty or decision probability in the IRL methods used. The IRL algorithm
offers a policy and a reward function which are not as obvious to the operator as to how
confident the AI agent is in making the decision. This is a significant drawback in terms of
transparency to the operator, and would ultimately make the system qualification difficult.
Furthermore, if it is intended to move maritime surveillance radar autonomy towards level 3
(as mentioned in section 1.1.5), then the operator is still required to respond to a “request to
intervene”. In which case, it is essential that the radar operator understands the autonomous
system’s operation. Consequently, the Bayesian network visualisation provides a significant
advantage over the IRL approach in terms of increasing radar autonomy.

Figure 7.36: An example of how a Bayesian network can be visualised.
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7.7 Conclusions

This chapter outlines the results of two methods of imitation learning tested within a mar-
itime radar simulation against an operator’s decisions given the same observational informa-
tion. The results show the high accuracy and low error margin of both methods indicating
their usefulness in imitating a human radar operator. For the majority of tasks, the Bayesian
network approach and the IRL approach had negligible difference in accuracy, however, the
Bayesian network offers greater transparency to the operator which is a significant advantage
for operational use.

The sources of decision accuracy error are discussed and it is shown that the biggest limita-
tion of the decision accuracy is not the chosen algorithm but the task variable discretisation
ranges. Discretisation configurations with few but wide ranges typically allow for a high ac-
curacy to be achieved with few data instances but then little or no improvement is seen with
more data instances. However, discretisation configurations with many narrow ranges typi-
cally allow for the highest accuracy but only when a significant number of data instances are
used. Specifically, a multiple roughly in the range of 1.9 to 4.5 data instances was required to
achieve the same accuracy as the maximum accuracy of discretisation 1 for the discretisation
that achieved the greatest accuracy. This multiple translates to the number of missions that
the radar and operator would need to carry out to achieve the same accuracy.



Chapter 8

Conclusions and Further Work

8.1 Conclusions

The aim of this research was to improve the autonomy of maritime surveillance missions. By
considering all aspects of the surveillance mission, several algorithms were developed and
implemented to move the current operation of a surveillance mission towards full autonomy.
The full mission was split into two aspects: the autonomy of the radar platform and the
autonomy of the radar operator.

A simple and computationally efficient maritime radar simulation was developed in conjunc-
tion with a graphical user interface to allow an operator to control a radar system in a similar
manner to an actual system in maritime surveillance scenarios. The radar was modelled to
to receive power returns from both targets and sea clutter, and from the power returns, detec-
tions were obtained, refined, and passed to the tracker to form target tracks. Both the refined
detections and the tracks were displayed on the operator’s interface, with the operator able to
select tracks to obtain more information on that track. Lastly, the operator had the ability to
input guidance commands to the simulated platform which allowed for movement towards a
specific target.

To address autonomy of the first mission aspect, the maritime surveillance radar simulation
was used to determine the optimal radar platform trajectories for persistent surveillance. A
polynomial trajectory generation method was derived to provide a simple method of produc-
ing the complex trajectories necessary to obtain the UAV dynamics for the fuel consumption,
dynamic limitations of the UAV, and flight path. By discretising the search area and radar
coverage area into grids, a computationally efficient way of obtaining the probability of de-
tection and revisit time for each point in the search area was derived. This formulation was
then used with a multi-objective particle swarm optimisation algorithm to obtain persistent
radar platform trajectories that maximise the probability of detection, minimise the revisit
time, and minimise the fuel consumption. In the two scenarios considers, several trajec-
tories were found that outperformed the industry recommended baseline in all three cost
functions.

160
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The developed simulation and operator interface was further used to address the autonomy
of the second mission aspect: the decision making. The typical tasks that an operator would
perform during a maritime surveillance radar mission were outlined and data was collected
from a human operator performing these tasks. Methods of imitation learning were then
investigated as a way introducing autonomy into mission critical radar operations due to
their ability to perform the tasks in the same manner as the current operational standard.
Two methods of imitation learning were then implemented and their efficacy in imitating a
human radar operator compared. The results show the high accuracy and low error margin
of both methods indicating their usefulness in performing the maritime surveillance tasks
in the same manner as a human operator. Whilst there was little difference between the
accuracy of both methods, the Bayesian network offers greater operator transparency which
is a significant advantage for operational use. The sources of error in the algorithms’ decision
accuracy were then discussed and it was concluded that the biggest limitation in accuracy is
not the chosen algorithm, but the way in which the task is discretised.

8.2 Further Work

8.2.1 Trajectory Optimisation

The obvious direction for further work on the outlined trajectory optimisation algorithm is
to consider multiple UAVs operating with one or more designated search areas. The opti-
misation formulation could then be expanded to include a coupling of the multiple UAVs’
trajectories.

The trajectory optimisation work considered here dealt with areas of uniform importance.
However, certain missions deal with search areas where sub-regions are known to be more
likely to contain targets. One such example is a missing person search. By pre-initialising
the radar coverage matrices at the sub-regions of interest, the outlined algorithm could be
used to determine trajectories for these missions.

Another scenario to consider is the surveillance of a moving vessel, for example a ship
under threat as it passes through a particular area. In this scenario, the surveillance around
the moving vessel is of more importance than at points further away. Consequently, the
weighting of the radar coverage closer to the ship at a specific time along the moving vessel’s
trajectory would be higher.

Whilst the trajectory optimisation algorithm naturally converges to solutions with smooth
trajectories as this minimises the fuel consumption cost, it would be beneficial to introduce
a radar coverage ‘smoothness’ metric into the radar costs. For search areas that are more
complex than a square or curved area, such as a specific coastline, there is a trade-off be-
tween minimising the fuel consumption and keeping the radar’s field of view centred on
the coastline. By introducing a radar coverage smoothness metric, the algorithm would con-
verge to trajectories preferred by the operator in both the fuel consumption cost and the radar
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coverage costs.

This work outlines algorithms for autonomy for both the aircraft and the radar, and conse-
quently, another useful avenue of research is to use the trajectory algorithm optimisation to
assist the operator in the task outlined in section 4.3.3. Since the radar operator is not an air-
craft pilot, the trajectory optimisation algorithm could be used to inform the operator which
aircraft directions would lead to minimising the time spent investigating the track as well as
maximising the probability of determining the track’s operational intentions. This can then
be extended to the situation where the radar operator may wish to investigate several tracks
in succession. For example, if there are several boats in a designated zone which are not re-
sponding to operator communication, then the operator may wish to investigate each track in
succession. Consequently, determining the trajectory that minimises the time to investigate
all tracks is vital for the success of the surveillance mission.

For constant surveillance, there must be a hand-over from one UAV to another. Another
factor in the optimisation problem could be determining the coordinates of this hand-over
and how this affects fuel consumption and radar coverage.

Due to the computational time required to obtain optimised trajectories, another avenue of
research would be to introduce machine learning techniques to reduce the required compu-
tational time. One such example is to use Kriging techniques to approximate each objective
function [168]. Similarly, research could be done to adapt existing optimised trajectories to
other search areas by exploiting the similarities between search areas.

8.2.2 Autonomous Decision Making

One of the biggest effects on the algorithm’s decision accuracy is how the task is defined for
the algorithm. From chapter 7, the way in which each task is discretised has a major effect on
the accuracy relative to the number of data samples. The accuracy of the algorithms relative
to the number of available data samples could be improved by introducing an optimisation
algorithm that determines the best discretisation configuration for a given number of data
samples.

Two algorithms were considered for improving the autonomy in the radar operator decision
making. However, an interesting alternative to inverse reinforcement learning is Genera-
tive Adversarial Imitation Learning (GAIL) [169], which is akin to generative adversarial
networks (GANs) [170]. The main advantage of this method is that it removes the computa-
tionally expensive reinforcement learning inner loop to obtain the policy.

Another consideration for future work is the use of Dynamic Bayesian Networks [171],
[172]. Dynamic Bayesian Networks allow for the relation of data between time-steps, for
example, changes in direction or velocity. These networks typically require more data sam-
ples to achieve an acceptable accuracy, but for the latter stages of the AI learning process,
these networks would allow for further refinement of the decision making and could result
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in an improvement in accuracy. Additionally, these type of networks might reduce the errors
associated with instantaneous sensor measurements.

One potential improvement on the IRL algorithm employed for task 3 is to consider par-
tially observable Markov decision processes [173]. A partially observable Markov decision
process assumes an underlying Markov decision process but that the agent cannot directly
observe each state and instead observes each state through noisy observations. Each action
taken has a stochastic result upon which the agent receives a noisy observation. However, the
factors that go into getting the probability of a target being illegal or not are complex (e.g.
SNR, vessel type, angles and distances, sea state). Each of these would have to be factored
into the MDP states which would greatly increase the size of the MDP (for example, a state
for the current sea state and whether the target is at a certain distance, angle, SNR). If all
these factors are known, this could technically be done in IRL for POMDP, but the size of
the underlying MDP would make learning on few samples difficult. For later stages of the
learning process where more data samples are available, IRL for POMDP could be used to
further increase the decision making accuracy.

8.2.3 Remote Operation

From the literature on UAV remote operation, one of the most significant issues faced by the
remote operators is the sensory isolation from the aircraft [174]. Pilots typically use ambient
visual input, kinaesthetic, vestibular information to aid their understanding of the aircraft and
their decision making. Additionally, current radar operators will use their view of the local
environment when making decisions. This view includes the weather (such as rain or wind),
the sea-state, and any objects within visual range. Consequently, remote radar operators
would suffer similar sensory isolation issues as the remote UAV operators. Investigation
is required into how useful this information is to the operator, whether a remote operator
suffers if this information were to be sent over a data-link in some form, and how to tie this
information into an autonomous system.

8.2.4 Additional Topics of Research

A typical maritime surveillance mission is performed using one radar operator, however
there may be multiple operators performing the same mission on a regular basis. Conse-
quently, there may be operator data from multiple operators of varying experience. By using
the methods outlined by Beliaev [175], data obtained from multiple operators with varying
expertise can be used to determine a single optimal policy that can outperform even the best
operator. Additionally, the work in Beliaev can be used to determine the expertise level of
each operator which could be useful as a training tool for new operators.

In the future, there may be surveillance mission which require multiple UAVs performing
simultaneous surveillance missions. It would then be necessary to consider the cooperation
between operators [176].
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8.2.5 Learning without an Operator

The chosen algorithms for imitation learning can be easily adapted to continue learning with-
out an operator which is a useful feature when moving from management-by-consent to
management-by-exception.

"In uncharted territory—where one would expect learning to be most beneficial—an agent
must be able to learn from its own experience." [161]. It is therefore important that for future
missions, where the agent is performing with management-by-exception, the agent is able to
learn by itself from its own experiences.

Another benefit to replacing a remote operator with an AI agent is the reduced data rates in
uplink and downlink, potentially removing a bottleneck in the whole radar system. This ben-
efit arises as it would no longer be necessary to send the radar data to a remote operator as the
AI agent can process the data onboard. Furthermore, sending data to and from the radar and
the remote operator could potentially introduce latency into the system [6]. Onboard decision
making removes this latency which, for missions where fast decision making is required, is
of great importance as any delay could cause significant operational failures.

The use of active learning could be used during the transition from management-by-consent
to management-by-exception where, if the AI agent finds itself in an unknown situation, the
agent can query the operator for a decision and use that decision for learning. This is similar
to the DaGGER approach [125].



Appendix A

Inverse Reinforcement Learning

Equation 6.20 and 6.26 outline the inverse reinforcement learning algorithms initially derived
by Ng and Russell [136]. These equations provide the fundamentals to IRL, and understand-
ing it allows for the equations derived by Abbeel and Ng [137] to be understood more easily.
Therefore, this section outlines an alternative form of these equations that may help in their
understanding.

A.1 Value Matrix

FFFn f ,ns
=


V1,1 V1,2 · · · V1,ns

V2,1 V2,2 · · · V2,ns
...

... · · · ...
Vn f ,1 Vn f ,2 · · · Vn f ,ns

 (A.1)

where n f is the number of feature and ns is the number of states. Therefore, the value matrix
can be obtained as follows:

V = FFFT ·ααα (A.2)

A.2 IRL MDP Linear Programming

For reference, equation 6.20 is rewritten below:

maximise ∑
s∈S0

min
a∈A\a∗

p
(

EEE
s′∼P(s′|s,a∗)

[V π∗(s′)]− EEE
s′∼P(s′|s,a)

[V π∗(s′)]
)

(A.3)

s.t. |αi| ≤ 1, i = 1, ...,d

Where p(x) = x when x ≥ 0 and p(x) = 2x when x < 0. The penalty coefficient of 2 was
chosen heuristically by Ng and Russell.
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This can be re-written as follows:

maximise ∑
s∈S

min
a∈A\a∗

p(vvv ·ααα)

maximise ∑
s∈S

min
a∈A\a∗

min(vvv ·ααα,2vvv ·ααα)

maximise
ns

∑
i=1

min(vvvi,1 ·ααα,2vvvi,1 ·ααα,vvvi,2 ·ααα,2vvvi,2 ·ααα, · · · ,vvvi,na−1 ·ααα,2vvvi,na−1 ·ααα)

(A.4)

Given the following two matrices:

vvvns,na−1,n f
=




∆V1,1,1 ∆V1,2,1 · · · ∆V1,na−1,1

∆V2,1,1 ∆V2,2,1 · · · ∆V2,na−1,1
...

... · · · ...
∆Vns,1,1 ∆Vns,2,1 · · · ∆Vns,na−1,1




∆V1,1,2 ∆V1,2,2 · · · ∆V1,na−1,2

∆V2,1,2 ∆V2,2,2 · · · ∆V2,na−1,2
...

... · · · ...
∆Vns,1,2 ∆Vns,2,2 · · · ∆Vns,na−1,2


...

∆V1,1,n f ∆V1,2,n f · · · ∆V1,na−1,n f

∆V2,1,n f ∆V2,2,n f · · · ∆V2,na−1,n f
...

... · · · ...
∆Vns,1,n f ∆Vns,2,n f · · · ∆Vns,na−1,n f





(A.5)

where ∆Vi, j,k=: = P(i|a∗)×FFFT −P(i| j)×FFFT for state i, action j, and feature k.

vvv ·ααα =


∆V1,1 ∆V1,2 · · · ∆V1,na−1

∆V2,1 ∆V2,2 · · · ∆V2,na−1
...

... · · · ...
∆Vns,1 ∆Vns,2 · · · ∆Vns,na−1

 (A.6)

where ∆Vi, j =∆Vi, j,1α1+∆Vi, j,2α2+ · · ·+∆Vi, j,n f αn f . Equation 6.26 can be restated by using
the the matrices outlined above:

A.3 IRL MDP Linear Programming - Sampled Trajecto-
ries

For reference, equation 6.26 is rewritten below:

maximise ∑
π∈Π

p
(

V̂ π∗(s0)−V̂ π(s0)

)
(A.7)
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s.t. |αi| ≤ 1, i = 1, ...,d

where as before:

p(x) =

x, x≥ 0

2x, x < 0

This can be rewritten as follows:

max
ααα

∑
π∈Π

p(vvvπ ·ααα)

max
ααα

∑
π∈Π

min(vvvπ ·ααα,2vvvπ ·ααα)

max
ααα

[min(vvvπ1 ·ααα,2vvvπ1 ·ααα)+ ...+min(vvvπΠ ·ααα,2vvvπΠ ·ααα)]

(A.8)

Equation A.8 can then be written in linear programming format as follows:

maximize
ααα

∑
π∈Π

tπ

subject to vvvπ ·ααα ≤ tπ , π ∈Π,

2vvvπ ·ααα ≤ tπ , π ∈Π,

|αi| ≤ 1, i = 1, . . . ,d

(A.9)
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