
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Doctoral Dissertations Graduate School

8-2007

Intrinsically Evolvable Artificial Neural Networks
Saumil Girish Merchant
University of Tennessee - Knoxville

This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more
information, please contact trace@utk.edu.

Recommended Citation
Merchant, Saumil Girish, "Intrinsically Evolvable Artificial Neural Networks. " PhD diss., University of Tennessee, 2007.
https://trace.tennessee.edu/utk_graddiss/244

https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Saumil Girish Merchant entitled "Intrinsically
Evolvable Artificial Neural Networks." I have examined the final electronic copy of this dissertation for
form and content and recommend that it be accepted in partial fulfillment of the requirements for the
degree of Doctor of Philosophy, with a major in Electrical Engineering.

Gregory D. Peterson, Major Professor

We have read this dissertation and recommend its acceptance:

Donald W. Bouldin, Itamar Elhanany, Ethan Farquhar, J. Wesley Hines

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a dissertation written by Saumil Girish Merchant entitled
“Intrinsically Evolvable Artificial Neural Networks.” I have examined the final electronic
copy of this dissertation for form and content and recommend that it be accepted in
partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a
major in Electrical Engineering.

 Gregory D. Peterson, Major Professor

We have read this dissertation
and recommend its acceptance:

Donald W. Bouldin

Itamar Elhanany

Ethan Farquhar

J. Wesley Hines

 Accepted for the Council:

 Carolyn R. Hodges

 Vice Provost and Dean of the
 Graduate School

(Original signatures are on file with official student records.)

INTRINSICALLY EVOLVABLE

ARTIFICIAL NEURAL NETWORKS

A Dissertation Presented for the
Doctor of Philosophy

Degree
The University of Tennessee, Knoxville

Saumil Merchant
August 2007

 ii

DEDICATION

This dissertation is dedicated to my wife, Jaya

for her love and support and

to my parents, Kokila and Girish Merchant

for their love and encouragement.

 iii

Copyright © 2007 by Saumil Merchant

All rights reserved.

 iv

ACKNOWLEDGEMENTS

I have been fortunate to have so many people in my life who have been a part of

my graduate education and without them this dissertation wouldn't have been possible. I

am what I am today because of all these people.

First and foremost, I would like to thank my advisor and teacher, Dr. Gregory

Peterson. I couldn't have wished for a better mentor who was always able to help me see

the bigger picture and create a vision for this dissertation. His faith in me has inspired me,

and his patience and constructive criticisms have guided me. Throughout this journey he

has been a friend and a mentor with my best interest in his mind. He has molded an

aspiring student from a novice to a researcher.

I would also like to express my sincere thanks to Dr. Seong Kong for his

guidance, Dr. Donald Bouldin for his teachings on VLSI systems and serving on my

committee. I would also like to express my heartfelt gratitude to Dr. Itamar Elhanany, Dr.

Wesley Hines, and Dr. Ethan Farquhar for serving on my dissertation committee.

I would like to thank my friends and lab mates, Junqing Sun, Akila

Gothandaraman, Yu Bi, Junkyu Lee, Depeng Yang, Sang Ki Park, and Wei Jiang for

their valuable feedback at various times during this work. I would also like to take this

opportunity to thank all my friends in Knoxville who were always there for me at times I

felt I would be losing my sanity.

 v

I would like to acknowledge and appreciate the financial support provided for this

research work and my graduate studies by the Electrical and Computer Engineering

Department at University of Tennessee, the National Science Foundation, and the Office

of Information Technology – Lab Services.

I owe special gratitude to my parents, Kokila and Girish Merchant, who always

kept faith in me, and offered unconditional support and encouragement; to my aunt and

uncle, Jayshree and Sanjay Merchant for inspiration and the needed push; my sister

Snehal Merchant and cousin Rahil Merchant for their support and encouragement; my

niece Shweta Merchant for her affection; and my mother and father-in-law Usha and

Suresh Bajaj for their trust. Thank you!

Last but not the least; I thank my best friend and wife Jaya for her enduring

patience, love, and support through these years. She is the one responsible to inspire me

to pursue doctoral studies. Her love has been my strength, and her faith my inspiration.

 vi

ABSTRACT

Dedicated hardware implementations of neural networks promise to provide

faster, lower power operation when compared to software implementations executing on

processors. Unfortunately, most custom hardware implementations do not support

intrinsic training of these networks on-chip. The training is typically done using offline

software simulations and the obtained network is synthesized and targeted to the

hardware offline. The FPGA design presented here facilitates on-chip intrinsic training of

artificial neural networks. Block-based neural networks (BbNN), the type of artificial

neural networks implemented here, are grid-based networks neuron blocks. These

networks are trained using genetic algorithms to simultaneously optimize the network

structure and the internal synaptic parameters. The design supports online structure and

parameter updates, and is an intrinsically evolvable BbNN platform supporting

functional-level hardware evolution. Functional-level evolvable hardware (EHW) uses

evolutionary algorithms to evolve interconnections and internal parameters of functional

modules in reconfigurable computing systems such as FPGAs. Functional modules can

be any hardware modules such as multipliers, adders, and trigonometric functions. In the

implementation presented, the functional module is a neuron block. The designed

platform is suitable for applications in dynamic environments, and can be adapted and

retrained online. The online training capability has been demonstrated using a case study.

A performance characterization model for RC implementations of BbNNs has also been

presented.

 vii

TABLE OF CONTENTS

Chapter Page
1 Introduction... 1

1.1 Technology Overview: RC, EHW, and ANN... 1
1.1.1 RC Acceleration for ANNs... 5

1.2 Dissertation Synopsis.. 6
1.3 Manuscript Organization .. 9

2 Artificial Neural Networks ... 11
2.1 Introduction to Artificial Neural Networks... 11
2.2 Historical Perspective ... 14
2.3 Building Artificial Neural Networks .. 15
2.4 Genetic Evolution of Artificial Neural Networks... 17
2.5 Review of Neural Hardware Implementations ... 19

2.5.1 Neural Network Hardware.. 19
2.5.2 Digital Neural Network Implementations... 21
2.5.3 Analog Neural Hardware Implementations .. 35
2.5.4 Hybrid Neural Hardware Implementations... 36

2.6 Summary ... 37
3 Evolvable Hardware Systems ... 39

3.1 Gate-level, Transistor-level, and Functional-level Evolution............................... 40
3.2 Review of Evolvable Hardware Systems.. 42

3.2.1 EHW Chips and Applications... 44
3.2.2 EHW Algorithms and Platforms... 49

3.3 Summary ... 51
4 Block-based Neural Networks .. 53

4.1 Introduction... 53
4.2 Evolving BbNNs Using Genetic Algorithms.. 56

4.2.1 Genetic Operators ... 59
4.2.2 BbNN Encoding.. 61
4.2.3 Fitness Function.. 64
4.2.4 Genetic Evolution ... 65

4.3 Summary ... 68
5 Intrinsically Evolvable BbNN Platform.. 70

5.1 BbNN FPGA Design Details .. 70
5.1.1 Data Representation and Precision ... 73
5.1.2 Activation Function Implementation .. 74
5.1.3 Smart Block-based Neuron Design... 76
5.1.4 Dataflow Implementation ... 81

5.2 Embedded Intrinsically Evolvable Platform... 86
5.2.1 PSoC Platform Design .. 88

5.3 Fixed Point BbNN Software for Genetic Evolution ... 91
5.4 Performance and Device Utilization Summary .. 92
5.5 Design Scalability ... 93

5.5.1 Scaling BbNN Across Multiple FPGAs ... 96

 viii

5.5.2 Scaling via Time Folding.. 96
5.5.3 Hybrid Implementation... 97

5.6 Applications .. 97
5.6.1 N-bit Parity Classifier ... 97
5.6.2 Iris Plant Classification... 102

5.7 Summary ... 107
6 Online Learning With BbNNs .. 109

6.1 Online Training Approach .. 110
6.2 Online Evolution of BbNNs.. 115
6.3 Case Study: Adaptive Neural Luminosity Controller... 118

6.3.1 Simulation Experimental Setup .. 120
6.3.2 Adaptive BbNN Predictor... 124

6.4 Summary ... 156
7 Performance Analysis ... 157

7.1 Computational Device Space.. 157
7.2 RP Space ... 159
7.3 Performance Characterization Metrics ... 162

7.3.1 Computational Device Capacity ... 163
7.3.2 Computational Density ... 165
7.3.3 Power Efficiency... 166
7.3.4 Discussion... 167

7.4 BbNN Performance Analysis.. 168
7.4.1 Performance Characterization on Processors.. 169
7.4.2 Performance Characterization on FPGAs... 172
7.4.3 Results and Discussion ... 177
7.4.4 Performance of SBbNs ... 186

7.5 Model Sensitivity to Parametric Variations.. 187
7.6 Summary ... 190

8 Summary and Conclusions ... 191
References... 198
Appendix... 214
Vita.. 218

 ix

LIST OF TABLES

Table 1 Typical FPGA runtime reconfiguration times .. 29
Table 2 Device Utilization Summary on Xilinx Virtex-II Pro FPGA (XC2VP30)......... 94
Table 3 Device Utilization Summary on Xilinx Virtex-II Pro FPGA (XC2VP70)......... 95
Table 4 Genetic evolution parameters used for N-bit Parity problem 98
Table 5 Genetic evolution parameters used for Iris classification problem................... 104
Table 6 Light and sensor specifications for the test room ... 123
Table 7 Genetic evolution parameters used for BbNN predictor 127
Table 8 GA evolution parameters used for BbNN controller .. 140
Table 9 Re-train cycle times .. 147
Table 10 Peak Computational Capcity (in MCPS) and density (in CPλ2S) of RISC
processors for BbNN block computation.. 171
Table 11 BbNN Computational Density on FPGAs... 176

 x

LIST OF FIGURES

Figure 1 Venn diagram showing the technology overlaps between RC, EHW, and ANN 6
Figure 2 (a) Block-based neural network topology (b) 2 input / 2 output neuron block
configuration ... 8
Figure 3 Mathematical model of an artificial neuron .. 11
Figure 4 (a) Non-recurrent multilayer perceptron network (b) Recurrent artificial neural
network ... 12
Figure 5 Multilayer Perception Example (a) Training Iteration ‘n’ (b) Training iteration
‘n+1’.. 17
Figure 6 Neural network hardware classification .. 21
Figure 7 Block-based Neural Network topology... 54
Figure 8 Four different internal configurations of a basic neuron block 54
Figure 9 Three different 2 x 2 BbNN network structures.. 56
Figure 10 Flowchart depicting genetic evolution process ... 58
Figure 11 Recurrent BbNN network structure encoding (a) BbNN (b) Structure encoding
... 62
Figure 12 Feedforward BbNN network structure encoding (a) BbNN (b) Structure
encoding.. 62
Figure 13 BbNN weight gene encoding (a) Neuron block (b) Weight encoding 63
Figure 14 BbNN chromosome encoding for a 2 x 2 network.. 63
Figure 15 Structure crossover operation in BbNN .. 66
Figure 16 Structure mutaiton operation in BbNN.. 67
Figure 17 Activation function LUT illustration... 76
Figure 18 Smart Block-based Neuron to emulate all internal neuron block configurations
... 78
Figure 19 Bit fields of Block Control and Status Register (BCSR) of SBbN 79
Figure 20 Dynamic gene translation logic for internal configuration emulation............. 80
Figure 21 Equivalent Petri Net models for BbNN blocks (a) 1/3 (b) 2/2 (c) 3/1 83
Figure 22 An example 2 x 2 BbNN firing sequence.. 84
Figure 23 SBbN neuron logical block diagram ... 85
Figure 24 Programmable System on a Chip - logical diagram.. 90
Figure 25 BbNN PSoC platform. GA operators execute on PPC405,............................. 91
Figure 26 Fitness evolution trends for (a) 3-bit and (b) 4-bit parity examples............... 99
Figure 27 Structure evolution trends for (a) 3-bit and (b) 4-bit parity examples 100
Figure 28 Evolved networks for (a) 3-bit and (b) 4-bit parity examples 101
Figure 29 BbNN training error for Iris plant classification database. Results show 104
Figure 30 Fitness trends was Iris plant classification using BbNN 105
Figure 31 Structure evolution trends for Iris plant classification using BbNN 105
Figure 32 Evolved BbNN network for Iris plant classification database 106
Figure 33 Single network scheduled to switch between training and active modes...... 111
Figure 34 Two networks scenario. One in active mode and the other in training mode 113
Figure 35 Online training system model.. 115
Figure 36 Time delayed neural network .. 117
Figure 37 Layout of the reference room used for simulation .. 121

 xi

Figure 38 Plot of measured relative light output (%) versus ballast control input 122
Figure 39 Plot of sensor signal output (V) versus measured light intensity 122
Figure 40 Ideal luminosity levels in the test room... 125
Figure 41 Results of the BbNN pre-training. Plot shows the actual and the predicted
ambient luminosity values as learnt by BbNN ... 126
Figure 42 Prediction error for the offline evolution... 126
Figure 43 Avergae and maximum fitness values over generations (offline evolution). 127
Figure 44 Evolved BbNN after 1557 generations.. 128
Figure 45 Ambient luminosity test cases and expected target luminosity..................... 129
Figure 46 Pre-trained ambient luminosity predictions and the current ambient luminosity
... 131
Figure 47 Predictions improve after first re-training cycle at 8:00................................ 131
Figure 48 Predictions improve after the second re-training cycle at 17:50 132
Figure 49 Prediction errors for pre-trained, first re-training, and second re-training
cycles... 132
Figure 50 Average and maximum fitness trends for the first re-training cycle 133
Figure 51 Average and maximum fitness trends for the second re-training cycle 133
Figure 52 Evolved network after the first re-training cycle... 134
Figure 53 Evolved network after the second re-training cycle 135
Figure 54 BbNN predictor - controller block diagram .. 140
Figure 55 Target and measured luminosity levels as recorded by the........................... 141
Figure 56 Error between target and measured luminosities (pre-trained case) 141
Figure 57 Target and measured luminosity levels as recorded by the........................... 142
Figure 58 Error between target and measured luminosities (online evolution case)..... 142
Figure 59 Power consumption (pre-trained case) .. 143
Figure 60 Power consumption (online evolution case).. 143
Figure 61 BbNN controller at time - 4:00hrs. (a) Fitness Curves (b) Evolved BbNN .. 145
Figure 62 Actual and pre-trained predictions of ambient light intensity 147
Figure 63 Actual and predicted ambient light intensity values throughout the course.. 148
Figure 64 Prediction errors of all the re-training steps. The errors curves show the..... 149
Figure 65 The plot shows the prediction errors for the eighth re-training cycle and..... 150
Figure 66 Fitness curves for the evolves BbNN eighth re-training cycle...................... 150
Figure 67 Evolved BbNN network after eighth re-training cycle.................................. 151
Figure 68 Target and measured luminosity reading for the sunnydataset - pre-trained
case.. 153
Figure 69 Luminosity error for the sunny dataset - pre-trained case............................. 153
Figure 70 Target and measured luminosity readings for the sunny dataset................... 154
Figure 71 Luminosity error for the sunny case with all eight re-training cycles........... 154
Figure 72 Total power consumption for sunny case - pre-trained case 155
Figure 73 Total power consumption with sunny dataset - eight re-training cycles 155
Figure 74 Reorganization of the VP space with advances in RP device technologies .. 162
Figure 75 RISC assembly code for a single neuron processing..................................... 169
Figure 76 Pipelined multiplier accumulator circuit for neural processing 173
Figure 77 Pipelined parallel multiplier circuit for neural processing 173
Figure 78 Comparing processors and FPGAs (Hard MAC) (a) Capacity (b) Density .. 178

 xii

Figure 79 Comparing processors and FPGAs (LUT MAC) (a) Capacity (b) Density .. 179
Figure 80 Comparing processors and FPGAs (Hard Multipliers) (a) Capacity (b) Density
... 180
Figure 81 Comparing processors and FPGAs (LUT Multipliers) (a) Capacity (b) Density
... 181
Figure 82 Comparing power efficiencies of processors and FPGAs (Hard MAC) 182
Figure 83 Comparing power efficiencies of processors and FPGAs (LUT MAC) 182
Figure 84 Comparing power efficiencies of processors and FPGAs (Hard Multiplier) 183
Figure 85 Comparing power efficiencies of processors and FPGAs (LUT Multiplier) 183
Figure 86 Computational capacities of FPGAs and processors as a function of network
size .. 185
Figure 87 Deviation in computational density verses die area deviation factor 189

1 INTRODUCTION

1.1 Technology Overview: RC, EHW, and ANN

Reconfigurable computing (RC) technology has grown considerably in the past

two decades and continues to arouse much interest among the computing community.

Performance advantages of dedicated custom/semi-custom implementations, shorter

design and verification times, device reusability, and lower implementation costs as

compared to application specific integrated circuits (ASIC) have been the major

contributing factors in the success of this technology. The most prominent and

commercially successful device in this technology is the field programmable gate array

(FPGA). Increasing speeds and capacities, availability of on-chip cores such as embedded

processors, memories, multipliers, and accumulators, and functional diversity advantages

with runtime reconfiguration make FPGAs very attractive low-volume and low-cost

custom hardware solutions. Increasing commercial acceptance has promoted significant

research in CAD tools to efficiently program these devices and a huge market for

intellectual property cores to facilitate shorter design cycles. Broad application range,

from embedded computing to supercomputing, continues to stimulate research into this

technology [1].

The runtime reconfiguration capability of RC devices has resulted in the

conception of a different computing paradigm among a small community of researchers.

The computing paradigm is Evolvable hardware (EHW) [2]. The key objective of EHW

 1

 2

systems is to use the runtime hardware reconfiguration ability along with evolutionary

algorithms to evolve a digital or analog circuit in hardware. The configuration bitstream

(viewed as a phenotype in an evolutionary algorithm) of these devices is encoded as a

chromosome (viewed as a genotype) and evolved under the control of evolutionary

algorithms over multiple generations. Evolutionary algorithms use mechanisms inspired

by the Darwinian theory of biological evolution such as reproduction, mutation,

recombination, natural selection, and survival of the fittest to evolve a population of

chromosomes over multiple generations. A population of chromosomes (encoded FPGA

bitstreams) is first ranked according to their fitness levels. Fitness is determined by an

objective function that can include parameters such as correctness of circuit functionality,

speed, area, and power. A selection scheme selects the chromosomes from the population

for reproduction via genetic crossover, mutation, and recombination. The higher the rank,

the higher is the probability of selection of the chromosomes for reproduction to form

new generations. The survival of the fittest policy tends to increase the average fitness of

the population over multiple generations. Evolution continues over multiple generations

until either a chromosome with fitness at least equal to the predetermined target fitness is

found or the preset maximum number of generations is reached. EHW systems are

classified in two groups depending upon the role of reconfigurable hardware during

evolution: intrinsic and extrinsic EHW systems. Intrinsic EHW systems include the RC

hardware in the evolution loop to test the fitness of each chromosome in the population.

Extrinsic EHW systems use a software model to simulate the underlying RC hardware

and perform an offline evolution. Using the configuration FPGA bitstream for evolution

in essence evolves the connections and configurations of the logic blocks in the hardware

 3

circuitry. This is termed as gate-level evolution. Evolving hardware at a higher level of

abstraction than gates is termed as functional-level evolution. Functional-level evolution

evolves the configurations and interconnections of bigger functional modules such as

multipliers, adders, and trigonometric functions. The functional modules to use for the

evolution can be chosen depending on the target circuit functionality. The potential

modules that can be chosen are unbounded. If the functional module chosen is an

artificial neuron, the evolution process evolves the interconnections between the neurons

and their internal configurations (synaptic weights and biases). Thus, the evolutionary

process evolves an artificial neural network.

An artificial neural network (ANN) is an interconnected network of artificial

neurons [3]. Artificial neurons are loosely analogous to their biological counterparts,

typically producing an output that is a function of the weighted summation of synaptic

inputs and a bias. ANNs can be classified as recurrent and feedforward networks

depending on the flow of data from inputs to outputs of the network. Recurrent networks

allow bidirectional flow between inputs and outputs, whereas in feedforward networks

the data flows only in one direction, from inputs to outputs. ANNs are very popular

among the machine intelligence community. They can be used to effectively model

complex nonlinear input – output relationships, and to learn characteristic patterns in

input data flowing through the network. They have been successfully applied to a variety

of problems such as classification, prediction, and approximation in the fields of robotics,

industrial control, signal/image processing, and finance. To learn the input – output

relationships in the data, the ANNs go through a phase of learning or training. Many

 4

training algorithms exist such as the backpropagation algorithm, genetic algorithms,

reinforcement learning, simulated annealing, and unsupervised training algorithms. The

learning process can be broadly classified into an offline (or batch) training scheme or an

online training scheme. In offline training, a batch of training datasets is used to train the

neural network. The network obtained from training is then used in the field to process

new data that the network has not seen during training. Online training schemes train the

neural networks in the field. There are many advantages of online training with artificial

neural networks such as improved generalization via adaptability in dynamic

environments and system reliability. One reason for the popularity of neural networks is

their ability to generalize based on the information acquired from the training datasets.

But to obtain good generalizations in practice, the training dataset has to be a

representative set of the real data the network is likely to encounter in the field. This is

non-trivial for applications in dynamic environments where the training data may be

drawn from some time-dependent environmental distributions. The ability to train the

artificial neural networks in the field using online training algorithms helps to improve

generalizations in dynamic environments. Improved generalizations are achieved via

adaptation and re-training to learn the variations in the input data. The ability to adapt and

re-train in the field maintains reliable system performance and as a result increases the

system’s reliability.

 5

1.1.1 RC Acceleration for ANNs

Inherent computational parallelism in artificial neural networks has attracted

significant research into the implementation of custom hardware designs for neural

networks (see chapter 2). But most implementations rely on offline training using

computer simulations to find a suitable network for the training dataset. The network

obtained as a result of training is then implemented in hardware to achieve higher recall

speeds. Although attractive processing speedups can be achieved, every new application

may necessitate a hardware redesign with this approach. To improve generalizations,

networks may require more training with larger or more representative datasets. For

hardware implementations relying on offline training, implementing the new trained

network may require a hardware redesign. Implementation costs of hardware redesigns

have attracted a lot of interest in FPGAs for implementing artificial neural networks.

Runtime reconfigurations in FPGAs can be used to configure different artificial neural

circuit designs, reusing the same FPGA chip for different applications. But the neural

network learning process is offline. As noted above, there are many advantages to online

training of artificial neural networks. To implement online training in hardware requires

support for dynamic network structure and synaptic parameter updates to the neural

circuit design. Online and offline learning processes for RC implementations of artificial

neural networks are analogous to the intrinsic and the extrinsic functional-level evolution

schemes in EHW systems. Thus, an intrinsically evolvable ANN is a custom ANN

implementation that supports online learning. Figure 1 shows a Venn diagram of the

technology overlaps between RC, EHW, and ANN systems as discussed above.

Figure 1 Venn diagram showing the technology overlaps between RC,
EHW, and ANN

1.2 Dissertation Synopsis

This dissertation work is an extension of an NSF-funded project on evolvable

block-based neural networks for dynamic environments. The overall project goal was

algorithmic, structural, and custom implementation oriented investigation of block-based

neural networks and their suitability for evolution in dynamic environments. Block-based

neural networks (BbNN) are a type of artificial neural networks with a neuron block as

the basic processing element of the network. The network structure is a grid with the

neuron blocks positioned at the intersections of the grid. Typically the inputs are applied

at the top of grid and the outputs appear at the bottom of the grid. The dataflow through

the network determines the internal configurations of the neuron blocks. Each neuron

block can have at the most three inputs and three outputs, aligned in north, east, west, and

 6

south (NEWS) directions. Depending on the dataflow through the grid, the internal

configurations of the neuron blocks can be 1-input / 3 outputs, 2 inputs / 2 outputs, or 3

inputs / 1 output. Every unique dataflow pattern through the grid is a unique network

structure of the BbNN. Each neuron block has weighted synaptic links from all inputs to

all outputs. Each output is a function of weighted summation of all the inputs and a bias.

The synaptic weights and biases of the neuron blocks are the internal parameters of the

network. Thus, the network outputs are unique functions of applied inputs and the

internal parameters for every unique BbNN structure, as shown below.

()() 1....0,, 1**10...01...0 −== −− Nkwxfy NMNk (1)

where,

ky Output k of the network

1.....0 −Nx N inputs of the network
M Number of rows in the grid
N Number of columns in the grid

(1**10...0 −NMw) 10*M*N synaptic parameters (10 parameters per neuron block)

()•f Nonlinear activation function

Figure 2 shows the network architecture and a neuron block with a 2/2 (2 inputs /

2 outputs) internal configuration. Just as with other artificial neural networks, BbNNs can

be applied to solve classification, prediction, and approximation problems in machine

learning. The learning process for the BbNNs is a multi-parametric optimization problem

to find a unique structure and a set of internal parameters to model the input – output

 7

Figure 2 (a) Block-based neural network topology (b) 2 input / 2 output neuron block configuration

relationships in the training datasets. Thus, global search techniques such as genetic

algorithms (GAs) are used to train the BbNNs. Although GA training may take more time

to converge to a solution than gradient descent search techniques such as

backpropagation algorithm, it avoids getting trapped in the local minima, a problem often

faced with backpropagation training algorithm. Hybrid training algorithms for BbNNs

have been investigated that take the advantages of global sampling of GAs and fast

convergence of gradient descent techniques for efficient training of BbNNs. More

information on these can be found in [4-6]. The research work presented in this

dissertation uses genetic algorithms to train the BbNNs.

 8

This dissertation presents an intrinsically evolvable implementation of BbNNs on

RC systems. The implementation supports functional-level intrinsic evolution with

neuron blocks as the functional modules for the EHW system. The dissertation also

 9

presents online learning techniques with BbNNs and performance characterization of

these networks on RC systems. The major contributions from this research work are as

follows:

1. RC implementation of an intrinsically evolvable platform for BbNNs. The

platform supports on-chip evolution (evolutionary algorithm + BbNN on the same

FPGA) of BbNNs.

2. Online training algorithm to evolve BbNNs on-chip, in field enabling applications

in dynamically variant environments.

3. Performance characterization of BbNNs on RC systems. The performance model

presented enables quantitative and qualitative performance comparison across

different computing platforms such as general purpose computing and RC

systems.

1.3 Manuscript Organization

Chapter 2 introduces artificial neural networks and provides a review of reported

literary contributions to neural hardware implementations. Chapter 3 introduces

evolvable hardware systems and provides a review of reported literary contributions to

applications of EHW systems. Chapter 4 introduces block-based neural networks and

discusses multi-parametric genetic evolution of these networks. Chapter 5 gives the

design details of the intrinsically evolvable BbNN implementation on RC systems and

demonstrates the on-chip training ability of the BbNN platform. Chapter 6 provides

 10

details on the online evolution algorithm for BbNNs. It demonstrates the advantages of

online evolution using a case study, ‘Adaptive Neural Luminosity Controller’. Chapter 7

introduces a performance characterization model for BbNNs on RC systems. The model

enables quantitative and qualitative performance comparison across different computing

platforms. Chapter 8 concludes the dissertation providing a summary of the research

work accomplished and the prospects of future research directions in the field.

2 ARTIFICIAL NEURAL NETWORKS

2.1 Introduction to Artificial Neural Networks

Artificial Neural Networks (ANN) have gained a lot of popularity in the

computational intelligence and machine learning community. They are networks of fully

or partially interconnected information processing elements called artificial neurons.

Artificial neurons are loosely analogous to their biological counterparts. Each artificial

neuron produces an output from a function of the weighted sums of inputs and a bias. The

function is called an activation function or a transfer function. Typically these are

nonlinear, monotonically increasing functions such as a hyperbolic tangent, logistic

sigmoid, step function, or ramp function. Figure 3 shows a mathematical model of an

artificial neuron.

Various network topologies proposed for the artificial neural networks can be

broadly classified into recurrent and nonrecurrent networks. Recurrent networks have

Figure 3 Mathematical model of an artificial neuron

 11

Figure 4 (a) Non-recurrent multilayer perceptron network (b) Recurrent artificial neural network

 12

feedback connections from outputs back to input nodes or to one of the hidden layers.

Nonrecurrent networks are feedforward networks such as the popular multilayer

perceptron model. Figure 4 shows an example of recurrent and non-recurrent artificial

neural networks. Neural networks can model complex nonlinear input-output

relationships in a dataset. These networks are exposed to a training dataset from which

they extract information and learn over time the input-output relationship in the dataset.

The learning algorithm tunes the internal parameters such as weights and biases. There

are three major learning paradigms: supervised, unsupervised, and reinforcement

learning.

♦ Supervised Learning

Under supervised learning, the input data used to train the network has

corresponding target output vectors that are typically used to calculate the mean

squared error between the network output and target output. This error is used to

guide the search in the weight space to optimize the network. It is a gradient

descent search algorithm, popularly known as the backpropagation algorithm,

 13

which tries to minimize the total mean squared error between network and target

output [3].

♦ Unsupervised Learning

Unsupervised learning uses no external teacher and is based upon only

local information. It is also referred to as self-organization, in the sense that it

self-organizes data presented to the network and detects their emergent collective

properties. Hebbian learning and the competitive learning are the two types of

widely used unsupervised learning techniques [3].

♦ Reinforcement Learning

In reinforcement learning an agent learns from interaction with the

environment. At every time step, the agent performs an action and the

environment generates an observation and an instantaneous cost depending on the

agent’s action. The environment is modeled as a Markov decision process (MDP)

with sets of states and actions, and the probability distributions for costs,

observations, and state-action transitions. The policy of selecting the actions is

defined as a conditional distribution over actions given the observations. The aim

is to discover a policy for selecting actions that minimizes some measure of a

long-term cost, i.e. the expected cumulative cost [7].

Artificial neural networks are widely used in pattern classification, sequence

recognition, function approximation, and prediction. Many successful artificial neural

network implementations have been reported with applications in medical diagnostics,

autonomously flying aircrafts, and credit card fraud detection systems.

 14

2.2 Historical Perspective

Fascination with building machines that can demonstrate some degree of human-

like intelligent behavior has driven the research efforts in the fields of artificial

intelligence. Alan Turing in his classic 1950 paper in Mind, “Computing Machinery and

Intelligence” laid out the test for machine intelligence, what is now famously known as

the Turing test for the quality of artificial intelligence [8]. He proposed that if a machine

can intelligently converse with a human such that an external observer cannot distinguish

between the two, the machine is intelligent. The pursuit of intelligent machines and

fascination with the human brain lead to the evolution of the fields of artificial

intelligence and machine learning. In a 1943 classic paper McCulloch and Pitts described

the logical calculus of neural networks, proposing that a neuron follows an all-or-none

law [9]. If a sufficient number of these neurons with their synaptic connections set

properly operate synchronously, then in principle it could compute any computable

function. Donald Hebb, in his 1949 book The Organization of Behavior, used the

McCulloch-Pitts model of neurons and presented a physiological learning rule for

synaptic modifications [10]. Hebb’s learning rule suggested that the effectiveness of a

variable synapse between two neurons is increased by the repeated activation of one

neuron by the other across the synapse. He proposed that the connectivity of the brain is

continuously changing as an organism learns differing functional tasks, and that neural

assemblies are created by such changes. This view of the brain dynamically evolving its

internal synaptic connections has been widely accepted and many later neural models for

machine learning have adopted this functional philosophy to a varying degree. Some 15

years after the publication of McCulloch and Pitts’s classic paper on the logical calculus

 15

of neural network models, Rosenblatt in 1958, introduced a new neural learning

technique for pattern recognition problem in his work on the perceptron [11]. In 1960,

Widrow and Hoff proposed a different training algorithm than the perceptron

convergence theorem, the least mean-square (LMS) algorithm and used it to formulate

the Adaline (adaptive linear element) [12]. One of the earliest trainable layered neural

networks with multiple adaptive elements was the Madaline (multiple-adaline) proposed

by Widrow and his students in 1962 [13]. After an initial upsurge in the research into

perceptron based neural networks came the downside after a 1969 book by Minsky and

Papert, titled ‘The Perceptron’ in which they mathematically demonstrated fundamental

limitations on what single-layer perceptrons could compute [14]. This was followed by a

decade of dormancy in the field of artificial neural networks until Hopfield’s classic

paper in 1982 brought together many older ideas that helped revive the field of artificial

neural networks [15]. Since then they have gained a lot of popularity in the computational

intelligence and machine learning community.

2.3 Building Artificial Neural Networks

To build realizable intelligent systems with artificial neural networks we need to

design networks with flexible synaptic connections capable of evolving dynamically as

the network learns new behavior. A lot of earlier work on artificial neural networks was

based on software simulations of neural network training to obtain an optimized network

which was then implemented in hardware for faster recall speeds. The trial and error

based training algorithms for these networks make application specific integrated circuit

 16

(ASIC) implementations of on-chip training challenging. The dynamic structure and

parameter updates required during training are harder to implement on an ASIC.

Consider the hugely popular multilayer Perceptron (MLP) model of an ANN. The MLP is

a feedforward neural network comprised of layers of artificial neurons typically trained

using the backpropagation algorithm. The first layer is called the input layer, the last

layer is called the output layer, and the layers in between are the hidden layers. Figure 5a

shows an example of an MLP network under training at training iteration ‘n’. Assume

that in the next iteration ‘n+1’ there is a change to the structure of the network; say an

additional neuron has been added in the first hidden layer of the MLP. This is shown with

dotted lines in Figure 5b. If this network is implemented in an ASIC for online training,

additional routing nets have to be accommodated dynamically for each new neuron,

which is non-trivial. Also, the numbers of inputs to the neurons in the second hidden

layer of our example have increased from 4 to 5. Hence the neurons in this layer will

have to either dynamically increase the number of pipeline stages in the multiply and

accumulate units or add additional parallel multipliers and adders depending on the

implementation of the sum of products modules for the neuron computations. This may

require hardware re-synthesis and routing making the training process cumbersomely

slow. These dynamic structural changes can be handled easily in software, making it an

attractive choice for implementing neural network training. Providing this flexibility in an

ASIC comes at a significant cost of area and speed, requiring a careful and time-

consuming logic design. The costs of implementing online neural network training in an

ASIC sometimes overweigh the benefits, hence encouraging software-only

implementations of the training algorithms and hardware implementation of the trained

network to achieve higher connections per second (CPS) recall speeds. Section 2.5

provides a review of the neural hardware implementations reported in the literature.

Figure 5 Multilayer Perception Example (a) Training Iteration ‘n’ (b) Training iteration ‘n+1’

2.4 Genetic Evolution of Artificial Neural Networks

The popularly used backpropagation algorithm for the training of ANNs, being a

gradient descent approach, has two drawbacks as outlined by Sutton [16]. First, the

search often gets trapped in local minima if the gradient step is too small, whereas for

large gradient steps it could have an oscillatory behavior. The method is inefficient in

searching for global minima, especially with multimodal and nondifferentiable search

spaces. Second, there is a problem of catastrophic interference with these methods. There

is a high level of interference between learning with different patterns, because those

units that have so far been found most useful are also the ones most likely to be changed

to handle new patterns. The problem of global minima can be solved by using global

search procedures like genetic algorithms. Many researchers have proposed using genetic

algorithms to evolve neural networks to find optimized candidates in the large deceptive

 17

 18

multimodal search spaces [17-25]. Genetic algorithms (GAs) evolve a population of

neural networks, encoded as chromosomes over multiple generations using genetic

operators such as selection, crossover, and mutation. A population of chromosomes is

first ranked according to their fitness levels. The fitness is usually determined from the

mean squared error between the target and the actual outputs of each individual network

in the population. A selection scheme selects the chromosomes from the population based

on their rankings for reproduction via genetic crossover and mutation. The survival of the

fittest policy tends to increase the average fitness of the population over multiple

generations. The evolution continues over multiple generations until either a chromosome

with fitness at least equal to the predetermined target fitness is found or the preset

maximum number of generations is reached.

GA, being a global search algorithm, avoids the pit-falls of local minima faced in

gradient descent algorithms. It does not need to calculate derivatives of the error function

and hence works very well with nondifferentiable error surfaces. Also there are no

restrictions on network topologies as long as an appropriate fitness function can be

defined for the network, network structure, and internal parameters encoded as

chromosomes. Thus GA can handle a wide variety of artificial neural networks, but the

evolutionary approach is a computationally intensive approach. It is also slower than the

directed gradient descent based training algorithms such as the backpropagation

algorithm [16]. Genetic evolution, being an adaptive process, is good at global sampling,

but performs poorly for local fine tuning. If the initial guess of the network is closer in

proximity on the error surface to the global minimum, the gradient descent based search

 19

algorithm may converge much faster than a global sampling technique such as the genetic

algorithms. If the neural network is more complex with multiple hidden neural layers, the

error surface will be complex, with many discontinuities. In such cases, gradient descent

search algorithms often will be stuck in local minima and will not converge to the global

minimum, whereas, the global search techniques such as GAs are more likely to find the

optimal answer.

In this work we concentrate mainly on a type of neural networks called block-

based neural networks (BbNN) [23] and use GA to train the network structure and the

internal parameters of the BbNNs. Chapter 4 introduces BbNNs.

2.5 Review of Neural Hardware Implementations

This section provides a brief overview of reported work in the literature for

artificial neural network hardware implementations.

2.5.1 Neural Network Hardware

Dedicated hardware units for neural networks are called neurochips or

neurocomputers [26]. Due to limited commercial prospects and their required

development and support resources, these chips have seen little commercial viability.

Also, due to the existence of wide-ranging neural network architectures and a lack of a

complete and comprehensive theoretical understanding of their capabilities, most

commercial neurocomputer designs are dedicated implementations of popular paradigms

such as multilayer perceptrons, Hopfield networks, or Kohonen networks. Various

 20

classification and overview studies of neural hardware have appeared in the literature

[26-36]. Heemskerk has a detailed review of neural hardware implementations until about

1995 [26]. He classified the neural hardware according to their implementation

technologies such as the neurocomputers built using general purpose processors, digital

signal processors, or custom implementations using analog, digital, or mixed-signal

design. Zhu et al has a good survey of ANN FPGA implementations up until 2003 [36].

The neural network hardware review presented in this dissertation addresses custom

hardware implementations of artificial neural networks. These are more directly related to

the research presented in this manuscript. Figure 6 shows the classification structure used

in this review. The reported implementations have been first broadly classified into

digital, analog, and hybrid implementations. Since this dissertation focuses on digital

implementations of neural network hardware a detailed review of digital implementations

is presented first, followed by the analog, and hybrid implementations. The digital (ASIC

and FPGA) implementations are further classified according to their implementation

design choices such as representation formats for values, design flexibility to

accommodate different applications of neural networks, support for on-chip or off-chip

learning, and transfer function implementation.

Figure 6 Neural network hardware classification

2.5.2 Digital Neural Network Implementations

Digital neural network implementations offer high computational precision,

reliability, and programmability. The implementations are targeted towards either ASICs

or FPGAs. The synaptic weights and biases of the neurons in the network can be stored

on or off chip, representing a trade-off between the speed and the size of the design.

ASIC neurochips can achieve higher processing speeds, lower power, and more density

than corresponding FPGAs implementations, but have significantly higher design and

fabrication costs. FPGAs have slower processing speeds than ASICs but have the

advantage of runtime circuit reconfigurations allowing reuse of the FPGA chip for

 21

 22

different applications. FPGAs are commercial-off-the-shelf products, lowering the

implementation costs significantly. The last decade has seen a lot of advancement in

reconfigurable hardware technology. FPGA chips with built-in RAMs, multipliers,

gigabit transceivers, on-chip embedded processors, and faster clock speeds have attracted

many neural network FPGA implementations. In general, the digital implementation

disadvantages as compared to the analog implementations are relatively larger circuit

sizes and higher power consumption, but digital implementations our easier to build and

scale as compared to their analog counterparts.

2.5.2.1 Real Value Representation

Digital neural network hardware implementations represent the real valued

weights, biases, and I/O using fixed point, floating point, or specialized representations

such as pulse stream encoding. The choice of a particular representation is a trade-off

between arithmetic circuit size and speed, data precision, and the available dynamic range

for the real values. Floating point arithmetic units are slower, larger, and more

complicated than their fixed point counterparts, which are faster, smaller, and less

complicated.

Generally, floating point representations of real valued data for neural networks

are found in custom ASIC implementations. Aibe et al. [37] used floating point

representation for their implementation of probabilistic neural networks (PNNs). In

PNNs, the estimator of the probabilistic density functions is very sensitive to the

 23

smoothing parameter (the network parameter to be adjusted during neural network

learning). Hence, a very high accuracy is needed for the smoothing parameter, making

floating point implementations more attractive. Ayela et al. demonstrated an ASIC

implementation of MLPs using a floating point representation for weights and biases

[38]. They also support on-chip neural network training using the backpropagation

algorithm and are listed also in section 2.5.2.3. Ramacher et al. present a digital

neurochip called SYNAPSE-1 [39, 40]. It consists of a 2-dimensional systolic array of

neural signal processors that directly implement parts of common neuron processing

functions such as matrix-vector multiplication and finding maximum. These processors

can be programmed for specific neural networks. All the real values are represented using

floating point representation.

For FPGA implementations the preferred choice is fixed point representation.

Despite the current advances in technology, the floating-point representation of real

valued data may still be impractical to implement in FPGAs. Larger arithmetic circuit

sizes limit the neural network sizes that can be implemented on a single FPGA [41].

Moussa, Arebi, and Nichols demonstrate an implementation of MLP on FPGAs using

fixed and floating point representations. Their results show that the MLP implementation

using fixed point representation was over 12x greater in speed, over 13x smaller in area,

and achieves far greater processing density as compared to the MLP using floating point

representations [42]. There exists a body of research to show that it is possible to train

ANNs with fixed point weights and biases [42-44]. But there is a delicate trade-off

between minimum precision, dynamic data range, and the area required for the

 24

implementation of arithmetic units. A finer precision will have fewer quantization errors

but requires larger multiply-accumulate units, whereas smaller bit width, lower precision

arithmetic unit implementations are smaller, faster, and more power efficient. But due to

lesser precision there are larger quantization errors that could severely limit the ANN’s

capabilities to learn and solve a problem. There is a tradeoff between precision and

area/speed, and a way to resolve this conflict is to select a ‘minimum precision’ that

would be required for a target application. Holt and Baker, Holt and Hwang, and Holi and

Hwang investigated the minimum precision problem on a few ANN benchmark

classification problems using simulations and found 16-bit data widths with 8-bit

fractional parts were sufficient for networks to learn and correctly classify the input

datasets [43-45]. Ros et al. demonstrate a successful fixed point implementation of

spiking neural networks on FPGAs [46]. Pormann et al. demonstrate fixed point

implementations of neural associative memories, self-organizing feature maps, and basis

function networks on FPGAs [47]. Some other reported implementations that used fixed

point representations can be found in [48-56].

The trade-offs between fixed and floating point representations are due to area

and speed of the arithmetic circuits (especially the multipliers and accumulators) required

in the implementation of the neural computations. Researchers have proposed different

encoding techniques that simplify the designs of the arithmetic circuits. Marchesi et al.

proposed special training algorithms for multilayer perceptrons that use weight values

that are powers of two. The weight constraint eliminates any need for multipliers in the

ANN implementations as they are replaced with simple shifters [57]. Other approaches

 25

encode real values in bit streams and implement the multipliers in bit-serial fashion,

serializing the flow and using simple logic gates instead of complex, expensive

multipliers for smaller and faster arithmetic units. But the disadvantage of using a pulse

stream arithmetic approach is the precision limitation which can severely affect ANNs

capability to learn and solve a problem. Also, for multiplications to be correct, the bit

streams should be uncorrelated. To produce these would require independent random

sources which again require larger resources to implement. Murray and Smith’s VLSI

implementation of ANNs [58], used pulse-stream encoding for real values which was

later adopted by Lysaght et al. [59] for ANN implementations on Atmel FPGAs.

Implementation using pulse stream encoding can also be found in [60, 61]. The

advantage of using serial stochastic bit streams for encoding real valued data is that the

product of the two stochastic bit streams can be computed using a simple bitwise ‘xor’.

Implementations using these can be found in [62-65]. Economou et al. show a pipelined

bit serial arithmetic implementation for ANNs [66]. Salapura used delta encoded binary

sequences to represent real values and used bit stream arithmetic to calculate a large

number of required parallel synaptic calculations [67]. Zhu and Sutton [34] has a good

survey of hardware implementations of artificial neural networks using pulse stream

arithmetic.

Researchers have also proposed other approaches as discussed next. Chujo et al.

have proposed an iterative calculation algorithm of the perceptron type neuron model,

which is based on multidimensional binary search algorithm. Since binary search doesn’t

need any sum of products functionality, it eliminates the need for expensive multiplier

 26

circuitry in hardware [68]. Guccione and Gonzalez used a vector-based data parallel

approach to represent real values and compute the sum of products [69]. The distributed

arithmetic (DA) approach of Mintzer for implementing FIR filters on FPGAs [70] was

used by Szabo et al. for a digital implementation of pre-trained neural networks. They

used Canonic Signed Digit Encoding (CSD) to improve the hardware efficiency of the

multipliers [71]. Noory and Groza also used the DA neural network approach and

targeted their design for implementation on FPGAs [72]. Pasero and Perri use LUTs to

store all the possible multiplication values in an SRAM to avoid implementing costly

multiplier units in FPGA hardware. At system boot-up a microcontroller computes all the

possible product values of the fixed weight and an 8-bit input vector, and loads it into the

SRAM [73].

The neural network hardware implementation presented in this dissertation is on

FPGAs. As discussed above floating point implementations of neural networks on

FPGAs may not be practical. Larger floating point arithmetic circuits limit the size of the

neural networks that can be implemented on the FPGA [41]. Also, there exists a body of

research to show that it is possible to train ANNs with fixed point weights and biases [42-

44]. Hence, the chosen approach chosen for representing real valued data in the neural

network FPGA implementation presented in this dissertation is fixed point.

 27

2.5.2.2 Design Flexibility

An important design choice for neural network hardware implementations is the

degree of structure adaptation and synaptic parameter flexibility. An implementation of a

neural network with fixed network structure and weights can only be used in the recall

stage and cannot be adapted to different network structures and parameters without a

hardware redesign. One motivation of using FPGAs for ANN implementations is the

advantage of circuit adaptation using runtime reconfigurations. Runtime reconfigurations

can be used to load different neural network circuit designs for different applications,

reducing the implementation cost substantially by reusing the FPGA. Hardware redesigns

in an ASIC are much more expensive and time consuming due to fabrication costs and

time. FPGAs are used in neural network implementations for different purposes such as

prototyping and simulation, density enhancement, and topology adaptation. The purpose

of using FPGAs for prototyping and simulation is to thoroughly test a prototype of the

final design for correctness and functionality before sending it for expensive ASIC

fabrication. This approach was used in [74]. Full or partial FPGA reconfigurations can

be used to implement larger circuits, which a single FPGA cannot hold, via temporal

folding. This increases the amount of effective functionality per unit reconfigurable

circuit area of FPGAs. Eldredge et al. used this technique to implement the

backpropagation training algorithm on the FPGAs. The algorithm was divided temporally

in three different executable stages and each stage was loaded on the FPGA using

runtime reconfigurations. More details on this and other follow up implementations to

Eldredge’s technique are covered in section 2.5.2.3 for on-chip learning [75, 76]. The

runtime reconfiguration in FPGAs can also be used for topology adaptation. Neural

networks with different structure and internal parameters targeting different applications

can be loaded on the FPGA via runtime reconfigurations. One of the earliest

implementations of artificial neural networks on FPGAs, the Ganglion connectionist

classifier, used FPGA reconfigurations to load networks with different structures for each

new application of the classifier [77]. This approach to use full or partial FPGA runtime

reconfigurations for structure and/or parameter adaptation can also be seen in the neural

network implementations of Perez-Uribe et al. [78-80], Restrepo et al. [81], Ros et al.

[46], Kothandaraman [49], Ferrer et al. [50], Chin Tsu, Wan-de, and Yen-Tsun [51],

Wang et al. [52], Syiam et al. [53], Krips, Lammert, and Kummert [54], Zhu, Milne, and

Gunther [55], and Kurokawa and Yamashita [82].

The approach of using FPGA runtime reconfigurations for topological adaptation

is acceptable when the neural network is trained offline using software simulations. For

online trainable implementations of neural networks the overheads of FPGA

reconfigurations far outweigh any benefits. Typical current generation FPGA

reconfiguration times are of the order of a few milliseconds (see Table 1). Overall

performance of the system using reconfigurations for topological adaptation during

online training depends on the total amount of time spent performing computations

versus the time spent in reconfiguration cycles. Guccione and Gonazalez investigated this

issue and came up with the following equation reported in [83]:

)1/(−= srq (2)

 28

Table 1 Typical FPGA runtime reconfiguration times

cycleperbits

CCLKbits
conf M

fN
t

__

×
= ; bitsM cycleperbits 8__ =

Device Number of Configuration
Bits (Nbits)

Slave SelectMAP
configuration mode (in secs)

VirtexIIPro with CCLK = 50MHz (max frequency)
XC2VP2 1,305,376 0.003263
XC2VP4 3,006,496 0.007516
XC2VP7 4,485,408 0.011214

XC2VP20 8,214,560 0.020536
XC2VPX20 8,214,560 0.020536
XC2VP30 11,589,920 0.028975
XC2VP40 15,868,192 0.03967
XC2VP50 19,021,344 0.047553
XC2VP70 26,098,976 0.065247

XC2VPX70 26,098,976 0.065247
XC2VP100 34,292,768 0.085732

Virtex4 with CCLK = 60MHz (max frequency)
XC4VLX15 4765184 0.009927
XC4VLX25 7942848 0.016548
XC4VLX40 12568960 0.026185
XC4VLX60 18236800 0.037993
XC4VLX80 24038464 0.05008
XC4VLX100 31771392 0.06619
XC4VLX160 41816064 0.087117
XC4VLX200 50601216 0.105419
XC4VSX25 9540864 0.019877
XC4VSX35 14382144 0.029963
XC4VSX55 24009600 0.05002
XC4VFX12 4906880 0.010223
XC4VFX20 7530880 0.015689
XC4VFX40 14232576 0.029651
XC4VFX60 22183296 0.046215

XC4VFX100 35059264 0.07304
XC4VFX140 50853120 0.105944

 29

 30

where s denotes the computational time, r denotes the reconfiguration time, and q is the

number of times the configured logic should be used before another configuration is tried

to achieve good performance. Thus, time spent in FPGA computations must be much

higher than the time spent in FPGA reconfiguration cycles to achieve reasonable

performance speedups.

The neural network implementation presented in this dissertation is an online

trainable neural network implementation on FPGAs. It supports dynamic structure and

parameter updates to the neural network without FPGA reconfigurations. The

implemented network topology and design details are in chapters 4 and 5, respectively.

ASIC implementations of flexible neural networks that can adapt structure and

parameter values have been reported in literature. One commercially available dedicated

neural hardware design is the Neural Network Processor (NNP) from Accurate

Automation Corp. [84]. It is a neural network processor that has instructions for various

neuron functions such as multiply and accumulate or transfer function calculation. Thus

the neural network can be programmed using the NNP assembly instructions for different

neural network implementations. Mathia and Clark compared performance of a single

and parallel (1 to 4 NNPs) multiprocessor NNP against that of the Intel Paragon

Supercomputer (1 to 128 parallel processor nodes). The NNP outperformed the Intel

Paragon by a factor of 4 [85].

 31

2.5.2.3 On-chip/Off-chip Learning

Neural network training algorithms are typically iterative algorithms that adjust

neural network parameters and structure over multiple iterations based on a cost function.

Thus to do an on-chip training, one needs a design that can be dynamically adapted to

change its network structure and parameters. Few implementations reported in the

literature actually support an on-chip training of neural networks due to the complexities

involved. Eldredge et al. reported an implementation of the backpropagation algorithm on

FPGAs by temporally dividing the algorithm into three sequentially executable stages of

the feedforward, error backpropagation, and synaptic weight update [75, 76]. The feed-

forward stage feeds in the inputs to the network and propagates the internal neuronal

outputs to output nodes. The backpropagation stage calculates the mean squared output

errors and propagates them backward in the network in order to find synaptic weight

errors for neurons in the hidden layers. The update stage adjusts the synaptic weights and

biases for the neurons using the activation and error values found in the previous stages.

Hadley et al. improved the approach of Eldredge by using partial reconfiguration of

FPGAs instead of full-chip runtime reconfiguration [86]. Gadea et al. show a pipelined

implementation of the backpropagation algorithm in which the forward and backward

passes of the algorithm can be processed in parallel on different training patterns, thus

increasing the throughput [87]. Ayala et al. demonstrated an ASIC implementation of

MLP with on-chip backpropagation training using floating point representation for real

values and corresponding dedicated floating point hardware [38]. The backpropagation

algorithm implemented is similar to that of Eldredge et al. [75, 76]. A ring of 8 floating

point processing units (PU) are used to compute the intermediate weighted sums in the

 32

forward stage and the weight correction values in the weight update stage. The size of the

memories in the PUs limits the number of neurons that can be simulated per layer to 200.

A more recent FPGA implementation of backpropagation algorithm can be found in [88].

Witkowski, Neumann, and Ruckert demonstrate an implementation of hyper basis

function networks for function approximation [89]. Both learning and recall stages of the

network are implemented in hardware to achieve higher performance. The GRD (Genetic

Reconfiguration of DSPs) chip by Murakawa et al. can perform on-chip online evolution

of neural networks using genetic algorithms [90]. Details on it are covered in chapter 3 on

evolvable hardware systems. Two commercially available neurochips from the early

1990s are the CNAPS (Hammerstrom [91]) and MY-NEUPOWER (Sato et al. [92]).

CNAPS was a SIMD array of 64 processing elements per chip that are comparable to low

precision DSPs and was marketed commercially by Adaptive solutions. The complete

CNAPS system consisted of a CNAPS server which connected to a host workstation, and

Codenet, a set of software development tools. It supports Kohonen LVQ (linear vector

quantization), backpropagation, and convolution at high speed. Another commercially

available on-chip trainable neurocomputer is MY-NEUPOWER. It supports various

learning algorithms such as backpropagation, Hopfield, and LVQ and contains 512

physical neurons. It was a neural computational engine for software packet called

NEUROLIVE [92].

The following references discuss analog and hybrid implementations that support

on-chip training. Zheng et al. have demonstrated a digital implementation of

backpropagation learning algorithm along with an analog transconductance-model neural

 33

network [93]. A digitally-controlled synapse circuit and an adaptation rule circuit with a

R-2R ladder network, a simple control logic circuit, and an UP/DOWN counter are

implemented to realize a modified technique for the backpropagation algorithm. Linares-

Barranco et al. also show an on-chip trainable implementation of an analog

transconductance-model neural network [94]. Field Programmable Neural Arrays

(FPNA), an analog neural equivalent of FPGAs, are a mesh of analog neural models

interconnected via a configurable interconnect network [95-99]. Thus, different neural

networks structures can be created dynamically, enabling on-chip training.

A more typical implementation approach has been to train the network offline

using software simulations and implement the network obtained in hardware for faster

recall speeds. [46, 48-50, 52, 53, 100, 101] adhere to this approach.

 Newer FPGA generations have on-chip embedded processors that some

implementations have used to run the training algorithms and thus provide in-system

network training. Schmitz et al. use the embedded processor on the FPGA to implement

genetic algorithm operators like selection, crossover, and mutation [102]. This FPGA is

closely coupled as a coprocessor to a reconfigurable analog artificial neural network

ASIC on a single PCB. A host processor initializes this PCB and oversees the genetic

evolution process.

 34

2.5.2.4 Activation Function Implementation

Activation functions, or transfer functions, are typically non-linear monotonically

increasing sigmoid functions. Examples of typical activation functions include hyperbolic

tangent, logistic sigmoid, and hard limit functions. Direct implementation of nonlinear

sigmoid functions in FPGAs can occupy significant reconfigurable resources. A typical

approach is to use piece-wise linear approximations of these functions and interpolate the

values between piece-wise samples using straight lines. The computations for piecewise

approximations can either be implemented in logic or the values can be pre-computed

and stored in lookup tables (LUTs). Omondi, Rajapakse, and Bajger show an

implementation of piece-wise linear approximation of activation functions using the

CORDIC algorithm on FPGAs [103]. Krips et al. show an implementation of piece-wise

linear approximation of activation functions pre-computed and stored in LUTs [54].

One problem of direct implementations of the activation function is that one has

to redesign the hardware logic for every application that is using a different activation

function. In such scenarios the LUT approach serves well as the values can be pre-

computed and loaded in the LUT. But the size of the LUT is directly influenced by the

data widths. Every extra bit in the data more than doubles the size of the LUT.

 35

2.5.3 Analog Neural Hardware Implementations

Analog artificial neurons are more closely related to their biological counterparts

as the biological neurons perform analog computations. Many characteristics of analog

electronics can be helpful for neural network implementations. Typical analog neurons

use operational amplifiers to directly perform neuron-like computations, such as

integration and sigmoid transfer functions. These can be modeled using physical

processes such as summing of currents or charges. Also, the interface to the environment

may be easier as no analog-to-digital and digital-to-analog conversions are required.

Some of the earlier analog implementations used resistors for representing free network

parameters such as synaptic weights [104]. These implementations using fixed weights

are not adaptable and hence can only be used in the recall phase. Adaptable analog

synaptic weight techniques represent weights using variable conductance [94, 105, 106],

voltage levels between floating gate CMOS transistors [107-110], capacitive charges

[111, 112], or using charged coupled devices [113, 114]. Some implementations use

digital memories for more permanent weight storage [115]. There have been many

commercial and research implementations of analog neural networks. Some of the

prominent ones are the Intel ETANN (Electronically Trainable Analog Neural Network)

[107, 116-120] and the Mod2 Neurocomputer [121]. Although there are many advantages

of implementing analog neural networks as discussed above, the disadvantage is that the

analog chips are susceptible to noise and process parameter variations, and hence need a

very careful design.

 36

2.5.4 Hybrid Neural Hardware Implementations

Hybrid implementations combine analog, digital, and other strategies such as

optical communication links with mixed mode designs in an attempt to get the best that

each can offer. Typically the hybrid implementations use analog neurons taking

advantage of their smaller size and lower power consumption, and use digital memories

for permanent weight storage [122, 123]. But the mixed-signal design of the analog

neurons with the digital memories on the same die introduces a lot of noise problems and

requires isolation of the sensitive analog parts from the noisy digital parts using guard

rings. Sackinger et al. demonstrate a high speed character recognition application on the

ANNA (Analog Neural Network Arithmetic and logic unit) chip [124]. This ANNA chip

can be used for a wide variety of neural network architectures but is optimized for locally

connected weight-sharing networks, and time-delay neural networks (TDNNs). Zatorre-

Navarro et al. demonstrate a mixed mode neuron architecture for sensor conditioning

[125]. It uses an adaptive processor that consists of a mixed four-quadrant multiplier and

a current conveyor that performs the nonlinearity. Synaptic weight storage uses digital

registers and neural network training is performed off-chip.

Due to the large number of interconnections, routing quickly becomes a

bottleneck in digital ASIC implementations. Higher fan-in and fan-out neurons require

more drive strength resulting in larger transistor widths and more intermediate signal

drive buffers. Some researchers have proposed hybrid designs using optical

communication channels. Maier et al. [126] have shown a hybrid digital-optical

implementation that performs neural computations electronically, but the communication

 37

links between neural layers uses an optical interconnect system. This increases the speed

of neural processing by a factor of one magnitude higher than a purely digital approach.

But on the flip side they increase hardware cost and complexity for transferring signals

between the electronic and the optical systems. Craven et al. [127] proposed using

frequency multiplexed communication channels to overcome the communication

bottleneck in fully connected neural networks.

2.6 Summary

Custom neural network hardware implementations can best exploit the inherent

parallelism in computations observed in artificial neural networks. Many

implementations have relied on offline training of neural networks using software

simulations. The trained neural network is then implemented in hardware. Although these

implementations have good recall speedups, they are not directly comparable to the

implementation reported here which supports on-chip training of neural networks. On-

chip trainable neural hardware implementations have also been reported in literature.

Most of the reported ones are custom ASIC implementations such as the GRD chip by

Murakawa et al. [90], on-chip backpropagation implementation of Ayala et al. [38],

CNAPS by Hammerstrom [91], MY-NEUPOWER by Sato et al. [92], and FPNA by

Farquhar, Gordon and Hasler [95]. FPGA based implementations of on-chip training

algorithms have also been reported such as the backpropagation algorithm

implementations in [75, 76, 86-88]. An online trainable implementation of hyper basis

function networks has been reported in [89]. The implementation presented here differs

 38

from the reported ones in one or more of the following; (i) the artificial neural network

implemented, the block-based neural networks (see chapter 4), (ii) the training approach

using the genetic algorithms, and (iii) the FPGA implementation platform. The

implementation supports on-chip training without reliance on FPGA reconfigurations,

unlike some of the approaches listed above. It uses genetic algorithms to train the

BbNNs. The genetic operators such as selection, crossover, and mutation are

implemented on the embedded processor PPC 405 on the FPGA die, similar to the

approach of Schmitz et al. [102]. But unlike their approach the neural network designed

is a digital implementation in the configurable logic portion of the same FPGA chip.

Schmitz et al. [102] use a separate neural analog chip for fitness evaluations for the GA

running on PPC 405 on the closely coupled FPGA on the same PCB board.

3 EVOLVABLE HARDWARE SYSTEMS

Evolvable hardware systems (often called E-hard or EHW systems) are systems

built using programmable/reconfigurable hardware devices such as programmable logic

devices (PLDs), field programmable gate arrays (FPGAs), field programmable transistor

arrays (FPTAs), or custom-built programmable chips. The central idea of these systems is

to use the runtime hardware reconfiguration ability of these devices along with

evolutionary algorithms to evolve a digital or analog circuit. The configuration bitstream

(viewed as a phenotype in an evolutionary algorithm) for these devices is encoded as a

chromosome (viewed as a genotype) and evolved using evolutionary algorithms over

multiple generations. Genetic operators such as selection, crossover, and mutation are

applied to a randomly generated population of these chromosomes to create newer

generations. Fitter genotypes survive through multiple generations and are used for

breeding newer generations. The aim is to increase the average fitness of the population

from one generation to the next with the goal of finding a genotype with fitness that is

equal to greater than the target fitness. The population fitness is determined by a fitness

function which is application-specific. Apart from evaluating the correctness of the

EHW’s output for the training data set, the fitness function can also consider other

constraints such as circuit size, speed, or power. EHW systems were first conceptualized

by DeGaris back in 1992. He classified these systems into two classes: extrinsic and

intrinsic EHW systems [2].

 39

 40

EXTRINSIC EHW systems perform an offline evolution using software

simulations. The evolutionary algorithm is wrapped around a software

model of the hardware and evolution is done using software simulations.

The fittest evolved circuit is then used and configured on the hardware.

INTRINSIC EHW systems include the hardware in the evolution loop. It is

an online evolution technique that directly evolves the underlying

hardware circuitry.

This chapter introduces EHW systems and reviews reported contributions to this

field over the last one and a half decades. Section 3.1 discusses gate-level and functional-

level evolution strategies and their corresponding advantages and disadvantages. Section

 3.2 provides a literature review of EHW systems.

3.1 Gate-level, Transistor-level, and Functional-level Evolution

Evolving an FPGA bitstream in essence is evolving gate-level logic circuitry. Due

to a time consuming evolution process, evolving larger circuits using this strategy is

impractical. Longer chromosomal lengths for larger circuits need larger memories to

store the genotype generations during evolution and need significantly higher processing

speeds to speedup the time-consuming evolution process. Larger circuits also mean

significantly larger search spaces. Evolutionary algorithms are global search algorithms

and as a result may take much longer to converge to a solution over many generations.

 41

This limits the practical circuit sizes that can be used in the evolution process. Also, for

intrinsic gate-level evolution, slow circuit reconfigurations times may pose a significant

bottleneck for some applications. Typical FPGA reconfiguration times are on the order of

a few milliseconds (see section 2.5.2.2). The number of runtime reconfigurations that are

required during the intrinsic evolution process could be significantly high and depends on

the population size and number of generations required to meet the fitness goals. Hence

the evolution process will incur significant reconfiguration cycle time overheads which

may not be practical for many applications.

Just as FPGAs are used for gate-level evolution in EHW systems, FPTAs enable

development of transistor-level EHW systems. Field programmable transistor arrays

enable circuit reconfigurability at transistor levels allowing synthesis of analog, digital,

and mixed-signal electronic circuits. These devices consist of cells of programmable

transistors, resistors, and capacitors interconnected via programmable switches. FPTAs

can be used to build analog circuits such as amplifiers, and filters as well as digital logic

circuits. More details on FPTAs can be found in [128].

Higuchi et al. [129, 130] proposed to use the concepts of evolvable hardware

systems to do functional-level hardware evolution as opposed to the traditional gate-level

evolution. They proposed to evolve internal parameters and connections of higher-level

functional modules such as adders, multipliers, dividers, and sine generators. A criticism

for this approach has been that the circuit is limited in functionality by the available

hardware modules and newer functional modules may be required for a different

 42

application. But this approach also significantly reduces the genotype length, facilitating

more complex practical circuits for evolution. Since the EHW concept involves the

evolution of desirable hardware circuits by genetic learning, without giving any

specifications in advance, it provides a contrasting bottom-up approach to the

conventional top-down hardware design methodology. Thus, different functional modules

can be used for different applications.

So for neuromorphic circuit applications, artificial neuron models can be used as

functional modules. The evolutionary algorithm can then be used to evolve the synaptic

connections and free parameters of artificial neural networks. Prior work uses

evolutionary algorithms instead of more traditional gradient descent approaches for

training artificial neural networks [17-25]. This work follows in their footsteps to develop

an intrinsically evolvable neural network EHW system. The following section provides a

review of reported literature in evolvable hardware systems.

3.2 Review of Evolvable Hardware Systems

Typical FPGAs are not suitable for EHW as they cannot be programmed with

random bitstreams due to the risk of damaging the device. The idea of intrinsic evolution

really took off after the introduction of Xilinx 6200 series FPGAs [2]. These FPGAs were

EHW friendly; the devices included a SRAM-cell-based architecture in which all internal

connections were unidirectional. Thus, no random configuration bits in these cells could

damage the device as it is impossible to connect two outputs together. So an evolutionary

 43

algorithm can be allowed to manipulate the configuration of a real chip without the need

for any legality constraint checking. Xilinx also made the architecture of these chips

public, generating more interest in the field of evolvable hardware systems. Earlier

research before the Xilinx 6200 series FPGAs was mostly concentrated on the extrinsic

evolution strategy. In 1998, Xilinx stopped production of the 6200 series FPGAs and

introduced their next generation Virtex series FPGAs [131]. With these devices Xilinx

reverted back to the classic FPGA device layout with CLBs and a multidirectional

routing structure. This made the device unsafe for random bitstream configurations as the

outputs could be shorted together in this architecture. Also the detailed architecture of

these devices was not publicly available, since Xilinx aimed at mass-production of these

devices. This also ensured that circuits couldn’t be reverse-engineered from the

bitstreams. Thus for intrinsic evolution, the evolutionary algorithms needed to include the

Xilinx place and route tools in their loop. However, other researchers have proposed

alternative strategies using JBits. JBits comprises Java classes that provide an application

programming interface (API) into the Xilinx FPGA bitstreams. JBits provides the

capability of designing and dynamically modifying circuits in Xilinx FPGAs.

Hollingworth, Smith, and Tyrrell demonstrated safe intrinsic evolution on Xilinx Virtex

devices using JBits [132].

This section provides a brief summary of reported publications in the evolvable

hardware field. Section 3.2.1 surveys various EHW chips grouping them by their target

applications. Section 3.2.2 surveys developed EHW platforms for research and custom

evolutionary algorithms. [2, 133-137] discuss various EHW fundamentals and also have

 44

reviews of EHW systems. More formal classification and comparison with bio-inspired

systems can be found in [138].

3.2.1 EHW Chips and Applications

EHW systems use off-the-shelf hardware (such as FPGAs) as well as custom-built

EHW chips to implement digital, analog, or mixed-signal evolutionary circuits. These

chips enable one or more of the evolutionary techniques, gate-level, transistor-level, and

functional-level evolution, to be implemented. EHW systems have been successfully

applied in many application areas such as neural hardware, signal and image processing,

control applications, analog electronics, and navigation systems. The review presented

here groups the EHW implementations by their application fields. An interesting feature

of many EHW systems is a degree of inherent fault tolerance due to the evolutionary

design approach. In theory, previously developed hardware circuits can be re-evolved in

the event of a fault to effectively ‘bypass’ the faulty component or section of the chip. In

practice, the degree of fault tolerance achievable varies and is the subject of research.

EHW systems also have applications in extreme temperature electronics. Stoica et al.

demonstrated fault tolerant electronic circuit designs using adaptive intrinsic circuit

redesign/reconfiguration during operation in extreme environments [139]. Their approach

is demonstrated on a prototype chip that can recover functionality at 250˚C.

 45

3.2.1.1 EHW Systems for Neural Hardware

The EHW systems listed here have been used for implementing evolutionary

artificial neural networks. The goal is to provide autonomous reconfiguration capability

to neural networks for intrinsic evolution. These implementations relate directly to the

research work presented in this manuscript. A discussion of how they compare with the

research work in this dissertation is at the end of this chapter in section 3.3.

A well known EHW project was the ATR’s CAMBrain machine (CBM) [140-

146]. Jointly developed by ATR laboratories and Genobyte, the first prototype was

available in 1999. CBM used Xilinx's XC6264 FPGAs to build and evolve 3D cellular

automata (CA) based neural network modules directly in hardware. The neural network

implemented is CoDi (Collect and Distribute) that uses single bit signaling. The output

spike-trains of these single bit neurons are converted to analog waveforms that can be

compared to target waveforms for fitness calculation during evolution. Early experiments

on the CBM targeted applications such as frequency dividers, moving line detection, and

pattern recognition. The goal of the project was to build an artificial brain with millions

of neurons that can be evolved to control the behaviors of robots.

The GRD (Genetic Reconfiguration of DSPs) chip by Murakawa et al. [90] is an

evolvable hardware chip designed for neural network applications. It was developed at

the MITI's Electrotechnical Laboratory as part of the Real World Computing (RWC)

project. The GRD chip is a building block for the configuration of a scalable neural

network hardware system. Both the topology and the hidden layer node functions of a

 46

neural network mapped on the GRD chips are dynamically reconfigured using a genetic

algorithm (GA). Thus, the most desirable network topology and choice of node functions

(e.g., Gaussian or sigmoid function) for a given application can be determined adaptively.

The GRD chip consists of a 32-bit RISC processor and fifteen 16-bit DSPs connected in a

binary-tree network. The RISC processor executes the GA code and each of the DSPs can

support computations of up to 84 neurons. Thus each GRD chip can support 1260

neurons. Multiple GRD chips can be connected for a scalable neural architecture.

3.2.1.2 Applications in Signal and Image Processing

Although deGaris introduced and classified EHW, Thompson illustrated its

promise by developing the first intrinsically evolvable hardware system [147, 148]. He

used a Xilinx XC6216 chip to distinguish between two square wave inputs of 1 kHz and

10 kHz. The circuit was evolved intrinsically so that the output would be 0 volt for the 1

kHz input, and 5 volts for the 10 kHz input. The evolved circuit was specific to the

particular chip used in the evolution process.

As part of the RWC project at the MITI Electrotechnical Laboratory (under which

GRD discussed above was developed), an EHW chip for a data compression application

in electrophotographic printers [149] and an IF filter chip for use in cellular phones were

also developed [150]. A pattern recognition system built using EHW hardware is

presented by Iwata et al. in [151]. Higuchi et al. [152] and Sakanashi et al. [153] give the

 47

overview of the EHW projects developed at the MITI's Electrotechnical Laboratory as

part of the Real World Computing (RWC) project.

Koza et al. give a survey of problems from cellular automata and molecular

biology in which genetic programming evolved a computer program that produced results

that were slightly better than human performance for the same problem [154]. They also

show three examples in electronic synthesis (lowpass filter, an amplifier, and an

asymmetric bandpass filter) where circuit evolution using genetic programming

generated better circuit designs.

Hounsell and Arslan demonstrate an evolvable hardware platform for the

automated design and adaptation of digital filters on a programmable logic array (PLA)

[155]. Investigation of the fault tolerance behavior of their system showed that the circuit

functionality was maintained despite an increasing number of faults covering up to 25%

of the PLA area. Zhang, Smith, and Tyrrell also demonstrate an intrinsic EHW system for

digital filters [156].

3.2.1.3 Applications in Analog Electronics

Hereford and Pruitt describe a system robust to input sensor failure using

evolvable hardware on a field programmable analog array (FPAA) [157]. The circuit

averages sensor inputs connected to the FPAA. In the event of a sensor input failure, the

failure is detected by the controller and it triggers a circuit reprogramming. The system is

 48

shown to be robust to several different sensor failure modes such as open circuit, short

circuit, multiple sensor failures, and FPAA input amplifier failure.

Bennet et al. used genetic programming to evolve the topology and sizing of each

component of an op-amp [158]. The resultant 22 transistors amplifier has almost no bias

or distortion and gives a 60 decibel DC gain with good frequency generalization.

Subbiah and Ramamurthy demonstrate an intrinsically evolvable hardware

implementation of a process sensor controller with a neural estimator based fault

detection mechanism to take care of sensor failures [159].

3.2.1.4 Applications in Digital Logic Circuits

Sekanina et al. show extrinsic simulations and intrinsic evolution in FPGAs of

multifunctional digital circuits using polymorphic gates [160-162]. They implement GA

in the FPGA and use a virtual reconfigurable circuit of polymorphic gates for evolution.

Heng, Miller, and Tyrrell demonstrate an intrinsic EHW implementation for a 2-

bit fault tolerant multiplier that can recover from transient faults [163]. Simulation

experiments for fault tolerance of evolved circuits by Hartmann and Haddow demonstrate

a graceful degradation in performance in 2-bit adder and a multiplier circuit [164]. Their

analysis demonstrates tolerance to increasing noise and gate failures.

 49

3.2.1.5 Control and Navigation Applications

Gwaltney and Ferguson demonstrated intrinsic EHW techniques to evolve an

analog controller for the control of the shaft speed of a DC motor using a second

generation Field Programmable Transistor Array (FPTA2) [165]. Performance

comparison of the evolved controller to that of a conventional proportional-integral (PI)

controller showed that hardware evolution is able to create a compact design that

provides good performance, while using considerably less functional electronic

components.

Kajitani et al. have developed a gate-level EHW chip used for prosthetic hand

controllers [84]. Keymeulen et al. have developed an EHW chip for an adaptive mobile

robot navigation system [166]. Both of these were part of the MITI RWC project.

3.2.2 EHW Algorithms and Platforms

One widely recognized problem with EHW is the time and space required for

genetic evolution and the genotype-phenotype mapping. To address this issue many

different flavors of evolutionary algorithms have been reported in the literature such as

the compact GA [167, 168], increased complexity evolution [169], bi-directional

incremental evolution [170], generalized disjunction decomposition algorithm (GDD)

[171-174], and fast evolutionary algorithm (FEA) [175]. Many researchers believe that

the classical usage of evolutionary algorithms in EHW systems centered on the best

individual is a constrained view. There is rich information in a population which can and

 50

should be exploited. A truly population-based approach that emphasizes population rather

than the best individual can often yield several important benefits to evolvable hardware,

including efficiency, accuracy, adaptiveness, and fault-tolerance. A number of examples

have been presented in [176] to illustrate how a population of cooperative specialists,

evolved by fitness sharing or trained by negative correlation, can achieve better

performance in many aspects than the best individual in the population.

Many custom platforms have been built to further research into EHW systems.

The rest of this section surveys some custom built intrinsic EHW platforms reported.

Tempesti et al. have developed a BioWall [177]. It is a giant reconfigurable

computing tissue developed to implement embryonics machines. It is structured as a two-

dimensional tissue composed of units representing molecules. Each unit consists of an

input element (a touch-sensitive membrane), an output element (an array of 8x8 = 64 two

color LEDs), and a programmable computing element (a Spartan XCS10XL Xilinx

FPGA). The BioWall contains 3200 units, arranged as 20 rows of 160 units. The BioWall

is used for research into EHW applications that range from Embryonics' ontogenetic

systems, through epigenetic artificial neural networks, to phylogenetic evolving

hardware.

Sipper et al. used Xilinx 4000 series of programmable chips to build a system

capable of evolving the hardware, measuring the fitness, and performing the evolutionary

algorithm all on a single printed circuit board (PCB) [138]. They proposed a partition of

 51

the space of bio-inspired hardware systems based on nature’s classification along three

axes: phylogeny, ontogeny, and epigenesis. The phylogenetic level concerns the temporal

evolution of the genetic programs within individuals and species, the ontogenetic level

concerns the developmental process of a single multicellular organism, and the epigenetic

level concerns the learning processes during an individual organism’s lifetime.

 Other EHW platforms of interest are the MorphoSys EHW platform developed by

Guangming et al. [178] and the ‘Processing Integrated Grid’ (PIG) self-reconfigurable

scalable EHW chip developed by Macias [179, 180]. Tufte and Haddow reported a

platform for complete hardware evolution (implementing GA in hardware along with the

reconfigurable circuit) [181]. They demonstrate an evolution of a 4 by 1 multiplexer

using their platform.

3.3 Summary

This chapter presents a review of EHW systems and its reported applications.

These systems use evolutionary algorithms to evolve hardware circuitry with specific

fitness goals such as correct functionality, circuit size, and power. EHW systems can be

classified into extrinsic and intrinsic EHW systems. The former uses a software model of

the underlying hardware architecture and performs offline evolution. The latter includes

the hardware in the evolution loop and performs online evolution. EHW systems can be

used in many applications ranging from bio-inspired hardware, signal and image

processing, analog and digital electronics, to process control. Section 3.2.1 discussed two

 52

EHW neural hardware applications that are closely related to the research work presented

here. Both of the reported EHW neural hardware chips, the CAMBrain machine (CBM)

and GRD are custom-built on silicon. The CBM project custom built a network of

evolvable CoDi 1-bit neural modules that are evolved using evolutionary algorithms.

The GRD chip uses a binary network of 16-bit DSPs that support multiple neural

computations. It can implement sigmoid neural nodes (as in Multi-layer Perceptrons) as

well as Gaussian neural nodes (as in Radial Basis Function networks). The FPGA

platform developed and reported in this work is an intrinsic EHW system for neural

hardware applications. The neural network topology implemented is called block-based

neural networks (BbNNs) [23]. BbNNs use evolutionary algorithms to evolve network

structure and synaptic weights of the network. The developed EHW platform uses

functional-level evolution and is implemented using off-the-shelf available FPGAs.

4 BLOCK-BASED NEURAL NETWORKS

4.1 Introduction

Inspired from the initial perceptron model of a neuron, many different artificial

neural network topologies have been explored in the literature. Some of the well-known

models include fully and partially connected feedforward multilayer perceptron models,

radial-basis function networks, self-organizing maps, cellular neural networks, and fully

and partially connected recurrent neural network models. These use different learning

paradigms such as supervised, unsupervised, and reinforcement learning techniques. This

work explores implementation of evolvable block-based neural networks on

reconfigurable hardware. This chapter introduces block-based neural networks.

A block-based neural network (BbNN) is a flexible neural network of neuron

blocks interconnected in the form of a grid as shown in Figure 7 [4-6, 23, 49, 182-186].

Each neuron block is the basic information processing element of the network and can

have one of four possible internal configurations depending on the number of inputs and

outputs as listed below and shown in Figure 8.

♦ 1-input, 3-output (1/3),

♦ 2-input, 2-output (2/2) (left side output),

♦ 2-input, 2-output (2/2) (right side output), and

♦ 3-input, 1-output (3/1).

 53

Figure 7 Block-based Neural Network topology

Figure 8 Four different internal configurations of a basic neuron block
(a) 1/3 (b) 2/2 (left) (c) 2/2 (right) (d) 3/1 configurations

 54

Each individual neuron block computes outputs that are a function of the

summation of weighted inputs and a bias as shown in equation 3.

Kk
J

j
jxjkwkbgky ,,2,1,

1
L=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
∑
=

+= (3)

where,

ky kth output signal of the neuron block

jx jth input signal of the neuron block

jkw Synaptic weight connection between jth input node and kth output node

kb Bias at kth output node
J, K Number of input and output nodes respectively of a neuron block.
g(•) Activation function

A neuron block can have up to six synaptic weights and biases, three inputs, and

three outputs depending on the internal configuration of the block. A 2/2 neuron block

has 6 synaptic weights and biases, 2 inputs, and 2 outputs. Similarly, a 1/3 block has 3

synaptic weights and biases, 1 input, and 3 outputs. The activation function g(•) can be

linear (e.g., ‘purelin’) or a nonlinear function (e.g., ‘logistic sigmoid’). Signal flow in the

network from input to output is determined by the internal configurations of blocks used

in the network. This determines the network structure. Figure 9 shows two different

unique BbNN networks structures.

 55

Figure 9 Three different 2 x 2 BbNN network structures

4.2 Evolving BbNNs Using Genetic Algorithms

To find a suitable BbNN for a particular problem, both the network structure and

the internal weights and biases need to be tuned. Thus the learning process for a BbNN is

a multi-parametric optimization problem. Due to the multimodal non-differentiable

search space, it is difficult to use regular gradient descent based learning algorithms such

as the backpropagation algorithm. These will be very inefficient and may not converge at

all, getting repeatedly trapped in local minima. A global optimization approach such as

genetic algorithms is more likely to find an answer [187]. Goldberg’s book on genetic

algorithms is a classic reference for the subject [188].

In genetic algorithms a population of candidate solutions (individuals or

phenotypes) of a problem, encoded in abstract representations (called chromosomes or

the genotype), are evolved over multiple generations towards better solutions. The

algorithm follows the Darwinian evolution model keeping the fittest individuals and

getting rid of the unfit individuals in the population. The genetic evolution process

 56

 57

involves selection of random (or biased random) individuals from the current population

for genetic crossover and mutation to produce the next generation. The selection strategy

used may be biased towards selecting individuals with higher fitness and use different

techniques such as the tournament selection or roulette wheel selection strategy. The

initial population is randomly initialized. A fitness function evaluates the fitness of every

individual in the population. With a biased selection strategy, individuals with higher

fitness are more likely to be selected for genetic reproduction (crossover and mutation) to

produce new populations. The fitness of newly generated individuals in the population is

evaluated using the fitness function and the evolution process proceeds, further producing

newer generations. The goal is to find an individual among the population with fitness

equal to or greater than the target fitness [188]. Figure 10 shows a flowchart for the

genetic evolution process described above.

Figure 10 Flowchart depicting genetic evolution process

 58

 59

4.2.1 Genetic Operators

Operators in genetic algorithms are used to produce offspring to form new

generations. These are discussed in detail below.

4.2.1.1 Selection

Selection is a process in which a proportion of the existing population in each

successive generation is selected to breed a new generation. Individual solutions are

selected through a fitness-based process, where fitter solutions (as measured by a fitness

function) are typically more likely to be selected. The selection process is stochastic and

designed to also select a small proportion of less fit solutions to maintain population

diversity and prevent premature convergence of poor solutions. In tournament selection,

a group of randomly chosen individuals from the population are pitted against each other

and a winner (best fit individual) is selected for crossover. Selection pressure can be

adjusted by varying the tournament group size. In roulette wheel selection (also called

fitness proportionate selection); all the individuals in the population are ranked according

to their fitness, assigning each one a probability. The chance of an individual to be

selected is proportional to its rank. While candidate solutions with a lower fitness will be

more likely to be eliminated, there is still a chance that they may be selected.

 60

4.2.1.2 Crossover

Crossover is a genetic process used to vary the programming of a chromosome(s)

from one generation to the next. It is analogous to biological crossover and reproduction.

Two parent chromosomes swap genetic information to produce two offspring. Many

crossover techniques exist such as one-point crossover, two-point crossover, and the cut

and splice strategy. For example, in a two-point crossover strategy if ‘S1=000000’ and

‘S2=111111’ are two chromosomes, then a crossover between the two using a randomly

selected crossover site (in this example after bit 2) could produce two offspring

‘S1’=110000’ and ‘S2’=001111’.

4.2.1.3 Mutation

In mutation, the bits of the candidate are randomly flipped based on some low

probability. The purpose is to maintain population diversity and induce a random walk

through the search space of possible solutions.

The genetic evolution process described above works well with a single

dimensional search space, but needs modification for multiparametric optimization

problems. The search space for our BbNN evolution problem poses a two-dimensional

optimization problem (simultaneous structure and weight optimization). Thus we need to

modify the genetic algorithm for it to work with the problem at hand. The learning

process uses a supervised training approach. The modified genetic algorithm is described

below.

 61

4.2.2 BbNN Encoding

The structure and weight of the BbNN need to be encoded as a single

chromosome. The network structure is encoded as a gene using a sequence of binary

numbers representing the signal flow through the BbNN. Any connection between the

blocks is represented with either a binary 0 or a binary 1. A binary 0 denotes down (↓)

and left (←) signal flow directions, and a binary 1 indicates up (↑) and right (→) signal

flows. The number of bits required to represent the signal flow of an m × n BbNN is

‘(2m-1)n’. This is the case for a recurrent BbNN network where a signal flow from a

lower layer neuron block to an upper layer block (↑) is a valid network structure. In the

case of feedforward networks, a feedback as in the earlier case results in invalid

structures. Since the signal flow in feedforward neurons is restricted from top to bottom,

we do not need to encode that structure information as it is implied. Thus in a

feedforward network binary 0 denotes left (←) signal flow direction, and a binary 1

indicates right (→) signal flow. Thus the number of bits required to represent the signal

flow of an m × n block-based neural network is ‘mn’. Figure 11 illustrates recurrent

BbNN network structure encoding and Figure 12 shows a feedforward network structure

encoding. Synaptic connection weights of each neuron block in a network are encoded as

real values in an array. The arrays of all the blocks are concatenated sequentially to form

a weight gene. The weight gene along with the structure gene forms the BbNN

chromosome. Figure 13 shows the weight gene encoding and Figure 14 shows the

complete encoding of a BbNN chromosome for a 2 × 2 network.

Figure 11 Recurrent BbNN network structure encoding (a) BbNN (b) Structure encoding

Figure 12 Feedforward BbNN network structure encoding (a) BbNN (b) Structure encoding

 62

Figure 13 BbNN weight gene encoding (a) Neuron block (b) Weight encoding

Figure 14 BbNN chromosome encoding for a 2 x 2 network

 63

4.2.3 Fitness Function

The training approach is a supervised training algorithm with training data

composed of corresponding input – output pairs. The fitness function used is derived

from the total mean squared error between target and actual outputs of the network.

Equation 4 shows the fitness function used.

e
Fitness

+
=

1
1 (4)

∑ ∑=
= −

N

j

n

k
jk

o

o
e

Nn
e

1 1

21 (5)

jkjkjk yde −= (6)

where,

N number of training data samples
on number of actual output nodes

jke error between desired and actual outputs of the kth output block
referred to jth pattern

jkd and jky desired and actual outputs of the kth output block referred to jth
pattern.

 64

 65

4.2.4 Genetic Evolution

The 2-dimensional genetic evolution is similar to the one described above. A

population of BbNN chromosomes is randomly initialized and their fitness is evaluated.

A selection strategy (tournament or roulette wheel) selects individuals for genetic

crossover operations with selection pressure against the least fit individuals. The

crossover operator randomly swaps portions of the structure genes of the two parent

chromosomes based on a crossover probability. The offspring are added to the new

population. The mutation operator operates on the newly created individuals and has two

stages. First the structure mutation stage randomly flips structure gene bits based on a

low structure mutation probability. Second the weight mutation stage adds Gaussian

noise with zero mean and unit variance to the weights based on a low weight mutation

probability. The newly generated population is evaluated for fitness and the evolution

proceeds further with the new generation until an individual with fitness greater than or

equal to the target fitness is found or the maximum number of generations has been

reached. Figure 15 illustrates the structure crossover operation. The dotted lines shown in

the two parents are the structure crossover sites. The structure gene is sliced at these lines

and the sliced portions are swapped to produce two offspring as shown. Figure 16

illustrates the structure mutation operation in BbNNs. A bit is chosen randomly based on

a low mutation probability from the structure gene and flipped. The new structure gene

obtained and its corresponding BbNN network is shown in the figure.

Figure 15 Structure crossover operation in BbNN

 66

Figure 16 Structure mutaiton operation in BbNN

 67

 68

4.3 Summary

This chapter introduced BbNNs and multi-parametric genetic evolution algorithms

used to evolve the network structure and weights of the BbNNs. A BbNN is a network of

neuron blocks interconnected in the form of a grid. Due to the regular structure of these

networks they are well suited for custom implementations in digital hardware such as

field programmable gate arrays (FPGA) and application specific integrated circuits

(ASIC). Network structure regularity facilitates scaling the network in custom

implementations with ease. The internal configuration of the neuron blocks remains the

same (one out of the four described in section 4.1) as a result of scaling the network size.

The number of synaptic connections between the neuron blocks also grows linearly as a

result of scaling network size. This is unlike the popular multilayer perceptron (MLP)

networks. MLPs are fully connected networks of neurons with a synaptic connection

between each pair of neurons in the adjacent layers. Thus, growth in network size adds

many new synaptic connections to the network. Each new synaptic connection adds a

new stage to the multiplier and accumulator circuit of the neuron to which it serves as an

input. The multiplier and accumulator circuit in the neurons is used in calculating the

output which is a function of the weighted summation of the inputs and a bias. This

makes scaling the network structure difficult in hardware implementations for networks

such as MLPs. Thus, the regular network structure of BbNNs facilitates hardware

implementations. A disadvantage of the partial connectivity in network architectures such

as BbNNs is the possibility of requiring more equivalent neurons to solve the same

problems as would be required in the case of an MLP. The BbNNs can be trained using

 69

genetic algorithms introduced in this chapter. The training is a multi-parametric

optimization problem involving simultaneous evolution of network structure and the

synaptic weights. Due to the multimodal non-differentiable search space it is difficult to

use regular gradient descent based learning algorithms such as the backpropagation

algorithm. These will be very inefficient and may not converge at all, getting repeatedly

trapped in local minima. A global optimization approach such as genetic algorithms is

more likely to find an answer [187]. But the disadvantage of using global training

approaches such as GA are longer training times than the directed gradient descent search

algorithms such as the backpropagation algorithm. Hybrid training algorithms for BbNNs

have been investigated that take the advantages of global sampling of GAs and fast

convergence of gradient descent techniques for efficient training of BbNNs. More

information on these can be found in [4, 5]. This dissertation uses the regular GA

approach presented in section 4.2. Moon and Kong proved that a BbNN of size m × n

can successfully represent the input – output characteristics of any MLP network for n ≤

5 [23]. BbNNs have been applied to mobile robot navigation [23], multivariate gaussian

distributed pattern classification [182], chaotic time series prediction [183], and ECG

signal classification [4-6].

5 INTRINSICALLY EVOLVABLE BBNN PLATFORM

Many custom artificial neural network implementations have been reported in

hardware. Section 2.5 presents a review of these implementations. Most implementations

rely on an offline neural network learning in software simulations, with the resultant

network being custom-built either in fixed ASICs or reconfigurable FPGAs. Thus, only

the recall stage benefits from custom implementation speedups. Every new application of

these networks needs a new custom design built and configured on the FPGAs or ASICs.

The design goal here is to build an online neural network learning platform that can be

trained and adapted intrinsically in hardware. This platform is an intrinsically evolvable

hardware system performing functional-level evolution. The evolving functional modules

and their interconnections are artificial neurons and their synaptic connections. The

neural network implemented is the feedforward block-based neural network (BbNN)

discussed in chapter 4. The following sections give the design details for the BbNN

platform.

5.1 BbNN FPGA Design Details

The design was implemented for a Xilinx Virtex-II Pro (XC2VP30) FPGA [189]

housed on a Xilinx University Program (XUP) FPGA development board [190] or an

Amirix AP130 FPGA development board [191]. This particular FPGA includes 2 on-chip

PowerPC 405 embedded processor cores, 30,816 logic cells, 136 built-in 18x18

 70

 71

multipliers, and 2448 KBits (306 KBytes) of on-chip block RAM. These multipliers will

be used to build the multiplier and accumulate circuits in the FPGA units for neuron

block processing and the available on-chip block RAM will be used to store the

activation functions. The PowerPC will be used for the genetic algorithm and control

operations in our design. These will be discussed in details in section 5.1.

For on-chip learning the network design has to be flexible to accommodate

dynamic changes in network structure and internal parameters (synaptic weights and

biases). As discussed in section 2.5.2.2 the time taken for each FPGA reconfiguration

cycle is on the order of milliseconds. This poses a bottleneck for an online evolution

system that relies heavily on FPGA reconfigurations for changes in network structure and

internal parameters. Thus we need to minimize any reconfiguration cycles that would be

required during the learning stage for better performance. In the case of BbNNs, the

following dynamic updates have to be accommodated for an on-chip learning capability.

♦ Dynamic updates to network structure

Network structure and internal configurations of neuron blocks is dictated

by the structure gene. Any change in the structure gene changes the internal

configurations of the neuron blocks in the grid, thus modifying the dataflow

through the network. To accommodate this dynamically, we need a neuron block

design that can dynamically emulate any of the four internal configuration modes

without requiring an FPGA reconfiguration.

 72

♦ Addition/deletion of row(s) / column(s)

The genetic evolution process could potentially add / delete rows and

columns to / from the BbNN grid. Accordingly, it either increases or shortens the

length of the structure and weight genes in the BbNN chromosome. From the

hardware design perspective, any addition of a row or column to the existing

network grid adds new neuron blocks and a few new nets (connections) between

the old and new neuron blocks. This is difficult to accommodate dynamically in

FPGAs and may require a reconfiguration cycle. The design presented here

minimizes the overhead of reconfiguration cycles as will be evident from the

design of the neuron block and the dataflow architecture.

♦ Dynamic updates to synaptic weights and biases

Synaptic weights and biases are stored in digital registers and can be

dynamically updated without requiring any FPGA reconfigurations.

Other requirements and considerations for the design include the following.

♦ Data representation and precision

♦ Activation function implementation

♦ Internal neuron block configurations

♦ Dataflow implementation

♦ Area, speed, and power

♦ Design scalability and real-time processing support

 73

These design considerations and the resulting decisions are discussed below.

5.1.1 Data Representation and Precision

The inputs, outputs, and internal parameters such as synaptic weights and biases

are all real-valued variables. Representing and storing them in digital hardware can be

either done using floating point or fixed point number representation. Floating point

representation will have a significantly wider range and higher precision as compared to

fixed point representations. However, floating point arithmetic circuits are complicated to

build, have much larger footprint in silicon, and our significantly slower as compared to

those required for fixed point arithmetic. Our design is targeting FPGA devices. The

device capacities of current generation FPGAs are significantly smaller as compared to

comparable ASICs. Building custom or single precision floating point arithmetic circuits

has started becoming feasible with the device capacities of current generation FPGAs

[192-195]. To be able to fit as many neuron blocks as possible on a single FPGA chip,

the area occupied by each block should be as small as possible. Holt and Baker [44] and

Holt and Hwang [45] investigated the minimum precision problem for neural networks

with benchmark classification problems. According to their analysis, 16 bit fixed-point

representation is sufficient for correct classification and training of the neural networks.

Also, in our analysis of the applications considered here 16 bit precision is sufficient.

Thus, all the internal parameters as well as inputs and outputs are represented as 16 bit

fixed point numbers.

 74

5.1.2 Activation Function Implementation

Activation functions are typically non-linear monotonically increasing sigmoid

functions. Implementation choices include a circuit implementation for a piece-wise

linear approximation of the function versus implementing a lookup table with preloaded

f(x) values for the corresponding x input value. Direct circuit implementations of the

activation function are significantly smaller in silicon footprint as compared to the LUT

approach. The size of the LUT increases exponentially with the size of input. However,

the direct circuit implementations are more complicated to design and may require

redesign for each different activation function. In the case of an LUT-based approach,

new values can be reloaded for a different activation function when required during the

on-chip training process. As for the disadvantage of the required silicon area, the LUTs

were implemented using the block RAMs in the Xilinx FPGAs. Since these block RAMs

are already present on the die as hard-macros whether they are used or not, it made sense

to use them to our advantage. Thus, minimal reconfigurable logic resources are used for

activation function implementation. Port A of the on-chip dual port block RAM is

configured as a read/write port. It is used to load the values into the lookup table. Port B

is configured as a read only port and is used to interface with the neuron blocks. The size

of the lookup table required is directly associated with the data widths used. A 16-bit

fixed point representation requires a LUT that is 16 bits wide and 216 deep. This requires

a total of 128 KBytes per LUT. It would be desirable to use a separate LUT for every

neuron block in the network so that all the neuron blocks are completely independent of

each other. However, using a separate LUT for every neuron block can severely limit the

number of blocks that can be implemented on a single FPGA chip. In our case, we can

 75

implement only 2 neuron blocks on the Xilinx XC2VP30 FPGA chip before we run out

of block RAMs. Sharing the LUT between all the neuron blocks requires serializing the

access to the LUT of the neuron blocks using a FIFO, consequently slowing down the

computational speed. Keeping in mind the dataflow implementation technique used here,

only one neuron block in a column can ‘fire’ (process input data and producing outputs)

in any computational time unit (this will be explained in further detail in the dataflow

implementation section). Hence, a design decision was made to share a LUT between

neuron blocks in a single column instead of all the blocks in the network. Thus there will

be one LUT per column of neuron blocks in the network. This choice does increase the

number of blocks that we can use in the network, but puts a constraint on the number of

columns that can be implemented before the available block RAM become a bottleneck.

The number of columns that can be implemented on our current FPGA chip would still

be just two columns, severely limiting the network ability to solve any interesting

problems. So, to further optimize the size of the LUT so that larger network grid sizes can

be implemented on our FPGA chip, we implemented a LUT that was 16 bits wide but

only 212 deep. This reduces the size of the LUT to 8 Kbytes per LUT. This was done

taking into consideration an observation that almost all of the activation functions that are

used for artificial neurons are monotonically increasing saturating functions such as

hyperbolic tangent and the logistic sigmoid functions. That is, the outputs taper off to a

constant value beyond a certain input value. Thus there is no need to store the values

greater than the maximum saturated output value repeatedly, in effect chopping off the

activation function beyond the saturated values. Hence, the number of LUTs and hence

Figure 17 Activation function LUT illustration

 76

columns that can be implemented on the FPGA would be larger, not posing as a

bottleneck for this implementation. This idea is illustrated in Figure 17.

5.1.3 Smart Block-based Neuron Design

One of the challenges here is to design a neuron block that can dynamically

emulate all the various internal configuration modes. Kothandaraman designed a library

of the various internal neuron block configurations for implementation on FPGAs [49].

The simplest approach for a dynamic neuron block would be to combine the library of

designed blocks in a “super block” and use a multiplexer to select each depending on the

structure gene. But the problem with this approach is that the silicon area required for

such a super block will be four times that required by a single block, making this brute-

force approach very inefficient. Instead a smarter block was designed that could

dynamically emulate all the four internal configurations, but was less than a third the size

 77

of the brute force “super block” approach. This block design is called the ‘Smart Block-

based Neuron’ (SBbN). The SBbN emulates any of the internal configuration modes

depending on the values loaded in an internal configuration register called the ‘Block

Control and Status Register’ (BCSR). This is a memory-mapped 16-bit internal block

register in the internal configuration logic module of the neuron block that defines the

state and mode of the neuron block. Also included is the support for deactivating a

particular SBbN. In this state the inputs are just passed on to the outputs without

modifications, essentially bypassing the neuron block. This was an important design

choice to successfully implement an evolvable system as will be evident later. Figure 18

illustrates the idea of a smart block and Figure 19 shows the bit fields of the BCSR

register. The BCSR register bits 7 through 4 that define the node directions are loaded

automatically by the gene translation logic. This combinational logic circuit reads the

structure gene register and loads the internal BCSR register inside each neuron block,

thus setting their emulation modes depending on the corresponding value in the structure

gene and the block’s position in the grid. This is illustrated in Figure 20. The sum of

product pipeline has been implemented using the built in 18x18 multipliers in the Xilinx

Virtex-II Pro FPGA.

Figure 18 Smart Block-based Neuron to emulate all internal neuron block
configurations

 78

Figure 19 Bit fields of Block Control and Status Register (BCSR) of SBbN

 79

Figure 20 Dynamic gene translation logic for internal configuration
emulation

 80

 81

5.1.4 Dataflow Implementation

An issue with implementing data flow architectures like this one in hardware is to

determine stable outputs and latch them. The problem is more pronounced when

feedback is involved in the network structure. This work implements only feedforward

BbNN networks. To solve the problem of latching the correct outputs, we implemented a

control structure inspired by the Petri net model architecture. A Petri net (also known as a

place/transition net or P/T net) is one of several mathematical representations of discrete

distributed systems. As a modeling language it graphically depicts the structure of a

distributed system as a directed bipartite graph with annotations. As such, a Petri net has

place nodes, transition nodes, and directed arcs connecting places with transitions [196-

198].

At any time during a Petri net's execution, each place can hold zero or more

tokens. Unlike more traditional data processing systems that can process only a single

stream of incoming tokens, Petri net transitions can consume tokens from multiple input

places, act on them, and output tokens to multiple output places. Transitions act on input

tokens by a process known as firing. A transition fires once each of the input places has

one or more tokens. While firing, it consumes the tokens from its input places, performs

some processing task, and places a specified number of tokens into each of its output

places. It does this atomically, namely in one single, non-preemptible step.

 82

The BbNN dataflow can be represented using an acyclic Petri net. Each of the

blocks can be represented by an equivalent Petri net model as shown in Figure 21. The

input and output registers can be represented by places. When each of the input registers

(input places) have a valid input (a token), the BbNN fires and computes the outputs.

Each of the output places will now get a token after the BbNN fires and the tokens at the

input places are consumed. Thus the dataflow through a BbNN network can be

represented using an equivalent Petri net network model (replacing each block with

equivalent Petri net model as shown in Figure 21) for the entire BbNN network structure.

Figure 22 shows the firing sequence for a particular BbNN network example. The side

inputs have been hard-coded to be zero and have a valid token (shown as a ‘●’) until

consumed by firing. When the top inputs are applied the input places get tokens and they

fire, computing the outputs. As can be seen, only the blocks with valid input tokens fire

and generate the corresponding input tokens for the neighbors, which in turn fire next.

Figure 23 shows a logical block diagram of a SBbN block.

Figure 21 Equivalent Petri Net models for BbNN blocks
(a) 1/3 (b) 2/2 (c) 3/1

 83

Figure 22 An example 2 x 2 BbNN firing sequence

 84

Figure 23 SBbN neuron logical block diagram

 85

 86

5.2 Embedded Intrinsically Evolvable Platform

Block-based neural networks are evolved using genetic algorithms to find a

suitable network for input – output mapping of training data. The details of the genetic

evolution process are described in section 4.2. Section 5.1 gives details on the digital

hardware design of the block-based neural network. The structure and internal parameters

of the designed network can be dynamically updated without relying on FPGA runtime

reconfigurations. The design is implemented on Xilinx Virtex-II Pro FPGA development

boards. The implementation goal is to design an embedded, intrinsically evolvable

platform for online evolution of BbNNs. This requires close coupling of the genetic

evolution algorithm with the designed network. Multiple design choices were carefully

considered for implementation, the details of which are given below.

a) Implementing Genetic Algorithms on a Host Computer

Here the GA is implemented as a software program running on a host computer

that communicates with an FPGA configured with the neural network hardware via a

serial link or bus interface such as PCI. The fitness evaluation is done on the FPGA

configured with the hardware design of BbNNs. The problem with this choice is that the

system is difficult to deploy as a standalone embedded system and would be bulky if

implemented with embedded single board computers.

 87

b) Implementing Genetic Algorithms in Hardware

Implementing GAs in hardware along with the BbNN network was the most

obvious choice. Hardware implementations of different flavors of compact GAs have

been reported in the literature [161, 162, 167, 168, 199], but it comes at a cost of

significant resources on the FPGA. An on-chip GA implementation would require a

memory bank to hold the population of chromosomes. It will also require a Gaussian

random number generator implementation for mutation operation which again will

require a memory bank to store lookup table values for a compact implementation using a

uniform random number generator or a large logic implementation [200]. These required

memory banks can be implemented in internal block RAMs available in the Virtex-II Pro

FPGAs, but most of the block RAMs are tied up activation function LUT

implementation. Building memory out of the rest of the reconfigurable fabric would be

area inefficient and the resulting circuit slower limiting the size and performance of

ANNs that can be implemented in hardware.

c) Implementing Genetic Algorithms on Embedded PPC405

Another choice is an approach similar to the first one, where the GA evolution is

done in software running on a host processor. But in this case, the processor is an

embedded processor on-chip in the Virtex-II Pro FPGA. The fitness evaluation, the most

time consuming computation, is still implemented in the FPGA reconfigurable fabric.

The advantage of this approach is that it uses the on-chip, embedded PowerPC 405

processor located on the same die as the rest of the reconfigurable fabric in the Virtex-II

Pro FPGA. Thus, the system can be deployed as a compact, embedded, evolvable

 88

platform in real-world applications. The fitness evaluation, which is the bottleneck in GA

evolution strategy discussed here, is accelerated using the custom logic circuitry in the

FPGA.

After comparing the pros and cons of the above approaches it was decided to

implement the GA evolution on the PowerPC 405 embedded processor.

5.2.1 PSoC Platform Design

The BbNN platform was developed as a programmable System On-Chip (PSoC)

architecture. Taking advantage of increased chip capacities, current-generation FPGAs

have a number of on-chip hard macros such as embedded processors, memory,

multipliers, and accumulator units. These available hard / soft cores with synthesizable

local and peripheral bus systems can be used to build a powerful design platform on a

single chip. These systems include one or more hard/soft processors and the associated

local and peripheral bus systems with connected peripheral I/O cores on a single die. This

platform is aptly called a System on a Chip (SoC). These platforms synthesized on

FPGAs can be reconfigured and hence are called as programmable SoC (PSoC)

architectures. The embedded processors use internal FPGA RAMs for implementing

instruction and data memories. The embedded processor interfaces to on-chip memory

controllers via a local system bus. Peripherals like UART, ethernet MACs and other

custom user cores communicate with the processor via the local system bus or the

peripheral bus. The peripheral bus communicates with the local system bus via a bridge.

 89

The on-chip memory controllers can interface to on-chip or off-chip memory systems

which are mapped to the embedded processor’s address space. The processor powers up

and executes a bootstrap routine initialized in its instruction memory, which can make

calls to user programs resident either in internal on-chip or external off-chip memory

locations. These user programs can be simple self test codes for various connected

peripherals or even a real-time operating system that can boot up to a command prompt.

Many real-time operating system vendors such as VxWorks [201], Timesys Linux [202],

and Montavista Linux [203] have support for various PSoC platforms. Figure 24 shows a

logical diagram of a typical SoC design. PSoC platforms can also be efficiently used as

test platforms for user cores. User cores can communicate with the embedded processor

via the peripheral bus system. The processor can be used to send test vectors to the user

design and receive and analyze the results.

The PSoC platform for BbNN is designed using the Xilinx Embedded

Development Kit (EDK). It includes a PPC405 processor along with on-chip local

memory communicating via Processor Local Bus (PLB). Other peripherals such as a

UART for serial communication can be connected as slaves on an On-Chip Peripheral

Bus (OPB). The BbNN hardware network is memory-mapped to the PPC 405 and

interfaced via the OPB bus. It raises an interrupt on task completion that is connected

through the OPB interrupt controller to the PPC interrupt mechanism. Interrupt-driven

I/O programming helps in facilitating the real-time processing and scheduling often

required in many embedded applications of the evolvable neural network platform. The

platform is shown in Figure 25. The fixed point GA code runs on the on-chip PowerPC

Figure 24 Programmable System on a Chip - logical diagram

 90

Figure 25 BbNN PSoC platform. GA operators execute on PPC405,
Fitness evaluation done using hardware BbNN design

processor. The BbNN hardware design is used for fitness evaluation. Internal network

parameters, such as the structure and weight genes, network inputs, and outputs are

memory-mapped to the processor. The activation function LUT also is memory mapped

in the address space of the PPC405.

5.3 Fixed Point BbNN Software for Genetic Evolution

The fixed point GA evolution software is written in the C programming language.

The on-chip PPC405 only has a fixed point datapath. Any floating point operations have

to be performed using emulated floating point software libraries which are slow. Care has

been taken to minimize the required floating point operations. All the real values have

been stored as 16-bit fixed point values. The genetic operators of selection, crossover,

and mutation have been implemented as detailed in chapter 4. Genetic evolution

 91

 92

parameters such as the maximum number of generations, structure / weight crossover and

mutation probabilities, step size for weight mutation, target fitness, elitist mode genetic

evolution selection, number of offspring in each new generation, activation function

selection (tansig, logsig, satlin, purelin, hardlim), selection algorithm (roulette, ranking,

tournament, proportion), and network grid sizes to evaluate can be set in a header file.

The software is cross-compiled to PPC 405 object code and can be loaded in the onboard

program flash. Fixed point BbNN fitness evaluation software routines have also been

programmed for use in a fixed point BbNN software simulator compiled for PC. These

routines also help in exhaustive BbNN FPGA design testing. The code appears in the

appendix.

5.4 Performance and Device Utilization Summary

The post-synthesis timing analysis of the design reports a clock frequency of

245MHz on the Xilinx Virtex-II Pro FPGA (XC2VP30). Each block takes at the most 10

CLK cycles to complete processing the inputs and produce an output. The number of

clock cycles depends on the internal block configuration and the number of output nodes

using the activation function LUT. Each block computation processes 6 synaptic

connections. Thus, each block has a peak connection per second speed of 147 MCPS per

block for a 16 bit data width. With generally more than one block computing at a time,

depending on the network structure the peak CPS would be (n computing blocks)×(147

MCPS / block) processing speed. Considering an m×n BbNN grid the processing speed

can vary between 147 MCPS to 147n MCPS, depending on the network structure.

 93

The minimal platform excluding the BbNN network needs about 13% of the

Xilinx Virtex-II Pro FPGA (XC2VP30) resources. Table 2 shows the post-synthesis

device utilization summaries for various BbNN network sizes excluding the rest of the

platform. According to the utilization summaries we can fit around 20 neuron blocks on a

single FPGA chip along with the rest of the platform. Table 3 shows the post-synthesis

device utilization summary for a larger FPGA device (XC2VP70) in the Xilinx Virtex-II

Pro family, widely used in many commercially available FPGA boards. This device can

hold around 48 neuron blocks.

5.5 Design Scalability

An important consideration in design decisions is that of design scalability issues.

There is a physical limitation on the number of neurons that can fit on a single FPGA. So

the question arises on how to support applications requiring larger network sizes? BbNN

hardware was designed taking into consideration scenarios for design scalability. The P/T

net-based dataflow implementation strategy ensures reliable asynchronous

communication between neuron blocks. This is important for scalability as will be

evident in the following discussion of scalability scenarios. The design supports these

scenarios, but their implementation is left as future work.

 94

Table 2 Device Utilization Summary on Xilinx Virtex-II Pro FPGA (XC2VP30)

Number of Slice
Registers

Number of block
RAMs

Number of
MULT18x18s Network

Size
Used Utilization Used Utilization Used Utilization

2 x 2 2724 19% 8 5% 12 8%
2 x 4 4929 35% 16 11% 24 17%
2 x 6 7896 57% 24 17% 36 26%
2 x 8 10589 77% 32 23% 48 35%

2 x 10 12408 90% 40 29% 60 44%
3 x 2 3661 26% 8 5% 18 13%
3 x 4 7327 53% 16 11% 36 26%
3 x 6 11025 80% 24 17% 54 39%
3 x 8 14763 107% 32 23% 72 52%

3 x 10 18456 134% 40 29% 90 66%
4 x 2 4783 34% 8 5% 24 17%
4 x 4 9646 70% 16 11% 48 35%
4 x 6 14587 106% 24 17% 72 52%
4 x 8 19508 142% 32 23% 96 70%

4 x 10 24461 178% 40 29% 120 88%

 95

Table 3 Device Utilization Summary on Xilinx Virtex-II Pro FPGA (XC2VP70)

Number of Slice
Registers

Number of block
RAMs

Number of
MULT18x18s Network

Size
Used Utilization Used Utilization Used Utilization

2 x 2 2497 7% 8 2% 12 3%
2 x 4 4929 14% 16 4% 24 7%
2 x 6 7390 22% 24 7% 36 10%
2 x 8 9915 29% 32 9% 48 14%

2 x 10 12403 37% 40 12% 60 18%
3 x 2 3661 11% 8 2% 18 5%
3 x 4 7327 22% 16 4% 36 10%
3 x 6 11025 33% 24 7% 54 16%
3 x 8 14788 44% 32 39% 72 9%

3 x 10 18461 55% 40 12% 90 27%
3 x 12 22233 67% 48 14% 108 33%
3 x 14 25652 77% 56 17% 126 38%
3 x 16 29254 88% 64 19% 144 43%
4 x 2 4783 14% 8 2% 24 7%
4 x 4 9646 29% 16 4% 48 14%
4 x 6 14561 44% 24 7% 72 21%
4 x 8 19534 59% 32 9% 96 29%

4 x 10 24470 73% 40 12% 120 36%
4 x 12 29221 88% 48 14% 144 43%
4 x 14 34389 103% 56 17% 168 51%

 96

5.5.1 Scaling BbNN Across Multiple FPGAs

An obvious choice to scale the network sizes is to distribute smaller sub-networks

of the BbNN network across multiple FPGAs to execute in parallel. But this is not trivial

to achieve due to the inter-neuron block synaptic communications within the network.

These communications will have to be performed across multiple FPGA chips. This will

require taking into consideration delay times associated with the communication links

between the FPGAs. The FPGAs could be connected directly via dedicated inter-

communication channels or may have to go through the host processor and use

communication links such as Ethernet existing between the host machines. These issues

were considered during the design stage of the BbNN hardware implementation. The

choice of using the P/T net-based reliable, asynchronous inter-neuron block

communication was made to address the scalability issues. Asynchronous communication

ensures reliable performance irrespective of the delays associated with the

communication links. This makes the design portable and scalable across a heterogeneous

mixture of reconfigurable computing resources and their intercommunication channels.

5.5.2 Scaling via Time Folding

BbNNs can also be scaled via time-multiplexing. A single BbNN FPGA

implementation can be used to execute sub-networks of a larger BbNN at different

instances of time. The intermediate sub-network states (intermediate inputs and outputs

of the sub-network, sub-network structure, and internal parameters) can be saved in

buffer memory between the execution cycles. The intermediate sub-network states saved

 97

in the buffer memory can be loaded on the BbNN FPGA implementation in appropriate

execution cycles to compute sub-network outputs that are input to other sub-networks.

Scaling the BbNN in time has the disadvantage of serializing the sub-network execution.

Thus, it requires longer execution times but lesser hardware resources.

5.5.3 Hybrid Implementation

A hybrid approach employing both time and space scaling techniques can also be

used for large networks. It is a problem of reliably mapping and scheduling sub-networks

across FPGA resources. It involves development of efficient partitioning and scheduling

algorithms for optimal usage of available resources and minimizing execution runtimes.

5.6 Applications

BbNNs can be applied to many applications suitable for neural networks. We

tested our on-chip training approach with a few example applications and the results are

discussed below.

5.6.1 N-bit Parity Classifier

A parity bit is a binary bit that indicates whether the number of bits with value of

one in a given set of N-bits is even or odd. The N-bit parity technique is widely used for

error detection in real world applications such as serial data transmission, SCSI bus,

microprocessor caches, and redundant arrays of inexpensive disks (RAID). The BbNN

 98

platform solves the N-bit parity computation problem using on-chip genetic evolution.

The results of the genetic evolution process are as follows. Table 4 shows the genetic

algorithm parameters used for evolution. A population size of 30 chromosomes per

generation was used with crossover and mutation probabilities of 0.7 and 0.1

respectively. Tournament selection was used for choosing candidates for crossover

operation to produce offspring. A logistic sigmoid function was used as an activation

function for the neuron block outputs. Figure 26 shows the average and maximum fitness

values for each generation for the 3-bit and 4-bit parity examples. As can be seen from

the curves the target fitness of 1.0 is reached after 132 generations in the case of the 3-bit

parity example and 465 generations for the 4-bit parity example. The fitness functions

used for genetic evolution are the same as shown in section 4.2.3. Figure 27 shows the

dominant structure evolution trends for the 3-bit and 4-bit parity examples. Each color

shows the evolution trend of a unique structure. Each curve shows the number of

chromosomes per generation that has that structure. Figure 28 shows the evolved

networks for the 3-bit and the 4-bit parity examples.

Table 4 Genetic evolution parameters used for N-bit Parity problem

Genetic Algorithm Parameter Value
Population size 30
Target Fitness 1.0
Structure crossover probability 0.7
Structure and weight mutation probabilities 0.1
Activation Function Logistic sigmoid
Selection Strategy Tournament selection

 99

(a)

(b)

Figure 26 Fitness evolution trends for (a) 3-bit and (b) 4-bit parity examples

 100

(a)

(b)

Figure 27 Structure evolution trends for (a) 3-bit and (b) 4-bit parity examples

 101

(a)

(b)

Figure 28 Evolved networks for (a) 3-bit and (b) 4-bit parity examples

 102

The selection, crossover, and mutation genetic operators used to produce new

generations execute on the on-chip PowerPC processor. The execution time to execute

the assembly instructions to produce each generation depends on the population size, the

number of new offspring produced per generation, and the crossover and mutation

probabilities. For the case of the N-bit parity example, the average time it takes to

produce a new generation on the PPC405 processor running at 300MHz is 11 µs. The

population fitness evaluation speed depends on the population size, network structure of

individuals in the population, designated output nodes, and number of input patterns. For

the N-bit parity example, the fitness processing speed ranges from 147 MCPS to 294

MCPS.

5.6.2 Iris Plant Classification

Plant classification is the identification of the plant by observing some unique

attributes such as shape or area of the leaves. Specific shape measurements such as length

and width of the leaves or their area are typically used to automate the classification

using machine learning techniques such as neural networks. The Iris plant classification

problem addressed here is a widely used benchmark for neural classifiers originally

compiled by R.A Fisher [204]. The Iris plant database has data for three classes of Iris

plants, Iris Setosa, Iris Versicolour and Iris Virginica. The dataset has a total of 150

samples, with 50 samples per class instance. The dataset attributes are sepal length, sepal

width, petal length, and petal width for the three classes of the Iris plants. The Iris Setosa

class is linearly separable from the other two classes, Iris Versicolour and Iris Virginica.

 103

The latter are not linearly separable from each other. BbNN was used to classify the

plants in this dataset. The results show less than a 1.5% misclassification rate (see Figure

29). For this BbNN genetic evolution, the entire set of 150 samples was used as the

training dataset. The inputs for the network are the sepal area and the petal area

calculated by multiplying the sepal width with the sepal length, and the petal width with

the petal length, respectively. The population size of 80 chromosomes was used for

evolution over 10,000 generations. The structure crossover and mutation probabilities

were set at 0.7 and 0.1, respectively. The weight mutation probability was set at 0.1.

Table 5 shows the various genetic evolution parameters used. Figure 30 shows the

average and maximum fitness trends of the genetic evolution process. Maximum fitness

of 0.99 was achieved after 9403 generations. Figure 31 shows the top few structure

evolution trends. As before, each color is a unique BbNN structure. The values of the

curves indicate the number of chromosomes with the same structure in the particular

generation. Figure 32 shows the evolved network. In the case of the Iris plant

classification example, the average time it takes to produce a new generation on the

PPC405 processor running at 300MHz is 23µs. As discussed above, the population

fitness evaluation speed depends on the population size, network structure of individuals

in the population, designated output nodes, and number of input patterns. The fitness

processing speed for the Iris plant classification example ranges from 147 MCPS to 441

MCPS.

Table 5 Genetic evolution parameters used for Iris classification problem

Genetic Evolution Parameters Values
Population size 80
Maximum generations 10,000
Target Fitness 1.0
Structure and weight crossover probabilities 0.7
Structure and weight mutation probabilities 0.2
Activation Function Tangent sigmoid
Selection Strategy Tournament selection

Figure 29 BbNN training error for Iris plant classification database. Results show
less than 1.5% misclaasification rate

 104

Figure 30 Fitness trends was Iris plant classification using BbNN

Figure 31 Structure evolution trends for Iris plant classification using BbNN

 105

Figure 32 Evolved BbNN network for Iris plant classification database

 106

 107

5.7 Summary

This chapter presents the FPGA design details of the evolvable BbNN platform.

The design was targeted for a Xilinx Virtex-II Pro FPGA (XC2VP30) housed on a Xilinx

University Program (XUP) FPGA development board or an Amirix AP130 FPGA

development board. The implementation is an intrinsically evolvable, functional-level

EHW platform. The functional units are the neuron blocks of the BbNN.

BbNNs are evolved using genetic algorithms to learn the characteristics of the

training input patterns. The evolution is a multi-parametric optimization problem

requiring simultaneous network structure and synaptic weight optimizations. The network

structure defines the dataflow through the network from the inputs to the outputs and the

internal configurations of the neuron blocks. Each neuron block can have one of the four

possible internal configurations depending on the positions of the inputs and the outputs.

The SBbN implementation presented dynamically adapts to different internal neuron

block configurations based on the network structure specified in the BbNN chromosome.

The synaptic weights and biases have been implemented as registers and can be updated

dynamically. Thus, the implementation of the BbNNs presented here can be evolved

intrinsically on the FPGA and does not require any runtime FPGA reconfiguration cycles.

This saves the overheads of FPGA reconfiguration times that are typically in millisecond

range (see section 2.5.2.2). The dataflow between the neuron blocks is handled

asynchronously using a P/T dataflow network model. This enables larger networks to be

scaled across multiple FPGAs and evolve in parallel or to use the same FPGA network in

 108

a time-multiplexed manner for larger networks that cannot be accommodated on a single

FPGA. The genetic algorithm used to evolve the BbNNs runs on the on-chip PowerPC

processor in the Virtex-II Pro FPGA. The population fitness evaluations are performed

directly on the BbNN hardware. Thus, the system can be deployed as a compact,

embedded, evolvable platform in real-world applications.

Chapter 6 introduces the online learning with the BbNNs and presents an

application that demonstrates the intrinsic online evolution capability of the design.

6 ONLINE LEARNING WITH BBNNS

BbNNs can be used for applications of artificial neural networks such as pattern

classification, signal prediction, function approximation, process control and feature

recognition. In the past, BbNNs have been applied to mobile robot navigation [23],

multivariate gaussian distributed pattern classification [182], chaotic time series

prediction [183], ECG signal classification and heart beat monitoring [4, 5], and Iris plant

classification [186]. The on-chip training capability of the developed BbNN platform

extends its capabilities to a number of different applications in dynamic environments.

A recurring concern of using artificial neural networks in practical applications is

its ability to generalize and apply its training knowledge satisfactorily. A training dataset

that is a good representative set of the actual data that the network may be exposed to in

practice is important for good generalization. But this is difficult to achieve, especially in

dynamic or unpredictable environments requiring retraining of structure and parameters

of the network. Under such circumstances the ability of online training is important to

maintain reliable system performance. The on-chip training capability of the developed

BbNN platform is ideally suited for applications in dynamic environments. This chapter

presents an online training approach for BbNN platform and an application to

demonstrate its capabilities.

 109

 110

6.1 Online Training Approach

With the advantage of on-chip training capability, the developed BbNN platform

can be deployed in dynamic environments and programmed to adapt to variances in

environmental stimuli. The network can be deployed in an actor-critic fashion with the

network in the active mode performing the actor’s role and a critic analyzing the

responses of the network to the environmental stimuli. There are three online evolvable

system deployment scenarios envisioned.

1. The deployed network is in active mode producing the outputs to input stimuli

from the environment. The critic constantly analyzes the network’s performance

and on recognizing deviations beyond a certain threshold either in the expected

network outputs, the inputs, or performance, can trigger a network retraining

cycle to adapt to the variances in the environment. In this scenario the network is

switched between the training and the active modes as dictated by the critic.

2. In the second scenario, the network can be scheduled to automatically switch

between the training and the active modes in a time-multiplexed approach. The

critic, on detecting deviations in performance beyond the threshold, can deploy

the last known fittest network obtained in the training mode to the active mode to

improve the system performance. This is illustrated in Figure 33.

Figure 33 Single network scheduled to switch between training and active modes

 111

 112

3. Instead of switching a single network between training and active modes, two

networks could be used simultaneously, with one in the active mode and the other

in the background training mode. As before, the critic can load the last known

fittest network from the training mode to the active mode to improve system

performance to the variances in the environmental stimuli. This is illustrated in

Figure 34.

In each of the above scenarios, the network is expected to be trained online. In the

genetic evolution approach discussed in section 4.2 and used to evolve BbNNs, genetic

operators such as selection, crossover, and mutation are used to produce offspring for the

new generation. The new population is ranked using the computed fitness levels of the

individuals. The rankings are used in the selection process to choose mates for the genetic

crossover. The fitness of each individual in the generation is determined by evaluating the

outputs of the network to the input training patterns. The computed outputs are compared

with known target outputs to determine the mean squared error. The fitness level of the

network is proportional to the computed mean squared error. This approach is convenient

for offline training in supervised mode with known target outputs for the input training

patterns. In the case of online training, target outputs for incoming input patterns are

generally not known. This makes determining the fitness of the population difficult. In

such scenarios, population fitness has to be estimated from actual or estimated

environmental responses to computed outputs. This is illustrated in the equations below.

 113

Figure 34 Two networks scenario. One in active mode and the other in training mode

Network output is a function of the inputs, the current environmental state, and

the network structure and parameters. Thus, if the inputs are , the current

environmental state is , and represents the network parameters, then the network

output is a function of these variables as shown below.

tX

tS nK

()nttt KSXfY ,,= (7)

The new state of the environment is a function of the previous state and

the outputs as shown below.

1+tS tS

tY

()ttt SYfS ,1 =+ (8)

The estimated fitness is the function of the new state and the desired state

 of the environment.

1+tS

∧
+1tS

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∧
++ 11, ttn SSfF (9)

If the fitness can be estimated with reasonable confidence level, the genetic

algorithm approach used in the offline supervised evolution can be used for online

evolution.

 114

Figure 35 Online training system model

6.2 Online Evolution of BbNNs

The intrinsically evolvable BbNN platform (see chapter 5) can be adapted in-field

via online evolution. This capability vastly enhances BbNN system performance and

usability for applications in dynamic environments. This section gives details of the

online evolution model that can be used with BbNNs.

Consider two system models with states S1 and S2 as shown in Figure 35. The

outputs of the system S1 control the behavior of the system S2 as shown. Outputs

are a function of the inputs to the system S1 and parameters of system S1 as shown

below.

ty ty

tx km

()ktt mxfy ,= (10)

The inputs to system S1 can be computed by observing the current state of

system S2. The goal is to keep system S2 in a desired state by controlling its

behavior using signal . The system state of S2 is deterministic and depends on control

tx

()tS
∧
2

ty

 115

input and the current value of an input time-varying signal to system S2.

signal behavior depends on external factors that may not be controllable by our system

models. To maintain system S2 in the desired state at all times, it is essential to predict the

future behavior of signal in advance to adjust S1 model parameters that control

the S2 system inputs .

ty)(tu)(tu

)(tu km

ty

We can use online evolution with the BbNNs to predict the future values of the

signal from its current and past values. The current value of the signal can be

determined as shown below.

)(tu)(tu

The expected system state at time t, is a function of control inputs to the

system S2 as shown below.

()tS
−
2 ty

() ()tyftS =
−
2 (11)

The current value of can be computed from the observed state)(tu ()tS2 , the

expected state , and the predicted . ()tS
−
2 ()tu

−

() () () ()⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−−
tutStSftu ,, 22 (12)

 116

Figure 36 Time delayed neural network

 117

Thus, recent history of the signal values can be used to train the BbNNs

online. This signal prediction technique is called a time delayed neural network (TDNN)

as is illustrated in Figure 36 [3]. The overall system performance can be determined from

observed and target system states by computing mean squared error as shown below.

)(tu

() ()
2

22
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

∧
tStS

N
E

s
 (13)

E
P

+
=

1
1 (14)

Where, Ns and P are the number of state parameters and system performance

respectively. On analyzing error signal E the critic can choose to trigger an online re-train

cycle (as in scenario 1 in section 6.1) or load the last known fittest network from the

training mode to the active mode (as in scenarios 2 and 3 in section 6.1) to improve the

system performance.

The above described general system model is applicable to many real-world

application scenarios such as cruise control systems in automobiles, industrial process

 118

control, prediction of solar radiation dosage levels, or guidance systems in aircraft. The

following section demonstrates online evolution of BbNNs using an example application.

6.3 Case Study: Adaptive Neural Luminosity Controller

An important issue facing this generation is the global climate change due to the

effects of greenhouse gas emissions and increased energy consumption. Conservation of

energy is of prime importance to check the greenhouse gas emissions and conserve

depleting resources. According to the Clinton Climate Initiative (CCI) program of former

US president William J. Clinton, 75% of the global emissions of greenhouse gases come

from the cities and 50% of the city’s emissions are generated by its buildings. The CCI

program is fervently promoting a Global Energy Efficiency Building Retrofit Program to

reduce energy consumption in a city’s buildings [205]. The benefits of energy

conservation in buildings not only helps fight global climate change but also results in

considerable savings in energy costs. This application is motivated by the needs of energy

conservation and reducing the energy costs.

A huge portion of the energy consumption in a building is the lighting. Most

people prefer illuminated corridors and well lit rooms and hallways in the buildings. Our

aim is to control the lumen outputs of the lamps in the buildings to maintain a sufficient

illumination as per requirements at different times of the day. The amount of illumination

in a room varies depending on the ambient light intensity, which is dependent on factors

such as time of day, windows, shades and curtains, and object shadows. These factors are

time and space variant and hence the amount of illumination in a room varies with the

ambient light intensity levels. To provide the target illumination levels we need to

intelligently control the lumen outputs of the lamps illuminating a room depending on the

ambient light intensity levels.

This application fits the system model described in section 6.2. Signal

corresponds to the control inputs to the electronic ballasts used to regulate the light

intensity outputs of the lamps. Signal can be obtained by observing the current light

intensity levels, i.e. the outputs of the light sensors in the room. The time varying signal

 is the ambient light intensity and the desired target state is the target light

intensity level. If the ambient light intensity levels can be predicted we can control the

luminosity levels in the room by adjusting the control inputs to the electronic ballasts. To

predict the ambient luminosity levels in the room we used online evolution with BbNNs.

ty

tx

()tu
∧
2S

The following discussion lays out the simulation experimental setup and the

approach.

 119

 120

6.3.1 Simulation Experimental Setup

Figure 37 shows a layout (top view and front view) of a room with area 30’×10’

used as the reference room for our simulation experiment. The room has 7 fluorescent

light fixtures and 2 light sensors attached to the ceiling as shown. The reference

illumination surface is an oblong conference table shown in the figure. The distances

between light and sensor placements as well as the reference surface are as shown in

Figure 37. The room has a large window (not shown in the front view) on the wall

opposite to that of the door. Each light fixture has associated electronic ballast used to

control lumen output of the lights. The ballasts are assumed to be similar to Lutron Eco-

10TM TVETM, fluorescent dimming ballast from Lutron Electronics Co [206]. The ballasts

support continuous, flicker-free dimming from 100% to 10% of measured relative light

output with control inputs ranging from 0-10VDC. Further, the ballasts have a linear

dimming curve with respect to control input voltage as shown in Figure 38 [206]. For the

sake of our simulation we will assume that all the fluorescent lamps are identical in terms

of their lumen outputs and corresponding power consumption. The contribution to the

light intensity levels on the reference surface by the lamps will be governed by the

inverse square law. This means, if a lamp lumen output is L foot-candles (FC) then the

light intensity at a point at a distance d from the lamp source will be L / d2. The light

sensors used are linear photodiode sensors similar to commercial sensors available from

PLC Multipoint Inc. [207]. These are low voltage light sensors with linear voltage signal

characteristics with respect to the measured light intensity. The plot in Figure 39

illustrates the linear output characteristics of the photodiode sensors.

Figure 37 Layout of the reference room used for simulation

 121

Figure 38 Plot of measured relative light output (%) versus ballast control input

Figure 39 Plot of sensor signal output (V) versus measured light intensity
(in percent of calibrated peak intensity)

 122

 123

The sensors can be calibrated via a potentiometer to change the sensitivity or foot-

candles/volt to adjust the range of sensed light intensity. For simplification we will ignore

various lumen losses and lumen output variations due to ambient temperature variations,

ballast factor loss, and other optical obstruction factors such as light fixtures, or dust in

our calculations. We will also assume that the power consumption of fluorescent lamps is

linear with respect to measured light output. This is a fair assumption to make in the case

of fluorescent lamps [208]. Table 6 gives the specifications of the lights and sensors used

in the test room.

Table 6 Light and sensor specifications for the test room

Parameter Value
Number of lights 7
Number of sensors 2
Cost function factor weights (q1,q2,q3) 1.0
Ballast dimming range 10% – 100% RLO
Ballast control signal range 0 – 10 V DC
Slope of ballast curve 756
Calibrated sensor range 0 – 420 FC
Sensor output range 0 – 9V DC
Sensor sensitivity 0.02 V/FC
Lamps per fixture 3
Lamp power rating 32 W / lamp
Max lumen output of the lamp 2800 lm / lamp
Lamp efficacy 87.5
Peak illumination capacity (at 0% ambient intensity) 420 FC
% Relative light output at zero ballast control input 10%

Distances between lamps and surface reference points Calculated using data in
Figure 37

Re-training trigger threshold 5 FC

6.3.2 Adaptive BbNN Predictor

As discussed in section 6.2, we will use collected history of the ambient light

intensity levels during the course of the day to train the BbNNs using genetic algorithms

for predicting the future ambient light intensity levels. Ambient light intensity level at the

current time step ‘t’ can be estimated from the current luminosity readings of the

reference surface by the light sensors and the expected light intensity levels at the

reference surface due to the lamp outputs. For our simulation example we will assume the

identical ambient light intensity levels throughout the entire reference surface.

∑−=
=

N

i i

i
SA

d

L
LL

j 1 2 (15)

 where,

jSL Light intensity at reference surface of sensor Sj

Li Lumen output of light fixture i
N Total number of light fixtures
di Distance in feet between the light fixture i and reference surface
LA Ambient light intensity at reference surface

For our simulation purposes we will assume the ideal ambient light intensity

varies at different times of day (time step = 10 mins) as shown in Figure 40. The

luminosity levels in the plot are % of the peak light intensity at the reference surface

provided by all the light fixtures running at full capacity and 0 foot-candle ambient light

levels. This is about 420 foot-candles for our test room as calculated from maximum

lamp lumen outputs and the distances between reference surface and the lamps. This

 124

value is given in the specifications chart in Table 6 above. The following are the

simulation experimental steps.

6.3.2.1 Step 1: Pre-training the BbNN

The BbNN predictor is first pre-trained using offline genetic evolution with the

ideal values of the ambient light intensity levels. Figure 41 shows the training results and

Figure 42 shows the prediction error. As can be seen the peak error is less than 0.6%.

Figure 43 shows the fitness trends over generations. Only the first 500 generations have

been shown in the figure to highlight the population fitness improvements in the first 100

generations. The maximum fitness of 0.99 was achieved in 1557 generations. Figure 44

shows the corresponding evolved BbNN network. Table 7 shows the GA evolution

parameters used.

Figure 40 Ideal luminosity levels in the test room

 125

Figure 41 Results of the BbNN pre-training. Plot shows the actual and the predicted ambient
luminosity values as learnt by BbNN

Figure 42 Prediction error for the offline evolution

 126

Figure 43 Avergae and maximum fitness values over generations (offline evolution)

Table 7 Genetic evolution parameters used for BbNN predictor

Parameter Value
Activation Function Hyperbolic tangent function
Selection Strategy Tournament selection
Population size 80
Maximum generations 2000
Structure Crossover probability 0.7
Structure Mutation probability 0.3
Weight Mutation probability 0.3
Number of patterns 120
Inputs per pattern 4
Evolution strategy Ellitist evolution

 127

Figure 44 Evolved BbNN after 1557 generations

 128

To simulate dynamic ambient light intensity behavior we will assume two cases,

(i) a cloudy day with lower ambient luminosity than the ideal level shown above, and (ii)

a sunny day with higher ambient luminosity levels. These are shown in Figure 45. Figure

45 also shows the target luminosity levels required in the room at different times of the

day. The pre-trained BbNN network is then deployed in field to predict the ambient

luminosity levels. The critic observes the BbNN’s prediction for time step ‘t’ and

compares it with the ambient light intensity level observed during time step ‘t’ to judge

BbNN’s performance under current conditions. On noticing a deviation of 0.05 it triggers

an online re-training cycle for the BbNN predictor. The online training uses the ambient

intensity values collected since the first time step (4.00) for training the network. The

genetic evolution parameters are the same as the ones used for offline training shown in

Table 7.

Figure 45 Ambient luminosity test cases and expected target luminosity

 129

 130

6.3.2.2 Step 2: Simulating BbNN Predictor Operation (Cloudy day)

Figure 46 shows the ambient luminosity pattern learned by the BbNN during

offline training and the current ambient luminosity pattern. The BbNN predicts the

ambient light reasonably well until 7:50. The critic notices a deviation greater than 0.05

in the predicted ambient intensity value at time step 8:00 and triggers the first online re-

training cycle. Note, Figure 46 also shows the predictions that the BbNN predictor would

have made beyond 8:00 without online re-training. Figure 47 shows the improved

predictions after the first re-training cycle. The critic again notices a deviation greater

than 0.05 in the predicted ambient intensity value at time step 17:50 and triggers the

second online re-training cycle. Figure 47 also shows the predictions that the BbNN

predictor would have made beyond 17:50 without the second online re-training. Figure

48 shows the improved predictions after the second re-training cycle. Figure 49 shows the

prediction errors for the pre-trained, the second re-training cycle, and the second re-

training cycles, respectively. The fitness trends for the first re-training cycle, and the

second re-training cycles are shown in Figure 50 and Figure 51, respectively. The

evolved BbNNs for the first re-training cycle, and the second re-training cycles are shown

in Figure 52 and Figure 53, respectively.

Figure 46 Pre-trained ambient luminosity predictions and the current ambient luminosity

Figure 47 Predictions improve after first re-training cycle at 8:00

 131

Figure 48 Predictions improve after the second re-training cycle at 17:50

Figure 49 Prediction errors for pre-trained, first re-training, and second re-training cycles

 132

Figure 50 Average and maximum fitness trends for the first re-training cycle

Figure 51 Average and maximum fitness trends for the second re-training cycle

 133

Figure 52 Evolved network after the first re-training cycle

 134

Figure 53 Evolved network after the second re-training cycle

 135

6.3.2.3 Step 3: Simulating the BbNN Controller Operation (Cloudy day)

In Step 2, evolution was used to predict the ambient light intensity values. To

control and maintain the luminosity levels in the test room we need to adjust the ballast

control inputs. There are 7 light fixtures in the room with one ballast per fixture. Hence

we have 7 ballast control inputs to adjust. Our goal is to maintain the target illumination

levels and minimize the energy consumption of the lights. Another goal is to maintain all

the lights at about the same intensity levels to increase the relative lifetime of all the

lamps. So our cost function for this minimization problem should account for each of

these factors. It can be modeled as shown below.

() () ()xUqxGqxPqCFFunctionCost 321 ++= (16)

where,

321 ,, qandqq Weights for each of the factors in the cost function
()xP Estimated average power consumption per lamp
()xG Estimated average deviation from the target luminosity

level per sensor
()xU Factor for load distribution across the lamps

x BbNN controller outputs

Average power consumption per lamp can be calculated from the ballast control

inputs (BbNN outputs) and the reported lamp efficacy by the lamp manufacturer as

shown in the equations below.

() ()∑=
=

N

i
ixP

N
xP

1

1 (17)

 136

()
i

i
i E

L
xP = (18)

where,

N Number of lamps
iL Estimated lumen output of the lamp I (in % peak RLO)

iE Efficacy of lamp i as reported by manufacturer (in % Lmax/watt)

 As per our assumption, since all the lamps are identical, . Lumen output of

the lamps can be calculated from the ballast control inputs and their linear relationship

with lamp lumen outputs as dictated by the plot in Figure 38.

EEi =

() ()
E

cxk
xP i

i
+

= 1 (19)

() () 100//%
max

max ×=
L

wattlumensEwattLE (20)

where,

1k Slope of the lamp output versus ballast control input curve
shown in Figure 38.

c % RLO output at 0=ix

Light intensity at a point on the reference surface as measured by sensor Sj is

equal to the summation of projected light intensities on that point from all the lamps plus

the ambient light intensity. Thus measured light intensity by sensor Sj on surface

reference point can be given by the following equation:

 137

A
N

i i

i
S L

d

L
L

j
+∑=

=1 2 (21)

A
N

i i

i
S L

d

cxk
L

j
+∑

+
=

=1 2
1 (22)

The estimated average deviation G(x) from the target luminosity level LT as

measured by M sensors is thus given as shown in the following equation:

() ()⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑ −=
=

M

j
TS LLabs

M
xG

j1

1 (23)

To ensure equivalent load distribution across all the lamps we can include a load

factor U(x) in the cost function as shown below.

() ()ki xxxU −= max (24)

This is a linear problem and can be solved easily solved by a BbNN of grid size 1

x 7. Each of the 7 outputs of the BbNN can be used to control the electronic ballasts. We

will refer to this BbNN as the BbNN controller in the discussion below to avoid

confusion with the BbNN predictor, described above, used to predict the ambient light

intensity values. At every time-step the BbNN predictor described above can feed the

predicted ambient light intensity values to the BbNN controller. The controller can

evolve to find optimal values for the ballast control inputs. We can use the equation

below as a fitness function for GA evolution.

 138

CFCFFFitness −= max (25)

Table 8 shows the genetic evolution parameters used by the BbNN controller.

Figure 54 shows the complete BbNN predictor - controller system used in this case study.

Figure 55 shows the target and actual luminosity levels (in FC) in the room with pre-

trained ambient prediction values. Figure 56 shows the corresponding luminosity error.

The large deviation from target luminosity observed is due to poor ambient luminosity

predictions in the pre-trained case. Using the online evolution vastly improves the

luminosity levels in the room with little deviations from target values. This can be seen in

Figure 57 which shows the target and actual luminosity levels in the room with ambient

prediction values obtained with online evolution. Figure 58 shows the corresponding

luminosity error. The spike observed in the luminosity error between 19:00 and 20:00 is

due to the high ambient luminosity then required. The ballast control inputs during these

times are at 0V, which corresponds to 10% relative light output of the lamps. This is the

minimal setting for the ballasts used. So the spike observed in the luminosity error curve

is actually due to the summation of 10% lamp output and the ambient light intensity.

Figure 59 shows the power consumption (in watts) by the lights for the case of pre-

trained BbNN predictor. Figure 60 shows the power consumption values with using

online evolvable BbNN predictor. We can see that the average power consumption

increases for the case of online evolvable BbNN predictor as compared to the pre-trained

results. This is because the luminosity levels for the pre-trained case are significantly

lower than the required target luminosity. The lights are dimmer as the ambient intensity

predictions are much higher than the actual in the pre-trained case.

 139

Table 8 GA evolution parameters used for BbNN controller

Parameter Value
Activation Function Logistic sigmoid function
Selection Strategy Tournament selection
Population size 60
Maximum generations 1000
Structure Crossover probability 0.7
Structure Mutation probability 0.3
Weight Mutation probability 0.3
Evolution strategy Ellitist evolution

Figure 54 BbNN predictor - controller block diagram

 140

Figure 55 Target and measured luminosity levels as recorded by the
light sensors. (pre-trained case)

Figure 56 Error between target and measured luminosities (pre-trained case)

 141

Figure 57 Target and measured luminosity levels as recorded by the
light sensors (online evolution case)

Figure 58 Error between target and measured luminosities (online evolution case)

 142

Figure 59 Power consumption (pre-trained case)

Figure 60 Power consumption (online evolution case)

 143

 144

The plots also show the average power consumption for the case of not using any

predictors or controllers and simply turning the lights ‘ON’ at full capacity when the

target intensity levels are 0.9. Using the BbNN predictor-controller saved an average of

140W throughout the day. At an average daily rate of $0.15 per KWhr, this resulted in

savings of $0.42 in energy costs per room per day. For a large skyscraper the savings

quickly add up. Figure 61 shows the fitness curves and evolved network of the BbNN

controller for the 4:00 time step as an example of the BbNN controller module.

145

(a)

(b)

Figure 61 BbNN controller at time - 4:00hrs. (a) Fitness Curves (b) Evolved BbNN

 146

6.3.2.4 Step 4: Simulating BbNN Operation (Sunny day)

Step 2 above is repeated for the case of sunny day ambient luminosity. The results

are as shown below. Figure 62 shows the pre-trained predictions of ambient luminosity

values along with the actual ambient luminosity values. As before, the critic compares the

predicted ambient luminosity values with the observed ambient luminosity values for

each time step and on noticing a deviation of more than 0.05 triggers an online re-training

cycle. The BbNN predictor performs well until 7:30. The first re-training cycle is

triggered at 7.40. Due to less training data the BbNN predictor couldn’t learn the steep

rise in the ambient luminosity values. As a result multiple re-training cycles are triggered

for this ambient luminosity dataset. In total 8 re-training cycles were triggered during the

entire course of the day. Table 9 shows all the retraining cycle times for the sunny dataset

case. As can be seen from the table, the BbNN predictor performs poorly for most of the

steep rise due to lack of enough training data, but continuously attempts to improve its

performance through online evolution. The prediction values are within the acceptable

range from 9:10 onwards until 17:10, at which point the seventh re-training cycle is

triggered. The last re-training cycle (eighth re-training cycle) is triggered at 19:10. Figure

63 shows the ambient light predictions by the evolvable BbNN throughout the course of

the day along with the true ambient light values. The re-training cycle points are

indicated by red points on the curve.

Figure 62 Actual and pre-trained predictions of ambient light intensity

Table 9 Re-train cycle times

Time of day Re-train cycle number
7:40 1
8:00 2
8.10 3
8.40 4
8:50 5
9:10 6
17:10 7
19:10 8

 147

Figure 63 Actual and predicted ambient light intensity values throughout the course
of the day. The retrain cycle times are shown with red dots.

 148

The plot in Figure 64 shows the prediction errors with all the re-training steps. Each

curve shows the prediction error in ambient light intensity assuming the subsequent re-

training cycles are not performed. The plot in Figure 65 shows the prediction errors for

the pre-trained case and the eighth re-training cycle for comparison. As can be seen,

although eight re-training cycles were required during the course of the day, the

predictions are within our error range of 0.05 for all the time steps except the steps that

triggered a re-training cycle. Figure 66 shows the average and maximum fitness curves of

the eighth re-training cycle. Figure 67 shows the evolved BbNN after 1001 generations of

the eighth re-training cycle.

Figure 64 Prediction errors of all the re-training steps. The errors curves show the
prediction errors assuming the subsequent re-training cycles are not triggered

 149

Figure 65 The plot shows the prediction errors for the eighth re-training cycle and
the pre-trained case

Figure 66 Fitness curves for the evolves BbNN eighth re-training cycle

 150

Figure 67 Evolved BbNN network after eighth re-training cycle

 151

 152

6.3.2.5 Step 5: Simulating BbNN controller operation (Sunny day)

The ambient light predictions of step 4 are fed to the BbNN controller and step 3

is repeated to simulate the BbNN controller operation. The results of the simulation are as

below. Figure 68 shows the target and actual luminosity levels (in FC) in the room with

pre-trained ambient prediction values. Figure 69 shows the corresponding luminosity

error. The large deviation from target luminosity observed is due to poor ambient

luminosity predictions in the pre-trained case. Using the online evolution vastly improves

the luminosity levels in the room with little deviations from target values. This can be

seen in Figure 70 which shows the target and actual luminosity levels in the room with

ambient prediction values obtained with using online evolution. Figure 71 shows the

corresponding luminosity error. The spike observed in the luminosity error between

19:00 and 20:00 is due to the higher ambient luminosity than required. The ballast control

inputs during these times are at 0V, which corresponds to 10% relative light output of the

lamps. This is the minimal setting for the ballasts used. So the spike observed in

luminosity error curve is actually due to summation of 10% lamp output and the ambient

light intensity. Figure 72 shows the power consumption (in watts) by the lights for the

case of pre-trained BbNN predictor. Figure 73 shows the power consumption values with

using the online evolvable BbNN predictor. We can see that the average power

consumption decreases for the sunny case by using an evolvable predictor as would be

expected. The pre-trained predictions predict less ambient light than the actual intensities

for the sunny case. Due to this, the lumen outputs of the lamps are higher than required,

burning more power.

Figure 68 Target and measured luminosity reading for the sunnydataset - pre-trained case

Figure 69 Luminosity error for the sunny dataset - pre-trained case

 153

Figure 70 Target and measured luminosity readings for the sunny dataset
with all eight re-train cycles

Figure 71 Luminosity error for the sunny case with all eight re-training cycles

 154

Figure 72 Total power consumption for sunny case - pre-trained case

Figure 73 Total power consumption with sunny dataset - eight re-training cycles

 155

 156

The plots also show the average power consumption for the case of not using any

predictors or controllers and simply turning the lights ‘ON’ at full capacity for target

intensity levels of 0.9. Using the BbNN predictor-controller to regulate the luminosity in

the room saved on an average 310W throughout the day. At an average daily rate of

$0.15 per KWhr, this resulted in savings of $0.93 in energy costs per room per day.

6.4 Summary

This chapter presented the concepts of online evolution with the BbNNs and

demonstrated simulation of a case study using the evolvable BbNN platform in a

dynamic environment. A training dataset that is a good representation of the actual data

processed by the artificial neural networks is difficult to obtain in practice. This is

especially true for applications of artificial neural networks in dynamic environments.

The capability of online adaptation in a dynamically changing environment significantly

improves system reliability and performance as was seen in the case study. For online

evolution the hardware implementing the artificial neural networks should support

intrinsic training, as in the implementation demonstrated in chapter 5. Online training

capability can also be used to provide a degree of fault tolerance to external component

failures. For example, in response to the failure of one of the input sensors to the network

in-field, the network can be re-trained to ignore the corresponding input and ‘bypass’ the

failure. This ensures reliable operation of rest of the system, or at least provides graceful

degradation in system performance.

7 PERFORMANCE ANALYSIS

This chapter presents a performance model characterizing BbNN implementations

on devices across the computing space. In particular, we compare the computational

throughput of BbNNs across general purpose processors and FPGAs. We explore

performance metrics for quantitative comparison. The chapter is organized as follows.

The concepts for characterizing the computing device space are introduced first followed

by the discussion of performance metrics. Peak throughput of BBNN implementations

across different computing devices is compared and model sensitivity analysis is

presented. The chapter concludes with the analysis of smart block-based neuron models

described in section 5.1.3.

7.1 Computational Device Space

A computational device is a machine that processes data. The technology used to

build this computational machine may vary significantly and can be electronic,

mechanical, bio-computing, or any other technology that can be used to implement

computations. Each set of computational instructions that process data is an individual

functional configuration. The ability of the computational device to support diverse

functional configurations defines its functional diversity. The Computational Device

(CD) space is a broad spectrum of these computational machines and includes different

computational technologies such as VLSI computing, bio-computing, and nano-

 157

 158

computing. Advances and innovations in these technologies continuously reshape and

broaden this space. The VLSI Processing (VP) space is the part of the CD space occupied

by the VLSI computing devices. This encompasses the computational devices using

semiconductor fabrication processes. The VP space can be characterized by the device

support for functional configuration diversity. At one end of the space are soft computing

devices (also called general purpose computing devices) that can support any functional

configuration depending on the sequence of programmable computing instructions

executed. The hardware circuitry implementing the instructions is programmed on silicon

at the time of fabrication. The instructions facilitate the functional configuration diversity

after fabrication. At the other end of this space are hard computing devices with fixed

functional configurations programmed in hardware at the time of fabrication. These

devices have restrictive functional diversity. The Reconfigurable Processing (RP) space

is a subset of VP space and represents the reconfigurable computing devices. Devices in

the RP space enable diversity in functional configurations using reprogrammable

hardware instructions. These hardware instructions are at lower levels of abstraction than

to the functional configuration sequences in soft computing devices. The hardware

instructions remap/reconfigure the programmable hardware units and their

interconnections.

In this manuscript, the use of the term ‘computational device’ refers to the devices

in the VP space. Although this is a restrictive meaning of the term with reference to our

discussion above, it is convenient to use for the discussion in the rest of this chapter.

 159

The broad range of implementation options in the VP space presents many

different choices to pick to implement computations. A particular implementation choice

is based on the examination of various application and resource specific constraints

enforced by the chosen implementation medium. Metrics such as speedup, throughput,

area, power, cost, or some combination of these guide the implementation choice.

Application-specific constraints tend to be unique to a particular application or a set of

applications; hence they are difficult to reasonably generalize. Resource constraints on

the other hand are enforced by the implementation medium and may or may not be

application-specific. Never the less, resource constraints can play an important role in

design decisions for a particular application. For example, an I/O data rate for a particular

implementation medium may be limited by the interconnect bus speeds. Lower bus

speeds may limit the achievable I/O throughput, making the device unsuitable for an I/O-

intensive application such as a network router. In another case, throughput might be

limited by the input data processing speeds achievable with an implementation on a

particular medium. A computationally intensive application may not be served well by

this computing device. To be able to make such informed design decisions, it is

imperative to characterize computing devices with respect to various computational

metrics of interest.

7.2 RP Space

Continued innovations in RP space in the last two decades have blurred the

traditional boundaries between soft and hard computing devices. Devices in this space

 160

are broadly categorized as field programmable logic devices (FPLDs). These offer the

flexibility of post-fabrication functional configuration diversity of soft computing devices

along with the custom/semi-custom design advantages of hard computing devices. The

technology offers both coarse-grained as well as fine-grained logic devices. Coarse-

grained logic devices such as the field programmable object array (FPOA) from MathStar

can reprogram functional object behaviors and their interconnections using different

functional configuration instruction streams [209]. Typical functional objects are ALUs,

MACs, and the register files (RFs). Fine-grained logic devices reconfigure gate level

logic circuitry using configuration bitstreams as opposed to reprogramming circuitry at

the functional objects level. Current state of the art of this technology is the field

programmable gate array (FPGA). These devices contain arrays of configurable logic

blocks (also called logic array blocks) interconnected via a configurable interconnection

network. Each logic block is a 4-bit/6-bit LUT plus a flip-flop and can be configured to

emulate a 4-input/6-input logic function or a flip-flop [210]. Configuration instruction

bitstreams reconfigure these logic blocks and their interconnection network providing

post-fabrication functional diversity at logic circuit level. Capacities of these devices

have grown from a few thousand logic blocks per chip just over a decade ago to the order

of a few hundred thousand logic blocks per chip. The regular layout architecture of these

devices on silicon makes them ideally suited to embrace newer fabrication processes with

smaller feature sizes relatively faster as compared to their custom ASIC counterparts and

general purpose microprocessors. Increasing speeds and capacities of these devices, along

with on-chip hard functional cores such as embedded processors, memory, multipliers,

 161

and accumulators make them a very attractive low-volume, low-cost custom hardware

solution from a commercial-off-the-shelf product.

Despite significant advances in FPGA technology over the past decade, there is

still a performance gap between FPGAs and ASICs. Kuon et al [211] have

experimentally quantified this performance gap with metrics of speed, area, and power

for a set of benchmark problems. They noted the performance advantages of increasing

usage of hard macros in FPGA designs especially in reducing the area gap between

FPGAs and ASICs. The observed performance gap is mainly due to the resources

required to support functional diversity in these devices.

With increased capacities of FPGA devices and availability of programmable

hard/soft cores such as embedded processors, memories, and other peripheral cores, a

powerful design paradigm has emerged called the Programmable System on Chip

(PSoC). PSoCs include one or more processors, memories, and peripheral devices on a

single FPGA interfaced using system and peripheral buses. The platform enables

execution of computations in software code running on the processor(s) and accelerated

computations in dedicated custom circuitry designed on reconfigurable FPGA fabric. The

design flow for such a system is complex and involves embedded software programming

as well as digital hardware design for custom logic cores used in the PSoC. This tightly-

coupled programmable system on a chip has many applications in embedded systems.

The system spans across traditional computing boundaries and takes advantage of soft,

reconfigurable, and hard computing resources simultaneously for higher performance and

Figure 74 Reorganization of the VP space with advances in RP device technologies

flexibility. These architectures need heterogeneous design tool flows addressing design

issues such as partitioning, scheduling, simulation, debugging, verification, performance

prediction, and performance analysis. Newer performance metrics that can characterize

this design space are needed for optimized scheduling and partitioning of algorithms as

well as future architectural projections. Figure 74 illustrates the reshaping of the VP

space being caused by blurring of the boundaries between traditional computing

technologies.

7.3 Performance Characterization Metrics

To achieve higher performance we need to maximize the computational

throughput from a unit area of the silicon chip employed. Keeping in mind the economic

aspects of computing, functional diversity also plays an important role. Soft computing

devices offer diversity at the algorithmic level whereas devices in RP space provide

 162

functional diversity at a lower level of abstraction, typically at the logic circuit level. It is

generally understood that fixed functional configurations as in custom hard computing

devices such as ASICs occupy the upper bound of performance in terms of computational

throughput, power consumption, and area required on the silicon. The performance based

on the above three metrics reduces as we move across the computing space towards soft

computing devices. The metrics introduced here for our analysis compare performance as

a function of speed, area, and power required for implementing the computational task on

a computational device. Some of the concepts used have been introduced and explained

in detail in [212, 213]. These metrics can be used to characterize the computing devices

in the VP space with respect to computational tasks. They help to maximize performance

of heterogeneous computing platforms that strive to maximize performance based on

resource and application specific constraints. These also serve as a guide for future

architectural projections.

7.3.1 Computational Device Capacity

Computational device capacity is the measure of computational work per unit

time that can be extracted from a computational device structure. Thus, if a device offers

computational capacity then it can complete N computations in time: capD

capD
NT = (26)

 163

The above equation raises two questions:

(i) How do we characterize computations of computing tasks?

(ii) How do we characterize tasks?

Tasks are difficult to generalize and are application specific. They may be

grouped into sets with common features and used for analysis. Computations are task

specific. If the application tasks are grouped using types of computations as a feature, the

device computational capacities can be calculated specific to a set of computational tasks.

Thus, if a computing device offers computational capacity then it can

complete computations in time:

taskcapD _

taskN

taskcap

task
task D

N
T

_
= (27)

If the computational tasks are grouped using floating point operations as a feature

then the device computational capacity gives the floating operations per second (FLOPS),

a metric widely used in measuring performance of computing systems.

(sec)_
task

FLOP
FLOPScap T

N
D = (28)

If the grouped tasks represent neuromorphic circuits, the computation of interest

is synaptic connections processed. Thus, the computational capacity will indicate

synaptic connections processed per second or CPS, another widely used metric used for

measuring performance of neuromorphic circuits.

 164

(sec)
_

__
task

connsyn
connsyncap T

N
D = (29)

To calculate raw throughput of tasks on computational devices Dehon [212]

suggested using a gate evaluation metric. The idea is to count the number of gate

evaluations in a minimal logic circuit required to implement the computational task.

Thus, if a device offers capacity to an application task requiring gate

evaluations, the task can be completed in time:

gecapD _ geN

gecap

ge
task D

N
T

_
= (30)

7.3.2 Computational Density

Computational density (or functional density) can be defined as computational

capacity per unit area. This is a space-time metric that is measured in terms of the number

of operations per unit space-time. Thus, computational density can be calculated as

shown below.

A
D

F cap
density = (31)

 165

 Area A in the above equation is the silicon area used for providing the device

computational capacity to the task. This is fabrication process dependent and varies with

the feature size used in the fabrication process. Thus, the same computation implemented

using a smaller feature size will have higher computational density as compared to a

fabrication process using larger feature size. To make our calculations independent of this

parameter, we normalize area in units of λ, half the minimum feature size of the

fabrication process. Thus the metric for computational density is measured in units of

operations/ λ2s.

)(2λAT

N
F

task

ops
density

×
= (32)

Thus, in the case of general purpose computing devices such as processors, the

area is the silicon area used for the implementation of instructions in the computational

task. This includes the area occupied by the datapath elements, interconnections, and

internal memory. In case of an ASIC, it is the chip area occupied by the logic gates and

interconnections of the logic circuit used for implementation of the computational task.

For an FPGA, it is the chip area occupied by the total number of logic blocks and the

routing circuits used by the computational task.

7.3.3 Power Efficiency

Delay and area have been addressed by the device capacity and density metrics,

but another important aspect of performance evaluation is power consumption. This is an

important factor in HPC systems, but is critical in many high performance embedded

computing systems. Dynamic power dissipation is directly related to the yielded device

capacity via the cycle frequency. The higher the frequency, the higher the dynamic power

 166

dissipation will be. Thus, it is interesting to note the device capacity per unit watt (or

milli-watt) as shown below.

)(mWP
D

D
d

cap
mWpercap =−− (33)

7.3.4 Discussion

The above metrics are indicators of computational capacity and density of a

computational device from a logic-centric view. They largely ignore the impact of the

associated interconnect and routing costs. For computational structures implementing

custom dataflow architectures the interconnect costs can substantially grow with

increasing problem sizes. For example, consider a feedforward fully connected neural

network implemented as a directed acyclic graph with neural processing elements as

nodes on an ASIC or an FPGA. Growth in network size exponentially increases the

number of synaptic interconnections, equally increasing the associated interconnect and

routing costs. These effects are more pronounced with multi-dimensional networks. This

can significantly affect the functional density estimates, and more so in RC

implementations where logic circuits are routed via pre-fabricated multiple-length

programmable routing interconnects. But these costs are difficult to generalize and

quantify and they vary depending on the computing device technology used for

implementation. For the purposes of our analysis here we will largely ignore these costs.

In case of a 2-dimensional BbNN implementation, the topological restrictions in

architecture limit the interconnect growth to linear for every additional row or column

 167

added to the existing grid. Hence, the effects of ignoring the interconnect costs will be

tolerable for this particular neural network topology. But the comparison with other fully

connected networks such as multilayer perceptrons (MLP) will skew our analysis as the

device capacity may not increase linearly with increases in the size of the network. Also,

ignored in the above analysis are the data I/O rates and the memory hierarchy effects.

These will impact the actual computational throughput and device capacity in practice.

Future work should address these issues.

7.4 BbNN Performance Analysis

Our goal here is to analyze and characterize BbNN implementations on different

computing structures ranging from general purpose processors to custom computing

devices. We will characterize and compare the computational capacities and densities

provided by various computational devices to BbNN architecture in units of connections

processed per second as shown in the equations above. For a BbNN, the maximum

number of connections that can be processed per block computation is 6 as in the case of

a 2-input / 2-output neuron block. Equation below shows the neuron block computation

in the case of a 2/2 block.

.2,1,.1
2

1
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑+=
=

kxwbgy
j

jjkkk (34)

 168

Figure 75 RISC assembly code for a single neuron processing

where,

ky kth output signal of the neuron block

jx jth input signal of the neuron block

jkw Synaptic weight connection between jth input node and kth output node

kb Bias at kth output node
J, K Number of input and output nodes respectively of a neuron block.
G(•) Linear / nonlinear Activation function

7.4.1 Performance Characterization on Processors

To calculate the capacity provided by a processor we consider the code shown in

Figure 75. It is RISC assembly code to compute a single output in a neuron block. The

code omits all the load-store instructions and just shows the main computational part. In

the case of a 2/2 neuron block there are two outputs which will require the instructions

 169

It should be noted that some of these processors do support SIMD extensions and

hence instructions such as multiply and accumulate. This will reduce the number of

instructions required for neuron block processing by 2 as a result, skewing our capacity

estimates by a factor of 1.125. We have not counted the required load instructions to

bring the data in to the internal registers and the store instructions to store the data back

in memory. Including these will change the results significantly. For the BbNN block

computation, we need 10 load instructions to bring in the inputs, weights, and biases from

memory and require 2 store instructions to store the computed outputs. This adds 12

instructions to the code shown in Figure 75, reducing our capacity estimates by a factor

of 0.6.

where,

shown to compute a single output to be executed twice. Peak computational capacity

provided by the processors can be calculated as shown below.

Thus, assuming a CPI of 1.0, a scalar processor running at 400 MHz, such as

PPC405 provides a peak computational capacity of 133 MCPS. Table 10 surveys some

commercial RISC processors using the metrics described above for BbNN

implementation.

sec
cyclesClock

cycleClock
slotsIssue

slotsIssue
nsInstructio

m
N

D
inst

c
cap ×××=

cN

instm
 Number of connections per block

Number of instructions per block computation

 (35)

170

171

Table 10 Peak Computational Capcity (in MCPS) and density (in CPλ2S) of RISC processors for BbNN block computation

Processor Organization Area
(mm2)

λ
(nm) Area (λ2) Cycle

Freq Pd Dcap
(MCPS)

Dcap
per mW

Fd
(CPλ2S)

MIPS 24Kc 1 x 32 10.7 130 nm 633 M 261 MHz 363 mW 87 0.24 0.137
MIPS 4KE 1 x 32 1.7* 130 nm 101 M 233 MHz 58 mW 78 1.33 0.772

ARM 1026EJ-S 1 x 32 4.2* 130 nm 248 M 266 MHz 279 mW 89 0.32 0.357
ARM 11MP 1 x 32 1.46* 90 nm 180 M 320 MHz 74 mW 107 1.45 0.591
ARM 720T 1 x 32 2.4* 130 nm 142 M 100 MHz 20 mW 33 1.67 0.235

PPC 405 1 x 32 2* 90 nm 246 M 400 MHz 76 mW 133 1.75 0.54
PPC 440 1 x 32 9.8 130 nm 580 M 533 MHz 800 mW 178 0.22 0.306

PPC 750FX 2 x 32 40 200 nm 1 G 533 MHz 6.75 W 355 0.05 0.355
PPC 970FX 2 x 64 66.2 90 nm 8.1 G 1 GHz 11 W 667 0.06 0.082
PA 8700+ 4 x 64 304 180 nm 9.4 G 750 MHz 7.1 W 1000 0.14 0.107

 * Synthesizable core area

 172

We have also assumed in our analysis an instruction issue rate of one instruction

per pipeline per clock cycle. This is usually not achievable with practical work loads due

to data dependencies between instructions, and overheads of memory hierarchies, cache

miss penalties and page faults.

The processor die areas marked with an (*) are synthesizable core areas. These

are synthesizable processor cores which can be used in custom System-on-Chip (SoC)

architectures. Thus they do not include area occupied by the I/O pads.

7.4.2 Performance Characterization on FPGAs

Figure 76 and Figure 77 show two different pipelined implementations for

computing a single output of the neuron block. The implementation in Figure 76 uses a

multiplier accumulator circuit to compute the sum of products and the one in Figure 77

uses two parallel multipliers. A pipelined multiplier accumulator circuit can produce an

output every third clock cycle and uses only one multiplier block as shown. Using two

parallel multipliers can speed up the throughput to one output every clock cycle. Most

current generation FPGAs have built in configurable hard multiplier cores that can be

used to implement the required multipliers instead of using logic blocks. We will

consider both the built-in hard core multipliers and LUT based multipliers in our analysis.

Figure 76 Pipelined multiplier accumulator circuit for neural processing

Figure 77 Pipelined parallel multiplier circuit for neural processing

 173

 Implementation of the circuit in Figure 76 on a Xilinx Virtex-II Pro XC2VP30-7

can be clocked at 264 MHz. Since both the neurons can be implemented in parallel, 6

connections will be processed every 3 clock cycles. The computational capacity can be

calculated as shown below.

MCPS
nstm

N
D

cyclecycle

c
cap 528

79.33
6

=
×

=
×

= (36)

Computational density provided by this FPGA can be calculated as shown below.

sCP
Mns

NAtm

N
F

CLBCLBcyclecycle

c
d

2
*

2

1.4
796.179.33

6

)(

λ

λ

=
×××

=

×××
=

 (37)

* NOTE:
(1) The CLB/slice areas used in the above equation and other calculations involving Xilinx

FPGAs in this chapter are estimates derived from the FPGA package sizes. These are
NOT ACCURATE. Die areas for FPGAs are not readily provided by Xilinx and is
regarded as proprietary information by the company.

(2) These estimates have been derived by estimating the die area from the published package
sizes and dividing by number of published CLBs per device. Assuming that our die area
estimates are correct, the CLB area computed will be higher than the actual area as we
are not discounting for area occupied by others such as IOBs, BRAMs, multipliers,
transceivers, and routing.

(3) Ideally, with known CLB areas and the hard multipler/DSP48e areas, we would add up
the area occupied by all the CLBs, the hard multipliers/DSP48es, and the area required
for routing interconnects to estimate the total area of the circuit. But, our CLB area
estimates have been derived from die area estimates divided by the total number of CLBs.
We are not discounting the area occupied by the hard multipliers/DSP48es, the IOBs,
and the interconnects. Hence the estimated area per CLB indirectly is accounting for
routing and hard multipliers. Thus we will ignore the area occupied by multipliers and
routing resources in our estimates.

(4) Note, that the computational density values thus computed are only estimates.

 174

 175

Table 11 shows the computed capacity and density values for BbNNs provided by

some selected FPGAs. It should be noted that the area, and speed values are obtained

using Xilinx synthesis, and place and route tools (ISE v7.1) [214].

176

Table 11 BbNN Computational Density on FPGAs

FPGA 2/2 Neuron
Block ††

CLK
(MHz) No. CLBs ACLB

(Mλ2)
Area A
(Mλ2) Pd (mW) Dcap

(MCPS)
Dcap

per mW
Fd

(CPλ2S)
AL 156 264 330 589 312 1.33 0.95Xilinx VirtexE XCV3200E-8

(λ=180nm) [131] ML 153 316 1.25M* 395 693 918 0.53 2.33
AH 264 79 129 364 528 1.45 4.1
AL 201 193 315 475 403 0.847 1.28
MH 304 41 67 271 1821 6.72 27.25

Xilinx Virtex-II Pro XC2VP100-7
(λ=130nm) [189]

ML 235 158

1.6M**

258 554 1408 2.54 5.47
AH 238 32 54 109 476 4.36 8.85
MH 219 57 96 111 1316 11.9 13.74Xilinx Virtex-4 XC4VLX200-11

(λ=90nm) [210]
ML 221 153

1.68M**
257 210 1328 6.31 5.17

AH 143 66 119 58 286 4.93 2.41
AL 128 195 351 114 256 2.25 0.73
MH 198 41 74 97 1186 12.28 16.07

Xilinx Spartan-3 XC3S5000-5
(λ=90nm) [215]

ML 173 158

1.83M**

285 147 1035 7.056 3.64
AL - 300 264† 1320 - 600 0.45SFRA (λ= 180nm) [216, 217]
ML 300 316† 5M

1580 - 1800 - 1.14

* As reported in reference [218]
** Estimated from reported package area. See Note in section 7.4.2 above.
† Xilinx ISE Post mapping result. SFRA tool flow uses Xilinx tools until mapping and use a custom developed place and route tool after that [216, 217].
†† AH – Sum of product pipeline built using multiplier – accumulator with built-in multiplier
 AL – Sum of product pipeline built using multiplier – accumulator with LUT-based multiplier
 MH – Sum of product pipeline built using two parallel multipliers with built-in multiplier
 ML – Sum of product pipeline built using two parallel multipliers with LUT-based multiplier

 177

7.4.3 Results and Discussion

Sections 7.4.1 and 7.4.2 survey the computational capacities and densities

provided by some commercial RISC processors and Xilinx FPGAs for 16-bit BbNN

block computations. The results for capacity and density are plotted for direct comparison

in each of the following cases; (i) Processor and FPGA-hard MAC (see Figure 78), (ii)

Processor and FPGA-LUT MAC (see Figure 79), (iii) Processor and FPGA-hard

Multiplier (see Figure 80), and (iv) Processor and FPGA-LUT Multiplier (see Figure 81).

The results for computational capacity per mW are plotted in Figure 82, Figure 83, Figure

84, and Figure 85.

(a)

(b)

Figure 78 Comparing processors and FPGAs (Hard MAC) (a) Capacity (b) Density
 178

(a)

(b)

Figure 79 Comparing processors and FPGAs (LUT MAC) (a) Capacity (b) Density
 179

(a)

(b)

Figure 80 Comparing processors and FPGAs (Hard Multipliers) (a) Capacity (b) Density

 180

(a)

(b)

Figure 81 Comparing processors and FPGAs (LUT Multipliers) (a) Capacity (b) Density

 181

Figure 82 Comparing power efficiencies of processors and FPGAs (Hard MAC)

Figure 83 Comparing power efficiencies of processors and FPGAs (LUT MAC)

 182

Figure 84 Comparing power efficiencies of processors and FPGAs (Hard Multiplier)

Figure 85 Comparing power efficiencies of processors and FPGAs (LUT Multiplier)

 183

 184

As observed from the results there is a gain of about 3X to 10X in computational

capacities between scalar processors and FPGAs. FPGAs offer comparable computational

capacities as superscalar processors with gains of about 0.5X – 2X. Processors with faster

clock rates and higher instruction issue rates than the PA8700+ could offer even higher

computational capacities. But, the FPGA computational densities are over two

magnitudes higher than the superscalar processors, underscoring the area efficiency

obtained from FPGAs. The density gains of FPGAs are 2X to 34X as compared to scalar

processors. Comparing power efficiencies, we find that new FPGAs from Xilinx (Virtex

4 and Spartan 3) are more power efficient than the older FPGAs (Virtex-II Pro and

VirtexE). Comparing the FPGA and processor power efficiencies, we find 2X to 6X

gains with FPGA designs using the hard multiplier blocks for the MAC and parallel

multiplier implementations. The power gains are not significant for FPGA LUT-based

designs using both the older and newer FPGAs. Although the superscalar processors had

comparable computational capacities with FPGAs, they consume about 2X to 6X more

power than the FPGAs.

In general, computational densities in FPGAs are 10X higher as compared to

processors [212, 213]. In our analysis, it is important to realize that we are comparing

computational gains for a particular computational task, BbNN computations. Inherent

parallelism observed in the BbNN block computations cannot be exploited by sequential

execution on processors. On the other hand, custom implementations in FPGAs can fully

exploit this parallelism. This is one of biggest factors in the observed computational

capacity gains. The newer FPGAs provide much higher capacity with lower power

consumption as compared to processors.

It should be noted that the computational capacities calculated for the processors

are ideal capacity values rarely achieved in practice. We are assuming instruction issue

rates of 100% in our calculations. The issue rates for common workloads are much lower

than the theoretical peak rates. The instruction throughput in processors depends on

factors such as the pipeline implementation, data dependencies, branch prediction logic,

out of order execution, and cache penalties. Also, multiple BbNN blocks can execute in

parallel on FPGAs, linearly increasing the computational capacity with increasing

network sizes (limited by the number of blocks that the FPGA device can hold), unlike in

processors. This is shown in Figure 86.

Figure 86 Computational capacities of FPGAs and processors as a function of network size

 185

 186

7.4.4 Performance of SBbNs

The smart block-based neuron (SBbN) design presented in 5 is the one used in our

implementation of intrinsically evolvable BbNNs. Section 5.4 presents the performance

results for the design. The design can achieve 147MCPS on Virtex-II Pro at frequency of

245MHz. Why is the computational capacity low compared to the results presented in

section 7.4.2? The reasoning for this is as below.

♦ SBbN design is larger than the basic neuron design considered in section 7.4.2.

The design is larger to accommodate for the extra logic required for the dynamic

configuration adaptability, activation function lookup table, register storage for

weights and biases, and the extra multipliers required to accommodate for 1-input

/ 3-outputs neuron block configuration.

♦ Use of a multiply-accumulator unit instead of parallel multipliers also affects the

throughput. The choice to sacrifice the throughput was made to enable the FPGA

to hold larger networks. Using parallel multipliers would require twice the

number of hard multipliers per neuron block as compared to the MAC based

approach. Thus, the fixed number of multipliers available per FPGA quickly

becomes a bottleneck for network scalability.

♦ P/T net-based dataflow implementation adopted for reliable asynchronous

intercommunication between neuron blocks has one side effect. It enforces serial

execution of the neuron block computation. Although, each of outputs within the

neuron block compute in parallel. New inputs cannot be applied until the previous

inputs are consumed and corresponding outputs generated by the neuron block.

Also, the cycle to lookup the activation function value in the lookup table adds to

the computation time. In total requiring 10 clock cycles to produce a result at the

output. At 245 MHz with a maximum of 6 connections processed in a given block

computation the throughput is 147MCPS per neuron block. The computational

density with the occupied area of 171 CLBs on Virtex-II Pro (XC2VP30) FPGA

is 0.54 connections per λ2s.

As shown in Figure 86, it should be noted that the computational capacity

increases linearly with increase in the network size, unlike the processors. Thus, for an m

× n network size the peak computational capacity is 147n MCPS.

7.5 Model Sensitivity to Parametric Variations

Analysis presented above is based on certain parametric value estimations such as

the CLB area which has been estimated using the published package sizes of FPGA

devices. It is important to analyze the sensitivity of our model to variations in model

parameters. The analysis is presented below.

Let Mc be the ideal value of the function computed using model M and Md be the

observed value due to variation in parameter p from ideal to the observed value. If the

deviation factor is dp then,

p

c
d d

M
M = (38)

 187

Thus, error in model computation is

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=−=

p
cdc d

MMMe 11 (39)

The percent deviation from the ideal value can be computed as shown below.

10011 ×⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

pd
E (40)

For example, deviation in peak computational capacity of a processor due to

variation in observed CPI from assumed ideal value can be

calculated as shown below.

(actualCPI) ()estimatedCPI

estimated

actual
cpi CPI

CPI
d = (41)

10011 ×⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

cpid
E (42)

Deviation in observed computational density in an FPGA to variation in CLB area

can be computed as shown below.

A

d
d d

F
F estimated

actual
= (43)

where,

 188

estimated

actual
A A

A
d = (44)

Figure 87 shows a plot of the deviation E in observed computational density

versus the deviation factor dA of the CLB area. Consider the neuron implementation of

Figure 77 in Virtex-II Pro FPGA using hard multipliers. The estimated CLB area is 1.6

Mλ2. If the actual CLB area is 1.8 Mλ2 the deviation in computation density will be by

11.11 % from the original value of 27.25 CPλ2s. This gives the new density value as

24.22 CPλ2s.

Figure 87 Deviation in computational density verses die area deviation factor

 189

 190

7.6 Summary

A performance characterization model for BbNNs was presented in this chapter. It

enables performance comparison across different computational devices based on the

metrics of computational capacity and density. Computational capacity is the

computational work that can be extracted from a computational device and can be

modeled as number of operations per second. Computational density is a space-time

metric giving the computational work extracted per unit time and area from a

computational device. Computational density per watt gives the estimate of power

consumption for the execution of the computation. These metrics were used to analyze

the BbNN computational capacity on the RISC processors and the FPGAs. The results

show FPGAs provide on an average 10X higher computational capacities than the scalar

RISC processors for a single BbNN block. The computational densities of FPGAs are 2X

to 34X higher than the processors. The computational capacity of FPGAs linearly

increases with the increasing network sizes, unlike processors. The newer FPGAs from

Xilinx (the Virtex 4 and the Spartan 3) are more power efficient than the older FPGAs.

Comparing their power efficiencies with processors, we observe 2X to 6X higher

computational capacities per mW provided by FPGAs. Although the superscalar

processors had comparable computational capacities with FPGAs for a single neuron

block computation, FPGAs consume about 2X to 6X less power and provide 2X to 34X

gains in computational densities. Model’s sensitivity to variations in its parameters has

also been analyzed and presented. The deviation in computed values is found to vary

linearly to parametric variations.

8 SUMMARY AND CONCLUSIONS

Following list summarizes the major points, concepts, and accomplishments of

this work.

♦ Evolvable hardware systems (EHW) use reconfigurable computing platforms such

as FPGAs to evolve hardware circuitry under the control of evolutionary

algorithms. The configuration bitstream is encoded as a genotype and evolved

over multiple generations to find a network that meets the target fitness. Fitness is

determined using an objective function that includes parameters such as

correctness of circuit functionality, area, speed, and power.

♦ Intrinsic and extrinsic hardware evolutions are classifications of evolvable

hardware systems based on the role of reconfigurable computing (RC) hardware

in evolution. Intrinsic systems include the hardware in the evolution loop to

measure the fitness of the genotype. Hence they perform online evolution.

Extrinsic systems use a software model of the hardware and perform offline

evolution using computer simulations.

♦ Functional-level and gate-level evolution describe the abstraction level at which

the evolution is performed in an evolvable hardware system. Evolving FPGA

configuration bitstream encoded as genotype in an evolutionary algorithm is

circuit-level or gate-level evolution. Evolving the interconnections and internal

 191

 192

parameters of higher level functional modules such as multipliers, accumulators,

and trigonometric functions is functional-level evolution.

♦ Block-based neural networks (BbNN) are grid-based networks of neuron blocks,

the basic processing elements of the network. The outputs of the network are a

unique function of the inputs, the network structure, and the synaptic weights of

the neuron blocks. Training of these networks is a multi-parametric optimization

problem, simultaneously evolving structure and synaptic weights of the neuron

blocks. Typically genetic algorithms are used to train these networks to model

input – output relationships and learn characteristic features in training datasets.

♦ Offline and online training are artificial neural network (ANN) learning schemes.

In an offline learning the neural network is trained using a batch of training data

offline. In an online learning scheme the neural network is trained on real data in

field. Online training in neural networks improves network generalization, and

enhances system reliability. The in-field re-training capability enhances ANN

system performance by adapting to variations in input data.

♦ Intrinsically evolvable BbNN hardware design is presented. The design supports

on-chip, online training of BbNNs on FPGAs, presenting a compact, and

evolvable neural network chip for applications in dynamic environments. The

BbNN on-chip training is a functional-level intrinsic evolution with neuron blocks

as the functional modules.

♦ Design Scalability in space (across multiple FPGAs) and in time (using same

FPGA in time multiplexed manner) is enabled by reliable, asynchronous dataflow

architecture implemented in the design. Asynchronous synaptic links enable

 193

design scalability by ensuring reliable communication between neuron blocks

spread in time or space irrespective of the type of communication channels used

to transfer data between neuron blocks. This makes the design portable and

scalable across a heterogeneous mixture of reconfigurable computing resources.

♦ Online training algorithm for BbNN is presented along with a case study –

Adaptive neural luminosity controller. The results of the study demonstrate the

benefits of online training and showcase the applicability of the designed platform

to applications in dynamic environments.

♦ Performance characterization model of BbNN RC implementations is presented.

The model characterizes BbNN implementations across the general purpose

computing devices and the FPGAs using performance metrics such as the

computational device capacity, the computational density, and the power

efficiency. Computational device capacity is the measure of computational work

per unit time that can be extracted from a computational device structure. For

BbNNs it is the number of synaptic connections processed per second (CPS) by

the computing device. Computational density is a space-time metric and can be

defined as the computational capacity provided by the computing device per unit

silicon area. The results show FPGAs provide on an average 10X higher

computational capacities than the scalar RISC processors for a single BbNN

block. The computational densities of FPGAs are 2X to 34X higher than the

processors. The computational capacity of FPGAs linearly increases with the

increasing network sizes, unlike processors. The newer FPGAs from Xilinx (the

Virtex 4 and the Spartan 3) are more power efficient than the older FPGAs.

 194

Comparing their power efficiencies with processors, we observe 2X to 6X higher

computational capacities per mW provided by FPGAs. Although the superscalar

processors had comparable computational capacities with FPGAs for a single

neuron block computation, FPGAs consume about 2X to 6X less power and

provide 2X to 34X gains in computational densities.

This work provides a platform for further research on BbNNs in three directions –

implementations, algorithms, and applications. They are discussed below.

1. Implementations

This work provides a platform for further research in custom, scalable,

intrinsically evolvable ANN implementations. The designed implementation enables

BbNN scalability across heterogeneous RC resources, but the designing and

implementing working prototypes should be undertaken as future extensions to the

project. The developed approach could also be ported to other ANN architectures such as

multilayer perceptrons and cellular neural networks. The genetic algorithm (GA)

operators in the implementation currently execute in software running on the PPC 405

embedded core on the FPGA die. This approach was chosen for the current

implementation to maximally utilize the reconfigurable logic space to fit larger networks.

But with increasing capacities of FPGAs, genetic operators can be hardware accelerated.

 195

2. Algorithms

Active research should be pursued in exploring time bounded training algorithms

for BbNNs. Online learning ability significantly expands the application space of BbNNs

to dynamic environments. But many applications may require real-time performance. The

training algorithms used for BbNNs are currently not time bounded. Theoretical

investigations should be undertaken to establish confidence levels in training results

obtained within bounded times. Another important area of research in algorithms for

BbNNs is to explore reinforcement learning techniques for BbNNs. This enables BbNNs

to learn from interactions with the surrounding environment. A difficult issue to solve in

online training of artificial neural networks is measure fitness of a network when target

outputs are unknown. Reinforcement learning algorithms have a notion of reward from

environment for actions of the agent. The agent has a goal to discover the state - action

policies that maximize this reward over time.

3. Applications

The biggest selling point of any technology is in its applications. This dissertation

provides a glimpse in to the realm of possible applications of BbNNs in dynamic

environments. Applications such as speech recognition, handwriting recognition, medical

diagnostics and monitoring, and navigational systems are all possible contenders in the

application set. Further research efforts are required to investigate the feasibility of using

BbNNs for these applications.

 196

The performance model presented is currently logic centric. It should be extended

to include routing and interconnect costs. Although the model is applied to BbNNs, it can

apply to other computational tasks. Our analysis compares performance on FPGAs and

processors. This should be extended to include other computing devices such as analog

and digital custom ASICs.

 197

REFERENCES

REFERENCES

[1] Wikipedia, "Reconfigurable computing

(http://en.wikipedia.org/wiki/Reconfigurable_Computing)," 2007.
[2] H. de Garis, "Evolvable Hardware : Principles and Practice

http://www.cs.usu.edu/~degaris/papers/CACM-E-Hard.html," 1997.
[3] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed.: Prentice

Hall, 1998.
[4] W. Jiang, S. G. Kong, and G. D. Peterson, "ECG Signal Classification using

Block-based Neural Networks," in Proceeding of International Joint Conference
on Neural Networks (IJCNN-2005), 2005, pp. 992-996.

[5] W. Jiang, S. G. Kong, and G. D. Peterson, "Continuous Heartbeat Monitoring
Using Evolvable Block-based Neural Networks," in Neural Networks, 2006.
IJCNN '06. International Joint Conference on, 2006, pp. 1950-1957.

[6] W. Jiang, "Evolutionary Optimization of Block based Neural Networks With
Application to ECG Heartbeat Classification," in Department of Electrical and
Computer Engineering. vol. PhD Knoxville: University of Tennessee, 2007.

[7] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction: The MIT
Press, 1998.

[8] A. M. Turing, "Computing machinery and Intelligence," in Mind. vol. 59, 1950,
pp. 433-60.

[9] W. S. McCulloch and W. H. Pitts, "A logical calculus of the ideas immanent in
nervous activity," in Bulletin of Mathematical Biophysics, 1943.

[10] D. O. Hebb, The Organization of Behavior. : Wiley, 1949.
[11] F. Rosenblatt, "The Perceptron: A Probabilistic Model for Information Storage

and Organization in the Brain," Cornell Aeronautical Laboratory, Psychological
Review, vol. 65, pp. 386-408, 1958.

[12] B. Widrow and M. E. Hoff, "Adaptive switching circuits," 1960 IRE WESCON
Convention Record, pp. 96-104, 1960.

[13] B. Widrow and M. A. Lehr, "30 Years of Adaptive Neural Networks: Perceptron,
Madaline, and Backpropagation.," in Proceedings of the IEEE, 1990, pp. 1415-
1442.

[14] M. Minsky and S. Papert, Perceptrons: MIT Press, Cambridge, MA, 1969.
[15] J. J. Hopfield, "Neural networks and physical systems with emergent

computational abilities.," in Proceedings of the National Academy of Sciences,
1982.

[16] R. Sutton, "Two problems with backpropagation and other steepest-descent
learning procedures for networks," in Eighth Annual Conference of the Cognitive
Science Society, Hillsdale, NJ, 1986, pp. 823-831.

[17] C. Jacob, J. Rehder, J. Siemandel, and A. Friedmann, "XNeuroGene: a system for
evolving artificial neural networks," in Proceedings of the Third International

 198

http://en.wikipedia.org/wiki/Reconfigurable_Computing),
http://www.cs.usu.edu/~degaris/papers/CACM-E-Hard.html,

 199

Workshop on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, MASCOTS '95, 1995, pp. 436-439.

[18] S. Baluja, "Evolution of an artificial neural network based autonomous land
vehicle controller," Systems, Man and Cybernetics, Part B, IEEE Transactions on,
vol. 26, pp. 450-463, 1996.

[19] H. Seung-Soo and G. S. May, "Optimization of neural network structure and
learning parameters using genetic algorithms," in Proceedings Eighth IEEE
International Conference on Tools with Artificial Intelligence. , 1996, pp. 200-
206.

[20] P. G. Harrald and M. Kamstra, "Evolving artificial neural networks to combine
financial forecasts," Evolutionary Computation, IEEE Transactions on, vol. 1, pp.
40-52, 1997.

[21] X. Yao and Y. Liu, "A new evolutionary system for evolving artificial neural
networks," Neural Networks, IEEE Transactions on, vol. 8, pp. 694-713, 1997.

[22] C. Zhang, Y. Li, and H. Shao, "A new evolved artificial neural network and its
application," in Proceedings of the 39th IEEE Conference on Decision and
Control., 2000, pp. 1065-1068 vol.2.

[23] S. W. Moon and S. G. Kong, "Block-based neural networks," IEEE Transactions
on Neural Networks, vol. 12, pp. 307-317, 2001.

[24] K. Kyung-Joong and C. Sung-Bae, "Evolving artificial neural networks for DNA
microarray analysis," in The 2003 Congress on Evolutionary Computation, CEC
'03, 2003, pp. 2370-2377 Vol.4.

[25] D. A. Miller, R. Arguello, and G. W. Greenwood, "Evolving artificial neural
network structures: experimental results for biologically-inspired adaptive
mutations," in Congress on Evolutionary Computation. CEC2004, 2004, pp.
2114-2119 Vol.2.

[26] J. N. H. Heemskerk, "Overview of Neural Hardware.," in Neurocomputers for
Brain-Style Processing. Design, Implementation and Application: Unit of
Experimental and Theoretical Psychology, Leiden University,The Netherlands.,
1995.

[27] H. P. Graf and L. D. Jackel, "Advances in neural network hardware," 1988, pp.
766-769.

[28] D. R. Collins and P. A. Penz, "Considerations for neural network hardware
implementations," 1989, pp. 834-836 vol.2.

[29] P. Ienne, "Architectures for neuro-computers: Review and performance
evaluation," Technical Report 93/21, Swiss Federal Institute of Technology, 1993.

[30] P. Ienne and G. Kuhn, "Digital systems for neural networks," in Digital Signal
Processing Technology. vol. 57, P. Papamichalis and R. Kerwin, Eds. Orlando,
FL: SPIE Optical Engineering, 1995.

[31] I. Aybay, S. Cetinkaya, and U. Halici, "Classification of neural network
hardware," Neural Network World, vol. Vol 6 pp. 11-29, 1996.

[32] H. C. Card, G. K. Rosendahl, D. K. McNeill, and R. D. McLeod, "Competitive
learning algorithms and neurocomputer architecture," Computers, IEEE
Transactions on, vol. 47, pp. 847-858, 1998.

 200

[33] T. Schoenauer, A. Jahnke, U. Roth, and H. Klar, "Digital Neurohardware:
Principles and Perspectives," in Proceedings of Neuronal Networks in
Applications (NN'98), Magdeburg, 1998.

[34] L. M. Reyneri, "Theoretical and implementation aspects of pulse streams: an
overview," 1999, pp. 78-89.

[35] B. Linares-Barranco, A. G. Andreou, G. Indiveri, and T. Shibata, "Guest editorial
- Special issue on neural networks hardware implementations," Neural Networks,
IEEE Transactions on, vol. 14, pp. 976-979, 2003.

[36] J. Zhu and P. Sutton, "FPGA Implementation of Neural Networks - A Survey of a
Decade of Progress," in 13th International Conference on Field-Programmable
Logic and Applications Lisbon, Portugal, 2003, pp. 1062-1066.

[37] N. Aibe, M. Yasunaga, I. Yoshihara, and J. H. Kim, "A probabilistic neural
network hardware system using a learning-parameter parallel architecture," 2002,
pp. 2270-2275.

[38] J. L. Ayala, A. G. Lomena, M. Lopez-Vallejo, and A. Fernandez, "Design of a
pipelined hardware architecture for real-time neural network computations," in
The 45th Midwest Symposium on Circuits and Systems, MWSCAS 2002, pp. I-
419-22 vol.1.

[39] U. Ramacher, W. Raab, J. Anlauf, U. Hachmann, J. Beichter, N. Bruls, M.
Wesseling, E. Sicheneder, R. Manner, J. Glass, and et al., "Multiprocessor and
memory architecture of the neurocomputer SYNAPSE-1," Int J Neural Syst, vol.
4, pp. 333-6, Dec 1993.

[40] U. Ramacher, "Synapse-X: a general-purpose neurocomputer architecture," in
Neural Networks, 1991. 1991 IEEE International Joint Conference on, 1991, pp.
2168-2176 vol.3.

[41] K. R. Nichols, M. A. Moussa, and S. M. Areibi, "Feasibility of Floating-Point
Arithmetic in FPGA based Artificial Neural Networks," in 15th International
Conference on Computer Applications in Industry and Engineering, San Diego,
California, 2002.

[42] M. Moussa, S. Areibi, and K. Nichols, "On the Arithmetic Precision for
Implementing Back-Propagation Networks on FPGA: A Case Study," in FPGA
Implementations of Neural Networks, 2006, pp. 37-61.

[43] J. L. Holi and J. N. Hwang, "Finite precision error analysis of neural network
hardware implementations," Computers, IEEE Transactions on, vol. 42, pp. 281-
290, 1993.

[44] J. L. Holt and T. E. Baker, "Back propagation simulations using limited precision
calculations," 1991, pp. 121-126 vol.2.

[45] J. L. Holt and J. N. Hwang, "Finite precision error analysis of neural network
hardware implementations," Computers, IEEE Transactions on, vol. 42, pp. 281-
290, 1993.

[46] E. Ros, E. M. Ortigosa, R. Agis, R. Carrillo, and M. Arnold, "Real-time
computing platform for spiking neurons (RT-spike)," Neural Networks, IEEE
Transactions on, vol. 17, pp. 1050-1063, 2006.

[47] M. Porrmann, U. Witkowski, H. Kalte, and U. Ruckert, "Implementation of
artificial neural networks on a reconfigurable hardware accelerator," in

 201

Proceedings of 10th Euromicro Workshop Parallel, Distributed and Network-
based Processing, 2002, pp. 243-250.

[48] C. Torres-Huitzil and B. Girau, "FPGA implementation of an excitatory and
inhibitory connectionist model for motion perception," in Proceedings of 2005
IEEE International Conference on Field-Programmable Technology., 2005, pp.
259-266.

[49] S. Kothandaraman, "Implementation of Block-based Neural Networks on
Reconfigurable Computing Platforms," in Electrical and Computer Engineering
Department. vol. MS Knoxville: University of Tennessee, 2004.

[50] D. Ferrer, R. Gonzalez, R. Fleitas, J. P. Acle, and R. Canetti, "NeuroFPGA-
implementing artificial neural networks on programmable logic devices," in
Proceedings of Design, Automation and Test in Europe Conference and
Exhibition, 2004, pp. 218-223 Vol.3.

[51] Y. Chin Tsu, W. Wan-de, and L. Yen Tsun, "FPGA realization of a neural-
network-based nonlinear channel equalizer," Industrial Electronics, IEEE
Transactions on, vol. 51, pp. 472-479, 2004.

[52] Q. Wang, B. Yi, Y. Xie, and B. Liu, "The hardware structure design of perceptron
with FPGA implementation," 2003, pp. 762-767 vol.1.

[53] M. M. Syiam, H. M. Klash, I. I. Mahmoud, and S. S. Haggag, "Hardware
implementation of neural network on FPGA for accidents diagnosis of the multi-
purpose research reactor of Egypt," in Proceedings of the 15th International
Conference on Microelectronics. ICM, 2003, pp. 326-329.

[54] M. Krips, T. Lammert, and A. Kummert, "FPGA implementation of a neural
network for a real-time hand tracking system," in Proceedings of the First IEEE
International Workshop on Electronic Design, Test and Applications, 2002, pp.
313-317.

[55] J. Zhu, G. J. Milne, and B. K. Gunther, "Towards an FPGA based reconfigurable
computing environment for neural network implementations," in Ninth
International Conference on Artificial Neural Networks (ICANN 99), 1999, pp.
661-666 vol.2.

[56] S. Happe and H. G. Kranz, "Practical applications for the machine intelligent
partial discharge disturbing pulse suppression system NeuroTEK II," in Eleventh
International Symposium on High Voltage Engineering, 1999, pp. 37-40 vol.5.

[57] M. Marchesi, G. Orlandi, F. Piazza, and A. Uncini, "Fast neural networks without
multipliers," Neural Networks, IEEE Transactions on, vol. 4, pp. 53-62, 1993.

[58] A. F. Murray and A. V. W. Smith, "Asynchronous VLSI neural networks using
pulse-stream arithmetic," Solid-State Circuits, IEEE Journal of, vol. 23, pp. 688-
697, 1988.

[59] P. Lysaght, J. Stockwood, J. Law, and D. Girma, "Artificial Neural Network
Implementation on a Fine-Grained FPGA," in 4th International Workshop on
Field-Programmable Logic and Applications, Prague, Czech Republic, 1994, pp.
421-431.

[60] H. Hikawa, "Frequency-based multilayer neural network with on-chip learning
and enhanced neuron characteristics," Neural Networks, IEEE Transactions on,
vol. 10, pp. 545-553, 1999.

 202

[61] H. Hikawa, "A new digital pulse-mode neuron with adjustable activation
function," Neural Networks, IEEE Transactions on, vol. 14, pp. 236-242, 2003.

[62] M. van Daalen, T. Kosel, P. Jeavons, and J. Shawe-Taylor, "Emergent activation
functions from a stochastic bit-stream neuron," Electronics Letters, vol. 30, pp.
331-333, 1994.

[63] E. van Keulen, S. Colak, H. Withagen, and H. Hegt, "Neural network hardware
performance criteria," 1994, pp. 1955-1958 vol.3.

[64] H. O. Johansson, P. Larsson, P. Larsson-Edefors, and C. Svensson, "A 200-MHz
CMOS bit-serial neural network," 1994, pp. 312-315.

[65] M. Gschwind, V. Salapura, and O. Maischberger, "Space efficient neural net
implementation," in Proceedings of the Second International ACM/SIGDA
Workshop on Field-Programmable Gate Arrays, Berkeley, CA, 1994.

[66] G. P. K. Economou, E. P. Mariatos, N. M. Economopoulos, D. Lymberopoulos,
and C. E. Goutis, "FPGA implementation of artificial neural networks: an
application on medical expert systems," in Proceedings of the Fourth
International Conference on Microelectronics for Neural Networks and Fuzzy
Systems., 1994, pp. 287-293.

[67] V. Salapura, "Neural networks using bit stream arithmetic: a space efficient
implementation," in IEEE International Symposium on Circuits and Systems.
ISCAS '94., 1994, pp. 475-478 vol.6.

[68] N. Chujo, S. Kuroyanagi, S. Doki, and S. Okuma, "An iterative calculation
method of neuron model with sigmoid function," 2001, pp. 1532-1537 vol.3.

[69] S. A. Guccione and M. J. Gonzalez, "Neural network implementation using
reconfigurable architectures," in Selected papers from the Oxford 1993
international workshop on field programmable logic and applications on More
FPGAs Oxford, United Kingdom: Abingdon EE\&CS Books, 1994.

[70] L. Mintzer, "Digital filtering in FPGAs," in 1994 Conference Record of the
Twenty-Eighth Asilomar Conference on Signals, Systems and Computers., 1994,
pp. 1373-1377 vol.2.

[71] T. Szabo, L. Antoni, G. Horvath, and B. Feher, "A full-parallel digital
implementation for pre-trained NNs," in Proceedings of the IEEE-INNS-ENNS
International Joint Conference on Neural Networks, IJCNN 2000., 2000, pp. 49-
54 vol.2.

[72] B. Noory and V. Groza, "A reconfigurable approach to hardware implementation
of neural networks," in IEEE CCECE Canadian Conference on Electrical and
Computer Engineering, 2003, pp. 1861-1864 vol.3.

[73] E. Pasero and M. Perri, "Hw-Sw codesign of a flexible neural controller through a
FPGA-based neural network programmed in VHDL," in Proceedings of IEEE
International Joint Conference on Neural Networks., 2004, pp. 3161-3165 vol.4.

[74] K. Chih-hsien, M. J. Devaney, K. Chih-ming, H. Chung-ming, W. Yi-jen, and K.
Chien-ting, "The VLSI implementation of an artificial neural network scheme
embedded in an automated inspection quality management system," in
Proceedings of the 19th IEEE Instrumentation and Measurement Technology
Conference, IMTC, 2002, pp. 239-244 vol.1.

 203

[75] J. G. Eldredge and B. L. Hutchings, "Density enhancement of a neural network
using FPGAs and run-time reconfiguration," in Proceedings of IEEE Workshop
on FPGAs for Custom Computing Machines, 1994, pp. 180-188.

[76] J. G. Eldredge and B. L. Hutchings, "RRANN: a hardware implementation of the
backpropagation algorithm using reconfigurable FPGAs," in Neural Networks,
1994. IEEE World Congress on Computational Intelligence., 1994 IEEE
International Conference on, 1994, pp. 2097-2102 vol.4.

[77] C. E. Cox and W. E. Blanz, "GANGLION-a fast field-programmable gate array
implementation of a connectionist classifier," IEEE Journal of Solid-State
Circuits, vol. 27, pp. 288-299, 1992.

[78] A. Perez-Uribe and E. Sanchez, "Speeding-up adaptive heuristic critic learning
with FPGA-based unsupervised clustering," in IEEE International Conference on
Evolutionary Computation., 1997, pp. 685-689.

[79] A. Perez-Uribe and E. Sanchez, "FPGA implementation of an adaptable-size
neural network," in Proceedings of The VI International Conference on Artificial
Neural Networks, ICANN96, 1996.

[80] A. Perez-Uribe and E. Sanchez, "Implementation of neural constructivism with
programmable hardware," in International Symposium on Neuro-Fuzzy Systems,
AT'96., 1996, pp. 47-54.

[81] H. F. Restrepo, R. Hoffmann, A. Perez-Uribe, C. Teuscher, and E. Sanchez, "A
networked FPGA-based hardware implementation of a neural network
application," in IEEE Symposium on Field-Programmable Custom Computing
Machines, 2000, pp. 337-338.

[82] T. Kurokawa and H. Yamashita, "Bus connected neural network hardware
system," Electronics Letters, vol. 30, pp. 979-980, 1994.

[83] S. Guccione and M. J. Gonzalez, "Classification and Performance of
Reconfigurable Architectures," in Proceedings of the 5th International Workshop
on Field-Programmable Logic and Applications: Springer-Verlag, 1995.

[84] I. Kajitani, M. Murakawa, D. Nishikawa, H. Yokoi, N. Kajihara, M. Iwata, D.
Keymeulen, H. Sakanashi, and T. Higuchi, "An evolvable hardware chip for
prosthetic hand controller," in Proceedings of the Seventh International
Conference on Microelectronics for Neural, Fuzzy and Bio-Inspired Systems,
MicroNeuro '99. , 1999, pp. 179-186.

[85] K. Mathia and J. Clark, "On neural network hardware and programming
paradigms," 2002, pp. 2692-2697.

[86] J. D. Hadley and B. L. Hutchings, "Design methodologies for partially
reconfigured systems," in Proceedings of IEEE Symposium on FPGAs for Custom
Computing Machines. , 1995, pp. 78-84.

[87] R. Gadea, J. Cerda, F. Ballester, and A. Macholi, "Artificial neural network
implementation on a single FPGA of a pipelined on-line backpropagation," 2000,
pp. 225-230.

[88] K. Paul and S. Rajopadhye, "Back-Propagation Algorithm Achieving 5 Gops on
the Virtex-E," in FPGA Implementations of Neural Networks, 2006, pp. 137-165.

[89] U. Witkowski, T. Neumann, and U. Ruckert, "Digital hardware realization of a
hyper basis function network for on-line learning," 1999, pp. 205-211.

 204

[90] M. Murakawa, S. Yoshizawa, I. Kajitani, X. Yao, N. Kajihara, M. Iwata, and T.
Higuchi, "The GRD chip: genetic reconfiguration of DSPs for neural network
processing," Computers, IEEE Transactions on, vol. 48, pp. 628-639, 1999.

[91] D. Hammerstrom, "A VLSI architecture for high-performance, low-cost, on-chip
learning," in Neural Networks, 1990., 1990 IJCNN International Joint Conference
on, 1990, pp. 537-544 vol.2.

[92] Y. Sato, K. Shibata, M. Asai, M. Ohki, M. Sugie, T. Sakaguchi, M. Hashimoto,
and Y. Kuwabara, "Development of a high-performance general purpose neuro-
computer composed of 512 digital neurons," in Neural Networks, 1993. IJCNN
'93-Nagoya. Proceedings of 1993 International Joint Conference on, 1993, pp.
1967-1970 vol.2.

[93] T. Zheng, O. Ishizuka, and H. Matsumoto, "Backpropagation learning in analog
T-Model neural network hardware," 1993, pp. 899-902 vol.1.

[94] B. Linares-Barranco, E. Sanchez-Sinencio, A. Rodriguez-Vazquez, and J. L.
Huertas, "A CMOS analog adaptive BAM with on-chip learning and weight
refreshing," Neural Networks, IEEE Transactions on, vol. 4, pp. 445-455, 1993.

[95] E. Farquhar, C. Gordon, and P. Hasler, "A field programmable neural array," in
Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE International
Symposium on, 2006, p. 4 pp.

[96] F. Tenore, R. J. Vogelstein, R. Etienne-Cummings, G. Cauwenberghs, M. A.
Lewis, and P. Hasler, "A spiking silicon central pattern generator with floating
gate synapses [robot control applications]," in Circuits and Systems, 2005. ISCAS
2005. IEEE International Symposium on, 2005, pp. 4106-4109 Vol. 4.

[97] G. Indiveri, E. Chicca, and R. J. Douglas, "A VLSI reconfigurable network of
integrate-and-fire neurons with spike-based learning synapses," in The Europan
Symposium on Artifcial Neural Networks, 2004.

[98] B. Girau, "FPNA: Applications and Implementations," in FPGA Implementations
of Neural Networks, 2006, pp. 103-136.

[99] B. Girau, "FPNA: Concepts and Properties," in FPGA Implementations of Neural
Networks, 2006, pp. 63-101.

[100] D. Hajtas and D. Durackova, "The library of building blocks for an "integrate &
fire" neural network on a chip," 2004, pp. 2631-2636 vol.4.

[101] Jayadeva and S. A. Rahman, "A neural network with O(N) neurons for ranking N
numbers in O(1/N) time," Circuits and Systems I: Regular Papers, IEEE
Transactions on [see also Circuits and Systems I: Fundamental Theory and
Applications, IEEE Transactions on], vol. 51, pp. 2044-2051, 2004.

[102] T. Schmitz, S. Hohmann, K. Meier, J. Schemmel, and F. Schurmann, Speeding up
Hardware Evolution: A Coprocessor for Evolutionary Algorithms vol. 2606 /
2003: Springer Berlin / Heidelberg 2003.

[103] A. Omondi, J. Rajapakse, and M. Bajger, "FPGA Neurocomputers," in FPGA
Implementations of Neural Networks, 2006, pp. 1-36.

[104] L. D. Jackel, H. P. Graf, and R. E. Howard, "Electronic neural-network chips,"
Applied Optics, vol. 26, pp. 5077-5080, December 1, 1987 1987.

[105] E. Farquhar and P. Hasler, "A bio-physically inspired silicon neuron," Circuits
and Systems I: Regular Papers, IEEE Transactions on [see also Circuits and

 205

Systems I: Fundamental Theory and Applications, IEEE Transactions on], vol.
52, pp. 477-488, 2005.

[106] B. Linares-Barranco, E. Sanchez-Sinencio, A. Rodriguez-Vazquez, and J. L.
Huertas, "A modular T-mode design approach for analog neural network
hardware implementations," Solid-State Circuits, IEEE Journal of, vol. 27, pp.
701-713, 1992.

[107] M. Holler, S. Tam, H. Castro, and R. Benson, "An electrically trainable artificial
neural network (ETANN) with 10240 `floating gate' synapses," 1989, pp. 191-196
vol.2.

[108] C. Gordon, E. Farquhar, and P. Hasler, "A family of floating-gate adapting
synapses based upon transistor channel models," in Circuits and Systems, 2004.
ISCAS '04. Proceedings of the 2004 International Symposium on, 2004, pp. I-317-
20 Vol.1.

[109] E. Farquhar, D. Abramson, and P. Hasler, "A reconfigurable bidirectional active 2
dimensional dendrite model," in Circuits and Systems, 2004. ISCAS '04.
Proceedings of the 2004 International Symposium on, 2004, pp. I-313-I-316
Vol.1.

[110] G. Cauwenberghs, C. F. Neugebauer, and A. Yariv, "An adaptive CMOS matrix-
vector multiplier for large scale analog hardware neural network applications,"
1991, pp. 507-511 vol.1.

[111] O. Barkan, W. R. Smith, and G. Persky, "Design of coupling resistor networks for
neural network hardware," Circuits and Systems, IEEE Transactions on, vol. 37,
pp. 756-765, 1990.

[112] T. Schwartz, J. , "A neural chips survey." vol. 5: Miller Freeman, Inc., 1990, pp.
34-38.

[113] A. J. Agranat, C. F. Neugebauer, and A. Yariv, "A CCD based neural network
integrated circuit with 64K analog programmable synapses," 1990, pp. 551-555
vol.2.

[114] L. W. Massengill and D. B. Mundie, "An analog neural hardware implementation
using charge-injection multipliers and neutron-specific gain control," Neural
Networks, IEEE Transactions on, vol. 3, pp. 354-362, 1992.

[115] T. Shibata, H. Kosaka, H. Ishii, and T. Ohmi, "A neuron-MOS neural network
using self-learning-compatible synapse circuits," Solid-State Circuits, IEEE
Journal of, vol. 30, pp. 913-922, 1995.

[116] D. Zahirniak, J. Calvin, and S. Rogers, "Neural network hardware implementation
for emitter identification," 1993, pp. 897-903 vol.2.

[117] H. P. Graf, L. D. Jackel, and W. E. Hubbard, "VLSI implementation of a neural
network model," Computer, vol. 21, pp. 41-49, 1988.

[118] S. C. J. Garth, "A chipset for high speed simulation of neural network systems,"
in IEEE First International Conference on Neural Networks, 21-24 June 1987,
San Diego, CA, USA, 1987, pp. 443-52.

[119] C. S. Lindsey, B. Denby, H. Haggerty, and K. Johns, "Real time track finding in a
drift chamber with a VLSI neural network," Nuclear Instruments & Methods
in Physics Research, Section A (Accelerators, Spectrometers, Detectors and
Associated Equipment), vol. A317, pp. 346-56, 1992.

 206

[120] J. Brauch, S. M. Tam, M. A. Holler, and A. L. Shmurun, "Analog VLSI neural
networks for impact signal processing," Micro, IEEE, vol. 12, pp. 34-45, 1992.

[121] M. L. Mumford, D. K. Andes, and L. L. Kern, "The Mod 2 Neurocomputer
system design," Neural Networks, IEEE Transactions on, vol. 3, pp. 423-433,
1992.

[122] A. Passos Almeida and J. E. Franca, "A mixed-mode architecture for
implementation of analog neural networks with digital programmability," in
Neural Networks, 1993. IJCNN '93-Nagoya. Proceedings of 1993 International
Joint Conference on, 1993, pp. 887-890 vol.1.

[123] M. R. DeYong, R. L. Findley, and C. Fields, "The design, fabrication, and test of
a new VLSI hybrid analog-digital neural processing element," IEEE Transactions
on Neural Networks, vol. 3, pp. 363-374, 1992.

[124] E. Sackinger, B. E. Boser, J. Bromley, Y. LeCun, and L. D. Jackel, "Application
of the ANNA neural network chip to high-speed character recognition," Neural
Networks, IEEE Transactions on, vol. 3, pp. 498-505, 1992.

[125] G. Zatorre-Navarro, N. Medrano-Marques, and S. Celma-Pueyo, "Analysis and
Simulation of a Mixed-Mode Neuron Architecture for Sensor Conditioning,"
Neural Networks, IEEE Transactions on, vol. 17, pp. 1332-1335, 2006.

[126] K. D. Maier, C. Beckstein, R. Blickhan, W. Erhard, and D. Fey, "A multi-layer-
perceptron neural network hardware based on 3D massively parallel
optoelectronic circuits," 1999, pp. 73-80.

[127] M. P. Craven, K. M. Curtis, and B. R. Hayes-Gill, "Consideration of multiplexing
in neural network hardware," Circuits, Devices and Systems, IEE Proceedings
[see also IEE Proceedings G- Circuits, Devices and Systems], vol. 141, pp. 237-
240, 1994.

[128] A. Stoica, R. Zebulum, and D. Keymeulen, "Progress and challenges in building
evolvable devices," in Evolvable Hardware, 2001. Proceedings. The Third
NASA/DoD Workshop on, 2001, pp. 33-35.

[129] T. Higuchi, M. Iwata, I. Kajitani, H. Yamada, B. Manderick, Y. Hirao, M.
Murakawa, S. Yoshizawa, and T. Furuya, "Evolvable hardware with genetic
learning," in IEEE International Symposium on Circuits and Systems, ISCAS '96.,
1996, pp. 29-32 vol.4.

[130] T. Higuchi, M. Murakawa, M. Iwata, I. Kajitani, L. Weixin, and M. Salami,
"Evolvable hardware at function level," in IEEE International Conference on
Evolutionary Computation, 1997., 1997, pp. 187-192.

[131] Xilinx, "Virtex-E 1.8V Complete Data Sheet (All four Modules)," Product
Specification, DS022 (v2.3), July 17, 2002

[132] G. Hollingworth, S. Smith, and A. Tyrrell, "Safe intrinsic evolution of Virtex
devices," in Proceedings of The Second NASA/DoD Workshop on Evolvable
Hardware, 2000., 2000, pp. 195-202.

[133] W. B. Langdon and S. Gustafson, "Genetic Programming and Evolvable
Machines: Five Years of Reviews." vol. 6: Kluwer Academic Publishers, 2005,
pp. 221-228.

 207

[134] J. D. Lohn and G. S. Hornby, "Evolvable hardware: using evolutionary
computation to design and optimize hardware systems," Computational
Intelligence Magazine, IEEE, vol. 1, pp. 19-27, 2006.

[135] T. G. W. Gordon and P. J. Bentley, "Towards development in evolvable
hardware," in Proceedings of NASA/DoD Conference on Evolvable Hardware.,
2002, pp. 241-250.

[136] J. F. Miller, D. Job, and V. K. Vassilev, "Principles in the Evolutionary Design of
Digital Circuits - Part I " Genetic Programming and Evolvable Machines, vol. 1,
pp. 259-288, 2000.

[137] X. Yao and T. Higuchi, "Promises and challenges of evolvable hardware,"
Systems, Man and Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on, vol. 29, pp. 87-97, 1999.

[138] M. Sipper, E. Sanchez, D. Mange, M. Tomassini, A. Perez-Uribe, and A. Stauffer,
"A phylogenetic, ontogenetic, and epigenetic view of bio-inspired hardware
systems," Evolutionary Computation, IEEE Transactions on, vol. 1, pp. 83-97,
1997.

[139] A. Stoica, D. Keymeulen, and R. Zebulum, "Evolvable hardware solutions for
extreme temperature electronics," in Proceedings of The Third NASA/DoD
Workshop on Evolvable Hardware., 2001, pp. 93-97.

[140] H. de Garis, "Artificial brain: ATR's CAM-brain project aims to build/evolve an
artificial brain with a million neural net modules inside a trillion cell cellular
automata machine," New Generation Computing, vol. 12, pp. 215-221, 1994.

[141] H. de Garis, A. Buller, L. de Penning, T. Chodakowski, M. Korkin, G. Fehr, and
D. Decesare, "Initial evolvability experiments on the CAM-brain machines
(CBMs)," in Evolutionary Computation, 2001. Proceedings of the 2001 Congress
on, 2001, pp. 635-642 vol. 1.

[142] H. de Garis, A. Buller, M. Korkin, F. Gers, N. E. Nawa, and M. Hough, "ATR's
artificial brain ("CAM-Brain") project: A sample of what individual "CoDi-1 Bit"
model evolved neural net modules can do with digital and analog I/O," in
Evolvable Hardware, 1999. Proceedings of the First NASA/DoD Workshop on,
1999, pp. 102-110.

[143] H. de Garis, L. de Penning, A. Buller, and D. Decesare, "Early experiments on the
CAM-Brain Machine (CBM)," in Evolvable Hardware, 2001. Proceedings. The
Third NASA/DoD Workshop on, 2001, pp. 211-219.

[144] H. de Garis, M. Korkin, F. Gers, and M. Hough, "ATR's artificial brain (CAM-
brain) project: a sample of what individual CoDi-1Bit model evolved neural net
modules can do," in Evolutionary Computation, 1999. CEC 99. Proceedings of
the 1999 Congress on, 1999, p. 1987 Vol. 3.

[145] H. de Garis, M. Korkin, P. Guttikonda, and D. Cooley, "Simulating the evolution
of 2D pattern recognition on the CAM-Brain Machine, an evolvable hardware
tool for building a 75 million neuron artificial brain," in Neural Networks, 2000.
IJCNN 2000, Proceedings of the IEEE-INNS-ENNS International Joint
Conference on, 2000, pp. 606-609 vol.6.

[146] H. de Garis, N. E. Nawa, M. Hough, and M. Korkin, "Evolving an optimal
de/convolution function for the neural net modules of ATR's artificial brain

 208

project," in Neural Networks, 1999. IJCNN '99. International Joint Conference
on, 1999, pp. 438-443 vol.1.

[147] A. Thompson, "An Evolved Circuit, Intrinsic in Silicon, Entwined with Physics,"
in Lecture Notes in Computer Science, No. 1259, "Evolvable Systems : From
Biology to Hardware", First International Conference, ICES96 Tsukuba, Japan,
1996, pp. 390-405.

[148] A. Thompson, Hardware Evolution: Automatic design of electronic circuits in
reconfigurable hardware by artificial evolution: Springer-Verlag, 1998.

[149] S. Hidenori, S. Mehrdad, I. Masaya, N. Shogo, Y. Tsukasa, I. Takeshi, K. Nobuki,
and H. Tetsuya, "Evolvable hardware chip for high precision printer image
compression," in Proceedings of the fifteenth national/tenth conference on
Artificial intelligence/Innovative applications of artificial intelligence Madison,
Wisconsin, United States: American Association for Artificial Intelligence, 1998.

[150] D. Keymeulen, R. S. Zebulum, Y. Jin, and A. Stoica, "Fault-tolerant evolvable
hardware using field-programmable transistor arrays," Reliability, IEEE
Transactions on, vol. 49, pp. 305-316, 2000.

[151] M. Iwata, I. Kajitani, H. Yamada, H. Iba, and T. Higuchi, "A Pattern Recognition
System Using Evolvable Hardware," in Proceedings of the 4th International
Conference on Parallel Problem Solving from Nature: Springer-Verlag, 1996.

[152] T. Higuchi, M. Iwata, D. Keymeulen, H. Sakanashi, M. Murakawa, I. Kajitani, E.
Takahashi, K. Toda, N. Salami, N. Kajihara, and N. Otsu, "Real-world
applications of analog and digital evolvable hardware," Evolutionary
Computation, IEEE Transactions on, vol. 3, pp. 220-235, 1999.

[153] H. Sakanashi, M. Iwata, D. Keymulen, M. Murakawa, I. Kajitani, M. Tanaka, and
T. Higuchi, "Evolvable hardware chips and their applications," in Systems, Man,
and Cybernetics, 1999. IEEE SMC '99 Conference Proceedings. 1999 IEEE
International Conference on, 1999, pp. 559-564 vol.5.

[154] J. R. Koza, F. H. Bennett, III, D. Andre, and M. A. Keane, "Four problems for
which a computer program evolved by genetic programming is competitive with
human performance," in Evolutionary Computation, 1996., Proceedings of IEEE
International Conference on, 1996, pp. 1-10.

[155] B. L. Hounsell and T. Arslan, "Evolutionary design and adaptation of digital
filters within an embedded fault tolerant hardware platform," in Proceedings of
The Third NASA/DoD Workshop on Evolvable Hardware., 2001, pp. 127-135.

[156] Y. Zhang, S. L. Smith, and A. M. Tyrrell, "Digital circuit design using intrinsic
evolvable hardware," in Proceedings of 2004 NASA/DoD Conference on
Evolvable Hardware., 2004, pp. 55-62.

[157] J. Hereford and C. Pruitt, "Robust sensor systems using evolvable hardware," in
Proceedings of 2004 NASA/DoD Conference on Evolvable Hardware., 2004, pp.
161-168.

[158] F. H. Bennett III, J. R. Koza, D. Andre, and M. A. Keane, "Evolution of a 60
Decibel op amp using genetic programming," in Proceedings of International
Conference on Evolvable Systems: From Biology to Hardware (ICES-96), 1996.

 209

[159] P. Subbiah and B. Ramamurthy, "The study of fault tolerant system design using
complete evolution hardware," in IEEE International Conference on Granular
Computing., 2005, pp. 642-645 Vol. 2.

[160] L. Sekanina, "Towards evolvable IP cores for FPGAs," in Evolvable Hardware,
2003. Proceedings. NASA/DoD Conference on, 2003, pp. 145-154.

[161] L. Sekanina, T. Martinek, and Z. Gajda, "Extrinsic and Intrinsic Evolution of
Multifunctional Combinational Modules," in 2006 IEEE Congress on
Evolutionary Computation, Vancouver, BC, Canada, 2006.

[162] A. Stoica, R. Zebulum, D. Keymeulen, and J. Lohn, "On Polymorphic Circuits
and their Design using Evolutionary Algorithms," in IASTED International
Conference on Applied Informatics, Insbruck, Austria, 2002.

[163] L. Heng, J. F. Miller, and A. M. Tyrrell, "Intrinsic evolvable hardware
implementation of a robust biological development model for digital systems," in
Proceedings of 2005 NASA/DoD Conference on Evolvable Hardware., 2005, pp.
87-92.

[164] M. Hartmann and P. C. Haddow, "Evolution of fault-tolerant and noise-robust
digital designs," Computers and Digital Techniques, IEE Proceedings-, vol. 151,
pp. 287-294, 2004.

[165] D. A. Gwaltney and M. I. Ferguson, "Intrinsic hardware evolution for the design
and reconfiguration of analog speed controllers for a DC Motor," in Evolvable
Hardware, 2003. Proceedings. NASA/DoD Conference on, 2003, pp. 81-90.

[166] D. Keymeulen, M. Iwata, Y. Kuniyoshi, and T. Higuchi, "Comparison between
Off-line Model-Free and On-line Model-Based Evolution Applied to a Robotics
Navigation System Using Evolvable Hardware," in 6th International Conference
on Artificial Life, Los Angeles, CA, U.S.A, 1998, pp. 109-209.

[167] J. C. Gallagher, S. Vigraham, and G. Kramer, "A family of compact genetic
algorithms for intrinsic evolvable hardware," IEEE Transactions on Evolutionary
Computation, vol. 8, pp. 111-126, 2004.

[168] Y. Jewajinda and P. Chongstitvatana, "A Cooperative Approach to Compact
Genetic Algorithm for Evolvable Hardware," 2006, pp. 2779-2786.

[169] J. Torresen, "A Divide-and-Conquer Approach to Evolvable Hardware," in
Proceedings of the Second International Conference on Evolvable Systems: From
Biology to Hardware: Springer-Verlag, 1998.

[170] T. Kalganova, "Bidirectional incremental evolution in extrinsic evolvable
hardware," in Evolvable Hardware, 2000. Proceedings. The Second NASA/DoD
Workshop on, 2000, pp. 65-74.

[171] E. Stomeo, T. Kalganova, and C. Lambert, "Generalized Disjunction
Decomposition for Evolvable Hardware," Systems, Man and Cybernetics, Part B,
IEEE Transactions on, vol. 36, pp. 1024-1043, 2006.

[172] E. Stomeo, T. Kalganova, and C. Lambert, "A Novel Genetic Algorithm for
Evolvable Hardware," in Evolutionary Computation, 2006. CEC 2006. IEEE
Congress on, 2006, pp. 134-141.

[173] E. Stomeo, T. Kalganova, and C. Lambert, "Generalized Disjunction
Decomposition for the Evolution of Programmable Logic Array Structures," in

 210

Adaptive Hardware and Systems, 2006. AHS 2006. First NASA/ESA Conference
on, 2006, pp. 179-185.

[174] E. Stomeo, T. Kalganova, C. Lambert, N. Lipnitsakya, and Y. Yatskevich, "On
evolution of relatively large combinational logic circuits," in Evolvable
Hardware, 2005. Proceedings. 2005 NASA/DoD Conference on, 2005, pp. 59-66.

[175] S. Mehrdad and H. Tim, "The Fast Evaluation Strategy for Evolvable Hardware."
vol. 6: Kluwer Academic Publishers, 2005, pp. 139-162.

[176] X. Yao and Y. Liu, "Getting most out of evolutionary approaches," in
Proceedings of NASA/DoD Conference on Evolvable Hardware., 2002, pp. 8-14.

[177] G. Tempesti, D. Mange, A. Stauffer, and C. Teuscher, "The BioWall: an
electronic tissue for prototyping bio-inspired systems," in Evolvable Hardware,
2002. Proceedings. NASA/DoD Conference on, 2002, pp. 221-230.

[178] L. Guangming, H. Singh, L. Ming-Hau, N. Bagherzadeh, F. J. Kurdahi, E. M. C.
Filho, and V. Castro-Alves, "The MorphoSys dynamically reconfigurable system-
on-chip," in Proceedings of the First NASA/DoD Workshop on Evolvable
Hardware, 1999. , 1999, pp. 152-160.

[179] N. J. Macias, "Ring around the PIG: a parallel GA with only local interactions
coupled with a self-reconfigurable hardware platform to implement an O(1)
evolutionary cycle for evolvable hardware," in Proceedings of the 1999 Congress
on Evolutionary Computation, 1999. , 1999, p. 1075 Vol. 2.

[180] N. J. Macias, "The PIG paradigm: the design and use of a massively parallel fine
grained self-reconfigurable infinitely scalable architecture," in Proceedings of the
First NASA/DoD Workshop on Evolvable Hardware, 1999. , 1999, pp. 175-180.

[181] G. Tufte and P. C. Haddow, "Prototyping a GA Pipeline for complete hardware
evolution," in Proceedings of the First NASA/DoD Workshop on Evolvable
Hardware, 1999. , 1999, pp. 18-25.

[182] S. W. Moon and S. G. Kong, "Pattern recognition with block-based neural
networks," in Proceeding of International Joint Conference on Neural Networks
(IJCNN-2002), 2002, pp. 992-996.

[183] S. G. Kong, "Time series prediction with evolvable block-based neural networks,"
in Proceeding of International Joint Conference on Neural Networks (IJCNN-
2004), 2004, pp. 1579-1583 vol.2.

[184] S. Merchant, G. D. Peterson, and S. G. Kong, "Intrinsic Embedded Hardware
Evolution of Block-based Neural Networks," in Proceedings of Engineering of
Reconfigurable Systems and Algorithms (ERSA), Las Vegas, Nevada, 2006.

[185] S. Merchant, G. D. Peterson, S. K. Park, and S. G. Kong, "FPGA Implementation
of Evolvable Block-based Neural Networks," in Proceedings of IEEE Congress
on Evolutionary Computation, Vancouver, Canada, 2006.

[186] S. Merchant and G. D. Peterson, "Evolvable Neural Networks Platform for
Dynamic Environments," in accepted for proceesings of The 2nd International
Symposium on Intelligence Computation and Applications, Wuhan, China, 2007.

[187] M. N. H. Siddique and M. O. Tokhi, "Training neural networks: backpropagation
vs. genetic algorithms," in Neural Networks, 2001. Proceedings. IJCNN '01.
International Joint Conference on, 2001, pp. 2673-2678 vol.4.

 211

[188] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning: Addison-Wesley Professional, 1989.

[189] Xilinx, "Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data
Sheet," Product Specification, DS083 (v4.6) March 5, 2007

[190] Xilinx, "Xilinx University Program Virtex-II Pro Development System Hardware
Reference Manual," Hardware Reference Manual, UG069 (v1.0), March 8, 2005

[191] Amirix, "AMIRIX Systems Inc. PCI Platform FPGA Development Board Users
Guide," User Guide, DOC-003266 Version 06, June 17, 2004

[192] W. B. Ligon, III, S. McMillan, G. Monn, K. Schoonover, F. Stivers, and K. D.
Underwood, "A re-evaluation of the practicality of floating-point operations on
FPGAs," in FPGAs for Custom Computing Machines, 1998. Proceedings. IEEE
Symposium on, 1998, pp. 206-215.

[193] L. Zhuo and V. K. Prasanna, "Scalable and modular algorithms for floating-point
matrix multiplication on FPGAs," in Parallel and Distributed Processing
Symposium, 2004. Proceedings. 18th International, 2004, p. 92.

[194] V. K. Prasanna and G. R. Morris, "Sparse Matrix Computations on
Reconfigurable Hardware," Computer, vol. 40, pp. 58-64, 2007.

[195] L. Zhuo and V. K. Prasanna, "Scalable and Modular Algorithms for Floating-
Point Matrix Multiplication on Reconfigurable Computing Systems," Parallel and
Distributed Systems, IEEE Transactions on, vol. 18, pp. 433-448, 2007.

[196] J. Peterson, Petri Net Theory and the Modeling of Systems: Prentice Hall, 1981.
[197] W. Reisig, A Primer in Petri Net Design: Springer-Verlag, 1992.
[198] Wikipedia, "Petri net (

http://en.wikipedia.org/w/index.php?title=Petri_net&oldid=35724790) ". vol.
2006: Wikipedia, The Free Encyclopedia, 2006.

[199] L. Tu, M.-c. Zhu, and J.-x. Wang, "The hardware implementation of a genetic
algorithm model with FPGA," 2002, pp. 374-377.

[200] K. H. Tsoi, K. H. Leung, and P. H. W. Leong, "Compact FPGA-based true and
pseudo random number generators," in Field-Programmable Custom Computing
Machines, 2003. FCCM 2003. 11th Annual IEEE Symposium on, 2003, pp. 51-61.

[201] "Wind River : VxWorks (www.windriver.com)."
[202] "Timesys Linux (http://www.timesys.com/)."
[203] "Montavista Linux (http://www.mvista.com/)."
[204] R. Fisher, "The use of multiple measurements in taxonomic problems," Annals

Eugen., vol. 7, pp. 179-188, 1936.
[205] W. J. C. Foundation, "Clinton Climate Initiative: Global Energy Efficiency

Building Retrofit Program ": http://www.clintonfoundation.org/index.htm, 2007.
[206] "Lutron Electronic Co, "Fluorescent Dimming Ballasts"," Datasheet, TVE (1)

02.19.04,
[207] "PLC-Multipoint Inc. "Linear Photodiode Sensors for PLC-Multipoint

Controllers"," Datasheet, Rev.2006-09-05, 2006
[208] "Lutron Electronic Co. "Fluorescent dimming systems technical guide","
[209] "Mathstar, FPOA Overview," April 2007, 2007
[210] Xilinx, "Virtex-4 Family Overview," Product Specification, DS112 (v2.0) January

23, 2007

http://en.wikipedia.org/w/index.php?title=Petri_net&oldid=35724790
http://www.windriver.com)./
http://www.timesys.com/).
http://www.mvista.com/).
http://www.clintonfoundation.org/index.htm

 212

[211] I. Kuon and J. Rose, "Measuring the Gap Between FPGAs and ASICs,"
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, vol. 26, pp. 203-215, 2007.

[212] A. DeHon, "Reconfigurable Architectures for General-Purpose Computing. AI
Technical Report 1586," in Artificial Intelligence Laboratory. vol. PhD:
Massachusetts Institute of Technology, 1996, p. 367.

[213] A. DeHon, "The density advantage of configurable computing," Computer, vol.
33, pp. 41-49, 2000.

[214] Xilinx, "ISE Software Manuals and help," 2006
[215] Xilinx, "Spartan-3 FPGA Family Datasheet," Product Specification, DS099 May

25, 2007
[216] N. Weaver, "The SFRA: A Fixed Frequency FPGA Architecture," in Computer

Science. vol. PhD: University of California at Berkeley, 2003, p. 195.
[217] N. Weaver, J. Hauser, and J. Wawrzynek, "The SFRA: a corner-turn FPGA

architecture," in Proceedings of the 2004 ACM/SIGDA 12th international
symposium on Field programmable gate arrays Monterey, California, USA:
ACM Press, 2004.

[218] J. Teifel and R. Manohar, "An asynchronous dataflow FPGA architecture,"
Transactions on Computers, vol. 53, pp. 1376-1392, 2004.

 213

APPENDIX

APPENDIX

Acronyms used in the manuscript

ALU see Arithmetic Logic Unit

ANN see Artificial Neural Networks

ANNA see Analog Neural Network Arithmetic

API see Application Programming Interface

ASIC see Application Specific Integrated Circuits

BbNN see Block-based Neural Networks

BCSR see Block Control and Status Register

BRAM see Block Random Access Memory

CA see Cellular Automata

CBM see CAMBrain Machine

CD see Computational Device

CLB see Configurable Logic Block

CMOS see Complementary Metal Oxide Semiconductor

CoDi see Collect and Distribute

CORDIC see Coordinate Rotation Digital Computer

CPI see Clock cycles per instruction

CPS see Connections per second

CSD see Canonic Signed Digit

DA see Distributed Arithmetic

 214

 215

DSP see Digital Signal Processor

EDK see Embedded Development Kit

EHW see Evolvable Hardware

ETANN see Electronically Trainable Analog Neural Network

FC see Foot Candles

FEA see Fast Evolutionary Algorithm

FIFO see First In First Out

FLOPS see Floating Operations per Second

FPAA see Field Programmable Analog Array

FPGA see Field Programmable Gate Arrays

FPLD see Field Programmable Logic Devices

FPOA see Field Programmable Object Array

FPNA see Field Programmable Neural Array

FPTA see Field Programmable Transistor Array

FPTA2 see Second generation Field Programmable Transistor Array

GA see Genetic Algorithm

GDD see Generalized Disjunction Decomposition

GRD see Genetic Reconfiguration of DSPs

HPC see High Performance Computing

HPEC see High Performance Embedded Computing

HPRC see High Performance Reconfigurable Computing

I/O see Input / Output

ISE see Integrated Systems Environment

 216

KWhr see Kilo Watt Hour

LMS see Least Mean Square

LUT see Lookup Table

LVQ see Linear Vector Quantization

MAC see Multiplier and Accumulator

MCPS see Million Connections per Second

MDP see Markov Decision Process

MLP see Multilayer Perceptron

NNP see Neural Network Processor

OPB see On-Chip Peripheral Bus

P/T net see Petri net or Place/transition net

PCB see Printed Circuit Board

PCI see Peripheral Component Interconnect

PIG see Processing Integrated Grid

PLA see Programmable Logic Array

PLB see Processor Local Bus

PLD see Programmable Logic Devices

PNN see Probabilistic Neural Network

PPC see PowerPC

PSoC see Programmable System on a Chip

RAID see Redundant Array osf Inexpensive Disks

RAM see Random Access Memory

RC see Reconfigurable Computing

 217

RISC see Reduced Instruction Set Computer

RP see Reconfigurable Processing

RWC see Real World Computing

SBbN see Smart Block-based Neuron

SDRAM see Synchronous Dynamic Random Access Memory

SIMD see Single Instruction Multiple Data

SoC see System on a Chip

SRAM see Static Random Access Memory

TDNN see Time-delay Neural Network

UART see Universal Asynchronous Receiver Transmitter

VP see VLSI Processing

XUP see Xilinx University Program

VITA

Saumil G. Merchant, a loving husband and son, was born 20th September, 1976 to

Kokila and Girish Merchant. He grew up in Mumbai, India and attended New Era

School, a premier institution instilling cultural values along with curricular education

among its students. In 1992 he graduated with distinction in S.S.C. (Secondary School

Certificate) examination and joined Jai Hind College of Science Mumbai, India. He

graduated with distinction in H.S.C (Higher Secondary School Certificate) in 1994 and

went on to pursue professional training in Electronics Engineering at University of

Mumbai. After finishing Bachelor of Engineering in 1999, he pursued training in

computer networking and software programming at ACS training institute. He is a

Microsoft and Sun certified professional (MCP and SCJP). He has also pursued training

for MCSE (Microsoft certified systems engineer). He joined Department of Electrical and

Computer Engineering, University of Tennessee, Knoxville in 2001 to pursue graduate

studies in High Performance Reconfigurable Computing (HPRC). He graduated with

Master of Science (MS) in Electrical Engineering in August 2003. During his graduate

school he worked with Office of Information Technology – Computing and Network

Services as a Systems Administrator for campus computer laboratories. After MS, he

continued his graduate education to pursue doctorate in Electrical Engineering at

University of Tennessee. During his doctoral studies he has worked as a Research

Assistant, a Teaching Assistant, and a Teaching Associate in the Department of Electrical

and Computer Engineering at University of Tennessee. He has taught junior and senior

 218

 219

level classes in computer systems fundamentals and computer architecture in the capacity

of an instructor. He has accepted a position with NSF center for High-Performance

Reconfigurable Computing at University of Florida as a Research Scientist. He is a

member of IEEE and ACM. Saumil is keenly interested in music and loves to play guitar.

He hopes to pursue a career as a scientist and an educationist.

 By:

 Jaya Bajaj

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	8-2007

	Intrinsically Evolvable Artificial Neural Networks
	Saumil Girish Merchant
	Recommended Citation

	Introduction
	Technology Overview: RC, EHW, and ANN
	RC Acceleration for ANNs

	Dissertation Synopsis
	Manuscript Organization

	Artificial Neural Networks
	Introduction to Artificial Neural Networks
	Historical Perspective
	Building Artificial Neural Networks
	Genetic Evolution of Artificial Neural Networks
	Review of Neural Hardware Implementations
	Neural Network Hardware
	Digital Neural Network Implementations
	Real Value Representation
	Design Flexibility
	On-chip/Off-chip Learning
	Activation Function Implementation

	Analog Neural Hardware Implementations
	Hybrid Neural Hardware Implementations

	Summary

	Evolvable Hardware Systems
	Gate-level, Transistor-level, and Functional-level Evolution
	Review of Evolvable Hardware Systems
	EHW Chips and Applications
	EHW Systems for Neural Hardware
	Applications in Signal and Image Processing
	Applications in Analog Electronics
	Applications in Digital Logic Circuits
	Control and Navigation Applications

	EHW Algorithms and Platforms

	Summary

	Block-based Neural Networks
	Introduction
	Evolving BbNNs Using Genetic Algorithms
	Genetic Operators
	Selection
	Crossover
	Mutation

	BbNN Encoding
	Fitness Function
	Genetic Evolution

	Summary

	Intrinsically Evolvable BbNN Platform
	BbNN FPGA Design Details
	Data Representation and Precision
	Activation Function Implementation
	Smart Block-based Neuron Design
	Dataflow Implementation

	Embedded Intrinsically Evolvable Platform
	PSoC Platform Design

	Fixed Point BbNN Software for Genetic Evolution
	Performance and Device Utilization Summary
	Design Scalability
	Scaling BbNN Across Multiple FPGAs
	Scaling via Time Folding
	Hybrid Implementation

	Applications
	N-bit Parity Classifier
	Iris Plant Classification

	Summary

	Online Learning With BbNNs
	Online Training Approach
	Online Evolution of BbNNs
	Case Study: Adaptive Neural Luminosity Controller
	Simulation Experimental Setup
	Adaptive BbNN Predictor
	Step 1: Pre-training the BbNN
	Step 2: Simulating BbNN Predictor Operation (Cloudy day)
	Step 3: Simulating the BbNN Controller Operation (Cloudy day
	Step 4: Simulating BbNN Operation (Sunny day)
	Step 5: Simulating BbNN controller operation (Sunny day)

	Summary

	Performance Analysis
	Computational Device Space
	RP Space
	Performance Characterization Metrics
	Computational Device Capacity
	Computational Density
	Power Efficiency
	Discussion

	BbNN Performance Analysis
	Performance Characterization on Processors
	Performance Characterization on FPGAs
	Results and Discussion
	Performance of SBbNs

	Model Sensitivity to Parametric Variations
	Summary

	Summary and Conclusions
	References
	Appendix
	Vita

