2,204 research outputs found

    Field Programmable Gate Arrays (FPGAs) II

    Get PDF
    This Edited Volume Field Programmable Gate Arrays (FPGAs) II is a collection of reviewed and relevant research chapters, offering a comprehensive overview of recent developments in the field of Computer and Information Science. The book comprises single chapters authored by various researchers and edited by an expert active in the Computer and Information Science research area. All chapters are complete in itself but united under a common research study topic. This publication aims at providing a thorough overview of the latest research efforts by international authors on Computer and Information Science, and open new possible research paths for further novel developments

    A Survey on Deep Learning Role in Distribution Automation System : A New Collaborative Learning-to-Learning (L2L) Concept

    Get PDF
    This paper focuses on a powerful and comprehensive overview of Deep Learning (DL) techniques on Distribution Automation System (DAS) applications to provide a complete viewpoint of modern power systems. DAS is a crucial approach to increasing the reliability, quality, and management of distribution networks. Due to the importance of development and sustainable security of DAS, the use of DL data-driven technology has grown significantly. DL techniques have blossomed rapidly, and have been widely applied in several fields of distribution systems. DL techniques are suitable for dynamic, decision-making, and uncertain environments such as DAS. This survey has provided a comprehensive review of the existing research into DL techniques on DAS applications, including fault detection and classification, load and energy forecasting, demand response, energy market forecasting, cyber security, network reconfiguration, and voltage control. Comparative results based on evaluation criteria are also addressed in this manuscript. According to the discussion and results of studies, the use and development of hybrid methods of DL with other methods to enhance and optimize the configuration of the techniques are highlighted. In all matters, hybrid structures accomplish better than single methods as hybrid approaches hold the benefit of several methods to construct a precise performance. Due to this, a new smart technique called Learning-to-learning (L2L) based DL is proposed that can enhance and improve the efficiency, reliability, and security of DAS. The proposed model follows several stages that link different DL algorithms to solve modern power system problems. To show the effectiveness and merit of the L2L based on the proposed framework, it has been tested on a modified reconfigurable IEEE 32 test system. This method has been implemented on several DAS applications that the results prove the decline of mean square errors by approximately 12% compared to conventional LSTM and GRU methods in terms of prediction fields.©2022 Authors. Published by IEEE. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/fi=vertaisarvioitu|en=peerReviewed

    Intrinsically Evolvable Artificial Neural Networks

    Get PDF
    Dedicated hardware implementations of neural networks promise to provide faster, lower power operation when compared to software implementations executing on processors. Unfortunately, most custom hardware implementations do not support intrinsic training of these networks on-chip. The training is typically done using offline software simulations and the obtained network is synthesized and targeted to the hardware offline. The FPGA design presented here facilitates on-chip intrinsic training of artificial neural networks. Block-based neural networks (BbNN), the type of artificial neural networks implemented here, are grid-based networks neuron blocks. These networks are trained using genetic algorithms to simultaneously optimize the network structure and the internal synaptic parameters. The design supports online structure and parameter updates, and is an intrinsically evolvable BbNN platform supporting functional-level hardware evolution. Functional-level evolvable hardware (EHW) uses evolutionary algorithms to evolve interconnections and internal parameters of functional modules in reconfigurable computing systems such as FPGAs. Functional modules can be any hardware modules such as multipliers, adders, and trigonometric functions. In the implementation presented, the functional module is a neuron block. The designed platform is suitable for applications in dynamic environments, and can be adapted and retrained online. The online training capability has been demonstrated using a case study. A performance characterization model for RC implementations of BbNNs has also been presented

    High-Level Synthesis Hardware Design for FPGA-Based Accelerators: Models, Methodologies, and Frameworks

    Get PDF
    Hardware accelerators based on field programmable gate array (FPGA) and system on chip (SoC) devices have gained attention in recent years. One of the main reasons is that these devices contain reconfigurable logic, which makes them feasible for boosting the performance of applications. High-level synthesis (HLS) tools facilitate the creation of FPGA code from a high level of abstraction using different directives to obtain an optimized hardware design based on performance metrics. However, the complexity of the design space depends on different factors such as the number of directives used in the source code, the available resources in the device, and the clock frequency. Design space exploration (DSE) techniques comprise the evaluation of multiple implementations with different combinations of directives to obtain a design with a good compromise between different metrics. This paper presents a survey of models, methodologies, and frameworks proposed for metric estimation, FPGA-based DSE, and power consumption estimation on FPGA/SoC. The main features, limitations, and trade-offs of these approaches are described. We also present the integration of existing models and frameworks in diverse research areas and identify the different challenges to be addressed

    A dynamic reconfigurable architecture for hybrid spiking and convolutional FPGA-based neural network designs

    Get PDF
    This work presents a dynamically reconfigurable architecture for Neural Network (NN) accelerators implemented in Field-Programmable Gate Array (FPGA) that can be applied in a variety of application scenarios. Although the concept of Dynamic Partial Reconfiguration (DPR) is increasingly used in NN accelerators, the throughput is usually lower than pure static designs. This work presents a dynamically reconfigurable energy-efficient accelerator architecture that does not sacrifice throughput performance. The proposed accelerator comprises reconfigurable processing engines and dynamically utilizes the device resources according to model parameters. Using the proposed architecture with DPR, different NN types and architectures can be realized on the same FPGA. Moreover, the proposed architecture maximizes throughput performance with design optimizations while considering the available resources on the hardware platform. We evaluate our design with different NN architectures for two different tasks. The first task is the image classification of two distinct datasets, and this requires switching between Convolutional Neural Network (CNN) architectures having different layer structures. The second task requires switching between NN architectures, namely a CNN architecture with high accuracy and throughput and a hybrid architecture that combines convolutional layers and an optimized Spiking Neural Network (SNN) architecture. We demonstrate throughput results from quickly reprogramming only a tiny part of the FPGA hardware using DPR. Experimental results show that the implemented designs achieve a 7× faster frame rate than current FPGA accelerators while being extremely flexible and using comparable resources

    Recent Advances in Embedded Computing, Intelligence and Applications

    Get PDF
    The latest proliferation of Internet of Things deployments and edge computing combined with artificial intelligence has led to new exciting application scenarios, where embedded digital devices are essential enablers. Moreover, new powerful and efficient devices are appearing to cope with workloads formerly reserved for the cloud, such as deep learning. These devices allow processing close to where data are generated, avoiding bottlenecks due to communication limitations. The efficient integration of hardware, software and artificial intelligence capabilities deployed in real sensing contexts empowers the edge intelligence paradigm, which will ultimately contribute to the fostering of the offloading processing functionalities to the edge. In this Special Issue, researchers have contributed nine peer-reviewed papers covering a wide range of topics in the area of edge intelligence. Among them are hardware-accelerated implementations of deep neural networks, IoT platforms for extreme edge computing, neuro-evolvable and neuromorphic machine learning, and embedded recommender systems
    corecore