2,347 research outputs found

    Olive Oil Traceability

    Get PDF

    Organic produce and production system conformity assessments : eggs and isotope analysis

    Get PDF
    Eggs were analysed for stable isotope composition, as a measure for organic produce authentication

    Quantifying terrestrial ecosystem carbon dynamics with mechanistically-based biogeochemistry models and in situ and remotely sensed data

    Get PDF
    Terrestrial ecosystem plays a critical role in the global carbon cycle and climate system. Therefore, it is important to accurately quantify the carbon dynamics of terrestrial ecosystem under future climatic change condition. This dissertation evaluates the regional carbon dynamics by using upscaling approach, mechanistically-based biogeochemistry models and in situ and remotely sensed data. The upscaling studies based on FLUXNET network has provided us the spatial and temporal pattern of the carbon fluxes but it fails to consider the atmospheric CO2 effect given its important physiological role in carbon assimilation. In the second chapter, we consider the effect of atmospheric CO2 using an artificial neural network (ANN) approach to upscale the AmeriFlux tower of net ecosystem exchange (NEE) and the derived gross primary productivity (GPP) to the conterminous United States. We found that atmospheric CO 2effect on GPP/NEE exhibited a great spatial and seasonal variability. Further analysis suggested that air temperature played an important role in determining the atmospheric CO2 effects on carbon fluxes. In addition, the simulation that did not consider atmospheric CO2 failed to detect ecosystem responses to droughts in part of the US in 2006. The study suggested that the spatially and temporally varied atmospheric CO2 concentrations should be factored into carbon quantification when scaling eddy flux data to a region. The process-based ecosystem models are useful tools to predicting future change in the terrestrial ecosystem. However, they suffer the great uncertainty induced by model structure and parameters. The carbon isotope (13C) discrimination by terrestrial plants, involves the biophysical and biogeochemistry processes and exhibits seasonal and spatial variations, which may provide additional constraints on model parameters. In the third chapter, we found that using foliar 13C composition data, model parameters were constrained to a relatively narrow space and the site-level model simulations were slightly better than that without the foliar 13C constraint. The model extrapolations with three stomatal schemes all showed that the estimation uncertainties of regional carbon fluxes were reduced by about 40%. In addition, tree ring data have great potentials in addressing the forest response to climatic changes compared with mechanistic model simulations, eddy flux measurement and manipulative experiments. In the fourth chapter, we collected the tree ring isotopic carbon data at 12 boreal forest sites to develop a linear regression model, and the model was extrapolated to the whole boreal region to obtain the water use efficiency (WUE) and GPP spatial and temporal variation from 1948 to 2010. Our results demonstrated that most of boreal regions except parts of Alaska showed a significant increasing WUE trend during the study period and the increasing magnitude was much higher than estimations from other land surface models. Our predicted GPP by the WUE definition algorithm was comparable with site observation, while for the revised light use efficiency algorithm, GPP estimation was higher than site observation as well as land surface model estimates. In addition, the increasing GPP trends estimated by two algorithms were similar with land surface model simulations

    Application of metabolic modeling and machine learning for investigating microbial systems

    Get PDF
    Metabolic modeling is an important tool to interpret the comprehensive cell metabolism and dynamic relationship between substrates and biomass/bioproducts. Genome-scale flux balance model and 13C-metabolic flux analysis are metabolic models which can reveal the theoretical yield and central carbon metabolism under various environmental conditions. Kinetic model is able to capture the complex principles between the change of biomass growth and bioproducts accumulation with the time series. Machine learning model is a data driven approach to reveal fermentation behavior and further predict cell performance under complex circumstances. In my PhD study, modeling analysis and machine learning method have been used to exam non-conventional microbial systems. (1) decode the functional pathway and carbon flux distribution in Cyanobacteria and Clostridium species for bio productions, (2) characterize biofilm physiologies and biodiesel fermentations (engineered E.coli) under mass transfer limitations, and (3) optimize syngas fermentations by deciphering and overcoming rate limiting process factor

    Recent advances in biomedical applications of accelerator mass spectrometry

    Get PDF
    The use of radioisotopes has a long history in biomedical science, and the technique of accelerator mass spectrometry (AMS), an extremely sensitive nuclear physics technique for detection of very low-abundant, stable and long-lived isotopes, has now revolutionized high-sensitivity isotope detection in biomedical research, because it allows the direct determination of the amount of isotope in a sample rather than measuring its decay, and thus the quantitative analysis of the fate of the radiolabeled probes under the given conditions. Since AMS was first used in the early 90's for the analysis of biological samples containing enriched 14C for toxicology and cancer research, the biomedical applications of AMS to date range from in vitro to in vivo studies, including the studies of 1) toxicant and drug metabolism, 2) neuroscience, 3) pharmacokinetics, and 4) nutrition and metabolism of endogenous molecules such as vitamins. In addition, a new drug development concept that relies on the ultrasensitivity of AMS, known as human microdosing, is being used to obtain early human metabolism information of candidate drugs. These various aspects of AMS are reviewed and a perspective on future applications of AMS to biomedical research is provided
    • …
    corecore