260 research outputs found

    A COLLABORATIVE FILTERING APPROACH TO PREDICT WEB PAGES OF INTEREST FROMNAVIGATION PATTERNS OF PAST USERS WITHIN AN ACADEMIC WEBSITE

    Get PDF
    This dissertation is a simulation study of factors and techniques involved in designing hyperlink recommender systems that recommend to users, web pages that past users with similar navigation behaviors found interesting. The methodology involves identification of pertinent factors or techniques, and for each one, addresses the following questions: (a) room for improvement; (b) better approach, if any; and (c) performance characteristics of the technique in environments that hyperlink recommender systems operate in. The following four problems are addressed:Web Page Classification. A new metric (PageRank × Inverse Links-to-Word count ratio) is proposed for classifying web pages as content or navigation, to help in the discovery of user navigation behaviors from web user access logs. Results of a small user study suggest that this metric leads to desirable results.Data Mining. A new apriori algorithm for mining association rules from large databases is proposed. The new algorithm addresses the problem of scaling of the classical apriori algorithm by eliminating an expensive joinstep, and applying the apriori property to every row of the database. In this study, association rules show the correlation relationships between user navigation behaviors and web pages they find interesting. The new algorithm has better space complexity than the classical one, and better time efficiency under some conditionsand comparable time efficiency under other conditions.Prediction Models for User Interests. We demonstrate that association rules that show the correlation relationships between user navigation patterns and web pages they find interesting can be transformed intocollaborative filtering data. We investigate collaborative filtering prediction models based on two approaches for computing prediction scores: using simple averages and weighted averages. Our findings suggest that theweighted averages scheme more accurately computes predictions of user interests than the simple averages scheme does.Clustering. Clustering techniques are frequently applied in the design of personalization systems. We studied the performance of the CLARANS clustering algorithm in high dimensional space in relation to the PAM and CLARA clustering algorithms. While CLARA had the best time performance, CLARANS resulted in clusterswith the lowest intra-cluster dissimilarities, and so was most effective in this regard

    Enhancing explainability and scrutability of recommender systems

    Get PDF
    Our increasing reliance on complex algorithms for recommendations calls for models and methods for explainable, scrutable, and trustworthy AI. While explainability is required for understanding the relationships between model inputs and outputs, a scrutable system allows us to modify its behavior as desired. These properties help bridge the gap between our expectations and the algorithm’s behavior and accordingly boost our trust in AI. Aiming to cope with information overload, recommender systems play a crucial role in filtering content (such as products, news, songs, and movies) and shaping a personalized experience for their users. Consequently, there has been a growing demand from the information consumers to receive proper explanations for their personalized recommendations. These explanations aim at helping users understand why certain items are recommended to them and how their previous inputs to the system relate to the generation of such recommendations. Besides, in the event of receiving undesirable content, explanations could possibly contain valuable information as to how the system’s behavior can be modified accordingly. In this thesis, we present our contributions towards explainability and scrutability of recommender systems: • We introduce a user-centric framework, FAIRY, for discovering and ranking post-hoc explanations for the social feeds generated by black-box platforms. These explanations reveal relationships between users’ profiles and their feed items and are extracted from the local interaction graphs of users. FAIRY employs a learning-to-rank (LTR) method to score candidate explanations based on their relevance and surprisal. • We propose a method, PRINCE, to facilitate provider-side explainability in graph-based recommender systems that use personalized PageRank at their core. PRINCE explanations are comprehensible for users, because they present subsets of the user’s prior actions responsible for the received recommendations. PRINCE operates in a counterfactual setup and builds on a polynomial-time algorithm for finding the smallest counterfactual explanations. • We propose a human-in-the-loop framework, ELIXIR, for enhancing scrutability and subsequently the recommendation models by leveraging user feedback on explanations. ELIXIR enables recommender systems to collect user feedback on pairs of recommendations and explanations. The feedback is incorporated into the model by imposing a soft constraint for learning user-specific item representations. We evaluate all proposed models and methods with real user studies and demonstrate their benefits at achieving explainability and scrutability in recommender systems.Unsere zunehmende Abhängigkeit von komplexen Algorithmen für maschinelle Empfehlungen erfordert Modelle und Methoden für erklärbare, nachvollziehbare und vertrauenswürdige KI. Zum Verstehen der Beziehungen zwischen Modellein- und ausgaben muss KI erklärbar sein. Möchten wir das Verhalten des Systems hingegen nach unseren Vorstellungen ändern, muss dessen Entscheidungsprozess nachvollziehbar sein. Erklärbarkeit und Nachvollziehbarkeit von KI helfen uns dabei, die Lücke zwischen dem von uns erwarteten und dem tatsächlichen Verhalten der Algorithmen zu schließen und unser Vertrauen in KI-Systeme entsprechend zu stärken. Um ein Übermaß an Informationen zu verhindern, spielen Empfehlungsdienste eine entscheidende Rolle um Inhalte (z.B. Produkten, Nachrichten, Musik und Filmen) zu filtern und deren Benutzern eine personalisierte Erfahrung zu bieten. Infolgedessen erheben immer mehr In- formationskonsumenten Anspruch auf angemessene Erklärungen für deren personalisierte Empfehlungen. Diese Erklärungen sollen den Benutzern helfen zu verstehen, warum ihnen bestimmte Dinge empfohlen wurden und wie sich ihre früheren Eingaben in das System auf die Generierung solcher Empfehlungen auswirken. Außerdem können Erklärungen für den Fall, dass unerwünschte Inhalte empfohlen werden, wertvolle Informationen darüber enthalten, wie das Verhalten des Systems entsprechend geändert werden kann. In dieser Dissertation stellen wir unsere Beiträge zu Erklärbarkeit und Nachvollziehbarkeit von Empfehlungsdiensten vor. • Mit FAIRY stellen wir ein benutzerzentriertes Framework vor, mit dem post-hoc Erklärungen für die von Black-Box-Plattformen generierten sozialen Feeds entdeckt und bewertet werden können. Diese Erklärungen zeigen Beziehungen zwischen Benutzerprofilen und deren Feeds auf und werden aus den lokalen Interaktionsgraphen der Benutzer extrahiert. FAIRY verwendet eine LTR-Methode (Learning-to-Rank), um die Erklärungen anhand ihrer Relevanz und ihres Grads unerwarteter Empfehlungen zu bewerten. • Mit der PRINCE-Methode erleichtern wir das anbieterseitige Generieren von Erklärungen für PageRank-basierte Empfehlungsdienste. PRINCE-Erklärungen sind für Benutzer verständlich, da sie Teilmengen früherer Nutzerinteraktionen darstellen, die für die erhaltenen Empfehlungen verantwortlich sind. PRINCE-Erklärungen sind somit kausaler Natur und werden von einem Algorithmus mit polynomieller Laufzeit erzeugt , um präzise Erklärungen zu finden. • Wir präsentieren ein Human-in-the-Loop-Framework, ELIXIR, um die Nachvollziehbarkeit der Empfehlungsmodelle und die Qualität der Empfehlungen zu verbessern. Mit ELIXIR können Empfehlungsdienste Benutzerfeedback zu Empfehlungen und Erklärungen sammeln. Das Feedback wird in das Modell einbezogen, indem benutzerspezifischer Einbettungen von Objekten gelernt werden. Wir evaluieren alle Modelle und Methoden in Benutzerstudien und demonstrieren ihren Nutzen hinsichtlich Erklärbarkeit und Nachvollziehbarkeit von Empfehlungsdiensten

    A Distributed, Architecture-Centric Approach to Computing Accurate Recommendations from Very Large and Sparse Datasets

    Get PDF
    The use of recommender systems is an emerging trend today, when user behavior information is abundant. There are many large datasets available for analysis because many businesses are interested in future user opinions. Sophisticated algorithms that predict such opinions can simplify decision-making, improve customer satisfaction, and increase sales. However, modern datasets contain millions of records, which represent only a small fraction of all possible data. Furthermore, much of the information in such sparse datasets may be considered irrelevant for making individual recommendations. As a result, there is a demand for a way to make personalized suggestions from large amounts of noisy data. Current recommender systems are usually all-in-one applications that provide one type of recommendation. Their inflexible architectures prevent detailed examination of recommendation accuracy and its causes. We introduce a novel architecture model that supports scalable, distributed suggestions from multiple independent nodes. Our model consists of two components, the input matrix generation algorithm and multiple platform-independent combination algorithms. A dedicated input generation component provides the necessary data for combination algorithms, reduces their size, and eliminates redundant data processing. Likewise, simple combination algorithms can produce recommendations from the same input, so we can more easily distinguish between the benefits of a particular combination algorithm and the quality of the data it receives. Such flexible architecture is more conducive for a comprehensive examination of our system. We believe that a user's future opinion may be inferred from a small amount of data, provided that this data is most relevant. We propose a novel algorithm that generates a more optimal recommender input. Unlike existing approaches, our method sorts the relevant data twice. Doing this is slower, but the quality of the resulting input is considerably better. Furthermore, the modular nature of our approach may improve its performance, especially in the cloud computing context. We implement and validate our proposed model via mathematical modeling, by appealing to statistical theories, and through extensive experiments, data analysis, and empirical studies. Our empirical study examines the effectiveness of accuracy improvement techniques for collaborative filtering recommender systems. We evaluate our proposed architecture model on the Netflix dataset, a popular (over 130,000 solutions), large (over 100,000,000 records), and extremely sparse (1.1\%) collection of movie ratings. The results show that combination algorithm tuning has little effect on recommendation accuracy. However, all algorithms produce better results when supplied with a more relevant input. Our input generation algorithm is the reason for a considerable accuracy improvement

    Predictive Accuracy of Recommender Algorithms

    Get PDF
    Recommender systems present a customized list of items based upon user or item characteristics with the objective of reducing a large number of possible choices to a smaller ranked set most likely to appeal to the user. A variety of algorithms for recommender systems have been developed and refined including applications of deep learning neural networks. Recent research reports point to a need to perform carefully controlled experiments to gain insights about the relative accuracy of different recommender algorithms, because studies evaluating different methods have not used a common set of benchmark data sets, baseline models, and evaluation metrics. The dissertation used publicly available sources of ratings data with a suite of three conventional recommender algorithms and two deep learning (DL) algorithms in controlled experiments to assess their comparative accuracy. Results for the non-DL algorithms conformed well to published results and benchmarks. The two DL algorithms did not perform as well and illuminated known challenges implementing DL recommender algorithms as reported in the literature. Model overfitting is discussed as a potential explanation for the weaker performance of the DL algorithms and several regularization strategies are reviewed as possible approaches to improve predictive error. Findings justify the need for further research in the use of deep learning models for recommender systems

    Mobile Link Prediction: Automated Creation and Crowd-sourced Validation of Knowledge Graphs

    Full text link
    Building trustworthy knowledge graphs for cyber-physical social systems (CPSS) is a challenge. In particular, current approaches relying on human experts have limited scalability, while automated approaches are often not accountable to users resulting in knowledge graphs of questionable quality. This paper introduces a novel pervasive knowledge graph builder that brings together automation, experts' and crowd-sourced citizens' knowledge. The knowledge graph grows via automated link predictions using genetic programming that are validated by humans for improving transparency and calibrating accuracy. The knowledge graph builder is designed for pervasive devices such as smartphones and preserves privacy by localizing all computations. The accuracy, practicality, and usability of the knowledge graph builder is evaluated in a real-world social experiment that involves a smartphone implementation and a Smart City application scenario. The proposed knowledge graph building methodology outperforms the baseline method in terms of accuracy while demonstrating its efficient calculations on smartphones and the feasibility of the pervasive human supervision process in terms of high interactions throughput. These findings promise new opportunities to crowd-source and operate pervasive reasoning systems for cyber-physical social systems in Smart Cities

    Algorithms for Academic Search and Recommendation Systems

    Get PDF

    Design and Implementation of a Customer Personalised Recomender System

    Get PDF
    [ANGLÈS] Market basket analysis is examined through the application of probabilistic topic models and case-based reasoning in order to provide more insight into customer buying habits and generate meaningful recommendations

    Recommender systems in industrial contexts

    Full text link
    This thesis consists of four parts: - An analysis of the core functions and the prerequisites for recommender systems in an industrial context: we identify four core functions for recommendation systems: Help do Decide, Help to Compare, Help to Explore, Help to Discover. The implementation of these functions has implications for the choices at the heart of algorithmic recommender systems. - A state of the art, which deals with the main techniques used in automated recommendation system: the two most commonly used algorithmic methods, the K-Nearest-Neighbor methods (KNN) and the fast factorization methods are detailed. The state of the art presents also purely content-based methods, hybridization techniques, and the classical performance metrics used to evaluate the recommender systems. This state of the art then gives an overview of several systems, both from academia and industry (Amazon, Google ...). - An analysis of the performances and implications of a recommendation system developed during this thesis: this system, Reperio, is a hybrid recommender engine using KNN methods. We study the performance of the KNN methods, including the impact of similarity functions used. Then we study the performance of the KNN method in critical uses cases in cold start situation. - A methodology for analyzing the performance of recommender systems in industrial context: this methodology assesses the added value of algorithmic strategies and recommendation systems according to its core functions.Comment: version 3.30, May 201
    corecore