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ABSTRACT Hardware accelerators based on field programmable gate array (FPGA) and system on chip
(SoC) devices have gained attention in recent years. One of the main reasons is that these devices contain
reconfigurable logic, which makes them feasible for boosting the performance of applications. High-level
synthesis (HLS) tools facilitate the creation of FPGA code from a high level of abstraction using different
directives to obtain an optimized hardware design based on performance metrics. However, the complexity
of the design space depends on different factors such as the number of directives used in the source code,
the available resources in the device, and the clock frequency. Design space exploration (DSE) techniques
comprise the evaluation of multiple implementations with different combinations of directives to obtain
a design with a good compromise between different metrics. This paper presents a survey of models,
methodologies, and frameworks proposed for metric estimation, FPGA-based DSE, and power consumption
estimation on FPGA/SoC. The main features, limitations, and trade-offs of these approaches are described.
We also present the integration of existing models and frameworks in diverse research areas and identify the
different challenges to be addressed.

INDEX TERMS Computing models, design space exploration, field programmable gate array (FPGA),
system on chip (SoC), power consumption.

I. INTRODUCTION
Nowadays the development of algorithms focuses on
performance-efficient and energy-efficient computations.
Technologies such as field programmable gate array (FPGA)
and system on chip (SoC) based on FPGA (FPGA/SoC) [1],
[2], [3], [4] have shown their ability to accelerate intensive
computing applications while saving power consumption,
owing to their capability of high parallelism and reconfigu-
ration of the architecture.

The associate editor coordinating the review of this manuscript and

approving it for publication was Vincenzo Conti .

Several high-level synthesis (HLS) tools [5] have been
proposed by vendors and academics such as Vivado
HLS [6], formerly AutoPilot [7], Intel HLS [8], LegUp [9],
Bambu [10], and others [5]. These tools facilitate the adop-
tion of FPGAs in different fields, as they allow the cre-
ation of a register transfer level (RTL) code from a high
level of abstraction. Nevertheless, the efficient use of these
technologies usually requires the knowledge of the underly-
ing hardware and the use of code restructuring techniques
in the original algorithm [11]. This is a time-consuming
task for algorithm designers, who want to take advan-
tage of the inherent characteristics of these reconfigurable
technologies.
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HLS tools support C/C++, SystemC, and OpenCL [12]
codes to generate the final RTL code. These tools pro-
vide the designer with a detailed report for each algorith-
mic solution, including information about the estimation of
latency, resource utilization (also known as area occupied),
and throughput. The use of directives allows code optimiza-
tion through parallel techniques, such as loop pipelining, loop
unrolling, array partitioning, and array reshaping. For each
solution, the designer can specify different combinations of
directives; comparing the reports provided by these tools,
the best option can be determined according to different
performance metrics.

Furthermore, these tools allow a design space exploration
(DSE), which involves the evaluation of multiple imple-
mentations with different combinations of user design con-
straints, FPGA features, and directives (also known as knobs
or optimizations). Setting these optimizations to obtain a
hardware design with the desired characteristics is a problem
that increases exponentially as the designer applies more
directives, and the program has more complex code struc-
tures. The generated hardware is directly associated with the
applied directives, but sometimes applying and tuning direc-
tives requires a considerable endeavour to obtain a proper
hardware implementation. An optimal DSE process grants a
hardware design with a good compromise between metrics
such as latency, area, throughput, and power consumption.

Over the years, parallel computing models have proven
their benefits across different architectures, such as clusters
of distributed processors with single cores and multicores,
GPU, and cloud. These models act as a bridge between
the architecture and software developer. The actual trend in
parallel computer architectures demonstrates progress toward
hybrid architectures combining namely many cores, super-
scalars, single instruction/multiple data (SIMD), hardware
accelerators, and on-chip communication systems, among
others, which require handling computations and data locality
at several levels to achieve suitable performance [13].

Using computing models, and also methodologies, and
frameworks to predict the performance of FPGA/SoC archi-
tectures may reduce design times and improve productivity,
which are critical issues when choosing these architectures.
In this survey, a model is an abstraction that represents a sim-
plified system. A methodology describes the steps involved
in the process for systematically solving a problem. A frame-
work provides the structure needed in the form of a template
or conceptual scheme to simplify the elaboration of a task.

A. CONTRIBUTION
In this paper, we present a thorough analysis of the com-
puting models, methodologies, and frameworks proposed
for reconfigurable hardware accelerators based on FPGA.
We compare their main features, including the inputs,
outputs, and techniques employed for their development.
Then, we show how these approaches for FPGA/SoC can
be applied in different research fields, exposing their ben-
efits in improving the design process and productivity.

Consequently, the reader will become more confident about
the fundamental and technical aspects of the comput-
ing models, methodologies, and frameworks designed for
FPGA/SoC, acquiring a clear idea of the main parameters
required by each one. We highlight the importance of hav-
ing simple approaches with few parameters, such as those
proposed for other parallel architectures, so that they have a
greater scope and can be widely used. Based on this literature
review, the FPGA developer can select the approach that best
suits the application, hardware architecture, and program-
ming skills.

Some survey articles are available in the literature
for FPGA-based reconfigurable hardware. Schafer and
Wang [14] divide HLSDSE techniques into twomain groups:
synthesis-based and model-based. In addition to this classifi-
cation, a third group appears including DSE synthesis-based
and supervised learning. According to [15], HLS DSE can
be developed using model-based and model-free techniques.
Model-based techniques are composed of tools and method-
ologies that use analytical models, whereas model-free tech-
niques include approaches where the HLS tool is treated as a
black box. A survey of automatic high-level code deployment
for HLS tools and toolchains is presented in [16]. The authors
analyze commercial HLS tools, academic HLS tools, HLS
code generation tools, domain-specific language tools for
HLS, dataflow HLS tools, and automatic code deployment
tools (including automated DSE). Yehya et al. [17] focus
on power consumption. They classify different estimation
techniques as analytical, table-based, polynomial-based, and
neural networks. The work in [18] analyzes different per-
formance and power estimation models for CPU, GPU, and
FPGA. Moreover, reconfigurable architectures can be cate-
gorized as coarse-grained and fine-grained according to [19],
[20]. In this work, we focus on FPGA and FPGA/SoC archi-
tectures included in the last category.

To the best of our knowledge, there is no previous work
that jointly:
• describes the models, methodologies, and frameworks
developed for the estimation of metrics, FPGA-based
DSE, and power consumption estimation on FPGA/SoC,

• shows their application in different research areas,
• analyzes the challenges to be addressed to widely use
them for FPGA/SoC,

• compares them with the commonly used parallel com-
puting models for CPU, GPU, and multicore processors.

B. METHODOLOGY
This survey is conducted by collecting the latest con-
tributions, focusing on the models, methodologies, and
frameworks for FPGA-based devices. The paper collection
process has been performed mainly using models, method-
ologies, FPGA/SoC, parallel computing models, DSE, and
Pareto-optimal design keywords in well-known scientific
databases such as IEEE Xplore, Scopus, Web of Science,
ScienceDirect, arXiv, and Directory of Open Access Journals
(DOAJ). The collected contributions are from the last six
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FIGURE 1. PRAM model. Different processors execute read and write
operations in a shared memory.

years (2016–2022) and have been selected based on the topics
addressed in this survey. Several papers published before
2016 have been considered because of their contributions to
the current literature.

C. OUTLINE
The remainder of this paper is organized as follows. Section II
briefly presents the most widely used parallel computing
models for CPU, GPU, and multicore processors. Section III
introduces the FPGA-based reconfigurable hardware accel-
erator architectures, hardware/software co-design, DSE and
metrics, and the techniques to improve latency, area, and
power for this technology. In Section IV, we describe pre-
vious works on models, methodologies, and frameworks
proposed for FPGA/SoC according to their main features:
metrics estimation (IV-A), FPGA-based DSE (IV-B), and
power consumption estimation (IV-C); and in Section IV-
D, we present a summary and discussion. The integration
of models and frameworks for FPGA-based reconfigurable
hardware accelerators in different research fields is exposed
in Section V. Challenges are analyzed in Section VI. Finally,
conclusions are presented in Section VII.

II. PARALLEL COMPUTING MODELS FOR
PERFORMANCE ESTIMATION
Computing models allow to easily analyzing algorithms by
simplifying the computational world to a reduced set of
parameters that define the cost of arithmetic and memory
access operations and communication. These models con-
tribute to the search for efficient algorithms for a given
architecture, improving the productivity of designers, pro-
grammers, and engineers. A small amount of communication,
a small number of operations, and a high degree of parallelism
are key points that directly contribute to the efficiency of a
parallel algorithm.

This section summarizes the characteristics of the most
widely used parallel computing models for performance
estimation. It is not aimed at providing a comprehensive
presentation or a thorough classification of parallel models,
languages, and architectures. In addition, we present some
examples of their application in different architectures.

A. RANDOM ACCESS MACHINE AND PARALLEL RANDOM
ACCESS MACHINE
The random access machine (RAM) model is proposed
in [21] for sequential algorithms. It is composed of a memory,
control unit, processor, and program. In 1978, Fortune and
Wyllie proposed the parallel random accessmachine (PRAM)

FIGURE 2. Superstep of the BSP model.

model [22] based on the RAM model. The main idea behind
PRAM is that there is a shared memory m connected to
several processing units with a global clock, as shown in
Fig. 1. In this scenario, one processor P can execute one
operation (arithmetic, memory access, or logic) within one
single clock cycle. However, this model does not consider the
communication or synchronization overheads.

PRAM sub-models like the exclusive read exclusive write
(EREW), exclusive read concurrent write (ERCW), concur-
rent read exclusive write (CREW), and concurrent read con-
current write (CRCW) are introduced to handle read/write
operations in a shared memory model [23].

B. BULK SYNCHRONOUS PARALLEL MODEL
The bulk synchronous parallel model (BSP) [24] proposed for
distributing computing is a bridgingmodel between hardware
and algorithms that offers a high degree of abstraction. The
BSP program is divided into supersteps separated by a barrier
synchronization. Each superstep comprises several blocks of
computation and communication. Fig. 2 shows the workflow
of the BSP model.

A BSP computer is represented by parameters P, s, L, and
G, where:
• P: number of processors of the BSP computer.
• s: processor speed.
• L: cost, in step, to complete a barrier synchronization.
• G: cost, in words, of delivering a message.
The normalized cost G is defined by Eq.1

G =
Oplocal
Wsec

(1)

where Oplocal is the number of local operations executed in
a processor and Wsec is the number of words communicated
by the network per second. L represents the barrier synchro-
nization cost at the end of each superstep.

The sum of G and L is the superstep cost. The former rep-
resents the number of maximum local computations executed
on parallel processors. The latter represents a cost composed
of the cost of the communications plus the synchronization at
the end of the superstep.

The multi-BSP model [25] extends the BSP to multicore
architectures by considering the architecture as a tree with d
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FIGURE 3. LogP model, based on [37]. From a local point of view, for one
processor (P), g represents the gap between messages, o is the
communication overhead, and L is the communication delay.

leaves. This is a multilevel model with explicit parameters
for the number of processors, memory/cache sizes, commu-
nication, and synchronization costs. The multi-BSP allows:
(i) modelling a multicore computer as a tree, (ii) design-
ing a parallel algorithm as a single program multiple data
(SPMD) program with strict separation between computa-
tion and communication, and (iii) computing the cost of an
algorithm on a specific computer based on computation, data
movement, and latency. For a tree with i levels, the main
parameters related to this model are as follows:
• Pi: number of processors at i-th level.
• gi: communication bandwidth.
• Li: cost, in step, to complete a barrier synchronization at
level i.

• mi: words of memory at i-th level.
BSP andmulti-BSP have beenwidely used inmultiple con-

texts and applications because of their flexibility in allowing
portable and efficient parallel programs for a wide range of
computers [26], [27], [28], [29], [30], [31], [32]. The results
presented in [33] demonstrate the feasibility of the BSP-based
machine learning (ML) computing model in the field of
intrusion detection. An elastic BSP for relaxing the synchro-
nization stage in the context of distributed deep learning is
presented in [34]. The authors focus on the data parallelism
approach, in which weight synchronization during training is
crucial. The BSP is adapted for CUDA applications in [35].
This BSP for the CUDA model allows the prediction of
execution times for a single kernel function on the GPU.
This proposal focuses on a number of computational and
communication steps, but removes synchronization at the end
of each step.

C. LogP MODEL
The LogP model [36] describes a parallel machine using four
main parameters: communication delay (L), communication
overhead (o), gap between each message (g, from a local
point of view), and the number of processors (P). A graphical
representation of the different parameters is presented in
Fig. 3. The model decomposes each communication step into
three elements: L, o, and g, measured in clock cycles, but it

does not include a model for application/computation. LogP
is devised for distributed computation, is based on message
passing, and can simulate a BSP model.

Different variants of LogP, such as LogGP [38],
LogGPC [39], and LogPQ [40], were introduced to improve
the model. LogPQ includes communication queues for send-
ing, receiving, and transferring operations. LogGP introduces
a new parameter G, defined as the time per byte for a
long message (gap per byte). This allows for the modelling
of short and long messages. Finally, LogGPC uses LogP
parameters for short messages and LogGP parameters for
longer messages. Its contribution relies on the inclusion of
network contention and network interface direct memory
access (DMA).

PLogP [41] and mPlogP [42] have been introduced for
multicore architectures. The former includes the overhead
(sender and receiver), latency, gap message, and number of
nodes. It is suitable for modelling inter-node communication,
but lacks a memory access model. The latter is proposed
as an extension of PlogP. Unlike PlogP, mPlogP considers
multi-grain parallelism (through vector parameters), intra-
node communication, and inter-level memory access. The
parameters of mPlogP are the overhead (o), which includes
the overhead of the sender and receiver, latency (l), gap
between messages (g), memory access time (m), and number
of cores (P).

For CPU/GPU heterogeneous clusters, the work in [43]
presents the mHLogGP model based on the mPlogP, LogGP,
and LogP models. It is used to predict the performance of
point-to-point and broadcast communications, and the run-
ning time of parallel algorithms. The model uses parameters
such as overhead, latency, gap per byte, gap between mes-
sages, and number of computer nodes. The model also helps
to estimate possible bottlenecks.

D. COLLECTIVE COMPUTING MODEL
The collective computing model (CCM) [44] is based on the
BSP model and is composed of processors, memory, and
two types of supersteps: normal and division. The normal
superstep is characterized by computation, followed by the
execution of a collective communication function (f ). The
division superstep considers that the machine can be divided
into submachines. Based on this assumption, several steps
are performed: P processors are divided into r groups and
the input data are distributed in tasks, each one is executed,
followed by a phase of re-joinment. Finally, the distribution
of the results is performed.

CCM has as parameters P: number of processors, F: group
of collective functions f , TF: cost functions for each f ε F,
P: group of partition functions p, and TP cost functions for
each p ε P.

E. ROOFLINE MODEL
The Roofline [45] is a throughput-oriented performance
model for auto-tuning the performance of multicore com-
puters. It provides information about data movement and
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FIGURE 4. Roofline model, based on [48]. The x-axis represents the
operational or computational intensity (CI) and y-axis represents the
attainable performance (AP) or throughput. Computational roof and I/O
bandwidth roof limit the achievable AP. On the right (yellow area), the
algorithms are compute-bound, while on the left (orange area), they are
memory-bound.

computation to understand the limitations of the code and
combines bandwidth, locality, and different parallelization
paradigms. Fig. 4 shows the output of the model, which
includes the computational intensity, peak computation (PC),
peak memory bandwidth (PMB), and architectural and algo-
rithmic features. Themain parameter of the Rooflinemodel is
the arithmetic intensity (or computational/operational inten-
sity – CI – [GFlops per byte]), which corresponds to the
x-axis and is defined as the ratio of the number of operations
(floating-point) to the total data movement (bytes). The
attainable performance (AP) is defined by Eq. 2, and corre-
sponds to the y-axis [GFlops per second]. Some contributions
in the literature, such as [46], [47], extend the Roofline to
cache hierarchy (hierarchical Roofline) by considering L1,
L2, device memory, and system memory bandwidths.

AP[GFLOPS/sec] = min

{
PC,
PMB× CI

(2)

In recent years, this model has been used for performance
analysis of different computer architectures and applica-
tion domains. A toolkit for modelling based on Roofline is
presented in [49] for multicore, manycore, and accelerated
architectures. Roofline has been applied in the context of
deep learning using GPU [50]. The model includes time and
complexity to add new features pertinent to applications. The
authors in [47] propose a practical methodology for GPU that
allows a hierarchical Roofline performance analysis.

F. CLASSIFICATION OF PARALLEL COMPUTING MODELS
Zhang et al. [51] classify parallel computing models into
three groups based on their evolution over the years and in
the memory model of their targeting parallel computers. The
first group includes the shared memory parallel computing
model (PRAM), which has four approaches: asynchronous,
memory contentions, latency-bandwidth, and hierarchical
parallelism. The second group includes distributed memory

parallel computing models (BSP, CCM, and LogP and
its variants). The third group includes hierarchical mem-
ory parallel computing models (P-HMM [52], UHM [53],
LogP-HMM [54], HPM [55], among others). The authors
remark the simplicity, portability, and structured program-
ming style of the BSP model, concluding that BSP offers
a better level of abstraction than LogP for designing and
programming parallel algorithms.

The third group is based on the speed gap between the
processor and the memory system. To reflect the memory
access costs, the models incorporate a local memory hier-
archy. Models within this last category are subdivided into
uniform hierarchical models, LogP extended models, DRAM
(h, k) model, and HPM model.

Some models cannot be strictly classified into these
three groups. This is the case with the traditional Roofline
model [45], which quantifies the traffic between memory and
cache rather than between processors and cache. The pro-
cessor performance depends on the off-chip memory traffic.
In contrast, DRAM-only Roofline is extended and improved
in the recent hierarchical Roofline [46], [47] supporting dif-
ferent cache levels.

A technical literature survey is presented in [56] for per-
formance modelling and prediction of parallel and distributed
computing systems. It analyzes different techniques, mathe-
matical modelling, measurements, and simulations. A recent
study by Riahi et al. [57] compares analytical, and machine
learning models for predicting CPU/GPU data transfer time.

Table 1 presents a comparison of the main features of
the models described in this section. The table includes the
type of communication supported by the model (shared,
distributed, or hierarchical), the different costs considered by
the model (synchronization, asynchronous communication,
computation, or memory), and the parameters used in each
model.

III. FPGA-BASED RECONFIGURABLE HARDWARE
ACCELERATORS
FPGA architectures contain a large number of reconfigurable
circuits, which makes them feasible for accelerating applica-
tions that require high parallelism, high performance, and low
power consumption.

FPGAs have been commonly used with ‘‘soft’’ proces-
sors, which are designed using programmable logic resources
instead of being built into the silicon. Because the use of
reconfigurable devices has grown in increasingly sophis-
ticated applications, the need for FPGA-based systems
including processors has been arising.

Integrating a processor and FPGA into a single chip allows
the exploitation of different but complementary computa-
tional resources of both devices. A performance boost of
the system can be achieved by dumping critical functions to
the FPGA while maintaining the data transfer quickly and
coherently between the devices.

The SoC based on FPGA architecture combines a
processing system with programmable logic (FPGA).
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TABLE 1. Features of the computing models PRAM, BSP, LogP, CCM, multi-BSP, and Roofline.

FIGURE 5. Architectures for Zynq-7000 SoC and Zynq UltraScale + MPSoC
devices.

The architecture also includes specific interfaces that provide
high bandwidth and low latency in the connections between
the two parts of the SoC based on FPGA device. The pro-
cessing system has a fixed architecture formed of a ‘‘hard’’
processor and a RAMmemory, while the FPGA is completely
flexible for hardware design.

Within this context, a processing element (PE) can perform
an entire computation containing all the elements required for
its replication, which improves the performance of the entire
system through coarse-grain parallelism. As an example of
this architecture, Fig. 5 depicts the different components of
the Zynq-7000 SoC and Zynq UltraScale+ multiprocessor
system on chip (MPSoC) architectures from AMD-Xilinx.
We refer to Xilinx because it is one of the main providers
of this technology. Zynq-7000 SoC combines a dual pro-
cessor with an FPGA. Zynq UltraScale + MPSoC devices
include quad-core and dual-core real-time processors, GPU,
and FPGA.

A. HARDWARE/SOFTWARE CO-DESIGN
Hardware/software co-design aims to exploit the inherent
features of different technologies, deciding which part of the
algorithm should be implemented with sequential instruc-
tions (in the processor) and which part in the hardware
(such as ASIC or FPGA). Usually, a profiling of the algo-
rithm helps to determine which part is suitable to accelerate.
Typically, the most expensive section of the code, in terms
of runtime, is a good candidate for hardware acceleration.

Regarding communication overhead, its complexity should
be minimized between both technologies (that is, between the
processor and the FPGA). Also, energy efficiency could be
achieved through this technique. Recent contributions in the
literature expose the benefits of co-design hardware/software
strategy, such as [58], [59], [60], [61], [62].

B. DESIGN SPACE EXPLORATION AND METRICS
HLS tools are used to create RTL components from a
high-level of abstraction using directives to optimize a
hardware design described in a high-level language. Each
hardware obtained is unique based on the strategies and opti-
mizations used to describe it. DSE involves the evaluation
of multiple implementations with different combinations of
directives, also known as knobs or optimizations. In this
context, DSE plays an important role as a fundamental key
point in obtaining a hardware design with a good compromise
between different metrics.

In the last few years, most DSE techniques have applied
multi-objective optimization algorithms (MOOA), which are
dedicated to optimizing objective functions in the presence
of conflicting metrics. In this scenario, trade-off solutions
contribute to forming an objective space plotted with the
objective values, which builds a Pareto-optimal frontier (PF)
and a set of configurations (trade-off solutions) called Pareto-
optimal designs.

Let us denote D as the design space composed by q design
points, thus q ε D. PF can be defined as a set of hard-
ware designs PF = {d1, d2, . . . , dk}, where the sub-index k
defines the number of elements in PF . Each di with 1 ≤ i ≤ q
represents a hardware design with unique features such as
latency, resource utilization, and clock frequency. In the case
of area (A) and latency (L) as the objective functions; any
hardware design di is considered a Pareto-optimal design, and
in consequence di ε PF , if there is no other design dn with
1 ≤ n ≤ q in the search space such that it simultaneously has
less area (A) and less latency (L) than di [14], as shown in
Eq. 3.

A(di) ≤ A(dn) and L(di) ≤ L(dn) (3)

A survey on MOOA for HLS, presented by
Fernandez de Bulnes et al. [63], remarks on the expansion
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FIGURE 6. Typical DSE framework with HLS in the loop, based on [14].

of these techniques for the FPGA DSE process. The
authors conclude that the most common objective func-
tions are: latency (clock cycles), area (LUT, BRAM, DSP,
and FF), power (static and dynamic), wire length, digi-
tal noise, reliability, temperature, and security. They claim
that all metrics should be minimized, except reliability and
security. The authors remark on six main multi-objective
methods applied for HLS DSE: evolutionary algorithms,
single-solution-based heuristics, problem-specific heuristics,
branch-and-X, learning-based methods, and swarm intelli-
gence systems. Some examples are the studies presented
in [64], [65], [66], [67], [68], [69], [70], [71], [72], and [73].

An overview of the general DSE process using HLS tools
in the loop, based on [14], is shown in Fig. 6. An application,
described mainly in C/C++, SystemC, or OpenCL, is the
input of this type of system. A low-level virtual machine
intermediate representation (LLVM IR) [74] is obtained from
the input code through the Clang front-end compiler [75],
generating a control data flow graph (CDFG). Each node
of the graph represents the operations connected by control
dependency and data. The DSE phase generates a unique
batch of directives to minimize a specific cost function. The
HLS tool then uses the generated optimizations, application,
and technology library to generate the final optimized RTL.

Among the main objective functions associated with
FPGA/SoC, we can identify the performance, area, and
power. The performance includes the latency (L) and through-
put (T). This is directly related to the maximum frequency
(fmax) of the synthesized design given by T = fmax/L. The
area includes hardware resources: reconfigurable hardware
(LUTs, CLBs, and slices) and static hardware (DSPs and
BRAMs). The power is the total power consumed (static and
dynamic).

Other metrics could be added, such as scalability measured
as the number of PE inside the FPGA, bytes per operation,
processing system features, and off-chip and on-chipmemory
bandwidths.

C. TECHNIQUES TO IMPROVE LATENCY, AREA,
AND POWER
Different techniques can be used to improve the performance
of algorithms running on FPGAs though HLS tools [76]. One
of the most common approaches is to use a set of directives
(or knobs) provided by HLS tools to improve throughput,
latency, and resource utilization. To this end, HLS tools insert
pragmas (compiler directives) into the source code [6], [8].
Some of the most used optimization techniques are:

• Pipelining: in the presence of sequential operations exe-
cuted multiple times, this technique allows the insertion
of registers at the output of each stage, so that each
operation can run in parallel on different input data,
increasing the overall throughput at expenses of area.
Pipelining can be applied at instruction and function
levels.

• Loop unrolling: let us denote f as the unroll factor.
For a rolled loop, one iteration is executed at n clock
cycles. Thus, f iterations can be executed within n clock
cycles when unrolling the loop by a factor of f and the
total latency for the unrolled loop is n/f (without data
dependency). This technique can improve both latency
and throughput, but it is expensive in terms of resource
utilization since it is affected proportionally by f .

• Memory optimizations:

– Array partition: let us denote pf as the partitioning
factor. Array partition splits an array in pf sections
to be mapped into a dedicated memory element,
allowing multiple simultaneous accesses to it, at the
cost of higher utilization of memory elements.

– Array reshape: this technique allows creating
smaller arrays from the original array, concatenat-
ing elements by increasing bit widths, thus reducing
the number of BRAM consumed and allowing par-
allel access to the data.

Nevertheless, memory performance could be affected by
array partition techniques because an improper partitioning
leads to generate a large amount of multiplexers, incurring in
additional delays [77].

Code restructuring techniques [78], [79], [80], [81], [82]
are also used to improve the hardware design of the
algorithms. Ferreira et al. [83] introduce an approach for
automatic code restructuring targeting HLS tools. A detailed
survey is presented in [82], where the sets of optimizing trans-
formations techniques are classified into: pipelining, scaling,
and memory-enhancing transformations.

Quantization techniques aim to reduce memory footprint
by selecting the number of bits to represent the data structures
and operations to improve objective functions such as latency,
resource utilization, and throughput. Moreover, by reducing
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the computational intensity, the power consumption also
decreases [84], [85], [86], [87].

The dynamic power consumptionPd depends on the design
and can be improved by considering each element present in
the Eq. 4 [88]. As can be noticed, Pd is directly proportional
to the clock frequency f , which increases with the square of
the power supply V , and it is also affected by the effective
capacitance Ci, resource utilization Ri, and switching activity
Si for a given resource i. Hence,

Pd = V 2
× f ×

∑
i

Ci × Ri × Si (4)

A survey on this topic is presented in [89], considering
ultra-low-power techniques for FPGA-based IoT systems.
Contributions devoted to improving power consumption on
FPGA are presented in [90] and [91].

IV. MODELS, METHODOLOGIES, AND FRAMEWORKS
FPGA/SoC
We present the models, methodologies, and frameworks that
have been proposed to estimate the performancemetrics asso-
ciated with FPGA/SoC to reduce design times and improve
productivity. Some of these models, methodologies, and
frameworks propose an exploration of the design space to
grant a hardware design with good compromises between
different metrics. Other ones include power consumption
estimation because low power is one of the main highlights
of FPGA-based hardware accelerators.

In this section, we classify models, methodologies, and
frameworks into the following categories according to their
main features: metrics estimation, FPGA-based DSE, and
power consumption estimation.

A. METRICS ESTIMATION
1) METHODOLOGIES
Among the methodologies, we can find the works presented
in [92] and [93]. HLScope [92] consists of a performance
debugging methodology, that helps to identify potential bot-
tlenecks and their causes. HLScope has two flows: in-FPGA
(accurate analysis) and software simulation (rapid anal-
ysis). For each hardware described by the designer, the
tool provides execution times and analyzes various stall
causes: external DRAM access, synchronization, and depen-
dency. HLScope+ [93] extends HLScope to overcome its
main drawbacks. HLScope+ includes a fast and accurate
HLS-based cycle estimation and an improved memory access
model that considers some PE in the FPGA connected to an
external memory through a DRAMcontroller, avoiding cache
modelling.

Kapre et al. [94] present a communication discipline
inspired by synchronous dataflow [95] and BSP computa-
tional models for OpenCL pipes in FPGA devices, con-
sidering that one of the strategies to exploit FPGA wiring
is through pipes, by reducing the communication latency
between kernels.

2) MODELS
In the early stage of the design, models have been applied to
FPGA/SoC to mainly estimate latency and area.

Hora et al. [96] proposes pipelining circuit RAM
(PCRAM), which is a computational model that considers
only synchronous circuits. Several algorithms are described,
and the model is used to obtain time complexities, leaving for
future work the contrast with the experimental results. In this
model, the computer comprises a word-RAM of word size w
with a circuit composed of an execution module, gates, and
inputs/outputs.

A cost model for FPGA partial reconfiguration, proposed
by Papadimitriou et al. [97], considers all physical elements
involved in the reconfiguration process, where each phase
contributes to the total reconfiguration time. The authors
also explore the parameters that affect the reconfiguration
performance.

FlexCL, introduced by Wang et al. [98], is an analytical
performance model that uses the OpenCL kernel as the
input and supplies the performance estimated for the FPGA.
A high-level scheme of this model is presented in Fig. 7.
The input source code is transformed into an LLVM IR trace
through Clang. Information such as the code structure and
operation latency is extracted using a kernel analyzer and sent
to different models: a computation, communication, and
global memory model. As a result of the integration of
these three models, the execution time for a given kernel
is estimated. FlexCL contributes to identifying performance
bottlenecks on FPGA, where PEs, computation units, and
kernels have their ownmodels. FlexCL considers eight global
memory access patterns; and can also be used to explore
the design space to identify solutions under given user
constraints.

Currently, Roofline is used for the recognition of the
highest performance and potential bottlenecks in FPGA, due
to its intuitiveness and simplicity while providing insights
about the arithmetic computation and attainable perfor-
mance. An extended version of the Roofline multicore model
for hardware accelerators is presented by Silva et al. [48],
maintaining the core of the original proposal, but adding
the resource utilization and parameters obtained through
HLS tools. The unit for the performance operation is byte-
operations (Bops), considering that fixed-point operations
are more suitable for this technology than floating-point
operations. The authors also include the scalability param-
eter to determine the PE replication factor, considering
the available resources and resource utilization per PE.
Starting from this initial proposal, contributions in the lit-
erature [99], [100] extend this model to FPGA devices.
Calore et al. [99] present an FPGA empirical Roofline (FER)
to estimate the throughput and memory bandwidth of FPGAs
for high-performance computing (HPC) applications based
on HLS tools. Nguyen et al. [100] extend the empirical
Roofline toolkit (ERT) to FPGAs, presenting a benchmark
for the energy efficiency.
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FIGURE 7. High-level overview of FlexCL, based on [98]. The input is the OpenCL kernel code, which is transformed to
LLVM IR through Clang. Information from the source code is extracted by a kernel analyzer, which is sent to a computation
model, a communication model, and a global memory model. The results of each model are integrated in one model to
estimate the final kernel execution time.

3) FRAMEWORKS
Pyramid, developed by Makrani et al. [101], is a machine
learning based framework to estimate timing and resource
utilization, and to overcome the differences between the
post-implementation results and intellectual property (IP)
cores created with HLS. It is developed by employing ensem-
ble machine learning techniques, such as linear regression,
artificial neural networks, support vector machines, and ran-
dom forests. As part of the framework, Minerva [102],
which is an automated hardware optimization tool based on
a heuristic model, is used to obtain a good throughput and
throughput-to-area ratio for the RTL code generated by HLS.

Wang et al. [103] present a framework based on a
performance analysis model combined with code tuning tech-
niques for OpenCL applications only on FPGAs, assuming
that an incremental development model is adopted by design-
ers [104]. The model includes four FPGA-centric metrics to
detect possible bottlenecks related to memory, parallelism,
and computation.

4) SUMMARY
For metric estimation, a few contributions have considered
the use of the traditional parallel computing models such
as BSP and PRAM [94], [96] on FPGA. Nevertheless, the
adoption of the Roofline model for estimating performance
and bottlenecks on FPGA devices has been widely adopted
due to its intuitiveness and simplicity [48], [99], [100].

Furthermore, the differences between themetric estimation
reported by HLS tools and the post-implementation results
are a key point to consider when designing the estimators of
performance metrics [101].

B. FPGA-BASED DESIGN SPACE EXPLORATION
Design space explorers aim to minimize HLS tools execu-
tion times, which are highly dependent on the size of the
space to be analyzed. Different methodologies, models, and
frameworks have been proposed based on the analysis of HLS
directives, where the exploration of the design space [105],
[106] is important because it increases exponentially with the
use of directives. The challenge is to find a set of hardware

FIGURE 8. Classification of HLS DSE techniques, based on [14].

designs, also known as Pareto-optimal designs. Considering
that there is a limited number of resources (LUT, BRAM,
DSP, and FF) available in the reconfigurable architecture, the
hardware design cannot request more resources than those
available in the FPGA.

The comparison among diverse design space explorers is
useful for observing the strengths and weaknesses of each.
This can be achieved using benchmarks, composed of com-
putational kernels suitable for hardware acceleration. Some
of these are MachSuite [107], CHStone (C-based) [108],
S2CBench (SystemC-based) [109], Rosetta [110], and Spec-
tor (OpenCL-based) [111].

Surveys related to this topic are presented in [63] and [14].
In particular, the last one proposes a classification of HLS
DSE techniques into two groups, as depicted in Fig. 8:
synthesis-based and model-based. In this classification, the
third category is composed of a combination of supervised
learning and DSE synthesis-based techniques.

According to Sohrabizadeh et al. [15], HLS DSE can be
developed using model-based and model-free techniques.
Model-based techniques comprise tools and methodologies
that use analytical models. They estimate the resources and
performance of each point in the design space. Model-free

VOLUME 10, 2022 90437



R. S. Molina et al.: High-Level Synthesis Hardware Design for FPGA-Based Accelerators: Models, Methodologies, and Frameworks

techniques include approaches in which the HLS tool is
treated as a black box, such as Bayesian optimization and
reinforcement learning techniques [112], [113], [114], [115].

1) METHODOLOGIES
Roofline model has been introduced within methodologies to
explore the design space, targeting HPC applications based
on HLS [116], [117], [118].

Nabi et al. [117] propose TyTra flow that integrates perfor-
mance and cost models based on Roofline analysis to obtain
an optimized FPGA solution for scientific HPC applications.
The methodology adopts the models defined in the OpenCL
standard: platform and memory hierarchy, kernel execution,
memory execution, and data pattern. The Roofline model is
the base for the design space explorer and is used to assist
the selection of the best instance to be downloaded into the
hardware. Additionally, the authors propose an intermediate
representation language (TyTra-IR). For the calculation of
resource utilization to obtain scalability of the system, the
authors consider a maximum utilization of the FPGA of 80%,
as suggested by [119].

Siracusa et al. [118] propose a DSE methodology, pre-
sented in Fig. 9. The system input is the C/C++ source
code, which is translated to an LLVM IR trace, obtaining the
baseline of performance estimation and resource utilization
through the synthesis process. From this base implemen-
tation, the Roofline model chart (RooflineOrig) determines
memory bottlenecks. Afterward, an automatedDSE estimates
resources and performance, generating the optimal design
points. The Roofline for the best feasible design is plotted
along with the RooflineOrig chart, to compare the current
design’s performance and the performance of the solution
derived by the DSE. The explorer includes resource sharing
and HLS-specific IR optimizations during sample estima-
tions. This work is extended in [116], with the hierarchical
version of Roofline, estimating peak performance analyti-
cally and integrating a guide to reachingmemory-transfer and
data-locality optimizations.

Ferretti et al. [120] propose a method for inferring knowl-
edge from past design explorations, as shown in Fig. 10.
The authors introduce signature encoding for code and
directives, composed of specification encoding (SE), config-
uration space descriptor (CSD), and similarity metric longest
common subsequence (LCS). The methodology uses signa-
ture encoding to create a string with design and configuration
spaces (directives and their modes), combining CSD and SE.
On the other side, the LCS metric is used to measure the
similarity between the actual and previous DSE stored in a
database.

COSMOS, an automatic and scalable methodology for
DSE, is introduced by Piccolboni et al. [121] for complex
accelerators. It generates a set of Pareto-optimal designs and
reduces the number of HLS invocations. It comprises two
main phases: component characterization and DSE (based on
two steps: synthesis planning and mapping). The comput-
ing model used for DSE is based on timed marked graphs.

COSMOS includes memory as part of the DSE process and
applies synthesis constraints to reduce the variability of the
HLS tools.

The adaptive threshold non-Pareto elimination strategy
(ATNE) [122] focuses on inaccuracy estimation, to address
the exploration of the design space on FPGA for implemen-
tations based on OpenCL. The ATNE algorithm is based
on a random forest for regression. The prediction quality
is obtained using two metrics: average distance from ref-
erence set (ADRS) and hypervolume error (HVE). The
results are shown for matrix multiplication, Sobel filter, finite
impulse response filter (FIR), histogram, and discrete cosine
transform.

Xu et al. [123] propose a methodology for performing
DSE using MPSoC devices. This work presents three meth-
ods to automatically carry out the exploration: two based
on simulation (cycle-accurate and fast cycle-accurate) and
one based on hardware acceleration. For this purpose, the
authors consider several IP cores in an FPGA. The proposed
methodology is called fast explorer for behavioral systems
(FEBS), and it accepts the numberN of IP cores and their test-
benches as input. The output is a set of dominant systemswith
area vs performance trade-off. In this methodology, design
space exploration is performed for each IP core. The general
overview for this design space explorer is shown in Fig. 11.

2) MODELS
Lo et al. [113] propose a sequential model-based optimiza-
tion, using a transfer-learning mechanism, to select direc-
tive configurations in HLS, minimizing the number of
tool evaluations/executions while obtaining solutions with
LUTs-latency optimal trade-offs.

Kwon et al. [124] propose the mixed-sharing multidomain
model for reusing the knowledge obtained from previous
HLS DSE whereas exploring a new target design space,
showing its effectiveness when approximating quality of
results (QoR) without running HLS tools.

Dai et al. [125] present a fast and accurate QoR estimation
based on HLS. For this purpose, they use final HLS reports
from a set of synthesized applications to identify relevant
features and metrics, and construct the dataset to be used for
training machine learning models (linear regression, artifi-
cial neural networks, and gradient tree boosting). To create
the dataset, the authors employ the information obtained
from HLS reports for different directives and targeting dif-
ferent FPGA platforms. In addition, C-to-bitstream flow
for different clock periods is performed to obtain features
such as post-implementation resources and the worst neg-
ative slack. Finally, the authors obtain 234 features, which
were reduced to 87 after an elimination process to remove
irrelevant features.

Other models focus on the DSE process are presented
in [126], [127], [128], and [129].

3) FRAMEWORKS
Mehrabi et al. propose Prospector framework [114], which
uses Bayesian techniques to obtain the best configurations
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FIGURE 9. A DSE methodology presented in [116], [118]. The input source code is translated to LLVM IR trace, obtaining the baseline for
performance estimation and resource utilization. Subsequently, the Roofline model chart estimates memory bottlenecks. An automated
DSE phase allows resource and performance estimations, and the best feasible design is plotted along with the original Roofline chart.

FIGURE 10. A DSE methodology presented in [120] that uses past design explorations to infer knowledge. The signature encoding is used
to create a string with the design and configuration spaces. The new signature is compared with the ones obtained from previous DSE
(DSE database). After the similarity evaluation, the signature selected is used as input for the inference stage, to finally obtain the
optimal configuration.

FIGURE 11. MPSoC DSE, based on [123]. Different IP cores coexist in the MPSoC: some developed
with HLS tools (IP1 and IP2) and others using RTL description. A design space is generated with
the HLS tools. The system level exploration receives as input the number of IP cores described in
ANSI-C or SystemC and their testbenches. The output is a Pareto-design with throughput-area
trade-off. The system level exploration is composed by three methods: two based on simulation
and one based on hardware acceleration.

with fewer resources and reduced latency near Pareto-
efficient designs. The HLS tool is considered as a black
box (or function), which has to be modelled and optimized.
Prospector is shown in Fig. 12, where the inputs are the source
code, clock frequency, and directives, and the outputs are the
synthesized designs. The Bayesian optimization unit (BOU)
is used to explore the design space and control the selection
of directives. The HLS tool is used to generate RTL from
the high-level source code. At the end of the process, the
framework can obtain different designs with a latency-area
trade-off, which belong to the Pareto frontier.

Lin-Analyzer [130] is a tool that allows accurate and
fast FPGA performance estimation and DSE, consider-
ing fine-grained parallelism. With this framework, runtime
scales linearly while increasing the design space complex-
ity; however, only a few optimizations are considered,
mainly loop unrolling, loop pipelining, and array partitioning.
Regarding resource utilization, the authors assume that DSP
and BRAM are the bottlenecks in accelerator designs. The
communication cost between the FPGA and global mem-
ory is not considered. The framework is divided into three
main stages: instrumentation, optimization of dynamic data
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FIGURE 12. Prospector framework, based on [114]. The inputs are the source code, clock frequency, and directives; and
the outputs are the synthesized designs with a trade-off between latency and area. The directives are encoded and sent
to the BOU. Source code and clock frequency are the inputs for HLS Tools. Performance and cost values are obtained from
HLS tool and Place & Route process.

dependence graph (DDDG) generation, and DDDG schedul-
ing. In the last stage, latency is used as a performance metric
under resource constraints. Lina is proposed in [131] as an
extension of Lin-Analyzer, and it includes non-perfect loop
nests and timing analyses.

MPSeeker is proposed by Zhong et al. [132] to estimate
the performance and resource utilization from a given
code (C/C++), considering fine-and coarse-grained paral-
lelism, allowing fast DSE. Because MPSeeker contemplates
multi-parallelism using the loop tiling technique, a gradient
boosted machine is proposed to obtain an accurate resource
model for FF and LUT, while Lin-Analyzer is used for
BRAM and DSP estimation. The authors also extend the fea-
tures of Lin-Analyzer by including the data communication
cost. The performance cost in MPSeeker is modelled as the
sum of the kernel computation and data communication costs.

Choi et al. [78] present a DSE and clock cycle estimator
using HLS, including code transformations in the presence
of variable loop bounds. They propose a resource predic-
tion method based on HLS reports through shareable and
non-shareable operators from a loop. Using linear interpo-
lation, non-shareable resources are obtained, whereas the
resources estimated for shareable operators are computed as
the maximum of all loops. An analytical model is proposed
for clock cycle prediction. In this framework, the design with
the best performance is the output.

COMBA [77], [133] is a framework that focuses on select-
ing the optimal configuration of directives in HLS, taking
into account the use and availability of hardware resources,
and provides an estimation of performance and resource
utilization. The authors propose the metric-guided DSE II
(MGDSE-II) algorithm to prune and explore the design space
based on three metrics: the number of DSP, BRAM, and LUT.
An overview of COMBA, which is composed of a recursive
data collector, analytical models (latency and resources), and
DSE, is presented in Fig. 13. In COMBA, the input is the
C/C++ source code, which is transformed into an LLVM IR
trace through Clang. The IR trace is the input for the recursive
data collector, which extracts static and dynamic information
that will be used for the analytical models. MGDSE-II then

evaluates the configuration and establishes the next set of
directives to be applied to the input code. This iteration is
repeated until a high-performance configuration is obtained.

Ferretti et al. [134] present a framework for HLS DSE
using a cluster-based heuristic integrally developed in
MATLAB. The algorithm identifies different clusters in the
DSE, reducing the number of regions to be analyzed; intra-
clustering is performed, followed by inter-cluster exploration.
A lattice-traversing DSE framework [135] is proposed to
explore the design space by transforming it into a lattice
representation. The framework includes three stages: lattice
creation and initial sampling, selection of lattice Pareto-
neighbours, and synthesis and lattice labelling.

IronMan [115] is an end-to-end flexible and automated
framework for DSE composed of a performance and resource
predictor based on a graph-neural network (GPP), multi-
objective DSE engine based on reinforcement-learning
(RLMD), and code transformer (CT). One of the main fea-
tures of this framework is that it retrieves the final code with
the discovered optimizations, ready to generate the corre-
sponding RTL through HLS.

Sherlock [136], introduced by Gautier et al., is a DSE
framework based on multi-objective optimizations devoted
to find Pareto-optimal solutions (or Pareto front), handling
multiple conflicting optimization objectives. This framework
uses active learning to exploit a surrogate design space model
to find the Pareto-optimal designs as quickly as possible.

Others frameworks devoted to DSE are introduced
in [15], [136], [137], and [138].

4) SUMMARY
A summary of most of the contributions devised for DSE and
presented in this section are listed in Table 2, considering the
following aspects:

• Reference.
• Pruning of the design space (P-DS).
• Whether it is based on the Roofline model.
• Whether it considers quality of results (QoR) in relation
to the place and route estimation.

• Whether it applies transfer learning (TL).
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FIGURE 13. COMBA framework overview, based on Zhao et al. [77]. LLVM IR is extracted from the source code. This trace is the
input for the recursive data collector, which will extract the parameters used by the analytical models (latency and resource).
MGDSE-II evaluates the configuration and defines the next set of directives to be applied. The output of the complete flow is the
high-performance configuration.

TABLE 2. Summary of most of the contributions devised for DSE and
presented in this section. The acronyms used in the table are: P-DS:
pruning of the design space, QoR: quality of results in relation to the
place and route estimation, TL: transfer learning, N Resource: number of
estimated resources or NS (not specified).

• The amount of estimated resources (N Resource):
1 stands for one resource, 2 for two, and so on. NS stands
for not specified.

From Table 2, only a few contributions include more than
two aspects when developing DSE. A design space explorer
can benefit from a reduction of the design space by focusing
on obtaining design points near the Pareto frontier, a parallel
computing model to guide performance estimation, a good
estimation of QoR, and resource utilization. Transfer learn-
ing, a technique linked mainly with ML approaches, could
help to obtain underlying patterns when developing hardware
through HLS tools.

There are contributions that only estimate some FPGA
resources, as follows. LUT-latency trade-off is estimated

by [113], BRAM and LUT are computed by [137].
COMBA [77], [133] estimates DSP, BRAM, and LUT.
Lin-Analyzer [130] computes BRAM and DSP, whereas
MPSeeker [132] estimates FF and LUT, combining
Lin-Analyzer for DSP and BRAM utilization. Neverthe-
less, overestimating resource utilization can lead to pruning
valid design points in the exploration phase. LUT, FF, DSP,
and BRAM post-implementation estimation is performed
by [125]. A challenge with HLS tools is efficiently predicting
resource sharing for unrolling factors and array partitions
when using HLS pragmas. [78], [118].

C. POWER CONSUMPTION ESTIMATION
Power consumption is an important topic, especially with the
growth of green technology, internet of things (IoT) systems,
and the expansion of communication networks. Power esti-
mation techniques are categorized based on the abstraction
levels of the FPGA design process as follows: system, RTL
level, gate, and layout levels. One of the requirements when
designing IP cores under power, energy, or thermal con-
straints is their estimation in the first steps of the design
process for a given application.

FPGA vendors have proposed different tools to esti-
mate power consumption, such as Maxim R© integrated
power solution with a USB-to-PMBus interface don-
gle [139], USB interface adapter EVM from Texas
Instruments R© [140], Xilinx R© power estimator based on
spreadsheets (XPE) [141], and Intel R© FPGA power and
thermal calculator [142]. With FPGA/SoC devices, power
is classified as static (fixed and technology-dependent) and
dynamic (data and design-dependent). A recent survey on
power consumption in FPGA and ASIC devices [17] clas-
sifies the techniques for its estimation into analytical, table-
based, polynomial-based, and neural networks.

1) METHODOLOGIES
KAPow, proposed by Davis et al. [143], is an online
activity-based power methodology that includes a signal
pruning strategy. The flow has two phases: signal selection
(nets with strong relationships between activity and power)
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and instrumentation (implying the accumulation of events
to monitor the relevant signals). A linear model is used to
estimate the power contribution of the overall system by
computing the power consumption of each IP core.

In the context of approximate computing, Xu et al. [144]
investigate the use of linear regression and multilayer per-
ceptron (MLP) models to generate a new approximated RTL
design with a trade-off between area and power. Using this
approach, the search space is extended by reducing the pre-
cision of the weights obtained for the predictive models.
The proposed method is divided into three stages: kernel
extraction and training data generation, model fitting and
substitution, and model precision optimization with bit width
reduction.

2) MODELS
Lorandel et al. [145] propose the use of neural networks to
estimate the dynamic power consumption and output signal
activities for different IP cores involved in a system. In this
study, two stages are considered: IP characterization and
high-level system modelling. Nasser et al. [146] present a
model for the characterization phase by extracting the rele-
vant information for each component that has an impact on
power.

Tripathi et al. [147] introduce an MLP architecture to cal-
culate power consumption, using LLVM IR instructions as
input, and modelling only dynamic power.

Verma et al. [148] present a power estimation model that
improves the Deng’s model [149], and is designed using
nonlinear regression techniques. For this purpose, they use
the power data of different types of digital circuits (described
in VHDL) after the synthesis process. The data is divided
into designs with and without clock gating, and based on this
separation, two power models are developed.

In [150] two techniques are proposed by Verma et al.
remarking the importance of predicting the power consump-
tion in an early stage of the accelerator design: a heuristic
approach based on a backpropagation neural network and a
regression based on statistics.

FlexCL is extended in [151] through the incorporation of
three modes of communication for the memory model: direct,
burst, and stream access patterns, and an analytical power
model for dynamic and static power.

3) FRAMEWORKS
HLSPredict, developed by O’Neal et al. [152], is a frame-
work based on an ensemble of ten machine learning models
to predict performance and power consumption without ana-
lytical models or HLS-in-the-loop. Two types of IP cores are
considered: without directives (base IP core) or with direc-
tives (optimized IP core). Accelerators for training themodels
are based on a template with DMA for memory transac-
tions, which implies that for every source code implemented
through HLS, the functionality of the IP core is encapsulated
and integrated within the hardware template.

HL-Pow, proposed by Lin et al. [153], is based onmachine
learning techniques and overcomes the gap between the HLS
synthesis phase and power consumption estimation (usually
performed after the RTL implementation flow). A DSE is
introduced to obtain the latency vs power trade-off, with prun-
ing to reduce the design space when finding Pareto-optimal
designs. For the machine learning implementation, the train-
ing dataset is constructed by a feature construction (HLS
report) and power collection (post-implementation report),
with a total of 256 elements per feature. The experiments are
performed with different machine learning models, including
linear regression, support vector machines, tree-based mod-
els, and neural networks.

PowerGear, described by Lin et al. [154], is a graph-
learning-assisted power estimator for FPGA HLS, and is
composed of a graph construction flow and a power-aware
graph neural network model called HEC-GNN. This study
considers the impact of interconnections in the hardware
design that affects the power modelling. The authors ben-
efit from the HLS front-end and HLS back-end to recover
dataflow graphs because it is possible to obtain the IR traces
and finite state machine with data path information. Pow-
erGear can be used to guide a design space explorer with
a trade-off between latency and power to obtain the Pareto
frontier.

Aladdin, introduced by Shao et al. [155], estimates the per-
formance, power, and area of accelerators. It generates a
dependence graph from the input code and produces a fast
cycle estimate before RTL construction.

HAPE, presented by Makni et al. [156], is a framework
for area-power estimation based on analytical models, and
it aims to assist the DSE in reducing HLS runtime. HAPE
focuses only on the main subtraces present in a source code
containing the directives provided by the designer. HAPE
integrates Lin-Analyzer for computation cost.

4) SUMMARY
Regarding the power consumption, there is an evident trend in
estimating this metric in the early stages of design using HLS
tools. Moreover, some of the presented frameworks integrate
the performance, power, and area estimations with a DSE
engine.

D. SUMMARY AND DISCUSSION
The studies described in this section are summarized in
Table 3, including for each one:

• Reference and year of publication.
• Whether it is a model, a methodology, or a framework.

– In the case of a model, the number of input param-
eters is included. For example, the model presented
in [157] uses more than 10 input parameters (10+),
and the model presented in [98] uses 21 parameters.
The symbol (−) indicates that the number of param-
eters is not defined in the corresponding study.

• Whether it includes DSE.
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• Estimated metrics: area (A), latency (L), power
consumption (P), or other metric such as through-
put (T), quality of results (QoR), throughput-
reconfiguration time (T-RT), energy (E), speed-up (S),
or Communication (C).

• Programming language of the input code: SystemC
(S-C), C/C++, Impulse-C (I-C), HDL, or OpenCL.

• Optimized designs, divided into Pareto-designs (Pareto)
and high performance configuration (HP Config).

• Techniques used to implement the proposed approaches:
statistical, analytical, machine learning (ML), and
others.

Table 3 shows that the described contributions are fairly
distributed between models (35%) and frameworks (41%),
whereas 24% propose methodologies. In line with the grow-
ing tendency in developing design space explorers, 55.2% of
the contributions include DSE.

We can observe that most DSE solutions use high-level
abstraction languages as input, showing a tendency to
increase productivity in the design phase. Likewise, many
studies are focused on obtaining Pareto-optimal designs.

Regardingmetrics, latency and area are themost frequently
estimated metrics, followed by power: 65.3%, 57%, and
26.5%, respectively. We also present this result in Fig. 14.
The area and latency metrics are widely estimated because
reconfigurable platforms are resource constrained and are
used for algorithm acceleration.

Concerning the power consumption, some described con-
tributions highlight the benefits of estimating this metric for a
given application at an early stage of its design. Some of the
most recent studies benefit from HLS tools to estimate this
metric before the implementation stage of the overall system
into the hardware platform. This approach is becoming com-
monplace in the literature when considering FPGA/SoC as a
development architecture.

Table 3 also shows that the C/C++ source code is
preferably used as input (65.3%), and the Pareto frontier is
the most applied solution to obtain optimal designs (33%)
in terms of trade-off between area and latency, area and
power, latency and power, among other metrics. Whereas
machine learning and analytic methods are almost equally
used to obtain accurate, fast, and robust models (43%
and 41%, respectively), as shown in Fig. 15. However,
in the last years, machine learning is the most widely used
technique.

The models, methodologies, and frameworks for metric
estimation, FPGA-based DSE, and power consumption
described in this section are illustrated in Fig. 16. It can be
observed that, in recent years, there has been an increasing
number of frameworks including DSE, whereas the power
consumption is mainly estimated by models, with a prepon-
derance of analytical techniques.

Fig. 17 summarizes the main topics presented in the
research works reviewed in this paper and discussed in this
section.

FIGURE 14. Radar plot for metrics used by models, methodologies, and
frameworks for FPGA-based hardware accelerators.

FIGURE 15. Radar plot for the techniques used by models,
methodologies, and frameworks for FPGA-based hardware accelerators.

FIGURE 16. Radar plot for models, methodologies, and frameworks for
metric estimation, FPGA-based DSE, and power consumption.

V. INTEGRATION IN DIFFERENT RESEARCH FIELDS
In this section, we present contributions in the literature
that propose models and frameworks for specific hardware
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TABLE 3. Contributions presented in the literature for metric estimation, FPGA-based DSE, and power consumption. The acronyms used in the table are:
A: area, L: latency, P: power consumption, QoR: quality of result, C: communication, T: throughput, E: energy, S: speed-up, RT: reconfiguration time, S-C:
SystemC, I-C: Impulse C, HDL: hardware description language, MH: meta-heuristics, Em: empirical, and PN: Petri Nets.

acceleration applications. Some of them are based on general
models such as Roofline. We show that the frameworks and
models for FPGA/SoC are used in diverse research areas,
exposing their benefits in the design of hardware.

A. MODELS
The Rooflinemodel has been introduced to assist the designer
when targeting hardware acceleration of HPC applications,
so as to explore the design space, estimate the performance,
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FIGURE 17. General summary of the surveyed contributions presented in
this section.

and evaluate the throughput due to its dependency on com-
munication and computation.

Roofline is applied by Du et al. [158] in the acceleration
of the stencil computation kernels, by Karp et al. [159] for
the hardware implementation of a spectral element method,
and by Nagasu et al. [160] in the context of an FPGA-based
tsunami simulation.

In computational fluid dynamics (CFD), Du et al. [161]
present an FPGA-based CFD simulation architecture using
a performance model to guide the DSE while achieving the
maximum performance of the lattice Boltzmann method,
searching for an optimal combination of the parameters of
the unroll directive.

Reggiani et al. [162] present the acceleration of iterative
stencil computation using Verilog to describe hardware.
An analytical model that considers memory transfer and com-
putation is proposed to estimate the attainable performance of
the accelerator and speedup the DSE.

Through efficiency degradation, it is possible to obtain
hardware designs with higher performance, lower power
consumption, and lower resource utilization at the cost of
QoR. Manuel et al. [129] propose a DSE in the context of
model-based approximate computing for image processing
using a multi-objective genetic algorithm, finding a wide
range of Pareto-optimal solutions, from which the desired
compensation between quality and resources can be chosen.

In recent years, ML techniques have been applied in mul-
tiple fields such as fluid dynamics, high-energy physics,
information retrieval, image processing, video processing,

security, and biology [163], [164], [165]. Because of this
trend, models for FPGA-based architectures are being devel-
oped to accelerateML applications with efficient exploitation
of hardware resources, with the aim of improving productiv-
ity in the design phase [166], [167], [168].

Resource and performance models are proposed by
Reggiani et al. [169] for convolutional neural network
(CNN) accelerators, to drive an automatic Pareto-optimal
DSE, exploring network performance on different hardware
platforms. These models are applied to convolutional cores,
which are critical components of the design, directly affecting
the overall latency and DSP utilization. The final relation to
obtain the Pareto-optimal solutions is the number of DSP
vs the initiation interval (input rate of the pipeline in clock
cycles).

Gysel et al. [170] present an analytical model for deep
CNN design, which is useful for obtaining the computational
cost and inferring the required memory bandwidth for the
hardware design.

CaFPGA, developed by Xu et al. [171], is an FPGA-based
DSE for CNN that focuses on convolutional and fully con-
nected layers. To improve the productivity in the design
phase, the authors propose an automatic generation model,
including incremental searching and flexible layer-folding
algorithms, considering that the on-chip memory is a lim-
ited resource in FPGA. The analysis of the design space is
performed using time, resource, memory, and performance
models.

Shan et al. introduce [172] a CNN multi-kernel applica-
tion and its implementation on AWS-F1, where an analytical
model is used to compute data transfers (CPU to DDR, DDR
to FPGA, FPGA to DDR, and DDR to CPU) and kernel
computation times.

The Roofline model is employed as a performance pre-
dictor for FPGA-based CNN accelerators [173], [174],
[175], [176]. Ayat et al. [173] present an optimization for
an FPGA-based CNN accelerator for energy efficiency.
Xie et al. [174] use this model to quantitatively analyze
the design phase of a CNN accelerator, depending on the
available computing and memory resources. Park et al. [175]
propose a model based on Roofline to effectively com-
pute convolutional layers using metrics such as through-
put, on-chip memory, off-chip memory bandwidth, and the
computation-to-communication ratio.

Ma et al. [176] introduce a coarse-grained analytical per-
formance model for CNN accelerators. For this purpose, the
modelling of DRAM access, latency, and on-chip buffer is
analyzed to obtain the final model. Regarding DSE, convolu-
tion throughput is the main focus, considering factors such as
operating frequency, external memory bandwidth, and loop
unrolling variables, using Roofline to analyze the throughput
of the CNN accelerator. Resource costs are obtained by con-
sidering the knobs loop unrolling and tiling.

Table 4 summarizes the models used in the contributions
described in this section. The first two columns are the ref-
erence and the year of publication. The third column is the
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research area in which the model is applied. The fourth and
fifth columns are the aim and type of model used, respec-
tively, and the last one is the target platform.

We can observe that most contributions focus on CNN
accelerators, and that the models are devoted to carrying out
DSE and performance estimation and are mainly based on
Roofline. The use of this model is based on the premise that
communication and computation are two basic constraints
to improve the throughput of an accelerator, specially when
developing hardware for highly demanding applications.

B. FRAMEWORKS
Frameworks (or toolflows) have been proposed to map ML
inference and training into SoC-based, integrating models to
mainly estimate hardware resource utilization, latency, and
throughput. An exhaustive survey is presented in [166].

Concerning training acceleration, Geng et al. [177]
developed FPDeep, a toolflow for a scalable CNN training
acceleration on deeply-pipelined FPGA clusters, proposing a
model for operator graph partitioning and hardware resource
allocation (with a distinction between small and large FPGA
clusters). Roofline is used to evaluate the throughput, because
of its dependency on communication and computation.

F-CNN, introduced by Zhao et al. [178], is an automatic
framework for CNN training based on the reconfiguration
of a streaming data path at runtime. The proposed mod-
els for resource and bandwidth estimation guide the space
exploration under design constraints to obtain an optimal
performance.

HP-GNN, proposed by Lin et al. [179], is a framework
for training graph neural networks (GNN) on a CPU-FPGA
platform. It incorporates an engine dedicated to exploring
the design space through an exhaustive search using per-
formance and resource utilization models. HP-GNN also
incorporates hardware templates to implement different GNN
architectures.

Regarding inference acceleration, Ghaffari et al. [180]
present CNN2Gate, a framework based on OpenCL to map
a CNN onto an FPGA with fixed-point arithmetic, including
a hardware-aware DSE based on resource utilization. It is
implemented using manual directive tuning, reinforcement
learning, and the hill-climbing methods.

Venieris et al. [181] propose the fpgaConvNet toolflow
to map a CNN onto an FPGA, thereby optimizing the
neural network workload. It includes a DSE using a
multi-objective algorithm (simulated annealing), where the
explorer optimizes the design according to latency, through-
put, or maximum throughput with a latency constraint.
Performance estimation and resource utilization models are
proposed for DSE.

Cloud-DNN [182], introduced by Chen et al., is a frame-
work for mapping DNN to cloud-FPGA, generating the
corresponding HLS project to obtain the final IP core. The
proposed accelerator model is based on hardware resource
cost (considering DSP and BRAM) and a performance
model for each layer (convolutional, max pooling, and fully

connected). A greedy algorithm is employed to search for the
best accelerator configuration under constraints such as the
DSP, BRAM, bandwidth, and DNN layers.

FRED [183], developed by Biondi et al., is a framework
for real-time applications that benefits from a dynamic partial
reconfiguration (DPR). It includes a hardware task model for
the tasks carried out by the FPGAwith partial reconfiguration
enabled, a software model for the tasks executed on the
processor, and a scheduling infrastructure.

Mu et al. present [184] a collaborative framework to obtain
OpenCL-based hardware designs for CNN implementation.
A DSE based on LoopTrees is generated and pruned to
reduce the design space. Fine-grained and coarse-grained
analytical models are introduced to generate the final opti-
mized solution. The former estimates the latency and resource
utilization, whereas the latter applies further optimization
to the best candidate designs obtained after applying the
fine-grained model.

The heterogeneous image processing acceleration
(Hippac), proposed by Reiche et al. [185], is a framework
that allows the generation of image processing accelerators.
Several steps are performed by analyzing the IR trace: data
dependency analysis, dependency graph restructuring, and
transformations (streaming objects, memory allocation, and
replication of the innermost kernel to improve throughput).

A framework named Spark-to-FPGA-Accelerator (S2FA),
introduced by Yu et al. [186], transforms Scala computa-
tional kernels based on Apache Spark applications into opti-
mized accelerator designs. For this, a learning-based DSE
is employed to obtain high-performance RTL designs using
an ensemble of reinforcement learning algorithms: uniform
greedy mutation, differential evolution genetic algorithm,
particle swarm optimization, and simulated annealing. The
HLS tool is executed in the loop to verify each optimization.

AutoDNNchip [187] is proposed by Xu et al. to facilitate
fast chip designs based on DNN, targeting FPGA and ASIC
platforms. Themain factors involved in the DNN acceleration
process are bit precision, clock frequency, memory technol-
ogy, PE architecture, width for data transfer, memory allo-
cation, and DNN mapping. AutoDNNchip is composed of a
chip predictor and a chip builder. The former predicts metrics
such as area, latency, energy, and throughput, whereas the
latter performs the DSE optimizing the chip design using the
results obtained by the predictor. A chip predictor is formed
by two modes: (i) coarse-grained and (ii) fine-grained. In (i),
analytical models are used to obtain the energy, critical path,
and area for a DNN model, while in (ii), an algorithm is
implemented to obtain the final latency through runtime sim-
ulations, considering the results of the coarse-grained mode.
A chip builder is composed of a DSE based on two phases:
early stage architecture and IP configuration exploration, and
inter-IP pipeline exploration and IP optimization. Finally, the
RTL is generated and executed to validate the results.

Table 5 summarizes the frameworks used in the contribu-
tions described in this section. The first two columns are the
reference and the year of publication. The third column is the
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TABLE 4. Models used for FPGA/SoC on different research areas.

research area in which the model is applied. The fourth is the
name of the framework and the last is the target platform.

As we can observe, most frameworks are devoted to
mapping ML-based inference into FPGA/SoC architectures.
The components of these frameworks are usually expressed
as pre-defined optimized templates, mainly implemented in
C++ and OpenCL, where parallelism can be controlled
by changing the parameters associated with the different
directives.

VI. CHALLENGES
Nowadays, the explosive growth of accelerators promises
greater computational capabilities. FPGA/SoC devices are
widely used as hardware accelerators in different areas of
research and development. However, the structured study we
have presented in the previous sections indicates the necessity
to address some challenges. Coping with them will permit
a more widespread adoption of models, methodologies, and
frameworks for performance estimation of HLS-based hard-
ware designs for FPGA/SoC technology.

Even using HLS tools, reconfiguring an FPGA/SoC with
an efficient hardware design is a challenging task. This is
easily made apparent by some observations:
• Physical resources, such as memory bandwidth, recon-
figurable hardware (LUTs, CLBs, and slices), and static
hardware (DSPs and BRAMs) are limited in FPGA/SoC
devices. Thus, the available physical resources should
be used skilfully, considering techniques to improve the
latency, area, and power, as introduced in Section III-C.

• Code restructuring techniques aid creating efficient
FPGA implementations using HLS tools, modifying the
original source code of the application according to
the FPGA architecture. Suggestions for this topic are
presented in [82].

• The number of PE replicas in a hardware design, and
consequently the level of coarse-grain parallelism that
can be obtained, is limited to the available physi-
cal resources. Therefore, different strategies should be
implemented to exploit the architecture so as to increase
the scalability of the system.

• There is a trade-off between the different metrics to
be optimized, as was presented in Section III-B. As an
example, the area occupied is likely to increase if the
latency is reduced, and vice versa. Thus, the FPGA
designer should choose a good compromise between
the metrics in terms of resources, computing operations,
throughput, among others.

• The hardware generated through HLS tools is directly
associated with the applied directives, but sometimes
applying and tuning directives require a considerable
endeavour to obtain a proper FPGA implementation.
Moreover, generating a solution for each directive com-
bination is associated with the synthesis time, reducing
productivity.

• The exploration of the design space is linked to the
human effort of performing combinations of direc-
tives, user design constraints, FPGA features, and code
restructuring, among others.

We can cope with the above considerations through mod-
els, methodologies, and frameworks to reduce design time,
as follows:
• The level of coarse-grain parallelism can be obtained
by means of a model such as Roofline, identifying the
computation-to-communication ratio, exposing the rela-
tionship between communication bottlenecks, compu-
tations, and number of replicas, as was presented in
Section II-E and demonstrated in contributions such
as [48], [118].
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TABLE 5. Utilization of frameworks FPGA/SoC on different research areas. PDR: Partial dynamic reconfiguration.

• Design space explorers aim to identify the optimal com-
bination of directives to obtain an HLS-based hardware
design with the best trade-off among different metrics,
generating the Pareto-optimal set of designs. Reducing
the design space and avoiding HLS in the exploration
process can improve the design time, as was described
in Section IV-B.

• Models integrated within a methodology or frame-
work can automatically estimate the performance of
HLS-based hardware designs without executing HLS
tools, as presented in Section IV.

• Some frameworks and methodologies including DSE
provide automatic directive-insertion optimizations and
code transformation insights, as in contributions such
as [115], [116], [118].

Nevertheless, the literature review shows that a number of
challenges has to still be addressed in order to make optimal
use of models, methodologies, and frameworks, such as:
• Recent HLS tools generate more comprehensive reports
with more accurate information on total resource avail-
ability, latency, clock frequency, and resource utiliza-
tion. These reports can be integrated with models,
methodologies, and frameworks to estimate metrics and
provide an initial value for the replication factor of a
single PE. However, the report generation is linked to
the synthesis time of the FPGA implementation. Reduc-
ing the design time is an important factor when using
FPGA/SoC without losing hardware quality to reconfig-
ure the platform. Thus, if the HLS tool is in the loop for
performance estimation using reports, it can lead to an
increased design time. One way to overcome this is to
use approaches such as [113], [121], [124], [152], [156],
without the need to run HLS in the loop or reduce its
invocation.

• The performance metrics reported by HLS tools
make them suitable to be combined with a parallel

computation model to reduce the time required to obtain
the necessary statistics for each implementation for a
specific application. However, there is a gap between the
HLS report and the real hardware implementation [101]
that can be addressed with a performance model that
includes the results obtained from the sourceCode-to-
bitstream flow using the values related to final hardware
utilization, power consumption, and timing reports.

• Computing models for FPGA-based reconfigurable
hardware accelerators have to consider that the inher-
ent hardware is not fixed. Rather, it is defined by how
the application is described. Therefore, a higher num-
ber of parameters have to be included in the model,
such as hardware resources (DSP, BRAM, LUT, and
FF), programmable logic clock, latency, byte-operations
(Bops), scalability in the number of PE, and power
consumption. This contrasts with the computing models
proposed for other parallel platforms, such as PRAM or
BSP, that use a few parameters. Nevertheless, including
more parameters in the model increases the analysis
accuracy, but affects the complexity of the model analy-
sis. Therefore, the trade-off between these two features
has to be addressed. In addition, the parameters should
be adjusted according to the particular combination of
directives applied to the source code.

• The compatibility among different versions of HLS tools
is not granted by models, methodologies, and frame-
works. As a consequence, calibration techniques can
help maintain compatibility between high-level tools,
thereby avoiding being tied to one version of HLS tool
in particular [14].

• Methodologies and frameworks are typically linked to a
tool [77], [130], [131], [136]. However, most such tools
are not easily available or do not have user support. This
is a critical point in the adoption of methodologies and
frameworks for performance estimation, which makes
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difficult to include them in the design flow. This may
be solved by making methodologies and frameworks
available to the FPGA designer through a repository
system, such as contributions in [77] and [136], among
others.

• The integration of frameworks into the different steps of
the flow for designing IP cores can be affected by the
installation of libraries, dependencies, and tools, such as
LLVM IR and Clang, needed for the execution of the
frameworks. It should be guaranteed to the user a simple
way of installation and maintenance in order to facilitate
their integration in the design flow. This concern can be
addressed by providing a script with dependencies to be
installed, an executable file, or a library package.

• For heterogeneous architectures, the hardware-software
co-design can be considered by models, methodologies,
and frameworks taking into account the inherent features
of different technologies, to ease the decision on which
part of the algorithm should be implemented in software
and which part in hardware. The performance of the
overall system may be estimated by combining tradi-
tional parallel computing models presented in Section II
(for the sequential part) and the contributions discussed
in Section IV (for the FPGA part). In addition, a single
parallel model, such as Roofline, can be applied to both
architectures.

Moreover, when a DSE engine is integrated with models,
methodologies, and frameworks, the following aspects need
to be considered:
• One of the key points in the DSE is the execution of
HLS tools during the exploration stage to validate the
configuration obtained. This behaviour can lead to a
long runtime, becoming a drawback in the DSE phase.
Therefore, the adoption of different techniques to reduce
the execution time of the exploration phase is indispens-
able, as shown in contributions such as [113], [121],
[134], [136], [137].

• It is often sufficient to find a suboptimal combination
of knobs based on specific metrics and user constraints.
An important strategy is pruning the design space using
intermediate Pareto-optimal designs, giving priority to
the points that permit high-performance behaviours,
as introduced in [136], [188], and [134].

• The DSE engine should guarantee a good compromise
among the QoR and performance metrics.

• Approximate computing [189] can lead to an expansion
of the design space, generating Pareto-optimal designs
with a trade-off between area-power-latency estimation
and error computation [129], [144]. A reduction in the
space to be explored is fundamental to minimizing the
invocations of HLS tools.

• It is important to identify the strengths and weaknesses
of a given design space explorer. This can be per-
formed using benchmarks, as was made in [15], [115],
[114], [132], and [77], among others.

FIGURE 18. Summary of the main aspects presented in this section.

• Mapping an optimal design from the DSE to the
FPGA/SoC can be challenging while maintaining the
QoR reported by the DSE engine, mainly latency.
Contributions in the literature [77], [130], [155] have
implemented their own scheduler to obtain solutions
with better timing than HLS tools (with no guarantee
that HLS will implement it in the same way) [78].
To address this, some contributions [78], [118] use a
baseline implementation obtained after HLS synthesis to
consider the impact of the compiler optimizations and
use the estimated critical path that affects the latency.
This implementation is considered the starting point for
the DSE engine to search for Pareto-optimal designs.
Moreover, in the process of mapping the final hardware
design onto the FPGA/SoC, the place-and-route phase
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plays an important role and different strategies provided
by commercial tools can be used in this phase, adding
another factor to be analyzed.

• It is fundamental to consider the application of
HLS-specific compiler optimizations, due to the impact
that they have on the hardware quality, in terms of
latency, area, and power consumption [190].

Fig. 18 summarizes the main aspects presented in this
section, considering those to create efficient hardware to
reconfigure the FPGA, how some of these aspects may be
coped through models, methodologies, and frameworks, and
the challenges that need to be considered to bridge the gap
between designers and FPGA-based reconfigurable hardware
accelerators.

VII. CONCLUSION
In this survey, different models, methodologies, and frame-
works proposed for metrics estimation, FPGA-based design
space exploration, and power consumption estimation on
FPGA/SoC have been described. The main features and lim-
itations, as well as trade-offs of these approaches, have been
presented, and different challenges to be addressed have been
identified.

The integration of models and frameworks in different
research areas has also been described, indicating a growing
tendency to apply them in the field of machine learning
accelerators for diverse applications.

Based on our literature review, it can be observed that
existing models, methodologies, and frameworks are very
difficult to compare against one another. One reason is the
lack of standards limiting their evaluation on different hard-
ware and applications, together with the fact that the different
approaches do not analyze the same performance metrics.

In addition, it can be affirmed that the inherent hardware
reconfigurability of FPGA/SoC affects the complexity of the
associatedmodels. Indeed, the models for FPGA/SoC usually
have a higher complexity than those commonly used for CPU,
GPU, multicore processors, among other architectures.

We believe this survey can help readers understand the ben-
efits of integrating models, methodologies, and frameworks
for FPGA-based hardware accelerators into the design flow.
Therefore, the FPGA designer can select the approach that
best suits the application, hardware architecture, and pro-
gramming skills.

The literature review shows that several challenges have
to still be addressed to make optimal integration of models,
methodologies, and frameworks in the design flow. By high-
lighting these challenges, this survey reveals what has to be
considered to bridge the gap between the FPGA designer and
hardware accelerators based on FPGA.

APPENDIX A. LIST OF ACRONYMS
A Area.
ADRS Average distance from reference set.
AP Attainable performance.

ASIC Application specific integrated circuit.
BRAM Block RAM.
BSP Bulk synchronous parallel.
CCM Collective computing model.
CDFG Control data flow graph.
CFD Computational fluid dynamics.
CI Computational intensity.
CLBs Configurable logic block.
CNN Convolutional neural network.
CRCW Concurrent read concurrent write.
CREW Concurrent read exclusive write.
CUDA Compute Unified Device Architecture.
D Design space.
DDDG Dynamic data dependence graph.
DMA Direct memory access.
DNN Deep neural network.
DSE Design space exploration.
DSP Digital signal processor.
ERCW Exclusive read concurrent write.
EREW Exclusive read exclusive write.
ERT Empirical Roofline toolkit.
FF Flip-Flop.
FIR Finite impulse response filter.
FPGA Field programmable gate array.
GNN Graph neural networks.
HDL High-level design.
HLS High-level synthesis.
HPC High-performance computing.
HPM Hierarchical model for parallel computations.
HVE Hypervolume error.
I/O Input/Output.
IoT Internet of things.
IP Intellectual property.
IR Intermediate representation.
L Latency.
L1 Level-1 cache memory.
L2 Level-2 cache memory.
LLVM IR Low-level virtual machine intermediate

representation.
LUT LookUp Table.
ML Machine learning.
MLP Multi-layer perceptron.
MOOA Multi-objective optimization algorithms.
MPSoC Multiprocessor system on chip.
PC Peak computation.
PE Processing element.
PF Pareto-optimal frontier.
PMB Peak memory bandwidth.
PRAM Parallel random access machine.
QoR Quality of results.
RAM Random access machine.
RTL Register transfer level.
SIMD Single Instruction/Multiple Data.
SoC System on chip.
SPMD Single program multiple data.
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T Throughput.
UMH Uniform Memory Hierarchy Model

of Computation.
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