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ABSTRACT 

 

Dedicated hardware implementations of neural networks promise to provide 

faster, lower power operation when compared to software implementations executing on 

processors. Unfortunately, most custom hardware implementations do not support 

intrinsic training of these networks on-chip. The training is typically done using offline 

software simulations and the obtained network is synthesized and targeted to the 

hardware offline. The FPGA design presented here facilitates on-chip intrinsic training of 

artificial neural networks. Block-based neural networks (BbNN), the type of artificial 

neural networks implemented here, are grid-based networks neuron blocks. These 

networks are trained using genetic algorithms to simultaneously optimize the network 

structure and the internal synaptic parameters. The design supports online structure and 

parameter updates, and is an intrinsically evolvable BbNN platform supporting 

functional-level hardware evolution. Functional-level evolvable hardware (EHW) uses 

evolutionary algorithms to evolve interconnections and internal parameters of functional 

modules in reconfigurable computing systems such as FPGAs. Functional modules can 

be any hardware modules such as multipliers, adders, and trigonometric functions. In the 

implementation presented, the functional module is a neuron block. The designed 

platform is suitable for applications in dynamic environments, and can be adapted and 

retrained online. The online training capability has been demonstrated using a case study. 

A performance characterization model for RC implementations of BbNNs has also been 

presented. 
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1 INTRODUCTION 

1.1 Technology Overview: RC, EHW, and ANN 

Reconfigurable computing (RC) technology has grown considerably in the past 

two decades and continues to arouse much interest among the computing community. 

Performance advantages of dedicated custom/semi-custom implementations, shorter 

design and verification times, device reusability, and lower implementation costs as 

compared to application specific integrated circuits (ASIC) have been the major 

contributing factors in the success of this technology. The most prominent and 

commercially successful device in this technology is the field programmable gate array 

(FPGA). Increasing speeds and capacities, availability of on-chip cores such as embedded 

processors, memories, multipliers, and accumulators, and functional diversity advantages 

with runtime reconfiguration make FPGAs very attractive low-volume and low-cost 

custom hardware solutions. Increasing commercial acceptance has promoted significant 

research in CAD tools to efficiently program these devices and a huge market for 

intellectual property cores to facilitate shorter design cycles. Broad application range, 

from embedded computing to supercomputing, continues to stimulate research into this 

technology [1].  

 

The runtime reconfiguration capability of RC devices has resulted in the 

conception of a different computing paradigm among a small community of researchers. 

The computing paradigm is Evolvable hardware (EHW) [2]. The key objective of EHW 
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systems is to use the runtime hardware reconfiguration ability along with evolutionary 

algorithms to evolve a digital or analog circuit in hardware. The configuration bitstream 

(viewed as a phenotype in an evolutionary algorithm) of these devices is encoded as a 

chromosome (viewed as a genotype) and evolved under the control of evolutionary 

algorithms over multiple generations. Evolutionary algorithms use mechanisms inspired 

by the Darwinian theory of biological evolution such as reproduction, mutation, 

recombination, natural selection, and survival of the fittest to evolve a population of 

chromosomes over multiple generations. A population of chromosomes (encoded FPGA 

bitstreams) is first ranked according to their fitness levels. Fitness is determined by an 

objective function that can include parameters such as correctness of circuit functionality, 

speed, area, and power. A selection scheme selects the chromosomes from the population 

for reproduction via genetic crossover, mutation, and recombination. The higher the rank, 

the higher is the probability of selection of the chromosomes for reproduction to form 

new generations. The survival of the fittest policy tends to increase the average fitness of 

the population over multiple generations. Evolution continues over multiple generations 

until either a chromosome with fitness at least equal to the predetermined target fitness is 

found or the preset maximum number of generations is reached. EHW systems are 

classified in two groups depending upon the role of reconfigurable hardware during 

evolution: intrinsic and extrinsic EHW systems. Intrinsic EHW systems include the RC 

hardware in the evolution loop to test the fitness of each chromosome in the population. 

Extrinsic EHW systems use a software model to simulate the underlying RC hardware 

and perform an offline evolution. Using the configuration FPGA bitstream for evolution 

in essence evolves the connections and configurations of the logic blocks in the hardware 
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circuitry. This is termed as gate-level evolution. Evolving hardware at a higher level of 

abstraction than gates is termed as functional-level evolution. Functional-level evolution 

evolves the configurations and interconnections of bigger functional modules such as 

multipliers, adders, and trigonometric functions. The functional modules to use for the 

evolution can be chosen depending on the target circuit functionality. The potential 

modules that can be chosen are unbounded. If the functional module chosen is an 

artificial neuron, the evolution process evolves the interconnections between the neurons 

and their internal configurations (synaptic weights and biases). Thus, the evolutionary 

process evolves an artificial neural network.  

 

An artificial neural network (ANN) is an interconnected network of artificial 

neurons [3]. Artificial neurons are loosely analogous to their biological counterparts, 

typically producing an output that is a function of the weighted summation of synaptic 

inputs and a bias. ANNs can be classified as recurrent and feedforward networks 

depending on the flow of data from inputs to outputs of the network. Recurrent networks 

allow bidirectional flow between inputs and outputs, whereas in feedforward networks 

the data flows only in one direction, from inputs to outputs. ANNs are very popular 

among the machine intelligence community. They can be used to effectively model 

complex nonlinear input – output relationships, and to learn characteristic patterns in 

input data flowing through the network. They have been successfully applied to a variety 

of problems such as classification, prediction, and approximation in the fields of robotics, 

industrial control, signal/image processing, and finance. To learn the input – output 

relationships in the data, the ANNs go through a phase of learning or training. Many 
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training algorithms exist such as the backpropagation algorithm, genetic algorithms, 

reinforcement learning, simulated annealing, and unsupervised training algorithms. The 

learning process can be broadly classified into an offline (or batch) training scheme or an 

online training scheme. In offline training, a batch of training datasets is used to train the 

neural network. The network obtained from training is then used in the field to process 

new data that the network has not seen during training. Online training schemes train the 

neural networks in the field. There are many advantages of online training with artificial 

neural networks such as improved generalization via adaptability in dynamic 

environments and system reliability. One reason for the popularity of neural networks is 

their ability to generalize based on the information acquired from the training datasets. 

But to obtain good generalizations in practice, the training dataset has to be a 

representative set of the real data the network is likely to encounter in the field. This is 

non-trivial for applications in dynamic environments where the training data may be 

drawn from some time-dependent environmental distributions. The ability to train the 

artificial neural networks in the field using online training algorithms helps to improve 

generalizations in dynamic environments. Improved generalizations are achieved via 

adaptation and re-training to learn the variations in the input data. The ability to adapt and 

re-train in the field maintains reliable system performance and as a result increases the 

system’s reliability. 
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1.1.1 RC Acceleration for ANNs 

Inherent computational parallelism in artificial neural networks has attracted 

significant research into the implementation of custom hardware designs for neural 

networks (see chapter  2). But most implementations rely on offline training using 

computer simulations to find a suitable network for the training dataset. The network 

obtained as a result of training is then implemented in hardware to achieve higher recall 

speeds. Although attractive processing speedups can be achieved, every new application 

may necessitate a hardware redesign with this approach. To improve generalizations, 

networks may require more training with larger or more representative datasets. For 

hardware implementations relying on offline training, implementing the new trained 

network may require a hardware redesign. Implementation costs of hardware redesigns 

have attracted a lot of interest in FPGAs for implementing artificial neural networks. 

Runtime reconfigurations in FPGAs can be used to configure different artificial neural 

circuit designs, reusing the same FPGA chip for different applications. But the neural 

network learning process is offline. As noted above, there are many advantages to online 

training of artificial neural networks. To implement online training in hardware requires 

support for dynamic network structure and synaptic parameter updates to the neural 

circuit design. Online and offline learning processes for RC implementations of artificial 

neural networks are analogous to the intrinsic and the extrinsic functional-level evolution 

schemes in EHW systems. Thus, an intrinsically evolvable ANN is a custom ANN 

implementation that supports online learning. Figure 1 shows a Venn diagram of the 

technology overlaps between RC, EHW, and ANN systems as discussed above. 

 



 
 

Figure 1  Venn diagram showing the technology overlaps between RC, 
EHW, and ANN 

 
 

1.2 Dissertation Synopsis 

This dissertation work is an extension of an NSF-funded project on evolvable 

block-based neural networks for dynamic environments. The overall project goal was 

algorithmic, structural, and custom implementation oriented investigation of block-based 

neural networks and their suitability for evolution in dynamic environments. Block-based 

neural networks (BbNN) are a type of artificial neural networks with a neuron block as 

the basic processing element of the network. The network structure is a grid with the 

neuron blocks positioned at the intersections of the grid. Typically the inputs are applied 

at the top of grid and the outputs appear at the bottom of the grid. The dataflow through 

the network determines the internal configurations of the neuron blocks. Each neuron 

block can have at the most three inputs and three outputs, aligned in north, east, west, and 

 6



south (NEWS) directions. Depending on the dataflow through the grid, the internal 

configurations of the neuron blocks can be 1-input / 3 outputs, 2 inputs / 2 outputs, or 3 

inputs / 1 output. Every unique dataflow pattern through the grid is a unique network 

structure of the BbNN. Each neuron block has weighted synaptic links from all inputs to 

all outputs. Each output is a function of weighted summation of all the inputs and a bias. 

The synaptic weights and biases of the neuron blocks are the internal parameters of the 

network. Thus, the network outputs are unique functions of applied inputs and the 

internal parameters for every unique BbNN structure, as shown below. 

 

( )( ) 1....0,, 1**10...01...0 −== −− Nkwxfy NMNk  (1)

 

where,  

ky  Output k of the network 

1.....0 −Nx  N inputs of the network 
M Number of rows in the grid 
N Number of columns in the grid 

( 1**10...0 −NMw )  10*M*N synaptic parameters (10 parameters per neuron block) 

( )•f  Nonlinear activation function 
 

Figure 2 shows the network architecture and a neuron block with a 2/2 (2 inputs / 

2 outputs) internal configuration. Just as with other artificial neural networks, BbNNs can 

be applied to solve classification, prediction, and approximation problems in machine 

learning. The learning process for the BbNNs is a multi-parametric optimization problem 

to find a unique structure and a set of internal parameters to model the input – output  
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Figure 2  (a) Block-based neural network topology (b)  2 input / 2 output neuron block configuration 

 
 

relationships in the training datasets. Thus, global search techniques such as genetic 

algorithms (GAs) are used to train the BbNNs. Although GA training may take more time 

to converge to a solution than gradient descent search techniques such as 

backpropagation algorithm, it avoids getting trapped in the local minima, a problem often 

faced with backpropagation training algorithm. Hybrid training algorithms for BbNNs 

have been investigated that take the advantages of global sampling of GAs and fast 

convergence of gradient descent techniques for efficient training of BbNNs. More 

information on these can be found in [4-6]. The research work presented in this 

dissertation uses genetic algorithms to train the BbNNs.    
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This dissertation presents an intrinsically evolvable implementation of BbNNs on 

RC systems. The implementation supports functional-level intrinsic evolution with 

neuron blocks as the functional modules for the EHW system. The dissertation also 
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presents online learning techniques with BbNNs and performance characterization of 

these networks on RC systems. The major contributions from this research work are as 

follows: 

 

1. RC implementation of an intrinsically evolvable platform for BbNNs. The 

platform supports on-chip evolution (evolutionary algorithm + BbNN on the same 

FPGA) of BbNNs. 

2. Online training algorithm to evolve BbNNs on-chip, in field enabling applications 

in dynamically variant environments.  

3. Performance characterization of BbNNs on RC systems. The performance model 

presented enables quantitative and qualitative performance comparison across 

different computing platforms such as general purpose computing and RC 

systems.  

 

1.3 Manuscript Organization 

Chapter 2 introduces artificial neural networks and provides a review of reported 

literary contributions to neural hardware implementations. Chapter 3 introduces 

evolvable hardware systems and provides a review of reported literary contributions to 

applications of EHW systems. Chapter 4 introduces block-based neural networks and 

discusses multi-parametric genetic evolution of these networks. Chapter 5 gives the 

design details of the intrinsically evolvable BbNN implementation on RC systems and 

demonstrates the on-chip training ability of the BbNN platform. Chapter 6 provides 
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details on the online evolution algorithm for BbNNs. It demonstrates the advantages of 

online evolution using a case study, ‘Adaptive Neural Luminosity Controller’. Chapter 7 

introduces a performance characterization model for BbNNs on RC systems. The model 

enables quantitative and qualitative performance comparison across different computing 

platforms. Chapter 8 concludes the dissertation providing a summary of the research 

work accomplished and the prospects of future research directions in the field. 

 



 

2 ARTIFICIAL NEURAL NETWORKS 

2.1 Introduction to Artificial Neural Networks 

Artificial Neural Networks (ANN) have gained a lot of popularity in the 

computational intelligence and machine learning community. They are networks of fully 

or partially interconnected information processing elements called artificial neurons. 

Artificial neurons are loosely analogous to their biological counterparts. Each artificial 

neuron produces an output from a function of the weighted sums of inputs and a bias. The 

function is called an activation function or a transfer function. Typically these are 

nonlinear, monotonically increasing functions such as a hyperbolic tangent, logistic 

sigmoid, step function, or ramp function. Figure 3 shows a mathematical model of an 

artificial neuron.  

 

Various network topologies proposed for the artificial neural networks can be 

broadly classified into recurrent and nonrecurrent networks. Recurrent networks have 

 

Figure 3  Mathematical model of an artificial neuron 
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Figure 4   (a) Non-recurrent multilayer perceptron network  (b) Recurrent artificial neural network 
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feedback connections from outputs back to input nodes or to one of the hidden layers. 

Nonrecurrent networks are feedforward networks such as the popular multilayer 

perceptron model. Figure 4 shows an example of recurrent and non-recurrent artificial 

neural networks. Neural networks can model complex nonlinear input-output 

relationships in a dataset. These networks are exposed to a training dataset from which 

they extract information and learn over time the input-output relationship in the dataset. 

The learning algorithm tunes the internal parameters such as weights and biases. There 

are three major learning paradigms: supervised, unsupervised, and reinforcement 

learning. 

 

♦ Supervised Learning 

Under supervised learning, the input data used to train the network has 

corresponding target output vectors that are typically used to calculate the mean 

squared error between the network output and target output. This error is used to 

guide the search in the weight space to optimize the network. It is a gradient 

descent search algorithm, popularly known as the backpropagation algorithm, 
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which tries to minimize the total mean squared error between network and target 

output [3].  

♦ Unsupervised Learning 

Unsupervised learning uses no external teacher and is based upon only 

local information. It is also referred to as self-organization, in the sense that it 

self-organizes data presented to the network and detects their emergent collective 

properties. Hebbian learning and the competitive learning are the two types of 

widely used unsupervised learning techniques [3].  

♦ Reinforcement Learning  

In reinforcement learning an agent learns from interaction with the 

environment. At every time step, the agent performs an action and the 

environment generates an observation and an instantaneous cost depending on the 

agent’s action. The environment is modeled as a Markov decision process (MDP) 

with sets of states and actions, and the probability distributions for costs, 

observations, and state-action transitions. The policy of selecting the actions is 

defined as a conditional distribution over actions given the observations. The aim 

is to discover a policy for selecting actions that minimizes some measure of a 

long-term cost, i.e. the expected cumulative cost [7]. 

 

Artificial neural networks are widely used in pattern classification, sequence 

recognition, function approximation, and prediction. Many successful artificial neural 

network implementations have been reported with applications in medical diagnostics, 

autonomously flying aircrafts, and credit card fraud detection systems. 
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2.2 Historical Perspective 

Fascination with building machines that can demonstrate some degree of human-

like intelligent behavior has driven the research efforts in the fields of artificial 

intelligence. Alan Turing in his classic 1950 paper in Mind, “Computing Machinery and 

Intelligence” laid out the test for machine intelligence, what is now famously known as 

the Turing test for the quality of artificial intelligence [8]. He proposed that if a machine 

can intelligently converse with a human such that an external observer cannot distinguish 

between the two, the machine is intelligent. The pursuit of intelligent machines and 

fascination with the human brain lead to the evolution of the fields of artificial 

intelligence and machine learning. In a 1943 classic paper McCulloch and Pitts described 

the logical calculus of neural networks, proposing that a neuron follows an all-or-none 

law [9]. If a sufficient number of these neurons with their synaptic connections set 

properly operate synchronously, then in principle it could compute any computable 

function. Donald Hebb, in his 1949 book The Organization of Behavior, used the 

McCulloch-Pitts model of neurons and presented a physiological learning rule for 

synaptic modifications [10]. Hebb’s learning rule suggested that the effectiveness of a 

variable synapse between two neurons is increased by the repeated activation of one 

neuron by the other across the synapse. He proposed that the connectivity of the brain is 

continuously changing as an organism learns differing functional tasks, and that neural 

assemblies are created by such changes. This view of the brain dynamically evolving its 

internal synaptic connections has been widely accepted and many later neural models for 

machine learning have adopted this functional philosophy to a varying degree. Some 15 

years after the publication of McCulloch and Pitts’s classic paper on the logical calculus 
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of neural network models, Rosenblatt in 1958, introduced a new neural learning 

technique for pattern recognition problem in his work on the perceptron [11]. In 1960, 

Widrow and Hoff proposed a different training algorithm than the perceptron 

convergence theorem, the least mean-square (LMS) algorithm and used it to formulate 

the Adaline (adaptive linear element) [12]. One of the earliest trainable layered neural 

networks with multiple adaptive elements was the Madaline (multiple-adaline) proposed 

by Widrow and his students in 1962 [13]. After an initial upsurge in the research into 

perceptron based neural networks came the downside after a 1969 book by Minsky and 

Papert, titled ‘The Perceptron’ in which they mathematically demonstrated fundamental 

limitations on what single-layer perceptrons could compute [14]. This was followed by a 

decade of dormancy in the field of artificial neural networks until Hopfield’s classic 

paper in 1982 brought together many older ideas that helped revive the field of artificial 

neural networks [15]. Since then they have gained a lot of popularity in the computational 

intelligence and machine learning community.  

 

2.3 Building Artificial Neural Networks 

To build realizable intelligent systems with artificial neural networks we need to 

design networks with flexible synaptic connections capable of evolving dynamically as 

the network learns new behavior. A lot of earlier work on artificial neural networks was 

based on software simulations of neural network training to obtain an optimized network 

which was then implemented in hardware for faster recall speeds. The trial and error 

based training algorithms for these networks make application specific integrated circuit 
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(ASIC) implementations of on-chip training challenging. The dynamic structure and 

parameter updates required during training are harder to implement on an ASIC. 

Consider the hugely popular multilayer Perceptron (MLP) model of an ANN. The MLP is 

a feedforward neural network comprised of layers of artificial neurons typically trained 

using the backpropagation algorithm. The first layer is called the input layer, the last 

layer is called the output layer, and the layers in between are the hidden layers. Figure 5a 

shows an example of an MLP network under training at training iteration ‘n’. Assume 

that in the next iteration ‘n+1’ there is a change to the structure of the network; say an 

additional neuron has been added in the first hidden layer of the MLP. This is shown with 

dotted lines in Figure 5b. If this network is implemented in an ASIC for online training, 

additional routing nets have to be accommodated dynamically for each new neuron, 

which is non-trivial. Also, the numbers of inputs to the neurons in the second hidden 

layer of our example have increased from 4 to 5. Hence the neurons in this layer will 

have to either dynamically increase the number of pipeline stages in the multiply and 

accumulate units or add additional parallel multipliers and adders depending on the 

implementation of the sum of products modules for the neuron computations. This may 

require hardware re-synthesis and routing making the training process cumbersomely 

slow. These dynamic structural changes can be handled easily in software, making it an 

attractive choice for implementing neural network training. Providing this flexibility in an 

ASIC comes at a significant cost of area and speed, requiring a careful and time-

consuming logic design. The costs of implementing online neural network training in an 

ASIC sometimes overweigh the benefits, hence encouraging software-only 

implementations of the training algorithms and hardware implementation of the trained 



network to achieve higher connections per second (CPS) recall speeds. Section  2.5 

provides a review of the neural hardware implementations reported in the literature.  

 

Figure 5   Multilayer Perception Example (a) Training Iteration ‘n’ (b) Training iteration ‘n+1’ 

 

 

2.4 Genetic Evolution of Artificial Neural Networks 

The popularly used backpropagation algorithm for the training of ANNs, being a 

gradient descent approach, has two drawbacks as outlined by Sutton [16]. First, the 

search often gets trapped in local minima if the gradient step is too small, whereas for 

large gradient steps it could have an oscillatory behavior. The method is inefficient in 

searching for global minima, especially with multimodal and nondifferentiable search 

spaces. Second, there is a problem of catastrophic interference with these methods. There 

is a high level of interference between learning with different patterns, because those 

units that have so far been found most useful are also the ones most likely to be changed 

to handle new patterns. The problem of global minima can be solved by using global 

search procedures like genetic algorithms. Many researchers have proposed using genetic 

algorithms to evolve neural networks to find optimized candidates in the large deceptive 
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multimodal search spaces [17-25]. Genetic algorithms (GAs) evolve a population of 

neural networks, encoded as chromosomes over multiple generations using genetic 

operators such as selection, crossover, and mutation. A population of chromosomes is 

first ranked according to their fitness levels. The fitness is usually determined from the 

mean squared error between the target and the actual outputs of each individual network 

in the population. A selection scheme selects the chromosomes from the population based 

on their rankings for reproduction via genetic crossover and mutation. The survival of the 

fittest policy tends to increase the average fitness of the population over multiple 

generations. The evolution continues over multiple generations until either a chromosome 

with fitness at least equal to the predetermined target fitness is found or the preset 

maximum number of generations is reached. 

 

GA, being a global search algorithm, avoids the pit-falls of local minima faced in 

gradient descent algorithms. It does not need to calculate derivatives of the error function 

and hence works very well with nondifferentiable error surfaces. Also there are no 

restrictions on network topologies as long as an appropriate fitness function can be 

defined for the network, network structure, and internal parameters encoded as 

chromosomes. Thus GA can handle a wide variety of artificial neural networks, but the 

evolutionary approach is a computationally intensive approach. It is also slower than the 

directed gradient descent based training algorithms such as the backpropagation 

algorithm [16]. Genetic evolution, being an adaptive process, is good at global sampling, 

but performs poorly for local fine tuning. If the initial guess of the network is closer in 

proximity on the error surface to the global minimum, the gradient descent based search 
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algorithm may converge much faster than a global sampling technique such as the genetic 

algorithms. If the neural network is more complex with multiple hidden neural layers, the 

error surface will be complex, with many discontinuities. In such cases, gradient descent 

search algorithms often will be stuck in local minima and will not converge to the global 

minimum, whereas, the global search techniques such as GAs are more likely to find the 

optimal answer.  

 

In this work we concentrate mainly on a type of neural networks called block-

based neural networks (BbNN) [23] and use GA to train the network structure and the 

internal parameters of the BbNNs. Chapter  4 introduces BbNNs. 

 

2.5 Review of Neural Hardware Implementations 

This section provides a brief overview of reported work in the literature for 

artificial neural network hardware implementations. 

2.5.1 Neural Network Hardware 

Dedicated hardware units for neural networks are called neurochips or 

neurocomputers [26]. Due to limited commercial prospects and their required 

development and support resources, these chips have seen little commercial viability. 

Also, due to the existence of wide-ranging neural network architectures and a lack of a 

complete and comprehensive theoretical understanding of their capabilities, most 

commercial neurocomputer designs are dedicated implementations of popular paradigms 

such as multilayer perceptrons, Hopfield networks, or Kohonen networks. Various 
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classification and overview studies of neural hardware have appeared in the literature 

[26-36]. Heemskerk has a detailed review of neural hardware implementations until about 

1995 [26]. He classified the neural hardware according to their implementation 

technologies such as the neurocomputers built using general purpose processors, digital 

signal processors, or custom implementations using analog, digital, or mixed-signal 

design. Zhu et al has a good survey of ANN FPGA implementations up until 2003 [36]. 

The neural network hardware review presented in this dissertation addresses custom 

hardware implementations of artificial neural networks. These are more directly related to 

the research presented in this manuscript. Figure 6 shows the classification structure used 

in this review. The reported implementations have been first broadly classified into 

digital, analog, and hybrid implementations. Since this dissertation focuses on digital 

implementations of neural network hardware a detailed review of digital implementations 

is presented first, followed by the analog, and hybrid implementations. The digital (ASIC 

and FPGA) implementations are further classified according to their implementation 

design choices such as representation formats for values, design flexibility to 

accommodate different applications of neural networks, support for on-chip or off-chip 

learning, and transfer function implementation.  



 

Figure 6  Neural network hardware classification 
 

2.5.2 Digital Neural Network Implementations 

Digital neural network implementations offer high computational precision, 

reliability, and programmability. The implementations are targeted towards either ASICs 

or FPGAs. The synaptic weights and biases of the neurons in the network can be stored 

on or off chip, representing a trade-off between the speed and the size of the design. 

ASIC neurochips can achieve higher processing speeds, lower power, and more density 

than corresponding FPGAs implementations, but have significantly higher design and 

fabrication costs. FPGAs have slower processing speeds than ASICs but have the 

advantage of runtime circuit reconfigurations allowing reuse of the FPGA chip for 
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different applications. FPGAs are commercial-off-the-shelf products, lowering the 

implementation costs significantly. The last decade has seen a lot of advancement in 

reconfigurable hardware technology. FPGA chips with built-in RAMs, multipliers, 

gigabit transceivers, on-chip embedded processors, and faster clock speeds have attracted 

many neural network FPGA implementations. In general, the digital implementation 

disadvantages as compared to the analog implementations are relatively larger circuit 

sizes and higher power consumption, but digital implementations our easier to build and 

scale as compared to their analog counterparts.  

 

2.5.2.1 Real Value Representation 

Digital neural network hardware implementations represent the real valued 

weights, biases, and I/O using fixed point, floating point, or specialized representations 

such as pulse stream encoding. The choice of a particular representation is a trade-off 

between arithmetic circuit size and speed, data precision, and the available dynamic range 

for the real values. Floating point arithmetic units are slower, larger, and more 

complicated than their fixed point counterparts, which are faster, smaller, and less 

complicated.  

 

Generally, floating point representations of real valued data for neural networks 

are found in custom ASIC implementations. Aibe et al. [37] used floating point 

representation for their implementation of probabilistic neural networks (PNNs). In 

PNNs, the estimator of the probabilistic density functions is very sensitive to the 
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smoothing parameter (the network parameter to be adjusted during neural network 

learning). Hence, a very high accuracy is needed for the smoothing parameter, making 

floating point implementations more attractive. Ayela et al. demonstrated an ASIC 

implementation of MLPs using a floating point representation for weights and biases 

[38]. They also support on-chip neural network training using the backpropagation 

algorithm and are listed also in section  2.5.2.3. Ramacher et al. present a digital 

neurochip called SYNAPSE-1 [39, 40]. It consists of a 2-dimensional systolic array of 

neural signal processors that directly implement parts of common neuron processing 

functions such as matrix-vector multiplication and finding maximum. These processors 

can be programmed for specific neural networks. All the real values are represented using 

floating point representation.  

 

For FPGA implementations the preferred choice is fixed point representation. 

Despite the current advances in technology, the floating-point representation of real 

valued data may still be impractical to implement in FPGAs. Larger arithmetic circuit 

sizes limit the neural network sizes that can be implemented on a single FPGA [41]. 

Moussa, Arebi, and Nichols demonstrate an implementation of MLP on FPGAs using 

fixed and floating point representations. Their results show that the MLP implementation 

using fixed point representation was over 12x greater in speed, over 13x smaller in area, 

and achieves far greater processing density as compared to the MLP using floating point 

representations [42]. There exists a body of research to show that it is possible to train 

ANNs with fixed point weights and biases [42-44]. But there is a delicate trade-off 

between minimum precision, dynamic data range, and the area required for the 
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implementation of arithmetic units. A finer precision will have fewer quantization errors 

but requires larger multiply-accumulate units, whereas smaller bit width, lower precision 

arithmetic unit implementations are smaller, faster, and more power efficient. But due to 

lesser precision there are larger quantization errors that could severely limit the ANN’s 

capabilities to learn and solve a problem. There is a tradeoff between precision and 

area/speed, and a way to resolve this conflict is to select a ‘minimum precision’ that 

would be required for a target application. Holt and Baker, Holt and Hwang, and Holi and 

Hwang investigated the minimum precision problem on a few ANN benchmark 

classification problems using simulations and found 16-bit data widths with 8-bit 

fractional parts were sufficient for networks to learn and correctly classify the input 

datasets [43-45]. Ros et al. demonstrate a successful fixed point implementation of 

spiking neural networks on FPGAs [46]. Pormann et al. demonstrate fixed point 

implementations of neural associative memories, self-organizing feature maps, and basis 

function networks on FPGAs [47]. Some other reported implementations that used fixed 

point representations can be found in [48-56]. 

 

The trade-offs between fixed and floating point representations are due to area 

and speed of the arithmetic circuits (especially the multipliers and accumulators) required 

in the implementation of the neural computations. Researchers have proposed different 

encoding techniques that simplify the designs of the arithmetic circuits. Marchesi et al. 

proposed special training algorithms for multilayer perceptrons that use weight values 

that are powers of two. The weight constraint eliminates any need for multipliers in the 

ANN implementations as they are replaced with simple shifters [57]. Other approaches 
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encode real values in bit streams and implement the multipliers in bit-serial fashion, 

serializing the flow and using simple logic gates instead of complex, expensive 

multipliers for smaller and faster arithmetic units. But the disadvantage of using a pulse 

stream arithmetic approach is the precision limitation which can severely affect ANNs 

capability to learn and solve a problem. Also, for multiplications to be correct, the bit 

streams should be uncorrelated. To produce these would require independent random 

sources which again require larger resources to implement. Murray and Smith’s VLSI 

implementation of ANNs [58], used pulse-stream encoding for real values which was 

later adopted by Lysaght et al. [59] for ANN implementations on Atmel FPGAs. 

Implementation using pulse stream encoding can also be found in [60, 61]. The 

advantage of using serial stochastic bit streams for encoding real valued data is that the 

product of the two stochastic bit streams can be computed using a simple bitwise ‘xor’. 

Implementations using these can be found in [62-65]. Economou et al. show a pipelined 

bit serial arithmetic implementation for ANNs [66]. Salapura used delta encoded binary 

sequences to represent real values and used bit stream arithmetic to calculate a large 

number of required parallel synaptic calculations [67]. Zhu and Sutton  [34] has a good 

survey of hardware implementations of artificial neural networks using pulse stream 

arithmetic.  

 

Researchers have also proposed other approaches as discussed next. Chujo et al. 

have proposed an iterative calculation algorithm of the perceptron type neuron model, 

which is based on multidimensional binary search algorithm. Since binary search doesn’t 

need any sum of products functionality, it eliminates the need for expensive multiplier 
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circuitry in hardware [68]. Guccione and Gonzalez used a vector-based data parallel 

approach to represent real values and compute the sum of products [69]. The distributed 

arithmetic (DA) approach of Mintzer for implementing FIR filters on FPGAs [70] was 

used by Szabo et al. for a digital implementation of pre-trained neural networks. They 

used Canonic Signed Digit Encoding (CSD) to improve the hardware efficiency of the 

multipliers [71]. Noory and Groza also used the DA neural network approach and 

targeted their design for implementation on FPGAs [72]. Pasero and Perri use LUTs to 

store all the possible multiplication values in an SRAM to avoid implementing costly 

multiplier units in FPGA hardware. At system boot-up a microcontroller computes all the 

possible product values of the fixed weight and an 8-bit input vector, and loads it into the 

SRAM [73]. 

 

The neural network hardware implementation presented in this dissertation is on 

FPGAs. As discussed above floating point implementations of neural networks on 

FPGAs may not be practical. Larger floating point arithmetic circuits limit the size of the 

neural networks that can be implemented on the FPGA [41]. Also, there exists a body of 

research to show that it is possible to train ANNs with fixed point weights and biases [42-

44]. Hence, the chosen approach chosen for representing real valued data in the neural 

network FPGA implementation presented in this dissertation is fixed point.  
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2.5.2.2 Design Flexibility 

An important design choice for neural network hardware implementations is the 

degree of structure adaptation and synaptic parameter flexibility. An implementation of a 

neural network with fixed network structure and weights can only be used in the recall 

stage and cannot be adapted to different network structures and parameters without a 

hardware redesign. One motivation of using FPGAs for ANN implementations is the 

advantage of circuit adaptation using runtime reconfigurations. Runtime reconfigurations 

can be used to load different neural network circuit designs for different applications, 

reducing the implementation cost substantially by reusing the FPGA. Hardware redesigns 

in an ASIC are much more expensive and time consuming due to fabrication costs and 

time. FPGAs are used in neural network implementations for different purposes such as 

prototyping and simulation, density enhancement, and topology adaptation. The purpose 

of using FPGAs for prototyping and simulation is to thoroughly test a prototype of the 

final design for correctness and functionality before sending it for expensive ASIC 

fabrication. This approach was used in  [74].  Full or partial FPGA reconfigurations can 

be used to implement larger circuits, which a single FPGA cannot hold, via temporal 

folding. This increases the amount of effective functionality per unit reconfigurable 

circuit area of FPGAs. Eldredge et al. used this technique to implement the 

backpropagation training algorithm on the FPGAs. The algorithm was divided temporally 

in three different executable stages and each stage was loaded on the FPGA using 

runtime reconfigurations. More details on this and other follow up implementations to 

Eldredge’s technique are covered in section  2.5.2.3 for on-chip learning [75, 76]. The 

runtime reconfiguration in FPGAs can also be used for topology adaptation. Neural 



networks with different structure and internal parameters targeting different applications 

can be loaded on the FPGA via runtime reconfigurations. One of the earliest 

implementations of artificial neural networks on FPGAs, the Ganglion connectionist 

classifier, used FPGA reconfigurations to load networks with different structures for each 

new application of the classifier [77]. This approach to use full or partial FPGA runtime 

reconfigurations for structure and/or parameter adaptation can also be seen in the neural 

network implementations of Perez-Uribe  et al. [78-80], Restrepo et al. [81], Ros et al. 

[46], Kothandaraman [49], Ferrer et al. [50], Chin Tsu, Wan-de, and Yen-Tsun [51], 

Wang et al. [52], Syiam et al. [53], Krips, Lammert, and Kummert [54], Zhu, Milne, and 

Gunther [55], and Kurokawa and Yamashita [82].  

 

The approach of using FPGA runtime reconfigurations for topological adaptation 

is acceptable when the neural network is trained offline using software simulations. For 

online trainable implementations of neural networks the overheads of FPGA 

reconfigurations far outweigh any benefits. Typical current generation FPGA 

reconfiguration times are of the order of a few milliseconds (see Table 1). Overall 

performance of the system using reconfigurations for topological adaptation during 

online training depends on the total amount of time spent performing computations 

versus the time spent in reconfiguration cycles. Guccione and Gonazalez investigated this 

issue and came up with the following equation reported in [83]:  

)1/( −= srq  (2)
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Table 1  Typical FPGA runtime reconfiguration times 
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Device Number of Configuration 
Bits (Nbits) 

Slave SelectMAP 
configuration mode (in secs) 

VirtexIIPro with CCLK = 50MHz (max frequency) 
XC2VP2  1,305,376  0.003263 
XC2VP4  3,006,496  0.007516 
XC2VP7  4,485,408  0.011214 

XC2VP20  8,214,560  0.020536 
XC2VPX20  8,214,560  0.020536 
XC2VP30  11,589,920  0.028975 
XC2VP40  15,868,192  0.03967 
XC2VP50  19,021,344  0.047553 
XC2VP70  26,098,976  0.065247 

XC2VPX70  26,098,976  0.065247 
XC2VP100  34,292,768  0.085732 

Virtex4 with CCLK = 60MHz (max frequency) 
XC4VLX15 4765184 0.009927 
XC4VLX25 7942848 0.016548 
XC4VLX40 12568960 0.026185 
XC4VLX60 18236800 0.037993 
XC4VLX80 24038464 0.05008 
XC4VLX100 31771392 0.06619 
XC4VLX160 41816064 0.087117 
XC4VLX200 50601216 0.105419 
XC4VSX25 9540864 0.019877 
XC4VSX35 14382144 0.029963 
XC4VSX55 24009600 0.05002 
XC4VFX12 4906880 0.010223 
XC4VFX20 7530880 0.015689 
XC4VFX40 14232576 0.029651 
XC4VFX60 22183296 0.046215 

XC4VFX100 35059264 0.07304 
XC4VFX140 50853120 0.105944 
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where s denotes the computational time, r denotes the reconfiguration time, and q is the 

number of times the configured logic should be used before another configuration is tried 

to achieve good performance. Thus, time spent in FPGA computations must be much 

higher than the time spent in FPGA reconfiguration cycles to achieve reasonable 

performance speedups.  

 

The neural network implementation presented in this dissertation is an online 

trainable neural network implementation on FPGAs. It supports dynamic structure and 

parameter updates to the neural network without FPGA reconfigurations. The 

implemented network topology and design details are in chapters  4 and  5, respectively. 

 

ASIC implementations of flexible neural networks that can adapt structure and 

parameter values have been reported in literature. One commercially available dedicated 

neural hardware design is the Neural Network Processor (NNP) from Accurate 

Automation Corp. [84]. It is a neural network processor that has instructions for various 

neuron functions such as multiply and accumulate or transfer function calculation. Thus 

the neural network can be programmed using the NNP assembly instructions for different 

neural network implementations. Mathia and Clark compared performance of a single 

and parallel (1 to 4 NNPs) multiprocessor NNP against that of the Intel Paragon 

Supercomputer (1 to 128 parallel processor nodes). The NNP outperformed the Intel 

Paragon by a factor of 4 [85].   
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2.5.2.3 On-chip/Off-chip Learning 

Neural network training algorithms are typically iterative algorithms that adjust 

neural network parameters and structure over multiple iterations based on a cost function. 

Thus to do an on-chip training, one needs a design that can be dynamically adapted to 

change its network structure and parameters. Few implementations reported in the 

literature actually support an on-chip training of neural networks due to the complexities 

involved. Eldredge et al. reported an implementation of the backpropagation algorithm on 

FPGAs by temporally dividing the algorithm into three sequentially executable stages of 

the feedforward, error backpropagation, and synaptic weight update [75, 76]. The feed-

forward stage feeds in the inputs to the network and propagates the internal neuronal 

outputs to output nodes. The backpropagation stage calculates the mean squared output 

errors and propagates them backward in the network in order to find synaptic weight 

errors for neurons in the hidden layers. The update stage adjusts the synaptic weights and 

biases for the neurons using the activation and error values found in the previous stages. 

Hadley et al. improved the approach of Eldredge by using partial reconfiguration of 

FPGAs instead of full-chip runtime reconfiguration [86]. Gadea et al. show a pipelined 

implementation of the backpropagation algorithm in which the forward and backward 

passes of the algorithm can be processed in parallel on different training patterns, thus 

increasing the throughput [87]. Ayala et al. demonstrated an ASIC implementation of 

MLP with on-chip backpropagation training using floating point representation for real 

values and corresponding dedicated floating point hardware [38]. The backpropagation 

algorithm implemented is similar to that of Eldredge et al. [75, 76]. A ring of 8 floating 

point processing units (PU) are used to compute the intermediate weighted sums in the 
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forward stage and the weight correction values in the weight update stage. The size of the 

memories in the PUs limits the number of neurons that can be simulated per layer to 200. 

A more recent FPGA implementation of backpropagation algorithm can be found in [88]. 

Witkowski, Neumann, and Ruckert demonstrate an implementation of hyper basis 

function networks for function approximation [89]. Both learning and recall stages of the 

network are implemented in hardware to achieve higher performance. The GRD (Genetic 

Reconfiguration of DSPs) chip by Murakawa et al. can perform on-chip online evolution 

of neural networks using genetic algorithms [90]. Details on it are covered in chapter  3 on 

evolvable hardware systems. Two commercially available neurochips from the early 

1990s are the CNAPS (Hammerstrom [91]) and MY-NEUPOWER (Sato et al. [92]). 

CNAPS was a SIMD array of 64 processing elements per chip that are comparable to low 

precision DSPs and was marketed commercially by Adaptive solutions. The complete 

CNAPS system consisted of a CNAPS server which connected to a host workstation, and 

Codenet, a set of software development tools. It supports Kohonen LVQ (linear vector 

quantization), backpropagation, and convolution at high speed. Another commercially 

available on-chip trainable neurocomputer is MY-NEUPOWER. It supports various 

learning algorithms such as backpropagation, Hopfield, and LVQ and contains 512 

physical neurons. It was a neural computational engine for software packet called 

NEUROLIVE [92].  

 

The following references discuss analog and hybrid implementations that support 

on-chip training. Zheng et al. have demonstrated a digital implementation of 

backpropagation learning algorithm along with an analog transconductance-model neural 
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network [93]. A digitally-controlled synapse circuit and an adaptation rule circuit with a 

R-2R ladder network, a simple control logic circuit, and an UP/DOWN counter are 

implemented to realize a modified technique for the backpropagation algorithm. Linares-

Barranco et al. also show an on-chip trainable implementation of an analog 

transconductance-model neural network [94]. Field Programmable Neural Arrays 

(FPNA), an analog neural equivalent of FPGAs, are a mesh of analog neural models 

interconnected via a configurable interconnect network [95-99]. Thus, different neural 

networks structures can be created dynamically, enabling on-chip training.  

 

A more typical implementation approach has been to train the network offline 

using software simulations and implement the network obtained in hardware for faster 

recall speeds. [46, 48-50, 52, 53, 100, 101] adhere to this approach.  

 

 Newer FPGA generations have on-chip embedded processors that some 

implementations have used to run the training algorithms and thus provide in-system 

network training. Schmitz et al. use the embedded processor on the FPGA to implement 

genetic algorithm operators like selection, crossover, and mutation [102]. This FPGA is 

closely coupled as a coprocessor to a reconfigurable analog artificial neural network 

ASIC on a single PCB. A host processor initializes this PCB and oversees the genetic 

evolution process.  
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2.5.2.4 Activation Function Implementation 

Activation functions, or transfer functions, are typically non-linear monotonically 

increasing sigmoid functions. Examples of typical activation functions include hyperbolic 

tangent, logistic sigmoid, and hard limit functions. Direct implementation of nonlinear 

sigmoid functions in FPGAs can occupy significant reconfigurable resources. A typical 

approach is to use piece-wise linear approximations of these functions and interpolate the 

values between piece-wise samples using straight lines. The computations for piecewise 

approximations can either be implemented in logic or the values can be pre-computed 

and stored in lookup tables (LUTs). Omondi, Rajapakse, and Bajger show an 

implementation of piece-wise linear approximation of activation functions using the 

CORDIC algorithm on FPGAs [103].  Krips et al. show an implementation of piece-wise 

linear approximation of activation functions pre-computed and stored in LUTs [54].  

 

One problem of direct implementations of the activation function is that one has 

to redesign the hardware logic for every application that is using a different activation 

function. In such scenarios the LUT approach serves well as the values can be pre-

computed and loaded in the LUT. But the size of the LUT is directly influenced by the 

data widths. Every extra bit in the data more than doubles the size of the LUT.  
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2.5.3 Analog Neural Hardware Implementations 

Analog artificial neurons are more closely related to their biological counterparts 

as the biological neurons perform analog computations. Many characteristics of analog 

electronics can be helpful for neural network implementations. Typical analog neurons 

use operational amplifiers to directly perform neuron-like computations, such as 

integration and sigmoid transfer functions. These can be modeled using physical 

processes such as summing of currents or charges. Also, the interface to the environment 

may be easier as no analog-to-digital and digital-to-analog conversions are required. 

Some of the earlier analog implementations used resistors for representing free network 

parameters such as synaptic weights [104]. These implementations using fixed weights 

are not adaptable and hence can only be used in the recall phase. Adaptable analog 

synaptic weight techniques represent weights using variable conductance [94, 105, 106], 

voltage levels between floating gate CMOS transistors [107-110], capacitive charges 

[111, 112], or using charged coupled devices [113, 114]. Some implementations use 

digital memories for more permanent weight storage [115]. There have been many 

commercial and research implementations of analog neural networks. Some of the 

prominent ones are the Intel ETANN (Electronically Trainable Analog Neural Network) 

[107, 116-120] and the Mod2 Neurocomputer [121]. Although there are many advantages 

of implementing analog neural networks as discussed above, the disadvantage is that the 

analog chips are susceptible to noise and process parameter variations, and hence need a 

very careful design.  
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2.5.4 Hybrid Neural Hardware Implementations 

Hybrid implementations combine analog, digital, and other strategies such as 

optical communication links with mixed mode designs in an attempt to get the best that 

each can offer. Typically the hybrid implementations use analog neurons taking 

advantage of their smaller size and lower power consumption, and use digital memories 

for permanent weight storage [122, 123]. But the mixed-signal design of the analog 

neurons with the digital memories on the same die introduces a lot of noise problems and 

requires isolation of the sensitive analog parts from the noisy digital parts using guard 

rings. Sackinger et al. demonstrate a high speed character recognition application on the 

ANNA (Analog Neural Network Arithmetic and logic unit) chip [124]. This ANNA chip 

can be used for a wide variety of neural network architectures but is optimized for locally 

connected weight-sharing networks, and time-delay neural networks (TDNNs). Zatorre-

Navarro et al. demonstrate a mixed mode neuron architecture for sensor conditioning 

[125]. It uses an adaptive processor that consists of a mixed four-quadrant multiplier and 

a current conveyor that performs the nonlinearity. Synaptic weight storage uses digital 

registers and neural network training is performed off-chip.  

 

Due to the large number of interconnections, routing quickly becomes a 

bottleneck in digital ASIC implementations. Higher fan-in and fan-out neurons require 

more drive strength resulting in larger transistor widths and more intermediate signal 

drive buffers. Some researchers have proposed hybrid designs using optical 

communication channels. Maier et al. [126] have shown a hybrid digital-optical 

implementation that performs neural computations electronically, but the communication 
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links between neural layers uses an optical interconnect system. This increases the speed 

of neural processing by a factor of one magnitude higher than a purely digital approach. 

But on the flip side they increase hardware cost and complexity for transferring signals 

between the electronic and the optical systems. Craven et al. [127] proposed using 

frequency multiplexed communication channels to overcome the communication 

bottleneck in fully connected neural networks. 

 

2.6 Summary 

Custom neural network hardware implementations can best exploit the inherent 

parallelism in computations observed in artificial neural networks. Many 

implementations have relied on offline training of neural networks using software 

simulations. The trained neural network is then implemented in hardware. Although these 

implementations have good recall speedups, they are not directly comparable to the 

implementation reported here which supports on-chip training of neural networks. On-

chip trainable neural hardware implementations have also been reported in literature. 

Most of the reported ones are custom ASIC implementations such as the GRD chip by 

Murakawa et al. [90], on-chip backpropagation implementation of Ayala et al. [38], 

CNAPS by Hammerstrom [91], MY-NEUPOWER by Sato et al. [92], and FPNA by 

Farquhar, Gordon and Hasler [95]. FPGA based implementations of on-chip training 

algorithms have also been reported such as the backpropagation algorithm 

implementations in [75, 76, 86-88]. An online trainable implementation of hyper basis 

function networks has been reported in  [89]. The implementation presented here differs 
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from the reported ones in one or more of the following; (i) the artificial neural network 

implemented, the block-based neural networks (see chapter 4), (ii) the training approach 

using the genetic algorithms, and (iii) the FPGA implementation platform. The 

implementation supports on-chip training without reliance on FPGA reconfigurations, 

unlike some of the approaches listed above. It uses genetic algorithms to train the 

BbNNs. The genetic operators such as selection, crossover, and mutation are 

implemented on the embedded processor PPC 405 on the FPGA die, similar to the 

approach of Schmitz et al. [102]. But unlike their approach the neural network designed 

is a digital implementation in the configurable logic portion of the same FPGA chip. 

Schmitz et al. [102] use a separate neural analog chip for fitness evaluations for the GA 

running on PPC 405 on the closely coupled FPGA on the same PCB board. 



 

3 EVOLVABLE HARDWARE SYSTEMS 

Evolvable hardware systems (often called E-hard or EHW systems) are systems 

built using programmable/reconfigurable hardware devices such as programmable logic 

devices (PLDs), field programmable gate arrays (FPGAs), field programmable transistor 

arrays (FPTAs), or custom-built programmable chips. The central idea of these systems is 

to use the runtime hardware reconfiguration ability of these devices along with 

evolutionary algorithms to evolve a digital or analog circuit. The configuration bitstream 

(viewed as a phenotype in an evolutionary algorithm) for these devices is encoded as a 

chromosome (viewed as a genotype) and evolved using evolutionary algorithms over 

multiple generations. Genetic operators such as selection, crossover, and mutation are 

applied to a randomly generated population of these chromosomes to create newer 

generations. Fitter genotypes survive through multiple generations and are used for 

breeding newer generations. The aim is to increase the average fitness of the population 

from one generation to the next with the goal of finding a genotype with fitness that is 

equal to greater than the target fitness. The population fitness is determined by a fitness 

function which is application-specific. Apart from evaluating the correctness of the 

EHW’s output for the training data set, the fitness function can also consider other 

constraints such as circuit size, speed, or power. EHW systems were first conceptualized 

by DeGaris back in 1992. He classified these systems into two classes: extrinsic and 

intrinsic EHW systems [2].  
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EXTRINSIC EHW systems perform an offline evolution using software 

simulations. The evolutionary algorithm is wrapped around a software 

model of the hardware and evolution is done using software simulations. 

The fittest evolved circuit is then used and configured on the hardware. 

 

INTRINSIC EHW systems include the hardware in the evolution loop. It is 

an online evolution technique that directly evolves the underlying 

hardware circuitry. 

 

This chapter introduces EHW systems and reviews reported contributions to this 

field over the last one and a half decades. Section  3.1 discusses gate-level and functional-

level evolution strategies and their corresponding advantages and disadvantages. Section 

 3.2 provides a literature review of EHW systems.  

 

3.1 Gate-level, Transistor-level, and Functional-level Evolution 

Evolving an FPGA bitstream in essence is evolving gate-level logic circuitry. Due 

to a time consuming evolution process, evolving larger circuits using this strategy is 

impractical. Longer chromosomal lengths for larger circuits need larger memories to 

store the genotype generations during evolution and need significantly higher processing 

speeds to speedup the time-consuming evolution process. Larger circuits also mean 

significantly larger search spaces. Evolutionary algorithms are global search algorithms 

and as a result may take much longer to converge to a solution over many generations. 
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This limits the practical circuit sizes that can be used in the evolution process. Also, for 

intrinsic gate-level evolution, slow circuit reconfigurations times may pose a significant 

bottleneck for some applications. Typical FPGA reconfiguration times are on the order of 

a few milliseconds (see section  2.5.2.2). The number of runtime reconfigurations that are 

required during the intrinsic evolution process could be significantly high and depends on 

the population size and number of generations required to meet the fitness goals. Hence 

the evolution process will incur significant reconfiguration cycle time overheads which 

may not be practical for many applications.  

 

Just as FPGAs are used for gate-level evolution in EHW systems, FPTAs enable 

development of transistor-level EHW systems. Field programmable transistor arrays 

enable circuit reconfigurability at transistor levels allowing synthesis of analog, digital, 

and mixed-signal electronic circuits. These devices consist of cells of programmable 

transistors, resistors, and capacitors interconnected via programmable switches. FPTAs 

can be used to build analog circuits such as amplifiers, and filters as well as digital logic 

circuits. More details on FPTAs can be found in [128].  

 

Higuchi et al. [129, 130] proposed to use the concepts of evolvable hardware 

systems to do functional-level hardware evolution as opposed to the traditional gate-level 

evolution. They proposed to evolve internal parameters and connections of higher-level 

functional modules such as adders, multipliers, dividers, and sine generators. A criticism 

for this approach has been that the circuit is limited in functionality by the available 

hardware modules and newer functional modules may be required for a different 
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application. But this approach also significantly reduces the genotype length, facilitating 

more complex practical circuits for evolution. Since the EHW concept involves the 

evolution of desirable hardware circuits by genetic learning, without giving any 

specifications in advance, it provides a contrasting bottom-up approach to the 

conventional top-down hardware design methodology. Thus, different functional modules 

can be used for different applications.  

 

So for neuromorphic circuit applications, artificial neuron models can be used as 

functional modules. The evolutionary algorithm can then be used to evolve the synaptic 

connections and free parameters of artificial neural networks. Prior work uses 

evolutionary algorithms instead of more traditional gradient descent approaches for 

training artificial neural networks [17-25]. This work follows in their footsteps to develop 

an intrinsically evolvable neural network EHW system. The following section provides a 

review of reported literature in evolvable hardware systems. 

 

3.2 Review of Evolvable Hardware Systems 

Typical FPGAs are not suitable for EHW as they cannot be programmed with 

random bitstreams due to the risk of damaging the device. The idea of intrinsic evolution 

really took off after the introduction of Xilinx 6200 series FPGAs [2]. These FPGAs were 

EHW friendly; the devices included a SRAM-cell-based architecture in which all internal 

connections were unidirectional. Thus, no random configuration bits in these cells could 

damage the device as it is impossible to connect two outputs together. So an evolutionary 
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algorithm can be allowed to manipulate the configuration of a real chip without the need 

for any legality constraint checking. Xilinx also made the architecture of these chips 

public, generating more interest in the field of evolvable hardware systems. Earlier 

research before the Xilinx 6200 series FPGAs was mostly concentrated on the extrinsic 

evolution strategy. In 1998, Xilinx stopped production of the 6200 series FPGAs and 

introduced their next generation Virtex series FPGAs [131]. With these devices Xilinx 

reverted back to the classic FPGA device layout with CLBs and a multidirectional 

routing structure. This made the device unsafe for random bitstream configurations as the 

outputs could be shorted together in this architecture. Also the detailed architecture of 

these devices was not publicly available, since Xilinx aimed at mass-production of these 

devices. This also ensured that circuits couldn’t be reverse-engineered from the 

bitstreams. Thus for intrinsic evolution, the evolutionary algorithms needed to include the 

Xilinx place and route tools in their loop. However, other researchers have proposed 

alternative strategies using JBits. JBits comprises Java classes that provide an application 

programming interface (API) into the Xilinx FPGA bitstreams. JBits provides the 

capability of designing and dynamically modifying circuits in Xilinx FPGAs. 

Hollingworth, Smith, and Tyrrell demonstrated safe intrinsic evolution on Xilinx Virtex 

devices using JBits [132]. 

 

This section provides a brief summary of reported publications in the evolvable 

hardware field. Section  3.2.1 surveys various EHW chips grouping them by their target 

applications. Section  3.2.2 surveys developed EHW platforms for research and custom 

evolutionary algorithms. [2, 133-137] discuss various EHW fundamentals and also have 



 44

reviews of EHW systems. More formal classification and comparison with bio-inspired 

systems can be found in [138].  

 

3.2.1 EHW Chips and Applications  

EHW systems use off-the-shelf hardware (such as FPGAs) as well as custom-built 

EHW chips to implement digital, analog, or mixed-signal evolutionary circuits. These 

chips enable one or more of the evolutionary techniques, gate-level, transistor-level, and 

functional-level evolution, to be implemented. EHW systems have been successfully 

applied in many application areas such as neural hardware, signal and image processing, 

control applications, analog electronics, and navigation systems. The review presented 

here groups the EHW implementations by their application fields. An interesting feature 

of many EHW systems is a degree of inherent fault tolerance due to the evolutionary 

design approach. In theory, previously developed hardware circuits can be re-evolved in 

the event of a fault to effectively ‘bypass’ the faulty component or section of the chip. In 

practice, the degree of fault tolerance achievable varies and is the subject of research. 

EHW systems also have applications in extreme temperature electronics. Stoica et al. 

demonstrated fault tolerant electronic circuit designs using adaptive intrinsic circuit 

redesign/reconfiguration during operation in extreme environments [139]. Their approach 

is demonstrated on a prototype chip that can recover functionality at 250˚C.  
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3.2.1.1 EHW Systems for Neural Hardware 

The EHW systems listed here have been used for implementing evolutionary 

artificial neural networks. The goal is to provide autonomous reconfiguration capability 

to neural networks for intrinsic evolution. These implementations relate directly to the 

research work presented in this manuscript. A discussion of how they compare with the 

research work in this dissertation is at the end of this chapter in section  3.3.  

 

A well known EHW project was the ATR’s CAMBrain machine (CBM) [140-

146]. Jointly developed by ATR laboratories and Genobyte, the first prototype was 

available in 1999. CBM used Xilinx's XC6264 FPGAs to build and evolve 3D cellular 

automata (CA) based neural network modules directly in hardware. The neural network 

implemented is CoDi (Collect and Distribute) that uses single bit signaling. The output 

spike-trains of these single bit neurons are converted to analog waveforms that can be 

compared to target waveforms for fitness calculation during evolution. Early experiments 

on the CBM targeted applications such as frequency dividers, moving line detection, and 

pattern recognition. The goal of the project was to build an artificial brain with millions 

of neurons that can be evolved to control the behaviors of robots.  

 

The GRD (Genetic Reconfiguration of DSPs) chip by Murakawa et al. [90] is an 

evolvable hardware chip designed for neural network applications. It was developed at 

the MITI's Electrotechnical Laboratory as part of the Real World Computing (RWC) 

project. The GRD chip is a building block for the configuration of a scalable neural 

network hardware system. Both the topology and the hidden layer node functions of a 
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neural network mapped on the GRD chips are dynamically reconfigured using a genetic 

algorithm (GA). Thus, the most desirable network topology and choice of node functions 

(e.g., Gaussian or sigmoid function) for a given application can be determined adaptively. 

The GRD chip consists of a 32-bit RISC processor and fifteen 16-bit DSPs connected in a 

binary-tree network. The RISC processor executes the GA code and each of the DSPs can 

support computations of up to 84 neurons. Thus each GRD chip can support 1260 

neurons. Multiple GRD chips can be connected for a scalable neural architecture.    

 

3.2.1.2 Applications in Signal and Image Processing 

Although deGaris introduced and classified EHW, Thompson illustrated its 

promise by developing the first intrinsically evolvable hardware system [147, 148]. He 

used a Xilinx XC6216 chip to distinguish between two square wave inputs of 1 kHz and 

10 kHz. The circuit was evolved intrinsically so that the output would be 0 volt for the 1 

kHz input, and 5 volts for the 10 kHz input. The evolved circuit was specific to the 

particular chip used in the evolution process.  

 

As part of the RWC project at the MITI Electrotechnical Laboratory (under which 

GRD discussed above was developed), an EHW chip for a data compression application 

in electrophotographic printers [149] and an IF filter chip for use in cellular phones were 

also developed [150]. A pattern recognition system built using EHW hardware is 

presented by Iwata et al. in [151]. Higuchi et al. [152] and Sakanashi et al. [153] give the 
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overview of the EHW projects developed at the MITI's Electrotechnical Laboratory as 

part of the Real World Computing (RWC) project. 

 

Koza et al. give a survey of problems from cellular automata and molecular 

biology in which genetic programming evolved a computer program that produced results 

that were slightly better than human performance for the same problem [154]. They also 

show three examples in electronic synthesis (lowpass filter, an amplifier, and an 

asymmetric bandpass filter) where circuit evolution using genetic programming 

generated better circuit designs.  

 

Hounsell and Arslan demonstrate an evolvable hardware platform for the 

automated design and adaptation of digital filters on a programmable logic array (PLA) 

[155]. Investigation of the fault tolerance behavior of their system showed that the circuit 

functionality was maintained despite an increasing number of faults covering up to 25% 

of the PLA area. Zhang, Smith, and Tyrrell also demonstrate an intrinsic EHW system for 

digital filters [156].  

 

3.2.1.3 Applications in Analog Electronics 

Hereford and Pruitt describe a system robust to input sensor failure using 

evolvable hardware on a field programmable analog array (FPAA) [157]. The circuit 

averages sensor inputs connected to the FPAA. In the event of a sensor input failure, the 

failure is detected by the controller and it triggers a circuit reprogramming. The system is 
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shown to be robust to several different sensor failure modes such as open circuit, short 

circuit, multiple sensor failures, and FPAA input amplifier failure. 

 

Bennet et al. used genetic programming to evolve the topology and sizing of each 

component of an op-amp [158]. The resultant 22 transistors amplifier has almost no bias 

or distortion and gives a 60 decibel DC gain with good frequency generalization.  

 

Subbiah and Ramamurthy demonstrate an intrinsically evolvable hardware 

implementation of a process sensor controller with a neural estimator based fault 

detection mechanism to take care of sensor failures [159]. 

 

3.2.1.4 Applications in Digital Logic Circuits 

Sekanina et al. show extrinsic simulations and intrinsic evolution in FPGAs of 

multifunctional digital circuits using polymorphic gates [160-162]. They implement GA 

in the FPGA and use a virtual reconfigurable circuit of polymorphic gates for evolution.  

 

Heng, Miller, and Tyrrell demonstrate an intrinsic EHW implementation for a 2-

bit fault tolerant multiplier that can recover from transient faults [163]. Simulation 

experiments for fault tolerance of evolved circuits by Hartmann and Haddow demonstrate 

a graceful degradation in performance in 2-bit adder and a multiplier circuit [164]. Their 

analysis demonstrates tolerance to increasing noise and gate failures.  
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3.2.1.5 Control and Navigation Applications  

Gwaltney and Ferguson demonstrated intrinsic EHW techniques to evolve an 

analog controller for the control of the shaft speed of a DC motor using a second 

generation Field Programmable Transistor Array (FPTA2) [165]. Performance 

comparison of the evolved controller to that of a conventional proportional-integral (PI) 

controller showed that hardware evolution is able to create a compact design that 

provides good performance, while using considerably less functional electronic 

components.  

 

Kajitani et al. have developed a gate-level EHW chip used for prosthetic hand 

controllers [84]. Keymeulen et al. have developed an EHW chip for an adaptive mobile 

robot navigation system [166]. Both of these were part of the MITI RWC project. 

 

3.2.2 EHW Algorithms and Platforms 

One widely recognized problem with EHW is the time and space required for 

genetic evolution and the genotype-phenotype mapping. To address this issue many 

different flavors of evolutionary algorithms have been reported in the literature such as 

the compact GA [167, 168], increased complexity evolution [169], bi-directional 

incremental evolution [170], generalized disjunction decomposition algorithm (GDD) 

[171-174], and fast evolutionary algorithm (FEA) [175]. Many researchers believe that 

the classical usage of evolutionary algorithms in EHW systems centered on the best 

individual is a constrained view. There is rich information in a population which can and 
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should be exploited. A truly population-based approach that emphasizes population rather 

than the best individual can often yield several important benefits to evolvable hardware, 

including efficiency, accuracy, adaptiveness, and fault-tolerance. A number of examples 

have been presented in [176] to illustrate how a population of cooperative specialists, 

evolved by fitness sharing or trained by negative correlation, can achieve better 

performance in many aspects than the best individual in the population.  

 

Many custom platforms have been built to further research into EHW systems. 

The rest of this section surveys some custom built intrinsic EHW platforms reported.  

  

Tempesti et al. have developed a BioWall [177]. It is a giant reconfigurable 

computing tissue developed to implement embryonics machines. It is structured as a two-

dimensional tissue composed of units representing molecules. Each unit consists of an 

input element (a touch-sensitive membrane), an output element (an array of 8x8 = 64 two 

color LEDs), and a programmable computing element (a Spartan XCS10XL Xilinx 

FPGA). The BioWall contains 3200 units, arranged as 20 rows of 160 units. The BioWall 

is used for research into EHW applications that range from Embryonics' ontogenetic 

systems, through epigenetic artificial neural networks, to phylogenetic evolving 

hardware. 

 

Sipper et al. used Xilinx 4000 series of programmable chips to build a system 

capable of evolving the hardware, measuring the fitness, and performing the evolutionary 

algorithm all on a single printed circuit board (PCB) [138]. They proposed a partition of 
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the space of bio-inspired hardware systems based on nature’s classification along three 

axes: phylogeny, ontogeny, and epigenesis. The phylogenetic level concerns the temporal 

evolution of the genetic programs within individuals and species, the ontogenetic level 

concerns the developmental process of a single multicellular organism, and the epigenetic 

level concerns the learning processes during an individual organism’s lifetime.  

 

 Other EHW platforms of interest are the MorphoSys EHW platform developed by 

Guangming et al. [178] and the ‘Processing Integrated Grid’ (PIG) self-reconfigurable 

scalable EHW chip developed by Macias [179, 180]. Tufte and Haddow reported a 

platform for complete hardware evolution (implementing GA in hardware along with the 

reconfigurable circuit) [181]. They demonstrate an evolution of a 4 by 1 multiplexer 

using their platform.   

 

3.3 Summary 

This chapter presents a review of EHW systems and its reported applications. 

These systems use evolutionary algorithms to evolve hardware circuitry with specific 

fitness goals such as correct functionality, circuit size, and power. EHW systems can be 

classified into extrinsic and intrinsic EHW systems. The former uses a software model of 

the underlying hardware architecture and performs offline evolution. The latter includes 

the hardware in the evolution loop and performs online evolution. EHW systems can be 

used in many applications ranging from bio-inspired hardware, signal and image 

processing, analog and digital electronics, to process control. Section  3.2.1 discussed two 
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EHW neural hardware applications that are closely related to the research work presented 

here. Both of the reported EHW neural hardware chips, the CAMBrain machine (CBM) 

and GRD are custom-built on silicon. The CBM project custom built a network of 

evolvable CoDi 1-bit neural modules that are evolved using evolutionary algorithms.  

The GRD chip uses a binary network of 16-bit DSPs that support multiple neural 

computations. It can implement sigmoid neural nodes (as in Multi-layer Perceptrons) as 

well as Gaussian neural nodes (as in Radial Basis Function networks). The FPGA 

platform developed and reported in this work is an intrinsic EHW system for neural 

hardware applications. The neural network topology implemented is called block-based 

neural networks (BbNNs) [23]. BbNNs use evolutionary algorithms to evolve network 

structure and synaptic weights of the network. The developed EHW platform uses 

functional-level evolution and is implemented using off-the-shelf available FPGAs. 

  



 

4 BLOCK-BASED NEURAL NETWORKS 

4.1 Introduction 

Inspired from the initial perceptron model of a neuron, many different artificial 

neural network topologies have been explored in the literature. Some of the well-known 

models include fully and partially connected feedforward multilayer perceptron models, 

radial-basis function networks, self-organizing maps, cellular neural networks, and fully 

and partially connected recurrent neural network models. These use different learning 

paradigms such as supervised, unsupervised, and reinforcement learning techniques. This 

work explores implementation of evolvable block-based neural networks on 

reconfigurable hardware. This chapter introduces block-based neural networks.   

 

A block-based neural network (BbNN) is a flexible neural network of neuron 

blocks interconnected in the form of a grid as shown in Figure 7 [4-6, 23, 49, 182-186]. 

Each neuron block is the basic information processing element of the network and can 

have one of four possible internal configurations depending on the number of inputs and 

outputs as listed below and shown in Figure 8. 

♦ 1-input, 3-output (1/3),  

♦ 2-input, 2-output (2/2) (left side output), 

♦ 2-input, 2-output (2/2) (right side output), and 

♦ 3-input, 1-output (3/1). 
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Figure 7  Block-based Neural Network topology 
 
 

 
 

Figure 8  Four different internal configurations of a basic neuron block  
(a) 1/3 (b) 2/2 (left) (c) 2/2 (right) (d) 3/1 configurations 
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Each individual neuron block computes outputs that are a function of the 

summation of weighted inputs and a bias as shown in equation 3. 
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where, 

ky  kth output signal of the neuron block 

jx  jth input signal of the neuron block 

jkw  Synaptic weight connection between jth input node and kth output node 

kb  Bias at kth output node 
J, K Number of input and output nodes respectively of a neuron block. 
g(• ) Activation function 

 

A neuron block can have up to six synaptic weights and biases, three inputs, and 

three outputs depending on the internal configuration of the block. A 2/2 neuron block 

has 6 synaptic weights and biases, 2 inputs, and 2 outputs. Similarly, a 1/3 block has 3 

synaptic weights and biases, 1 input, and 3 outputs. The activation function g(•) can be 

linear (e.g., ‘purelin’) or a nonlinear function (e.g., ‘logistic sigmoid’). Signal flow in the 

network from input to output is determined by the internal configurations of blocks used 

in the network. This determines the network structure. Figure 9 shows two different 

unique BbNN networks structures. 
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Figure 9  Three different 2 x 2 BbNN network structures 
 

4.2 Evolving BbNNs Using Genetic Algorithms 

To find a suitable BbNN for a particular problem, both the network structure and 

the internal weights and biases need to be tuned. Thus the learning process for a BbNN is 

a multi-parametric optimization problem. Due to the multimodal non-differentiable 

search space, it is difficult to use regular gradient descent based learning algorithms such 

as the backpropagation algorithm. These will be very inefficient and may not converge at 

all, getting repeatedly trapped in local minima. A global optimization approach such as 

genetic algorithms is more likely to find an answer [187]. Goldberg’s book on genetic 

algorithms is a classic reference for the subject [188]. 

 

In genetic algorithms a population of candidate solutions (individuals or 

phenotypes) of a problem, encoded in abstract representations (called chromosomes or 

the genotype), are evolved over multiple generations towards better solutions. The 

algorithm follows the Darwinian evolution model keeping the fittest individuals and 

getting rid of the unfit individuals in the population. The genetic evolution process 
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involves selection of random (or biased random) individuals from the current population 

for genetic crossover and mutation to produce the next generation. The selection strategy 

used may be biased towards selecting individuals with higher fitness and use different 

techniques such as the tournament selection or roulette wheel selection strategy. The 

initial population is randomly initialized. A fitness function evaluates the fitness of every 

individual in the population. With a biased selection strategy, individuals with higher 

fitness are more likely to be selected for genetic reproduction (crossover and mutation) to 

produce new populations. The fitness of newly generated individuals in the population is 

evaluated using the fitness function and the evolution process proceeds, further producing 

newer generations. The goal is to find an individual among the population with fitness 

equal to or greater than the target fitness [188]. Figure 10 shows a flowchart for the 

genetic evolution process described above.  

 

 

 

 



 

 

 

 

Figure 10  Flowchart depicting genetic evolution process 
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4.2.1 Genetic Operators 

Operators in genetic algorithms are used to produce offspring to form new 

generations. These are discussed in detail below. 

 

4.2.1.1 Selection 

Selection is a process in which a proportion of the existing population in each 

successive generation is selected to breed a new generation. Individual solutions are 

selected through a fitness-based process, where fitter solutions (as measured by a fitness 

function) are typically more likely to be selected. The selection process is stochastic and 

designed to also select a small proportion of less fit solutions to maintain population 

diversity and prevent premature convergence of poor solutions. In tournament selection, 

a group of randomly chosen individuals from the population are pitted against each other 

and a winner (best fit individual) is selected for crossover. Selection pressure can be 

adjusted by varying the tournament group size. In roulette wheel selection (also called 

fitness proportionate selection); all the individuals in the population are ranked according 

to their fitness, assigning each one a probability. The chance of an individual to be 

selected is proportional to its rank. While candidate solutions with a lower fitness will be 

more likely to be eliminated, there is still a chance that they may be selected.  
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4.2.1.2 Crossover 

Crossover is a genetic process used to vary the programming of a chromosome(s) 

from one generation to the next. It is analogous to biological crossover and reproduction. 

Two parent chromosomes swap genetic information to produce two offspring. Many 

crossover techniques exist such as one-point crossover, two-point crossover, and the cut 

and splice strategy. For example, in a two-point crossover strategy if ‘S1=000000’ and 

‘S2=111111’ are two chromosomes, then a crossover between the two using a randomly 

selected crossover site (in this example after bit 2) could produce two offspring 

‘S1’=110000’ and ‘S2’=001111’.  

 

4.2.1.3 Mutation 

In mutation, the bits of the candidate are randomly flipped based on some low 

probability. The purpose is to maintain population diversity and induce a random walk 

through the search space of possible solutions.  

 

The genetic evolution process described above works well with a single 

dimensional search space, but needs modification for multiparametric optimization 

problems. The search space for our BbNN evolution problem poses a two-dimensional 

optimization problem (simultaneous structure and weight optimization). Thus we need to 

modify the genetic algorithm for it to work with the problem at hand. The learning 

process uses a supervised training approach. The modified genetic algorithm is described 

below.   
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4.2.2 BbNN Encoding 

The structure and weight of the BbNN need to be encoded as a single 

chromosome. The network structure is encoded as a gene using a sequence of binary 

numbers representing the signal flow through the BbNN. Any connection between the 

blocks is represented with either a binary 0 or a binary 1. A binary 0 denotes down (↓) 

and left (←) signal flow directions, and a binary 1 indicates up (↑) and right (→) signal 

flows. The number of bits required to represent the signal flow of an m × n BbNN is 

‘(2m-1)n’. This is the case for a recurrent BbNN network where a signal flow from a 

lower layer neuron block to an upper layer block (↑) is a valid network structure. In the 

case of feedforward networks, a feedback as in the earlier case results in invalid 

structures. Since the signal flow in feedforward neurons is restricted from top to bottom, 

we do not need to encode that structure information as it is implied. Thus in a 

feedforward network binary 0 denotes left (←) signal flow direction, and a binary 1 

indicates right (→) signal flow. Thus the number of bits required to represent the signal 

flow of an m × n block-based neural network is ‘mn’. Figure 11 illustrates recurrent 

BbNN network structure encoding and Figure 12 shows a feedforward network structure 

encoding. Synaptic connection weights of each neuron block in a network are encoded as 

real values in an array. The arrays of all the blocks are concatenated sequentially to form 

a weight gene. The weight gene along with the structure gene forms the BbNN 

chromosome. Figure 13 shows the weight gene encoding and Figure 14 shows the 

complete encoding of a BbNN chromosome for a 2 × 2 network. 



 

 

Figure 11  Recurrent BbNN network structure encoding (a) BbNN (b) Structure encoding 
 

 

 

Figure 12  Feedforward BbNN network structure encoding (a) BbNN (b) Structure encoding 
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Figure 13  BbNN weight gene encoding (a) Neuron block (b) Weight encoding 

 

 

 

Figure 14  BbNN chromosome encoding for a 2 x 2 network 
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4.2.3 Fitness Function 

The training approach is a supervised training algorithm with training data 

composed of corresponding input – output pairs. The fitness function used is derived 

from the total mean squared error between target and actual outputs of the network. 

Equation 4 shows the fitness function used.  
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where, 

N  number of training data samples 
on  number of actual output nodes 

jke  error between desired and actual outputs of the kth output block 
referred to jth pattern 

jkd and  jky desired and actual outputs of the kth output block referred to jth 
pattern. 
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4.2.4 Genetic Evolution 

The 2-dimensional genetic evolution is similar to the one described above. A 

population of BbNN chromosomes is randomly initialized and their fitness is evaluated. 

A selection strategy (tournament or roulette wheel) selects individuals for genetic 

crossover operations with selection pressure against the least fit individuals. The 

crossover operator randomly swaps portions of the structure genes of the two parent 

chromosomes based on a crossover probability. The offspring are added to the new 

population. The mutation operator operates on the newly created individuals and has two 

stages. First the structure mutation stage randomly flips structure gene bits based on a 

low structure mutation probability. Second the weight mutation stage adds Gaussian 

noise with zero mean and unit variance to the weights based on a low weight mutation 

probability. The newly generated population is evaluated for fitness and the evolution 

proceeds further with the new generation until an individual with fitness greater than or 

equal to the target fitness is found or the maximum number of generations has been 

reached. Figure 15 illustrates the structure crossover operation. The dotted lines shown in 

the two parents are the structure crossover sites. The structure gene is sliced at these lines 

and the sliced portions are swapped to produce two offspring as shown. Figure 16 

illustrates the structure mutation operation in BbNNs. A bit is chosen randomly based on 

a low mutation probability from the structure gene and flipped. The new structure gene 

obtained and its corresponding BbNN network is shown in the figure. 



 

 

 

 

Figure 15  Structure crossover operation in BbNN 
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Figure 16  Structure mutaiton operation in BbNN 
 

 67



 68

4.3 Summary 

This chapter introduced BbNNs and multi-parametric genetic evolution algorithms 

used to evolve the network structure and weights of the BbNNs. A BbNN is a network of 

neuron blocks interconnected in the form of a grid. Due to the regular structure of these 

networks they are well suited for custom implementations in digital hardware such as 

field programmable gate arrays (FPGA) and application specific integrated circuits 

(ASIC). Network structure regularity facilitates scaling the network in custom 

implementations with ease. The internal configuration of the neuron blocks remains the 

same (one out of the four described in section  4.1) as a result of scaling the network size. 

The number of synaptic connections between the neuron blocks also grows linearly as a 

result of scaling network size. This is unlike the popular multilayer perceptron (MLP) 

networks. MLPs are fully connected networks of neurons with a synaptic connection 

between each pair of neurons in the adjacent layers. Thus, growth in network size adds 

many new synaptic connections to the network. Each new synaptic connection adds a 

new stage to the multiplier and accumulator circuit of the neuron to which it serves as an 

input. The multiplier and accumulator circuit in the neurons is used in calculating the 

output which is a function of the weighted summation of the inputs and a bias. This 

makes scaling the network structure difficult in hardware implementations for networks 

such as MLPs. Thus, the regular network structure of BbNNs facilitates hardware 

implementations. A disadvantage of the partial connectivity in network architectures such 

as BbNNs is the possibility of requiring more equivalent neurons to solve the same 

problems as would be required in the case of an MLP. The BbNNs can be trained using 
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genetic algorithms introduced in this chapter. The training is a multi-parametric 

optimization problem involving simultaneous evolution of network structure and the 

synaptic weights. Due to the multimodal non-differentiable search space it is difficult to 

use regular gradient descent based learning algorithms such as the backpropagation 

algorithm. These will be very inefficient and may not converge at all, getting repeatedly 

trapped in local minima. A global optimization approach such as genetic algorithms is 

more likely to find an answer [187]. But the disadvantage of using global training 

approaches such as GA are longer training times than the directed gradient descent search 

algorithms such as the backpropagation algorithm. Hybrid training algorithms for BbNNs 

have been investigated that take the advantages of global sampling of GAs and fast 

convergence of gradient descent techniques for efficient training of BbNNs. More 

information on these can be found in [4, 5]. This dissertation uses the regular GA 

approach presented in section  4.2. Moon and Kong proved that a BbNN of size m × n 

can successfully represent the input – output characteristics of any MLP network for n ≤ 

5 [23]. BbNNs have been applied to mobile robot navigation [23], multivariate gaussian 

distributed pattern classification [182], chaotic time series prediction [183], and ECG 

signal classification [4-6]. 

 

 



 

5 INTRINSICALLY EVOLVABLE BBNN PLATFORM 

Many custom artificial neural network implementations have been reported in 

hardware. Section  2.5 presents a review of these implementations. Most implementations 

rely on an offline neural network learning in software simulations, with the resultant 

network being custom-built either in fixed ASICs or reconfigurable FPGAs. Thus, only 

the recall stage benefits from custom implementation speedups. Every new application of 

these networks needs a new custom design built and configured on the FPGAs or ASICs. 

The design goal here is to build an online neural network learning platform that can be 

trained and adapted intrinsically in hardware. This platform is an intrinsically evolvable 

hardware system performing functional-level evolution. The evolving functional modules 

and their interconnections are artificial neurons and their synaptic connections. The 

neural network implemented is the feedforward block-based neural network (BbNN) 

discussed in chapter  4. The following sections give the design details for the BbNN 

platform.  

 

5.1 BbNN FPGA Design Details 

The design was implemented for a Xilinx Virtex-II Pro (XC2VP30) FPGA [189] 

housed on a Xilinx University Program (XUP) FPGA development board [190] or an 

Amirix AP130 FPGA development board [191]. This particular FPGA includes 2 on-chip 

PowerPC 405 embedded processor cores, 30,816 logic cells, 136 built-in 18x18 
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multipliers, and 2448 KBits (306 KBytes) of on-chip block RAM. These multipliers will 

be used to build the multiplier and accumulate circuits in the FPGA units for neuron 

block processing and the available on-chip block RAM will be used to store the 

activation functions. The PowerPC will be used for the genetic algorithm and control 

operations in our design. These will be discussed in details in section  5.1. 

 

For on-chip learning the network design has to be flexible to accommodate 

dynamic changes in network structure and internal parameters (synaptic weights and 

biases). As discussed in section  2.5.2.2 the time taken for each FPGA reconfiguration 

cycle is on the order of milliseconds. This poses a bottleneck for an online evolution 

system that relies heavily on FPGA reconfigurations for changes in network structure and 

internal parameters. Thus we need to minimize any reconfiguration cycles that would be 

required during the learning stage for better performance. In the case of BbNNs, the 

following dynamic updates have to be accommodated for an on-chip learning capability.  

 

♦ Dynamic updates to network structure 

Network structure and internal configurations of neuron blocks is dictated 

by the structure gene. Any change in the structure gene changes the internal 

configurations of the neuron blocks in the grid, thus modifying the dataflow 

through the network. To accommodate this dynamically, we need a neuron block 

design that can dynamically emulate any of the four internal configuration modes 

without requiring an FPGA reconfiguration.  
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♦ Addition/deletion of row(s) / column(s) 

The genetic evolution process could potentially add / delete rows and 

columns to / from the BbNN grid. Accordingly, it either increases or shortens the 

length of the structure and weight genes in the BbNN chromosome. From the 

hardware design perspective, any addition of a row or column to the existing 

network grid adds new neuron blocks and a few new nets (connections) between 

the old and new neuron blocks. This is difficult to accommodate dynamically in 

FPGAs and may require a reconfiguration cycle. The design presented here 

minimizes the overhead of reconfiguration cycles as will be evident from the 

design of the neuron block and the dataflow architecture.   

 

♦ Dynamic updates to synaptic weights and biases 

Synaptic weights and biases are stored in digital registers and can be 

dynamically updated without requiring any FPGA reconfigurations. 

 

Other requirements and considerations for the design include the following. 

♦ Data representation and precision 

♦ Activation function implementation 

♦ Internal neuron block configurations 

♦ Dataflow implementation 

♦ Area, speed, and power 

♦ Design scalability and real-time processing support  
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These design considerations and the resulting decisions are discussed below. 

 

5.1.1 Data Representation and Precision  

The inputs, outputs, and internal parameters such as synaptic weights and biases 

are all real-valued variables. Representing and storing them in digital hardware can be 

either done using floating point or fixed point number representation. Floating point 

representation will have a significantly wider range and higher precision as compared to 

fixed point representations. However, floating point arithmetic circuits are complicated to 

build, have much larger footprint in silicon, and our significantly slower as compared to 

those required for fixed point arithmetic. Our design is targeting FPGA devices. The 

device capacities of current generation FPGAs are significantly smaller as compared to 

comparable ASICs. Building custom or single precision floating point arithmetic circuits 

has started becoming feasible with the device capacities of current generation FPGAs 

[192-195]. To be able to fit as many neuron blocks as possible on a single FPGA chip, 

the area occupied by each block should be as small as possible. Holt and Baker [44] and 

Holt and Hwang [45] investigated the minimum precision problem for neural networks 

with benchmark classification problems. According to their analysis, 16 bit fixed-point 

representation is sufficient for correct classification and training of the neural networks. 

Also, in our analysis of the applications considered here 16 bit precision is sufficient. 

Thus, all the internal parameters as well as inputs and outputs are represented as 16 bit 

fixed point numbers.  
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5.1.2 Activation Function Implementation 

Activation functions are typically non-linear monotonically increasing sigmoid 

functions. Implementation choices include a circuit implementation for a piece-wise 

linear approximation of the function versus implementing a lookup table with preloaded 

f(x) values for the corresponding x input value. Direct circuit implementations of the 

activation function are significantly smaller in silicon footprint as compared to the LUT 

approach. The size of the LUT increases exponentially with the size of input. However, 

the direct circuit implementations are more complicated to design and may require 

redesign for each different activation function. In the case of an LUT-based approach, 

new values can be reloaded for a different activation function when required during the 

on-chip training process. As for the disadvantage of the required silicon area, the LUTs 

were implemented using the block RAMs in the Xilinx FPGAs. Since these block RAMs 

are already present on the die as hard-macros whether they are used or not, it made sense 

to use them to our advantage. Thus, minimal reconfigurable logic resources are used for 

activation function implementation. Port A of the on-chip dual port block RAM is 

configured as a read/write port. It is used to load the values into the lookup table. Port B 

is configured as a read only port and is used to interface with the neuron blocks. The size 

of the lookup table required is directly associated with the data widths used. A 16-bit 

fixed point representation requires a LUT that is 16 bits wide and 216 deep. This requires 

a total of 128 KBytes per LUT. It would be desirable to use a separate LUT for every 

neuron block in the network so that all the neuron blocks are completely independent of 

each other. However, using a separate LUT for every neuron block can severely limit the 

number of blocks that can be implemented on a single FPGA chip. In our case, we can 
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implement only 2 neuron blocks on the Xilinx XC2VP30 FPGA chip before we run out 

of block RAMs. Sharing the LUT between all the neuron blocks requires serializing the 

access to the LUT of the neuron blocks using a FIFO, consequently slowing down the 

computational speed. Keeping in mind the dataflow implementation technique used here, 

only one neuron block in a column can ‘fire’ (process input data and producing outputs) 

in any computational time unit (this will be explained in further detail in the dataflow 

implementation section). Hence, a design decision was made to share a LUT between 

neuron blocks in a single column instead of all the blocks in the network. Thus there will 

be one LUT per column of neuron blocks in the network. This choice does increase the 

number of blocks that we can use in the network, but puts a constraint on the number of 

columns that can be implemented before the available block RAM become a bottleneck. 

The number of columns that can be implemented on our current FPGA chip would still 

be just two columns, severely limiting the network ability to solve any interesting 

problems. So, to further optimize the size of the LUT so that larger network grid sizes can 

be implemented on our FPGA chip, we implemented a LUT that was 16 bits wide but 

only 212 deep. This reduces the size of the LUT to 8 Kbytes per LUT. This was done 

taking into consideration an observation that almost all of the activation functions that are 

used for artificial neurons are monotonically increasing saturating functions such as 

hyperbolic tangent and the logistic sigmoid functions. That is, the outputs taper off to a 

constant value beyond a certain input value. Thus there is no need to store the values 

greater than the maximum saturated output value repeatedly, in effect chopping off the 

activation function beyond the saturated values. Hence, the number of LUTs and hence 



 
 

Figure 17  Activation function LUT illustration 
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columns that can be implemented on the FPGA would be larger, not posing as a 

bottleneck for this implementation. This idea is illustrated in Figure 17. 

 

 

5.1.3 Smart Block-based Neuron Design 

One of the challenges here is to design a neuron block that can dynamically 

emulate all the various internal configuration modes. Kothandaraman designed a library 

of the various internal neuron block configurations for implementation on FPGAs [49]. 

The simplest approach for a dynamic neuron block would be to combine the library of 

designed blocks in a “super block” and use a multiplexer to select each depending on the 

structure gene. But the problem with this approach is that the silicon area required for 

such a super block will be four times that required by a single block, making this brute-

force approach very inefficient. Instead a smarter block was designed that could 

dynamically emulate all the four internal configurations, but was less than a third the size 
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of the brute force “super block” approach. This block design is called the ‘Smart Block-

based Neuron’ (SBbN). The SBbN emulates any of the internal configuration modes 

depending on the values loaded in an internal configuration register called the ‘Block 

Control and Status Register’ (BCSR).  This is a memory-mapped 16-bit internal block 

register in the internal configuration logic module of the neuron block that defines the 

state and mode of the neuron block. Also included is the support for deactivating a 

particular SBbN. In this state the inputs are just passed on to the outputs without 

modifications, essentially bypassing the neuron block. This was an important design 

choice to successfully implement an evolvable system as will be evident later. Figure 18 

illustrates the idea of a smart block and Figure 19 shows the bit fields of the BCSR 

register. The BCSR register bits 7 through 4 that define the node directions are loaded 

automatically by the gene translation logic. This combinational logic circuit reads the 

structure gene register and loads the internal BCSR register inside each neuron block, 

thus setting their emulation modes depending on the corresponding value in the structure 

gene and the block’s position in the grid. This is illustrated in Figure 20. The sum of 

product pipeline has been implemented using the built in 18x18 multipliers in the Xilinx 

Virtex-II Pro FPGA.  



 

 

 

 
 

Figure 18  Smart Block-based Neuron to emulate all internal neuron block 
configurations 
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Figure 19  Bit fields of Block Control and Status Register (BCSR) of SBbN 
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Figure 20  Dynamic gene translation logic for internal configuration 
emulation 
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5.1.4 Dataflow Implementation 

An issue with implementing data flow architectures like this one in hardware is to 

determine stable outputs and latch them. The problem is more pronounced when 

feedback is involved in the network structure. This work implements only feedforward 

BbNN networks. To solve the problem of latching the correct outputs, we implemented a 

control structure inspired by the Petri net model architecture. A Petri net (also known as a 

place/transition net or P/T net) is one of several mathematical representations of discrete 

distributed systems. As a modeling language it graphically depicts the structure of a 

distributed system as a directed bipartite graph with annotations. As such, a Petri net has 

place nodes, transition nodes, and directed arcs connecting places with transitions [196-

198].  

  

At any time during a Petri net's execution, each place can hold zero or more 

tokens. Unlike more traditional data processing systems that can process only a single 

stream of incoming tokens, Petri net transitions can consume tokens from multiple input 

places, act on them, and output tokens to multiple output places. Transitions act on input 

tokens by a process known as firing. A transition fires once each of the input places has 

one or more tokens. While firing, it consumes the tokens from its input places, performs 

some processing task, and places a specified number of tokens into each of its output 

places. It does this atomically, namely in one single, non-preemptible step.  
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The BbNN dataflow can be represented using an acyclic Petri net. Each of the 

blocks can be represented by an equivalent Petri net model as shown in Figure 21. The 

input and output registers can be represented by places. When each of the input registers 

(input places) have a valid input (a token), the BbNN fires and computes the outputs. 

Each of the output places will now get a token after the BbNN fires and the tokens at the 

input places are consumed. Thus the dataflow through a BbNN network can be 

represented using an equivalent Petri net network model (replacing each block with 

equivalent Petri net model as shown in Figure 21) for the entire BbNN network structure. 

Figure 22 shows the firing sequence for a particular BbNN network example. The side 

inputs have been hard-coded to be zero and have a valid token (shown as a ‘●’) until 

consumed by firing. When the top inputs are applied the input places get tokens and they 

fire, computing the outputs. As can be seen, only the blocks with valid input tokens fire 

and generate the corresponding input tokens for the neighbors, which in turn fire next. 

Figure 23 shows a logical block diagram of a SBbN block.  



 

 

 
 

Figure 21  Equivalent Petri Net models for BbNN blocks  
(a) 1/3 (b) 2/2 (c) 3/1 
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Figure 22  An example 2 x 2 BbNN firing sequence 
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Figure 23  SBbN neuron logical block diagram 
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5.2 Embedded Intrinsically Evolvable Platform 

Block-based neural networks are evolved using genetic algorithms to find a 

suitable network for input – output mapping of training data. The details of the genetic 

evolution process are described in section  4.2. Section  5.1 gives details on the digital 

hardware design of the block-based neural network. The structure and internal parameters 

of the designed network can be dynamically updated without relying on FPGA runtime 

reconfigurations. The design is implemented on Xilinx Virtex-II Pro FPGA development 

boards. The implementation goal is to design an embedded, intrinsically evolvable 

platform for online evolution of BbNNs. This requires close coupling of the genetic 

evolution algorithm with the designed network. Multiple design choices were carefully 

considered for implementation, the details of which are given below. 

 

a) Implementing Genetic Algorithms on a Host Computer 

Here the GA is implemented as a software program running on a host computer 

that communicates with an FPGA configured with the neural network hardware via a 

serial link or bus interface such as PCI. The fitness evaluation is done on the FPGA 

configured with the hardware design of BbNNs. The problem with this choice is that the 

system is difficult to deploy as a standalone embedded system and would be bulky if 

implemented with embedded single board computers. 
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b) Implementing Genetic Algorithms  in Hardware 

Implementing GAs in hardware along with the BbNN network was the most 

obvious choice. Hardware implementations of different flavors of compact GAs have 

been reported in the literature [161, 162, 167, 168, 199], but it comes at a cost of 

significant resources on the FPGA. An on-chip GA implementation would require a 

memory bank to hold the population of chromosomes. It will also require a Gaussian 

random number generator implementation for mutation operation which again will 

require a memory bank to store lookup table values for a compact implementation using a 

uniform random number generator or a large logic implementation [200]. These required 

memory banks can be implemented in internal block RAMs available in the Virtex-II Pro 

FPGAs, but most of the block RAMs are tied up activation function LUT 

implementation. Building memory out of the rest of the reconfigurable fabric would be 

area inefficient and the resulting circuit slower limiting the size and performance of 

ANNs that can be implemented in hardware.  

 

c) Implementing Genetic Algorithms on Embedded PPC405 

Another choice is an approach similar to the first one, where the GA evolution is 

done in software running on a host processor. But in this case, the processor is an 

embedded processor on-chip in the Virtex-II Pro FPGA. The fitness evaluation, the most 

time consuming computation, is still implemented in the FPGA reconfigurable fabric. 

The advantage of this approach is that it uses the on-chip, embedded PowerPC 405 

processor located on the same die as the rest of the reconfigurable fabric in the Virtex-II 

Pro FPGA. Thus, the system can be deployed as a compact, embedded, evolvable 
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platform in real-world applications. The fitness evaluation, which is the bottleneck in GA 

evolution strategy discussed here, is accelerated using the custom logic circuitry in the 

FPGA.  

 

After comparing the pros and cons of the above approaches it was decided to 

implement the GA evolution on the PowerPC 405 embedded processor.  

 

5.2.1 PSoC Platform Design 

The BbNN platform was developed as a programmable System On-Chip (PSoC) 

architecture. Taking advantage of increased chip capacities, current-generation FPGAs 

have a number of on-chip hard macros such as embedded processors, memory, 

multipliers, and accumulator units. These available hard / soft cores with synthesizable 

local and peripheral bus systems can be used to build a powerful design platform on a 

single chip. These systems include one or more hard/soft processors and the associated 

local and peripheral bus systems with connected peripheral I/O cores on a single die. This 

platform is aptly called a System on a Chip (SoC). These platforms synthesized on 

FPGAs can be reconfigured and hence are called as programmable SoC (PSoC) 

architectures. The embedded processors use internal FPGA RAMs for implementing 

instruction and data memories. The embedded processor interfaces to on-chip memory 

controllers via a local system bus. Peripherals like UART, ethernet MACs and other 

custom user cores communicate with the processor via the local system bus or the 

peripheral bus. The peripheral bus communicates with the local system bus via a bridge. 
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The on-chip memory controllers can interface to on-chip or off-chip memory systems 

which are mapped to the embedded processor’s address space. The processor powers up 

and executes a bootstrap routine initialized in its instruction memory, which can make 

calls to user programs resident either in internal on-chip or external off-chip memory 

locations. These user programs can be simple self test codes for various connected 

peripherals or even a real-time operating system that can boot up to a command prompt. 

Many real-time operating system vendors such as VxWorks [201], Timesys Linux [202], 

and Montavista Linux [203] have support for various PSoC platforms. Figure 24 shows a 

logical diagram of a typical SoC design. PSoC platforms can also be efficiently used as 

test platforms for user cores. User cores can communicate with the embedded processor 

via the peripheral bus system. The processor can be used to send test vectors to the user 

design and receive and analyze the results.  

 

The PSoC platform for BbNN is designed using the Xilinx Embedded 

Development Kit (EDK). It includes a PPC405 processor along with on-chip local 

memory communicating via Processor Local Bus (PLB). Other peripherals such as a 

UART for serial communication can be connected as slaves on an On-Chip Peripheral 

Bus (OPB). The BbNN hardware network is memory-mapped to the PPC 405 and 

interfaced via the OPB bus. It raises an interrupt on task completion that is connected 

through the OPB interrupt controller to the PPC interrupt mechanism. Interrupt-driven 

I/O programming helps in facilitating the real-time processing and scheduling often 

required in many embedded applications of the evolvable neural network platform. The 

platform is shown in Figure 25. The fixed point GA code runs on the on-chip PowerPC



 

 

 

 

 

 
 

Figure 24  Programmable System on a Chip - logical diagram 
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Figure 25  BbNN PSoC platform. GA operators execute on PPC405,  
Fitness evaluation done using hardware BbNN design 

 
 

processor. The BbNN hardware design is used for fitness evaluation. Internal network 

parameters, such as the structure and weight genes, network inputs, and outputs are 

memory-mapped to the processor. The activation function LUT also is memory mapped 

in the address space of the PPC405. 

 

5.3 Fixed Point BbNN Software for Genetic Evolution 

The fixed point GA evolution software is written in the C programming language. 

The on-chip PPC405 only has a fixed point datapath. Any floating point operations have 

to be performed using emulated floating point software libraries which are slow. Care has 

been taken to minimize the required floating point operations. All the real values have 

been stored as 16-bit fixed point values. The genetic operators of selection, crossover, 

and mutation have been implemented as detailed in chapter  4. Genetic evolution 
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parameters such as the maximum number of generations, structure / weight crossover and 

mutation probabilities, step size for weight mutation, target fitness, elitist mode genetic 

evolution selection, number of offspring in each new generation, activation function 

selection (tansig, logsig, satlin, purelin, hardlim), selection algorithm (roulette, ranking, 

tournament, proportion), and network grid sizes to evaluate can be set in a header file. 

The software is cross-compiled to PPC 405 object code and can be loaded in the onboard 

program flash. Fixed point BbNN fitness evaluation software routines have also been 

programmed for use in a fixed point BbNN software simulator compiled for PC. These 

routines also help in exhaustive BbNN FPGA design testing. The code appears in the 

appendix.  

 

5.4 Performance and Device Utilization Summary 

The post-synthesis timing analysis of the design reports a clock frequency of 

245MHz on the Xilinx Virtex-II Pro FPGA (XC2VP30). Each block takes at the most 10 

CLK cycles to complete processing the inputs and produce an output. The number of 

clock cycles depends on the internal block configuration and the number of output nodes 

using the activation function LUT. Each block computation processes 6 synaptic 

connections. Thus, each block has a peak connection per second speed of 147 MCPS per 

block for a 16 bit data width. With generally more than one block computing at a time, 

depending on the network structure the peak CPS would be (n computing blocks)×(147 

MCPS / block) processing speed. Considering an m×n BbNN grid the processing speed 

can vary between 147 MCPS to 147n MCPS, depending on the network structure. 
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The minimal platform excluding the BbNN network needs about 13% of the 

Xilinx Virtex-II Pro FPGA (XC2VP30) resources. Table 2 shows the post-synthesis 

device utilization summaries for various BbNN network sizes excluding the rest of the 

platform. According to the utilization summaries we can fit around 20 neuron blocks on a 

single FPGA chip along with the rest of the platform. Table 3 shows the post-synthesis 

device utilization summary for a larger FPGA device (XC2VP70) in the Xilinx Virtex-II 

Pro family, widely used in many commercially available FPGA boards. This device can 

hold around 48 neuron blocks.   

 

5.5 Design Scalability 

An important consideration in design decisions is that of design scalability issues. 

There is a physical limitation on the number of neurons that can fit on a single FPGA. So 

the question arises on how to support applications requiring larger network sizes? BbNN 

hardware was designed taking into consideration scenarios for design scalability. The P/T 

net-based dataflow implementation strategy ensures reliable asynchronous 

communication between neuron blocks. This is important for scalability as will be 

evident in the following discussion of scalability scenarios. The design supports these 

scenarios, but their implementation is left as future work. 
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Table 2  Device Utilization Summary on Xilinx Virtex-II Pro FPGA (XC2VP30) 
 

Number of Slice  
Registers 

Number of block 
RAMs 

Number of 
MULT18x18s Network 

Size 
Used Utilization Used Utilization Used Utilization 

2 x 2 2724 19% 8 5% 12 8% 
2 x 4 4929 35% 16 11% 24 17% 
2 x 6 7896 57% 24 17% 36 26% 
2 x 8 10589 77% 32 23% 48 35% 

2 x 10 12408 90% 40 29% 60 44% 
3 x 2 3661 26% 8 5% 18 13% 
3 x 4 7327 53% 16 11% 36 26% 
3 x 6 11025 80% 24 17% 54 39% 
3 x 8 14763 107% 32 23% 72 52% 

3 x 10 18456 134% 40 29% 90 66% 
4 x 2 4783 34% 8 5% 24 17% 
4 x 4 9646 70% 16 11% 48 35% 
4 x 6 14587 106% 24 17% 72 52% 
4 x 8 19508 142% 32 23% 96 70% 

4 x 10 24461 178% 40 29% 120 88% 
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Table 3  Device Utilization Summary on Xilinx Virtex-II Pro FPGA (XC2VP70) 
 

Number of Slice  
Registers 

Number of block 
RAMs 

Number of 
MULT18x18s Network 

Size 
Used Utilization Used Utilization Used Utilization 

2 x 2 2497 7% 8 2% 12 3% 
2 x 4 4929 14% 16 4% 24 7% 
2 x 6 7390 22% 24 7% 36 10% 
2 x 8 9915 29% 32 9% 48 14% 

2 x 10 12403 37% 40 12% 60 18% 
3 x 2 3661 11% 8 2% 18 5% 
3 x 4 7327 22% 16 4% 36 10% 
3 x 6 11025 33% 24 7% 54 16% 
3 x 8 14788 44% 32 39% 72 9% 

3 x 10 18461 55% 40 12% 90 27% 
3 x 12 22233 67% 48 14% 108 33% 
3 x 14 25652 77% 56 17% 126 38% 
3 x 16 29254 88% 64 19% 144 43% 
4 x 2 4783 14% 8 2% 24 7% 
4 x 4 9646 29% 16 4% 48 14% 
4 x 6 14561 44% 24 7% 72 21% 
4 x 8 19534 59% 32 9% 96 29% 

4 x 10 24470 73% 40 12% 120 36% 
4 x 12 29221 88% 48 14% 144 43% 
4 x 14 34389 103% 56 17% 168 51% 
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5.5.1 Scaling BbNN Across Multiple FPGAs 

An obvious choice to scale the network sizes is to distribute smaller sub-networks 

of the BbNN network across multiple FPGAs to execute in parallel. But this is not trivial 

to achieve due to the inter-neuron block synaptic communications within the network. 

These communications will have to be performed across multiple FPGA chips. This will 

require taking into consideration delay times associated with the communication links 

between the FPGAs. The FPGAs could be connected directly via dedicated inter-

communication channels or may have to go through the host processor and use 

communication links such as Ethernet existing between the host machines. These issues 

were considered during the design stage of the BbNN hardware implementation. The 

choice of using the P/T net-based reliable, asynchronous inter-neuron block 

communication was made to address the scalability issues. Asynchronous communication 

ensures reliable performance irrespective of the delays associated with the 

communication links. This makes the design portable and scalable across a heterogeneous 

mixture of reconfigurable computing resources and their intercommunication channels.  

 

5.5.2 Scaling via Time Folding 

BbNNs can also be scaled via time-multiplexing. A single BbNN FPGA 

implementation can be used to execute sub-networks of a larger BbNN at different 

instances of time. The intermediate sub-network states (intermediate inputs and outputs 

of the sub-network, sub-network structure, and internal parameters) can be saved in 

buffer memory between the execution cycles. The intermediate sub-network states saved 
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in the buffer memory can be loaded on the BbNN FPGA implementation in appropriate 

execution cycles to compute sub-network outputs that are input to other sub-networks. 

Scaling the BbNN in time has the disadvantage of serializing the sub-network execution. 

Thus, it requires longer execution times but lesser hardware resources.   

 

5.5.3 Hybrid Implementation   

A hybrid approach employing both time and space scaling techniques can also be 

used for large networks. It is a problem of reliably mapping and scheduling sub-networks 

across FPGA resources. It involves development of efficient partitioning and scheduling 

algorithms for optimal usage of available resources and minimizing execution runtimes.  

 

5.6 Applications 

BbNNs can be applied to many applications suitable for neural networks. We 

tested our on-chip training approach with a few example applications and the results are 

discussed below.  

 

5.6.1 N-bit Parity Classifier 

A parity bit is a binary bit that indicates whether the number of bits with value of 

one in a given set of N-bits is even or odd. The N-bit parity technique is widely used for 

error detection in real world applications such as serial data transmission, SCSI bus, 

microprocessor caches, and redundant arrays of inexpensive disks (RAID). The BbNN 
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platform solves the N-bit parity computation problem using on-chip genetic evolution. 

The results of the genetic evolution process are as follows. Table 4 shows the genetic 

algorithm parameters used for evolution. A population size of 30 chromosomes per 

generation was used with crossover and mutation probabilities of 0.7 and 0.1 

respectively. Tournament selection was used for choosing candidates for crossover 

operation to produce offspring. A logistic sigmoid function was used as an activation 

function for the neuron block outputs. Figure 26 shows the average and maximum fitness 

values for each generation for the 3-bit and 4-bit parity examples. As can be seen from 

the curves the target fitness of 1.0 is reached after 132 generations in the case of the 3-bit 

parity example and 465 generations for the 4-bit parity example. The fitness functions 

used for genetic evolution are the same as shown in section  4.2.3. Figure 27 shows the 

dominant structure evolution trends for the 3-bit and 4-bit parity examples. Each color 

shows the evolution trend of a unique structure. Each curve shows the number of 

chromosomes per generation that has that structure. Figure 28 shows the evolved 

networks for the 3-bit and the 4-bit parity examples.  

 

 

 

Table 4  Genetic evolution parameters used for N-bit Parity problem 
 

Genetic Algorithm Parameter Value 
Population size 30 
Target Fitness 1.0 
Structure crossover probability 0.7 
Structure and weight mutation probabilities 0.1 
Activation Function Logistic sigmoid  
Selection Strategy Tournament selection 
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Figure 26  Fitness evolution trends for (a)  3-bit and (b) 4-bit parity examples 
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(b) 

 
Figure 27  Structure evolution trends for (a) 3-bit and (b) 4-bit parity examples 
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(b) 
 

Figure 28  Evolved networks for (a) 3-bit and (b) 4-bit  parity examples 
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The selection, crossover, and mutation genetic operators used to produce new 

generations execute on the on-chip PowerPC processor. The execution time to execute 

the assembly instructions to produce each generation depends on the population size, the 

number of new offspring produced per generation, and the crossover and mutation 

probabilities. For the case of the N-bit parity example, the average time it takes to 

produce a new generation on the PPC405 processor running at 300MHz is 11 µs. The 

population fitness evaluation speed depends on the population size, network structure of 

individuals in the population, designated output nodes, and number of input patterns. For 

the N-bit parity example, the fitness processing speed ranges from 147 MCPS to 294 

MCPS. 

 

5.6.2 Iris Plant Classification 

Plant classification is the identification of the plant by observing some unique 

attributes such as shape or area of the leaves. Specific shape measurements such as length 

and width of the leaves or their area are typically used to automate the classification 

using machine learning techniques such as neural networks. The Iris plant classification 

problem addressed here is a widely used benchmark for neural classifiers originally 

compiled by R.A Fisher [204]. The Iris plant database has data for three classes of Iris 

plants, Iris Setosa, Iris Versicolour and Iris Virginica. The dataset has a total of 150 

samples, with 50 samples per class instance. The dataset attributes are sepal length, sepal 

width, petal length, and petal width for the three classes of the Iris plants. The Iris Setosa 

class is linearly separable from the other two classes, Iris Versicolour and Iris Virginica. 
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The latter are not linearly separable from each other. BbNN was used to classify the 

plants in this dataset. The results show less than a 1.5% misclassification rate (see Figure 

29). For this BbNN genetic evolution, the entire set of 150 samples was used as the 

training dataset. The inputs for the network are the sepal area and the petal area 

calculated by multiplying the sepal width with the sepal length, and the petal width with 

the petal length, respectively. The population size of 80 chromosomes was used for 

evolution over 10,000 generations. The structure crossover and mutation probabilities 

were set at 0.7 and 0.1, respectively. The weight mutation probability was set at 0.1. 

Table 5 shows the various genetic evolution parameters used. Figure 30 shows the 

average and maximum fitness trends of the genetic evolution process. Maximum fitness 

of 0.99 was achieved after 9403 generations. Figure 31 shows the top few structure 

evolution trends. As before, each color is a unique BbNN structure. The values of the 

curves indicate the number of chromosomes with the same structure in the particular 

generation. Figure 32 shows the evolved network. In the case of the Iris plant 

classification example, the average time it takes to produce a new generation on the 

PPC405 processor running at 300MHz is 23µs. As discussed above, the population 

fitness evaluation speed depends on the population size, network structure of individuals 

in the population, designated output nodes, and number of input patterns. The fitness 

processing speed for the Iris plant classification example ranges from 147 MCPS to 441 

MCPS. 

 

 

 



 

 

Table 5  Genetic evolution parameters used for Iris classification problem 
 

Genetic Evolution Parameters Values 
Population size 80 
Maximum generations 10,000 
Target Fitness 1.0 
Structure and weight crossover probabilities 0.7 
Structure and weight mutation probabilities 0.2 
Activation Function Tangent sigmoid  
Selection Strategy Tournament selection 

 

 

 

 

Figure 29  BbNN training error for Iris plant classification database. Results show  
less than 1.5% misclaasification rate 
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Figure 30  Fitness trends was Iris plant classification using BbNN 
 

 

 

Figure 31  Structure evolution trends for Iris plant classification using BbNN 
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Figure 32  Evolved BbNN network for Iris plant classification database 
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5.7 Summary 

This chapter presents the FPGA design details of the evolvable BbNN platform. 

The design was targeted for a Xilinx Virtex-II Pro FPGA (XC2VP30) housed on a Xilinx 

University Program (XUP) FPGA development board or an Amirix AP130 FPGA 

development board. The implementation is an intrinsically evolvable, functional-level 

EHW platform. The functional units are the neuron blocks of the BbNN.  

 

BbNNs are evolved using genetic algorithms to learn the characteristics of the 

training input patterns. The evolution is a multi-parametric optimization problem 

requiring simultaneous network structure and synaptic weight optimizations. The network 

structure defines the dataflow through the network from the inputs to the outputs and the 

internal configurations of the neuron blocks. Each neuron block can have one of the four 

possible internal configurations depending on the positions of the inputs and the outputs. 

The SBbN implementation presented dynamically adapts to different internal neuron 

block configurations based on the network structure specified in the BbNN chromosome. 

The synaptic weights and biases have been implemented as registers and can be updated 

dynamically. Thus, the implementation of the BbNNs presented here can be evolved 

intrinsically on the FPGA and does not require any runtime FPGA reconfiguration cycles. 

This saves the overheads of FPGA reconfiguration times that are typically in millisecond 

range (see section  2.5.2.2). The dataflow between the neuron blocks is handled 

asynchronously using a P/T dataflow network model. This enables larger networks to be 

scaled across multiple FPGAs and evolve in parallel or to use the same FPGA network in 
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a time-multiplexed manner for larger networks that cannot be accommodated on a single 

FPGA. The genetic algorithm used to evolve the BbNNs runs on the on-chip PowerPC 

processor in the Virtex-II Pro FPGA. The population fitness evaluations are performed 

directly on the BbNN hardware. Thus, the system can be deployed as a compact, 

embedded, evolvable platform in real-world applications.  

 

Chapter  6 introduces the online learning with the BbNNs and presents an 

application that demonstrates the intrinsic online evolution capability of the design. 

 

 



 

6 ONLINE LEARNING WITH BBNNS 

BbNNs can be used for applications of artificial neural networks such as pattern 

classification, signal prediction, function approximation, process control and feature 

recognition. In the past, BbNNs have been applied to mobile robot navigation [23], 

multivariate gaussian distributed pattern classification [182], chaotic time series 

prediction [183], ECG signal classification and heart beat monitoring [4, 5], and Iris plant 

classification [186]. The on-chip training capability of the developed BbNN platform 

extends its capabilities to a number of different applications in dynamic environments.  

 

A recurring concern of using artificial neural networks in practical applications is 

its ability to generalize and apply its training knowledge satisfactorily. A training dataset 

that is a good representative set of the actual data that the network may be exposed to in 

practice is important for good generalization. But this is difficult to achieve, especially in 

dynamic or unpredictable environments requiring retraining of structure and parameters 

of the network. Under such circumstances the ability of online training is important to 

maintain reliable system performance. The on-chip training capability of the developed 

BbNN platform is ideally suited for applications in dynamic environments. This chapter 

presents an online training approach for BbNN platform and an application to 

demonstrate its capabilities.  
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6.1 Online Training Approach 

With the advantage of on-chip training capability, the developed BbNN platform 

can be deployed in dynamic environments and programmed to adapt to variances in 

environmental stimuli. The network can be deployed in an actor-critic fashion with the 

network in the active mode performing the actor’s role and a critic analyzing the 

responses of the network to the environmental stimuli. There are three online evolvable 

system deployment scenarios envisioned.  

1. The deployed network is in active mode producing the outputs to input stimuli 

from the environment. The critic constantly analyzes the network’s performance 

and on recognizing deviations beyond a certain threshold either in the expected 

network outputs, the inputs, or performance, can trigger a network retraining 

cycle to adapt to the variances in the environment. In this scenario the network is 

switched between the training and the active modes as dictated by the critic. 

2. In the second scenario, the network can be scheduled to automatically switch 

between the training and the active modes in a time-multiplexed approach. The 

critic, on detecting deviations in performance beyond the threshold, can deploy 

the last known fittest network obtained in the training mode to the active mode to 

improve the system performance. This is illustrated in Figure 33. 

 



 

 

 

 
 

Figure 33  Single network scheduled to switch between training and active modes 
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3. Instead of switching a single network between training and active modes, two 

networks could be used simultaneously, with one in the active mode and the other 

in the background training mode. As before, the critic can load the last known 

fittest network from the training mode to the active mode to improve system 

performance to the variances in the environmental stimuli. This is illustrated in 

Figure 34. 

 

In each of the above scenarios, the network is expected to be trained online. In the 

genetic evolution approach discussed in section  4.2 and used to evolve BbNNs, genetic 

operators such as selection, crossover, and mutation are used to produce offspring for the 

new generation. The new population is ranked using the computed fitness levels of the 

individuals. The rankings are used in the selection process to choose mates for the genetic 

crossover. The fitness of each individual in the generation is determined by evaluating the 

outputs of the network to the input training patterns. The computed outputs are compared 

with known target outputs to determine the mean squared error. The fitness level of the 

network is proportional to the computed mean squared error. This approach is convenient 

for offline training in supervised mode with known target outputs for the input training 

patterns. In the case of online training, target outputs for incoming input patterns are 

generally not known. This makes determining the fitness of the population difficult. In 

such scenarios, population fitness has to be estimated from actual or estimated 

environmental responses to computed outputs. This is illustrated in the equations below. 
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Figure 34  Two networks scenario. One in active mode and the other in training mode 
 

 



Network output is a function of the inputs, the current environmental state, and 

the network structure and parameters. Thus, if the inputs are , the current 

environmental state is , and  represents the network parameters, then the network 

output is a function of these variables as shown below. 

tX

tS nK

 

( )nttt KSXfY ,,=  (7)

 

The new state of the environment is a function of the previous state  and 

the outputs  as shown below. 
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The estimated fitness is the function of the new state  and the desired state 

 of the environment. 

1+tS

∧
+1tS

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∧
++ 11, ttn SSfF  (9)

 

If the fitness can be estimated with reasonable confidence level, the genetic 

algorithm approach used in the offline supervised evolution can be used for online 

evolution. 
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Figure 35  Online training system model 
 

6.2 Online Evolution of BbNNs 

The intrinsically evolvable BbNN platform (see chapter  5) can be adapted in-field 

via online evolution. This capability vastly enhances BbNN system performance and 

usability for applications in dynamic environments. This section gives details of the 

online evolution model that can be used with BbNNs. 

 

Consider two system models with states S1 and S2 as shown in Figure 35. The 

outputs  of the system S1 control the behavior of the system S2 as shown. Outputs  

are a function of the inputs  to the system S1 and parameters  of system S1 as shown 

below.  

ty ty

tx km

( )ktt mxfy ,=  (10)

 

The inputs  to system S1 can be computed by observing the current state of 

system S2. The goal is to keep system S2 in a desired state  by controlling its 

behavior using signal . The system state of S2 is deterministic and depends on control 

tx

( )tS
∧
2
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input  and the current value of an input time-varying signal  to system S2.  

signal behavior depends on external factors that may not be controllable by our system 

models. To maintain system S2 in the desired state at all times, it is essential to predict the 

future behavior of signal  in advance to adjust S1 model parameters  that control 

the S2 system inputs .  

ty )(tu )(tu

)(tu km

ty

 

We can use online evolution with the BbNNs to predict the future values of the 

signal  from its current and past values. The current value of the signal can be 

determined as shown below.  

)(tu )(tu

 

The expected system state at time t,  is a function of control inputs  to the 

system S2 as shown below. 
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The current value of can be computed from the observed state )(tu ( )tS2 , the 

expected state , and the predicted  . ( )tS
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Figure 36  Time delayed neural network 
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Thus, recent history of the  signal values can be used to train the BbNNs 

online. This signal prediction technique is called a time delayed neural network (TDNN) 

as is illustrated in Figure 36 [3]. The overall system performance can be determined from 

observed and target system states by computing mean squared error as shown below.  

)(tu

 

( ) ( )
2

22
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

∧
tStS

N
E

s
 (13)

 

E
P

+
=

1
1  (14)

 

Where, Ns and P are the number of state parameters and system performance 

respectively. On analyzing error signal E the critic can choose to trigger an online re-train 

cycle (as in scenario 1 in section  6.1) or load the last known fittest network from the 

training mode to the active mode (as in scenarios 2 and 3 in section  6.1) to improve the 

system performance. 

 

The above described general system model is applicable to many real-world 

application scenarios such as cruise control systems in automobiles, industrial process 
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control, prediction of solar radiation dosage levels, or guidance systems in aircraft. The 

following section demonstrates online evolution of BbNNs using an example application.  

 

6.3 Case Study: Adaptive Neural Luminosity Controller 

An important issue facing this generation is the global climate change due to the 

effects of greenhouse gas emissions and increased energy consumption. Conservation of 

energy is of prime importance to check the greenhouse gas emissions and conserve 

depleting resources. According to the Clinton Climate Initiative (CCI) program of former 

US president William J. Clinton, 75% of the global emissions of greenhouse gases come 

from the cities and 50% of the city’s emissions are generated by its buildings. The CCI 

program is fervently promoting a Global Energy Efficiency Building Retrofit Program to 

reduce energy consumption in a city’s buildings [205]. The benefits of energy 

conservation in buildings not only helps fight global climate change but also results in 

considerable savings in energy costs. This application is motivated by the needs of energy 

conservation and reducing the energy costs.  

 

A huge portion of the energy consumption in a building is the lighting. Most 

people prefer illuminated corridors and well lit rooms and hallways in the buildings. Our 

aim is to control the lumen outputs of the lamps in the buildings to maintain a sufficient 

illumination as per requirements at different times of the day. The amount of illumination 

in a room varies depending on the ambient light intensity, which is dependent on factors 

such as time of day, windows, shades and curtains, and object shadows. These factors are 



time and space variant and hence the amount of illumination in a room varies with the 

ambient light intensity levels. To provide the target illumination levels we need to 

intelligently control the lumen outputs of the lamps illuminating a room depending on the 

ambient light intensity levels.  

 

This application fits the system model described in section  6.2. Signal  

corresponds to the control inputs to the electronic ballasts used to regulate the light 

intensity outputs of the lamps. Signal  can be obtained by observing the current light 

intensity levels, i.e. the outputs of the light sensors in the room. The time varying signal 

 is the ambient light intensity and the desired target state  is the target light 

intensity level. If the ambient light intensity levels can be predicted we can control the 

luminosity levels in the room by adjusting the control inputs to the electronic ballasts. To 

predict the ambient luminosity levels in the room we used online evolution with BbNNs.  

ty
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The following discussion lays out the simulation experimental setup and the 

approach. 
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6.3.1 Simulation Experimental Setup 

Figure 37 shows a layout (top view and front view) of a room with area 30’×10’ 

used as the reference room for our simulation experiment. The room has 7 fluorescent 

light fixtures and 2 light sensors attached to the ceiling as shown. The reference 

illumination surface is an oblong conference table shown in the figure. The distances 

between light and sensor placements as well as the reference surface are as shown in 

Figure 37. The room has a large window (not shown in the front view) on the wall 

opposite to that of the door. Each light fixture has associated electronic ballast used to 

control lumen output of the lights. The ballasts are assumed to be similar to Lutron Eco-

10TM TVETM, fluorescent dimming ballast from Lutron Electronics Co [206]. The ballasts 

support continuous, flicker-free dimming from 100% to 10% of measured relative light 

output with control inputs ranging from 0-10VDC. Further, the ballasts have a linear 

dimming curve with respect to control input voltage as shown in Figure 38 [206]. For the 

sake of our simulation we will assume that all the fluorescent lamps are identical in terms 

of their lumen outputs and corresponding power consumption. The contribution to the 

light intensity levels on the reference surface by the lamps will be governed by the 

inverse square law. This means, if a lamp lumen output is L foot-candles (FC) then the 

light intensity at a point at a distance d from the lamp source will be L / d2. The light 

sensors used are linear photodiode sensors similar to commercial sensors available from 

PLC Multipoint Inc. [207]. These are low voltage light sensors with linear voltage signal 

characteristics with respect to the measured light intensity. The plot in Figure 39 

illustrates the linear output characteristics of the photodiode sensors.  



 

 
 

Figure 37  Layout of the reference room used for simulation 
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Figure 38  Plot of measured relative light output (%) versus ballast control input 
 
 
 
 

 
 

Figure 39  Plot of sensor signal output (V) versus measured light intensity  
(in percent of calibrated peak intensity) 
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The sensors can be calibrated via a potentiometer to change the sensitivity or foot-

candles/volt to adjust the range of sensed light intensity. For simplification we will ignore 

various lumen losses and lumen output variations due to ambient temperature variations, 

ballast factor loss, and other optical obstruction factors such as light fixtures, or dust in 

our calculations. We will also assume that the power consumption of fluorescent lamps is 

linear with respect to measured light output. This is a fair assumption to make in the case 

of fluorescent lamps [208]. Table 6 gives the specifications of the lights and sensors used 

in the test room. 

 

Table 6  Light and sensor specifications for the test room 
 

Parameter Value 
Number of lights  7 
Number of sensors 2 
Cost function factor weights (q1,q2,q3) 1.0 
Ballast dimming range 10% – 100% RLO 
Ballast control signal range 0 – 10 V DC 
Slope of ballast curve 756 
Calibrated sensor range 0 – 420 FC 
Sensor output range 0 – 9V DC 
Sensor sensitivity 0.02 V/FC 
Lamps per fixture 3 
Lamp power rating 32 W / lamp 
Max lumen output of the lamp 2800 lm / lamp 
Lamp efficacy 87.5 
Peak illumination capacity (at 0% ambient intensity) 420 FC 
% Relative light output at zero ballast control input 10% 

Distances between lamps and surface reference points Calculated using data in 
Figure 37 

Re-training trigger threshold 5 FC 
 

 



6.3.2 Adaptive BbNN Predictor  

As discussed in section  6.2, we will use collected history of the ambient light 

intensity levels during the course of the day to train the BbNNs using genetic algorithms 

for predicting the future ambient light intensity levels. Ambient light intensity level at the 

current time step ‘t’ can be estimated from the current luminosity readings of the 

reference surface by the light sensors and the expected light intensity levels at the 

reference surface due to the lamp outputs. For our simulation example we will assume the 

identical ambient light intensity levels throughout the entire reference surface.  
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 where,  

jSL  Light intensity at reference surface of sensor Sj 

Li Lumen output of light fixture i 
N Total number of light fixtures 
di Distance in feet between the light fixture i and reference surface 
LA Ambient light intensity at reference surface 

 

 

For our simulation purposes we will assume the ideal ambient light intensity 

varies at different times of day (time step = 10 mins) as shown in Figure 40. The 

luminosity levels in the plot are % of the peak light intensity at the reference surface 

provided by all the light fixtures running at full capacity and 0 foot-candle ambient light 

levels. This is about 420 foot-candles for our test room as calculated from maximum 

lamp lumen outputs and the distances between reference surface and the lamps. This 
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value is given in the specifications chart in Table 6 above. The following are the 

simulation experimental steps. 

 

6.3.2.1 Step 1: Pre-training the BbNN 

The BbNN predictor is first pre-trained using offline genetic evolution with the 

ideal values of the ambient light intensity levels. Figure 41 shows the training results and 

Figure 42 shows the prediction error. As can be seen the peak error is less than 0.6%. 

Figure 43 shows the fitness trends over generations. Only the first 500 generations have 

been shown in the figure to highlight the population fitness improvements in the first 100 

generations. The maximum fitness of 0.99 was achieved in 1557 generations. Figure 44 

shows the corresponding evolved BbNN network. Table 7 shows the GA evolution 

parameters used.  

  

 

Figure 40  Ideal luminosity levels in the test room 
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Figure 41  Results of the BbNN pre-training. Plot shows the actual and the predicted ambient 
luminosity values as learnt by BbNN 

 

 

 

Figure 42  Prediction error for the offline evolution 
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Figure 43  Avergae and maximum fitness values over generations (offline evolution) 
 

 

Table 7  Genetic evolution parameters used for BbNN predictor 
 

Parameter Value 
Activation Function Hyperbolic tangent function 
Selection Strategy Tournament selection 
Population size 80 
Maximum generations 2000 
Structure Crossover probability 0.7 
Structure Mutation probability 0.3 
Weight Mutation probability 0.3 
Number of patterns 120 
Inputs per pattern 4 
Evolution strategy Ellitist evolution  
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Figure 44  Evolved BbNN after 1557 generations 
 

 128



To simulate dynamic ambient light intensity behavior we will assume two cases, 

(i) a cloudy day with lower ambient luminosity than the ideal level shown above, and (ii) 

a sunny day with higher ambient luminosity levels. These are shown in Figure 45. Figure 

45 also shows the target luminosity levels required in the room at different times of the 

day. The pre-trained BbNN network is then deployed in field to predict the ambient 

luminosity levels. The critic observes the BbNN’s prediction for time step ‘t’ and 

compares it with the ambient light intensity level observed during time step ‘t’ to judge 

BbNN’s performance under current conditions. On noticing a deviation of 0.05 it triggers 

an online re-training cycle for the BbNN predictor. The online training uses the ambient 

intensity values collected since the first time step (4.00) for training the network. The 

genetic evolution parameters are the same as the ones used for offline training shown in 

Table 7. 

 

 

Figure 45  Ambient luminosity test cases and expected target luminosity 
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6.3.2.2 Step 2: Simulating BbNN Predictor Operation (Cloudy day)  

Figure 46 shows the ambient luminosity pattern learned by the BbNN during 

offline training and the current ambient luminosity pattern. The BbNN predicts the 

ambient light reasonably well until 7:50. The critic notices a deviation greater than 0.05 

in the predicted ambient intensity value at time step 8:00 and triggers the first online re-

training cycle. Note, Figure 46 also shows the predictions that the BbNN predictor would 

have made beyond 8:00 without online re-training. Figure 47 shows the improved 

predictions after the first re-training cycle. The critic again notices a deviation greater 

than 0.05 in the predicted ambient intensity value at time step 17:50 and triggers the 

second online re-training cycle. Figure 47 also shows the predictions that the BbNN 

predictor would have made beyond 17:50 without the second online re-training. Figure 

48 shows the improved predictions after the second re-training cycle. Figure 49 shows the 

prediction errors for the pre-trained, the second re-training cycle, and the second re-

training cycles, respectively. The fitness trends for the first re-training cycle, and the 

second re-training cycles are shown in Figure 50 and Figure 51, respectively. The 

evolved BbNNs for the first re-training cycle, and the second re-training cycles are shown 

in Figure 52 and Figure 53, respectively. 

 



 

 

 

Figure 46  Pre-trained ambient luminosity predictions and the current ambient luminosity 
 

 

 

Figure 47  Predictions improve after first re-training cycle at 8:00 
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Figure 48  Predictions improve after the second re-training cycle at 17:50 
 

 

 

Figure 49  Prediction errors for pre-trained, first re-training, and  second re-training cycles 
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Figure 50  Average and maximum fitness trends for the first re-training cycle 
 

 

 

Figure 51  Average and maximum fitness trends for the second re-training cycle 
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Figure 52  Evolved network after the first re-training cycle 
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Figure 53  Evolved network after the second re-training cycle 
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6.3.2.3 Step 3: Simulating the BbNN Controller Operation (Cloudy day) 

In Step 2, evolution was used to predict the ambient light intensity values. To 

control and maintain the luminosity levels in the test room we need to adjust the ballast 

control inputs. There are 7 light fixtures in the room with one ballast per fixture. Hence 

we have 7 ballast control inputs to adjust. Our goal is to maintain the target illumination 

levels and minimize the energy consumption of the lights. Another goal is to maintain all 

the lights at about the same intensity levels to increase the relative lifetime of all the 

lamps. So our cost function for this minimization problem should account for each of 

these factors. It can be modeled as shown below. 

 

( ) ( ) ( )xUqxGqxPqCFFunctionCost 321 ++=  (16)

where, 

321 ,, qandqq Weights for each of the factors in the cost function 
( )xP  Estimated average power consumption per lamp 
( )xG  Estimated average deviation from the target luminosity 

level per sensor 
( )xU  Factor for load distribution across the lamps 

x  BbNN controller outputs 
 

Average power consumption per lamp can be calculated from the ballast control 

inputs (BbNN outputs) and the reported lamp efficacy by the lamp manufacturer as 

shown in the equations below. 
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where,  

N  Number of lamps  
iL  Estimated lumen output of the lamp I (in % peak RLO) 

iE  Efficacy of lamp i as reported by manufacturer (in % Lmax/watt) 
  

 As per our assumption, since all the lamps are identical, . Lumen output of 

the lamps can be calculated from the ballast control inputs and their linear relationship 

with lamp lumen outputs as dictated by the plot in Figure 38. 

EEi =

 

( ) ( )
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xP i

i
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= 1  (19)
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max ×=
L

wattlumensEwattLE  (20)

 

where,  

1k  Slope of the lamp output versus ballast control input curve 
shown in Figure 38. 

c  % RLO output at 0=ix  
 

Light intensity at a point on the reference surface as measured by sensor Sj is 

equal to the summation of projected light intensities on that point from all the lamps plus 

the ambient light intensity. Thus measured light intensity by sensor Sj on surface 

reference point can be given by the following equation:  
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The estimated average deviation G(x) from the target luminosity level LT as 

measured by M sensors is thus given as shown in the following equation:  
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To ensure equivalent load distribution across all the lamps we can include a load 

factor U(x) in the cost function as shown below.  

( ) ( )ki xxxU −= max  (24)

 

This is a linear problem and can be solved easily solved by a BbNN of grid size 1 

x 7. Each of the 7 outputs of the BbNN can be used to control the electronic ballasts. We 

will refer to this BbNN as the BbNN controller in the discussion below to avoid 

confusion with the BbNN predictor, described above, used to predict the ambient light 

intensity values. At every time-step the BbNN predictor described above can feed the 

predicted ambient light intensity values to the BbNN controller. The controller can 

evolve to find optimal values for the ballast control inputs. We can use the equation 

below as a fitness function for GA evolution. 
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CFCFFFitness −= max  (25)

 

Table 8 shows the genetic evolution parameters used by the BbNN controller. 

Figure 54 shows the complete BbNN predictor - controller system used in this case study. 

Figure 55 shows the target and actual luminosity levels (in FC) in the room with pre-

trained ambient prediction values. Figure 56 shows the corresponding luminosity error. 

The large deviation from target luminosity observed is due to poor ambient luminosity 

predictions in the pre-trained case. Using the online evolution vastly improves the 

luminosity levels in the room with little deviations from target values. This can be seen in 

Figure 57 which shows the target and actual luminosity levels in the room with ambient 

prediction values obtained with online evolution. Figure 58 shows the corresponding 

luminosity error. The spike observed in the luminosity error between 19:00 and 20:00 is 

due to the high ambient luminosity then required. The ballast control inputs during these 

times are at 0V, which corresponds to 10% relative light output of the lamps. This is the 

minimal setting for the ballasts used. So the spike observed in the luminosity error curve 

is actually due to the summation of 10% lamp output and the ambient light intensity. 

Figure 59 shows the power consumption (in watts) by the lights for the case of pre-

trained BbNN predictor. Figure 60 shows the power consumption values with using 

online evolvable BbNN predictor. We can see that the average power consumption 

increases for the case of online evolvable BbNN predictor as compared to the pre-trained 

results. This is because the luminosity levels for the pre-trained case are significantly 

lower than the required target luminosity. The lights are dimmer as the ambient intensity 

predictions are much higher than the actual in the pre-trained case.  

 139



 

 

Table 8  GA evolution parameters used for BbNN controller 
 

Parameter Value 
Activation Function Logistic sigmoid function 
Selection Strategy Tournament selection 
Population size 60 
Maximum generations 1000 
Structure Crossover probability 0.7 
Structure Mutation probability 0.3 
Weight Mutation probability 0.3 
Evolution strategy Ellitist evolution  

 

 

 

 

 

Figure 54  BbNN predictor - controller block diagram 
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Figure 55  Target and measured luminosity levels as recorded by the  
light sensors. (pre-trained case) 

 

 

Figure 56  Error between target and measured luminosities (pre-trained case) 
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Figure 57  Target and measured luminosity levels as recorded by the  
light sensors (online evolution case) 

 

 

 

Figure 58  Error between target and measured luminosities (online evolution case) 
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Figure 59  Power consumption (pre-trained case) 
 

 

 

Figure 60  Power consumption (online evolution case) 
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The plots also show the average power consumption for the case of not using any 

predictors or controllers and simply turning the lights ‘ON’ at full capacity when the 

target intensity levels are 0.9. Using the BbNN predictor-controller saved an average of 

140W throughout the day. At an average daily rate of $0.15 per KWhr, this resulted in 

savings of $0.42 in energy costs per room per day. For a large skyscraper the savings 

quickly add up. Figure 61 shows the fitness curves and evolved network of the BbNN 

controller for the 4:00 time step as an example of the BbNN controller module. 
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(a) 

 
(b) 

 
Figure 61  BbNN controller at time - 4:00hrs. (a) Fitness Curves (b) Evolved BbNN 
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6.3.2.4 Step 4: Simulating BbNN Operation (Sunny day) 

Step 2 above is repeated for the case of sunny day ambient luminosity. The results 

are as shown below. Figure 62 shows the pre-trained predictions of ambient luminosity 

values along with the actual ambient luminosity values. As before, the critic compares the 

predicted ambient luminosity values with the observed ambient luminosity values for 

each time step and on noticing a deviation of more than 0.05 triggers an online re-training 

cycle. The BbNN predictor performs well until 7:30. The first re-training cycle is 

triggered at 7.40. Due to less training data the BbNN predictor couldn’t learn the steep 

rise in the ambient luminosity values. As a result multiple re-training cycles are triggered 

for this ambient luminosity dataset. In total 8 re-training cycles were triggered during the 

entire course of the day. Table 9 shows all the retraining cycle times for the sunny dataset 

case. As can be seen from the table, the BbNN predictor performs poorly for most of the 

steep rise due to lack of enough training data, but continuously attempts to improve its 

performance through online evolution. The prediction values are within the acceptable 

range from 9:10 onwards until 17:10, at which point the seventh re-training cycle is 

triggered. The last re-training cycle (eighth re-training cycle) is triggered at 19:10. Figure 

63 shows the ambient light predictions by the evolvable BbNN throughout the course of 

the day along with the true ambient light values. The re-training cycle points are 

indicated by red points on the curve.  

 

 

 



 

 

 

Figure 62  Actual and pre-trained predictions of ambient light intensity 
 

 

Table 9  Re-train cycle times 
 

Time of day Re-train cycle number 
7:40 1 
8:00 2 
8.10 3 
8.40 4 
8:50 5 
9:10 6 
17:10 7 
19:10 8 
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Figure 63  Actual and predicted ambient light intensity values throughout the course  
of the day. The retrain cycle times are shown with red dots. 
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The plot in Figure 64 shows the prediction errors with all the re-training steps. Each 

curve shows the prediction error in ambient light intensity assuming the subsequent re-

training cycles are not performed. The plot in Figure 65 shows the prediction errors for 

the pre-trained case and the eighth re-training cycle for comparison. As can be seen, 

although eight re-training cycles were required during the course of the day, the 

predictions are within our error range of 0.05 for all the time steps except the steps that 

triggered a re-training cycle. Figure 66 shows the average and maximum fitness curves of 

the eighth re-training cycle. Figure 67 shows the evolved BbNN after 1001 generations of 

the eighth re-training cycle. 

 

 

 

Figure 64  Prediction errors of all the re-training steps. The errors curves show the  
prediction errors assuming the subsequent re-training cycles are not triggered 
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Figure 65  The plot shows the prediction errors for the eighth re-training cycle and  
the pre-trained case  

 

 

 

Figure 66  Fitness curves for the evolves BbNN eighth re-training cycle 
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Figure 67  Evolved BbNN network after eighth re-training cycle 
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6.3.2.5 Step 5: Simulating BbNN controller operation (Sunny day) 

The ambient light predictions of step 4 are fed to the BbNN controller and step 3 

is repeated to simulate the BbNN controller operation. The results of the simulation are as 

below. Figure 68 shows the target and actual luminosity levels (in FC) in the room with 

pre-trained ambient prediction values. Figure 69 shows the corresponding luminosity 

error. The large deviation from target luminosity observed is due to poor ambient 

luminosity predictions in the pre-trained case. Using the online evolution vastly improves 

the luminosity levels in the room with little deviations from target values. This can be 

seen in Figure 70 which shows the target and actual luminosity levels in the room with 

ambient prediction values obtained with using online evolution. Figure 71 shows the 

corresponding luminosity error. The spike observed in the luminosity error between 

19:00 and 20:00 is due to the higher ambient luminosity than required. The ballast control 

inputs during these times are at 0V, which corresponds to 10% relative light output of the 

lamps. This is the minimal setting for the ballasts used. So the spike observed in 

luminosity error curve is actually due to summation of 10% lamp output and the ambient 

light intensity. Figure 72 shows the power consumption (in watts) by the lights for the 

case of pre-trained BbNN predictor. Figure 73 shows the power consumption values with 

using the online evolvable BbNN predictor. We can see that the average power 

consumption decreases for the sunny case by using an evolvable predictor as would be 

expected. The pre-trained predictions predict less ambient light than the actual intensities 

for the sunny case. Due to this, the lumen outputs of the lamps are higher than required, 

burning more power.  



 

 

Figure 68  Target and measured luminosity reading for the sunnydataset - pre-trained case 
 

 

 

Figure 69  Luminosity error for the sunny dataset - pre-trained case 
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Figure 70  Target and measured luminosity readings for the sunny dataset  
with all eight re-train cycles 

 

 

 

Figure 71  Luminosity error for the sunny case with all eight re-training cycles 
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Figure 72  Total power consumption for sunny case - pre-trained case 
 

 

 

Figure 73  Total power consumption with sunny dataset  - eight re-training cycles 
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The plots also show the average power consumption for the case of not using any 

predictors or controllers and simply turning the lights ‘ON’ at full capacity for target 

intensity levels of 0.9. Using the BbNN predictor-controller to regulate the luminosity in 

the room saved on an average 310W throughout the day. At an average daily rate of 

$0.15 per KWhr, this resulted in savings of $0.93 in energy costs per room per day. 

 

6.4 Summary 

This chapter presented the concepts of online evolution with the BbNNs and 

demonstrated simulation of a case study using the evolvable BbNN platform in a 

dynamic environment. A training dataset that is a good representation of the actual data 

processed by the artificial neural networks is difficult to obtain in practice. This is 

especially true for applications of artificial neural networks in dynamic environments. 

The capability of online adaptation in a dynamically changing environment significantly 

improves system reliability and performance as was seen in the case study. For online 

evolution the hardware implementing the artificial neural networks should support 

intrinsic training, as in the implementation demonstrated in chapter  5. Online training 

capability can also be used to provide a degree of fault tolerance to external component 

failures. For example, in response to the failure of one of the input sensors to the network 

in-field, the network can be re-trained to ignore the corresponding input and ‘bypass’ the 

failure. This ensures reliable operation of rest of the system, or at least provides graceful 

degradation in system performance.  

 



 

7 PERFORMANCE ANALYSIS 

This chapter presents a performance model characterizing BbNN implementations 

on devices across the computing space. In particular, we compare the computational 

throughput of BbNNs across general purpose processors and FPGAs. We explore 

performance metrics for quantitative comparison. The chapter is organized as follows. 

The concepts for characterizing the computing device space are introduced first followed 

by the discussion of performance metrics. Peak throughput of BBNN implementations 

across different computing devices is compared and model sensitivity analysis is 

presented. The chapter concludes with the analysis of smart block-based neuron models 

described in section  5.1.3. 

 

7.1 Computational Device Space 

A computational device is a machine that processes data. The technology used to 

build this computational machine may vary significantly and can be electronic, 

mechanical, bio-computing, or any other technology that can be used to implement 

computations. Each set of computational instructions that process data is an individual 

functional configuration. The ability of the computational device to support diverse 

functional configurations defines its functional diversity. The Computational Device 

(CD) space is a broad spectrum of these computational machines and includes different 

computational technologies such as VLSI computing, bio-computing, and nano-
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computing. Advances and innovations in these technologies continuously reshape and 

broaden this space. The VLSI Processing (VP) space is the part of the CD space occupied 

by the VLSI computing devices. This encompasses the computational devices using 

semiconductor fabrication processes. The VP space can be characterized by the device 

support for functional configuration diversity. At one end of the space are soft computing 

devices (also called general purpose computing devices) that can support any functional 

configuration depending on the sequence of programmable computing instructions 

executed. The hardware circuitry implementing the instructions is programmed on silicon 

at the time of fabrication. The instructions facilitate the functional configuration diversity 

after fabrication. At the other end of this space are hard computing devices with fixed 

functional configurations programmed in hardware at the time of fabrication. These 

devices have restrictive functional diversity. The Reconfigurable Processing (RP) space 

is a subset of VP space and represents the reconfigurable computing devices. Devices in 

the RP space enable diversity in functional configurations using reprogrammable 

hardware instructions. These hardware instructions are at lower levels of abstraction than 

to the functional configuration sequences in soft computing devices. The hardware 

instructions remap/reconfigure the programmable hardware units and their 

interconnections. 

 

In this manuscript, the use of the term ‘computational device’ refers to the devices 

in the VP space. Although this is a restrictive meaning of the term with reference to our 

discussion above, it is convenient to use for the discussion in the rest of this chapter.  
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The broad range of implementation options in the VP space presents many 

different choices to pick to implement computations. A particular implementation choice 

is based on the examination of various application and resource specific constraints 

enforced by the chosen implementation medium. Metrics such as speedup, throughput, 

area, power, cost, or some combination of these guide the implementation choice. 

Application-specific constraints tend to be unique to a particular application or a set of 

applications; hence they are difficult to reasonably generalize. Resource constraints on 

the other hand are enforced by the implementation medium and may or may not be 

application-specific. Never the less, resource constraints can play an important role in 

design decisions for a particular application. For example, an I/O data rate for a particular 

implementation medium may be limited by the interconnect bus speeds. Lower bus 

speeds may limit the achievable I/O throughput, making the device unsuitable for an I/O-

intensive application such as a network router. In another case, throughput might be 

limited by the input data processing speeds achievable with an implementation on a 

particular medium. A computationally intensive application may not be served well by 

this computing device. To be able to make such informed design decisions, it is 

imperative to characterize computing devices with respect to various computational 

metrics of interest.  

 

7.2 RP Space 

Continued innovations in RP space in the last two decades have blurred the 

traditional boundaries between soft and hard computing devices. Devices in this space 
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are broadly categorized as field programmable logic devices (FPLDs). These offer the 

flexibility of post-fabrication functional configuration diversity of soft computing devices 

along with the custom/semi-custom design advantages of hard computing devices. The 

technology offers both coarse-grained as well as fine-grained logic devices. Coarse-

grained logic devices such as the field programmable object array (FPOA) from MathStar 

can reprogram functional object behaviors and their interconnections using different 

functional configuration instruction streams [209]. Typical functional objects are ALUs, 

MACs, and the register files (RFs). Fine-grained logic devices reconfigure gate level 

logic circuitry using configuration bitstreams as opposed to reprogramming circuitry at 

the functional objects level. Current state of the art of this technology is the field 

programmable gate array (FPGA). These devices contain arrays of configurable logic 

blocks (also called logic array blocks) interconnected via a configurable interconnection 

network. Each logic block is a 4-bit/6-bit LUT plus a flip-flop and can be configured to 

emulate a 4-input/6-input logic function or a flip-flop [210]. Configuration instruction 

bitstreams reconfigure these logic blocks and their interconnection network providing 

post-fabrication functional diversity at logic circuit level. Capacities of these devices 

have grown from a few thousand logic blocks per chip just over a decade ago to the order 

of a few hundred thousand logic blocks per chip. The regular layout architecture of these 

devices on silicon makes them ideally suited to embrace newer fabrication processes with 

smaller feature sizes relatively faster as compared to their custom ASIC counterparts and 

general purpose microprocessors. Increasing speeds and capacities of these devices, along 

with on-chip hard functional cores such as embedded processors, memory, multipliers, 
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and accumulators make them a very attractive low-volume, low-cost custom hardware 

solution from a commercial-off-the-shelf product.  

 

Despite significant advances in FPGA technology over the past decade, there is 

still a performance gap between FPGAs and ASICs. Kuon et al [211] have 

experimentally quantified this performance gap with metrics of speed, area, and power 

for a set of benchmark problems. They noted the performance advantages of increasing 

usage of hard macros in FPGA designs especially in reducing the area gap between 

FPGAs and ASICs. The observed performance gap is mainly due to the resources 

required to support functional diversity in these devices.  

 

With increased capacities of FPGA devices and availability of programmable 

hard/soft cores such as embedded processors, memories, and other peripheral cores, a 

powerful design paradigm has emerged called the Programmable System on Chip 

(PSoC). PSoCs include one or more processors, memories, and peripheral devices on a 

single FPGA interfaced using system and peripheral buses. The platform enables 

execution of computations in software code running on the processor(s) and accelerated 

computations in dedicated custom circuitry designed on reconfigurable FPGA fabric. The 

design flow for such a system is complex and involves embedded software programming 

as well as digital hardware design for custom logic cores used in the PSoC. This tightly-

coupled programmable system on a chip has many applications in embedded systems. 

The system spans across traditional computing boundaries and takes advantage of soft, 

reconfigurable, and hard computing resources simultaneously for higher performance and 



 
 

Figure 74  Reorganization of the VP space with advances in RP device technologies 
 

flexibility. These architectures need heterogeneous design tool flows addressing design 

issues such as partitioning, scheduling, simulation, debugging, verification, performance 

prediction, and performance analysis. Newer performance metrics that can characterize 

this design space are needed for optimized scheduling and partitioning of algorithms as 

well as future architectural projections. Figure 74 illustrates the reshaping of the VP 

space being caused by blurring of the boundaries between traditional computing 

technologies.  

 

 

7.3 Performance Characterization Metrics 

To achieve higher performance we need to maximize the computational 

throughput from a unit area of the silicon chip employed. Keeping in mind the economic 

aspects of computing, functional diversity also plays an important role. Soft computing 

devices offer diversity at the algorithmic level whereas devices in RP space provide 
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functional diversity at a lower level of abstraction, typically at the logic circuit level. It is 

generally understood that fixed functional configurations as in custom hard computing 

devices such as ASICs occupy the upper bound of performance in terms of computational 

throughput, power consumption, and area required on the silicon. The performance based 

on the above three metrics reduces as we move across the computing space towards soft 

computing devices. The metrics introduced here for our analysis compare performance as 

a function of speed, area, and power required for implementing the computational task on 

a computational device. Some of the concepts used have been introduced and explained 

in detail in [212, 213]. These metrics can be used to characterize the computing devices 

in the VP space with respect to computational tasks. They help to maximize performance 

of heterogeneous computing platforms that strive to maximize performance based on 

resource and application specific constraints. These also serve as a guide for future 

architectural projections.  

 

7.3.1 Computational Device Capacity 

Computational device capacity is the measure of computational work per unit 

time that can be extracted from a computational device structure. Thus, if a device offers 

computational capacity  then it can complete N computations in time: capD

capD
NT =  (26)
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The above equation raises two questions: 

(i) How do we characterize computations of computing tasks?  

(ii) How do we characterize tasks?  

 

Tasks are difficult to generalize and are application specific. They may be 

grouped into sets with common features and used for analysis. Computations are task 

specific. If the application tasks are grouped using types of computations as a feature, the 

device computational capacities can be calculated specific to a set of computational tasks. 

Thus, if a computing device offers computational capacity  then it can 

complete  computations in time: 

taskcapD _

taskN

taskcap

task
task D

N
T

_
=  (27)

 

If the computational tasks are grouped using floating point operations as a feature 

then the device computational capacity gives the floating operations per second (FLOPS), 

a metric widely used in measuring performance of computing systems.  

(sec)_
task

FLOP
FLOPScap T

N
D =  (28)

 

If the grouped tasks represent neuromorphic circuits, the computation of interest 

is synaptic connections processed. Thus, the computational capacity will indicate 

synaptic connections processed per second or CPS, another widely used metric used for 

measuring performance of neuromorphic circuits.  
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To calculate raw throughput of tasks on computational devices Dehon [212] 

suggested using a gate evaluation metric. The idea is to count the number of gate 

evaluations in a minimal logic circuit required to implement the computational task. 

Thus, if a device offers capacity  to an application task requiring  gate 

evaluations, the task can be completed in time: 

gecapD _ geN

gecap

ge
task D

N
T

_
=  (30)

 

7.3.2 Computational Density 

Computational density (or functional density) can be defined as computational 

capacity per unit area. This is a space-time metric that is measured in terms of the number 

of operations per unit space-time. Thus, computational density can be calculated as 

shown below.  

A
D

F cap
density =  (31)
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 Area A in the above equation is the silicon area used for providing the device 

computational capacity to the task. This is fabrication process dependent and varies with 

the feature size used in the fabrication process. Thus, the same computation implemented 

using a smaller feature size will have higher computational density as compared to a 



fabrication process using larger feature size. To make our calculations independent of this 

parameter, we normalize area in units of λ, half the minimum feature size of the 

fabrication process. Thus the metric for computational density is measured in units of 

operations/ λ2s.  

)( 2λAT

N
F

task

ops
density

×
=  (32)

 

Thus, in the case of general purpose computing devices such as processors, the 

area is the silicon area used for the implementation of instructions in the computational 

task. This includes the area occupied by the datapath elements, interconnections, and 

internal memory. In case of an ASIC, it is the chip area occupied by the logic gates and 

interconnections of the logic circuit used for implementation of the computational task. 

For an FPGA, it is the chip area occupied by the total number of logic blocks and the 

routing circuits used by the computational task. 

 

7.3.3 Power Efficiency 

Delay and area have been addressed by the device capacity and density metrics, 

but another important aspect of performance evaluation is power consumption. This is an 

important factor in HPC systems, but is critical in many high performance embedded 

computing systems. Dynamic power dissipation is directly related to the yielded device 

capacity via the cycle frequency. The higher the frequency, the higher the dynamic power 
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dissipation will be. Thus, it is interesting to note the device capacity per unit watt (or 

milli-watt) as shown below.  

)(mWP
D

D
d

cap
mWpercap =−−  (33)

 

7.3.4 Discussion 

The above metrics are indicators of computational capacity and density of a 

computational device from a logic-centric view. They largely ignore the impact of the 

associated interconnect and routing costs. For computational structures implementing 

custom dataflow architectures the interconnect costs can substantially grow with 

increasing problem sizes. For example, consider a feedforward fully connected neural 

network implemented as a directed acyclic graph with neural processing elements as 

nodes on an ASIC or an FPGA. Growth in network size exponentially increases the 

number of synaptic interconnections, equally increasing the associated interconnect and 

routing costs. These effects are more pronounced with multi-dimensional networks. This 

can significantly affect the functional density estimates, and more so in RC 

implementations where logic circuits are routed via pre-fabricated multiple-length 

programmable routing interconnects. But these costs are difficult to generalize and 

quantify and they vary depending on the computing device technology used for 

implementation. For the purposes of our analysis here we will largely ignore these costs. 

In case of a 2-dimensional BbNN implementation, the topological restrictions in 

architecture limit the interconnect growth to linear for every additional row or column 
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added to the existing grid. Hence, the effects of ignoring the interconnect costs will be 

tolerable for this particular neural network topology. But the comparison with other fully 

connected networks such as multilayer perceptrons (MLP) will skew our analysis as the 

device capacity may not increase linearly with increases in the size of the network. Also, 

ignored in the above analysis are the data I/O rates and the memory hierarchy effects. 

These will impact the actual computational throughput and device capacity in practice. 

Future work should address these issues. 

 

7.4 BbNN Performance Analysis 

Our goal here is to analyze and characterize BbNN implementations on different 

computing structures ranging from general purpose processors to custom computing 

devices. We will characterize and compare the computational capacities and densities 

provided by various computational devices to BbNN architecture in units of connections 

processed per second as shown in the equations above. For a BbNN, the maximum 

number of connections that can be processed per block computation is 6 as in the case of 

a 2-input / 2-output neuron block. Equation below shows the neuron block computation 

in the case of a 2/2 block.  
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Figure 75  RISC assembly code for a single neuron processing 
 
 

 

where, 

ky  kth output signal of the neuron block 

jx  jth input signal of the neuron block 

jkw  Synaptic weight connection between jth input node and kth output node 

kb  Bias at kth output node 
J, K Number of input and output nodes respectively of a neuron block. 
G(• ) Linear / nonlinear Activation function 

 

7.4.1 Performance Characterization on Processors 

To calculate the capacity provided by a processor we consider the code shown in 

Figure 75. It is RISC assembly code to compute a single output in a neuron block. The 

code omits all the load-store instructions and just shows the main computational part. In 

the case of a 2/2 neuron block there are two outputs which will require the instructions 
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It should be noted that some of these processors do support SIMD extensions and 

hence instructions such as multiply and accumulate. This will reduce the number of 

instructions required for neuron block processing by 2 as a result, skewing our capacity 

estimates by a factor of 1.125. We have not counted the required load instructions to 

bring the data in to the internal registers and the store instructions to store the data back 

in memory. Including these will change the results significantly. For the BbNN block 

computation, we need 10 load instructions to bring in the inputs, weights, and biases from 

memory and require 2 store instructions to store the computed outputs. This adds 12 

instructions to the code shown in Figure 75, reducing our capacity estimates by a factor 

of 0.6.   

where, 

 

 

shown to compute a single output to be executed twice. Peak computational capacity 

provided by the processors can be calculated as shown below.  

Thus, assuming a CPI of 1.0, a scalar processor running at 400 MHz, such as 

PPC405 provides a peak computational capacity of 133 MCPS. Table 10 surveys some 

commercial RISC processors using the metrics described above for BbNN 

implementation. 
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Table 10  Peak Computational Capcity (in MCPS) and density (in CPλ2S) of RISC processors for BbNN block computation 
 

Processor Organization Area 
(mm2) 

λ 
(nm) Area (λ2) Cycle 

Freq Pd Dcap 
(MCPS) 

Dcap  
per mW 

Fd  
(CPλ2S) 

MIPS 24Kc 1 x 32 10.7 130 nm 633 M 261 MHz 363 mW 87 0.24 0.137 
MIPS 4KE 1 x 32 1.7* 130 nm 101 M 233 MHz 58 mW 78 1.33 0.772 

ARM 1026EJ-S 1 x 32 4.2* 130 nm 248 M 266 MHz 279 mW 89 0.32 0.357 
ARM 11MP 1 x 32 1.46* 90 nm 180 M 320 MHz 74 mW 107 1.45 0.591 
ARM 720T 1 x 32 2.4* 130 nm 142 M 100 MHz 20 mW 33 1.67 0.235 

PPC 405 1 x 32 2* 90 nm 246 M 400 MHz 76 mW 133 1.75 0.54 
PPC 440 1 x 32 9.8 130 nm 580 M 533 MHz 800 mW 178 0.22 0.306 

PPC 750FX 2 x 32 40 200 nm 1 G 533 MHz 6.75 W 355 0.05 0.355 
PPC 970FX 2 x 64 66.2 90 nm 8.1 G 1 GHz 11 W 667 0.06 0.082 
PA 8700+ 4 x 64 304 180 nm 9.4 G 750 MHz 7.1 W 1000 0.14 0.107 

 
  *  Synthesizable core area 
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We have also assumed in our analysis an instruction issue rate of one instruction 

per pipeline per clock cycle. This is usually not achievable with practical work loads due 

to data dependencies between instructions, and overheads of memory hierarchies, cache 

miss penalties and page faults. 

 

The processor die areas marked with an (*) are synthesizable core areas. These 

are synthesizable processor cores which can be used in custom System-on-Chip (SoC) 

architectures. Thus they do not include area occupied by the I/O pads. 

 

7.4.2 Performance Characterization on FPGAs 

Figure 76 and Figure 77 show two different pipelined implementations for 

computing a single output of the neuron block. The implementation in Figure 76 uses a 

multiplier accumulator circuit to compute the sum of products and the one in Figure 77 

uses two parallel multipliers. A pipelined multiplier accumulator circuit can produce an 

output every third clock cycle and uses only one multiplier block as shown. Using two 

parallel multipliers can speed up the throughput to one output every clock cycle. Most 

current generation FPGAs have built in configurable hard multiplier cores that can be 

used to implement the required multipliers instead of using logic blocks. We will 

consider both the built-in hard core multipliers and LUT based multipliers in our analysis.  



 

 

 
 

Figure 76  Pipelined multiplier accumulator circuit for neural processing 
 
 
 
 
 
 

 
 

Figure 77  Pipelined parallel multiplier circuit for neural processing 
 

 

 173



 Implementation of the circuit in Figure 76 on a Xilinx Virtex-II Pro XC2VP30-7 

can be clocked at 264 MHz. Since both the neurons can be implemented in parallel, 6 

connections will be processed every 3 clock cycles. The computational capacity can be 

calculated as shown below.  
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Computational density provided by this FPGA can be calculated as shown below. 
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* NOTE:   
(1) The CLB/slice areas used in the above equation and other calculations involving Xilinx 

FPGAs in this chapter are estimates derived from the FPGA package sizes. These are 
NOT ACCURATE. Die areas for FPGAs are not readily provided by Xilinx and is 
regarded as proprietary information by the company. 

(2) These estimates have been derived by estimating the die area from the published package 
sizes and dividing by number of published CLBs per device. Assuming that our die area 
estimates are correct, the CLB area computed will be higher than the actual area as we 
are not discounting for area occupied by others such as IOBs, BRAMs, multipliers, 
transceivers, and routing.  

(3) Ideally, with known CLB areas and the hard multipler/DSP48e areas, we would add up 
the area occupied by all the CLBs, the hard multipliers/DSP48es, and the area required 
for routing interconnects to estimate the total area of the circuit. But, our CLB area 
estimates have been derived from die area estimates divided by the total number of CLBs. 
We are not discounting the area occupied by the hard multipliers/DSP48es, the IOBs, 
and the interconnects. Hence the estimated area per CLB indirectly is accounting for 
routing and hard multipliers. Thus we will ignore the area occupied by multipliers and 
routing resources in our estimates.  

(4) Note, that the computational density values thus computed are only estimates.  
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Table 11 shows the computed capacity and density values for BbNNs provided by 

some selected FPGAs. It should be noted that the area, and speed values are obtained 

using Xilinx synthesis, and place and route tools (ISE v7.1) [214].  
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Table 11  BbNN Computational  Density on FPGAs 
 

FPGA 2/2 Neuron 
Block †† 

CLK 
(MHz) No. CLBs ACLB 

(Mλ2) 
Area A 
(Mλ2) Pd (mW) Dcap 

(MCPS) 
Dcap  

per mW 
Fd   

(CPλ2S) 
AL        156 264 330 589 312 1.33 0.95Xilinx VirtexE XCV3200E-8 

(λ=180nm) [131] ML      153 316 1.25M* 395 693 918 0.53 2.33
AH        264 79 129 364 528 1.45 4.1
AL        201 193 315 475 403 0.847 1.28
MH        304 41 67 271 1821 6.72 27.25

Xilinx Virtex-II Pro XC2VP100-7 
(λ=130nm) [189] 

ML        235 158

1.6M** 

258 554 1408 2.54 5.47
AH        238 32 54 109 476 4.36 8.85
MH        219 57 96 111 1316 11.9 13.74Xilinx Virtex-4 XC4VLX200-11 

(λ=90nm) [210] 
ML        221 153

1.68M** 
257 210 1328 6.31 5.17

AH        143 66 119 58 286 4.93 2.41
AL        128 195 351 114 256 2.25 0.73
MH        198 41 74 97 1186 12.28 16.07

Xilinx Spartan-3 XC3S5000-5 
(λ=90nm) [215] 

ML        173 158

1.83M** 

285 147 1035 7.056 3.64
AL   -  300 264† 1320 - 600 0.45SFRA (λ= 180nm) [216, 217] 
ML     300 316† 5M 

1580 - 1800 - 1.14
 
*   As reported in reference [218] 
** Estimated from reported package area. See Note in section  7.4.2 above. 
†  Xilinx ISE Post mapping result. SFRA tool flow uses Xilinx tools until mapping and use a custom developed place and route tool after that [216, 217].  
††    AH – Sum of product pipeline built using multiplier – accumulator with built-in multiplier 
        AL – Sum of product pipeline built using multiplier – accumulator with LUT-based multiplier 
        MH – Sum of product pipeline built using two parallel multipliers with built-in multiplier 
        ML – Sum of product pipeline built using two parallel multipliers with LUT-based multiplier 
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7.4.3 Results and Discussion 

Sections  7.4.1 and  7.4.2 survey the computational capacities and densities 

provided by some commercial RISC processors and Xilinx FPGAs for 16-bit BbNN 

block computations. The results for capacity and density are plotted for direct comparison 

in each of the following cases; (i) Processor and FPGA-hard MAC (see Figure 78), (ii) 

Processor and FPGA-LUT MAC (see Figure 79), (iii) Processor and FPGA-hard 

Multiplier (see Figure 80), and (iv) Processor and FPGA-LUT Multiplier (see Figure 81). 

The results for computational capacity per mW are plotted in Figure 82, Figure 83, Figure 

84, and Figure 85. 

 

 



 

(a) 

 

(b) 

Figure 78  Comparing processors and FPGAs (Hard MAC) (a) Capacity (b) Density 
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(a) 

 

(b) 

Figure 79  Comparing processors and FPGAs (LUT MAC) (a) Capacity (b) Density 
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(a) 

 

(b) 

Figure 80  Comparing processors and FPGAs (Hard Multipliers) (a) Capacity (b) Density 
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(a) 

 

(b) 

Figure 81  Comparing processors and FPGAs (LUT Multipliers) (a) Capacity (b) Density 
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Figure 82  Comparing power efficiencies of processors and FPGAs (Hard MAC) 
 

 

Figure 83  Comparing power efficiencies of processors and FPGAs (LUT MAC) 
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Figure 84  Comparing power efficiencies of processors and FPGAs (Hard Multiplier) 
 
 

 
 

Figure 85  Comparing power efficiencies of processors and FPGAs (LUT Multiplier) 
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As observed from the results there is a gain of about 3X to 10X in computational 

capacities between scalar processors and FPGAs. FPGAs offer comparable computational 

capacities as superscalar processors with gains of about 0.5X – 2X. Processors with faster 

clock rates and higher instruction issue rates than the PA8700+ could offer even higher 

computational capacities. But, the FPGA computational densities are over two 

magnitudes higher than the superscalar processors, underscoring the area efficiency 

obtained from FPGAs. The density gains of FPGAs are 2X to 34X as compared to scalar 

processors. Comparing power efficiencies, we find that new FPGAs from Xilinx (Virtex 

4 and Spartan 3) are more power efficient than the older FPGAs (Virtex-II Pro and 

VirtexE). Comparing the FPGA and processor power efficiencies, we find 2X to 6X 

gains with FPGA designs using the hard multiplier blocks for the MAC and parallel 

multiplier implementations. The power gains are not significant for FPGA LUT-based 

designs using both the older and newer FPGAs. Although the superscalar processors had 

comparable computational capacities with FPGAs, they consume about 2X to 6X more 

power than the FPGAs. 

 

In general, computational densities in FPGAs are 10X higher as compared to 

processors [212, 213]. In our analysis, it is important to realize that we are comparing 

computational gains for a particular computational task, BbNN computations. Inherent 

parallelism observed in the BbNN block computations cannot be exploited by sequential 

execution on processors. On the other hand, custom implementations in FPGAs can fully 

exploit this parallelism. This is one of biggest factors in the observed computational 



capacity gains. The newer FPGAs provide much higher capacity with lower power 

consumption as compared to processors.  

 

It should be noted that the computational capacities calculated for the processors 

are ideal capacity values rarely achieved in practice. We are assuming instruction issue 

rates of 100% in our calculations. The issue rates for common workloads are much lower 

than the theoretical peak rates. The instruction throughput in processors depends on 

factors such as the pipeline implementation, data dependencies, branch prediction logic, 

out of order execution, and cache penalties. Also, multiple BbNN blocks can execute in 

parallel on FPGAs, linearly increasing the computational capacity with increasing 

network sizes (limited by the number of blocks that the FPGA device can hold), unlike in 

processors. This is shown in Figure 86.  

 

 

Figure 86  Computational capacities of FPGAs and processors as a function of network size 
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7.4.4 Performance of SBbNs 

The smart block-based neuron (SBbN) design presented in  5 is the one used in our 

implementation of intrinsically evolvable BbNNs. Section  5.4 presents the performance 

results for the design. The design can achieve 147MCPS on Virtex-II Pro at frequency of 

245MHz. Why is the computational capacity low compared to the results presented in 

section  7.4.2? The reasoning for this is as below. 

♦ SBbN design is larger than the basic neuron design considered in section  7.4.2. 

The design is larger to accommodate for the extra logic required for the dynamic 

configuration adaptability, activation function lookup table, register storage for 

weights and biases, and the extra multipliers required to accommodate for 1-input 

/ 3-outputs neuron block configuration.  

♦ Use of a multiply-accumulator unit instead of parallel multipliers also affects the 

throughput. The choice to sacrifice the throughput was made to enable the FPGA 

to hold larger networks. Using parallel multipliers would require twice the 

number of hard multipliers per neuron block as compared to the MAC based 

approach. Thus, the fixed number of multipliers available per FPGA quickly 

becomes a bottleneck for network scalability. 

♦ P/T net-based dataflow implementation adopted for reliable asynchronous 

intercommunication between neuron blocks has one side effect. It enforces serial 

execution of the neuron block computation. Although, each of outputs within the 

neuron block compute in parallel. New inputs cannot be applied until the previous 

inputs are consumed and corresponding outputs generated by the neuron block. 

Also, the cycle to lookup the activation function value in the lookup table adds to 



the computation time. In total requiring 10 clock cycles to produce a result at the 

output. At 245 MHz with a maximum of 6 connections processed in a given block 

computation the throughput is 147MCPS per neuron block. The computational 

density with the occupied area of 171 CLBs on Virtex-II Pro (XC2VP30) FPGA 

is 0.54 connections per λ2s. 

 

As shown in Figure 86, it should be noted that the computational capacity 

increases linearly with increase in the network size, unlike the processors. Thus, for an m 

× n network size the peak computational capacity is 147n MCPS. 

 

7.5 Model Sensitivity to Parametric Variations 

Analysis presented above is based on certain parametric value estimations such as 

the CLB area which has been estimated using the published package sizes of FPGA 

devices. It is important to analyze the sensitivity of our model to variations in model 

parameters. The analysis is presented below. 

 

Let Mc be the ideal value of the function computed using model M and Md be the 

observed value due to variation in parameter p from ideal to the observed value. If the 

deviation factor is dp then, 

p

c
d d

M
M =  (38)
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Thus, error in model computation is  
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The percent deviation from the ideal value can be computed as shown below. 
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For example, deviation in peak computational capacity of a processor due to 

variation in observed CPI  from assumed ideal value  can be 

calculated as shown below. 
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Deviation in observed computational density in an FPGA to variation in CLB area 

can be computed as shown below.  

A

d
d d

F
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=  (43)

where, 
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Figure 87 shows a plot of the deviation E in observed computational density 

versus the deviation factor dA of the CLB area. Consider the neuron implementation of 

Figure 77 in Virtex-II Pro FPGA using hard multipliers. The estimated CLB area is 1.6 

Mλ2. If the actual CLB area is 1.8 Mλ2 the deviation in computation density will be by 

11.11 % from the original value of 27.25 CPλ2s. This gives the new density value as 

24.22 CPλ2s. 

 
 

 
 

Figure 87  Deviation in computational density verses die area deviation factor 
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7.6 Summary 

A performance characterization model for BbNNs was presented in this chapter. It 

enables performance comparison across different computational devices based on the 

metrics of computational capacity and density. Computational capacity is the 

computational work that can be extracted from a computational device and can be 

modeled as number of operations per second. Computational density is a space-time 

metric giving the computational work extracted per unit time and area from a 

computational device. Computational density per watt gives the estimate of power 

consumption for the execution of the computation. These metrics were used to analyze 

the BbNN computational capacity on the RISC processors and the FPGAs. The results 

show FPGAs provide on an average 10X higher computational capacities than the scalar 

RISC processors for a single BbNN block. The computational densities of FPGAs are 2X 

to 34X higher than the processors. The computational capacity of FPGAs linearly 

increases with the increasing network sizes, unlike processors. The newer FPGAs from 

Xilinx (the Virtex 4 and the Spartan 3) are more power efficient than the older FPGAs. 

Comparing their power efficiencies with processors, we observe 2X to 6X higher 

computational capacities per mW provided by FPGAs. Although the superscalar 

processors had comparable computational capacities with FPGAs for a single neuron 

block computation, FPGAs consume about 2X to 6X less power and provide 2X to 34X 

gains in computational densities. Model’s sensitivity to variations in its parameters has 

also been analyzed and presented. The deviation in computed values is found to vary 

linearly to parametric variations.  



 

8 SUMMARY AND CONCLUSIONS 

Following list summarizes the major points, concepts, and accomplishments of 

this work.  

 

♦ Evolvable hardware systems (EHW) use reconfigurable computing platforms such 

as FPGAs to evolve hardware circuitry under the control of evolutionary 

algorithms. The configuration bitstream is encoded as a genotype and evolved 

over multiple generations to find a network that meets the target fitness. Fitness is 

determined using an objective function that includes parameters such as 

correctness of circuit functionality, area, speed, and power.  

♦ Intrinsic and extrinsic hardware evolutions are classifications of evolvable 

hardware systems based on the role of reconfigurable computing (RC) hardware 

in evolution. Intrinsic systems include the hardware in the evolution loop to 

measure the fitness of the genotype. Hence they perform online evolution. 

Extrinsic systems use a software model of the hardware and perform offline 

evolution using computer simulations.  

♦ Functional-level and gate-level evolution describe the abstraction level at which 

the evolution is performed in an evolvable hardware system. Evolving FPGA 

configuration bitstream encoded as genotype in an evolutionary algorithm is 

circuit-level or gate-level evolution. Evolving the interconnections and internal 
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parameters of higher level functional modules such as multipliers, accumulators, 

and trigonometric functions is functional-level evolution. 

♦ Block-based neural networks (BbNN) are grid-based networks of neuron blocks, 

the basic processing elements of the network. The outputs of the network are a 

unique function of the inputs, the network structure, and the synaptic weights of 

the neuron blocks. Training of these networks is a multi-parametric optimization 

problem, simultaneously evolving structure and synaptic weights of the neuron 

blocks. Typically genetic algorithms are used to train these networks to model 

input – output relationships and learn characteristic features in training datasets.  

♦ Offline and online training are artificial neural network (ANN) learning schemes. 

In an offline learning the neural network is trained using a batch of training data 

offline. In an online learning scheme the neural network is trained on real data in 

field. Online training in neural networks improves network generalization, and 

enhances system reliability. The in-field re-training capability enhances ANN 

system performance by adapting to variations in input data. 

♦ Intrinsically evolvable BbNN hardware design is presented. The design supports 

on-chip, online training of BbNNs on FPGAs, presenting a compact, and 

evolvable neural network chip for applications in dynamic environments. The 

BbNN on-chip training is a functional-level intrinsic evolution with neuron blocks 

as the functional modules.  

♦ Design Scalability in space (across multiple FPGAs) and in time (using same 

FPGA in time multiplexed manner) is enabled by reliable, asynchronous dataflow 

architecture implemented in the design. Asynchronous synaptic links enable 
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design scalability by ensuring reliable communication between neuron blocks 

spread in time or space irrespective of the type of communication channels used 

to transfer data between neuron blocks. This makes the design portable and 

scalable across a heterogeneous mixture of reconfigurable computing resources.  

♦ Online training algorithm for BbNN is presented along with a case study – 

Adaptive neural luminosity controller. The results of the study demonstrate the 

benefits of online training and showcase the applicability of the designed platform 

to applications in dynamic environments.   

♦ Performance characterization model of BbNN RC implementations is presented. 

The model characterizes BbNN implementations across the general purpose 

computing devices and the FPGAs using performance metrics such as the 

computational device capacity, the computational density, and the power 

efficiency. Computational device capacity is the measure of computational work 

per unit time that can be extracted from a computational device structure. For 

BbNNs it is the number of synaptic connections processed per second (CPS) by 

the computing device. Computational density is a space-time metric and can be 

defined as the computational capacity provided by the computing device per unit 

silicon area. The results show FPGAs provide on an average 10X higher 

computational capacities than the scalar RISC processors for a single BbNN 

block. The computational densities of FPGAs are 2X to 34X higher than the 

processors. The computational capacity of FPGAs linearly increases with the 

increasing network sizes, unlike processors. The newer FPGAs from Xilinx (the 

Virtex 4 and the Spartan 3) are more power efficient than the older FPGAs. 
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Comparing their power efficiencies with processors, we observe 2X to 6X higher 

computational capacities per mW provided by FPGAs. Although the superscalar 

processors had comparable computational capacities with FPGAs for a single 

neuron block computation, FPGAs consume about 2X to 6X less power and 

provide 2X to 34X gains in computational densities. 

 

This work provides a platform for further research on BbNNs in three directions – 

implementations, algorithms, and applications. They are discussed below. 

 

1. Implementations 

This work provides a platform for further research in custom, scalable, 

intrinsically evolvable ANN implementations. The designed implementation enables 

BbNN scalability across heterogeneous RC resources, but the designing and 

implementing working prototypes should be undertaken as future extensions to the 

project. The developed approach could also be ported to other ANN architectures such as 

multilayer perceptrons and cellular neural networks. The genetic algorithm (GA) 

operators in the implementation currently execute in software running on the PPC 405 

embedded core on the FPGA die. This approach was chosen for the current 

implementation to maximally utilize the reconfigurable logic space to fit larger networks. 

But with increasing capacities of FPGAs, genetic operators can be hardware accelerated.  
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2. Algorithms 

Active research should be pursued in exploring time bounded training algorithms 

for BbNNs. Online learning ability significantly expands the application space of BbNNs 

to dynamic environments. But many applications may require real-time performance. The 

training algorithms used for BbNNs are currently not time bounded. Theoretical 

investigations should be undertaken to establish confidence levels in training results 

obtained within bounded times. Another important area of research in algorithms for 

BbNNs is to explore reinforcement learning techniques for BbNNs. This enables BbNNs 

to learn from interactions with the surrounding environment. A difficult issue to solve in 

online training of artificial neural networks is measure fitness of a network when target 

outputs are unknown. Reinforcement learning algorithms have a notion of reward from 

environment for actions of the agent. The agent has a goal to discover the state - action 

policies that maximize this reward over time. 

 

3. Applications 

The biggest selling point of any technology is in its applications. This dissertation 

provides a glimpse in to the realm of possible applications of BbNNs in dynamic 

environments. Applications such as speech recognition, handwriting recognition, medical 

diagnostics and monitoring, and navigational systems are all possible contenders in the 

application set. Further research efforts are required to investigate the feasibility of using 

BbNNs for these applications.  
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The performance model presented is currently logic centric. It should be extended 

to include routing and interconnect costs. Although the model is applied to BbNNs, it can 

apply to other computational tasks. Our analysis compares performance on FPGAs and 

processors. This should be extended to include other computing devices such as analog 

and digital custom ASICs.  
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APPENDIX 

Acronyms used in the manuscript 

ALU see Arithmetic Logic Unit 

ANN see Artificial Neural Networks 

ANNA see Analog Neural Network Arithmetic 

API see Application Programming Interface 

ASIC see Application Specific Integrated Circuits 

BbNN see Block-based Neural Networks 

BCSR see Block Control and Status Register 

BRAM see Block Random Access Memory 

CA see Cellular Automata 

CBM see CAMBrain Machine 

CD see Computational Device 

CLB see Configurable Logic Block 

CMOS see Complementary Metal Oxide Semiconductor 

CoDi see Collect and Distribute 

CORDIC see Coordinate Rotation Digital Computer 

CPI see Clock cycles per instruction 

CPS see Connections per second 

CSD see Canonic Signed Digit 

DA see Distributed Arithmetic 
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DSP see Digital Signal Processor 

EDK see Embedded Development Kit 

EHW see Evolvable Hardware  

ETANN see Electronically Trainable Analog Neural Network 

FC see Foot Candles 

FEA see Fast Evolutionary Algorithm 

FIFO see First In First Out 

FLOPS see Floating Operations per Second 

FPAA see Field Programmable Analog Array 

FPGA see Field Programmable Gate Arrays 

FPLD see Field Programmable Logic Devices 

FPOA see Field Programmable Object Array 

FPNA see Field Programmable Neural Array 

FPTA see Field Programmable Transistor Array 

FPTA2 see Second generation Field Programmable Transistor Array 

GA see Genetic Algorithm 

GDD see Generalized Disjunction Decomposition 

GRD see Genetic Reconfiguration of DSPs 

HPC see High Performance Computing 

HPEC see High Performance Embedded Computing 

HPRC see High Performance Reconfigurable Computing 

I/O see Input / Output 

ISE see Integrated Systems Environment 
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KWhr see Kilo Watt Hour 

LMS see Least Mean Square 

LUT see Lookup Table 

LVQ see Linear Vector Quantization 

MAC see Multiplier and Accumulator 

MCPS see Million Connections per Second 

MDP see Markov Decision Process 

MLP see Multilayer Perceptron 

NNP see Neural Network Processor 

OPB see On-Chip Peripheral Bus 

P/T net see Petri net or Place/transition net 

PCB see Printed Circuit Board 

PCI see Peripheral Component Interconnect 

PIG see Processing Integrated Grid 

PLA see Programmable Logic Array 

PLB see Processor Local Bus 

PLD see Programmable Logic Devices 

PNN see Probabilistic Neural Network 

PPC see PowerPC 

PSoC see Programmable System on a Chip 

RAID see Redundant Array osf Inexpensive Disks 

RAM see Random Access Memory 

RC see Reconfigurable Computing 



 217

RISC see Reduced Instruction Set Computer 

RP see Reconfigurable Processing 

RWC see Real World Computing 

SBbN see Smart Block-based Neuron 

SDRAM see Synchronous Dynamic Random Access Memory 

SIMD see Single Instruction Multiple Data 

SoC see System on a Chip 

SRAM see Static Random Access Memory 

TDNN see Time-delay Neural Network 

UART see Universal Asynchronous Receiver Transmitter 

VP see VLSI Processing 

XUP see Xilinx University Program 
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