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ABSTRACT 

Shaoqing, Liu. Ph.D., Purdue University, December 2016. Quantifying Terrestrial Ecosystem 
Carbon Dynamics with Mechanistically-based Biogeochemistry Models and in Situ and Remotely 
Sensed Data. Major Professor: Qianlai Zhuang. 

 

Terrestrial ecosystem plays a critical role in the global carbon cycle and climate system. 

Therefore, it is important to accurately quantify the carbon dynamics of terrestrial ecosystem 

under future climatic change condition. This dissertation evaluates the regional carbon dynamics 

by using upscaling approach, mechanistically-based biogeochemistry models and in situ and 

remotely sensed data.  

The upscaling studies based on FLUXNET network has provided us the spatial and temporal 

pattern of the carbon fluxes but it fails to consider the atmospheric CO2 effect given its important 

physiological role in carbon assimilation. In the second chapter, we consider the effect of 

atmospheric CO2 using an artificial neural network (ANN) approach to upscale the AmeriFlux 

tower of net ecosystem exchange (NEE) and the derived gross primary productivity (GPP) to the 

conterminous United States. We found that atmospheric CO2 effect on GPP/NEE exhibited a 

great spatial and seasonal variability. Further analysis suggested that air temperature played an 

important role in determining the atmospheric CO2 effects on carbon fluxes. In addition, the 

simulation that did not consider atmospheric CO2 failed to detect ecosystem responses to 

droughts in part of the US in 2006. The study suggested that the spatially and temporally varied 

atmospheric CO2 concentrations should be factored into carbon quantification when scaling eddy 

flux data to a region. 
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The process-based ecosystem models are useful tools to predicting future change in the terrestrial 

ecosystem. However, they suffer the great uncertainty induced by model structure and parameters. 

The carbon isotope (13C) discrimination by terrestrial plants, involves the biophysical and 

biogeochemistry processes and exhibits seasonal and spatial variations, which may provide 

additional constraints on model parameters. In the third chapter, we found that using foliar 13C 

composition data, model parameters were constrained to a relatively narrow space and the site-

level model simulations were slightly better than that without the foliar 13C constraint. The 

model extrapolations with three stomatal schemes all showed that the estimation uncertainties of 

regional carbon fluxes were reduced by about 40%.  

In addition, tree ring data have great potentials in addressing the forest response to climatic 

changes compared with mechanistic model simulations, eddy flux measurement and manipulative 

experiments. In the fourth chapter, we collected the tree ring isotopic carbon data at 12 boreal 

forest sites to develop a linear regression model, and the model was extrapolated to the whole 

boreal region to obtain the water use efficiency (WUE) and GPP spatial and temporal variation 

from 1948 to 2010. Our results demonstrated that most of boreal regions except parts of Alaska 

showed a significant increasing WUE trend during the study period and the increasing magnitude 

was much higher than estimations from other land surface models. Our predicted GPP by the 

WUE definition algorithm was comparable with site observation, while for the revised light use 

efficiency algorithm, GPP estimation was higher than site observation as well as land surface 

model estimates. In addition, the increasing GPP trends estimated by two algorithms were similar 

with land surface model simulations. 
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CHAPTER 1 INTRODUCTION 

1.1. Research background  

Terrestrial ecosystem plays a critical role in the global carbon cycle and regulates the climate. 

On the one hand, the increasing greenhouse gas (GHG) emissions mainly due to the intensive 

anthropogenic activity have direct and indirect effects on the global terrestrial ecosystem carbon 

budget (Canadell et al., 2007).  On the other hand, the capacity of absorbing CO2 in terrestrial 

ecosystem would significantly impact the global climate through biophysical and biochemical 

feedbacks (Friedlingstein et al., 2006). Therefore, it is important to accurately quantify the carbon 

dynamics of terrestrial ecosystem under future climatic change condition, so as to facilitate the 

corresponding political decision making. At present, the global/regional carbon sink of terrestrial 

ecosystem can be estimated by using atmospheric inversion, satellite remote sensing approaches, 

data-driven methods and process-based ecosystem models. The magnitude of carbon sink/source 

using inversion models is based on the atmospheric observation, such as satellite retrievals and air 

flask samples. However, this approach is generally limited by the sparseness of observation 

network (Tans et al., 1990) and cannot differentiate the sink/source contribution from each 

vegetation type. Remote sensing can obtain the near real-time ecosystem productivity, but the 

accuracy is highly dependent on the model retrievals algorithm and quality images (Baldocchi et 

al., 2001). 

Regional carbon dynamics estimation based on the data-driven methods relies on the ecosystem 

response to environmental condition derived from the site-level observation networks. Recently, 

the widespread eddy covariance towers have been intensively used to measure terrestrial land
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surface exchanges of carbon, water and energy (Williams et al., 2009). The measurements of 

biometeorological variables (such as temperature, radiation, surface-atmosphere CO2 exchange, 

latent heat flux) using the eddy covariance technique on a continuous basis started in the 1990s 

(Verma, 1990). At present, over 700 flux tower sites have been established to provide flux 

observation across a wide range of climate and biomes (except cropland), leading to the 

development of regional observation network (such as Ameriflux and FLUXNET: 

http://daac.ornl.gov/FLUXNET/fluxnet.shtml). Some sites also have the ecological measurement, 

such as the litter fall, leaf area index, soil organic carbon pool. The published datasets were 

generally composed of 4 levels data (level1 to level 4). Level 1 and level 2 include the raw 

observation and post-processed data (gap-filled) and the time step is generally 30 or 60 min. 

Level 3 is derived from the level 2 products, and the data is quality checked using standardized 

techniques, and level 4 is obtained from level 3 using ustar filter, gap-filled with different 

methods (e.g. marginal distribution sampling method and artificial neural network) and this 

product has the aggregated daily, weekly and monthly datasets. These continuous fluxes and 

meteorological variables measurements provide rich insights in the ecosystem response to 

environmental change at different time scales. To date, numerous studies have been conducted to 

explore the gross primary productivity (GPP)/net ecosystem exchange (NEE) temporal or spatial 

variation and its controlling factors in terrestrial ecosystems using those flux data (e.g. Valentini 

et al., 2000; Hirata et al., 2008; Lund et al., 2010; Bracho et al., 2012). Since the site-level 

observations cover a broad range of climate and biomes, the data-driven method is generally 

employed in the upscaling exercise by using eddy covariance flux sites at multiple representative 

sites. This approach generally employs the machine learning algorithm using meteorological data, 

vegetation properties, and remote sensing products and has great advantage in the simplicity 

without too many parameters compared with other mechanistically-based ecosystem models. For 

example, Xiao et al (2010) explored the regress tree to obtain the GPP and NEE in the continent 
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US by using Ameriflux level 4 data products and remote sensing variables. However, current 

upscaling studies have some limitations: First, simulations are vegetation type based: this means 

the model structure and parameters are invariant within an ecosystem (Alton, 2011); Second, the 

selected flux sites may contribute large uncertainties to the model development since regional 

ecoregions may not be well represented by these flux sites (Hargrove et al.2003); Finally, other 

controlling factors may not be considered in upscaling studies, such as land use change (Lambin 

et al., 2003), vegetation characteristics (e.g. tree age). Despite the drawbacks listed above, these 

data products derived from upscaling studies have been extremely useful for improving of our 

understanding of the processes and spatial and temporal patterns in terrestrial carbon dynamics 

(Luo et al., 2015).  

The process-based ecosystem models, incorporating with key biophysical and biochemical 

processes including photosynthesis, respiration, and evapotranspiration, are now widely used in 

understanding and predicting carbon exchanges between terrestrial biosphere and the atmosphere. 

Most of process-based ecosystem models are conducted over relatively large spatial scales with 

short time scales, based on the meteorological forcings, vegetation characteristics and soil 

properties. Also some models incorporate the slow processes of vegetation dynamics (Sitch et al., 

2008), such as the succession, competition and reproduction, with the fast exchanges of water, 

carbon. Although these models are useful tools to predict the likely future states of earth systems 

under anthropogenic forcings, the forecasts of global carbon dynamics show a great variability 

(Todd-Brown et al., 2013), indicating significant uncertainties exist in the representation of 

ecosystem processes (e.g. carbon/nitrogen interaction) and model structure (parameters). On the 

one hand, at a relatively short time scale, the response to light, temperature, precipitation are 

well-predicted by a series of physical and biochemical equations, however, the effects of 

disturbance (fire, land use change) and directional trends, including the increasing CO2 and 

nitrogen deposition, are much less well understood (Luo et al., 2015). For example, the 
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performance capturing the long-term fertilization by ecosystem models is still very poor when 

compared with the in-situ free air enrichment (FACE) observations. Zaehle et al (2014) and 

Walker et al (2015) showed that most ecosystem models can reproduce the initial carbon 

sequestration under elevated CO2 condition at the Duke and ORNL FACE sites. However, none 

of them were able to simulate the long term (10 years) response at both sites. The comparison 

suggested that the improved representation of nitrogen dynamics, carbon allocation and plant 

stoichiometry in ecosystem models is pivotal to reducing the uncertainty in the observed 

fertilization effects. On the other hand, most process-based models have detailed processes to 

allow the simulation of ecosystem’s response to change in a realistic way (Prentice et al., 2015). 

And this generally results in the increasing model complexity and less traceability (Xia et al., 

2013) due to the high non-linearity and groups of parameters. The inter-comparison studies of the 

12 terrestrial ecosystem models showed that model structure and parameters were the main 

uncertainty sources (Schaefer et al., 2012). As for the model parameters, some measureable 

model parameters derived from experiment maybe valid under specific conditions (such as plant 

functional type and climate condition), while most other parameters are based on empirical or 

prior  knowledge. In addition, the parameters equifinality often occurs (Tang and Zhuang, 2008) 

when different sets of parameters with a wide space are used to drive ecosystem models, which 

results in a large prediction variability.  

    In addition to carbon flux data, stable carbon isotope (13C) observation may help constrain the 

carbon dynamics prediction. There are two naturally occurring stable isotopes of carbon, 12C and 

13C. Most of the carbon is 12C (98.9%), with 1.1% being 13C. Due to the difference in atomic mass, 

the isotopologues exhibit different physical and chemical properties, resulting in different 

reaction kinetics and thermodynamic properties. The carbon isotope composition is usually 

expressed in δ notation (in ‰ units), relative to the international standard Vienna Pee Dee 
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Belemnite (VPDB). The carbon isotopic composition δ13C of any sample is thus expressed as 

deviation from VPDB as shown: 

13 ( 1)*1000sample

VPDB

RC
R

δ = −
                                                      (1.1)

 

  where R is the isotope (abundance) ratio (13C/12C) of a given sample ( sampleR ) and of VPDB 

( VPDBR   = 0.0111802), respectively. The carbon isotope discrimination (∆ 13C) is defined as the 

depletion of 13C during any process preferring the lighter isotopologue: 

13 13

13( )*1000
1000

s p

p

C C
C

δ δ
δ
−

∆ =
+                                                     (1.2)

 

where   13
sCδ  is the carbon isotope signature of the source and 13

pCδ  is the isotopic signature of 

the product of a process (Farquhar et al., 1989). On the VPDB scale, free atmosphere CO2 

currently has a value about -7.8‰, and typical C3 plant carbohydrate a deviation of pδ  of -

27.6‰.  

Generally, carbon isotope fractionation during photosynthesis in C3 plants is described 

according to the following equation (Farquhar et al., 1982): 

*/( ) ( )a s s i i c c d
b s l

a a a a a a

P P P P P P P eR k fa a e a b
P P P P P P
− − − Γ

∆ = + + + + − +
          (1.3) 

  Where aP  , sP  , iP  and cP  are the CO2 partial pressures in ambient air, at the leaf surface, 

in the leaf intercellular airspace and in the chloroplasts, respectively.  ba and a describe the 

carbon isotope fractionation during diffusion through the boundary layer (2.9 ‰) and into the 

leaves through the stomata (4.4 ‰), respectively.  se is the fractionation occurring as CO2 enters 

an aqueous solution (1.1 ‰ at 25 ◦C) and la  the fractionation during diffusion through the liquid 

phase (0.7 ‰ at 25 ◦C),  k  is the carboxylation efficiency and b the net fractionation during 
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carboxylation. dR  is the respiration rate in the light, *Γ  is the CO2 compensation point in the 

absence of day respiration, and  e  and f  are the fractionation factors during day respiration and 

photorespiration. 

According to Farquhar photosynthesis formula (Farquhar et al., 1980), the carbon assimilation 

rate is a function of the intercellular CO2 concentration. Therefore, the in-situ observation of 

carbon fluxes combined with the measurements of isotopic signal of plant tissues, which integrate 

all the biophysical and biogeochemical processes, may be expected to have good constraints on 

the parameters related to biophysical and biochemical processes at the canopy scale. For example, 

plant ecosystem respired CO2 has been shown to negatively relate with vapor pressure deficit, 

which is consistent with stomatal regulation of gas exchange and photosynthetic carbon 

discrimination (Bowling et al., 2002). In addition, the highly frequent respired CO2 isotopic 

signals have provided a new tool to partitioning GPP and respiration. However, since plant 13C 

tissue observation is closely associated with the plant physical and biochemical processes, few 

studies have incorporated the observation into the process-based ecosystem models to constrain 

relative parameters or physical/biochemical processes, and therefore the regional/global carbon 

dynamics. Ballantyne et al (2011) compared the simulated isotope composition of CO2 using the 

Simple integrated Biosphere2 (SiB2) with in-situ atmosphere 13CO2 measurement to evaluate 

Ball-Berry and Lenuing model schemes. Bodin et al (2013) incorporated the three stomatal 

models into a LSM to simulate the carbon isotope ratio of tree leaves (δ13Cleaf) and tree rings 

(δ13Cstem) over a period of 53 years, and comparing the results with carbon isotope ratios obtained 

from measured at six sites in northern Europe. As for the water use efficiency study based on tree 

rings, previous studies were mainly focused on site-level.  

In addition, the isotopic records in tree ring are particularly useful for understanding tree 

response to long term environmental change. The annual tree rings are formed through cambial 
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cell division, enlargement and lignification, which are influenced by multiple environmental 

condition and occasional disturbance events (insect, fire) (Babst et al., 2014). Despite the 

complex processes (e.g. carbon allocation) resulting in the final tree ring characteristics, it still 

provides us an opportunity to investigate the effects of mutilple environmental conditions on tree 

ring properties (Billings et al., 2016). The ratio of intercellular CO2 to ambient CO2 (Ci/Ca), 

which links the photosynthetic activity and stomatal closure and drives the signal of carbon 

discrimination at the leaf scale, can be used to infer the physiological processes.  Previous studies 

have used the tree ring isotopic carbon data to reconstruct past-climate variables (radiation, 

precipitation) (Loader et al., 1996; Holzkämper et al., 2009) since Ci/Ca is strongly modulated by 

environmental change. In addition, the intrinsic water use efficiency variation, which is often 

explored as an indicator of long term regulation of plant carbon uptake and water loss in plants 

(Keenan et al., 2009), can be also derived from tree ring isotopic record. For example, Saurer et al 

(2004) investigated the response of 126 trees (Larix, Pinus and Picea) in northern Eurasia to 

climatic change and increasing CO2 over the last century by using tree ring data, and their 

findings suggested  an 19.2% increase in WUEi in these species. Dekker et al (2016) derived the 

global ecosystem water use efficiency based on tree ring data and FLUXNET by exploring a new 

stomatal algorithm, which is based on the optimal stomatal behavior. These site-levels studies 

help us understand how certain plant species respond to climatic change, especially the CO2 

fertilization effect. However, few have conducted the regional WUE estimation based on the tree 

ring carbon data.  

 

1.2. Research Objective 

Terrestrial ecosystems absorb around one-third CO2 emissions from anthropogenic activities 

(Le Quere et al., 2009) and its feedback would have a large impact on the global climate system 
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(Friedlingstein et al., 2006). Therefore, it is important to accurately quantify the regional/global 

carbon dynamics in terrestrial ecosystems given the predicted continuous increasing GHG 

emissions in future. In the Introduction section above, I briefly reviewed two methods to quantify 

regional/global carbon dynamics: upscaling studies based on Fluxnet and process-based 

ecosystem models. Although the upscaling studies based on FLUXNET network has provided us 

the spatial and temporal pattern of the carbon fluxes and can serve as the benchmark products for 

the ecosystem modeling community, it fails to consider the atmospheric CO2 effect given its 

important physiological role in carbon assimilation (e.g. Ainsworth and Long, 2005). The 

process-based ecosystem models are useful tools to predicting future change in the terrestrial 

ecosystem. However, they suffer the great uncertainty induced by model structure and parameters.  

Therefore, my first two chapters will focus on the upscaling approach and using process-based 

ecosystem models to quantify carbon dynamics. In addition, compared with the complex land 

surface models, tree ring isotopic record has great advantage to address plant response to long 

term environmental variations. My specific research objectives are: 

(1) Evaluate the atmospheric CO2 effects on the regional GPP/NEE estimation using 

FLUXNET and machine learning algorithms. 

(2) Constrain the carbon dynamics by using process-based ecosystem models where isotopic 

fractionation process is incorporated into a process-based model to reduce the estimation 

uncertainty. 

(3) Derive the regional long term WUE variation and estimate the inter-annual GPP based on 

the derived WUE using tree ring carbon isotopic record.   
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CHAPTER 2 EVALUATING ATMOSPHERIC CO2 EFFECTS ON GROSS PRIMARY 

PRODUCTIVITY AND NET ECOSYSTEM EXCHANGES OF TERRESTRIAL 

ECOSYSTEMS IN THE CONTERMINOUS UNITED STATES USING THE AMERIFLUX 

DATA AND AN ARTIFICIAL NEURAL NETWORK APPROACH 

 

Abstract: Quantitative understanding of regional gross primary productivity (GPP) and net 

ecosystem exchanges (NEE) and their responses to environmental changes are critical to 

quantifying the feedbacks of ecosystems to the global climate system. Numerous studies have 

used the eddy flux data to upscale the eddy covariance derived carbon fluxes from stand scales to 

regional and global scales. However, few studies incorporated atmospheric carbon dioxide (CO2) 

concentrations into those extrapolations. Here, we consider the effect of atmospheric CO2 using 

an artificial neural network (ANN) approach to upscale the AmeriFlux tower of NEE and the 

derived GPP to the conterminous United States. Two ANN models incorporating remote sensing 

variables at an 8-day time step were developed. One included CO2 as an explanatory variable and 

the other did not. The models were first trained, validated using eddy flux data, and then 

extrapolated to the region at a 0.05o × 0.05o (latitude x longitude) resolution from 2001 to 2006. 

We found that both models performed well in simulating site-level carbon fluxes. The spatially-

averaged annual GPP with and without considering the atmospheric CO2 were 789 and 788 g C 

m-2 yr-1, respectively (for NEE, the values were -112 and -109 g C m-2 yr-1, respectively). Model 

predictions were comparable with previous published results and MODIS GPP products. 

However, the difference in GPP between the two models exhibited a great spatial and seasonal 
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variability, with an annual difference of 200 g C m-2 yr-1. Further analysis suggested that air 

temperature played an important role in determining the atmospheric CO2 effects on carbon 

fluxes. In addition, the simulation that did not consider atmospheric CO2 failed to detect 

ecosystem responses to droughts in part of the US in 2006. The study suggests that the spatially 

and temporally varied atmospheric CO2 concentrations should be factored into carbon 

quantification when scaling eddy flux data to a region. 

 

2.1 Introduction 

Net ecosystem carbon exchange (NEE) and gross primary productivity (GPP) are two major 

fluxes involved in the ecosystem biogeochemical carbon process. Quantification of GPP and NEE 

and their responses to environmental changes would improve our understanding of the ecosystem 

carbon cycling and its feedbacks to the global climate system. At present, GPP and NEE at 

regional scales are often quantified using atmosphere inverse models (e.g. Prince and Goward, 

1995), process-based biogeochemical models (e.g. White et al., 2000), and satellite remote 

sensing approaches (e.g. Running et al., 2000). The estimation of NEE based on the inverse 

models is limited by the sparseness of the carbon dioxide (CO2) observation network (Tans et al., 

1990); and this approach cannot differentiate the carbon source/sink contributions of each 

ecosystem (Janssens et al., 2003). Process-based models generally first derive the GPP and 

ecosystem respiration, which are modeled as a function of physical and biological variables and 

thus can be applied at regional and global scales. However, large uncertainty still exists in current 

quantification due to complex model structure, uncertain parameters, and model input (Chen et al., 

2011). Satellite remote sensing approaches have advantages in GPP quantification that is based 

on a near real-time dataset, instead of broadly parameterized ecosystem models. However, they 
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are highly dependent on the accuracy of the model algorithms and the quality of satellite 

imageries (Baldocchi et al., 2001). 

The eddy covariance technique provides direct measurement of net carbon and water fluxes 

between vegetation and the atmosphere (Baldocchi et al., 1988; Foken and Wichura, 1996; 

Aubinet et al. 1999). At present, over 500 flux tower sites have been operated to measure the 

exchanges of carbon fluxes continuously over a broad range of climate and biome types 

(FLUXNET http://daac.ornl.gov/FLUXNET/fluxnet.shtml). These towers also provide calibrated, 

validated NEE data and the derived GPP product. To date, numerous studies have been conducted 

using those flux data to explore the GPP and NEE temporal or spatial variation and their 

controlling factors in terrestrial ecosystems (Valentini et al. 2000; Law et al. 2002; Baldocchi, 

2008; Hirata et al. 2008; Kato and Tang 2008; Lund et al., 2010; Bracho et al., 2012). Eddy flux 

data have also been widely used for model calibration (Hanan et al., 2002; Reichstein et al., 2002; 

Hanson et al., 2004) and to upscale from stands to regional levels. The upscaling exercises 

generally employ the machine learning algorithm that uses meteorological data, vegetation 

properties, and remote sensing products, which have been conducted for Asia (Zhu et al., 2014; 

Fu et al., 2014), Europe (Jung et al., 2008; Vetter et al., 2008), the US (Yang et al., 2007; Xiao et 

al., 2008; Xiao et al., 2010) and even at global scales (Beer et al., 2010; Yuan et al., 2010). 

However, few studies have incorporated the atmospheric CO2 concentrations into regional GPP 

and NEE extrapolations when using eddy flux tower data. Increasing CO2, which is mainly due to 

the burning of fossil fuels and, to a much lesser extent, land-cover change (Keeling et al., 1995; 

Hartmann et al., 2013), will have substantial direct and indirect effects on the carbon budget 

(Canadell et al., 2007). Numerous studies have been conducted to understand how plants and 

ecosystems will respond to elevated CO2 (Ainsworth and Long, 2005). The large-scale free-air 

CO2 enrichment experiment (FACE) showed that increasing CO2 would reduce the stomatal 
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conductance (Curtis and Wang, 1998; Medlyn et al., 2001; Ainsworth and Rogers, 2007) over a 

short time period, resulting in decreased transpiration, enhanced water-use efficiency (Conley et 

al., 2001; Wall et al., 2001) and increased soil moisture (Bunce, 2004). In addition, stimulated 

photosynthesis (e.g. Li et al., 2014) would increase the above and below-ground biomass 

production (Piao et al., 2006, Los, 2013; Wan et al., 2007; Deng et al., 2010) and hence accelerate 

the CO2 loss from heterotrophic respiration (Luo et al., 1996). Generally, long-lived plant 

biomass (trees) is more responsive to increasing CO2 than herbaceous species (Ainsworth and 

Long, 2005). However, increased plant production with high carbon (C) to nitrogen (N) ratio 

under elevated CO2 results in low quality litter input and slows the soil N mineralization, thus 

triggering the negative feedback to plant biomass over time (Oren et al., 2001; Gill et al., 2002; 

Luo et al., 2004) if there is no extra nitrogen input. This conceptual framework about progressive 

N limitation is more obvious in long-lived plants (trees) (Luo et al., 2004) and has been supported 

by few experiments (Oren et al., 2001; Norby et al., 2010). In addition, the climate drivers and 

their interaction with soil resources (Reich et al., 2014) would also constrain the ecosystem 

response to CO2 fertilization. For example, increasing N mineralization due to warming 

temperature would further promote plant growth (Peltola et al., 2002; Dijkstra et al., 2010) 

whereas the drought stress may diminish this positive effect under elevated CO2 condition 

(Dermody et al., 2007; Larsen et al., 2011). Moreover, altered water, energy balance (Drake et al., 

1997, Keenan et al., 2013), and vegetation physiology due to increasing CO2 would in turn affect 

the carbon cycling. Therefore, incorporating atmospheric CO2 concentrations into the regional 

GPP and NEE estimation should be a research priority. In addition, previous upscaling flux 

studies that exclude the atmospheric CO2 concentration assume that CO2 variations were spatially 

and temporally uniform in a region. Although atmospheric CO2 is generally well-mixed globally 

since it is chemically inert (Eby et al., 2009), it actually exhibits a large seasonal and spatial 

variability at the regional scale (Miles et al., 2012). The seasonal and spatial characteristics have 
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previously been reported at site and regional levels (Davis et al., 2003; Haszpra et al., 2008; Miles 

et al., 2012). For example, the summer measurement of the atmospheric boundary layer CO2 mole 

fraction from a nine-tower regional network deployed during the North American Carbon 

Program’s Mid-Continent Intensive (MCI) during 2007 to 2009 shows that the seasonal CO2 

amplitude is five times larger than the tropospheric background and the spatial gradient across the 

region is four times the inter-hemispheric gradient (Miles et al., 2012).  

In this study, we used an artificial neural network (ANN) approach to upscale the AmeriFlux 

tower derived GPP and NEE to the conterminous US from 2001 to 2006 by considering the 

atmospheric CO2 concentrations as an independent factor. We developed two sets of ANN 

models linking GPP and NEE and remote sensing variables for each vegetation type: the first 

considered the atmospheric CO2 concentration effects (CO2 incorporated simulation, S0) and the 

other did not (non-CO2 incorporated simulation, S1). After the training and validation procedure, 

we then used the two models to extrapolate GPP and NEE to the conterminous US. We 

hypothesized that: (1) both models would capture the GPP and NEE variation at the calibration 

stage; (2) the two simulations would exhibit spatiotemporal differences which associate with 

climate drivers; and (3) ecosystems with high productivity (e.g., forest, cropland) would show 

greater differences between the two simulations. 

  

2. 2 Method 

2.2.1 Overview 

From the AmeriFlux network, we selected the key ecosystem types in the conterminous US 

including: evergreen forest, deciduous forest, grassland, mixed forest, savannas, shrubland, and 

cropland. Day land surface temperature (D_LST) and night land surface temperature (N_LST), 
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leaf area index (LAI), fraction of absorbed photosynthetically active radiation (fPAR), 

normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), CO2 

measurement and derived GPP and NEE from the eddy flux towers were organized into an 8-day 

time step. To explore the atmospheric CO2 concentrations’ effect on the GPP and NEE, we 

constructed two sets of ANN models for each vegetation type: one incorporated CO2(S0) in 

addition to D_LST, N_LST, LAI, fPAR, NDVI and EVI; and the second did not incorporate with 

CO2 (S1) with the same explanatory variables in S0. After the training and validation of the two 

sets of ANN models, the regional estimation of GPP and NEE was driven by the explanatory 

variables at a spatial resolution of 0.05◦ × 0.05◦ on an 8-day time step. The difference between S0 

and S1 was then analyzed, considering the controls of environmental variables. 

 

2.2.2 Explanatory variables  

NEE is the difference between photosynthesis and ecosystem respiration, which is influenced by 

a variety of physical, physiological, hydrological, and atmospheric variables. As for the plant 

photosynthesis, current ecosystem models have incorporated various mechanisms related to these 

factors to simulate GPP, such as the bio-chemical model (e.g. Farquhar et al., 1980), light use 

efficiency equation (e.g. Running et al., 2000), and the semi-empirical relationship (e.g. Raich et 

al., 1991). Ecosystem respiration (Re) includes autotrophic (Ra) and heterotrophic respiration 

(Rh). Ra is generally modeled as a function of temperature and plant biomass, while Rh is 

empirically modeled as a function of soil temperature, moisture, and soil organic carbon stocks. 

Many of these factors influencing GPP and NEE can be assessed by satellite remote sensing 

products. NDVI is closely correlated to the photosynthetic activity, vegetation biomass, and 

fractional vegetation cover, which have been widely used in production efficiency models. We 

also incorporated the EVI to improve the ANNs performance due to the several limitations of 
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normalized difference vegetation index (NDVI), including the saturation in a multilayer closed 

canopy and sensitivity to atmosphere aerosols and soil background. The LST derived from the 

Moderate Resolution Imaging Spectroradiometer (MODIS) corresponds the surface soil 

temperature, which is known to strongly control the Re as both Ra and Rh. Previous studies 

demonstrated that satellite-derived LST was strongly correlated with Re, especially in dense-

vegetated ecosystems (Rahman et al., 2005). The estimation of LAI and fPAR, characterizing the 

vegetation canopy function and energy absorption capacity, are key parameters in most 

biogeochemical models due to the high correlation with GPP. Taken together, we selected LST, 

NDVI, EVI, fPAR, and LAI as explanatory variables to account for the GPP and NEE variation. 

 

2.2.3 Data Organization 

We organized AmeriFlux site-level data of carbon flux and meteorology, MODIS land-cover, 

spatially and seasonally explicit CO2, and the remote sensing products derived from MODIS. The 

AmeriFlux network coordinates regional analyses of observations from eddy covariance flux 

towers across the US. The Level-3 and Level-4 data for 36 AmeriFlux sites over the period 2000–

2006 that contained CO2 measurements were ultimately organized (Table 2-1 & Fig 2.1). In the 

Level-3 product, the half-hourly CO2was aggregated into 8-day time step values. The Level-4 

product consists of two types of GPP and NEE data: standardized (GPP_st and NEE_st) and 

original (GPP_or and NEE_or). Here, we used the same method in Xiao et al. (2010) to select the 

type of GPP and NEE product. Explanatory variables, GPP and NEE values derived from the 

selected sites were organized to develop the ANN models for each ecosystem type. 

We used the following four MODIS data products (Collection 4), including daytime and 

nighttime LST (MOD11A2; Wan et al., 2002), EVI (MOD13A1; Huete et al., 2002), and 

LAI/fPAR (MOD15A2; Myneni et al., 2002).EVI is at a spatial resolution of 500 m x 500m, 
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while LAI, fPAR, and LAI are at spatial resolutions of 1 km x 1km. These MODIS data were 

resampled to the same resolution of 0.05◦ × 0.05◦ (longitude x latitude). The explicitly spatial and 

seasonal CO2 data was obtained from the National Oceanic and Atmospheric Administration 

(NOAA) gridded CO2 product (ftp://aftp.cmdl.noaa.gov/products/carbontracker/CO2/). The 

product is based on global CO2 observation network data, employing a novel ensemble 

assimilation method to accurately model atmospheric CO2 mole fractions (Peters et al., 2007). 

Land cover was obtained from the MODIS product Land Cover Types Yearly L3 Global 0.05 

Deg CMG (MOD12C1) (Year 2005) from the NASA Goddard Space Flight Center website 

(http://modis-land.gsfc.nasa.gov). The classification of the International Geosphere and Biosphere 

(IGBP) land-cover classification system was used to reclassify the land-cover map of the 

conterminous United States into seven major vegetation types in the ANN model. To be more 

specific, the evergreen needleaf forest and evergreen broadleaf forest were combined into 

evergreen forest (same for deciduous forest); and closed shrubland and open shrubland were 

merged into shrubland. Therefore, the model calibration and simulation were based on the seven 

vegetation types: evergreen forest, deciduous forest, grassland, mixed forest, savannas, shrubland, 

and cropland. 

 

2.2.4 Neural Network Development 

We used a General Regression Neural Network (GRNN) algorithm (Specht, 1991) to represent 

the input-output relationship between the independent variables and dependent variables. The 

GRNN scheme can model the nonlinear system without specifying the algebraic relationship or 

internal mechanism. With the advantage of a fast-learning speed and good convergence with a 

large number of training datasets, GRNN can be a useful tool to estimate GPP and NEE based on 

the explanatory environmental variables. The training data set, including input and output values 
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of measurements, is fed into the multilayer neural network. The network is trained to obtain a set 

of optimized interconnected network weights, which are used to produce the most probable value 

for the outputs. More details about the GRNN algorithm and optimization procedure are provided 

in the supplementary information (GRNN algorithm and Fig. 2.2). To develop the GRNN model 

for each ecosystem type, we first randomly divided each dataset into two sets: a training set (75% 

of whole data for each vegetation type) used to construct the GRNN model and a testing set (25% 

of whole data for each vegetation type) used to evaluate the performance of constructed GRNN. 

MATLAB codes were used for developing the model (The MathWorks Inc., Natick, MA, USA). 

The uncertainty of GRNN model prediction is mainly from three sources: input variables, ANN 

model structure, and model parameters. Here we focused on the uncertainties associated with the 

model structure because we do not have sufficient knowledge about the uncertainty of input 

variables. We used the “delete-one” method (Zhuang et al., 2012) through developing a number 

of alternative ANN models to quantify the uncertainty of GPP and NEE due to uncertain model 

structures. To be more specific, we randomly selected 75% of the observed data for each 

ecosystem type to develop a new ANN model. The new model was then scaled up to obtain the 

new GPP and NEE estimation at the regional scale. The process was repeated for 100 times in S0 

and S1 for each ecosystem type, respectively. The averaged GPP and NEE of all estimations were 

used to analyze the differences among simulations. The 95% confidence intervals were 

considered to be the range of model uncertainty to define the upper and lower bounds of the GPP 

and NEE estimation. 
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2.3 Results 

2.3.1 Annual GPP and NEE and spatial difference 

The simulated GPP, NEE with the two sets of ANN models were both close to the observed GPP 

and NEE for each ecosystem type (Fig. 2.3). We applied the two sets of models to calculate the 

annual averaged GPP and NEE of terrestrial ecosystems for the conterminous US at an 8-day 

time step from 2001 to 2006 (Fig. 2.4(a), 2.4(c)). Both models showed a high spatial variability 

with a clear gradient from west to east. The Gulf Coast and parts of the Southeastern US were the 

most productive regions, with GPP greater than 2000 g C m-2 yr-1. Most parts of the Southeast and 

coastal Pacific Northwest also possessed high GPP (1250-1500 g C m-2 yr-1). The Northeast had 

intermediate GPP (500–1000 g C m-2 yr-1), where was mainly dominated by deciduous forest. The 

Midwest, Southwest and Rocky Mountain areas generally had relatively low GPP (<500 g C m-2 

yr-1). As for spatial patterns of NEE, the greatest net carbon uptake took place in the Gulf Coast 

and Mideast, with the annual averaged value of -800 g C m-2 yr-1. By contrast, the Rocky 

Mountain area had the highest contribution to carbon release across the conterminous US. The 

uncertainty analysis based on the 100 ANN models (Fig. 2.5) demonstrated that our ANNs 

models predicted GPP and NEE with a small uncertainty across the whole ecosystem type. 

Overall, both simulations indicated that the East and Pacific Northwest showed high ecosystem 

productivity, acting as a carbon sink, while the Rocky Mountain region had the lowest GPP value 

and acted as a carbon source to the atmosphere.  

The two simulations however, diverged in regions including the Pacific Northwest coast, Gulf 

coast and most parts of Southeast dominated by evergreen forests, savannas and mixed forest (Fig. 

2.4(b), 2.4(d)). S0 exhibited lower GPP (-200 ~ -100 g C m-2 yr-1) and more positive NEE (100 ~ 

250 g C m-2 yr-1) value in most Southeastern US than that of S1 (Fig. 2.4b). In contrast, west 

North Central region had higher GPP (100 ~ 200 g C m-2 yr-1) and more negative NEE (-150 ~ -
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50 g C m-2 yr-1) in S0. From the vegetation perspective, the relative difference of GPP and NEE in 

the mixed forest and cropland showed a spatial variability. Specifically, the lower estimation of 

GPP in mixed forests and cropland was mainly found in the Southeast and east of South Central, 

while a higher GPP was observed in the North Central in S0. These patterns were similar to the 

NEE estimation (Fig. 2.4(d)).  

 

2.3.2 Seasonal GPP and NEE difference 

Our 8-day GPP and NEE estimation based on the two ANN models both captured the seasonal 

flux variability in the conterminous US (Fig.2.6 and Fig.2.7). Take the GPP seasonal pattern, for 

example; in spring (March to May), the Gulf Coast and the Pacific Northwest region began to 

assimilate carbon at 100–200 g C m-2 yr-1, followed by the Southeast and the South Central. In 

contrast, most of the Northeast and Rocky Mountain area possessed a low GPP due to the 

relatively cold weather or late leaf-out. Plants reached the greatest productivity in summer (June–

August) with the highest GPP of 300–400 g C m-2 yr-1 in the Northeast regions. From fall 

(September–November) to winter (December–February), GPP decreased drastically to either a 

low level (50–100 g C m-2 yr-1) in the Gulf Coast, Pacific Northwest and South Central or nearly 

zero in most parts of Rocky Mountains throughout the US.   

The obvious difference between seasonal GPP and NEE generally occurred in mixed forests and 

croplands (Fig.2.8 and Fig.2.9). In the early spring (March–April), the mixed forest in the 

Southeast began to exhibit lower GPP and more positive NEE in S0, and this difference was 

much stronger from late spring (May) to early fall (September). However, for the mixed forest in 

North Central and the Northeast, the difference only took place in June, July, and August. And 

this was similar for cropland in North Central, which only showed higher GPP and more negative 
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NEE in these three months. No obvious difference was observed between the two simulations in 

winter.  

 

2.3.3 GPP and NEE response to CO2concentrationsunder drought condition 

Annual GPP and NEE both exhibited positive and negative anomalies each year. The anomalies 

could have been due to climate variability, disturbances, management practices, or model errors. 

The severe drought affected over 50% of the country, including the Southwest, the Great Plains, 

the Gulf Coast, the coastal Southeast, and particularly Texas and Oklahoma. Therefore, we 

evaluated the GPP and NEE response to the drought condition in 2006. Both models showed 

negative anomalies in most regions, like the Great Plains (Fig.2.10). However, as for the 

Southeast and parts of North Central, the S0 exhibited the negative GPP and positive NEE 

anomalies when compared with S1. According to the US Drought Monitor 

(http://www.drought.unl.edu) and the PRISM database, these regions showed around 250 mm 

less precipitation in 2006. Without considering the CO2 effect in upscaling GPP and NEE, the S1 

failed to show the ecosystem response to severe drought condition. 
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2.4 Discussion 

2. 4.1 Comparison of S0 and S1 with other studies  

Our estimation of GPP and NEE and their spatial variations agreed well with previous published 

results. For example, Xiao et al. (2010) estimated that the spatially averaged GPP across the 

conterminous US scaled at 907 g C m-2 yr-1. Our simulation showed that the Gulf Coast and parts 

of the Southeast were the most productive regions, with GPP greater than 2000 g C m-2 yr-1, and 

was consistent with previous studies (Yang et al., 2007; Xiao et al., 2010; Chen et al., 2011). The 

total gross carbon uptake estimated in both models was 4.00 and 3.95 Pg yr-1, respectively, and 

was lower than the results of Xiao et al. (2010) because we did not reclassify the cropland/natural 

vegetation mosaic in MODIS land cover product as cropland ecosystems. In addition, the 

estimation of GPP (1250–1500 g C m-2 yr-1) in the Southeast was much lower than Xiao’s (Xiao 

et al., 2010) prediction (>2250 g C m-2 yr-1), but was comparable with Chen’s (Chen et al., 2011) 

study and the MODIS GPP product (Running et al., 2004). The spatially averaged GPP in two 

simulations generally agreed well with MODIS GPP (Fig.2.11) (R2>0.8). However, MODIS GPP 

(<800 g C m-2 yr-1) was markedly underestimated in cropland compared with our models (>1000 

g C m-2 yr-1). This large difference may be attributable to that MODIS GPP, which was based on 

the light use efficiency algorithm while ANN was based on the site-level flux tower data. The key 

parameter, the maximum light use efficiency in the MODIS GPP algorithm, was always 

underestimated and thus led to lower estimation in high productivity areas (Turner et al., 2006; 

Xiao et al, 2010).Recently, Madani et al. (2014) used eddy flux carbon data to show that the 

optimum light use efficiency in cropland was twice as much as that in the MODIS GPP algorithm.  
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2. 4.2 Climate controls on the CO2 effects on GPP and NEE 

Previous studies have evaluated the interactions between elevated CO2 and other environmental 

variables, such as increasing temperature (Peltola et al., 2002; Tingey et al., 2003; Hovenden et 

al., 2008; Dijkstra et al., 2010) and hydrological conditions (Morgan et al., 2004; Nowak et al., 

2004). Increasing CO2 with enhanced N mineralization at higher temperatures may further 

promote plant growth (Kirschbaum et al. 1994), whereas the positive effect may be ameliorated in 

a reduced precipitation environment due to the slow turnover rate of N belowground (Emmett et 

al., 2004; Sowerby et al., 2008). The seasonal GPP and NEE difference in our simulations also 

indicated there were interactions between CO2 effect and climate drivers. Obvious GPP and NEE 

difference can only been observed from late spring to summer in the Northern forest ecosystem 

(Fig.2.8 and 2.9), suggesting that the temperature controlling the plant phenology may play a key 

role in CO2 effects on the carbon fluxes. In addition, evergreen forest in Pacific Northwest 

exhibited lower GPP in May and October (Fig.2.8), indicating that drought or the soil water 

deficit (Law et al., 2000; Schwarz et al., 2004) may impact the CO2 effects. The seasonal 

variation of NEE difference was slightly different from GPP (Figs.2.8 and 2.9). NEE differences 

were shown earlier than GPP in spring, especially in the Northern forest. The enhanced 

heterotrophic respiration due to soil warming (Raich and Schlesinger, 1992; Lloyd and Taylor, 

1994) may result in the asynchronicity of GPP and NEE’s response to the atmospheric CO2 effect. 

We analyzed the causes for the spatial variability of GPP difference using annual averaged air 

temperature (Ta) and vapor pressure deficit (VPD) (Fig. 2.12). We obtained the Ta and VPD from 

North American Regional Reanalysis dataset (Mesinger et al., 2006). The atmospheric CO2 

concentration showed negative effect on the evergreen forest and the effect was more obvious 

under high temperature condition (>285 K). Both deciduous forest and shrubland did not show an 

obvious difference across the Ta and VPD ranges. However, for the mixed forests, the difference 
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could be divided by the Ta value around 285 K. The GPP estimation in S0 was generally lower 

when Ta >285 K but higher when Ta <285 K, when compared with S1. This was similar for the 

cropland; a lower GPP estimation occurred in S0 when Ta >285 K and it had a higher estimation 

when Ta <285 K. In addition, the negative effect was much stronger in lower VPD ranges (VPD 

< 600 Pa), indicating that the CO2 had stronger effect in the humid area. As for the savannas, no 

obvious Ta threshold was observed and the negative effect generally located in the high Ta range. 

CO2 concentration showed complex effect on grassland, but overall, had a small influence on 

GPP estimation. Figure 5 also gave the statistical values (mean and standard deviation) of the 

GPP difference between the two simulations in each ecosystem type. Although the spatially 

averaged GPP difference was generally small (< 50 g C m-2 yr-1), the coefficient of variation (the 

ratio of standard variation to mean value) was great in mixed forest and evergreen forest, 

followed by cropland and savannas. 

 

2.4.3 GPP and NEE response to atmospheric CO2 under drought condition 

Remote sensing has been widely used to monitor the spatial patterns of drought and its related 

changes in global ecosystems. Previous studies implemented the vegetation indices (NDVI, 

NDWI) from Advanced Very High Resolution Radiometer (AVHRR) (Tucker, 1979) and 

MODIS to detect drought conditions over the Great Plains in the US (Gu et al., 2007), East Asia 

(Song et al., 2004), and Amazonian forest (Anderson et al., 2010). Due to the lagged response of 

vegetation to the drought events, these vegetation indices were combined with land surface 

thermal infrared information to improve drought detection (Singh et al., 2003; Park et al., 2004; 

Wan et al., 2004; Son et al., 2012). In this study, the negative anomalies of GPP in the Southeast 

only occur in S0, although both simulations captured the vegetation response to drought events in 

2006, especially in the low biomass ecosystem (grassland, shrubland), by exploring the 
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vegetation indices and thermal information. The spatial pattern of GPP anomalies in S1 was 

similar with Xiao et al. (2010), which also incorporated MODIS products using the regression 

tree model. Park et al. (2004) demonstrated that soil water-holding capacity affected the drought 

detection when using MODIS vegetation indices and thermal information. Gu et al. (2008) also 

pointed out that the various correlations between MODIS, NDVI, NDWI and drought events were 

highly dependent on the vegetation structure and soil types. Drought stress with reduced soil 

moisture can constrain plant nutrient uptake by reducing nutrient supply through 

mineralization(Emmett et al., 2004; Sowerby et al., 2008, Larsen et al., 2011), also by reducing 

nutrient diffusion and mass flow in soils (Lamber et al., 2008). Therefore, the induced drought 

condition may potentially decouple the soil microbial carbon and soil CO2 fluxes with canopy 

photosynthesis (Ruehr et al., 2009), increasing the residence of recent assimilated carbonate in 

vegetation (Deng et al., 1990; Li et al., 2003) and thus affecting the whole ecosystem carbon and 

nitrogen cycling. Some studies also pointed out the great contribution of drought to the surface 

CO2 variability (Knorr et al., 2005; Keppel-Aleks et al., 2014). The climate of the Southeast is 

predicted to be warmer and drier in future (Dai, 2013). Therefore, incorporating the atmospheric 

CO2 concentration into an upscaling practice using the flux site data should improve the 

qualification of GPP and NEE and strengthen our understanding of vegetation’s response to 

environmental condition. 

 

2.4.4 CO2 induced uncertainty 

CO2 data used here may result in our estimation uncertainty. First, the gridded CO2 product was 

developed using a global inversion model, whose accuracy is highly dependent on the prior CO2 

fluxes (Masarie et al., 2011). In addition, inaccurate weather data in complex terrain also 

introduces errors by using the transport model (TM5) at coarse spatial resolutions (Geels et al., 
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2007). The uncertain CO2 product may bias our GPP and NEE estimations. To assess the 

uncertainty of the NOAA CO2 products, we did a comparison analysis between the 8-daily 

averaged NOAA gridded CO2 values and the in-situ CO2 observation in summer season at seven 

sites (Fig. 2.13). Generally, the extracted CO2 seasonal variations from NOAA products were 

comparable with the CO2 measurement at forests (Fig. 2.13a, 2.13b and 2.13c) and crop sites (Fig. 

2.13g), with the differences ranging from 5 to 15 ppmv. The site-level sensitivity analysis 

(Fig.2.14) showed that these CO2 input data differences would change annual GPP by 8 -50 g C 

(2%-6% relative change) using ANN models. In particular, the GPP changes in the mixed forest 

and croplands were almost two times larger than in other ecosystems. Despite the uncertainty of 

the gridded CO2 product, we used it to gain insight into the effects of CO2 on regional GPP and 

NEE prediction when upscaling site-level data. High frequency, stable CO2 measurements 

(Andrews et al., 2014) and high-density observation networks (Lauvaux et al., 2012) are needed 

to accurately quantify the atmospheric CO2 effects on GPP. 

In addition, the simplistic aggregation of CO2 hour by hour into 8-day averages may bias our 

quantification without considering the influence of the planetary boundary layer (PBL) 

development. The PBL depth and turbulence intensity have a strong impact on the vertical and 

horizontal distribution of CO2 in the atmosphere (Yi et al., 2001). The covariance between 

surface fluxes of CO2 and the atmospheric mixing process has a strong seasonal character 

(Helliker et al., 2004). Since the rectifier effect influences the horizontal and vertical distributions 

of CO2 in the atmosphere, it can bias carbon flux quantification (Denning et al., 1995). We further 

noted that we have not explicitly differentiated CO2 fertilization effects and its indirect effects on 

CO2 uptake through affecting stomata openness in these ANN simulations. Process-based 

ecosystem models shall incorporate both fertilization and indirect effects into regional GPP and 

NEE quantification. 
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2.5 Conclusion 

Two sets of artificial neural networks incorporating remote sensing variables to upscale the 

AmeriFlux site-level data to the region for seven ecosystem types: one that incorporated CO2 and 

a second that did not. Our results showed that both sets of models showed good performance and 

were able to capture the GPP and NEE variation when compared with previous published results 

and MODIS products. However, the GPP and NEE difference between two models exhibited a 

great spatial and seasonal variability, which was closely related with climate drivers (air 

temperature and vapor pressure deficit). In addition, the simulation without considering CO2 

effects fails to detect the ecosystem response to droughts in the southeastern US in 2006, 

indicating that drought-induced surface CO2variation could have more constraint on the regional 

GPP and NEE qualification. This study is among the first to explore the CO2 influence on the 

regional GPP and NEE estimation in upscaling eddy flux data to regional scales. 
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Table 2-1 Ameriflux Sites used in ANN models 

Site Name 
Site 
ID 

Vegetation 
Type 

Data 
range Site Name Site ID 

Vegetation 
Type 

Data 
range 

ARM SGP Control 
US-
Arc GR 

2005-
2006 Mead Irrigated Rotation US-Ne2 CP 

2001-
2005 

ARM SGP Main 
 US-
Arm CP 

2003-
2006 Metolius Intermediate Pine Us-Me2 EF 2003,2005 

Bartlett Experimental Forest 
US-
Bar EF 

2004-
2005 Metolius Second Young Pine Us-Me3 EF 

2004-
2005 

Blodgett Forest 
US-
Blo EF 

2000-
2006  Morgan Monroe State Forest 

US-
MMS EF 

2000-
2005 

 Duke Forest Hardwoods 
US-
Dk2 MF 

2001-
2005 Lost Creek US-Los SR 

2001-
2005 

Duke Forest Loblolly Pine 
US-
Dk3 EF 

2001-
2005 Missouri Ozark 

US-
MOz EF 

2004-
2006 

Fermi Agricultural 
US-
IB1 CP 

2005-
2006 North Carolina Loblolly Pine US-NC2 EF 

2005-
2006 

Fermi Prairie 
US-
IB2 GR 

2004-
2006 Ohio Oak Openings US_Oho EF 

2004-
2005 

Fort Dix 
US-
Dix MF 

2005-
2006 Santa Rita Mesquite Savanna 

US-
SRM SA 

2004-
2006 

FreemanRanch Mesquite 
Juniper 

US-
FR2 SA 

2004-
2006 Sky Oak Old US-SO2 SR 

2005-
2006 

Harvard Forest 
US-
Ha1 EF 

2000-
2006 Sky Oak Young US-SO3 SR 

2005-
2006 

Harvard Forest Hemlock 
US-

EF 2004 Sylvania Wilderness US-Syv MF 
2002-
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Ha2 2006 

Howland Forest Main 
US-
Ho1 EF 

2000-
2004 Tonzi Ranch  US-Ton SA 

2001-
2006 

Kendall Grassland 
US-
Wkg GR 

2004-
2006 

Univ of Mich Biological 
Station USMS MF 

2000-
2003 

Kennedy Space Center 
Scrub Oak 

US-
KS2 SR 

2000-
2006  Vaira Ranch  US-Var GR 

2001-
2006 

 Mead Rainfed 
US-
Ne3 CP 

2001-
2005 Willow Creek US-Wcr EF 

2000-
2006 

Mead Irrigated 
US-
Ne1 CP 

2001-
2005 Wind River Field Station US-Wrc EF 

2000-
2004 

Wisconsin Mature Red Pine 
US-
Wi4 EF 

2002-
2005 Wisconsin Intermediate  US-Wi1 EF 2003 

*Evergreen needleleaf forest = EF; Deciduous broadleaf forest = DF; Mixed forest = MF; Croplands = CP; Woody Savannas = SA; 
Grasslands = GR; Shrublands = SR.  
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Figure 2.1. Selected AmeriFlux tower sites in this study 
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Figure 2.2 Schematic diagram of the generalized regression neural network architecture based on 

Cigizoglu and Alp (2006) 
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Figure 2.3 Comparisons between the measured and modeled 8-day averaged GPP (left two 

columns) and NEE (right two columns) at the selected Ameriflux sites for each vegetation type: 

(a) Evergreen forest (b) Deciduous forest (c) Grassland (d) Mixed forest (e) Savannas (f) 

Shrubland (g) Croplands. The ANN models (CO2 incorporated model is at each section’s first 

row, No-CO2 incorporated model is at the second row)for each vegetation type were constructed 

based on the training data set (the first and third column), and (b) the validation data set was used 

to test the performance of the model (the second and fourth column). The blue line is the 1:1 line, 

and the solid line is the fitted line. 
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Figure 2.3 continued 
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Figure 2.3 continued 
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Figure 2.4 Annual averaged GPP (a) and NEE (c) in S0 and their differences (GPP (b), NEE (d)) 

between S0 and S1across the conterminous US scale from 2001 to 2006 (Unit: g C m-2 yr-1). The 

difference is calculated as S0 minus S1. S0 and S1 are the simulations with and without 

considering the atmospheric CO2 concentration, respectively 
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Figure 2.5 Uncertainties of GPP (a) and NEE (b) in S0 across the continental US scale from 2001 

to 2006 (Unit: g C m-2 yr-1) (The uncertainties in S1 is similar with S0). 
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Figure 2.6 Averaged monthly GPP (g C m-2 month-1) for the conterminous U.S. from January 

through December from 2001 to 2006 in S0. S0 is the simulation with considering the 

atmospheric CO2 concentration. 
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Figure 2.7 Averaged monthly NEE (g C m-2 month-1) for the conterminous U.S. from January 

through December from 2001 to 2006. 
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Figure 2.8 Averaged monthly GPP difference (g C m-2 month-1) between S0 and S1 for the 

conterminous U.S. from January through December from 2001 to 2006. The difference is 

calculated as S0 minus S1.S0 and S1 are the simulations with and without considering the 

atmospheric CO2 concentration, respectively 
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Figure 2.9 Averaged monthly NEE difference (g C m-2 month-1) between S0 and S1 for the 

conterminous U.S. from January through December from 2001 to 2006. The difference is 

calculated as S0 minus S1 
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Figure 2.10 Annual GPP (a, b), NEE (c, d), and anomalies in S0 and S1 for the conterminous U.S. 

at 2006. The anomalies of annual GPP and NEE at 2006 were relative to the 6-year average value. 

The anomalies difference (e and f) is calculated as S0 minus S1.S0 and S1 are the simulations 

with and without considering the atmospheric CO2 concentration, respectively. 



41 
 

 

 

Figure 2.11 Comparison between the annual averaged GPP in S0 (a), S1(b) with MODIS GPP in 

each vegetation type. 
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Figure 2.12 Air temperature and VPD controls on the annual GPP difference (the difference is 

calculated as S0 minus S1) spatial variability for each vegetation type:(a) Evergreen forest; (b) 

Deciduous forest;(c) Mixed forest; (d) Shrubland; (e) Savannas; (f) Grassland; and (g) Cropland. 

The mean values and standard deviations of GPP difference in each vegetation types are 

presented. S0, and S1 are the simulations with and without considering the atmospheric CO2 

concentration, respectively. 
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Figure 2.13 Comparison between the 8-day averaged NOAA CO2 value and the site-level CO2 

observation in summer season at seven sites: (a) Blodgett Forest (evergreen forest), (b) Morgan 

Monroe State Forest (deciduous forest), (c) Fort Dix (mixed forest), (d) Kenndy Scrub Oak 

(shrubland), (e) Tonzi Ranch (savannas), (f) Kendall Grassland (grassland), and (g) Mead 

Irrigated (cropland).  
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Figure 2.14 The daily GPP sensitivity to the CO2 input changes (±5 ppmv, ±10 ppmv and ±15 

ppmv) at the seven sites: (a) Blodgett Forest (evergreen forest), (b) Morgan Monroe State Forest 

(deciduous forest), (c) Fort Dix (mixed forest), (d) Kenndy Scrub Oak (shrubland), (e) Tonzi 

Ranch (savannas), (f) Kendall Grassland (grassland), and (g) Mead Irrigated (cropland). The daily 

GPP sensitivity in response to the CO2 input variation is to average the GPP absolute changes (e.g. 

△ GPP±5 ppmv = (|△ GPP+5 ppmv| + |△ GPP-5 ppmv|)/2). 
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CHAPTER 3 USING LEAF 13C DATA TO CONSTRAIN THE UNCERTAINTY OF THE 

CARBON DYNAMICS OF TEMPERATE FOREST ECOSYSTEMS 

Abstract: Data-model fusion approach is widely used for ecosystem model parameter 

optimization and uncertainty quantification. The carbon isotope (13C) discrimination by 

terrestrial plants, involves the biophysical and biogeochemistry processes and exhibits seasonal 

and spatial variations, which may provide additional constraints on model parameters. In this 

study, we incorporated three stomatal model schemes (Ball-Berry, Leuning and Optimal) into a 

process-based land surface model considering the carbon isotope discrimination during 

photosynthesis. The key model parameters were first calibrated against observation data of gross 

primary productivity (GPP) and net ecosystem productivity (NEP) with and without the 

additional foliar 13C composition constraint, respectively.  The two sets of parameters were then 

used for simulating the carbon dynamics of global temperate forest ecosystems. Our results 

indicated that, without foliar 13C composition constraints, a wide range of parameter values was 

found to capture in-situ GPP and NEP data with a relatively large regional carbon flux 

uncertainty. In contrast, using foliar 13C composition data, model parameters were constrained to 

a relatively narrow space and the site-level model simulations were slightly better than that 

without the foliar 13C constraint. The model extrapolations with three stomatal schemes all 

showed that the estimation uncertainties of regional carbon fluxes were reduced by about 40%. 

Our analysis further demonstrated that the invariant model parameters constrained by in-situ 

observation flux data combined with additional foliar 13C composition data at a single site were 
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imperfect. The vegetation and climate dependent parameters across space and time may 

potentially improve our future quantification of ecosystem carbon dynamics. 

 

3.1 Introduction 

Quantification of ecosystem carbon fluxes and their responses to environmental changes would 

improve our understanding to the carbon cycling and its feedbacks to the atmosphere. Land 

surface models (LSMs) incorporated with key biophysical and biochemical processes including 

photosynthesis, respiration, and evapotranspiration are important tools to understanding and 

predicting carbon exchanges between terrestrial biosphere and the atmosphere (IPCC, 2014). 

These process-based LSMs contain some parameters to be calibrated. The non-Bayesian 

calibration methods generally produce a set of optimum parameters, which may be imperfectly or 

poorly constrained. Tang and Zhuang (2008, 2009) showed that the Terrestrial Ecosystem Model 

(TEM) calibrated using eddy flux tower data was able to reproduce the observed carbon fluxes 

with similar accuracies, with very different sets of parameters. Therefore, a proper uncertainty 

analysis is desirable to provide a confidence range instead of one specific output (Beven, 2001) 

and it is essential to evaluate how the parameter uncertainty affects model simulations especially 

for complex ecological models (Keenan et al., 2011; Wang et al., 2009).  

To date, the data-fusion approach encompassing model parameter optimization and uncertainty 

quantification using eddy flux tower-based observation (e.g., carbon and water fluxes) has been 

widely used for quantifying the land surface processes in response to changing climate. As an 

important tracer in the biogeochemical process, 13C provides novel insights on how plant 

physiological, soil biological, physical and chemical processes interact with and affect ecosystem 

processes, and therefore can be used to constrain the process-based ecosystem models. At 

regional and global scales, the carbon isotope ratio of atmosphere CO2 (13CO2) provides an 
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additional constraint on the carbon budget quantifications as the discrimination by ocean uptake 

is 10 times lower than that by terrestrial plant photosynthesis (Tans et al., 1993; Ciais et al., 1995). 

The ratio data also helps to examine the relative contribution of C3 and C4 to total primary 

productivity (Sage et al., 1999; Griffis et al., 2010). At the local scale, the 13C signal data have 

been widely used in ecological research as tracers and integrators of how organisms interact with 

and respond to the environment changes. For example, the variation of plant 13C tissue can 

improve our understanding on the response of plants to changes in precipitation, vapor pressure 

deficit (Farquhar and Richards, 1984; Bowling et al., 2002; Diefendorf et al., 2010) and the 

intrinsic water use efficiency (Saurer et al., 2004; Seibt et al., 2008). In addition, the high-

frequency in-situ measurement 13CO2 provides a novel tool to partitioning the net ecosystem 

exchange (NEE) into photosynthesis and respiration (Bowling et al., 2001).  

Abundant in-situ foliar 13C measurements have been published and the relationship between the 

foliar 13C variation and environmental conditions (Marshall et al., 2007), edaphic factors (Arens 

et al., 2000) and plant attributes (Kaplan et al., 2002) has been well investigated. Consequently, a 

theoretical equation of carbon isotope discrimination (the offset between atmospheric CO2 

isotope ratio and foliar 13C) in C3 and C4 photosynthesis (Farquhar and Richards, 1984) has 

been incorporated into some LSMs to calculate plant carbon discrimination (Fung et al., 1997; 

Suits et al., 2005; Scholze et al., 2008) at different spatial and temporal scales. As for the 13C 

fractionation process during photosynthesis, the following equation (3.1) is generally used to 

represent the 13C discrimination in C3 plants: 

( )* i
a

Ca b a C∆ = + −
                                                         (3.1)

 

where a (4.4‰) and b (28‰) are constants representing fractionation due to diffusion and 

carboxylation, respectively. Ca represents atmospheric CO2 concentrations (ppmv), Ci represents 
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the intercellular CO2 concentration. According to Farquhar photosynthesis formula (Farquhar et 

al., 1980), the carbon assimilation rate is a function of the intercellular CO2 concentration, 

therefore, the in-situ observation of carbon fluxes combined with the measurements of isotopic 

signal of plant tissues, which integrate all the biophysical and biogeochemical processes, may 

have good constraints on the parameters related to biophysical and biochemical processes at the 

canopy scale. To date, very few studies have used the foliar 13C composition data for the LSMs 

calibration. For example, Aranibar et al (2006) reported the simulations of the temporal 

variability of canopy-scale C3 photosynthesis carbon isotope discrimination in ISOLSM model 

and the results showed that measured leaf 13C composition data place an additional constraint on 

the stomatal conductance. 

In this study, we examined if the 13C discrimination during photosynthesis can constrain the key 

parameters related to the carbon fluxes for a process-based ecosystem model (iTEM; Chen and 

Zhuang, 2012; Liu et al., 2014, 2016). As the stomatal conductance dominates the exchange of 

carbon between biosphere and the atmosphere, we especially incorporated three stomatal models 

(Ball-Berry, Leuning and Optimal) into iTem. In addition, we were also interested in exploring if 

the invariant model parameters constrained with additional foliar 13C composition data at site 

level were sufficient for regional simulations. 

3. 2 Method 

3.2.1 Overview 

We chose three stomatal model schemes (Ball-Berry (Ball et al., 1987), Leuning (Leuning 1995) 

and Optimal (Medlyn et al. 2011)) to be integrated into a process-based ecosystem model iTEM. 

The key model parameters were first calibrated using forest sites’ observation data of gross 

primary productivity (GPP) and net ecosystem productivity (NEP) with and without the 

additional foliar 13C composition constraint, respectively. After parameterization, we conducted 
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the regional carbon estimation for temperate forest ecosystems using two sets of parameters 

obtained without (S0 simulation) and with additional foliar 13C composition constraint (S1 

simulation). 

 3.2.2 Process-based ecosystem model (iTEM) 

In the integrated Terrestrial ecosystem model (iTem), the canopy is modeled with a one-layer, 

two-big-leaf approach (Dai et al., 2004), which diagnoses energy budget, leaf temperature, 

evapotranspiration and photosynthesis separately for sunlit and shaded leaves. The boundary 

layer turbulent processes are modeled based on the Monin-Obukhov Similarity Theory. The 

hydrological processes include the interception, through fall of precipitation, snow accumulation, 

sublimation and melt, surface runoff, surface evapotranspiration, water infiltration and 

redistribution in soil and subsurface drainage. These algorithms allow the model to simulate the 

response of land surface processes to changing direct and diffuse radiation regimes, such as 

surface energy balance, thermal dynamics, leaf and canopy conductance, and surface 

evapotranspiration. In addition, the iTem kept the approach of TEM in modeling ecosystem 

carbon and nitrogen dynamics and their interactions (Zhuang et al., 2003). Two carbon pools and 

four nitrogen pools are used to represent carbon and nitrogen storages in a terrestrial ecosystem, 

including the Vegetation Carbon (VEGC), Soil Organic Carbon (SOC), Vegetation Labile 

Nitrogen (LABN), Vegetation Structural Nitrogen (STRN), Soil Organic Nitrogen (SON) and 

Soil Inorganic Nitrogen (AVLN). More details of the iTem are documented in Chen (2013) and 

Liu et al (2014). 

3. 2.3 Stomatal Models 

The Ball-Berry model (Ball et al., 1987) is developed based on the observation that stomatal 

conductance is strongly correlated with assimilation rate. Based on a series of leaf gas exchange 

experiments, Ball et al. (1987) developed the following empirical expression for (equation 3.2): 
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0 1
**s

s

A RHg g g
C

= +                                                    (3.2) 

where 0g and 1g are fitted parameters,  A  is net assimilation rate (μmol m−2 s−1),  RH is relative 

humidity at the leaf surface (dimensionless) and  Cs is the atmospheric CO2 concentration at the 

leaf surface (μmol mol−1). 

The Leuning model is an alternative model incorporating an empirical dependence on leaf-to-air 

vapour pressure deficit (D), a proxy for transpiration, was developed by Leuning (1995). Leuning 

considered two alternative forms for the dependence on D, a linear and hyperbolic dependence, 

and found that a hyperbolic dependence provided a better fit to experimental data. The resulting 

model has the following form (equation 3.3): 

 0 1
0

*
( )(1 / )

s
s

Ag g g
C D D

= +
−Γ +

                                          (3.3) 

where Γ  is the CO2 compensation point of assimilation in the presence of dark respiration. This 

model has three empirically fitted parameters, 0g , 1g  and Γ . 

The optimal model is based on the idea that stomata should act to maximize carbon gain 

(photosynthesis, A) while minimizing water loss (transpiration) (Cowan and Farquhar, 1977). 

Medlyn et al. (2011) proposed a unified stomatal optimal formulation, which has been shown to 

correctly capture the responses of stomatal conductance to changing atmospheric CO2 and 

environmental conditions (Duursma et al., 2013; De Kauwe et al., 2013) (equation 3.4): 

 
1

0 1.6(1 )s
s

g Ag g
CD

= + +                                                (3.4)  
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3.2.4 Foliar 13C composition calculation 

As for the 13C discrimination process, we used the following equations to represent the 13C 

fractionation during photosynthesis:  

 a s s i i c c

a a a a

C C C C C C Ca b c d
C C C C
− − −

∆ = + + +                                 (3.5) 

 s a
b

AC C
g

= − ; i s
s

AC C
g

= − ; c i
m

AC C
g

= −                                 (3.6) 

13 13
atmleafC Cδ δ= −∆                                               (3.7) 

where a (2.9‰), b (4.4‰), c (1.8‰) and d (28.2‰) were constants representing fractionation due 

to diffusion at the boundary layer, stomotal cavity, CO2 entering solution and Rubisco CO2 

fixation, respectively. And Ca, Cs, Ci and Cc represented the CO2 concentration or partial pressure 

in the air, at the boundary layer, stomata and chloroplasts, respectively. We followed Evans and 

von Caemmerer (1996), assuming mesophyll conductance (gm) is proportional (4800) to the 

Rubisco content (Vm). The foliar 13C composition was calculated as the difference between the 

atmospheric CO2 ( 13
atmCδ ) and discrimination (∆ ) during plant photosynthesis.  13

atmCδ  was 

assumed as constant (−7.8‰). 

To get the annual averaged 13
,leaf annCδ , we calculated a seasonal weighted average based on net 

daily A for the minimum growing period which was taken as the period June–August (Aranibar et 

al., 2006):  
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where d was the number of days since the start of the growing period and n was the number of 

days in the growing period. 

 

3.2.5 Data 

Model calibrations were conducted at two European flux sites and one Ameriflux site: DETha 

(Grunwald and Bernhofer, 2007, Conifer forest), ITCol (Valentini et al. 1996, Deciduous forest) 

and Harvard forest (Goulden et al., 1996, Deciduous forest) (Table.3-1). The site level forcing 

data including the radiation (direct, diffuse), the initial conditions, soil properties, the plant 

distribution and vegetation-specific parameters as well as the half-hourly meteorological data 

were used for model parameterization (http://www.europe-fluxdata.eu/home). The foliar 13C 

compositions at the two European sites were obtained from the Work Package 5 (WP5, entitled 

"Isotopic Studies") of CARBOEUROFLUX project 

(http://www.weizmann.ac.il/EPS/wp5/results.html). We assumed that foliar 13C compositions of 

leaves collected at the two sites reflected the annual mean photosynthetic discrimination 

occurring in leaves, under a wide range of environmental conditions (i.e. during and outside of 

the growing season). Therefore, the model parameters selected should capture foliar 13C 

measurements. We also used the results derived from a recent improved isotopic flux partitioning 

method at Harvard forest site (Wehr and Saleska., 2015). The theory of isotopic flux partitioning 

was extended to include photorespiration, foliar daytime dark respiration and other refinements to 

obtain the continuous isotopic signatures of net photosynthesis assimilations. Here we assumed 

that the estimated isotopic composition from Wehr and Saleska (2015) estimation reflected the 

“true” isotopic fractionation during photosynthesis, and its uncertainty will be discussed later. For 

following regional simulations, model runs were carried out at a 3-hourly time step for the period 

2003-2010, and at a spatial resolution of 1°×1° for the temperate forest region at Northern 
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Hemisphere. The meteorological data of air temperature, wind speed, radiation, CO2, 

precipitation, water vapor concentration and surface air pressure, the initial conditions, soil 

properties, and the vegetation distribution were from Chen and Zhuang (2014). 

 

3.2.6 Parameterization 

The foliar 13C composition collected at two European forest sites were organized into annual 

mean value, which was different from the foliar 13C composition obtained from Harvard forest 

site (daily continuous), therefore, two distinct methods were explored for parameterization. For 

the two European flux sites, we parameterized the iTem with a Bayesian inference method (Tang 

and Zhuang, 2009). The parameterization method followed the procedures described in Tang and 

Zhuang (2009). Firstly, 5 key parameters related with the GPP/NEP calculation (Table.3-2) were 

selected to conduct the parameterization according to our previous sensitivity study (Chen, 2013) 

and parameterization experiences. To derive the prior parameter sets of iTEM, we first assumed 

that they followed the uniform distributions within previous specified reasonable ranges either 

based on literature review or our experience (Chen, 2013). We explored the Monte Carlo 

simulations by sampling 150,000 sets of parameters using the Latin Hypercube Sampling 

technique (Iman and Helton, 1988). We then used the sampling importance resampling (SIR) 

technique to collect 15,000 posterior sets of parameters, which had lower estimation errors 

compared with observations (Tang and Zhuang, 2009). The 15,000 sets of parameters were 

divided into 50 levels which were sorted from the highest error level to the lowest.  We randomly 

sampled 50 sets of parameters from each level and used the 50 sets of parameters for site 

validation and ensemble regional simulations of iTEM to account for the uncertainties of 

parameterization. As for calibration with foliar 13C composition constraint, we used the 

measured foliar 13C composition data (Table.3-1) to exclude parts of the 15,000 posterior 
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parameters, re-dividing the rest of parameters into 50 levels, and then following the steps above. 

Therefore, after the calibration, we had totally two sets of parameters: one with the GPP and NEP 

constrained, the other with both GPP and NEP and foliar 13C composition constraint. To test the 

performance, we ran iTEM with the two sets of parameters for the temperate forests in the 

Northern Hemisphere. 

For Harvard forest site, since the foliar 13C composition derived from Wehr and Saleska (2015) 

was daily and continuous, we explored the Ensemble Kalman Filter (EnKF), which was an 

advanced algorithm based on Kalman filter, to optimize iTem model parameters and states 

variables (e.g., soil organic carbon, vegetation carbon).This method has advantage in considering 

the uncertainties/errors of observation during the data assimilation process. Here we briefly 

summarized the EnKF algorithm as follows:  

1. Initialization of the model: the state variables (carbon pools and nitrogen pools) were 

obtained from the flux site, and parameters of iTem were set as the uniform distributions within 

previous specified reasonable ranges either based on literature review or our experience.   

,

, ,

,

i k

i k i k

i k

P
Y S

Z

 
 =  
 
 

                                                                (3.9) 

Where Pi,k was composed of 5 key parameters in iTem, Si,k representing the model states (carbon 

and nitrogen pools), Zi,k was composed of the GPP, NEP and foliar 13C composition observations.  

k was the time step during the assimilation process and  i was the  ith ensemble member. Here the 

ensemble size was set as 100.  

2. Obtain model forecast: the forecast step of the EnKF propagated the state vector (Y ) 

forward, using parameter values , 1i kP −   from the previous step and computed ,i kS   using iTem.  
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3. Update the model state variable: The vector , 1i kY +  was updated with changes in both 

parameters and ,i kP and state variables ,i kS by a Kalman gain, which was calculated by 

minimizing the squared residuals between observations and model forecasts.  

Since EnKF had to forecast the model output for itimes at each time step, we explored the 

OPENMPI tool to write the above EnKF algorithm as parallel mode to reduce the computation 

cost. 

We assigned the set of parameters derived from Bayesian inference method based on the two 

European flux sites as P1, and the set of parameters obtained from EnKF and Harvard forest site 

as P2. P1 was used for extrapolation to whole temperate forest grid cells and P2 was focused on 

the temperate deciduous forest grid cells only. Therefore, we totally had four simulations: S0-P1, 

S1-P1 based on Bayesian Inference method and S0-P2, S1-P2 based on EnKF. 

 

3.3 Results 

3.3.1 Parameter constrained by foliar 13C composition 

For the two European flux sites’ calibration using Bayesian Inference method, before using 

additional foliar 13C composition constraints, although the model evaluation statistics showed 

that all three models can reproduce the site-level derived daily GPP and NEP reasonably well 

(Figure 3.1, we did not show the comparison by Lenuning and Optimal models here, as they were 

similar with Figure 3.1), with the R2 ranging from 0.36 to 0.69 for all three stomatal models 

(Table.3-3), the posterior parameters, Vmax25 and the slope of stomatal models (g1) had a 

relatively wide range space. For example, when iTem was incorporated with Ball-Berry model, 

Vmax25 and g1 ranged from 120-140 umol CO2 m-2 s-1 and 8-11 at conifer forest site (DETha), 
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respectively. This was similar at the deciduous forest site (ITCol). After further constrained by 

the measurement of foliar 13C composition at the two sites, it was found that the posterior 

parameters, Vmax25 and g1, could be narrowed to a relatively small space. Therefore the 

uncertainties of simulated daily GPP and NEP were significantly reduced (Figure 3.1). At DETha 

site, without considering the foliar 13C composition constraint, the daily simulated averaged GPP 

and NEP were 7.32±0.9 g C day-1 and 3.32±0.6 g C day-1, respectively, However, if the 

calibration was further constrained by foliar 13C composition, the uncertainty of daily simulated 

averaged GPP and NEP were reduced to 0.5 g C day-1 and 0.4 g C day-1, respectively. In addition, 

with the foliar 13C composition additional constraint, the statistical results indicated slightly 

better daily GPP and NEP comparison with in-situ observations (Table.3-3). It was noted that the 

ranges of other three parameters, Nfall, Nmax and Nup, did not change significantly (Figure 3.2), this 

may be because: 1) the three parameters were relatively well constrained or 2) the annual flux-

weighted average of simulated foliar 13C composition was not sensitive to the three parameters.  

For Harvard forest site’s parameterization using EnKF, Figure 3.3 showed the time evolution of 

the 5 key parameters for the growing season. It was found that Vcmax25 and g1 parameters 

converged smoothly and uncertainty bounds eventually stabilized, while for other three 

parameters related with nitrogen processes, the uncertainties range were much larger. It was also 

found (Figure 3.3) that the 5 posterior parameters were constrained to a narrower space when the 

continuous daily foliar 13C discrimination data were assimilated into iTem, which was similar 

with the case using the Bayesian Inference method at the two European forest sites. The final 

constrained mean value of Vcmax25 and g1 at Harvard forest site was slightly different from the 

ITCol site: by using Ball-Berry model scheme, Vcamx25 and g1 had the value about 85 umol CO2 

m-2 s-1 and 8, while for Harvard site, Vcmax25 was 5% lower than that in ITCol, while g1 was 5% 

higher.   
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3.3.2 Comparison of regional simulation before and after using daily 13C discrimination data 

By using Bayesian Inference method, both simulations (S0-P1 and S1-P1) can well capture the 

spatial GPP and NEP distribution across the temperate forest region in the North Hemisphere 

(Figure 3.4). Generally, S0 was slightly higher than S1, with the GPP difference ranging from 50-

150 g C m-2 year-1 and NEP difference from 50-100 g C m-2 year-1, respectively. Lager differences 

were observed in regions which were characterized of high productivity, such as the Southeast 

US and East China. Without the foliar 13C composition constraint, the estimated GPP and NEP 

exhibited a larger uncertainty when compared with the estimation using additional foliar 13C 

composition constraint, and the spatial difference was obvious in high productivity areas. For 

example, compared with the standard deviation value around 180 g C m-2 year-1 in Southeast US 

in S0, the GPP uncertainty in S1 was reduced to around 130 g C m-2 year-1. This was similar with 

the simulations using EnKF at the temperate deciduous forest (S0-P2 and S1-P2) as shown in 

Figure 3.5.  

The uncertainty induced by the wide parameters space also exhibited a strong seasonal variation 

(Figure 3.6, 3.7; the seasonal variations by S0-P2 and S1-P2 were not shown here, as they were 

similar with Figure 3.6 and 3.7). For both S0 and S1, the GPP and NEP uncertainty was larger in 

summer season (from June to Aug), but small in winter (from November to January). This was 

consistent with the site-level calibration and validation (Figure. 3.2), which showed a relatively 

larger fluctuation in growing season (Non-growing season was not shown here). It was also noted 

that the GPP and NEP uncertainties have the most reduction in summer season when iTem uses 

additional foliar 13C composition constraint. For example, the summer GPP uncertainty in 

Southeast US was reduced by 30%, from 40 g C m-2 month-1 to 30 g C m-2 month-1 and this was 

similar for NEP (Figure 3.7). 
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3.4 Discussion 

3. 4.1 Parameterization Equifinality 

    The poorly constrained parameters without the calibration of foliar 13C composition raise the 

issue of parameters equifinality (Tang and Zhuang, 2008). Earth system models usually consist of 

multiple computational modules integrating biological, hydrological, and physical processes and 

also artificially groups of parameters associated with their processes and controls. In our study, 

most of the parameters in all three stomatal models were poorly constrained (Figure 3.2) when 

calibrated using the site-level carbon flux. This wide space parameter values introduced large 

uncertainties to regional carbon dynamics (Figure 3.4, 3.6 and 3.7). But if the calibration was 

conducted using additional foliar 13C composition constraints, the parameters (Vmax25 and g1) 

were better constrained with small deviations. Here, we used the coupled stomatal-photosynthesis 

model scheme (equation 3.10 to 3.12) to address how the foliar 13C composition can have further 

constraints on relative parameters:  

1s
s

A RHg g b
C
×

= +                                               (3.10) 

( ) ( )s i s i c mA C C g C C g= − × = − ×                                       (3.11) 

max~ ( , ,.....)c cGPP f V C                                                    (3.12) 

After the foliar 13C composition constraint, the mean value of Vmax25 increased and g1 

decreased at the DETha site (Figure 3.2). Therefore, in equation (3.12) the chloroplasts CO2 

pressure (Cc) should decrease to maintain GPP constant. Also according to equation (3.10), if we 

assume the boundary layer CO2 pressure (Cs) is constant, the leaf stomatal conductance gs 

decreases (because g1 decreases). The decreasing inter-cellular CO2 pressure (Ci) and 
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chloroplasts CO2 pressure (Cc) combined with the decreasing leaf stomatal conductance gs and 

increasing mesophyll conductance gm can still make the photosynthesis A constant (equation (3. 

11)). From the foliar 13C composition aspect, the chloroplasts CO2 pressure (Cc) is directly 

related with the discrimination during photosynthesis (the fractionation due to Rubisco CO2 

fixation is much larger than other fractionation processes). Therefore, the additional constraint 

foliar 13C composition can help reduce model parameters space and then the consequent regional 

estimation’s uncertainty. Aranibar et al., (2006) also showed that the slope of stomatal model can 

be further constrained by comparing with measured foliar 13C composition at a needleaf forest 

site given a wide range of parameters in the ISOLSM model.  

 

3.4.2 The g1 parameter issue 

Current earth system models generally assume the slope of stomatal function, g1, is constant 

across all plant function types, without considering the possible differences under different 

climatic conditions or between vegetation types, although Ball (Ball et al., 1987) and Lin (Lin et 

al., 2015) indicated a large variation between different species. Here, we used previous derived 

parameters (Figure 3.2) from DETha and ITCol sites to validate the other eddy flux towers (Table 

3-4). Generally, the simulated foliar 13C compositions had relatively large deviations from the 

observation (Figure 3.8). This indicates that the single site-level derived parameters may not be 

suitable for other sites. We also explored the Bayesian Inference method to re-constrain the 

parameters at these sites (Table 3.3). Our results indicate that the slopes of stomatal function (g1) 

were both significantly correlated with the annual average precipitation (Figure 3.9). The climate-

related model parameters (slope of stomatal function) also support that spatially and temporally 

g1 variations may potentially improve the model estimation. De Kauwe et al. (2015) predicted the 

g1 parameters depending on environmental conditions and plant traits and incorporated the 
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spatially explicit g1 into the CABLE LSM at the global scale. Although we constrained g1 at only 

two sites and treated it as constant in the regional extrapolation, insights from De Kauwe et al. 

(2015) may improve the spatial and temporal g1 in future studies.  

 

3.4.3 The choice of stomatal model 

Previous studies have evaluated the response of different stomatal functions to environmental 

conditions using 13C signals. Ballantyne et al (2011) compared the simulated isotope 

composition of CO2 using the Simple integrated Biosphere2 (SiB2) with in-situ atmosphere 

13CO2 measurement to evaluate Ball-Berry and Lenuing model schemes. Bodin et al (2013) 

incorporated the three stomatal models into a LSM to simulate the carbon isotope ratio of tree 

leaves (δ13Cleaf) and tree rings (δ13Cstem) over a period of 53 years, and comparing the results 

with carbon isotope ratios obtained from measured at six sites in northern Europe. Although our 

study here is not to evaluate the three stomatal models’ performance, it is still useful to compare 

their responses to environmental conditions. Here, we only tested the sensitivity of stomatal 

conductance and internal CO2 partial pressure to the VPD variation. The environmental 

conditions (e.g., ambient temperature) and the corresponding parameters were documented in 

Table 3-5. The g1 parameter in the Ball-Berry model was set to a common value of 9 for C3 

plants according to Collatz et al. (1992), which was in accordance to other land surface models. 

The g1 parameters in Leuning and Optimal models were derived from the Leuning (1995) and De 

Kauwe et al. (2015), respectively. The VPD-sensitivity parameter D0 in the Leuning model was 

set to 1.5 Kpa (Leuning 1995). The minimal conductance parameter g0 was kept constant at a 

value of 2000 umol m-2 s-1 (Leuning 1990). Figure 3.10 showed the stomatal response functions 

to VPD for all models using the Table 3-5 environmental conditions and parameters. All models 

exhibited a decreasing stomatal conductance and internal CO2 partial pressure as VPD increased, 
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but the results differed in their sensitivity to VPD. As for the stomatal conductance, the Ball-

Berry and Leuning models showed a linear response to VPD, and the sensitivity was larger than 

the Optimal model. As for the internal CO2 partial pressure, the Leuning and Optimal showed a 

linear response and low sensitivity in response to VPD compared with the Ball-Berry model. 

There are relatively large discrepancies of estimated stomatal conductance as well as the 

intercellular CO2 concentration among the three stomatal models when there was a large VPD 

value (>1100 Pa). Although no significant GPP and NEP differences were found in the site-level 

calibration, validation and regional estimation, this simple test indicated that the three models 

may exhibit different physiological behaviors and carbon and water fluxes (13C fractionation) 

under certain climate conditions (e.g., drought).  

 

 

3.4 Conclusion 

This study calibrated the model using the observed carbon flux data at two forest sites with and 

without using additional foliar 13C composition constraints, respectively. Our results indicate that 

a wide range of parameter values were found to be capable to capture the observation, resulting in 

relatively large regional carbon flux uncertainties. However, with the additional observed foliar 

13C discrimination constraint, site-level comparisons showed that the model has a better 

performance compared with the parameterization without foliar 13C discrimination constraints, 

all three stomatal models also showed that the estimation uncertainties of regional carbon fluxes 

were reduced by about 40%. Our results further demonstrated that the invariant model parameters 

constrained by observation with additional foliar 13C composition from one site may still not be 

applicable to other sites, the vegetation- and climate-varied parameterization is necessary to 

improve future model estimation. 



62 
 

 

Table 3-1 The sites used for foliar 13C constraint 

Site 
Name 

Location Vegetation 
Type 

 period Reference  

DETha 47.38  ͦ N, 8.37  ͦ E ENF 2001-
2002 

Grunwald and Bernhofer, 
(2007)  

ITCol 41.84  ͦ N, 13.58  ͦ E DBF 2001-
2002 Valentini et al., (1996)  

Harvard  42.53  ͦ N,72.17  ͦ 
W DBF 2010 Goulden et al., (1996)  

*ENF: evergreen needleaf forest; DBF: deciduous broadleaf forest. 
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Table 3-2 Key iTEM Parameters related with GPP/NEP calculation 

Pameter Unit Definition Prior range 
Vcmax25 umol CO2 m-2 s-1 maximum carboxylation rate at 25 C [10 150] 

Nfall g C m-2 s-1  litter fall rates of N [1 100]*1e-8 
Nmax g N m-2 s-1 rate of N uptake [1 100]*1e-7 

Nup g g-1 amount of N immobilized 
per unit of detrital C respired 

 
[0 0.5] 

g1 / 
empirical coefficient for the sensitivity of 

stomatal conductance to photosynthesis, CO2 
concentration and relative humidity 

[1 18] 
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Table 3-3 Statistical results of calibration at DETha and CHLae sites using Ball-Berry stomatal 

model 

Model Parameterization scheme 
 Site 
Flux DETha ITCol 

 R2 RMSE R2 RMSE 

Ball-Berry 
Before foliar 13C composition constraint GPP 0.41 2.5 0.58 1.8 

NEP 0.38 1.3 0.48 1.0 

After foliar 13C composition constraint GPP 0.48 2.1 0.61 1.6 
NEP 0.44 1.1 0.51 0.9 

Lenuning 
Before foliar 13C composition constraint GPP 0.42 2.5 0.60 1.7 

NEP 0.39 1.4 0.50 0.9 

After foliar 13C composition constraint GPP 0.48 2.0 0.61 1.6 
NEP 0.43 1.2 0.51 0.9 

Optimal 
Before foliar 13C composition constraint GPP 0.39 2.8 0.59 1.8 

NEP 0.32 1.5 0.49 1.1 

After foliar 13C composition constraint GPP 0.43 2.3 0.60 1.7 
NEP 0.36 1.2 0.50 1.0 

*The units for RMSE are g C day-1 
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Table 3-4 Eddy covariance sites used for comparison in Figure. 3.8 

Site Name Location Vegetation Type  period Reference 

BEBra 51.30  ͦ N, 4.52 ͦ E MF 2001-2002 De Pury and Ceulemans. 
(1997) 

DEHai 51.07  ͦ N 10.45 ͦ E ENF 2001-2002 Knohl et al. (2003) 
DETha 47.38  ͦ N, 8.37   ͦ E ENF 2001-2002 Bernhofer et al.(2003) 
CHLae 47.47 ͦ N 8.35 ͦ E MF 2001-2002 Gentsch et al. (2014) 
ITNon 44.69  ͦ N 11.09 ͦ E MF 2001-2002 Nardino et al. (2002) 
CZBK1 49.50  ͦ N, 18.53 ͦ E ENF 2001-2002 Reichstein et al. (2005) 
ITCol 41.84  ͦ N, 13.58  ͦE DBF 2001-2002 Valentini et al. (1996) 
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Table 3-5 Environmental conditions and parameters used in Figure. 3.10 

Driving data Ta APAR Ca VPD  Vm rb 

 25 300 380 0.5~1.3 60 20 

Stomatal Model Ball-Berry Leuning Optimal 

Parameters B m D0 g1 g1 g0 

 2000 10 1 9 3.7 2000 

*Ta: ambient temperature (℃); APAR: absorbed photosynthetically radiation (W m-2); Ca: 

ambient CO2 concentration (ppmv); Vm: maximum carboxylation rate (umol m−2 s−1); rb: 

boundary layer resistance (s/m); m: empirical coefficient for the sensitivity of stomatal 

conductance to photosynthesis, CO2 concentration and relative humidity in Ball-Berry model; b: 

minimum stomatal conductance to water vapor at the light compensation point in Ball-Berry 

model (umol m−2 s−1);  
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Figure 3.1 Comparison between daily GPP/NEP simulation and GPP/NEP observation (growing 

season, from May to August) before (leaf column) and after (right column) foliar 13C composition 

constraint by using Ball-Berry stomatal model at DETha, ITCol site at 2002. 
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Figure 3.2 Boxplot of parameter posterior distribution that are obtained after ensemble inverse 

modeling for iTem at the two sites. BB, LE and OP indicate the Ball-Berry, Leuning and Optimal 

stomatal models, respectively. More details on the parameter description in the figure refer to 

Table 2. 

  

Before foliar 13C 

After foliar 13C 

composition 
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Figure 3.3 The evolution of five parameters in iTEM constrained by both GPP, NEP and isotopic 

signatures of net photosynthetic assimilation using Ensemble Kalman Filter (data from Wehr and 

Saleska 2015). 
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Figure 3.4 GPP/NEP estimation and its uncertainty by using Ball-Berry stomatal model in S0-P1 

and S1-P1 at temperate forest region. S0, S1 stand for the estimation without and with foliar 13C 

discrimination constraint (Units: g C m-2 year-1). 
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Figure 3.5 The seasonal uncertainty of GPP by using Ball-Berry stomatal model in S0-P2 and S1-

P2 at temperate forest region. S0-P2, S1-P2 stand for the estimation without and with foliar 13C 

discrimination constraint using Ensemble Kalman Filter (Units: g C m-2 month-1)   
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Figure 3.6 The seasonal uncertainty of GPP by using Ball-Berry stomatal model in S0-P1 and S1-

P1 at temperate forest region. S0, S1 stand for the estimation without and with foliar 13C 

discrimination constraint (Units: g C m-2 month-1). 
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Figure 3.7 The seasonal uncertainty of NEP by using Ball-Berry stomatal model in S0-P1 and S1-

P1 at temperate forest region. S0, S1 stand for the estimation without and with foliar 13C 

discrimination constraint (Units: g C m-2 month-1). 
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Figure 3.8 Comparison between the foliar 13C measurement and simulated 13C value by three 

stomatal models in eddy covariance sites in Table 3-3. 
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Figure 3.9 The relationship between annual precipitation and the slope of three stomatal functions 

among the six sites. BB, LE and OP indicate the Ball-Berry, Leuning and Optimal stomatal 

models, respectively. 
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Figure 3.10 The comparison of stomatal conductance and internal CO2 partial pressure with 

varying VPD using three stomatal model schemes. 
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CHAPTER 4 EVALUATING THE ECOSYSTEM WATER USE EFFICIENCY AND GROSS 

PRIMARY PRODUCTIVITY IN BOREAL FOREST BASED ON TREE RING DATA 

Abstract: Climatic change affects the plant physiological and biogeochemical processes, and 

therefore the ecosystem water use efficiency (WUE). Therefore, a comprehensive understanding 

of WUE would help us understand the adaptability of ecosystems to varying climate conditions. 

Tree ring data have great potentials in addressing the forest response to climatic changes 

compared with mechanistic model simulations, eddy flux measurement and manipulative 

experiments. Here, we collected the tree ring isotopic carbon data at 12 boreal forest sites to 

develop a linear regression model, and the model was extrapolated to the whole boreal region to 

obtain the WUE spatial and temporal variation from 1948 to 2010. Two algorithms were also 

used to estimate the inter-annual gross primary productivity (GPP) based on our derived WUE. 

Our results demonstrated that most of boreal regions except parts of Alaska showed a significant 

increasing WUE trend during the study period. The spatial averaged annual mean WUE was 

predicted to increase by 13%, from 2.3±0.4 g C kg-1 H2O at 1948 to 2.6±0.7 g C kg-1 H2O at 2012, 

which was much higher than estimations from other land surface models. Our predicted GPP by 

the WUE definition algorithm was comparable with site observation, while for the revised light 

use efficiency algorithm, GPP estimation was higher than site observation as well as land surface 

model estimates. In addition, the increasing GPP trends estimated by two algorithms were similar 

with land surface model simulations. This is the first study to evaluate regional WUE and GPP in 

forest ecosystem based on tree ring data and future work should consider other variables 
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(including elevation and nitrogen depositions), that influence tree ring isotopic signatures and the 

dual-isotope approach may help improve predicting the inter-annual WUE variation. 

 

4.1 Introduction 

The carbon exchange between biosphere and the atmosphere is closely coupled with water fluxes 

in terrestrial ecosystems (Law et al., 2002; Niyogi et al., 2009). Water use efficiency, defined as 

the ratio of carbon assimilated to water transpired by plants, is an important parameter in 

terrestrial ecosystem models and can be used to analyze the metabolism of terrestrial ecosystems.  

The intrinsic water use efficiency (WUEi) linking the gas exchange of carbon and water at the 

leaf level, is a good indicator of long term regulation of plant carbon uptake and water loss 

(Keenan et al., 2013). At the ecosystem level, the integrated WUE or ecosystem WUE, which has 

an additional term of atmospheric vapor pressure deficit compared with WUEi, can be used to 

monitor the adaptability of an ecosystem to variable climate conditions. Therefore, a 

comprehensive understanding of WUE would facilitate the ecosystem management in future 

climatic change.  

Climatic changes can affect the plant physiological and biogeochemical processes as well as the 

functional traits, and therefore the WUE. For example, increasing CO2 has been demonstrated as 

a positive effect on the WUEi (Keenan et al., 2013), by improving plant carbon assimilation (e.g. 

Li et al., 2014) and reducing stomatal conductance (Medlyn et al., 2001; Ainsworth and Rogers, 

2007). Meanwhile, the increased leaf area index induced by CO2 fertilization effect (Piao et al., 

2006; Los, 2013) and the enhanced evapotranspiration (ET) would offset the positive CO2 effect 

on WUE. Predicted frequent drought events (Dai, 2013) can also modify the WUE through alter 

the plant morphology, such as the increased carbon allocation to roots (Chapin et al., 2011). In 

addition, the increasing nitrogen deposition, which originates from combustion of fossil fuels and 
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farmland fertilization, was observed to enhance the WUE through stimulating plant 

photosynthetic rates (Mitchell et al., 2003; Jennings, 2013).  

At present, a number of eddy flux tower sites (FLUXNET 

http://daac.ornl.gov/FLUXNET/fluxnet.shtml) and manipulative experiments have been operated 

to measure the exchanges of carbon and water fluxes continuously over a broad range of climate 

and biome types. Recent advance in eddy flux towers measurement have provided us insights into 

water and carbon cycle in various ecosystems. However, very few flux sites and experiments (e.g. 

free air CO2 enrichment experiment) have long enough observations (20 years) to address the 

long term response of ecosystem to climate change, especially the CO2 fertilization effect on 

WUE (Ainsworth and Rogers, 2007; Gagen et al., 2011). The data-fusion approach incorporated 

into land surface models gives us the opportunity to evaluate the WUE change across large scale 

for a long time period. However, these land surface models constrained with eddy flux 

observation are often criticized by high model complexity (Chen et al., 2011), unrealistic 

parameter generalization across the plant function type (Reich et al., 2007; Alton, 2011), which 

would induce large uncertainties. 

Tree ring have great potentials to address the forest response to climatic changes compared with 

mechanistic model simulations, eddy flux measurement and manipulative experiments.  The 

physiological information stored in tree ring reflects the long term information of past climate and 

therefore help us reconstruct the climate in the past. The isotopic records in tree rings are also 

sensitive to environmental change due to the stomatal regulation and photosynthetic activity. 

From the stable carbon isotope (13C) perspective, the fractionation occurring in the plant 

biogeochemical processes yield relatively lower value of 13C ratio in leaves and woods and the 

variation is closely related with environmental conditions. The isotopic signals in tree tissues are 

expressed as: 
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13 13 13 ( ( )* )i
a a

a

CC C C a b a Cδ δ δ= −∆ = − + −
                                  (4.1)

 

Where  13
aCδ is the atmospheric 13CO2 ratio, a (-4.4‰) and b (-27.2‰) are the fractionation 

occurring during diffusion and carboxylation processes. Therefore, the ecosystem WUE value can 

be derived from the tree ring record, as  

13 13(1 ( ))
(( )*1.6* )

a aC C C aWUE b a VPD
δ δ− − −= −                            (4.2)

 

Many studies have used tree ring signatures to investigate plant response to increasing CO2 levels 

and changing environment across a broad climate and biomes.  For example, Saurer et al (2004) 

investigated the response of 126 trees (Larix, Pinus and Picea) in northern Eurasia to climatic 

change and increasing CO2 over the last century by using tree ring data, and their findings 

suggested  an 19.2% increase in WUEi in these species. Peñuelas et al (2011) conducted a meta-

analysis on carbon isotopic composition of tree rings over four decades in multiple biomes, and 

they indicated a 20.5% increase in mature trees without significant differences among these 

biomes.   

Right now, although most previous related work focused on site-level, few have conducted the 

regional WUE estimation based on the tree ring carbon data. Here we focused on the boreal forest 

as it is vulnerable to global warming (Parry et al., 2007) and has the greatest biogeophysical 

vegetation feedback to the atmosphere (Snyder et al., 2004). Twelve boreal forest sites’ tree ring 

isotopic data and meteorological variation were collected to develop a linear regression model, 

and the model was extrapolated to the whole boreal region to obtain the WUE spatial and 

temporal variation from 1948 to 2010. We were also interested in the regional gross primary 

productivity (GPP) and two methods were explored to estimate the inter-annual GPP based on our 

derived WUE. 
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4.2. Method 

4.2.1 Overview 

    Twelve boreal tree rings sites were selected to construct our predictive models (Table.4-1). 

We first extracted the “true” Ci/Ca from isotopic carbon data in tree ring by removing the 

influence of fossil fuel combustion. The linear model was used to develop the relationship 

between Ci/Ca variation and environmental changes and then extrapolated to the boreal region to 

obtain WUE from 1948 to 2012. Finally, we explored two methods to estimate the boreal GPP 

from 1982 to 2006 and model simulations were compared with eddy flux tower sites and land 

surface models (TRENDY). 

    

4.2.2 Explanatory variables of Ci/Ca and linear regression models 

The key step to derive WUE was to obtain the Ci/Ca response to environmental change. The 

regulation of Ci/Ca was controlled by both stomatal conductance and plant photosynthesis, as 

suggested by the Ficker’s Law. As for the stomatal conductance, leaf gas exchange experiment 

and empirical statistical models (e.g. Leuning et al., 1995) suggested that the stomatal openings 

were negatively correlated with vapor pressure deficit (VPD) (or positively related with relative 

humidity). Here, we chose the air temperature as alternative explanatory variable, as temperature 

was highly correlated with VPD. In addition, Prentice et al (2014) derived a new Ci/Ca equation 

based on the optimal stomatal theory and array of leaf carbon isotope composition data, 

indicating the air temperature can influence the viscosity of water transporting from root to leaf 

and consequently the transpiration. The widely used Ball-Berry (Ball et al., 1987) and Leuning 

(Leuning, 1995) stomatal model had an additional environmental variable, the atmospheric CO2 

concentration. Therefore, we chose it as our second explanatory variable and expected the 
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negative relationship between CO2 and Ci/Ca. We also added the moisture index (MI), which was 

defined as the ratio of precipitation to incoming shortwave radiation, into our predictive model. 

The incident radiation can significantly affect plant photosynthesis and annual mean precipitation 

was a good indicator of climate (dry or wet). The high moisture index indicated the plant 

favorable environment and we expected it had positive relationship with Ci/Ca variation. Finally, 

we added the Ci/Ca at previous time year as our last explanatory variable. A previous tree ring 

study suggested there was a significant correlation between plant growth at prior year and that at 

current time step (Loader and Switsur, 1996). In sum, we had four explanatory variables to 

predict the Ci/Ca variation in response to environmental change including: air temperature, 

moisture index, atmospheric CO2 concentration and Ci/Ca at previous time year. Therefore, we 

had the following linear models to derive Ci/Ca: 

/ ( ) * * * * / ( 1)i a a i aC C t a T b MI c C d C C t e∆ = ∆ + ∆ + + − +        (4.3) 

Where / ( )i aC C t∆ , T∆  ,  MI∆ and aC  were the difference of Ci/Ca,  air temperature, 

moisture index, atmospheric CO2 concentration between current and previous year, respectively.   

/ ( 1)i aC C t − was the Ci/Ca at previous year. a, b, c, d and e were the coefficients in the linear 

equation. The equation was first used to derive the coefficients for each tree ring site, and the 12 

sets of coefficient values were averaged to conduct the extrapolation across the boreal region and 

the Monte Carlo method was used to get the WUE uncertainty. To be more specific, assume X1, 

X2 …X12 were the derived coefficient from 12 boreal tree ring sites, the mean value (X) were 

used to conduct the extrapolation and the 25%, 75% value would be the lower and upper bound of 

X, where the Monte Carlo method sampled 100 times by assuming a uniform distribution. The 

initial Ci/Ca at 1948 for each grid in boreal forests was obtained from “Trends in net land carbon 

exchange over the period 1980-2010” (TRENDY) project. TRENDY was the intercomparision 

project of a consortium of dynamic global vegetation models, including CLMC, CLMCN, LPJ, 
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LPJ-GUESS, ORCHIDEE, OCN and VEGAS (Sitch et al., 2008). The project aimed at 

investigating further spatial trends in Net Biome Production (NBP) and performing a factorial set 

of Dynamic Global Vegetation Model (DGVM) simulations over the historical period from 

1901to 2010. The model simulations had three protocols: S1 (constant climate and land use data 

but with varying CO2); S2 (constant land use but with varying climate and CO2) and S3 (all of 

them were changing). We extracted the annual GPP and evapotranspiration (ET) from eight 

DGVMs S2 simulations protocols and obtained the initial Ci/Ca by using the following equation 

(4.4):  

 (1 / *1.6* / )i a
a

C GPP ET VPD CC = −                         (4.4) 

                                         
 

4.2.3 GPP Estimation: WUE definition and light use efficiency algorithm   

One of the methods to estimate GPP was based on the ecosystem WUE definition. We explored 

the satellite estimation of ET, which required less data input and had simple algorithms. During 

the past decade, a large number of techniques have been proposed to estimate ET from satellite 

observations. Right now, some empirical or semi-empirical models explored meteorological 

variables and satellite data to derive ET. Here, we used the Landflux (http://landflux.org/Data.php) 

data products (Fisher et al., 2008), which explored the Priestley-Taylor method to estimate the 

global scale of water and energy flux between terrestrial ecosystem and the atmosphere using 

remote sensing observation and meteorological measurements. This product performed well in 

the site-level test and validation against eddy covariance measurement for all 16 flux sites.   

Another method was the light use efficiency (LUE) algorithm. The LUE concept has been used 

in diagnostic primary production models, including the Carnegie–Ames–Stanford Approach 

model (Field et al., 1995), Boreal Ecosystem Productivity Simulator (Chen et al., 2003), and the 
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widely used MODIS GPP and NPP data products (Running et al., 2004). Wang and Prentice 

(2014) further developed the LUE model which considered the effect of photorespiration and 

substrate limitation at subsaturating CO2 by assuming fPAR was independent of CO2. The new 

algorithm used the electron-transport limitation to yield an estimate of LUE. In equation (4.5), 

0ϕ  was the intrinsic quantum efficiency of photosynthesis,  α , 0PAR , fAPAR , and *Γ  was the 

leaf absorbance, accumulated PAR for the period with daily temperature above 0 ◦C, fractional 

absorbed PAR, leaf internal CO2 concentration and  photorespiratory compensation point, 

respectively. 



*

0 0 *2
i

i

CGPP PAR fAPAR
C

ϕ α −Γ
= × × × ×

+ ×Γ                                (4.5)
 

4.2.4 Data 

4.2.4.1 Tree ring data 

The selected tree ring sites spread across the boreal region, from Alaska to East Siberia (Figure 

4.1 and Table. 4-1). The selected samples included the Pinus, Picea, Larix and Quercus, which 

represented the typical boreal species. We chose the tree ring isotope data from 1948 to 2000.  In 

addition, due to the Sue effect caused by intensive fossil fuel combustion, we used following 

equation (Franks et al, 2013) to calculate the atmospheric carbon isotopic signal and obtain the 

“true” carbon isotope discrimination. The derived Ci/Ca in each year represented the tree response 

to environmental condition during growing season. 

 13 6.4 (0.004*exp(0.0197*( 1695.06)))aC yearδ = − − −             (4.6) 

13 13 13( ) / (1 )a p pC C Cδ δ δ∆ = − +                              (4.7) 
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13 13 13 ( ( )* )i
a a

a

CC C C a b a Cδ δ δ= −∆ = − + −
                (4.8)

 

4.2.4.2 Climate/remote sensing data and TRENDY products 

The air temperature, precipitation, radiation during growing season (from June to August) was 

extracted from the CRU-NCEP climate data (Sheffield et al., 2006) for regional extrapolation. 

The site-level meteorological variables at 12 boreal tree ring sites were also extracted from CRU-

NCEP using the nearest neighbor method. The fPAR was obtained from the Global Inventory 

Modeling and Mapping Studies (GIMMS) products (Tucker et al., 2004).   

We also compared our predicted WUE and GPP with TRENDY project. As we mentioned 

above, the TRENDY project simulations had three protocols: S1 (constant climate and land use 

data but with varying CO2); S2 (constant land use but with varying climate and CO2) and S3 (all 

of them were changing). Here, we only extracted the TRENDY output from S2 simulations 

protocols for the comparison and all results were resampled to 1 degree spatial resolution to 

match our simulations. 

 

4.3. Results and discussion 

4.3.1 Linear regression coefficients based on tree ring data 

    Using the linear model, our predicted mean Ci/Ca were comparable with the observed Ci/Ca, 

and the R2 ranged from 0.4 to 0.8 (Figure 4.2). Generally, the tree ring sites locating in Northern 

Europe had better prediction performance (e.g. B01 and B02) than other sites, such as the Alaska 

and East Siberia (e.g. B05 and B11). The averaged coefficients based on the 12 boreal tree ring 

sites were shown in Figure 4.3. The air temperature variation and Ci/Ca(t-1) exhibited negative 

values, indicating the opposite relationship with Ci/Ca; while for moisture index, it showed the 
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positive relationship with Ci/Ca variation, which was in accordance with our previous hypothesis. 

Although the CO2 concentration coefficient had a relatively large range (from -0.15 to 0.09), the 

mean value was negative and this was consistent with the Farquhar’s optimal theory (Lloyd and 

Farquhar, 1994) and Medlyn’s developed equation (Medlyn et al., 2011). Overall, our multiple 

linear model exhibited a good comparison with the observation from tree ring sites, and the 

derived coefficients were reasonable, which could be used for following regional extrapolations.  

 

4.3.2 Predicted WUE and GPP using linear regression models 

The model simulated annual mean WUE ranging from 0.8~3.5 g C kg-1 H2O (Figure 4.4). 

Large WUE values (>2.5 g C kg-1 H2O) were generally observed at high latitudes (> 60 ͦ N: 

Alaska, Norway, parts of Canada and East Serbia). Most of boreal forest region showed a 

significant increasing WUE trend over the period except parts of Alaska (Figure 4.5). East Europe, 

parts of Serbia and North America exhibited the largest increasing trend (Figure 4.5) (~0.05 g C 

kg-1 H2O yr-1). Overall, the spatial averaged annual mean WUE was predicted to increase by 13%, 

from 2.3±0.4 g C kg-1 H2O at 1948 to 2.6±0.7 g C kg-1 H2O at 2012 (Figure 4.6).   

Two algorithms simulated annual mean GPP varying from 250~800 g C yr-1 during 1980 to 

2006 (Figure 4.7). The estimated GPP for the two methods showed relatively large differences 

across the boreal region. For example, the LUE developed by Wang et al (2014) had higher 

(100~200 g C yr-1) GPP estimation than that by the method of WUE definition in vast of Europe 

and Siberia, while in most of North America (e.g. Alaska), it generally exhibited lower (-200~-

100 g C yr-1) GPP values. Both algorithms showed the significant increasing trends of GPP in 

vast boreal region except Alaska, which was similar with the WUE temporal patterns (Figure was 

not shown here, as it was similar with Figure 4.5). However, the increasing trends estimated by 

WUE definition were around 30% larger than that by Wang’s method. Correspondingly the 
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temporal trends of spatial averaged GPP by WUE definition was 4.2 umol C m-2 s-1 yr-1 during the 

period, which was 28% larger than that by Wang’s algorithm. 

 

4.3.3 WUE, GPP comparison with sites observation and ESMs 

Previous studies by Bru¨mmer et al (2012), Buchmann and Schulze (1999) reported that the 

WUE of Pinus species in Canada and United Kingdom were from 0.52 to 3.71 g C kg-1 H2O yr-1. 

A recent study by Tang et al (2014) showed that the mean WUE was around 3.8 g C kg-1 H2O yr-1 

at 60  ͦ N, and the value decreased to 1.2 g C kg-1 H2O yr-1 at 68  ͦ N based on eddy flux sites’ 

observation. All the reported results above were similar with our predicted WUE based on tree 

ring isotopic data. From the temporal trends’ perspective, few studies have reported the WUE 

changes in boreal forest based on observation instead of the intrinsic WUE. For example, Saurer 

et al (2004) investigated the response of 126 trees (Larix, Pinus and Picea) in northern Eurasia to 

climatic change and increasing CO2 over the last century by using tree ring data, and their 

findings suggested  an 19.2% increase in the intrinsic WUE in these species. The selected eddy 

flux sites (Table 4-2) were compared with predicted GPP using the two algorithms. Generally, 

GPP estimations by WUE definition were better (R2 = 0.64 and RMSE = 102 g C m-2 yr-1) than 

that by LUE algorithm developed by Wang (Figure.4.8) (R2 = 0.46 and RMSE = 169 g C m-2 yr-1). 

Both algorithms showed higher GPP estimation when the site GPP observation was low (< 500 g 

C m-2 yr-1), but LUE algorithm showed much more deviation compared with WUE definition.  

Our predicted WUE value was similar with most of TRENDY models during 1948-2012 

(Figure 4.9), such as the CLMC, CLMCN, TRFFID, but it was higher than that in OCN and 

ORCHIDEE, and smaller than that in VEGAS. All models (except VEGAS) exhibited significant 

increasing trends, ranging from 1e-6 g C kg-1 H2O yr-1 to 1.2e-5 g C kg-1 H2O yr-1. However, the 

increasing trend predicted by tree ring was much higher than all TRENDY models except 
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ORCHIDEE. For example, our predicted increasing trend was around as 9 times larger than in 

LPJ and 40% higher than that in TRFFID. Although tree ring based WUE was similar with most 

of TRENDY models, the two algorithms estimated GPP were around 15%~24% higher than that 

in TRENDY models. The inter-annual variability of GPP by WUE definition was comparable 

with TRFFID, but for the LUE algorithm developed by Wang et al (2014), the variability was 

generally smoother compared with other algorithms/models.  Five of seven TRENDY models 

showed significant increasing GPP trends during the period as well as the two algorithms based 

GPP in this study. In addition, our predicted GPP increasing trends were also comparable with 

TRENDY models except the CLMC and CLMCN, ranging from 3 umol C m-2 s-1 yr-1 to 7 umol C 

m-2 s-1 yr-1. 

4.4 Conclusion 

Twelve boreal forest sites’ tree ring isotopic data were used to develop a linear regression model, 

and the model was extrapolated to the whole boreal region to obtain the WUE spatial and 

temporal variation from 1948 to 2010. Two algorithms were also explored to estimate the inter-

annual gross primary productivity (GPP) based on our derived WUE. The results demonstrated 

that most of boreal regions showed significant increasing WUE trend during the period except 

parts of Alaska. The predicted spatial averaged annual mean WUE was predicted to increase by 

13%, from 2.3±0.4 g C kg-1 H2O at 1948 to 2.6±0.7 g C kg-1 H2O at 2012, which was much 

higher than other land surface models. Our predicted GPP by the WUE definition algorithm was 

comparable with site observation, while for the light use efficiency algorithm, GPP estimation 

was higher than site observation as well as than land surface models. In addition, the increasing 

GPP trend by two algorithms was similar with land surface model simulations.  
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Table 4-1 Information of tree ring sites in Figure 4-1  

ID Species Latitude Longitude Period Reference 
B01 Pinus sylvestris L 68.8   ͦ N 15.4   ͦ E 1948-2001 Young et al., (2010) 
B02 Pinus sylvestris L 68.3  ͦ N 19.7   ͦ E 1948-2008 Loader et al., (2013) 
B03 Picea abies 47.1  ͦ N 15.4   ͦ E 1948-1995 Anderson et al., (1998) 
B04 Larix gmelinii Rupr 70.6  ͦ N 103.4  ͦ E 1948-2006 Sidorova et al., (2010) 
B05 Larix cajanderi Mayr 70.0  ͦ N 148.0  ͦ E 1948-2000 Sidorova et al., (2008) 
B06 Quercus robur 55.3  ͦ N 3.4  ͦ W 1948-2002 Loader et al., (2008) 
B07 Larix cajanderi Mayr 63.0  ͦ N 139.0  ͦ E 1948-1999 Kirdyanov et al., (2008) 
B08 Picea mariana 64.8  ͦ N 148.0   ͦ W 1948-1996 Beck et al., (2011) 
B09 Pinus sylvestris L 68.9  ͦ N 28.3   ͦ E 1948-2001 Hilasvuori et al., (2009) 
B10 Pinus sylvestris L 68.0  ͦ N 27.0   ͦ E 1948-2001 Gagen et al., (2007) 
B11 Picea mariana 48.6  ͦ N 70.4   ͦ W 1948-1990 Simard et al., (2008) 
B12 Pinus banksiana 53.9  ͦ N 105.1  ͦ W 1962-1993 Brooks et al., (1998) 
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Table 4-2 Eddy covariance sites used for GPP comparison in Figure 4.7 

Site Name Latitude Longitude Period Reference 
FIHYY 61.84  ͦ N 24.29  ͦE 1996-2010 Suni et al., (2003) 
FISOD 67.36   ͦ N 26.63  ͦE 2000-2008 Thum et al., (2007) 
SEFLa 64.11   ͦ N 19.45  ͦE 1996-2002 Valentini et al., (2000) 
SENor 60.08   ͦ N 17.47  ͦE 1996-2007 Lagergren et al., (2008) 
SESk1 60.13   ͦ N 17.91  ͦE 2005-2008 Gioli et al., (2004) 

QC 49.69   ͦ N 74.34  ͦW 2003-2010  
SK 53.98   ͦ N 105.11  ͦE 1996-2010  
MB 55.88   ͦ N 98.48  ͦW 2007-2008  
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Figure 4.1 Tree ring sites of boreal forest used in this study (More information can be found in 

Table 4-1)
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Figure 4.2 The comparison between estimated ΔCi/Ca with derived ΔCi/Ca from tree ring data at 12 tree ring sites. (The prediction used the 

multiple linear regression model as: ΔCi/Ca(t) = a* ΔTemp + b* ΔMI + c* ΔCa + d* Ci/Ca(t-1) + e; Temp: air temperature, MI: moisture 

index, Ca: atompsheric CO2
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Figure 4.3 Boxplot of the five coefficients in the linear regression models (The prediction used 

the multiple linear regression model as: ΔCi/Ca(t) = a* ΔTemp + b* ΔMI + c* ΔCa + d* Ci/Ca(t-1) + 

e; Temp: air temperature, MI: moisture index, Ca: atmospheric CO2)
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Figure 4.4 Predicted mean WUE in boreal forest in different decades ((a), (b), (c) stand for 

1980~1990, 1991~2000 and 2001~2010, respectively) 
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Figure 4.5 Predicted spatial WUE trends in boreal forest during the study period (a) and the 

trends significance (b). Green color indicates there is significant WUE changing trends (P<0.01), 

while grey one means no significance. 
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Figure 4.6 Predicted WUE in boreal forests using the linear regression model (The prediction 

used the multiple linear regression model as: ΔCi/Ca(t) = a* ΔTemp + b* ΔMI + c* ΔCa + d* 

Ci/Ca(t-1) + e; Temp: air temperature, MI: moisture index, Ca: atompsheric CO2). Shade area 

stands for the estimation uncertainty induced by the regression coefficient. 
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Figure 4.7 Predicted mean GPP in boreal forests using two algorithms in three decades (1980~1989, 1990~1999 and 2000~2006). a and b 

stand for the algorithm by WUE definition and revised LUE equation developed by Wang et al (2015).  
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Figure 4.8 Comparison between site-observed GPP (Table 4-2) with estimated GPP by WUE 

definition (a) and LUE algorithm (b). 
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Figure 4.9 WUE and GPP trends in seven global land surface models and our study (left column) 

in boreal forest from 1948 to 2010 (double asterisk indicates significant increasing trend, p<0.01) 

and the spatial average WUE and GPP of 7 global land surface models and our study (right 

column)  in boreal forest from 1948 to 2010. 
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CHAPTER 5 SUMMARY AND FUTURE WORK 

 

This dissertation evaluates the regional carbon dynamics by using upscaling approach, 

mechanistically-based biogeochemistry models and in situ and remotely sensed data. As for the 

upscaling method using Fluxnet data, I focus on how and to what extent that atmospheric CO2 

effect on the carbon dynamic prediction. For mechanistically-based biogeochemistry model, I 

constrain the regional carbon dynamic using leaf 13C measurement. In addition, by merely using 

tree ring isotopic record, I also derive the inter-annual WUE and GPP variation in boreal forest.  

However, the model-based studies have some drawbacks. Specific limitations and future work are 

listed below:  

(1) In the upscaling study, first, the selected AmeriFlux sites can contribute a large uncertainty to 

our model development, because ANN training and validating are highly associated with the eddy 

flux data. The representativeness of the AmeriFlux data is crucial to scaling up site-level 

measurement to large regions. In our study, the criterion to select sites is based on the available 

CO2 measurement from 2000 to 2006. The representativeness of the flux sites is crucial to scaling 

up site-level measurement and to understand the carbon dynamics across large spatial scales and 

quantify uncertainty. Although the global sites well represent variations in climate and ecological 

regions (Reichstein et al., 2014), whether the major ecoregions from North America are well 

represented by the AmeriFlux network has not been examined (Hargrove et al., 2003). Using a 

cluster analysis with 25 climatic and physiological forcing variables based on 59 AmeriFlux sites, 
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Hargrove et al. (2003) showed that the vast interior of the US was well-represented by the 

AmeriFlux network, but the Pacific Northwest, Southern, and Southwestern were under 

represented. In addition, the uncertain eddy flux data—due to system errors, random errors, site 

selection criteria (Loescher et al., 2006), and the gap-filling method (Moffat et al., 2007; Desai et 

al., 2008)—may affect the GPP and NEE uncertainty in the model parameterization and 

simulation. Second, our approach has not considered other controlling factors on the carbon 

fluxes. The vegetation distribution was constant without any shifts or disturbances during the 

study period, which might have biased estimation. Lacking the effects of land-cover changes, 

natural disturbances (e.g., fire, hurricane, insect infestation), economic influences (e.g., harvest) 

and demographic factors (Lambin et al., 2003) would also introduce uncertainties to our 

quantifications. Especially in the US, about half of the forest area is disturbed each decade, 

including the timber harvesting and grazing (Birdsey and Lewis, 2003). The forest age reflects the 

past disturbance history. Use of the North American forest stand age database (Pan et al., 2011) 

derived from forest inventory, historical fire data, and remote sensing imagery could help reduce 

our quantification uncertainty (Deng et al., 2013; Xiao et al., 2014). For cropland, without 

considering the effects of crop rotation (such as from corn to soybeans) may also introduce 

uncertainty. Since C4 photosynthetic capacity is different from C3 plant, explicit C3 versus C4 

plant distribution data shall also help reduce the uncertainty of carbon qualification. In addition, 

the MODIS ecosystem distribution is not consistent with flux tower footprints (Xiao et al., 2008) 

and can be significantly different from the towers’ vegetation type. Recent studies by Melton and 

Arora (2013) showed that the plant function type variability within the one-grid scale is important 

in simulating ecosystem responses to changing climate and atmospheric CO2 concentration.  

Third, using only seven plant functional types (PFTs) derived from the MODIS land use product 

may also introduce uncertainties to the carbon flux quantification. In the simulations, we assumed 

that, at each PFT level, the response of carbon fluxes to environmental condition changes is same. 
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The usefulness and accuracy of such assumption has been questioned by field ecologists and there 

is a significant overlap between PFTs (Reich et al., 2007). The PFT-level parameterization could 

be biased because it may not properly represent the functional and structural characteristics of the 

species within a region. The parameter values obtained at the PFT level led to diverse significant 

carbon dynamic quantifications (Alton, 2011; He et al., 2013). Additionally, Reichstein et al. 

(2014) showed that the functional biogeographical variations of ecosystem properties were only 

partially explained by climate and PFTs. The large variability of biogeochemical processes within 

each PFT (Kattge et al. 2011) depended even more on plant traits, such as allocation and 

stabilization of carbon in the soil. Future studies should explicitly include the site-level 

information and trait database to test the relation between ecosystem functions and organismic 

traits to accurately quantify carbon fluxes. 

(2) In the second study, first, the simplification of mesophyll conduction representation may be 

biased. Previous leaf gas-exchange experiments suggest that the mesophyll conductance is finite 

and it can vary with the leaf development (Warren 2008), nutrient availability (Warren 2004), 

radiation (Niinemets et al., 2006; Grassi & Magnani, 2005) and leaf temperature (Bernacchi et al., 

2002), thus affecting the estimation of CO2 assimilation rate. Keenan et al (2010) indicated that 

the effect of mesophyll conductance was important on the leaf and ecosystem scale during the 

drought season. Suits et al. (2005) explored the mesophyll conductance as a function of Rubisco 

content, radiation, NDVI and soil water stress factor. In our study, we followed the Evans and 

von Caemmerer (1996), assuming that the mesophyll conductance is proportional to the Rubisco 

content. Recently, Sun et al (2014) suggested that assuming zero mesophyll conductance in the 

Community Land Model 4.5, would highly overestimate the global primary productivity. 

However, we have to admit that the understanding on the response of mesophyll conductance to 

environmental conditions is still limited (Bodin et al., 2013).  
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Second, we did not consider the soil water stress in the stomatal model schemes. Generally, the 

soil water stress and vapor pressure deficit can occur simultaneously. Substantial studies 

suggested that there are negative effects of soil water stress on both plant photosynthesis and 

stomatal conductance. However, most of the current earth surface models do not include the soil 

water stress factor into the stomatal models, which may impact the predictability of plant 

responses under drought conditions. The review by Damour et al (2010) listed a few empirical or 

mechanistic stomatal models considering the soil water stress, and the mechanistic or 

physiological knowledge is often difficult to be modeled when compared with the empirical 

models based on the experiment data and limited their wide use in ESMs. In addition, the 

modification of plant morphology was observed under water stress condition, for example, the 

increase root to shoot ratio. These adaptive strategies could in turn attenuate the negative effects 

on stomatal conductance, and should be included into models. However, whether stomatal (water 

stress directly influences the stomatal closure) or non-stomatal (water stress influences the 

photosynthetic capacity or mesophyll conductance) limitation dominates the carbon flux is still 

debated. As for the stomatal limitation under drought conditions, Kauwe et al (2015) explored an 

empirical soil water stress factor into the Leuning and Optimal model to address the stomatal 

conductance sensitivity to soil water limitation. While for the non stomatal limitation, Egea et al 

(2011) and Keenan et al (2010) both suggested that there is a critical role of non stomatal 

limitation in photosynthesis during drought periods. 

(3) In the third study, first, the elevation’s influence on tree ring isotope signals was ignored as 

we had no information about some tree ring sites used for developing the linear model. Previous 

experiment studies showed that elevation exhibited negative effect on the foliar Ci/Ca value 

(Kohn, 2011) due to the lower O2 and CO2 partial pressure as suggested by Körner et al (1991). 

Other studies (Hultine and Marshall, 2000) implicated that plant employed different strategies to 

adopt the changing environment gradient, such as decreasing stomtal density, increasing leaf 
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nitrogen and leaf thickness., etc.  All these suggested mechanism may indirectly affect the 

stomatal conductance or photosynthetic capacity, therefore on the foliar/tree ring isotopic signals. 

Wang et al (2015) derived the empirical relationship between Ci/Ca and climate, elevation using 

optimal stomatal theory (Prentice et al., 2014) based on large amounts of foliar 13C composition 

data. Another problem was the challenge to remove the tree age influence on tree ring isotopic 

signals. McCarroll and Pawellek (2001) used individual trees as samples to demonstrate the age-

related trend in tree ring isotopic value. The plant tissue formed during the first years of tree life 

was generally depleted in 13C compared with the tissue formed later. Schleser and Jayasekera 

(1985) suggested the age effect was caused by re-assimilation of the respired air, which may 

already depleted in 13C by young trees. McDowell et al (2002) suggested the variation of tree 

dydraulic conductivity due to tree height may explain the age effect. The decreasing hydraulic 

conductivity can negatively affect leaf water potential, stomatal conductance and consequently 

leaf carbon fractionation. Finally, increasing nitrogen deposition may also significantly impact 

the tree ring carbon isotopic spatial and temporal variability. The increasing atmospheric nitrogen 

deposition, which originated from combustion of fossil fuels and fertilization, can both affect the 

plant (e.g. Horswill et al., 2008) and microbial communities (Chung et al., 2007). Thus, the 

interactive effect of CO2 elevation and nitrogen deposition can greatly influence the plant 

physiology and carbon cycling (e.g. Ollinger et al., 2002). Tree-ring studies were particularly 

helpful to understand tree responses to their environment in the long term. The isotopic 

information stored in tree ring, in spite of the complex biogeochemical processes driving the 

value, allowed us to evaluate the influence of environmental condition on carbon dynamics. The 

derived Ci/Ca in tree ring was both controlled by stomatal conductance and photosynthetic 

capacity. However, the 13C composition alone cannot explain whether the Ci/Ca was more 

affected by stomatal conductance or plant photosynthetic activity. Generally, the δ18O in plant 

tissue is more closely related with stomatal conductance than photosynthetic activity, which 
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makes it possible for us to evaluate the contribution of photosynthetic capacity and stomatal 

conductance to Ci/Ca. Therefore, the dual-isotope approach on tree rings may have great potential 

to analyze drivers of both 13C and 18O and to develop conceptual modeling framework (e.g.  

Scheidegger et al., 2000). 
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