

Aalborg Universitet

Algorithms for Academic Search and Recommendation Systems

Amolochitis, Emmanouil

Publication date:
2014

Document Version
Peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Amolochitis, E. (2014). Algorithms for Academic Search and Recommendation Systems.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 29, 2017

http://vbn.aau.dk/en/publications/algorithms-for-academic-search-and-recommendation-systems(e0c70210-d1a6-4235-93e8-2299c2773ecd).html

Algorithms for Academic Search
and Recommendation Systems

Amolochitis Emmanouil
Department of Electronic Systems

Aalborg University

A Dissertation Submitted to the Department of Electronic Systems and the Committee on

Graduate Studies of Aalborg University in Partial Fulfillment of the Requirements for the

Philosophy Doctor (Ph.D.) in Wireless Communications

Denmark, 2014
__

i

Academic Supervisor: Professor Dr. Ramjee Prasad, Aalborg University

Co-Supervisors: Professor Dr. Ioannis T. Christou, Athens Information Technology

 Professor Dr. Zheng-Hua Tan, Aalborg University

Day of defense: June 27th, 2014

Assessment Committee:

Professor Vasilis Vassalos,

 Athens University of Economics & Business, Greece

 Professor Elpida Tzafestas,

 University of Athens, Greece

 Professor Ove Kjeld Andersen,

 Aalborg University, Denmark

ii

 ©Copyright by Amolochitis Emmanouil. All rights reserved.

This dissertation is a result of the collaboration between

CTiF, Aalborg University (AAU) and Athens Information Technology (AIT).

iii

 Abstract

In the thesis we present novel algorithms for academic search, recommendation and association rule

mining that have been developed and optimized for different commercial as well as academic purpose

systems. Along with the design and implementation of algorithms, a major part of the work involves

the development of new systems both for commercial as well as for academic use.

In the first part of the work we introduce a novel hierarchical heuristic scheme for re-ranking

academic publications retrieved from standard digital libraries such as the ACM Portal among

others. The scheme is based on the hierarchical combination of a custom implementation of the term

frequency heuristic, a time-depreciated citation score and a graph-theoretic computed score that relates

the paper’s index terms with each other. In order to evaluate the performance of the introduced

algorithms, a meta-search engine has been designed and developed that submits user queries to

standard digital repositories of academic publications and re-ranks the top-n results using the

introduced hierarchical heuristic scheme.

On the second part we describe the design of novel recommendation algorithms with application

in different types of e-commerce systems. The newly introduced algorithms are a part of a developed

Movie Recommendation system, the first such system to be commercially deployed in Greece by a

major Triple Play services provider. The initial version of the system uses a

novel hybrid recommender (user, item and content based) and provides daily recommendations to all

active subscribers of the provider (currently more than 30,000). The recommenders that we are

presenting are hybrid by nature, using an ensemble configuration of different content, user as well as

item-based recommenders in order to provide more accurate recommendation results.

In the third part of the work we present the design of a quantitative association rule mining

algorithm. Quantitative association rules refer to a special type of association rules of the form that

antecedent implies consequent consisting of a set of numerical or quantitative attributes. The

introduced mining algorithm processes a specific number of user histories in order to generate a set of

association rules with a minimally required support and confidence value. The generated rules show

strong relationships that exist between the consequent and the antecedent of each rule, representing

iv

different items that have been consumed at specific price levels. This provides valuable knowledge

that can be used for boosting the performance of recommender algorithms. We have introduced a post

processor that uses the generated association rules and improves the quality (in terms of recall) of the

original recommendation functionality. The algorithm has been extensively tested on available

production data, publically available datasets as well as custom generated synthetic datasets simulating

different market scenarios with respect the number of users and the respective number of transaction

as well as fluctuation in prices depending on changes in demand.

Danish Translation

I afhandlingen præsenterer vi de nyeste algoritmer til akademisk søgning, anbefalingssystemer samt

såkaldt associationsregel mining, der er blevet udviklet og optimeret til forskellige kommercielle såvel

som akademiske formål. Sammen med design og implementering af algoritmer, indeholder arbejdet

en stor del udvikling af nye systemer til både kommerciel såvel som akademisk brug.

I den første del af afhandlingen introducerer vi et nyt hierarkisk heuristisk system til re-rangering

af akademiske publikationer hentet fra standard digitale biblioteker såsom bl.a. ACM Portal. Systemet

er baseret på en hierarkisk kombination af brugerdefineret implementering af begrebet heuristisk

frekvens, en tidsafskrevet citationsscore og en grafteoretisk beregnet score, der forbinder

publikationens indeksvilkår. For at evaluere resultaterne af de indførte algoritmer er der designet og

udviklet en meta- søgemaskine, der sender brugerforespørgsler til standard digitale arkiver af

akademiske publikationer og re-rangerer top-n resultater ved hjælp af det indførte hierarkisk

heuristiske system.

I anden del beskriver vi konstruktionen af nye anbefalingsalgoritmer med anvendelse i forskellige

typer af e-handelssystemer. De nyligt indførte algoritmer er en del af et udviklet Movie

anbefalingssystem, som er det første system til at blive brugt kommercielt i Grækenland af en større

Triple Play udbyder. Den oprindelige version af systemet anvender en ny hybrid anbefaler (bruger-,

emne- og indholdsbaseret), og giver daglige anbefalinger til alle udbyderens aktive abonnenter (i

øjeblikket mere end 30.000). Anbefalerne, som vi præsenterer, er hybride af natur og anvender en

v

ensemblekonfiguration med forskelligt indhold, brugervenlighed samt post-baserede anbefalere for at

give mere præcise anbefalingsresultater.

I tredje del af afhandlingen præsenterer vi udformningen af en kvantitativ associationsregel

mining algoritme. Kvantitative associationsregler referer til en speciel type as associationsregler, der

forudsætter konsekvent indhold af et sæt numeriske eller kvantitative attributter. Algoritmen

behandler et bestemt antal brugeres historikker med henblik på at generere et sæt af associationsregel

algoritmer med minimum støtte og troværdighed. De genererede regler viser stærke sammenhænge

mellem konsekvensen og forudsætningerne for hver regel, der repræsenterer de forskellige elementer

brugt på bestemte prisniveauer. Dette genererer værdifuld viden til at forbedre

anbefalingsalgoritmernes ydeevne.

vi

Acknowledgements

First and foremost, I want to thank my family for all their love, patience and support. To them I dedicate

this thesis.

My deepest gratitude goes to my supervisor, Prof. Ioannis T. Christou for his exceptional

mentorship, unparalleled support and never ending patience in every step of my Ph.D. work. The thesis

would not have been possible without the invaluable efforts and contributions of Prof. Christou in all

aspects of the work. It has been an honor to collaborate with Prof. Christou, and I am deeply grateful

for giving me the opportunity to pursue a Ph.D. under his supervision as well as for offering me the

chance to work closely with him on the implementation of a commercial movie recommendation

system.

To my supervisor, Prof. Zheng-Hua Tan, go my deepest thanks for providing valuable insights in

the field of Machine Learning as well as for offering creative input and contributions that helped

solidify the output of my Ph.D. work. It has been an honor to collaborate with Prof. Tan and I am very

grateful for the constant support and motivation throughout my Ph.D. studies and for always

maintaining a very positive and optimistic attitude towards my efforts.

I would like to thank Professor Ramjee Prasad for giving me the opportunity to pursue my Ph.D.

at Aalborg University under his supervision. Deep gratitude is due to Ms. Didoe Prevedourou and Prof.

Constantinos Papadias for their support and assistance throughout the course of my Ph.D. studies. I

would like to gratefully acknowledge Aalborg University / Center for Teleinfrastructur (CTiF) and

Athens Information Technology (AIT) collaboration for the joint offering of the doctoral program.

Special thanks go to: Sophia Poulorinaki, for her amazing support, patience and understanding,

Andreas Pipilis, for the inspiring conversations as well as for motivating me to run the 2013 Athens

Classic Marathon. Last but definitely not least, I want to collectively thank: Panos Sotiropoulos, Kostas

Stefanis, Mihalis Kostaras, Yiannis Polyzos, Stefanos Karkanias, Despoina Zahopoulou, Amalia

Litou, Stratos Sidiropoulos, Yiannis Alexiou, Thaleia Florioti, Sven Ewan Shepstone, Christopher

Grossmeiler, Costa Stoios and Wannes Gubbels.

vii

Abstract ... iii

Acknowledgements ... vi

List of Figures ... ix

List of Tables .. xi

Publications .. xii

1.1 Introduction ... 1

1.2 Motivation and Research Objectives ... 3

1.3 Related Work ... 5

1.4 Contribution .. 12

2. Academic Search Algorithms ... 17

2.1. Collecting data from scientific publications .. 17

2.2. Topic Similarity Using Graphs ... 18

2.2.1. Graph Construction ... 18

2.2.2. Type I Graph ... 18

2.2.3. Type II Graph .. 19

2.3. Topic Similarity Using Graphs ... 20

2.4. System Architecture .. 21

2.5. Heuristic Hierarchy ... 22

2.5.1. Term Frequency Heuristic ... 24

2.5.2. Depreciated Citation Count Heuristic ... 27

2.5.3. Maximal Weighted Cliques Heuristic ... 29

2.6. Experiments Design .. 30

2.7. Experimental Results .. 33

2.7.1. Comparisons with ACM Portal ... 34

2.7.2. Comparison with Other Heuristic Configurations... 36

2.7.3. Comparison with Other Academic Search Engines .. 48

2.7.4. Can PubSearch Promote Good Publications “Buried” in ACM Portal Results? 57

2.7.5. Run-time Overhead ... 59

3. Recommender Systems ... 60

3.1. System Architecture Overview ... 60

3.1.1. AMORE web service .. 61

3.1.2. AMORE batch process .. 62

3.2. Recommender Ensemble ... 67

3.2.1. Recommendation Approach .. 67

3.2.2. Content-based Recommender ... 68

3.2.3. Item-based Recommender ... 70

3.2.4. User-based Recommender... 72

3.2.5. Final Hybrid Parallel Recommender Ensemble .. 73

viii

3.2.6. Experiments with Other Base Recommender Algorithms .. 73

3.3. Computational Results .. 74

3.4. User & System Interfaces .. 83

4. Quantitative Association Rules Mining ... 86

4.1. Why Quantitative Association Rules? ... 86

4.2. Algorithm Overview ... 87

4.3. Algorithm Design .. 88

4.4. Recommender Post-Processor ... 92

4.4.1. Overview ... 92

4.4.2. Post-Processing Algorithm .. 92

4.5. Synthetic Dataset Generator .. 94

4.6. Configuration Parameters .. 94

4.7. Item Demand Elasticity ... 95

4.8. Dataset Generation Process ... 95

4.8.1. Generation Cycle ... 96

4.8.2. Update Cycle ... 98

4.9. Experimental Results .. 99

4.9.1. Metric .. 99

4.9.2. QARM results using Synthetically Generated Datasets .. 99

4.9.3. QARM results using MovieLens Dataset .. 107

4.9.4. QARM results using Post-Processor ... 112

5. Conclusions and Future Directions ... 114

Bibliography .. 118

ix

List of Figures

Figure 2.1 Flow of Academic Crawling Process ... 18
Figure 2.2 System Architecture ... 21
Figure 2.3 Re-ranking Heuristic Hierarchy ... 23
Figure 2.4 Annual depreciation of citation-count of a publication.. 28
Figure 2.5 Comparison between two versions of PubSearch and ACM Portal ... 39
Figure 2.6 Comparison between two versions of PubSearch and ACM Portal (figure uses scores produced by

the NDCG metric) .. 39
Figure 2.7 Comparison between two versions of PubSearch and ACM Portal (figure uses scores produced by

the ERR metric) .. 40
Figure 2.8 Comparison of different heuristic configurations (LEX scores) .. 43
Figure 2.9 Comparison of different heuristic configurations (NDCG scores) .. 44
Figure 2.10 Comparison of different heuristic configurations (ERR scores) .. 45
Figure 2.11 Plot of the percentage difference between the PubSearch score and Microsoft Academic Search

score in terms of the three metrics LEX, ERR and NDGC .. 53
Figure 2.12 Plot of the percentage difference between the PubSearch and Google Scholar 55
Figure 2.13 Plot of the percentage difference between the PubSearch and ArnetMiner 56
Figure 3.1 AMORE: High Level Architecture .. 66
Figure 3.2 Plot of the Recall metric R(n) as a function of n for various recommenders trained on the entire user

purchase histories ... 76
Figure 3.3 Plot of the response time as a function of n for various recommenders trained on the entire user

purchase histories ... 76
Figure 3.4 Plots of the Recall metric R(n) as a function of n for various recommenders trained on user histories

on the interval 9p.m. to 1a.m. ... 78
Figure 3.5 Plots of Precision, Recall, and F-metric for the AMORE ensemble when the test-data are the last

two weeks of user purchases. The F-metric is maximized at n=10 .. 80
Figure 3.6 Empirical average AMORE Precision-at-n measured after users have stated exactly 5 of their most

favorite movies ... 80
Figure 3.7 Temporal Evolution of AMORE and Mahout Performance .. 81
Figure 3.8 Recall metric R(n) using an alternative ensemble (consisted of: i) Content and ii) Item based

recommenders) ... 82
Figure 3.9 AMORE End-User On-TV-Screen Interface ... 83
Figure 3.10 AMORE WSDL interface (SOAP-UI screenshot) ... 84
Figure 3.11 AMORE Developer Desktop UI .. 85
Figure 4.1 Precision of QARM with fixed support value under Configuration “1” .. 101
Figure 4.2 Performance of QARM with fixed support value under Configuration “1” 102
Figure 4.3 Precision of QARM with fixed confidence value under Configuration “1” 102
Figure 4.4 Performance of QARM with fixed confidence value under Configuration “1” 103
Figure 4.5 Precision of QARM with fixed support value under Configuration “2” .. 104
Figure 4.6 Performance of QARM with fixed support value under Configuration “2” 104
Figure 4.7 Precision of QARM with fixed confidence value under Configuration “2” 105
Figure 4.8 Performance of QARM with fixed confidence value under Configuration “2” 105
Figure 4.9 Precision of QARM with fixed support value under Configuration “3” .. 106
Figure 4.10 Performance of QARM with fixed support value under Configuration “3” 107
Figure 4.11 Precision of QARM with MovieLens dataset using fixed support = 0.3 108

x

Figure 4.12 Total rules generated using MovieLens dataset using fixed support = 0.3 108
Figure 4.13 Precision of QARM with MovieLens dataset using fixed support = 0.35 109
Figure 4.14 Total rules generated using MovieLens dataset using fixed support = 0.35 109
Figure 4.15 Precision of QARM with MovieLens dataset using fixed support = 0.4 110
Figure 4.16 Total rules generated using MovieLens dataset using fixed support = 0.4 110
Figure 4.17 Precision of QARM with MovieLens dataset using fixed support = 0.45 111
Figure 4.18 Total rules generated using MovieLens dataset using fixed support = 0.4 111
Figure 4.19 Total rules generated on production data with variable confidence values and fixed support 112
Figure 4.20 Recall value of Post-Processor using generated association rules with fixed support and variable

confidence values ... 113

xi

List of Tables

Table 2.1 Comparison of PubSearch with ACM Portal Performance Using Different Metrics 34
Table 2.2 Average Performance Score of the Different Metrics ... 35
Table 2.3 Comparing the hierarchical heuristic scheme (complete, including all three level of heuristics) using

our implementation of the TF heuristic against the simple, Boolean TF heuristic 36
Table 2.4 Comparing TF/DCC/MWC against TF on Retrieval Score .. 40
Table 2.5 Comparing PubSearch with BM25 Weighting Scheme .. 46
Table 2.6 Comparing PubSearch with Heuristic Ensemble Fusion Performance Average 47
Table 2.7 Comparing PubSearch with ACM Portal on Retrieval Score.. 48
Table 2.8 Comparison between Microsoft Academic Search and PubSearch ... 51
Table 2.9 Comparison between Google Scholar and PubSearch .. 53
Table 2.10 Comparison between ArnetMiner and PubSearch .. 55
Table 2.11 Limited comparison between ACM Portal and PubSearch for the top-25 results of ACM Portal.

Q63 is the query ‘clustering “information retrieval”’ ... 58
Table 3.1 Comparing recommenders’ quality and response times given the entire user histories (Apr. 2013) .. 75
Table 3.2 Comparing recommenders’ quality and response times given the history of user purchases that

occurred between 9p.m. and 1a.m. (data-set of Apr. 2013) .. 78
Table 3.3 Comparing the original (Content, Item, User) AMORE ensemble with the alternative (Content, Item

based) ... 82
Table 4.1 Main dataset configuration parameters ... 100

xii

Publications

The research work has resulted in the following Journal and Conference publications.

Journal Papers Published

• E. Amolochitis, I.T. Christou, Z.-H. Tan, R. Prasad, A Heuristic Hierarchical Scheme for

Academic Search and Retrieval, Information Processing & Management, vol. 49, issue 6,

November 2013, Pages 1326–1343.

Journal Papers Accepted

• E. Amolochitis, I.T. Christou, Z.-H. Tan, Implementing a Commercial-Strength Parallel

Hybrid Movie Recommendation Engine (submitted to the "Industry Department" section

of IEEE Intelligent Systems).

Journal Papers Submitted and Pending Review

• I.T. Christou, E. Amolochitis, Z.-H. Tan, AMORE: Design & Implementation of a

Commercial-Strength Parallel Hybrid Movie Recommendation Engine (submitted to

Springer Knowledge and Information Systems)

Journal Papers to be Submitted

• I.T. Christou, E. Amolochitis, Z.-H. Tan, Quantitative Association Rules and Applications in

Consumer Reservation Price Estimation & Recommender Systems (to be submitted to IEEE

Transactions in Knowledge and Data Engineering)

Conference Papers Published

• E. Amolochitis, I.T. Christou, Z.-H. Tan, PubSearch: A Hierarchical Heuristic Scheme for
Ranking Academic Search Results, Proc. 1st Intl Conf. on Pattern Recognition Applications
and Methods (ICPRAM 2012), Vilamura, Argave, Portugal, Feb. 6-8, 2012.

1

1.1 Introduction

With the wide spread of the World Wide Web and the exponential growth of content –both online and

offline– there is nowadays, more than ever, a need for efficient information retrieval solutions that aim

to organize and efficiently utilize the vast amount of available data.

In addition to the increase in data volume, available information has increased both with respect

to semantic depth and breadth. Although general purpose search engines are still extensively used for

a wide range of search applications, there are still many cases of repositories containing specialized

data and require information retrieval solutions that address the specific issues that characterize them.

For instance, online repositories like scientific libraries, host an ever increasing number of

scientific publications many of which tend to be interdisciplinary in nature, covering a wide range of

topics, and at the same time, are hard to index using static classification schemes. And to add more

complexity, the submitted queries tend to be very specialized and even difficult to classify, thus making

the task of retrieving useful information even more difficult to tackle with, especially for general

purpose search engines.

Academic search engines have achieved some very noteworthy improvements during recent

years. Still there is room for improvement, especially in cases of publications (as well as queries) that

deal with interdisciplinary topics of research. This proves to be a very challenging task, especially in

cases of online libraries with a corpus of documents of considerable size as well as diversity.

Furthermore the increase in volume of available content, makes the task of identifying newer, trending

publications even more cumbersome, especially in areas where authority publications seem to prevail.

In addition to the aforementioned situation concerning the volume and nature of available content,

there is also a significant increase in the number of available online web services that offer consumable

content to users. The rate by which such online services are expanding and are being used by a

continuously increasing number of subscribers, makes recommender systems an emerging, promising

area of research. Recommender systems aim to push personalized information –deemed of potential

interest to specific users– based on prior knowledge, by means of historical data concerning the

2

preferences of both the specific user –for whom recommendations are generated– as well as of a wider

group of potentially similar users.

Furthermore, the increase of available consumable content, unavoidably results to a parallel

increase in the number of available options for consumers, which makes price –in many cases– a

determining factor with respect to the consuming behavior of a specific user. This introduces an

interesting challenge in the design of recommendation systems, i.e. how to combine a user’s preference

with respect to specific content with the user’s sensitivity towards a certain maximum reference price

that the user might be willing to pay. This information also provides a useful insight towards providing

more attractive pricing schemes towards potential consumers, eventually resulting in improvement in

profits for service providers as well a way for achieving customer retention.

During recent years, major companies in the search industry, including Google and Microsoft,

have introduced some significant innovations in the field of academic search. Most notably, the

aforementioned companies have launched search products, namely Google Scholar and Microsoft

Academic Search, that to a great extend have achieved efficient retrieval of academic publications

online. Also a number of standard digital libraries, including as ACM Portal and SpringerLink have

provided search solutions in an attempt to improve their online search functionality in order to facilitate

the efficient retrieval of scientific publications located in their databases.

In addition to providing general purpose, as well as academic search functionality, companies

like Google have expanded their efforts in areas beyond search. Specifically Google, having acquired

YouTube, the online service for uploading and streaming user-submitted videos, Google offers

recommendation functionality to subscribers of the service based on their watching history. Users of

the service may also tag certain videos as favorable or not, which in turns affects the videos which are

recommended to them. Having access to user ratings, as well as information concerning user behavior

(percentage of total playing time watched among others) boosts the effectiveness of the

recommendation process since there is a strong indication concerning user preference.

Although significant improvements and contributions have been introduced, there is still a big

motivation for expanding knowledge and the current state-of-the-art in most of the aforementioned

areas.

3

1.2 Motivation and Research Objectives

In the first part of our research, our aim was to provide an improvement on the search functionality

provided by available academic search engines. Even though existing academic search engines have

improved significantly during the last few years, being able to provide efficient results in response to

complex queries, still remains an unsolved problem which attracts scientific interest. Being able to

develop novel ranking algorithms for academic search engines would require a great effort with respect

to obtaining a document database of such a size that would allow retrieval of relevant publications in

response to an arbitrary number of diverse user queries from different fields. Therefore in an attempt

to limit the scope and focus of our research, our aim was to improve existing ranking algorithms, by

introducing a meta-search engine system that aims to re-rank results retrieved from existing online

search engines, in order to improve the quality of their top-n generated results. Also, although we

limited our scope to publications dealing with the field of computer science and electrical engineering,

the developed algorithms are applicable to any other scientific field, given that certain criteria are met

as we will explain in a later section.

During recent years, considerable significance has been attributed to identifying collaboration

networks, i.e. communities of scientists with common interests. By examining author co-authorship,

and repeating the process for each author iteratively, one can form such networks of variable size and

complexity. The idea of utilizing information concerning collaboration networks in different

information retrieval areas has been attracting significant interest during past years. Our motivation

was to be able to examine the degree to which such collaborative networks of scientists can reveal

common interests of different strength, and if so, identify the extend at which such information can be

incorporated in the design of powerful ranking algorithms. This would require examining a document

corpus of considerable size in order to be able to identify frequently co-occurring topics of interests as

witnessed in the published work of scientists. Being able to identify such interests, provides an insight

about the overall relationships existing among different topics of research which might be part of

interdisciplinary research work.

4

Another major concern of the current work was to be able to identify those publications with the

strongest affinity (content-wise) with the terms contained in a submitted search query. Using standard

information retrieval heuristics such as TF-IDF was not possible, since the Inverse Document

Frequency part of the heuristic requires access to the entire corpus of publications, which is not

commonly available to parties not affiliated with online repositories. This limitation introduced

complexity in coming up with an efficient heuristic that is able to measure the degree of affinity among

certain query terms and a specific publication.

Furthermore, another very important aspect was to be able to identify trending publications and

promote those against older publications that may have higher citation score but may considerably

older. This would allow “unearthing” publications that may be positioned lower in the ranking based

on absolute citation count values. The aforementioned approach gives credit to newer publications

which might have lower citation count (in absolute value), but still may have an emerging popularity

that potentially makes the specific publication seem as more favorable than an older one with a higher

citation count.

As part of the current research work, we also developed a commercial movie recommendation

system for a major Greek triple play services provider. In the context of this project we needed to

design a system that incorporates novel recommender algorithms which are based solely on the users’

watching history without having access to any input concerning user preference from a rating scheme

or any other information such as the percentage of watching time for each item consumed by a specific

user.

Apart from the absence of any additional information, save only the users’ watching history, the

recommender algorithms used by the system need to be able to address the issue that a single user

account serves more than a single user. Specifically, most user accounts of the video-on-demand

service are registered to a single household, which further connects a number of different viewers,

belonging to different user categories which may have different preferences. So, the algorithms needed

to be able to provide different recommendations based on different subsets of the user histories, which

potentially correspond to different users bound with a single account.

Our motivation was to develop such a system that addressed the aforementioned issues, and

furthermore employed an ensemble of diverse recommenders (item, content and user based) which

5

aimed to provide more accurate recommendation functionality comparing to existing implementations

of other similar algorithms. Furthermore, an additional constraint was that the system needs to have

updated recommendations on a daily basis, requiring at the same time that the system is always

responsive to recommendation requests and that it provides them using a minimum amount of the

limited available resources.

As already mentioned, with the increasing number of available content items, it becomes apparent

that a single user has a number of available choices as far as consumable content is concerned. This

has as a logical implication that the users become very sensitive towards item pricing (considering the

amount of available choices), which introduces an interesting aspect for recommender systems, that of

being able to recommend items at a price that the user is most willing to pay. With respect to that, the

motivation is to be able to examine user behavior by means of the relationships among different items

consumed by years at specific price levels.

These relationships, or association rules of the form antecedent implies consequent need to reflect

the strongest (in terms of confidence) relationships between the antecedent and consequent of the rule

by identifying the maximum price for which the consequent item may be consumed for a given

minimum price at which the antecedent items are consumed. This information would give valuable

insight with respect to not just the way different items are related, but also the prices at which they are

consumed.

1.3 Related Work

Graph-theoretic methods have been very popular in application in search algorithms. Since the early

search engines, graph-theoretic methods have been developed and extensively used by general purpose

search engines. For example the influential Page-Rank algorithm used by the Google search engine, is

based on the link-structure of the web, and is deemed as one of the most powerful algorithms for

identifying web pages considered to be authorities in their respective fields. This concept has been

very influential for search algorithms and the core concept has been expanded to other areas of

information retrieval, like for example in academic search.

6

So similarly to the link structure of the web, additional methods based on social or academic

collaboration networks have been used in citation analysis in (Ma et al., 2008) in order to identify

researchers which are considered to be “authorities” in (Kirsch et al., 2006) in their respective fields.

Additionally, the authors at (Martinez-Bazan et al., 2007) have developed a graph database querying

system that is aimed to perform information retrieval in social networks. Similarly the authors in

(Newman, 2001, 2004) have examined graphs depicting scientific collaboration networks with respect

to structure to demonstrate collaboration patterns among different scientific fields, including the

number of publications that authors write, their co-author network, as well as the distance between

scientists in the network among others.

With respect to graph-theoretic models the work performed by (Harpale et al., 2010) is considered

to be among the most relevant recent works in the literature. The authors have constructed CiteData, a

collection of academic papers selected from CiteULike social tagging web-site’s database and filtered

through CiteSeer’s database for cleaning meta-data regarding each paper. The specific dataset contains

a rich link structure comprising of the references between papers as well as personalized queries and

relevance feedback scores on the results of those queries obtained through various algorithms. The

authors report that personalized search algorithms produce much better results than non-personalized

algorithms for information retrieval in academic paper corpuses.

There have been additional attempts to model the strength of different relationships between

collaborators of such networks. Specifically the authors in (Liben-Nowell, 2007) use graph structures

to examine the proximity of the members of social networks (represented as network vertices) which

the authors claim that can help estimate the likelihood of new interactions occurring among network

members in the future by examining the network topology alone. Furthermore, the community

structure property of networks in which the vertices of the network form strong groups consisted of

nodes with only looser connections has also been examined in order to identify such groups and the

boundaries that define them, a concept based on the concept of centrality indices (Girvan et al., 2002).

In the same direction with an aim to examine the evolution as well as topology of collaboration

networks, the authors in (Barabsi et al., 2001) examined a number of journals from the fields of

mathematics and neuroscience covering an 8-year period. The method consisted of empirical

measurements that attempt to characterize the specific network at different points in time as well as a

model for capturing the network's evolution in time in addition to numerical simulations. The

7

combination of numerical and analytical results allowed the authors to identify the importance of

internal links as far as scaling behaviour and topology of the network are concerned.

Similarly to the aforementioned approaches which aimed to examine collaboration networks of

scientists with respect to structure, relationship strength as well as topology, there have been attempts

that aimed to examine the relationships among different topics of interest in the published works of

scientists. Specifically (Aljaber et al., 2009) identify important topics covered by journal articles using

citation information in combination with the original full-text in order to identify come up with relevant

synonymous and related vocabulary to determine the context of a particular publication. This

publication representation scheme, when used by the clustering algorithm that is presented in their

paper, shows an improvement over both full-text as well as link-based clustering. Topic modelling

integrated into the random walk framework for academic search has been shown to produce promising

results and has been the basis of the academic search system ArnetMiner (http://arnetminer.org) (Tang

et al., 2008). Relationships between documents in the context of their usage by specific users

representing the relevance value of the document in a specific context rather than the document content

can be identified by capturing data from user computer interface interactions (Campbell et al., 2007).

Many of the aforementioned approaches use information related to collaborating authors, as well

as topics of interest, in order to be able to come up with sophisticated information retrieval algorithms

that address a series of issues in academic search. There are different approaches in the current state-

of-the-art; some methods utilize the graph structure and topology of the generated graphs, while others

attempt to identify the presence of clusters in the graphs revealing patterns of collaboration.

Furthermore, the application of such methods proves to be very powerful in order to identify patterns

in the graphs which allow to perform more accurate predictions about the future with respect to

collaborating authors or co-existing topics of interests in scientific publications.

Standard information retrieval techniques including term frequency are necessary but not

sufficient technology for academic paper retrieval. Clustering algorithms prove to be also helpful in

cases in order to determine the context of a particular publication by identifying relevant synonyms

(or so-called searchonyms, see (Attar and Fraenkel, 1977)) and related vocabulary. It seems that the

link structure of the academic papers literature as well as other (primal and derived) properties of the

corpus should be used in order to enhance retrieval accuracy in an academic research search engine.

8

Similarly to academic search engines, recommender systems have gained widespread popularity

in recent years and are considered to have reached sufficient maturity as a technology (Jahrer et al.,

2010), (Ricci et al., 2011)). The research performed in this particular field has started more than 20

years ago (Goldberg et. al., 1992), (Shardanand et al., 1995) etc.), and it focuses on examining different

ways that recommendation systems can better identify user interests and preferences based on

knowledge of the users’ behavior as well as on characteristics of the items that they have consumed.

Many different types of algorithms have been introduced (content, item and user based), with each

type focusing on different properties.

Contrary to the field of academic search (at least in non-personalized search context), a very

common issue appearing in many commercial recommender systems is the fact that the systems are

unable to promote in high positions results that happen to be of higher relevance to a specific user

(based on the user’s historical data), and in contrast, promote results which happen to be either trending

well for the majority of users, or are considered to be of higher in popularity overall. The authors in

(Cha et al., 2007) spot such a behavior in the recommendation functionality of YouTube, as well as

general purpose search engines. Whereas in general purpose search, such a behavior is anticipated,

user-based and item-based collaborative filtering approaches should attempt to minimize this effect by

using special formulae that promote less popular items when computing the user- or item-

neighborhoods (see Karypis, 2001)).

The performance evaluation of recommenders is deemed to be a very demanding task, since

different approaches have been introduced. Shani & Gunawardana (2011) present a property-directed

evaluation of recommendation systems attempting to explain how recommenders can be ranked with

respect to properties such as diversity of recommendations, scalability, robustness etc. In their work,

they rank recommenders based on specific properties under the assumption that an improved handling

of the property at focus will improve the overall user experience.

Also the datasets used in evaluating recommenders may have an impact on the performance of a

recommender. Specifically, the authors in (Herlocker et al., 2004) suggest that depending on the

datasets used, different recommenders have displayed a variation in performance. Additionally, the

authors note that a similar effect resulted using differently structured datasets. Dataset structure and

size is also mentioned in Mild et al., (2002) where the authors claim that dataset size in terms of users

plays a significant role in the type of recommenders that should be used by a recommender system. In

9

their work, the authors also show that for a large dataset linear regression with simple model selection

provides improved results compared to collaborative filtering algorithms.

Similar to the use of information gained from scientific collaborative networks (which as we

already saw, has gained momentum in academic search), collaborative filtering algorithms have been

extensively used in various implementations of movie recommendation systems. Both user-based as

well as item-based neighborhood exploration strategies met huge early success (for the first, the name

“Collaborative Filtering” was coined early in the 90’s) and have been applied in many different

recommendation systems. (Golbeck et al., 2006) present FilmTrust a system that combines information

about the user’s semantic web social network including information about networks peers, to generate

movie recommendations. Similarly, Li et al., (2005) introduce a method that uses collaborative

filtering approaches in e-commerce based on both users and items alike. They also show that

collaborative filtering based on users is not successfully adaptive to data sets of users with different

interests.

A very challenging issue in recommender systems research, is for recommenders to address the

issue of absence of user ratings. The situation where user rating are simply unavailable, or nonexistent

makes the task of recommendation very challenging, since there are no direct indicator concerning

user preference, and that kind of information should be implied by different types of information. For

instance, Li et al., (2014), having no user ratings available in the dataset, present a novel one-class

collaborative filtering recommender system that utilizes rich user information showing that such

information can significantly enhance recommendation accuracy.

Collaborative filtering may prove to be very powerful, but many recommender systems are able

to provide accurate recommendations by use of content-based recommenders exclusively. For instance

the authors in (Christou et al., 2012) present a system that uses a content-based recommendation

approach in order to address the problem of finding interesting TV programs for users without

requiring previous explicit profile setup, but by applying continuous profile adaptation via classifier

ensembles trained on sliding time-windows to avoid topic drift. Similarly, the authors in Pazzani et

al., (2007) focus on content-based recommenders and review different classification algorithms based

on the idea that certain algorithms perform better when having specific data representation. The

algorithms are used to build models for specific users based on both explicit information submitted by

users as well as by relevance judgments submitted by them.

10

Association rule mining in the field of e-commerce is an idea that has been occasionally pursued

during recent years and has been triggered by the success and popularity of e-commerce which has

introduced massive databases of transactional data (Kotsiantis et al., 2006). Association rule mining is

considered as one of the most commonly used data mining techniques for e-commerce (Sarwar et al.,

2000) and there have been different approaches introduced, all of which aim to optimize different

aspects of the mining process in order to be able to provide more accurate recommendation results.

The authors in (Lin et al., 2002) propose a mining algorithm for e-commerce systems that does

not require prior specification of minimum required support value for the generation of the rules.

Contrary, they consider that by specifying a minimum required support, a rule mining system, may

end up with either too many or too few association rules which has a negative effect to the performance

of a recommender system. The authors suggest an approach where they need to specify only a target

range, in terms of number of association rules that such a system shall generate, and the system

automatically determines the support value. The generated rules are mined for a specific user, reducing

the mining processing time considerably, and associations between users as well as between items are

employed in making recommendations.

In (Mobasher et al., 2001) the authors describe a technique for performing scalable Web

personalization after mining association rules from clickstream data from different sessions. In their

introduced method, they use a custom data structure that is able to store frequent item sets and allows

for efficient mining of association rules in real-time without the need to generate all possible

association rules from the frequent item sets. The authors state that their recommendation methodology

improves effectiveness in terms of recommendation quality and has a computational advantage over

certain approaches to collaborative filtering such as the k-nearest-neighbor.

In (Leung et al., 2006) the authors introduce a collaborative filtering framework based on Fuzzy

Association Rules and Multiple-level Similarity (FARAMS) which extends existing techniques by

using fuzzy association rule mining taking advantage of product similarities in taxonomies to address

data sparseness and non-transitive associations. The experimental results presented show that

FARAMS improves prediction quality, as compared to similar approaches.

(Wong, et al., 2001) introduce a novel approach for discovering and predicting web access

patterns. Specifically, their introduced methodology (which takes into consideration various

11

parameters, including the duration of a user session) is based on the case-based reasoning approach,

and the main goal is to discover user access patterns by mining fuzzy association rules from the

historical web log data. In order for the proposed method to perform fast matching of the rules, fuzzy

index tree is used, and the system's performance is also enhanced using user profile data through an

adaptation process. An effort for predicting user-browsing behavior using association-mining

approach by the authors in (Wang et al., 2004) where the authors propose a new personalized

recommendation method that integrates user clustering as well as association-mining techniques. In

their work, the authors divide user session data into frames corresponding to specific time intervals,

which are then clustered together in specific time-framed navigation sessions using a newly introduced

method, called HBM (Hierarchical Bisecting Medoids) algorithm. The formed clusters are then

analyzed using the association-mining method to establish a recommendation model for similar

students in the future. They apply their introduced method to an e-learning web site and their results

showed that the recommendation model built with user clustering by time-framed navigation sessions

improves the recommendation services effectively.

(Sarwar et al.) examine methods and techniques for performing live product recommendations

for customers, and they have developed several techniques for analyzing large scale data purchase data

obtained from an e-commerce company, as well as user preference data from the MovieLens dataset.

The recommendation generation process is divided into different sub-processes that include:

representation of the input, formation of user neighborhoods and finally the actual recommendation

generation, which –among others– include association rules mining; specifically they aim to discover

associations between two sets of products such that the presence of some products in a particular

transaction implies that products from the other set are also present in the same transaction.

12

1.4 Contribution

In the current dissertation a number of algorithmic contributions are presented that apply in different

areas of data mining and information retrieval.

In the area of academic search, we have introduced a heuristic hierarchical scheme that aims to

improve the ranking quality of search engines for scientific publications developed for standard

academic libraries such as ACM Portal, which contain certain classification schemes based on which

publications can be efficiently indexed by authors. Specifically our contribution aims improve the

ranking quality of a set of results generated by a default search engine, by actually re-ranking the top-

n specified search results originally generated by the search engine. Our proposed ranking scheme is

based on a number of different heuristic methods applied in a hierarchical configuration. Specifically,

our scheme is based on a set of methods that are applied in an order hierarchy that reflects the actual

strength (or significance) of the heuristic algorithm at the specific level in being able to rank the results

based on different publication criteria.

The proposed scheme contains three different heuristics applied in a hierarchy as determined by

the following index: i) Term Frequency (TF), ii) Depreciated Citation Count (DCC) and iii) Maximal

Weighted Cliques (MWC).

At the first level of the hierarchy we have introduced a custom implementation of the Term

Frequency heuristic that, contrary to the default implementation of the heuristic which takes into

consideration just the number of occurrences of the query terms in a publication, our implementation

considers different information such as term co-occurrences, as well as the distance of co-occurrences

in different parts/levels of the publication (sentence, paragraph, section).

At the second level of the scheme hierarchy, we have introduced a heuristic that aims to evaluate

the depreciated citation count score for each publication. This particular score represents both the

popularity of a particular publication with respect to the total number of citations received, but also

aims to identify trending publications, i.e. publications with emerging popularity, and promote those

against other publications that might have a higher citation count which has been achieved by virtue

of popularity as well of an older publication date which allowed the accumulation of a higher citation

13

count. The depreciated citation count score aims to depreciate citations received during older years,

eventually emphasizing on the importance of publications received during latter years.

At the third level in the scheme hierarchy, we have introduced a heuristic that evaluates the

maximal weight clique matching score for a particular publication. During a preparatory stage, we

have developed a scientific publication index term crawler that extracts index terms from a set of

publications. We have extracted more than ten thousand publications in order to then build a set of

maximal weighted cliques of weight above a certain threshold value. Then for each publication in the

set, the heuristic attempts to calculate the degree to which the index terms of a publication match to

those of the established maximal weighted cliques and provide a score value that can be used for

further ranking the results.

At each level in the hierarchy, a specific structure is provided as input containing an ordered set

of search results generated (provided) by a third-party search engine in response to a specific query.

The scheme is designed and implemented in a way, that at each level, a heuristic algorithm processes

the aforementioned structure resulting to an updated version of the structure which contains all

elements of the original set, but in a possibly different order, as determined by the heuristic method at

the level. The output of each heuristic is then provided as input to the immediate next lower level in

the hierarchy and is processed according to the aforementioned procedure.

Each heuristic algorithm in the hierarchical scheme processes the search results contained in the

provided input structure, based on different properties of the scientific publication (relevant to the

heuristic algorithm at the level) and places the results into buckets of different range size according to

the score generated by the heuristic algorithm at each level. The number of buckets as well as the size

of the bucket range has been determined empirically.

The ordering (ranking) of results based on different buckets aims to apply a strict policy which

prohibits a heuristic that is lower in the hierarchy to significantly alter the ranking order of a set of

search results that has been provided by a certain higher level heuristic. It is safe to say that a heuristic

that is higher in the hierarchy majorly determines the final order of the results. The aforementioned

principle is reflected in the bucketing logic, which aims to group together publications of similar

strength with respect to a certain set of properties, relevant to specific heuristic. And in turn, each

14

lower-level heuristic that follows, basically re-ranks the results contained within each bucket, and

places them in even finer buckets, that are passed to the immediate lower level for processing.

In the area of recommender systems we have developed a fully parallelized ensemble of

recommenders that allows for improved recommendation functionality. Specifically we are using an

ensemble of hybrid, content and user item predictor that is able to perform accurate recommendation

predictions. Part of our research included the design and development of AMORE, a commercial

movie recommendation system, the first such commercial movie recommendation system deployed in

Greece by a major Triple Play services provider. AMORE has been developed as a web service in a

black box architecture, meaning that the system does not expose in any way its implementation details.

AMORE is expecting recommendation requests by service consumers based on pre-specified web

service contracts in order to provide relevant responses. AMORE communicates with other back-end

systems via web services, and those systems also follow the black box architecture hiding their

implementation details.

In addition to the exposed web service which provides a set of methods, AMORE contains another

component, the AMORE batch job which aims to facilitate the process of pre-caching recommendation

results, that would allow to part of the methods of the web service to retrieve cached recommendations

with the minimum, most cost-effective number of operations.

In order to facilitate the caching process, the system uses two schemas, following the exact same

data model (we would refer to those schemas as the main and auxiliary to distinguish among them).

So as already mentioned, the purpose of the batch job is to maintain a constantly updated state of the

recommendation data, reflecting the most updated estimated user recommendations based on the most

recent user histories. In order to achieve this, the batch job aims to cache the recommendations

generated for web service methods that are called most frequently, i.e. operations that are part of the

core recommendation functionality, such as retrieving the top-n recommendations for a particular user.

So the generated recommendations are cached and stored in persistence, and when a web service

request arrives to the server, the server is able to retrieve and return the web service response by

retrieving the already cached recommendations from persistence using the minimum number of

operations (a simple select SQL operation). And furthermore, the caching operation is designed in a

way that allows the system to be able to have fresh results available which are updated within fixed

configurable intervals. The rate at which new recommendations should be generated and cached is

15

determined by the system administrator. It makes sense to update the cached recommendations at

intervals during which it is estimated that some minimal change in user transaction history may occur

(which in sequence will cause an update in the list of generated recommendations). In the initial version

of the system recommendations are generated on a daily basis. This has also been a business

requirement, since the Movie Rental platform caches on a daily basis all user recommendations.

The batch process involves the following steps: First the system aims to examine whether the

back-end services of the provider are responsive. These back end services provide information related

to the subscribers of the movie rental service including their histories as well as the entire set of

available items that are available for consumption. Once the system verifies the back-end systems’

responsiveness, the system then calls the web service that retrieves the most recent, up-to-date

transaction history for each of the active users of the service. The recent histories are then used as input

to the recommender in order to generate updated recommendations for each active user of the service.

Upon the completion of the aforementioned task, the batch process proceeds to the generation of top

recommendations based on the transaction histories of all users.

Upon the completion of this final task, the system then calls a web service to notify the server

that the process completed on the database schema referenced by the batch job so that the server will

proceed with an update of its database reference to point to the schema containing the most recent

recommendations.

By doing so, the server will always be able to return the recommendations that have been most

recently added to the database, while at the same time the batch process will proceed with the update

of the auxiliary schema.

The system has been developed to be fully configurable with respect to the frequency by which

the batch process runs, as well as additional parameters including the top-n number of recommendation

to generate for each user among others. The web service uses a connection pooling mechanism that

reads the database connection reference (which always corresponds to the last fully cached schema).

Additionally, the web service exposes a set of complementary methods for generating

recommendations on-the-fly under different constraints. For example, one of the major issues that

AMORE is facing is to be able to distinguish among different users that are possibly bound with a

single account. This situation is very common, since many households which happen to be subscribers

16

of the movie rental service, have a number of different viewers bound to a single account. To address

this situation, the web service has a set of methods which allow for specifying different parameters in

order to be able to specify the time frame during which recommendations should be generated. By

doing this, the system is able to generate recommendations corresponding to certain watching

behaviors during specific hours of the day.

A very powerful aspect of recommendation systems is to be able to recommend items at prices

that are deemed attractive to potential consumers. Specifically the intention is to correlate user

preference (in terms of content) with price and come up with relationships that link related items (as

well as their purchase price) as evidenced in user transaction histories. These relationships, called

quantitative association rules of the form antecedent implies consequent (where both antecedent and

consequent are sets of item-price pairs) assume that if a certain user consumes all items contained in

the rule’s antecedent at a price level at least equal to the one specified in the antecedent for each item,

then with a given support and confidence value the rule can predict that the user will also consume the

item that is part of the rule’s consequent at a price level that is at least equal to the one specified in the

consequent of the rule.

We have introduced a post processor which aims to use association rules generated in order to

improve the quality of the recommendations. Specifically, we have introduced a post processor that

uses the set of generated recommendations and applies a post processing step by examining which of

the generated association rules fire for each of the user, meaning the rules whose antecedent items

have been consumed by a specific user at a price which is at least equal to the price specified. For

those rules, the items contained in the rule’s consequent are promoted only in case that the items have

not been consumed by a user changing in this way the original recommendation list. The post processor

gives an extra weight to the recommendations that are part of the rule’s consequent than the ones

included in the recommendation list generated by the original recommender. In case that a

recommendation contained in the post-processor is also part of the original recommendation list, then

the number of positions that the specific recommendation is promoted up to the recommendation list

is significantly higher, as an extra boost resulted by the increased confidence that the specific

recommendation has been deemed relevant by both the recommender as well as some association rule.

Our effort has shown a performance increase in terms of recall for the recommender containing

the post-processor compared to the original recommender.

17

2. Academic Search Algorithms

2.1. Collecting data from scientific publications

In the early stages of our research we focused on examining associations among different topics of

interest in the works of computer scientists, information that we have used in the design of powerful

ranking algorithms. In this direction, we have developed a web crawler for retrieving basic information

about scientific publications (such as the publication’s authors, co-authors, year of publication and

index terms) in order to start building a database containing the aforementioned data which could be

later processed. Specifically, by crawling the ACM Portal web site we have managed to collect

approximately 10,000 publications and all respective data. The reason why we have chosen to retrieve

publications from ACM Portal is that the latter contains a coherent scheme for authors to index their

publications, which we could efficiently use for the needs of our own research. During the time when

we worked on the academic publication crawler, ACM used the 1998 version of the ACM

Classification Scheme, which has been revised in 2012, but still, both schemes are for the time being

supported by ACM Portal.

The crawler is initially provided with a number of influential, highly cited Computer Science

authors which are considered to be authorities in their respective fields. For each of these authors the

crawler submits a search query via Google Scholar (which has the richest coverage in terms of

scientific bibliography and consequently, it has the best estimates of the paper’s citation counts) in

order to retrieve all publications published by the respective author. From the retrieved list, the crawler

needs to process all those publications containing index terms (based on the ACM Classification

Scheme) so all publication URLs not belonging to the ACM Portal are filtered out and are not

processed. For all those publications belonging to ACM Portal the application extracts and stores in

persistence the publication’s index terms, names of all authors, date of publication, citation count as

well as all ACM Portal publications citing the current publication. All encountered authors that are not

already processed by the crawler are stored in the database, in order to be processed at a following

iteration. The flow of the process is visualized in figure 2.1.

18

Figure 2.1 Flow of Academic Crawling Process

2.2. Topic Similarity Using Graphs

2.2.1. Graph Construction

After we have collected data from approximately ten thousand publications, we proceeded with the

construction of two types of graphs, each having a different type of semantic value.

2.2.2. Type I Graph

The strongest type of graph corresponds to the most direct relationship between index terms, namely

that of index terms coexisting in the same publication. So, in a Type I graph, two index terms t1 and t2

are connected by an edge (t1, t2) with weight w, if and only if there are exactly w papers in the collection

indexed under both index terms t1 and t2.

Let M: E→R be a map containing as key an edge e and as value the edge’s weight we for the specific

type of association. Let P be the set of publications crawled for a specific period. Let G1 be an

undirected graph with initially no edges whose nodes are all the index terms covered in P.

1. foreach publication p in P do

a. Let Tp be the set of all index terms of p.

b. foreach
p pt T∈ do

i. foreach ,p p p pu T u t∈ ≠ do

1. if
1(,)p pe t u G= ∉ then

19

a. add (tp,up) in G1.

b. Set M(e)=1.

2. else Set M(e)=M(e)+1.

3. endif

ii. endfor

c. endfor

2. endfor

3. end.

2.2.3. Type II Graph

The next strongest type of graph involves index terms that happen to exist in different publications of

the same author, but do not coexist in the same publication. Specifically, in a Type II graph, two index

terms t1 and t2 are connected by an edge (t1, t2) with weight w, if and only if there are w distinct authors

that have published at least one paper where t1 appears but not t2 and also at least one paper where t2

appears but not t1.

We construct the Type II graphs as follows: Let P be the set of publications crawled for a specific

period. Let A be the set of all authors of publications in P. Let G2=(V,E) be an undirected graph with

initially no edges in E2 whose node-set V are all the index terms covered in P. Let M: E→R be a map

containing as key an edge e and as value the edge’s weight we for the specific type of association.

1. foreach author a in A do

a. Let { }| , co-authored by aP p p A p a= ∈ .

b. Let Va={}.

c. foreach ap P∈ do

i. foreach ,au P u p∈ ≠ do

1. if (), ap u V∉ then

a. Let Tp be the set of index terms of p.

b. Let Tu be the set of index terms of u.

20

c. foreach |p ut T t T∈ ∉ do

i. foreach |u pr T r T∈ ∉ do

1. if 2(,)r t E∉ then

a. add e=(r,t) in E.

b. Set M(e)=1.

2. else Set M(e)=M(e)+1.

3. endif

ii. endfor

d. endfor

e. add (p,u) in Va.

2. endif

ii. endfor

d. endfor

2. endfor

3. end.

2.3. Topic Similarity Using Graphs

We have constructed graphs of the aforementioned types covering different 5-year periods, in

order to be able to model changes in associations of topics of interest in the time dimension. After we

have constructed the aforementioned graphs we are able to mine heavily-connected clusters in these

graphs by computing all maximal weighted cliques in these graphs. The fact that the graphs are of

limited size with only up to 300 nodes (each graph has only up to 13 node degree) addresses the issue

of mining graphs being an intractable problem both in time and in space complexity. We further reduce

the problem complexity by considering edges whose weight exceeds a certain user-defined threshold

w0 (by default set to 5). Given these restrictions, the standard Bron-Kerbosch algorithm with pivoting

(Bron et al., 1973) applied to the restricted graph containing only those edges whose weight exceeds

w0 computes all maximally weighted cliques for all graphs in our databases in less than 1 minute of

21

CPU time on a standard commodity workstation (these graphs can be interactively visualized via a

web-based application by visiting http://hermes.ait.gr/scholarGraph/index).

2.4. System Architecture

The entire system architecture is depicted in the Data Flow Diagram in figure 2.2. Overall, the system

consists of 7 different processes. Process P1 implements a focused crawler that crawls the ACM Portal

in order to extract information about the relationships between authors who happen to have

collaborated as well as the different topics they have worked on (as evidenced by the index terms used

to tag their published work).

Figure 2.2 System Architecture

This information is analysed in process P2 ("Analysis of topic associations and connections

among authors and co-authors") and produces a set of edge-weighted graphs that connect index terms

with each other. The process P3 ("Construction of max. weighted cliques") computes fully-connected

subsets of nodes. The subsets form cliques that are an indirect measure of the likelihood that a

researcher working in an area described by a subset of the index terms in a clique might also be

interested in the other index terms in the same clique. All these cliques can be visualized via the

components developed for the implementation of process P7 ("Interactive graph visualizations") using

the Prefuse’s Information Visualization Toolkit (Heer et al., 2005).

22

Processes P4-P6 form the heart of the prototype search engine we have developed, which includes

a web-based application allowing the user (after registering to the site) to submit their queries. Each

user query is then submitted to the ACM Portal and the prototype re-ranks the top-n ACM Portal

results, and then returns the new top ten results to the user. It is important to mention that in the testing

and evaluation phase of the system, the results were returned to the user randomly re-ordered, along

with a user feedback form via which the system got relevance feedback scores from the user, as

explained in section.

2.5. Heuristic Hierarchy

The hierarchical scheme that we have introduced includes three heuristics, each located at a separate

level in the overall hierarchy. The hierarchical structure of the configuration ensures that a heuristic at

the top level in the hierarchy is considered as more significant in determining the final ranking of the

results compared to a heuristic at a lower level. Therefore, heuristics are placed in a hierarchical

structure to ensure that the ranking order is significantly determined by higher level heuristics but

improved and fine-tuned by heuristics at lower levels.

There are three levels in our hierarchical heuristic scheme. At the first level, we have a custom

implementation of the term frequency (TF) heuristic which aims to identify the degree at which

specific query terms match the actual text context of a specific publication. Our implementation of the

heuristic takes into consideration not just term occurrences, but details such as term co-occurrences in

different levels (sentence, paragraph, section) parts of the publications (title, abstract, body). After

calculating the TF score for each publication, based on the calculated value, the publication is placed

in one of the pre-configured buckets, representing TF values of certain range size.

After the TF score is calculated and each of the available publications is placed in a bucket, the

hierarchical scheme applies the second level heuristic; the depreciated citation count (DCC). DCC

aims to estimate for each publication the degree of its emerging popularity. Specifically the aim of the

heuristic is to identify publications which have an increasing number of citations during recent years

contrary to popular, older publications which have accumulated a significant number of citations over

an extended course of several years. So the heuristic basically depreciates the citation score based on

23

the number of years lapsed since the paper has been cited. The heuristic applies on the buckets

generated from the first heuristic and in sequence placed in finer grained second-level buckets.

At the third level in the hierarchy lies the Maximal Weighted Clique heuristic (MWC) which is

applied on the two-level bucket structure filled by the second heuristic. Specifically, the MWC

heuristic aims to find the matching degree between the index terms of each of the publications in the

structure and each of the maximal weighted cliques stored in the database. The heuristic then sorts

each of the publications in the two-level buckets based on the MWC score and ends up with a sorted

list of results.

The heuristic hierarchy we use for re-ranking the ACM Portal search results for a given query is

schematically shown in figure 2.3.

Figure 2.3 Re-ranking Heuristic Hierarchy

24

2.5.1. Term Frequency Heuristic

As already mentioned, at the top-level of our hierarchical heuristic algorithm, we use a custom

implementation of the term frequency heuristic. Term frequency (TF) is used as the primary heuristic

in our scheme in order to identify the most relevant publications as far as pure content is concerned

(for a detailed description of the now standard TF-IDF scheme see for example (Manning et al., 2009)

or (Jackson et al., 2002)). When designing the term frequency heuristic we have taken into

consideration the fact that calculating the frequency of all terms individually does not provide an

accurate measure for the relevance of a specific publication with respect to a specific query. To

illustrate this, let’s assume that for the query “distributed systems architecture” we have two

publication results p1 and p2 with individual term frequency scores s1 and s2, respectively, where s1, s2

are equal to the sum of the individual term frequencies for the query terms encountered in each

publication. Let’s also assume that s1 > s2, then based on the scores alone the term frequency heuristic

would assume that p1 is more relevant than p2 ignoring whether all or a subset of the query terms

appear in each publication. So, in our example, p1 might be strongly related to the topic “distributed

systems” but have nothing to do with “distributed systems architecture” whereas p2 might be a highly

relevant “distributed systems architecture” publication, and yet p1 would be considered more relevant

publication.

In order to overcome this limitation, our implementation identifies the number of occurrences of

all combinations of the query terms appearing in close proximity in different sections of each

publication. After experimenting with different implementations of the term frequency heuristic, the

experiment results showed that this approach performs significantly better in identifying relevant

documents than the classical case of the sum of all individual term frequencies.

Our implementation assigns different weights to term occurrences appearing in different sections

of the publication (Amolochitis et al., 2012) for results from an initial implementation that utilized the

standard TF heuristic as described in most textbooks on Information Retrieval. Term occurrences in

the title are more significant than term occurrences in the abstract and similarly, term occurrences in

the abstract are more significant than term occurrences in the publication body. Additionally we take

into consideration the proximity level of the term occurrences, meaning the distance among

encountered terms in different segments of the publication. By proximity level we denote the distance

25

among encountered terms in different segments of the publication and for simplicity we have two

proximity levels: sentence and paragraph. Furthermore, we distinguish the following two types of

term occurrence completeness: complete and partial. A complete term occurrence is when all query

terms appear together in the same proximity level and similarly, a partial occurrence is when a strict

subset of the query terms appears together in the same proximity level. The significance of a specific

term occurrence is based on its completeness as well as the proximity level; complete term occurrences

are more significant than partial ones and similarly term occurrences at sentence level are more

significant than term occurrences at paragraph level.

Before discussing the details of our custom TF scheme, a word is in order to justify the omission

of the “Inverse Document Frequency” (IDF) part from our scheme. The reason for omitting IDF is that

we cannot maintain a full database of academic publications such as the ACM Digital Library (as we

do not have any legal agreements with ACM) but instead fetch the results another engine provides

(e.g. ACM Portal) and simply work with those results. It would be expected then that computing the

IDF score for only the limited result-set that another engine returns would not improve the results of

our proposed scheme and initial experiments with the TF scheme proved this intuition is correct.

We now return to the formal description of our custom TF scheme. Let { }1 nQ T T= K be the set

of all terms in the original query, and letO Q⊆ be the subset of terms in Q appearing together in the

same proximity level. We define the term occurrence score is for the ith term occurrence simply as

/is O Q= . By ith occurrence we denote the ith (co)occurrence of any of the original terms of Q in the

publication In case of a complete occurrence (meaning all query terms in the ith term occurrence appear

in the original query as well) clearly, si = 1 sinceO Q= . Method calcTermOccurenceScore(O,Q)

implements this formula.

Now, let T denote the set of all sections of a paper, P the set of all paragraphs in a section and S

the set of all sentences in a paragraph. The method splitSectionIntoParagraphs(Section) splits the

specified section into a set of paragraphs. Similarly splitParagraphIntoSentences(Paragraph) splits the

specified paragraph into a set of sentences. The method

findAllUniqueTermOccurInSentence(Sentence, Q) returns all unique occurrences of the query terms

(that are members of Q) in the specified sentence. Similarly

findAllUniqueTermOccurInAllSentences(S,Q) returns a set of all unique occurrences of the query

26

terms (members of Q) in each sentence (members of S). The method noCompleteMatchExists(S)

evaluates whether no complete term occurrence score exists in the sentences of S.

We have also introduced a set of weight values to apply a different significance to different term

occurrence types appearing: (i) in different publication sections: tWeight represents the term

occurrence weight at different publication sections (title, abstract, body), and (ii) in different proximity

levels: sWeight represents the term occurrence weight at sentence level, whereas pWeight represents

the term occurrence weight at paragraph level. The method determineSectionWeight(t) determines the

type of the specified section (title, abstract or body) and returns a different weight score that should

be applied in each case. All weight values have been determined empirically after experimenting with

different weight value ranges. Overall, our term-frequency heuristic is implemented as follows:

Algorithm calculateTF(Publication d, Query q)

1. Let S←{}, T←{}, P←{}, O←{}, tf←0

2. Set T←splitPublicationIntoSections(d).

3. foreach section t in T do

a. Let sectionScore←0.

b. Set P←splitSectionIntoParagraphs(t).

c. Let scoreInSegment←0.

d. foreach paragraph p in P do

i. Set S←splitParagraphIntoSentences(p).

ii. Let sentenceScore←0.

iii. foreach sentence s in S do

1. Set O←findAllUniqueTermOccurInSentence(s).

2. Let sScore←calcTermOccurrenceScore(O, Q).

3. Set sentenceScore←sentenceScore + sScore.

iv. endfor

v. Set sentenceScore←sentenceScore · sWeight.

vi. Let paragraphScore←0.

vii. Let partialMatch← noCompleteMatchExists (S).

viii. if (partialMatch === true) then

1. Set O←findAllUniqueTermOccurrInAllSentences(S, Q).

27

2. Set paragraphScore←calcTermOccurrenceScore(O, Q).

ix. else Set paragraphScore←1.

x. endif.

xi. Set paragraphScore ← paragraphScore · pWeight.

xii. Set scoreInSegment←sentenceScore + paragraphScore.

e. endfor

f. Let tWeight←determineSectionWeight(t).

g. Set sectionScore← tWeight · scoreInSegment.

h. Set tf←tf + sectionScore.

4. endfor

5. return tf.

6. end.

After calculating the total query term frequency for each publication, the algorithm groups all

publications with similar term frequency scores into buckets of specified range. This grouping of the

publications allows bringing together publications with similar term frequency scores in order to apply

further heuristics to determine an improved ranking scheme. Results placed in higher range term

frequency buckets are promoted at the expense of publications placed in lower term frequency buckets.

2.5.2. Depreciated Citation Count Heuristic

At the second level of our hierarchical ranking scheme, the results within each bucket created in the

previous step are ordered according to a depreciated citation count score. Specifically we analyse the

annual citation distribution of a particular publication examining the number of citations that a paper

has received within a specific year. We analyse all citations of a particular paper via Google Scholar

and for each citing publication we consider the date of publication. After all citing publications are

examined we create a distribution of the total citation count that the cited publication received

annually. Our formula then depreciates each annual citation count based on the years lapsed since the

publication date. After all annual depreciation scores are calculated then the scores are summed and

produce a total depreciation count score for a particular publication obeying the formulae:

28

, ,

()

,

10
1 tanh

4
1

2

n

p j p j p

j y p

j p

c n d

n j

d

=

=

− − 
+  

 
= −

∑
 (2.1)

where
pc is the total (time-depreciated) citation-based score for paper p,

,j pn is the total number of

citations that the paper has received in a particular year j, n is the current year,
,j pd is the depreciation

factor for the particular year j and ()y p is the publication year of the paper p. A graph of the citation

depreciation function () ()()1 1 tanh 10 / 4 / 2d x x = − + −  as a function of x is shown in figure 2.4.

Figure 2.4 Annual depreciation of citation-count of a publication

As already mentioned, our intention is to identify recent publications with high impact in their

respective fields and promote them in the ranking order to the expense of older publications that might

have a higher citation count but a considerable number of years have passed since the date of

publication. In order to achieve this we determine the significance of a publication’s citation count as

a function of the number of citations received depreciated by the years lapsed since its publication

date. Once publications have been sorted in decreasing order of the criterion cp, we further partition

them into second-level buckets of like-score publications.

29

2.5.3. Maximal Weighted Cliques Heuristic

Within each bucket of the second-level heuristic, we further order the results by examining each

publication’s index terms and calculate their degree of matching with all topical maximal weighted

cliques, the off-line computation of which has already been described in section 2.2. Additionally we

assigned specific weight values to the calculated cliques based on certain different characteristics such

as the types of associations they represent and the time period they belong to. The system calculates

for each publication a total clique matching score which corresponds to the sum of matching score of

the publication’s index terms with all maximal weighted cliques.

The calculation details are as follows.

Let C be the set of all cliques to examine. Let ci denote the total number of index terms in clique i. Let

d denote the total number of index terms of publication p and pi denote the total number of index terms

of publication p that belong to clique i; for each clique i∈C the system calculates the matching degree

of all publication index terms with those of a clique. In cases of a perfect match (meaning that all index

terms of i appear as index terms of p) in order to avoid bias towards publications with a big number of

index terms against cliques with a small number of index terms we calculate the percentage match mi

as follows:

�� =
��
�

For all remaining cases (non-perfect match) the percentage matching is calculated using:

�� =
��
��

If mi > t where t is a configurable threshold for the accepted matching level (in our case t = 0.75) the

process continues, else the system stops processing the current clique and moves to the next one. In

case that the matching level is above t the system calculates a weight score wp,i representing the overall

value of the association of p with ci as follows:

wp, i = wi ×mi ×es× aci

where wi is the weight score of the examined maximal weighted clique i, and aci is a score related to

the association type that the current graph that the current clique belongs to represents (aci = 1 for

association type I, aci = 0.6 for type II). Finally, es is an exponential smoothing factor that depreciates

cliques of graphs covering older periods in order to promote more recent ones. Since each type of

30

graph has a different significance, we consider recent graphs of stronger association types as more

significant and thus we assign greater value to maximal weighted cliques of such graphs.

The algorithm calculates for each publication a total clique matching score Sp which corresponds to

the sum of matching score of the publication’s index terms with all maximal weighted cliques and

determines the final ranking of the results accordingly.

�	 =
�	,�
�∈

The total clique matching score determines the order of the results within the current second level
bucket and eventually determines the final ranking of the results.

2.6. Experiments Design

As previously mentioned we have developed a meta-search engine application in order to evaluate our

ranking algorithm. Registered users can submit a number of queries via our meta-search engine’s user

interface. The search interface allows users to use quotes for specifying exact sequence of terms in

cases that it is applicable for improving query accuracy for both PubSearch and ACM Portal.

For each query in the processing queue, our system queries ACM Portal using the exact query

phrase submitted by the user and crawls ACM Portal’s result page in order to extract the top ten search

results. The top ten search results as well as the default ranking order provided by ACM Portal are

stored. For each of the returned results our system automatically crawls each publication’s summary

page in order to extract all required information. Additionally, for each of the returned results, the

system queries Google Scholar to extract the total number of citations and find a downloadable copy

of the full publication text if possible.

When all available publication information is gathered, the system executes our own ranking

algorithm with the goal of improving the default rank by re-ranking the default top ten results provided

by ACM Portal. The rank order generated by our algorithm is stored in the database and when the

process is complete the query status is updated and the user is notified in order to provide feedback.

The user is presented with the default top ten results produced by ACM Portal in a random order and

is asked to provide feedback based on the relevance of each search result with respect to the user’s

preference and overall information need. The provided relevance feedback score for each result is used

for evaluating the overall feedback score of both ACM Portal as well as our own algorithm, since both

31

systems attempt to process the same set of results. We use a 1 to 5 feedback score scheme where 1

corresponds to “least relevant” and 5 corresponds “most relevant”.

In order to compare an IR system’s ranking performance, we use two commonly encountered

metrics: i) Normalized Discounted Cumulative Gain (NDCG) and ii) Expected Reciprocal Rank

(ERR). We also introduce a new metric, the lexicographic ordering metric (LEX), that can be

considered a more extreme version of the ERR metric.

Normalized Discounted Cumulative Gain (Järvelin et al., 2000) is a metric commonly used for

evaluating ranking algorithms in cases where graded relevance judgments exist. Discounted

Cumulative Gain (DCG) measures the usefulness of a document based on its rank position. DCG is

calculated as follows:

()

1 2

2 1
DCG

log (1)

if pp

p

i i=

−
=

+
∑ (2.2)

where ()if p is the relevance judgment (user relevance feedback) of the result at position i. The DCG

score is then normalized by dividing it with its ideal score which is the DCG score for the sorted result

list on descending based on the relevance scores resulting to:

DCG

nDCG
IDCG

p

p

p

= (2.3)

The term IDCGp (acronym for “Ideal DCG till position p”) is the DCGp value of the result list

ordered in descending order of relevance feedback, so that in a perfect ranking algorithm nDCGp will

always equal 1.0 for all positions of the list. Expected Reciprocal Rank (Chapelle, Metlzer et al., 2009)

is a metric that attempts to compute the expectation of the inverse of the rank position in which the

user locates the document they need (so that when for example ERR = 0.2 the required document

should be found near the 5th position in the list of search results), assuming that after the user locates

the document they need, they stop looking further down the list of results. ERR is defined as follows:

 () ()
()

max

11

1 1

2 1
ERR 1 , , 1

2

if prn
r

i i f
r i

R
q R R i n

r

−−

= =

−
= − = =∑ ∏ K (2.4)

32

where maxf is the maximum value the user relevance feedback score (in our case, 5).

Besides the common NDCG and ERR metrics, we also calculate a total feedback score LEX(q)

for the (re-) ranked results of any particular query q by following a lexicographic ordering approach

to produce a weighted sum of all independent feedback result scores:

 1

1

()

LEX()

n
i

norm i

i

n
i

i

a f p

q

a

=

=

=
∑

∑
 (2.5)

where n is the number of results, ()
1

max 1
f

fδ
−

= − ,
1

f

f

a
δ

δ
=

+
 and ()

()

max

1

1

i

norm i

f p
f p

f

−
=

−
 is

the normalized relevance feedback provided by the user for the publication pi with values in the set

{ }0, , 2 , 1
f f

δ δ K . In our case, 0.25, 0.2f aδ = = . In this way, in any two rankings of some results

list produced by two different schemes, the scheme that assigns a higher score for the highest ranked

publication always receives a better overall score LEX(q) regardless of how good or bad the

publications in lower positions score. To see why this is so, ignoring the normalizing denominator

constant in (5), and without loss of generality, we must simply show that if two result-lists ()1,1 1,,
n

r rK

and ()2,1 2,,
n

r rK for the same query q get normalized feedback scores

() ()(),1 ,, , 1,2norm i norm i nf r f r i =K and () ()1,1 2,1norm norm
f r f r> , then the LEX score of the first result

list will always be greater than the LEX score of the second result list. Given that if two normalized

feedback scores are different, their absolute difference will be at least equal to
fδ , and at most equal

to 1, we need to show that

 () ()2, 1,

2

n
i

f norm i norm i

i

a a f r f rδ
=

 > − ∑ (2.6)

for all possible values of the quantities () ()1, 2,, , 2,
norm i norm i

f r f r i n= K . Taking into account that

() ()2, 1, 1, 2
norm i norm i

f r f r i n− ≤ ∀ = K , if the value a is such so that

1 2

2 1

nn
i

f

i

a a
a a

a
δ

+

=

−
> =

−
∑ then

the required inequality (6) will hold for all possible values of the quantities

33

() ()1, 2,, , 2,
norm i norm i

f r f r i n= K . But the last inequality can be written as
()11

1

n

f

a a

a
δ

−−
>

−
and it

will always hold if
1

f

a

a
δ ≥

−
(since ()1 0,1n

a
− ∈) so by choosing 0.2

1 1

f

f

f

a
a

a

δ
δ

δ
= ⇔ = =

− +

the lexicographic ordering property always holds regardless of the result list size or feedback values.

Clearly, it always holds that () []LEX 0,1q ∈ , with the value 1 being assigned to a result list where all

papers were assigned the value maxf whereas if the user assigns the lowest possible score (1) for all

papers in the results list, the LEX score for the query will be zero. Also, notice that if the user assigns

the median value
max 1

3
2

f +
= to all papers in the results list for a query, the LEX score for that query

will also be the median value 0.5.

The LEX scoring scheme can be considered as a more extreme version of the ERR and NDGC

metrics and is inspired from the fact that people always place much more importance to the top results

(and usually judge the whole list of results by the quality of the top 2-3 results) that are returned from

any search engine than on lower ranked results. This is probably due to the very strong faith of users

in the ability of search engines to rank results correctly and place the most relevant results on top, a

faith that (if it exists) apparently does not have solid grounding with regards to academic search

engines —at least, not yet.

2.7. Experimental Results

In an initial training phase, the results of a limited set of relevance feedback scores from a limited base

of five volunteer users were used in order to optimize the bucket ranges of our heuristic hierarchical

ranking scheme as well as the values for the parameters tWeight, pWeight, and sWeight for the

proposed TF-scheme. The bucket ranges are as follows:

� For the TF-heuristic, we always compute exactly 10 buckets by first computing the proposed

TF metric for each publication and then we normalize the calculated scores in the range [0,1]

in a linear transformation that assigns the score 1 to the publication with the max. calculated

TF score, and then we “bucketize” the publications in the 10 intervals [0, 0.1], (0.1, 0.2], …

(0.9, 1].

� For the 2nd level-heuristic, the bucket range is set to 5.20.

34

Values for the other parameters are set as follows: sWeight=15.25, pWeight=4.10, and

tWeighttitle=125.50, tWeightabstract=45.25, tWeightbody=5.30.

Given these parameters, we proceeded into testing the system by processing 58 new queries that

were submitted by 15 different users (other than the authors of the paper) specializing in different areas

of computer science and electrical & computer engineering. The users were selected based on their

expertise in different areas of computer science and electrical engineering and they are researchers of

different levels from the authors’ universities. Each of our test users submitted a number of queries

and provided feedback for all produced query results without knowing which algorithm produced each

ranking. We used the three metrics mentioned before (NDCG, ERR, and LEX) to evaluate the quality

of our ranking algorithm.

2.7.1. Comparisons with ACM Portal

Our ranking approach, PubSearch, compares very well with ACM Portal, and in fact outperforms

ACM Portal in most query evaluations as the tests reveal using all three metrics. We illustrate the

performance of each system in table 2.1:

Table 2.1 Comparison of PubSearch with ACM Portal Performance Using Different Metrics

Metric
Number of queries for

which PubSearch wins

Number of queries for

which ACM Portal wins

Num. of queries for which

both systems performed

the same

LEX 46 4 8

NDCG 49 1 8

ERR 44 3 11

35

Table 2.2 shows the average score of each system using the three different metrics:

Table 2.2 Average Performance Score of the Different Metrics

Metric PubSearch ACM Portal

LEX 0.742 0.453

NDCG 0.976 0.879

ERR 0.739 0.454

We witness that PubSearch performs much better than ACM Portal in most of the 58 queries used

to evaluate our system under all metrics. On average, the percentage gap of performance between

PubSearch and ACM Portal in terms of LEX metric is 907.5%(!), in terms of NDCG is 11.94%, and

in terms of ERR, the average gap is 77.5%. The large average gap in the LEX metric is due to the fact

that for some queries, ACM Portal produces a LEX score close to zero, whereas PubSearch re-orders

the results so that it produces a LEX score close to 1, leading to huge percentage deviations for such

queries.

Even though it is clear to the naked eye, statistical analysis using the t-test, the sign test and the

signed rank test all show that the performance difference between the two systems is statistically

significant at the 95% confidence level for all performance metrics. In table 2.7 we present an

analytical comparison of the evaluation scores of the two systems using the three different metrics.

To highlight the difference of the ranking orders produced by the two systems, consider query#1

(‘query privacy “sensor networks” ’): The ACM Portal results list was given the following relevance

judgement by the user: 1,1,2,3,2,1,1,4,3,5. PubSearch re-orders the ACM Portal results in a sequence

that corresponds to the following relevance judgement: 5,4,3,3,1,2,2,1,1,1. PubSearch produces the

best possible ordering of the given search results (with the exception of the document in 5th position

that should have been placed in 7th position). Similarly, consider query #46 (‘resource management

grid computing’): ACM Portal orders its top ten results in a sequence that received the following

scores: 1,1,3,3,4,4,4,5,1,3. PubSearch on the other hand re-orders the list of results so that the

sequence’s scores appear as follows: 5,4,3,4,4,3,1,1,3,1, which is a much improved ordering than

ACM Portal.

36

2.7.2. Comparison with Other Heuristic Configurations

In Table 2.3, a head-to-head comparison of the performance of our hierarchical heuristic scheme using

our custom implementation of the TF heuristic against using the traditional Boolean method. The

results clearly show that our implementation of the heuristic outperforms the “traditional” TF heuristic.

Table 2.3 Comparing the hierarchical heuristic scheme (complete, including all three level of heuristics) using

our implementation of the TF heuristic against the simple, Boolean TF heuristic

PubSearch PubSearch PubSearch PubSearch PubSearch PubSearch

Boolean TF TF Boolean TF TF Boolean TF TF

LEX LEX NDCG NDCG ERR ERR

1 0.553 0.939 0.938 0.995 0.537 0.978

2 0.709 0.748 0.959 1.000 0.627 0.656

3 0.591 0.999 0.914 0.990 0.604 0.984

4 0.670 0.750 0.930 0.998 0.618 0.664

5 0.388 0.990 0.884 1.000 0.540 0.984

6 0.792 1.000 0.962 1.000 0.731 0.984

7 0.798 0.990 0.976 1.000 0.732 0.984

8 0.760 0.998 0.953 1.000 0.687 0.984

9 0.534 0.748 0.934 0.995 0.482 0.654

10 0.760 1.000 0.947 1.000 0.687 0.984

11 0.063 0.445 0.751 0.780 0.311 0.407

12 0.314 0.890 0.918 1.000 0.423 0.974

13 0.000 0.000 0.803 0.803 0.117 0.117

14 0.000 0.000 0.803 1.000 0.117 0.124

15 0.559 0.988 0.920 0.991 0.539 0.984

16 0.559 0.988 0.922 0.996 0.539 0.984

17 0.563 0.896 0.967 0.986 0.599 0.975

37

18 0.542 0.748 0.955 0.993 0.496 0.661

19 0.751 0.950 0.933 0.963 0.674 0.981

20 0.550 0.790 0.937 0.998 0.514 0.730

21 0.719 0.998 0.916 0.996 0.664 0.984

22 0.543 0.948 0.924 0.984 0.512 0.980

23 0.952 0.998 0.968 1.000 0.981 0.984

24 0.720 0.988 0.929 0.995 0.664 0.984

25 0.709 0.748 0.960 0.992 0.625 0.653

26 0.759 0.989 0.952 0.994 0.687 0.984

27 0.260 0.498 0.910 1.000 0.264 0.379

28 0.091 0.488 0.893 0.989 0.217 0.346

29 0.550 0.748 0.968 0.998 0.503 0.656

30 0.750 0.750 1.000 1.000 0.668 0.668

31 0.302 0.740 0.891 0.997 0.346 0.638

32 0.540 0.700 0.999 0.999 0.473 0.598

33 0.110 0.747 0.848 0.988 0.329 0.653

34 0.758 0.990 0.954 0.998 0.686 0.984

35 0.760 0.992 0.951 0.993 0.687 0.984

36 0.000 0.000 1.000 1.000 0.085 0.085

37 0.718 0.990 0.919 0.999 0.664 0.984

38 0.300 0.540 0.886 0.955 0.340 0.480

39 0.830 0.950 0.899 1.000 0.977 0.980

40 0.000 0.000 1.000 1.000 0.085 0.085

41 0.062 0.062 0.768 0.768 0.284 0.284

42 0.720 0.998 0.915 0.989 0.664 0.984

43 0.000 0.000 1.000 1.000 0.056 0.056

44 0.800 1.000 0.974 0.998 0.732 0.984

38

45 0.552 0.996 0.912 0.992 0.521 0.984

46 0.551 0.942 0.936 0.984 0.521 0.980

47 0.359 0.986 0.871 0.960 0.465 0.984

48 0.558 0.942 0.942 0.982 0.538 0.980

49 0.000 0.000 1.000 1.000 0.085 0.085

50 0.000 0.000 1.000 1.000 0.085 0.085

51 0.788 0.948 0.987 0.987 0.730 0.980

52 0.550 0.742 0.970 0.992 0.504 0.651

53 0.000 0.000 1.000 1.000 0.069 0.069

54 0.796 0.956 0.973 0.973 0.732 0.982

55 0.155 0.923 0.836 0.908 0.428 0.979

56 0.958 0.990 0.981 0.998 0.982 0.984

57 0.316 0.892 0.870 0.926 0.425 0.977

58 0.960 1.000 0.975 1.000 0.982 0.984

In figures 2.5, 2.6 and 2.7, we show the effects of the third and last heuristic in our proposed

hierarchy (using the three different metrics), namely the ranking based on the matching of a paper’s

index terms to maximally weighted cliques in the topic graphs computed offline. The charts also show

visualizations of the results in table 2.4. Statistical analysis using the t-test, the sign-test and the signed-

rank test all show that the effect of the third heuristic in the hierarchy is significant, i.e. the hypothesis

that the mean of the distribution of the percentage gap between the solutions produced by PubSearch

when utilizing the 3rd heuristic in the hierarchy, and the solutions produced by PubSearch when the 3rd

heuristic is excluded, is zero, must be rejected at 95% confidence level. The gap is small, but

statistically significant. It is evident that all heuristics in the hierarchy are needed so as to obtain the

best possible feedback score in terms of all metrics considered.

39

Figure 2.5 Comparison between two versions of PubSearch and ACM Portal

Figure 2.6 Comparison between two versions of PubSearch and ACM Portal (figure uses scores produced by

the NDCG metric)

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57

PubSearch incl. MWC PubSearch excl. MWC ACM Portal

0.630

0.680

0.730

0.780

0.830

0.880

0.930

0.980

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57

PubSearch incl. MWC PubSearch excl. MWC ACM Portal

40

Figure 2.7 Comparison between two versions of PubSearch and ACM Portal (figure uses scores produced by

the ERR metric)

Table 2.4 Comparing TF/DCC/MWC against TF on Retrieval Score

Query #
TF-only

TF/DCC

/MWC
TF-only

TF/DCC

/MWC
TF-only

TF/DCC

/MWC

LEX LEX NDCG NDCG ERR ERR

1 0.905 0.939 0.959 0.995 0.977 0.978

2 0.550 0.748 0.967 1.000 0.503 0.656

3 0.991 0.999 0.977 0.990 0.984 0.984

4 0.742 0.750 0.986 0.998 0.656 0.664

5 0.944 0.990 0.961 1.000 0.980 0.984

6 0.991 1.000 0.981 1.000 0.984 0.984

7 0.957 0.990 0.972 1.000 0.982 0.984

8 0.960 0.998 0.977 1.000 0.982 0.984

9 0.709 0.748 0.962 0.995 0.626 0.654

10 0.960 1.000 0.970 1.000 0.982 0.984

11 0.413 0.445 0.757 0.780 0.399 0.407

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57

PubSearch incl. MWC PubSearch excl. MWC ACM Portal

41

12 0.858 0.890 0.962 1.000 0.974 0.974

13 0.008 0.000 0.827 0.803 0.126 0.117

14 0.000 0.000 1.000 0.822 0.077 0.124

15 0.719 0.988 0.920 0.991 0.664 0.984

16 0.988 0.988 0.995 0.996 0.984 0.984

17 0.896 0.896 0.986 0.986 0.975 0.975

18 0.710 0.748 0.965 0.993 0.633 0.661

19 0.787 0.950 0.946 0.963 0.730 0.981

20 0.758 0.790 0.974 0.998 0.686 0.730

21 0.944 0.998 0.953 0.996 0.981 0.984

22 0.788 0.948 0.987 0.984 0.730 0.980

23 0.998 0.998 0.998 1.000 0.984 0.984

24 0.943 0.988 0.959 0.995 0.980 0.984

25 0.709 0.748 0.956 0.992 0.625 0.653

26 0.990 0.989 0.997 0.994 0.984 0.984

27 0.460 0.498 0.953 1.000 0.356 0.379

28 0.443 0.488 0.928 0.989 0.318 0.346

29 0.708 0.748 0.964 0.998 0.625 0.656

30 0.750 0.750 0.999 1.000 0.668 0.668

31 0.694 0.740 0.948 0.997 0.601 0.638

32 0.700 0.700 0.997 0.999 0.598 0.598

33 0.747 0.747 0.984 0.988 0.652 0.653

34 0.944 0.990 0.964 0.998 0.980 0.984

35 0.990 0.992 0.984 0.993 0.984 0.984

36 0.000 0.000 1.000 1.000 0.085 0.085

37 0.951 0.990 0.973 0.999 0.981 0.984

38 0.538 0.540 0.953 0.955 0.478 0.480

42

39 0.950 0.950 0.999 1.000 0.980 0.980

40 0.000 0.000 1.000 1.000 0.085 0.085

41 0.068 0.062 0.775 0.768 0.302 0.284

42 0.991 0.998 0.986 0.989 0.984 0.984

43 0.000 0.000 1.000 1.000 0.056 0.056

44 0.992 1.000 0.990 0.998 0.984 0.984

45 0.918 0.996 0.945 0.992 0.980 0.984

46 0.909 0.942 0.956 0.984 0.978 0.980

47 0.973 0.986 0.955 0.960 0.984 0.984

48 0.910 0.942 0.953 0.982 0.978 0.980

49 0.000 0.000 1.000 1.000 0.085 0.085

50 0.000 0.000 1.000 1.000 0.085 0.085

51 0.948 0.948 0.989 0.987 0.980 0.980

52 0.748 0.742 1.000 0.992 0.657 0.651

53 0.000 0.000 1.000 1.000 0.069 0.069

54 0.988 0.956 0.988 0.973 0.984 0.982

55 0.923 0.923 0.907 0.908 0.979 0.979

56 0.958 0.990 0.979 0.998 0.982 0.984

57 0.660 0.892 0.873 0.926 0.597 0.977

58 0.798 1.000 0.970 1.000 0.732 0.984

In figures 2.8, 2.9 and 2.10 we show the performance of our proposed heuristic configuration

when comparing it with different hierarchies of heuristics. Each chart presents the average

performance of each heuristic configuration under a different metric. Note that we specify the different

heuristic hierarchies by separating each heuristic in a hierarchy with a slash ("/") character. For each

hierarchy, each left-side heuristic argument is higher in the suggested hierarchy than its right-side

argument.

43

We consider the following configurations:

1. TF/DCC/MWC (the proposed scheme)

2. TF/DCC

3. TF

4. DCC

5. MWC

6. TF/MWC

Figure 2.8 Comparison of different heuristic configurations (LEX scores)

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

1

TF/DCC/MWC TF/DCC TF DCC MWC TF/MWC

44

Figure 2.9 Comparison of different heuristic configurations (NDCG scores)

The MWC heuristic adds the most value in the full PubSearch system when measuring

performance against the NDCG metric as can be seen in figure 2.9.

0,865

0,885

0,905

0,925

0,945

0,965

0,985

1,005

1

TF/DCC/MWC TF/DCC TF DCC MWC TF/MWC

45

Figure 2.10 Comparison of different heuristic configurations (ERR scores)

It can be seen from these figures that our proposed configuration is the best performing

configuration in terms of all metrics considered. The percentage difference between the proposed full

PubSearch configuration (TF/DCC/MWC) and applying the proposed TF heuristic alone is 3.26% for

the LEX metric, 1.54% for the NDCG metric, and 5.96% for the ERR metric. Furthermore, statistical

analysis using the t-test, sign test, and signed-rank test show that the differences between

TF/DCC/MWC and TF heuristic alone are statistically significant for all the metrics considered at the

95% confidence level. To illustrate further, the results produced by running our proposed TF heuristic

alone are shown in table 2.4 under the multi-column labelled “TF-only”, and compared against the full

PubSearch system.

To make the comparison with TF-IDF methods clearer, we also compare PubSearch against the

standard Okapi BM25 weighting scheme (Sparck Jones et al., 2000). However, in our comparison,

since as we have already mentioned we do not maintain an academic paper database but instead simply

re-rank the results returned by other engines, when computing the BM25 score for a result list, we

0,43

0,48

0,53

0,58

0,63

0,68

0,73

0,78

1

TF/DCC/MWC TF/DCC TF DCC MWC TF/MWC

46

assume that the entire database consists of the returned results of the base engine only (ACM Portal’s

top ten results for a given query). As expected, the results from BM25 are quite inferior to those

obtained by PubSearch. The results are summarized in table 2.5, where we show the average score

obtained for the 58 queries on each metric for each of the two systems.

Table 2.5 Comparing PubSearch with BM25 Weighting Scheme

Metric PubSearch Okapi BM25

LEX 0.742 0.235

NDCG 0.976 0.817

ERR 0.739 0.302

The average percentage difference between PubSearch and Okapi BM25 in terms of the LEX

metric is 1898% (due to BM25 producing a LEX score of less than 0.004 for some queries while for

the same query PubSearch producing scores of more than 0.7) in terms of the NDCG metric is 20.9%

and in terms of the ERR metric it reaches 144%. Statistical analysis (though not really needed) in

terms of t-test, sign test and signed rank test shows these differences to be very significant. This result

is not surprising as BM25 is a generic non-binary information retrieval model that has no specific

domain knowledge about academic publications.

We also compare our proposed approach against a more standard fusion scheme (Kuncheva,

2004) where for each heuristic h (that can be TF, DCC, or MWC) we compute a score hA that

represents an “inverse accuracy” score of the heuristic in obtaining the best possible sequence of a

query’s search results (measured against the training set query data). This score hA is computed as

follows: assume the search results for a query q ranked in descending order of relevance feedback by

the user are as follows:
,1 ,,q q nd dK having relevance feedback scores

,1 ,2 ,q q q nf f f≥ ≥ ≥K . Now,

assume the heuristic h scores the documents so that they are ranked according to the following order:

1 2, , ,, ,
nq h q h q hd d dK . Define the quantity

,q ig as follows:

47

{ } { } { }
, ,

,

, , , ,

0 if

min , : max | , min | else

i

i i

q i q h

q i

q j q h q j q h

f f

g
i j i j j j f f j j f f

=
= 

− − = = = =

We define
, ,

1

n

q h q i

i

A g
=

=∑ . Clearly,
, 0q hA ≥ , and

, 0q hA = if and only if the heuristic h obtains a

perfect sorting of the result set of query q (as indicated by the user relevance judgements.) The

measured inverse accuracy of a heuristic h on the training set trainQ is then defined as
,

train

h q h

q Q

A A
∈

= ∑ .

We compare PubSearch against an ensemble of the three heuristics from the set

{ }, ,H TF DCC MWC= that works as follows: each heuristic in the set of heuristics produces a re-

ranked order of results
1 2, , ,, ,

nq h q h q hd d dK . The final ensemble result is the list of results sorted in

ascending order of the combined value

 ()
()

1

1 ,
1

1

d h

d h

h H h H h

r
r A

A

−

−

∈ ∈

 
= +  + 
∑ ∑ (2.7)

of each document in the result list where
,d hr is the position of document d in the result list according

to heuristic h. The ensemble fusion results are comparable with ACM Portal on the NDCG and ERR

metrics (0.5% better in terms of NDCG, and 8.1% better in terms of ERR metric); the ensemble fusion

also does a much better job than ACM Portal in terms of the LEX metric (442% better). Still, the

ensemble fusion results do not compare well with PubSearch as can be seen in table 2.6.

Table 2.6 Comparing PubSearch with Heuristic Ensemble Fusion Performance Average

Metric PubSearch

TF-DCC-MWC

Ensemble Fusion

LEX 0.742 0.431

NDCG 0.976 0.879

ERR 0.739 0.451

48

PubSearch is on average more than 472% better than the fusion heuristic described above in terms

of LEX metric, more than 12% better in terms of the NDCG metric, and more than 70% better than

the fusion heuristic in terms of the ERR metric.

2.7.3. Comparison with Other Academic Search Engines

We performed a head-to-head comparison between PubSearch and the three state-of-the-art

academic search engines:

1. Google Scholar (http://scholar.google.com)

2. Microsoft Academic Search (http://academic.research.microsoft.com)

3. ArnetMiner (http://arnetminer.org)

The comparison was made on a sizeable subset of our original query set of 58 user queries shown

in table 2.7, comprising a total of 20 user queries, augmented by 4 new user queries, for a total of 24

user queries. The four new user queries were Q59=‘Page Rank clustering’, Q60=‘social network

information retrieval’, Q61=‘unsupervised learning’, and Q62=‘web mining’ respectively.

Table 2.7 Comparing PubSearch with ACM Portal on Retrieval Score

Submitted Query
ACM

Pub

Search
ACM

Pub

Search
ACM

Pub

Search

LEX LEX NDCG NDCG ERR ERR

1 query privacy "sensor networks" 0.012 0.939 0.662 0.995 0.204 0.978

2
wormhole attacks adhoc
networks

0.492 0.748 0.880 1.000 0.417 0.656

3 gameplay artificial intelligence 0.748 0.999 0.894 0.990 0.663 0.984

4 human-level ai 0.548 0.750 0.953 0.998 0.502 0.664

5 ambient intelligence 0.988 0.990 0.985 1.000 0.984 0.984

6 cloud computing 0.794 1.000 0.936 1.000 0.732 0.984

7 Autonomous agents 0.961 0.990 0.926 1.000 0.984 0.984

49

8 service-oriented architecture 0.748 0.998 0.911 1.000 0.664 0.984

9
routing wavelength assignment
heuristic

0.748 0.748 0.995 0.995 0.654 0.654

10 gmpls "path computation" 0.760 1.000 0.935 1.000 0.687 0.984

11
background subtraction for
"rotating camera"

0.446 0.445 0.777 0.780 0.415 0.407

12
image registration in "video
sequences"

0.250 0.890 0.800 1.000 0.290 0.974

13 computer vision code in matlab 0.002 0.000 0.817 0.803 0.123 0.117

14 Secure Decentralized Voting 0.002 0.000 0.822 1.000 0.124 0.124

15 license plate recognition 0.539 0.988 0.864 0.991 0.485 0.984

16 ellipse fitting 0.638 0.988 0.837 0.996 0.647 0.984

17 single channel echo cancellation 0.000 0.896 0.632 0.986 0.166 0.975

18 analysis time varying systems 0.466 0.748 0.867 0.993 0.422 0.661

19
time varying system
identification

0.070 0.950 0.779 0.963 0.318 0.981

20 amazon mechanical turk 0.548 0.790 0.921 0.998 0.506 0.730

21 music color association 0.988 0.998 0.970 0.996 0.984 0.984

22 mobile tv user experience 0.502 0.948 0.883 0.984 0.447 0.980

23 mobile television convergence 0.796 0.998 0.959 1.000 0.732 0.984

24 music instrument recognition 0.540 0.988 0.869 0.995 0.487 0.984

25
bayesian n gram estimation
prior

0.536 0.748 0.911 0.992 0.470 0.653

26
statistical parametric speech
synthesis

0.510 0.989 0.864 0.994 0.462 0.984

27 cover song identification 0.419 0.498 0.889 1.000 0.339 0.379

28 Bayesian spectral estimation 0.012 0.488 0.773 0.989 0.161 0.346

29 object-oriented programming 0.708 0.748 0.959 0.998 0.623 0.656

30 XML database integration 0.550 0.750 0.966 1.000 0.512 0.668

31 agile software development 0.491 0.740 0.889 0.997 0.406 0.638

50

32 script languages 0.251 0.700 0.829 0.999 0.266 0.598

33
distributed computing web
services

0.458 0.747 0.817 0.988 0.373 0.653

34 database performance tuning 0.548 0.990 0.882 0.998 0.503 0.984

35 database scaling 0.708 0.992 0.881 0.993 0.631 0.984

36 database optimization 0.000 0.000 1.000 1.000 0.085 0.085

37 distributed database architecture 0.735 0.990 0.915 0.999 0.665 0.984

38 large scale database clustering 0.492 0.540 0.899 0.955 0.412 0.480

39
autonomous agents and multi-
agent systems

0.747 0.950 0.939 1.000 0.663 0.980

40 distributed autonomous agents 0.000 0.000 1.000 1.000 0.085 0.085

41
Self-organizing autonomous
agents

0.070 0.062 0.762 0.768 0.329 0.284

42
large scale distributed
middleware

0.752 0.998 0.937 0.989 0.675 0.984

43 intelligent autonomous agents 0.000 0.000 1.000 1.000 0.056 0.056

44
Grid computing cloud
computing

0.712 1.000 0.901 0.998 0.646 0.984

45 cloud computing platforms 0.750 0.996 0.920 0.992 0.668 0.984

46
resource management grid
computing

0.020 0.942 0.721 0.984 0.254 0.980

47 cloud computing architectures 0.666 0.986 0.827 0.960 0.610 0.984

48 cloud computing state of the art 0.004 0.942 0.679 0.982 0.218 0.980

49 user interface technologies 0.000 0.000 1.000 1.000 0.085 0.085

50 mobile user interfaces 0.000 0.000 1.000 1.000 0.085 0.085

51 web 2.0 0.100 0.948 0.804 0.987 0.304 0.980

52 mobile social networks 0.483 0.742 0.841 0.992 0.397 0.651

53 social network privacy 0.000 0.000 1.000 1.000 0.069 0.069

54 game engine architecture 0.492 0.956 0.835 0.973 0.428 0.982

55 3d game engine 0.549 0.923 0.878 0.908 0.509 0.979

51

56 Opengl 0.709 0.990 0.902 0.998 0.638 0.984

57 texture mapping 0.460 0.892 0.837 0.926 0.405 0.977

58 polygonal meshes 0.748 1.000 0.908 1.000 0.666 0.984

Each query was given to each of the above mentioned search engines, and the top-10 results (from

each of the above search engines) were then presented to the users for relevance feedback in random

order. The results produced by each search engine, as well as the re-ranked results produced by

PubSearch when given the same list of results are shown in tables 2.8, 2.9 and 2.10 respectively.

Table 2.8 Comparison between Microsoft Academic Search and PubSearch

Query #

Microsoft

PubSearch

Microsoft

PubSearch

Microsoft

PubSearch
Academic

Search

Academic

Search

Academic

Search

LEX LEX NDCG NDCG ERR ERR

59 0.52 0.72 0.89 0.91 0.5 0.66

60 0.47 0.86 0.8 0.85 0.48 0.97

61 0.88 0.80 0.89 0.97 0.97 0.73

62 0.99 0.96 0.97 0.96 0.98 0.98

34 0.74 0.71 0.97 0.95 0.64 0.62

35 0.45 0.49 0.85 0.89 0.38 0.41

36 0.49 0.46 0.98 0.96 0.35 0.34

37 0.69 0.75 0.92 0.99 0.61 0.65

58 0.44 0.46 0.9 0.94 0.33 0.35

38 0.67 0.79 0.89 0.99 0.62 0.73

39 0.70 0.53 0.99 0.98 0.57 0.44

40 0.46 0.45 0.92 0.92 0.35 0.35

41 0.30 0.69 0.9 0.95 0.31 0.56

42 0.50 0.46 0.98 0.93 0.38 0.36

52

43 0.24 0.25 0.91 0.93 0.21 0.22

44 0.45 0.46 0.89 0.91 0.37 0.39

45 0.29 0.29 0.91 0.93 0.27 0.28

46 0.74 0.71 0.94 0.94 0.63 0.61

47 0.31 0.53 0.91 0.97 0.34 0.45

49 0.46 0.49 0.95 0.98 0.33 0.35

54 0.71 0.74 0.95 0.98 0.62 0.64

55 0.53 0.46 0.96 0.9 0.45 0.38

56 0.25 0.24 0.97 0.95 0.18 0.18

57 0.48 0.77 0.87 0.98 0.48 0.72

The average percentage difference between PubSearch and Microsoft Academic Search is 15%

for the LEX metric, 2.6% for the ERR metric, and 11.7% for the NDCG metric. Statistical analysis

shows that for the ERR and LEX metric, the differences are significant at the 95% confidence level

according to the t-test and signed-rank test but not according to the sign test. The results are visualized

in figure 2.11.

53

Figure 2.11 Plot of the percentage difference between the PubSearch score and Microsoft Academic Search

score in terms of the three metrics LEX, ERR and NDGC

Table 2.9 Comparison between Google Scholar and PubSearch

Query #

Google
PubSearch

Google
PubSearch

Google
PubSearch

Scholar Scholar Scholar

LEX LEX NDCG NDCG ERR ERR

59 0.45 0.56 0.4 0.53 0.79 0.91

60 0.34 0.71 0.41 0.64 0.84 0.9

61 0.99 1.00 0.98 0.98 0.95 0.98

62 0.19 0.99 0.51 0.98 0.83 0.97

34 0.94 0.79 0.97 0.72 0.98 0.99

35 0.48 0.54 0.393 0.44 0.91 0.98

36 0.31 0.66 0.345 0.57 0.91 0.94

37 0.61 0.54 0.54 0.46 0.87 0.99

-40

-20

0

20

40

60

80

100

120

140
%

D
if

f

Query #

LEXGAP

NDCGGAP

ERRGAP

54

58 0.96 0.76 0.98 0.68 0.97 0.94

38 0.51 0.55 0.446 0.5 0.9 0.96

39 0.66 0.53 0.54 0.43 0.95 0.99

40 0.27 0.46 0.307 0.38 0.86 0.91

41 0.62 0.53 0.54 0.44 0.89 0.96

42 0.75 0.70 0.65 0.62 0.99 0.95

43 0.91 0.99 0.97 0.98 0.91 0.99

44 0.69 0.53 0.6 0.48 0.91 0.91

45 0.71 0.74 0.62 0.64 0.96 0.98

46 0.78 0.98 0.73 0.98 0.96 0.98

47 0.70 0.50 0.59 0.42 0.99 0.95

49 0.99 0.70 0.98 0.62 0.99 0.89

54 0.70 0.53 0.57 0.44 0.99 0.98

55 0.95 0.76 0.98 0.68 0.98 0.97

56 0.31 0.94 0.376 0.97 0.85 0.98

57 0.31 0.78 0.39 0.72 0.87 0.99

The average percentage difference between PubSearch and Google Scholar in terms of LEX is

39%, in terms of ERR metric is 4.6% and in terms of NDCG is 13.4%. The results of applying the t-

test, the signed-rank test as well as the sign test on the ERR metric shows that the improvement is

statistically significant at the 95% confidence level. However the same does not apply for the other

two metrics, although the t-test shows that the results for the LEX metric are also statistically

significant at the 93% confidence level. A visualization of the comparison results is shown in figure

2.12.

55

Figure 2.12 Plot of the percentage difference between the PubSearch and Google Scholar

Table 2.10 Comparison between ArnetMiner and PubSearch

Query #
ArnetMiner PubSearch ArnetMiner PubSearch ArnetMiner PubSearch

LEX LEX NDCG NDCG ERR ERR

59 0.56 0.72 0.88 0.94 0.6 0.66

60 0.27 0.75 0.8 0.97 0.35 0.68

61 0.36 0.80 0.87 0.97 0.46 0.73

62 0.80 0.95 0.96 0.96 0.73 0.98

34 0.95 0.76 0.97 0.95 0.98 0.68

35 0.75 0.75 0.99 0.99 0.66 0.66

36 0.50 0.51 0.9 0.91 0.43 0.45

37 0.55 0.59 0.91 0.93 0.51 0.6

58 0.73 0.69 0.95 0.92 0.63 0.6

38 0.53 0.55 0.85 0.89 0.49 0.53

39 0.45 0.46 0.9 0.93 0.34 0.36

40 0.46 0.74 0.88 0.98 0.41 0.65

41 0.70 0.54 0.87 0.89 0.61 0.51

-100

0

100

200

300

400

500

%
D

if
f

Query #

LEXGAP

NDCGGAP

ERRGAP

56

42 0.71 0.74 0.9 0.94 0.62 0.65

43 0.49 0.49 0.84 0.86 0.41 0.43

44 0.55 0.71 0.93 0.94 0.49 0.62

45 0.59 0.79 0.94 0.98 0.6 0.73

46 0.46 0.49 0.91 0.98 0.33 0.36

47 0.70 0.70 0.89 0.91 0.61 0.62

49 0.69 0.54 0.94 0.96 0.6 0.48

54 0.67 0.69 0.92 0.93 0.6 0.6

55 0.30 0.49 0.88 0.92 0.31 0.39

56 0.70 0.51 0.97 0.96 0.58 0.43

57 0.65 0.73 0.88 0.98 0.55 0.62

The average percentage improvement of PubSearch over the ArnetMiner results in terms of LEX score

is 19.9%, in terms of ERR is 4.1%, and in terms of NDCG metric is 12.6%.

Figure 2.13 Plot of the percentage difference between the PubSearch and ArnetMiner

-50

0

50

100

150

200

%
D

if
f

Query #

LEXGAP

NDCGGAP

ERRGAP

57

The results of all statistical tests are statistically significant for the LEX and ERR metrics, but

only the sign test shows statistical significance for the NDCG metric at the 95% confidence level.

Figure 2.13 visualizes these results.

2.7.4. Can PubSearch Promote Good Publications “Buried” in ACM Portal Results?

For the query “Web Information Retrieval”, because ACM Portal fails to return “The anatomy of a

large-scale hyper textual web search engine” paper within the first 5000 search results, we manually

added the “Google” paper into the top 50 results from ACM Portal and asked PubSearch to re-rank the

new list of 51 search results. The Page-Rank paper comes out in 5th place, immediately below the

following papers:

1. Contextual relevance feedback in web information retrieval (Limbu et al., 2006)

2. Concept unification of terms in different languages via web mining for information retrieval

(Li et al., 2009)

3. An architecture for personal semantic web information retrieval system (Yu et al., 2005)

4. An algebraic multi-grid solution of large hierarchical Markovian models arising in web

information retrieval (Krieger, 2011)

The papers appearing above the Page-Rank paper all share the following characteristics: (i) they

have all terms of the query appearing in the title, and (ii) they are more recent papers. Because of this,

our custom implementation of the TF heuristic promotes the other papers high in the result list so that

the Google paper ends up in the 2nd TF bucket, and then, its citation count alone cannot promote it

higher than the 5th position. Still, PubSearch manages to promote the Google paper in the top 5 results

which is much better than the other academic search engines we experimented with.

To further enhance our confidence in the ability of PubSearch to promote “good” publications —

for a particular user information need— that happen to appear much lower than the top ten positions

in the results list of ACM Portal, we ran a small experiment where the users ranked the top 25 results

of 5 queries. The results are very good, as the system shows again very significant performance

improvement against ACM Portal in all metrics considered, and in fact, it significantly improves its

performance gap over ACM Portal in terms of both the LEX and the NDCG metrics.

58

The results are shown in table 2.11. The percentage improvement of PubSearch over ACM Portal

on average in terms of the LEX metric is 460.98%, in terms of the ERR metric is 16.7%, and in terms

of the NDCG metric is 111.6%. All the results are statistically significant at the 95% confidence level.

The very high gap in terms of LEX score for the case of the top-25 results is exactly due to the fact

that good publications that are a good match for the user’s information needs are actually promoted

from the bottom of the list of the top-25 ACM Portal results to the top positions. The LEX score is

therefore a useful indicator when investigating the ability of ranking schemes to promote otherwise

“buried” publications high in the result list as it amplifies this effect to the maximum extent.

Table 2.11 Limited comparison between ACM Portal and PubSearch for the top-25 results of ACM Portal.

Q63 is the query ‘clustering “information retrieval”’

Query # ACM PubSearch ACM PubSearch ACM PubSearch

 LEX LEX NDCG NDCG ERR ERR

33 0.46 1.00 0.79 0.99 0.38 0.98

34 0.55 0.99 0.87 0.99 0.50 0.98

35 0.70 0.95 0.90 0.97 0.63 0.98

36 0.00 0.69 0.68 0.98 0.12 0.57

37 1.00 0.99 0.98 0.98 0.98 0.98

38 0.45 1.00 0.84 0.98 0.42 0.98

39 0.75 0.95 0.91 0.99 0.66 0.98

40 0.00 0.49 0.72 0.99 0.11 0.36

41 0.07 0.99 0.79 0.96 0.33 0.98

42 0.75 0.99 0.92 0.97 0.68 0.98

45 0.75 1.00 0.90 0.99 0.67 0.98

46 0.02 0.80 0.75 0.97 0.25 0.73

59 0.46 0.98 0.83 0.97 0.44 0.98

60 0.04 0.78 0.75 0.97 0.22 0.73

61 0.88 0.95 0.87 0.96 0.97 0.98

59

62 0.31 0.96 0.86 0.97 0.42 0.98

63 0.33 0.74 0.86 0.98 0.39 0.66

2.7.5. Run-time Overhead

The run-time overhead of our initial prototype requires to perform the re-ranking of the search results

given a query and a set of results from another engine (i.e. ACM Portal, or Google Scholar or Microsoft

Academic Search, or ArnetMiner) is in the order of three (3) seconds per document. This run-time

applies for a commodity hardware workstation. However, the computation of the TF-score (by far the

most compute intensive process in the whole system) for each document is independent of the other

documents in the result list, and therefore can be done in parallel so that the total computation time for

a full list of search results will still be in the order of seconds in a server farm. Furthermore, our

prototype is not in any way optimized for speed at this point. We are in the process of optimizing the

response time of the system to reduce the run-time processing requirements per document by one order

of magnitude to make the system commercially feasible.

60

3. Recommender Systems

3.1. System Architecture Overview

We have developed a commercial movie recommendation system (called AMORE) for a major Greek

Triple Play services provider. The provider uses the Microsoft Media Room® movie rental platform

that allows service subscribers to stream movies online. AMORE is implemented based on a Service-

Oriented Architecture (SOA) which aims to expose only the required interfaces to service consumers,

without revealing any implementation details. Similarly, AMORE retrieves all updated data, related

to user transactions, as well as available content items, via exposed data retrieval web services from

the provider’s side. This loose-coupling of the overall architecture design allows for flexible

integration of all involved subsystems.

Furthermore, AMORE, in addition to offering on-the-fly generation of recommendations, also

supports a daily update and caching of recommendations in an attempt to minimize computational

overhead in the deployment configuration which has limited computational resources. In order to

achieve that, AMORE is divided into the following components: i) the AMORE web service, ii) the

AMORE batch job process and iii) two different database instances that use the exact same data model.

As we will explain in detail in this chapter, the AMORE batch job generates and caches a predefined

number of recommendations for each active subscriber of the service, as well as overall top-n

recommendations (of all users), both of which facilitate the AMORE web service methods to retrieve

cached recommendations with the minimum number of operations.

In the following chapter we will describe the architecture of the AMORE system as well as well

as the design of the recommendation algorithms used. We have not been involved in any technical

aspect of the movie rental platform itself, which is entirely operated by the triple play provider, so

anything related to that system is considered irrelevant to the current work and will be skipped.

61

3.1.1. AMORE web service

The AMORE web service exposes a set of recommendation related methods. These methods can be

distinguished into: i) those that generate recommendations on-the-fly by processing user histories real-

time using different views of the database, bounded by specific time limits, and ii) those that simply

retrieve daily updated cached recommendations from DB.

Caching of recommendations speeds up system responsiveness to client invocation by eliminating

the overhead of having the recommender engine generate recommendations on-the-fly each time a

web service request is submitted. Having access to cached results, the web service can easily retrieve

recommendations with the minimum number of operations (at standard time O(1), by means of a

simple SQL select statement from a single table) to retrieve a specified number of recommendations

for a specific user. Also due to the fact that there are no significant variations in the watching behavior

of a single user account within very small intervals of time (within one or two hour units), caching of

the recommendations proves to be justified, and it is a matter of business related decision (which does

not related to the current discussion) on the frequency with which recommendations are going to be

updated at the movie rental front-end tier, although it is worth noting, that we are able to generate fresh

results every two hours approximately for a database containing nearly a year’s worth of transaction

data from approximately thirty thousand (30,000) users.

In addition to caching of results, there are cases of methods were caching cannot apply. These are

methods that offer service consumers the possibility to narrow down the user transaction history to a

specific subset bound by specific time limits based on which recommendations are generated. This

functionality allows service consumers to retrieve recommendations based on user histories of

different time slots within the day (we define as a time slot a three-hour interval, but the range is fully

configurable) with the aim to push different recommendations corresponding to each (or even a

sequential combination of more than one) time slot. Most likely, different kinds of users (bound with

a single account) have different watching behaviors at different time slots within a day, so to illustrate

with a rather simplified example; most likely, we would expect young children to watch movies during

morning hours, elderly people during early evening hours and adults during late evening hours. So

providing time-bound recommendations, allows the system to address preferences of users who

happen to watch movies at specific moments within a day mapped with certain time slots.

62

When the user logs into the triple play provider’s front-end screen, he is presented with custom

account-based recommendations, which are essentially retrieved by the front-end tier by calling the

respective web service method of AMORE that retrieves the latest cached results for the specific user.

As we will describe in the following section, the caching of results in DB, is performed by a batch job

that performs a series of tasks for the “offline” updating and caching of the recommendation results.

To facilitate the uninterrupted running of both —the web service and the batch job in parallel— the

system uses two databases (schemas) that we will refer to as the main and the auxiliary, that follow

the exact same data model. Having two schemas allows our system to serve web service requests by

retrieving cached results from one schema (for instance, the main) while the batch job uses the second

schema (in this case, the auxiliary) to store the updated results.

3.1.2. AMORE batch process

Since AMORE is configured to run in a Linux based OS, we have designed the batch process to run

as a CRON job. The CRON job is registered to run indefinitely at specified time intervals attempting

to spawn a new instance of the batch process, in case one is not already running. The batch process

runs a series of steps in order to update and cache new recommendations that the exposed web service

methods can retrieve upon completion of all steps. As already mentioned, the overall system

architecture includes the existence of two schemas (we will reference them as main and auxiliary) that

allow the uninterrupted, efficient service of web service requests, while at the same time updated

recommendations are generated as part of a background process. The batch process also controls the

data source references used by each component and is also responsible for updating them (by switching

pointers) upon process completion, as we will explain in detail later.

The AMORE batch process runs a series of steps sequentially. First, the process determines the

data source reference to use, which has to be the opposite of the data source currently used by the web

service. To illustrate, say that the web service uses the main data source reference, retrieving cached

recommendations from the main database, the batch process should then establish a DB connection

using the data source reference to the auxiliary schema, which must contain the most outdated

recommendations, since the web service always serves recommendation requests retrieving data from

the database containing the most recent recommendations.

63

The first real task that the batch process performs, is attempting to verify that all external, back-

end web services are responsive to submitted web service requests, the AMORE batch job calls two

provision web services (user and data respectively), in order to update the system’s database with the

latest data for all active users, and that includes all user transactions as well as the full list of available

content items. After all retrieved are stored in persistence, the system refreshes all memory caches

(user and item respectively) that will be referenced by recommenders in the recommendation

generation step. So after caches have been loaded and renewed, the process invokes the recommender

ensemble (described in-depth in the next section) in order to efficiently generate for each active user

the updated top-n recommendations and cache them, so that they can be later retrieved by the web

service upon process completion. A certain pre-specified number of recommendations is generated of

size that is consider to be sufficient in order to cover all different business requirements of the provider.

The provider, at a middle tier in the overall architecture, may perform some filtering on the generated

recommendation results by promoting at higher positions certain items which they consider to be

trending, or others that are deemed of high relevance to a specific user (by the recommender engine)

and are priced higher than other items in the list, which might occupy higher positions. Also there is a

business case where the provider might be even willing to eliminate certain items from the list (or

move them to lower positions in the rank), because they are lower (or even zero-) priced. But this

discussion is beyond the scope of the current work, and does not affect in any way the experiments

that we will present.

One of the frequently occurring issues that our system needed to address, concerns

recommendations that keep on appearing for a certain user (since the items are considered to be

relevant), but these items are never consumed by the user. Some of the main reasons that may cause

this is the fact that the user may have seen the recommended item in the past via a different

broadcasting medium, or the fact that a specific recommendation is not attractive enough, or even

highly priced based on the maximum reference price that a specific user is willing to pay. So in order

to avoid a situation where certain recommendations remain forever in the suggested recommendations

of a specific user, without being eventually consumed, we have devised a post-processing mechanism

that discounts the score assigned by our recommender ensemble for each item, proportionally to the

number of times that the specific item has been shown in the recommendation list of a specific user.

This would eventually cause recommendations that are shown, but are not consumed, to eventually

“fall off the charts” (see Lathia et. al. (2010) for a detailed evaluation of methods for solving exactly

64

this kind of temporal diversity issue in recommender systems; (Hurley et al., 2011) for a thorough

review of different approaches to the related problem of maximizing diversity to item

recommendations to users; Zhang & Hurley (2008) formulate an optimization problem for maximizing

diversity in recommendation lists subject to maintaining high relevance of the recommended items).

One additional frequent issue for recommender systems is the cold start problem which refers to

the inability of a recommender system to generate accurate recommendations for a specific user due

to lack of user data by means of transaction history. This is a frequent issue in cases of new users to

the service. Also the problem persists but takes a different form, in cases of users with very small

histories. This would still allow recommenders to come up with recommendation results, still

recommendations cannot be accurate enough until the user builds a transaction history that would

allow the system to generate recommendations with higher confidence. In order to address the first

part of the cold start problem which refers to new users with no transaction histories whatsoever, the

batch process generates a list of top-n recommendations, which corresponds to a sorted list of all items

in the DB, ordered using the lexicographic ordering rule. Specifically the ordering happens by

generating a vector of integer values vit for each item in the database of size n corresponding to the

total number of recommendations generated for each user at the previous step of the process. Each

element of vit contains the count value corresponding to the number of times that the particular item it

appeared in the ith position in the top-n result list of each user for which recommendations have been

generated.

As a final step, after all recommendations have been generated and successfully cached, the batch

process calls a web service method (only available to the process) that instructs the AMORE web

service to switch the active data source from the currently used schema to its opposite; after doing so,

the web service is able, upon request, to return cached recommendation of results stored in the schema

that the last process instance has populated. Similarly, the AMORE job updates a file that specifies to

the next process instance that will be spawned at some point by the CRON scheduler to use a data

source reference to the schema containing the most outdated results in order to repeat the

aforementioned process.

Furthermore, in order to ensure that all cached data as well as all data retrieved from persistence

at any point are consistent with the currently active data source, we have implemented a mechanism

65

that ensures and protects the system resources from “dirty” reads/writes. This mechanism is based on

a fast reentrant global read/write lock with the following properties:

1. A thread owning the write-lock may request (and get) the same lock in read- or write-

mode any number of times, but must call the corresponding release method for every time it

has called the request method in order for the locks to be eventually released

2. A thread owning a read-lock may request an upgrade to the write-lock, and the method

will grant the new type lock, unless at the time of request is at least one other thread having

the read-lock, in which case there is a danger of dead-lock; in such a situation a checked

exception is thrown

3. Threads executing a request for a read-lock will yield the first time if there exists a

thread waiting for the write-lock so as to avoid any possible live-lock issues

Given this global lock, we implement a simple pattern in all related methods for creating,

maintaining, and/or updating the in-memory caches: whenever a method needs to access the in-

memory caches, it must first obtain the global read-lock, whereas methods that need to update the in-

memory caches must first obtain the global write-lock. Upon start-up of the AMORE web-service, the

first thread started, spawns a new thread that obtains the global write-lock and starts loading the data

from the database into the in-memory caches, while the first thread waits for the new thread to

complete (calling the thread’s join() method). Once the new thread has loaded the latest snapshot of

the database, it releases the write-lock and finishes, returning control to the first thread to continue its

operation. Coordination between the AMORE batch job and the AMORE web service (two distinct

processes residing in distinct address spaces) is obtained as follows: when the AMORE batch job is

about to complete, as a last step, it calls the special AMORE web service method mentioned above,

which in turn, first obtains the global write-lock of the system, then switches the DB pointer to the

current active DB schema, then refreshes all in-memory caches of the system, and finally releases the

global write-lock, allowing pending recommendation requests (waiting to obtain the global read-lock)

to proceed using the most updated data. Figure 3.1 provides a visual representation of the overall

system architecture, as discussed above.

66

Figure 3.1 AMORE: High Level Architecture

 C
a
c
h
e
d
 T
O
P
 M
o
v
ie
 R
e
c
o
m
m
e
n
d
a
tio
n
s

S
e
rv
ic
e
 P
ro
v
id
e
r D

a
ta

U
p
d
a
te

H
O
L
 S
e
rv
ic
e
s
 D
a
ta

F
in
a
l R

e
c
o
m
m
e
n
d
a
tio
n

D
a
ta
 U
p
d
a
te

D
a
ta
 U
p
d
a
te

S
w
itc
h
 D
B
 re

q
u
e
s
t

67

3.2. Recommender Ensemble

3.2.1. Recommendation Approach

In configurations where no relevance judgments exist, there have been different attempts to determine

user preference by means of different available parameters. Specifically, in (Christou et al., 2012), the

authors introduce a novel content-based recommender that takes a pure machine learning approach for

performing movie recommendation functionality to subscribers of a Content-Delivery Network. The

introduced approach uses the percentage of watching time of a specific show by a specific user as a

criterion that determines the degree of preference that the user has for the watched show. Based on

that knowledge, the introduced recommender attempts to classify a certain movie into one of two

classes (“like” or “dislike”). A similar idea has been used in Bambini et al., (2011), where the authors

introduce an online classifier ensemble based on the Hedge-β algorithm to determine class membership

of previously unseen content in order to be able to recommend shows in the category “like”.

The aforementioned approach could not be applied in our own case, since there have been

absolutely no such information with respect to a particular user’s watching behavior or the total

watching time devoted to a certain movie item. Additionally, the complete absence of any user

relevance judgments or feedback led us to resort on an algorithmic approach that uses a user’s

transaction history, in terms of consumed content items, and based on that information alone, we

designed and implemented a hybrid recommender ensemble composed of a i) content, ii) item and iii)

user based recommender.

68

3.2.2. Content-based Recommender

To explain the algorithm behind the content-based recommender we implemented, we define set

{ }
1, ,, ,

ku u i u i
H p p= K to denote the set of item content item purchases as evidenced in the transaction

history of user u.

For each purchase ,u ip
in the set H, we have the following associated meta-data:

1. An ordered list of actors iA that appear in the content-item i (in order of appearance). Each

element in this list is an element of the full set of actors A known to the system.

2. An ordered list of directors iD that directed the content-item. Each element in this list is an

element of the full set of directors D known to the system.

3. An ordered list of producers iP that produced the content-item. Similarly, each element of

the list is a member of the set P of producers known to the system.

4. An ordered list of the genres iG of the content-item, each element of which is a member of

the full set of genres G that the service provider has defined.

5. The year iy the content-item was produced.

6. An ordered list of the countries iC that participated in the production of the content-item.

7. An ordered list of the languages iL in which the content-item is available.

8. An ordered list of the languages iS in which subtitles in the content-item is available.

9. The total duration of the content-item id (in seconds).

10. The price , 0u im ≥ the user paid to view the item.

11. The exact date and time ,u it the user started viewing the content-item.

Given the above information, our custom content-based recommender is able to compute the

following functions:

69

()

()

()

()

()

,

,

,

,

,

,

:

,

:

,

:

,

:

,

:

, 1

, 1

, 1

, 1

, 1

i u i u

i u i u

i u i u

i u i u

y
i u i u

A

u i

i x A p H

D

u i

i x D p H

P

u i

i x P p H

G

u i

i x G p H

Y

u i

i x y l p H

F x u m

F x u m

F x u m

F x u m

F x u m

∈ ∧ ∈

∈ ∧ ∈

∈ ∧ ∈

∈ ∧ ∈

− < ∧ ∈

 = + 

 = + 

 = + 

 = + 

 = + 

∑

∑

∑

∑

∑

 (3.1)

Similarly, the functions
, ,L S CF F F

are defined; all are cached in appropriate hash-tables in

memory so that the computations are only performed once, right after the system’s databases are

updated. Each of the above functions provides an estimate of the degree of “matching” of a user u with

the value of the appropriate attribute x: for example, ���"Tom	Cruise", "�668275"! represents the

system’s estimate of the matching of user “S668275” with actor “Tom Cruise”, and the estimate is

essentially the sum of euro the user has paid to see movies starring Tom Cruise plus the total number

of times the user saw movies starring that actor.

The prediction score of a content-item i that has not been already viewed by user u then is

computed according to the following formula:

{ }

, ,

, , , , , , ,

/j j

u i u i u

j A D P G L S C Y

R w R M
∈

= ∑ (3.2)

where the quantities , ,j

u i uR M are defined as follows:

(){ }
{ }

()

,, , , , , , , :

,

max , :

,

j

u i u

j

i

k
j j

u i i
x

j A D P G L S C Y i p H

k
j j j

u i

x j

M w j F x u x j

R w F x u

∈ ∈

∈

 = ⋅ ⋅ ∈
 

 = ⋅  

∑ ∑

∑
 (3.3)

and the set iY is defined as	"� = #$ ∈ ℕ: |$ −)�| < +,- where y
l is a non-negative parameter. The

score [], 0,1u iR ∈ is therefore a weighted non-linear combination of the “likeness” of the user towards

each of the content-item attributes as measured by the total percentage of the amount of money the

user has paid to view items with such an attribute as well as by the number of times the user has viewed

70

such items. The top-n recommendations are the n items currently available for viewing having the

highest ,u iR score for each user u.

The parameters ,y jl w as well as the exponents j
k for , , , , , , ,j A D P G L S C Y= were considered

to be independent non-negative variables to be optimized, with objective criterion the Recall metric

()10R specified in the experimental results section. Different values for the , ,y j jl w k produce

different recall metric values. We optimized these parameters, using again the popt4jlib Open Source

library via a standard Genetic Algorithm process.

3.2.3. Item-based Recommender

Our custom implementation of the k-NN-item-based recommender is as follows (we simplify

somewhat our description to avoid discussing issues that are not essential to the algorithm such as

availability of content-items, filtering of the user histories according to certain time-windows etc.).

Let U denote the set of all users that have subscribed at some point to the video-on-demand

service; for every user u U∈ let their unique sequential user-id be () { }1,sid u U∈ K , and similarly

let Ibe the set of all content-items known to the system, and for every item i I∈ let its unique sequential

item-id be () { }1,sid i I∈ K . For every user u U∈ we compute and store the (sparse) vector ()uh

with dimensions equal to I , whose j-th component () is defined according to the equation

 ()
,

() ,

: ()

1
u i u

u u i
j

p H sid i j

h m
∈ =

 = + ∑ (3.4)

Since relevance judgments are not available, we can only use price as the closest indication of

user preference for certain items. Although the computational results showed that this formula

improves quality of results, still the drawback of this approach is that prices are solely determined by

the service provider, and do not reflect true relevance judgment of the specific user.

1j I= K

71

Using these vectors, we build for each item i I∈ another (sparse) vector ()ig with dimensions

equal to U whose j-th component (1j U= K) is defined to be

 ()
,

()

1
, ()

0 , else

u i u

ui j

sid u j p H
Hg


= ∧ ∈

= 



 (3.5)

where uH denotes the number of purchases user u has made so far.

Having these data structures available in shared memory, a number of threads are then spawned

and execute in parallel without any further synchronization required, to compute for each item they

have been assigned to, the k most similar items to it, together with their corresponding similarity

values. Following loosely the SUGGEST recommendation library implementation (Karypis, 2001),

(Deshpande et al., 2004)), we define the similarity ()1 2,sim i i between two items 1 2,i i to be the

following quantity:

 ()

()
()

2

()1

1 2

()

: 0

1 2

() ()

,
i

j

i
j

j g

i i

g

sim i i
g g

>

=
⋅

∑
 (3.6)

where g denotes the number of non-zero components of the vector g (notice how the similarity

relationship between two items fails to be reflective i.e. () ()1 2 2 1, ,sim i i sim i i≠ for 1 2i i≠ in general).

This computation is fully parallelized in an “embarrassingly parallel” loop since no communication

or synchronization between the threads is required.

Having computed (in parallel) and stored for each item, the k most similar items’ indices and their

corresponding similarity values, the k-NN-item-based recommender computes the top-n

recommendations for a user u, using the following procedure: for each non-zero element of the vector

()uh , i , the k most similar items to i are examined, and those that are available and not already

purchased by the user are added to a hash-table uC whose keys are items j and values the sum of the

quantities ()() ()
/

u sid j
h q where q denotes the position in the list of k most similar items to j that

72

item i is found in. Once all the non-zero elements of ()uh have been examined, the n key-value pairs

in uC with the highest values are proposed as the top-n recommendations for the user u.

3.2.4. User-based Recommender

Our custom multi-threaded implementation of the k-NN-user-based recommender is completely

analogous to our custom implementation of the k-NN-item-based recommender. For every user u U∈

we define the (sparse) vector ()
ˆ

uh in I dimensions, whose j-th component (1j I= K) is simply

defined to be 1 if item isatisfying ()sid i j= was purchased by the user, and zero otherwise. Having

obtained these vectors in a global shared memory, a number of threads are spawned that independently

and concurrently execute in another embarrassingly parallel loop that does not require any

synchronization or communication among them. The loop in each thread computes for each of a set of

users it has been assigned to, the similarity between this user and every other user in the database,

according to the cosine-similarity formula ./��01, 02! = ℎ4�56! ∙ ℎ4�58! 9:ℎ4�56!::ℎ4�58!:;< (notice the

reflective relationship that holds in this definition of similarity between users: the “amount of

similarity” that 1u has with 2u is the same as that of 2u to 1u .) Once the k(=150) most similar users

to the given user u have been computed along with their similarity scores, these top k similarity scores

are normalized to sum up to unity (by dividing each score by the sum of the k scores). These k most

similar users to u define the k-Nearest-Neighbors of u.

Having created the above data structures in shared memory, our k-NN-user-based recommender

computes the top-n recommendations for a given user u by computing for each (available and not

already purchased) item in the history of the k most similar users to u, the sum of the (normalized)

similarity scores of the users that purchased that item; the algorithm then simply recommends the n

highest scoring items to user u.

73

3.2.5. Final Hybrid Parallel Recommender Ensemble

The final top-n recommendations for a particular user u are computed by first asking each of the three

recommenders (in parallel) to compute the top-5n recommendations for u and then computing for

each recommended item (by any of the individual recommenders), a linear weighted combination of

the recommendation values of all three recommenders, whereby if an item is not in the top-5n list of

some recommender, it assumes by default the value zero for this recommender. The weights

, ,i u cw w w of the item-based, user-based, and content-based recommenders were set (using the same

optimization process that was employed for the computation of optimal weights for the parameters of

the content-based recommender) to values approximately equal to 0.75, 0.15, and 0.1 respectively.

The resulting values are sorted in descending order, and the top-n items are returned. The same linear-

weighted combination process (with the same weights) applies when the recommender ensemble is

asked to produce the final value of a (user-id,item-id) pair recommendation (Amolochitis et al., 2013)

for a detailed discussion of fusing ordered lists of search results of various heuristics in an ensemble

to produce superior final ordered result lists).

3.2.6. Experiments with Other Base Recommender Algorithms

Two quite different base recommender algorithms are also very popular today. The first is the so-called

SlopeOne recommender algorithm (Owen et. al., 2011), which is not applicable in our case as it only

works with data-sets containing explicit user-ratings of items. The second is reduced-dimensionality-

based recommenders using Singular Value Decomposition (SVD, originally proposed as a method to

make recommender systems more scalable in the face of very large data-sets). Since our data-set is

more than 99% sparse, we expected that SVD-based top-n recommendation results on this data-set

would be inferior to the results of k-NN-based algorithms, as (Sarwar et. al., 2000) had reported

previously. Indeed, the results produced by Apache Mahout’s SVDRecommender implementation

were quite worse than the results obtained by the other Boolean user-based recommender

implementations available in Mahout, and for this reason we do not investigate their use any further

74

(similar quality results were produced using the Open-Source FunkSVD implementation (Ekstrand et.

al., 2011)).

3.3. Computational Results

In this section we compare the performance of the introduced recommender ensemble with that of a

Boolean recommender provided by the Apache Mahout Machine Learning platform. Due to the fact

that no relevance judgments exist in our available data, we chose to use a Boolean recommender of

Apache Mahout which requires no relevance judgments whatsoever, and specifically we have used a

Boolean recommender algorithm with Log-Likelihood similarity measure and threshold-based

definition of user-neighborhood, with threshold set at 0.3 (that we found to be the optimal threshold

level for our data-set) as well as the individual performance of each of the three recommenders

participating in our ensemble.

In order to evaluate the performance of the Mahout-based recommenders, we are have used the

Recall metric (10)R as defined in (Karypis, 2001). Recall (together with so-called precision-at-n

metric) is considered to be an appropriate metric in order to evaluate top-n recommendation results

similar to our case.

The experiment was performed under the following configuration; for each specific user in the

database, we have removed a single, randomly chosen item from the user’s watching history and then

apply the recommender ensemble in order to generate the top-10 recommendations for each user. In

case that the top-10 recommendations include the removed item, then the objective function value is

increased by one. The final objective function value, forming the ()10R value, is the resulting sum

divided by the total number of users in the database that had an item removed. With the given definition

of recall, and test-bed construction, the average precision-at-n ()P n satisfies () () /P n R n n= .

In order to optimize the objective function using a standard alternating-variables optimization

process, we have used the popt4jlib Open Source library (available for download at

http://www.ait.edu.gr/ait_web_site/faculty/ichr/pop4jlib.zip).

75

All test runs reported below were performed on a desktop PC with Intel Core-2 Quad CPU

running at 2.4GHz having 2GB RAM running Windows. The testing data-set, being a snapshot of the

data-base taken on Apr. 2013, comprises more than 20.000 users in total, with a little more than one

million purchases (views) in total. The total number of items in the database are a little less than 7.000,

but it is worth noting that the service provider’s database contains a significant number of duplicate

entries (entries with different item-ids for items with the same title, year of production, actors, directors

etc. with the possible exception that the genres in one entry are sometimes a subset of the genres in the

other entry) that we had to keep track of, so that we never recommend an item that the user has already

purchased, even though it is quite common in this data-set for the same user account to have purchased

the same item many times (often 10 times or more); this holds especially true for items that belong to

genres such as “Mickey Mouse’ Fun Club” and others that are available free of charge. The user-item

matrix’s non-zero entries are less than 0.9% of the total number of cells in the matrix.

Table 3.1 provides the recall R(n) values and associated running times Tn for the final ensemble,

its individual recommenders acting alone, and Apache Mahout, for n = 10, 20, 30, …100, for

recommendations produced using the entire history of each user, except a single item randomly chosen

from each user’s history to act as the “hidden” item to measure recall against (Karypis, 2001).

Table 3.1 Comparing recommenders’ quality and response times given the entire user histories (Apr. 2013)

Load Rec. Load Rec. Load Rec. Load Rec. Load Rec.

10 0,286 238 1076 0,158 238 17821 0,263 238 325 0,250 238 446 0,046 238 362,4

20 0,388 238 1176 0,232 238 17558 0,365 238 324 0,339 238 427 0,069 238 358,8

30 0,460 238 1325 0,286 238 17061 0,433 238 327 0,400 238 431 0,085 238 361,6

40 0,518 238 1452 0,326 238 17068 0,490 238 322 0,447 238 640 0,100 238 366

50 0,565 238 1618 0,367 238 17083 0,531 238 321 0,484 238 462 0,115 238 369,2

60 0,602 238 1729 0,403 238 17063 0,566 238 323 0,515 238 462 0,128 238 379,2

70 0,633 238 1752 0,435 238 17047 0,591 238 371 0,542 238 476 0,140 238 382,8

80 0,659 238 1989 0,465 238 17089 0,613 238 375 0,566 238 471 0,151 238 392,8

90 0,683 238 2161 0,489 238 17112 0,635 238 325 0,588 238 475 0,160 238 401,6

100 0,706 238 2814 0,512 238 17160 0,653 238 323 0,605 238 485 0,170 238 436,4

R(n)R(n) R(n)

AMORE Ensemble Apache Mahout AMORE Item-based

R(n)

AMORE content-based

n

Time (secs) Time (secs) Time (secs) Time (secs) Time (secs)

R(n)

AMORE User-based

76

Figure 3.2 Plot of the Recall metric R(n) as a function of n for various recommenders trained on the entire user

purchase histories

Figure 3.3 Plot of the response time as a function of n for various recommenders trained on the entire user

purchase histories

Recall Metric Comparison

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

10 20 30 40 50 60 70 80 90 100

n

R
(n

)

AMORE Ensemble

Apache Mahout

AMORE Item-based

AMORE User-based

AMORE content-based

Response Time Comparison

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

10 20 30 40 50 60 70 80 90 100

n

T
im

e
 (

s
e
c
o

n
d

s
) AMORE Ensemble

Apache Mahout

AMORE Item-based

AMORE User-based

AMORE content-based

77

A graphical illustration of the above results is shown in figures 3.2 and 3.3, showing recall and

response-times of the various recommenders. Quite surprisingly, Apache Mahout’s user-based

recommender lacks very significantly behind both the AMORE ensemble, as well as our custom

implementation of the user- and item-based recommenders in terms of recall (and equivalently,

precision), as well as response times, and it is only better than our content-based recommender in terms

of recall (but is much slower). This pattern holds for all values of n. As it can be easily verified, our

AMORE ensemble is more than 80% better than Mahout in terms of the R(10) metric, and is about 15

times faster than Mahout.

The ensemble’s R(10) value for those users whose history of purchases includes 50 or more items

is 0.316, quite above the overall recall value of 0.28575, implying that for low values of n the system

is able to better understand the preferences of users with a large history of purchases. However, the

ensemble R(30) value is 0.475 for those users having made 50 purchases or more, which is now much

closer to the overall R(30) value of 0.45995, showing that as n gets larger, the recall value for the

ensemble is approximately the same between users with small purchase histories and those with large

ones.

Notice that the recall values obtained compare well with the best values obtained for much more

controlled data-sets, such as the movie-lens data-set where the ratings information that is made

available for each user is the true rating the particular user has given to the item, as opposed to our

data-set that only contains the purchase history of each user-account (that is often used by all members

of the household). To alleviate this additional problem with our data-set, we have provided an

additional feature to our algorithms, namely the ability to train them using only those content-items

seen by the user within a particular time-window. The rationale behind this choice is that by narrowing

the user history to items seen for example during prime-time, the chances that this user history is the

union of more than one actual person in the household should be reduced, and therefore, the accuracy

of the system should be increased. In table 3.2 we show the results of running the various

recommenders trained using only items that were seen by the users during a time that overlaps with

the “prime-time” window between 9 p.m. and 1 a.m. The results again show a very clear superiority

of our ensemble, even though they do not improve upon the results obtained when training the

classifiers with the entire history of user purchases, thereby the hypothesis that time-windows can help

narrow down the persons using the service from each user account does not have statistical support.

78

The quality of the results is visualized in figure 3.4. Regarding running times, our ensemble is between

1.98 and 6.46 times faster than Apache Mahout.

Table 3.2 Comparing recommenders’ quality and response times given the history of user purchases that

occurred between 9p.m. and 1a.m. (data-set of Apr. 2013)

Figure 3.4 Plots of the Recall metric R(n) as a function of n for various recommenders trained on user histories

on the interval 9p.m. to 1a.m.

Load Rec. Load Rec. Load Rec. Load Rec. Load Rec.

10 0,243 241 498 0,165 241 4531 0,223 241 243 0,202 241 259 0,062 241 999

20 0,334 241 578 0,237 241 4529 0,314 241 242 0,282 241 401 0,089 241 1009

30 0,401 241 704 0,293 241 4431 0,379 241 253 0,335 241 399 0,111 241 1026

40 0,453 241 872 0,339 241 4482 0,428 241 243 0,381 241 396 0,133 241 1008

50 0,495 241 1043 0,373 241 4459 0,466 241 246 0,416 241 399 0,151 241 1061

60 0,534 241 1040 0,409 241 4489 0,496 241 240 0,444 241 401 0,167 241 1042

70 0,566 241 1272 0,439 241 4434 0,521 241 244 0,471 241 404 0,183 241 1054

80 0,593 241 1507 0,470 241 4435 0,543 241 247 0,495 241 403 0,195 241 1076

90 0,620 241 1798 0,499 241 4444 0,562 241 246 0,514 241 405 0,208 241 1094

100 0,642 241 2170 0,518 241 4524 0,578 241 247 0,533 241 405 0,217 241 1128

n

AMORE Ensemble Apache Mahout AMORE Item-based

R(n)

Time (secs)

R(n)

Time (secs)

R(n)

Time (secs)

R(n)

Time (secs)

AMORE User-based AMORE content-based

R(n)

Time (secs)

Recall Metric Comparison

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

10 20 30 40 50 60 70 80 90 100

n

R
(n

)

AMORE Ensemble

Apache Mahout

AMORE Item-based

AMORE User-based

AMORE content-based

79

We attribute the much faster response times of our system to two main reasons:

1. a sophisticated multi-threading design and implementation that allows the software to utilize

100% of the available cores of the CPU and obtain essentially linear speedups. To achieve

this performance, each running thread never creates any objects on the heap (that

dramatically reduce parallel performance) using the operator new and of course, does not

have to obtain any synchronization locks as they only write data in different areas of the

same arrays and do not require any data computed in parallel from the other threads

2. a better-suited implementation of sparse vectors for k-NN-based implementations of

recommender algorithms than the one available in the Colt numeric library that was adopted

for Apache Mahout’s core numeric computations, combined with a very fast implementation

of thread-local object pools for light-weight objects that make it possible for the computing

threads never to call the new operator as stated in reason #1 above.

As another experiment, we have deleted from the snapshot of our database taken on Apr. 2013,

all user purchases that occurred during the last two weeks recorded in the system, and have trained the

system with the remaining older data, to see the levels of the precision and recall metrics on this

differently constructed test dataset. The plots in figure 3.5 show how average precision, recall, and the

combined F-metric vary with different recommendation list lengths (measured in points that are

multiples of 5 and 8). The reduced recall values are expected since the system must now be able to

find not just one of the items the user has selected at any random point in the past, but the items the

user saw in the last two weeks: but within the last two weeks, items made available within that time-

frame, may have not been seen yet by a statistically significant number of users so that the system can

“understand” to what other items they are similar with, thus the drop in the recall values.

We have performed an empirical small-scale test where we asked 8 volunteer users (other than

the authors) to explicitly state the relevance (like/dislike) of the top-10 recommendations the systems

produced for them, after declaring just five of their favorite movies. The precision of the results is

shown in figure 3.6, and is much more encouraging. The significant difference between explicitly

stated user-relevance and calculated system accuracy from user histories can be attributed to many

factors, the most prominent of which would be the fact that users are very likely to have already seen

in the theaters their favorite movies that the system calculates for them, or the sometimes high pricing

of specific content items available for viewing.

80

Figure 3.5 Plots of Precision, Recall, and F-metric for the AMORE ensemble when the test-data are the last two

weeks of user purchases. The F-metric is maximized at n=10

Figure 3.6 Empirical average AMORE Precision-at-n measured after users have stated exactly 5 of their most

favorite movies

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

n

Precision

Recall

F

Precision-at-n

0,56

0,58

0,6

0,62

0,64

0,66

0,68

0,7

0,72

0,74

0,76

1 2 3 4 5 6 7 8 9 10

n

P
re

c
is

io
n

Precision-at-n

81

Finally, in figure 3.7 we show how AMORE performance has evolved over time.

Figure 3.7 Temporal Evolution of AMORE and Mahout Performance

The latest experimental results on system recall and response times (Sep. 2013, on a database of

more than 26.000 users and more than 1.9 million views) show that AMORE outperforms Apache

Mahout by more than 100% in terms of the R(10) metric, and more than 6300% in terms of speed!

AMORE has been increasing its performance as time passes by, by more than 13.8% between April

and Sep. 2013. Mahout’s user-based recommender (using the Log-Likelihood metric) on the other

hand, dropped its performance by more than 10% in the same time interval.

In Cremonesi & Turrin (2009) and Bambini et al (2010), the authors showed that in their own

production environments, the recall rate of item-based recommenders may deteriorate as time passes

by, due to cold start issues and the fact that once new users view so-called “easy-to-recommend” items

(i.e. block-busters), the task of the recommender engine becomes much more difficult. In contrast, our

results indicate that the combination of our custom item-based recommender, user-based, and content-

based, leads to a system that evolves so that it improves its recall rate as time passes, and the

improvement is significant.

Recall Curves Temporal Evolution

0,000

0,100

0,200

0,300

0,400

0,500

0,600

0,700

0,800

0,900

10 20 30 40 50 60 70 80 90 100

N

R
(N

)

AMORE 4/2013

Mahout 4/2013

AMORE 9/2013

Mahout 9/2013

82

Finally, we have performed a series of experiments using an alternative ensemble configuration

consisted of the: i) Content and ii) Item based recommender (instead of the three recommenders of the

original ensemble). We have measured the performance of the particular ensemble using the R(n)

metric and we depict the results in figure 3.8.

Figure 3.8 Recall metric R(n) using an alternative ensemble (consisted of: i) Content and ii) Item based

recommenders)

In table 3.3, we compare the performance of the original (Content, Item, User based) ensemble,

with the alternative (Content, Item based). The results show that the original 3-recommender ensemble

outperforms the alternative 2-recommender in terms of the R(n) metric for all different values of n.

Table 3.3 Comparing the original (Content, Item, User) AMORE ensemble with the alternative (Content, Item

based)

n

R(n)

AMORE

ensemble

Content, Item based

ensemble

10 0.286 0.200

20 0.388 0.292

30 0.460 0.357

40 0.518 0.399

50 0.565 0.438

60 0.602 0.461

0.200

0.292

0.357
0.399

0.438
0.461

0.481 0.500 0.514 0.526

0.000

0.100

0.200

0.300

0.400

0.500

0.600

10 20 30 40 50 60 70 80 90 100

R
(N

)

N

83

70 0.633 0.481

80 0.659 0.500

90 0.683 0.514

100 0.706 0.526

3.4. User & System Interfaces

AMORE recommendations are shown to the service subscribers on their TV-screen in a special screen

shown in figure 3.9. The first row shows the recommended movies for the user account, whereas the

second row immediately below it shows the month’s most popular movies.

Figure 3.9 AMORE End-User On-TV-Screen Interface

84

While figure 3.8 shows a screen-shot of the user interface as seen by the end-user (the service

subscriber), AMORE offers a variety of other interfaces. In figure 3.10, we show a SOAP-UI snapshot

of the WSDL interface that AMORE exposes to its consumers, that simply consists of item

recommendations for a particular user subject to certain constraints (such as time-window constraints,

item-availability constraints etc.).

Figure 3.10 AMORE WSDL interface (SOAP-UI screenshot)

85

Figure 3.11 AMORE Developer Desktop UI

In figure 3.11, we show a developer GUI, developed particularly for the purposes of easier testing

of the recommendations produced by AMORE. The developer GUI connects to the same databases

that AMORE connects and consumes the AMORE web services, but allows the user to see much more

quickly most information relevant to a user and their past choices as well as the recommendations the

system makes for them, thus allowing easier testing and validation of the system. This GUI was the

tool used to measure the empirical performance of the system regarding precision-at-n P(n) for our 8

volunteer users.

86

4. Quantitative Association Rules Mining

4.1. Why Quantitative Association Rules?

Quantitative association rules, refer to a special type of association rules of the form of S implies I,

where S is the rule’s antecedent and I is the rule’s consequent, both of which consist of a set of

numerical or quantitative attributes. In contrast, Boolean association rules, also of the form S implies

I, are consisted of categorical (nominal or discrete) attributes. The quantitative aspect of the association

rules, allows for a wide range of application in different types of settings containing transactional data.

Such transactional data can be found for instance in e-commerce applications.

During recent years, there has been an emergence of such e-commerce services (Kotsiantis et al.,

2006), which signals a need for efficient recommendation algorithms that address the various issues

that are raised. In such a setting, traditional data mining techniques, including association rules mining

are very frequently used (Sarwar et al., 2000) and as the amount of available, consumable content

increases, price proves to be, in many cases, a determining factor that motivates certain consuming

behavior.

Furthermore, certain online services, including video-on-demand services offered by triple play

providers, which charge a certain monthly fee to users of their services have an even more limited

potential of making significant additional profits (beyond income coming from subscription fees) since

users usually expect to get most movies for free, since they have already paid in advance for the

benefits of the service. Therefore, in such a setting, which contains users who prove to be skeptical in

paying additional charges for streaming a movie, price is perhaps the most important factor that would

motivate their decision to consume the item, or not.

Being able to model patterns of consuming behavior, in relation to certain prices (deemed to be

attractive by users), provides valuable knowledge for the design of efficient recommender systems.

Item associations that take into consideration numerical attributes, like price, can be efficiently

represented via quantitative association rules, and mining such rules, proves to be a very powerful

recommendation technique.

87

We have introduced an algorithm for mining quantitative association rules by processing a

number of user histories from transactional databases containing numeric attributes, in order to

generate a set of association rules with a minimum support and confidence value. The generated rules

show strong relationships between certain items that have been consumed at specific price levels,

information that is used in a novel recommendation post-processing algorithm, that uses the generated

association rules in order to improve the quality (in terms of recall) of an original set of

recommendations. We have experimented extensively with available production data from a major

triple play services provider, as well as a publically available dataset.

Finally, we have implemented a custom synthetic dataset generator that allows for the generation

of different datasets (under different parameters), simulating e-commerce related scenarios with

respect the number of users and their respective number of transaction in different cycles, as well as

price fluctuations based on demand changes.

4.2. Algorithm Overview

In this section the design of the Quantitative Association Rules Mining (QARM) algorithm is

presented.

Specifically, QARM is an algorithm for computing all Quantitative Association Rules (QAR)

from a transactional database D containing “user histories” of the form: user u purchased a set of {i,p}

pairs, where i corresponds to the item purchased and p corresponds to the price at which item i has

been purchased. All generated QARs are of the form: “IF a user has paid at least
1 kA Ap pK for

products 1 kA AK , THEN such a user would be willing to pay Cp for product C .

Apart from the database of “user histories”, the algorithms requires as input a minimum required

support value s as well as a minimum required confidence valuec. The output of the algorithm includes

all QARs of the aforementioned form having support and confidence above the minimum specified

thresholds.

88

4.3. Algorithm Design

A detailed description of the QARM algorithm follows.

First QARM calls the method computePriceLevelsIncreasingOrder(D) that computes all different

price levels p that occur in D and sorts them in increasing order 1 20 np p p≤ < <K . The total number

of distinct price levels n, which is equal to the size of set p is returned by the method sizeof (p).

Next, the algorithm uses the FP-Growth algorithm to generate all frequent item-sets sF with

supportsor higher, assuming zero price level, i.e. by treating the database as a qualitative database

where all prices paid were exactly 0.

The algorithm then defines the following sets: R containing all QAR that are mined by the

algorithm, and set C containing all candidate association rules that the algorithm needs to examine.

Specifically, set C is populated as follows: For each i, in each frequent item set f in the set of sF a new

candidate rules is formed. So for each item i in the frequent item set f, the algorithms forms a new

candidate rule where i is placed as the consequent I of the rule, and all other items in f are placed as

antecedents S of the rule. The newly formed candidate rule is then placed in set C. Note, that the

algorithm considers only those frequent item sets f where the total number of items is higher than 1.

After set C is populated, QARM performs for each candidate rule r that is member of C the

following process:

Defines set T which is a stack of sets of pairs of the form { }()1,k nA p p p∈ ∈l K .

For each price level pi of p (in decreasing order) QARM sets the price of consequent item I to pi

by defining a set Q consisted of pairs of items of the form (I, pi).

Definition 3.1: SUPPORT (r | Q)

SUPPORT (r | Q) calculates the support value s for a rule ()|r S I Q= → equals the number of users

that purchased each of the items in { }S I∪ at a price at least equal to the price specified for that item

89

in Q divided by the total number of user-histories in the database. If for an item, no price is specified

in Q , the condition is that the user has purchased the item (for free or for any price).

QARM invokes method SUPPORT (r | Q) and if the constraint ()|SUPPORT r Q s< holds,

meaning that the output of the SUPPORT method is below the minimum required support threshold s

then the algorithm skips the current iteration and proceeds to the next value for pi.

Alternatively, the algorithm continues with the current iteration and pushes Q onto T. While T is

not empty, the algorithm pops a Q from T and iterates over each element J contained in set S that is

not already part of set Q, and for each such element it further iterates over all different price levels

values (sorted in ascending order). The algorithm then creates set Q΄which is consisted of all elements

in set Q in addition to a new pair of item J at a price specified in the current iteration step (see previous

statement).

Definition 3.2: CONFIDENCE: A rule ()|r S I Q= →

A rule ()|r S I Q= → has confidence c that equals the number of users that purchased each of the

items in { }S I∪ at a price at least equal to the price specified for that item in Q divided by the number

of users that purchased each of the items in S at a price at least equal to the price specified for that

item in Q . If for an item, no price is specified in Q , the condition is that the user has purchased the

item (for free or for any price).

Returning back to the description of QARM, and the main algorithm flow, if the constraint

() ()| |SUPPORT r Q s CONFIDENCE r Q c′ ′≥ ∧ ≥ (1) holds, meaning that the output of the

SUPPORT method is above the minimum required support threshold s as well as the output of the

CONFIDENCE method is above the minimum required confidence threshold c, then the algorithm

proceeds otherwise, the algorithm examines whether the condition ()|SUPPORT r Q s′ < holds and

if so, breaks the current iteration, returning to the iterator that examines next J item, or otherwise, the

algorithm control returns to the ascending price iterator.

90

Returning back to the normal flow where condition (1) holds, the algorithm then calls method

Add-non-dominated ()|r Q′ to R and pushes Q΄onto set T.

Definition 3.3: Add-non-dominated ()|r Q to R

The operation “Add-non-dominated ()|r Q to R ” will add the QAR ()|r Q into the QAR-set R

only if R does not contain already another rule ()|r Q′ ′ that dominates the rule to be added. A rule

()|r S I Q= → is dominated by another rule (),r S I Q′ ′ ′= → if:

 S S ′⊇ AND

the consequent’s price for r ′ is higher than the consequent’s price in ()|r Q AND

() ()| |SUPPORT r Q SUPPORT r Q′ ′≤ AND

() ()| |CONFIDENCE r Q CONFIDENCE r Q′ ′≤ AND

(), : (,)A p S A p S p p′ ′ ′∀ ∈ ∈ → ≤ .

When a rule ()|r Q is added onto R , the function must also ensure that it will remove from the set R

any rules dominated by ()|r Q . The algorithm then proceeds with all subsequent iterations up until

all candidate rules are processed, or a specified maximum limit of number of rules to process is reached.

A code representation of the QARM algorithm follows.

Definition 3.4: QARM algorithm

Begin

0. Let p all different price levels that occur in D in ascending order 1 20 np p p≤ < <K .

1. Let sF the set of all frequent item-sets sF

2. Let ;C R= ∅ = ∅ .

3. foreach frequent k-itemset , 2k sF k∈ ≥l do:

 3.1. Create the set (){ }1 : ,k kH r S I S I I= = → = − ∈l l .

91

 3.2. Set 1C C H= ∪ .

4. endfor.

5. foreach rule ()r S I C= → ∈ do:

 5.1. Let T = ∅ . // T is a stack of sets of pairs of the form { }()1,k nA p p p∈ ∈l K

 5.2. foreach 1i n= K do:

 5.2.1. Let (){ }, iQ I p= . // set the price of Ito ip .

 5.2.2. if ()|SUPPORT r Q s< continue;

 5.2.3. Push Q ontoT .

 5.2.4. while T ≠ ∅ do:

 5.2.4.1. Pop a Q from T .

 5.2.4.2. foreach
(),A p Q

J S A
∈

∈ − ∪ do:

 5.2.4.2.1. foreach 1j n= K do:

 5.2.4.2.1.1. Let (){ },
j

Q Q J p′ = ∪ .

 5.2.4.2.1.2. if () ()| |SUPPORT r Q s CONFIDENCE r Q c′ ′≥ ∧ ≥

 5.2.4.2.1.2.1. Add-non-dominated ()|r Q′ to R .

 5.2.4.2.1.2.1. PushQ′ onto T .

 5.2.4.2.1.3. else if ()|SUPPORT r Q s′ < break.

 5.2.4.2.1.4. endif.

 5.2.4.2.2. endfor. // j

 5.2.4.3. endfor. // J

 5.2.5. endwhile. // T

 5.3. endfor. // i

92

6. endfor. // r

7. return R .

4.4. Recommender Post-Processor

4.4.1. Overview

The original set of recommendation results can be enhanced with the use of a Post-Processor that

updates the results based on knowledge extracted from the generated set of quantitative association

rules under minimum support and confidence values. The Post-Processor aims to promote certain

recommendations that are part of the consequent of quantitative association rules that fire for a specific

user, therefore are considered to be relevant for the specific user. The number of positions that a

consequent item is promoted in the original recommendation list, depends on the confidence value c

of the rule as well as whether the item exists in the original recommendation list. Specifically an item

that is recommended by both a fired rule as well as a recommender, is promoted at higher positions

(due to the increased confidence that the item is indeed relevant to a user) than an item that is only part

of a fired rule. Also the confidence value of the fired rule boosts the number of positions to promote.

Nevertheless, the algorithm considers that items contained in fired rules, to be of high relevance,

therefore promotes them whatsoever in the expense of other items contained at the lowest ranks of the

original recommendation list.

4.4.2. Post-Processing Algorithm

Given a set of recommendations L generated for user u and a set of quantitative association rules R,

the processor examines which of the rules in R fire for user u. A rule r fires for user u only when: i) u

has consumed all items in the antecedent S of r at a price at least equal to the one specified in S and ii)

u has not consumed the item in the consequent I of r. The set F corresponds to all rules that fire for

user u.

93

For each fired rule f in F the algorithm runs the following process: First, the algorithm defines as

orgIdx the index of the consequent item in the original recommendation list. In case the item is not

contained in the original list, the value of orgIdx is equal to “-1”, otherwise orgIdx has a value greater

or equal to zero, and less than or equal to the length of the original recommendation list minus “1”

(assuming a 0-based indexing scheme). Then the value of newIdx is calculated by calling calcNewIdx

which receives as parameters orgIdx, the rule’s confidence value c as well as the size of the original

recommendation list, recListSize. The value of newIdx corresponds to the index position that the

consequent item is going to be placed in the original list, and is calculated as follows:

Define method calcNewIdx (orgIdx, c, recListSize).

0. Let isNew ← false.

1. if orgIdx = -1 then

a. isNew ← true.

2. end if.

3. Let addPosToPromote ← isNew ? 7 : 8.

4. Let totalPosToPromote ← calcNumOfPosToPromote(c) + addPosToPromote.

5. Let startIdx ← isNew ? recListSize -1 : orgIdx.

6. Let newIdx ← startIdx – totalPosToPromote.

7. if newIdx < 0 then

a. newIdx ← 0.

8. end if

9. return newIdx.

Define method calcNumOfPosToPromote (c).

1. Let confMin ← 0.4.

2. Let confThreshold ← 1.5.

3. Let confThresholdStep ← 0.2.

4. Let confRatio ← c / confMin.

5. Let confRatioDelta ← confRatio – confThreshold

6. Let numOfPos ← confRatioDelta / confThresholdStep.

94

7. return numOfPos.

After the Post-Processor calculates the values of orgIdx and newIdx respectively, it applies the

re-ordering of the original recommendation list by moving the item, originally at position orgIdx to the

position newIdx, pushing at the same time all elements with original index less or equal to newIdx one

index position lower, eventually causing the last item (in the original list) to be eliminated.

4.5. Synthetic Dataset Generator

The proposed QARM algorithm has high applicability in different e-commerce settings, therefore we

performed a series of simulations for different e-commerce related scenarios. These simulations

allowed the evaluation of the performance of QARM under different datasets with specific

characteristics as we will explain in the following section. We have designed and implemented a

Synthetic Dataset Generator (SDG), a program that allows the generation of datasets according to

specific predefined configuration parameters.

4.6. Configuration Parameters

The SDG configuration parameters, which are specified prior to the generation of a dataset instance,

include information such as: i) the number of users as well as ii) the number of items that exist in the

dataset, iii) the number of cycles to run; i.e. arbitrarily defined, short-term periods during which items

are consumed (say, weekly or biweekly) and iv) the maximum number of items that may consumed by

a user during a cycle. Additional configuration parameters include: v) the different price levels, i.e. an

ordered collection of distinct price values that are randomly assigned to each generated item, vi) the

different maximum reference price levels, i.e. an ordered collection of distinct maximum price values

that are randomly assigned to each generated user, representing the maximum price that the specific

user is willing to pay for every available elastic item.

95

4.7. Item Demand Elasticity

All generated items are distinguished into one of two main categories; a) elastic and b) inelastic items.

We consider as inelastic, items that are deemed of high popularity, to the point that price has

absolutely no effect on their high demand levels. So inelastic items will be consumed by a user

regardless of the maximum reference price level constraint that a specific user has towards elastic

items.

Contrary, we consider as elastic, items whose demand has a direct relationship to their price, and

therefore, the criterion based on which these items are consumed (or not) is whether the item price is

below (or equal to) the maximum reference price that a specific user is willing to pay for an elastic

item.

4.8. Dataset Generation Process

Initially SDG generates the configured number n of items I. All generated items have id values of

integer type which is assigned using an incremental approach.

4. Set I ← {}.

5. Set n ← 1000.

6. Set idx ← 1.

7. foreach idx in n do

a. Set c ← createItem(idx).

b. add (c) in I.

8. endfor

9. end.

Where createItem(idx) creates a new item instance with id value equal to the specified idx parameter.

Each generated item is assigned: i) elasticity type (inelastic or elastic) and ii) price. With respect to

the elasticity type, our implementation offers two alternative ways of assigning values to items; either

96

a) creates a specific number of inelastic items that equals a configured percentage of the total set of

generated items, or b) for each generated item, assigns the elasticity type by generating a random

Boolean value. Finally, the price is randomly assigned from a specific fixed, ordered collection of

distinct price values.

At a second step, SDG generates the configured number of users. We have introduced a structure

named user groups which corresponds to the different user categories, each of which is characterized

by a distinct maximum reference price value that each user belonging to the group is willing to pay for

every available elastic item in the dataset. We then randomly place each of the generated users in one

of the previously mentioned user groups so that they subscribe to the maximum reference price value

of the group she belongs to.

At a third step, SDG generates a specific number of mock association rules, which are fully

configurable with respect to the number of items that will form the antecedent of the rule (the

consequent always has one item). Each mock rule is generated by randomly picking items to fill the

antecedent and consequent of the rule respectively. The only constraint is that all randomly picked

items are not already part of the rule either as part of the antecedent or the consequent. Generated mock

rules are then persisted for future reference.

At a fourth step, SDG runs the dataset population process using the generated item and user sets

by simulating a specified number of transactions for each generated user for a specified number of

cycles. Each cycle simulates an arbitrary short-term period during which a maximum, pre-configured

number of items may be consumed. SDG runs the following simulation:

4.8.1. Generation Cycle

In the case of the first cycle, the program generates the first instance of the dataset. For each

different user group, the program processes all users belonging to the group level. Each user in the

group randomly picks a specified number of items from the collection of available items with the

following logic.

97

Our simulation, aims to model the real-case scenario where certain items are considered to

be more attractive to users compared to other items. We model this variance in popularity with set

M, which corresponds to a set of weight values for each respective item in set I (an element of set

M is mapped based on its index with the respective item in set I). The weight value increases, as

the id value increases, therefore items with higher id values are considered as more popular than

those with lower id values.

1. Set M ← {}.

2. Set n ← 1000.

3. Set exp ← 0.6.

4. Set idx ← 1.

5. foreach idx in n do

a. Set id ← getItemId(I, idx).

b. Set m ← id exp.

c. add m to M.

6. endfor

7. end.

Where getItemId(I, idx) returns the id of the item at index idx in the set of items I.

Define method chooseRandomItemFromSet.

1. Set r.

2. Set b← -∞.

3. Set d ← 20.0.

4. Set seed ← 7.

5. Set idx ← 1.

6. foreach m in M do

a. Set v ← m + nextGaussian(seed) * m / d

b. if (v > b) then

i. r = getItemId(I, idx)

ii. b = v.

c. endif

d. idx ← idx +1.

98

7. endfor

8. return r.

9. end.

Where r is the randomly picked item from the set of items I and nextGaussian(seed) returns the next

pseudorandom, Gaussian ("normally") distributed value with mean 0.0 and standard deviation 1.0.

In case that the user has picked an inelastic item, then the item is immediately consumed by the

user. Contrary, in case that the user has picked an elastic item, then the program examines whether the

maximum reference price specified in the group (that the specific user belongs to), is higher than or at

least equal to the actual price of the picked item, and if so, the user consumes the item, otherwise the

item is discarded. When the aforementioned process completes for the first cycle, then an initial

instance of the dataset is generated containing the user transaction history generated during the cycle.

4.8.2. Update Cycle

For all following cycles, SDG applies the update process logic, maintaining at the same time

snapshots of the dataset for each specific cycle, is then used for later reference. The update process is

very similar to the generation process, in the sense that the steps followed are identical with the

exception of one additional step applied in the beginning of the cycle (prior to performing the process

for each user) that aims to adjust the item prices based on the items’ change in demand. This last step

is applied only while processing a cycle with index value greater than “2” (assuming a 1-based

indexing scheme).

In the price adjustment step, SDG examines for each item, the demand change, d as witnessed

during the previous two cycles. So for each item, the program calculates d, which is defined to be the

ratio of the absolute demand change over total user histories. At configuration parameter level, the

lower and upper ratio limit values for d, are specified. If the demand change, d, is below the lower

limit, the item price is lowered by one unit, and similarly, if d is higher than the specified upper limit,

its price is increased by one unit.

99

This latter step allows SDG to simulate some real-world consuming behavior where prices

fluctuate as a function of their change in demand, and eventually reach a state of equilibrium (with

respect to user’s maximum reference price levels) after a sufficient number of cycles.

Finally, SDG iterates the structure containing all cycle-specific data to saves the entire generated

dataset into file.

4.9. Experimental Results

4.9.1. Metric

In order to evaluate the performance of the quantitative association rules mining algorithm over the

synthetically generated datasets (under different parameter values), we use the precision metric, which

in this context is defined as the ratio of the sum of all (rule) hits over the sum of all (rule) hits plus the

sum of all (rule) misses:

�=>�/./?@ = ∑ℎ/B.
∑ℎ/B. +	∑ 	�/..>.	

We define that: a rule r fires for user u when all antecedent items S of r have been consumed by

u at prices that are at least equal to the ones specified in r. For all rules R that fire for user u, we define

as a hit those rules whose consequent set I (in our case, all consequents sets I are of size “1”) contains

an item that has been consumed by u at a price at least equal to the one specified in the rule. Similarly,

we define as a miss those rules whose consequent contains an item that has been consumed by u at a

price above the one specified in the rule. The sum values of total hits and total misses are calculated

by examining the total number of hits and misses respectively for all active users in the database which

are included in the current experiment

4.9.2. QARM results using Synthetically Generated Datasets

In this section we will present the experimental results for the QARM algorithm on a number of

different synthetically generated datasets using different configuration parameters, which affected the

100

dataset size and complexity. The experiments we have conducted show the performance of QARM

both with respect to precision accuracy as well as processing time.

We have constructed different synthetically generated datasets using different configuration

parameters. The main three types of configuration parameters are presented in table 4.1. The parameter

variables represent the following:

• Number of Items, represents the total number of available content items that can be consumed

by users.

• As previously mentioned, each item can be either elastic or inelastic and item prices are

randomly chosen from a predefined set of ten distinct price levels. % of Elastic

Items specifies the percentage of the total set of items that is of type elastic.

• Number of Users, represents the total number of users in the dataset. Each user has a maximum

reference price level which is assigned randomly from a predefined set of ten distinct

maximum price levels.

• Number of Cycles, represents the total number of cycles for which the dataset generation

process will run. Cycles, simulate small periods of time during which items are consumed.

Within each cycle, each user can consume up to a specified maximum number of items, which

is defined by the parameter Purchases per User per Cycle. The user randomly picks an

aforementioned number of items, and for each picked item, the code examines whether the

item is inelastic (and if so, it is consumed immediately despite the item’s price), otherwise the

code examines whether the item’s price is below or equal to the maximum reference price set

for the specific user.

Table 4.1 Main dataset configuration parameters

Configuration
Number

of Items

Number

of Users

Number

of Cycles

Purchases

per User

per Cycle

% of

Elastic

Items

1 2000 2000 10 10 51%

2 3000 3000 10 10 50%

3 1000 1000 100 1 52%

101

In figures 4.1 to 4.4 we depict the performance of QARM under a synthetically generated dataset

with the parameters specified in Configuration “1” in terms of precision accuracy and computational

performance.

Figure 4.1 depicts the performance of QARM in terms of precision accuracy for a different set of

minimum confidence values for a fixed minimum support value of 0.3.

Figure 4.1 Precision of QARM with fixed support value under Configuration “1”

Figure 4.2 depicts the computational performance of QARM, in terms of minutes lapsed, for the

experiment depicted in Figure 4.1.

0.803 0.803 0.803

0.835

0.879

0.915

0.946 0.946

0.700

0.750

0.800

0.850

0.900

0.950

1.000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
re

ci
si

o
n

Minimum confidence values

102

Figure 4.2 Performance of QARM with fixed support value under Configuration “1”

Figure 4.3 depicts the performance of QARM in terms of precision accuracy for a different set of

minimum support values for a fixed minimum confidence value of 0.6.

Figure 4.3 Precision of QARM with fixed confidence value under Configuration “1”

8.056 8.056 8.085
7.633

7.009

3.828

1.266 1.266

0

1

2

3

4

5

6

7

8

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
in

u
te

s
la

p
se

d

Minimum confidence values

0.880 0.880

0.917

0.955 0.954
0.959

0.962 0.964

0.870

0.880

0.890

0.900

0.910

0.920

0.930

0.940

0.950

0.960

0.970

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

P
re

ci
si

o
n

Minimum support values

103

Figure 4.4 depicts the computational performance of QARM, in terms of minutes lapsed, for the

experiment depicted in Figure 4.3.

Figure 4.4 Performance of QARM with fixed confidence value under Configuration “1”

In figures 4.5 to 4.8 we depict the performance of QARM under a synthetically generated dataset

with the parameters specified in Configuration “2” in terms of precision accuracy and computational

performance.

Figure 4.5 depicts the performance of QARM in terms of precision accuracy for a different set of

minimum confidence values for a fixed minimum support value of 0.3.

5.511

4.119

1.955

0.761

0.115 0.031 0.005 0.005
0

1

2

3

4

5

6

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

M
in

u
te

s
la

p
se

d

Minimum support values

104

Figure 4.5 Precision of QARM with fixed support value under Configuration “2”

Figure 4.6 depicts the computational performance of QARM, in terms of minutes lapsed, for the

experiment depicted in Figure 4.5.

Figure 4.6 Performance of QARM with fixed support value under Configuration “2”

0.996 0.996 0.996 0.996

0.921

0.929 0.929

0.900

0.910

0.920

0.930

0.940

0.950

0.960

0.970

0.980

0.990

1.000

0.2 0.3 0.4 0.5 0.6 0.8 0.9

P
re

ci
si

o
n

Minimum confidence values

0.330 0.330 0.317 0.313

4.114

3.061 3.061

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

0.2 0.3 0.4 0.5 0.6 0.8 0.9

M
in

u
te

s
la

p
se

d

Minimum confidence values

105

Figure 4.7 depicts the performance of QARM in terms of precision accuracy for a different set of

minimum support values for a fixed minimum confidence value of 0.6.

Figure 4.7 Precision of QARM with fixed confidence value under Configuration “2”

Figure 4.8 depicts the computational performance of QARM, in terms of seconds lapsed, for the

experiment depicted in Figure 4.7.

Figure 4.8 Performance of QARM with fixed confidence value under Configuration “2”

0.908

0.929

0.911

0.996 0.996 0.996 0.996 0.996

0.900

0.910

0.920

0.930

0.940

0.950

0.960

0.970

0.980

0.990

1.000

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

P
re

ci
si

o
n

Minimum support values

16.741

0.724 0.322 0.097 0.097 0.097 0.097 0.097

0

2

4

6

8

10

12

14

16

18

0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

S
e

co
n

d
s

la
p

se
d

Minimum support values

106

In figures 4.9 and 4.10 we depict the performance of QARM under a synthetically generated

dataset with the parameters specified in Configuration “3” in terms of precision accuracy and

computational performance.

Figure 4.9 depicts the performance of QARM in terms of precision accuracy for a different set of

minimum confidence values for a fixed minimum support value of 0.7.

Figure 4.9 Precision of QARM with fixed support value under Configuration “3”

Figure 4.10 depicts the computational performance of QARM, in terms of minutes lapsed, for the

experiment depicted in Figure 4.9.

0.930 0.930

0.949
0.952

0.946 0.946

0.900

0.910

0.920

0.930

0.940

0.950

0.960

0.7 0.75 0.8 0.85 0.9 0.95

P
re

ci
si

o
n

Minimum confidence values

107

Figure 4.10 Performance of QARM with fixed support value under Configuration “3”

4.9.3. QARM results using MovieLens Dataset

We have also conducted a series of experiments for the QARM algorithm using the MovieLens dataset

(specifically the version of the dataset containing one hundred thousand transactions) with different

confidence values for a set of fixed support value. In this section we will present the experimental

results for the QARM algorithm on the aforementioned dataset both with respect to precision accuracy.

We will also present charts depicting the total candidate rules processed for each different case.

In figures 4.11 and 4.18 we depict the variation in precision accuracy using different fixed

minimum required support values ranging from 0.3 to 0.45 (with a “step” incremental value of 0.5)

and variable confidence values. Additionally we depict the number of quantitative association rules

generated under each such configuration.

5.057 5.063

4.724

4.268

2.821 2.821

2.500

3.000

3.500

4.000

4.500

5.000

5.500

0.7 0.75 0.8 0.85 0.9 0.95

M
in

u
te

s
la

p
se

d

Minimum confidence values

108

Figure 4.11 Precision of QARM with MovieLens dataset using fixed support = 0.3

Figure 4.12 Total rules generated using MovieLens dataset using fixed support = 0.3

0.897 0.899

0.921

0.929
0.934

0.969

0.860

0.880

0.900

0.920

0.940

0.960

0.980

0.4 0.5 0.6 0.7 0.8 0.9

P
re

ci
si

o
n

Minimum confidence values

1267 1260

1077

837

594

277

0

200

400

600

800

1000

1200

1400

0.4 0.5 0.6 0.7 0.8 0.9

T
o

ta
l

ru
le

s
g

e
n

e
ra

te
d

Minimum confidence values

109

Figure 4.13 Precision of QARM with MovieLens dataset using fixed support = 0.35

Figure 4.14 Total rules generated using MovieLens dataset using fixed support = 0.35

0.001 0.001

0.001

0.002

0.003

0.004

0.000

0.001

0.001

0.002

0.002

0.003

0.003

0.004

0.004

0.4 0.5 0.6 0.7 0.8 0.9

P
re

ci
si

o
n

Minimum confidence values

236 236

218

143

104

36

0

50

100

150

200

250

0.4 0.5 0.6 0.7 0.8 0.9

T
o

ta
l

ru
le

s
g

e
n

e
ra

te
d

Minimum confidence values

110

Figure 4.15 Precision of QARM with MovieLens dataset using fixed support = 0.4

Figure 4.16 Total rules generated using MovieLens dataset using fixed support = 0.4

0.929 0.929

0.949
0.943

0.993
1.000

0.880

0.900

0.920

0.940

0.960

0.980

1.000

1.020

0.4 0.5 0.6 0.7 0.8 0.9

P
re

ci
si

o
n

Minimum confidence values

40 40 40

33

19

9

0

5

10

15

20

25

30

35

40

45

0.4 0.5 0.6 0.7 0.8 0.9

T
o

ta
l

ru
le

s
g

e
n

e
ra

te
d

Minimum confidence values

111

Figure 4.17 Precision of QARM with MovieLens dataset using fixed support = 0.45

Figure 4.18 Total rules generated using MovieLens dataset using fixed support = 0.4

0.911 0.911 0.911 0.911

0.918

0.986

0.900

0.910

0.920

0.930

0.940

0.950

0.960

0.970

0.980

0.990

1.000

0.4 0.5 0.6 0.7 0.8 0.9

P
re

ci
si

o
n

Minimum confidence values

18 18 18 18

16

8

6

8

10

12

14

16

18

0.4 0.5 0.6 0.7 0.8 0.9

T
o

ta
l

ru
le

s
g

e
n

e
ra

te
d

Minimum confidence values

112

4.9.4. QARM results using Post-Processor

We have performed a series of experiments to evaluate the percentage of improvement by using the

Post-Processor on top of the results generated by the Hybrid (Item, Content based) recommender. We

have conducted the experiment on production data provided by the Triple Play service provider.

From the entire database containing the entire transaction history of all users, we filtered out all

users (and their respective histories) that have size that is less than15 transactions. This resulted to a

total of 18,290 users , which we split into two subsets: i) test set that equaled the 30% of the users, and

ii) training set that equaled the 70% of the total users.

Because of the nature of the dataset, and in order to generate some association rules, we had to

lower the support value to as low as 0.5% and we generated a set of association rules under different

confidence values (specifically we experiment with confidence values {0.1, 0.2, 0.3, 0.4}). The

number of association rules generated is depicted in figure 4.19.

Figure 4.19 Total rules generated on production data with variable confidence values and fixed support

986

761

440

253

0

200

400

600

800

1000

0.1 0.2 0.3 0.4

113

The introduced Post-Processor then used the generated association rules in order to perform the

post-processing functionality on a set of generated recommendations by the Hybrid recommender for

all users in the test set. The different recall values of the enhanced recommender which combined both

the Hybrid recommender as well as well as the Post-Processor is depicted in figure 4.20. As we showed

in the experimental section of the previous chapter (on Recommender Systems) and specifically in

table 3.3 the recall value for the Hybrid recommender (for n=10) resulted to a recall value equal to 0.2,

which shows that the Post-Processing step improves the performance of the recommender in terms of

recall.

Figure 4.20 Recall value of Post-Processor using generated association rules with fixed support and variable

confidence values

0.255

0.251

0.244

0.236

0.225

0.23

0.235

0.24

0.245

0.25

0.255

0.26

0.1 0.2 0.3 0.4

114

5. Conclusions and Future Directions

In the current work we presented different algorithms for academic search as well as recommender

systems. The introduced algorithms share many common characteristics, the most important being that

they aim to recommend content –be it academic publications or consumable content– that is

considered to be relevant for users under specific parameters, including whether prior knowledge for

a specific user exists. The introduced algorithms have high applicability in a range of settings and our

implementation is fully modular so that transition to other settings may occur using the minimum

possible required effort.

In the first part of the work, we have presented a novel ranking algorithm for academic search.

We have presented a hierarchical heuristic scheme that aims to re-rank a set of results generated by

third-party search engines in response to specific user-submitted queries. We have developed a meta-

search engine that allows our heuristic scheme to generate alternative rankings of the original result

set by taking into consideration different characteristics of the academic publications.

 In order to measure the performance of the introduced scheme we have performed a series of

experiments against different commercial academic search engines including ACM Portal, Google

Scholar, Microsoft Academic Search and ArnetMiner and have used evaluations from a set of

volunteers. Our experiments showed, that for most queries the introduced scheme outperformed many

of the aforementioned search systems in terms of the score generated using different metrics.

The results of t-test, sign-test and signed-rank test, all indicate that PubSearch outperforms ACM

Portal by a large and statistically significant margin in terms of all metrics considered, namely

lexicographic ordering LEX, NDCG and ERR metrics. In terms of lexicographic ordering, the average

improvement is in the order of 907.5%, in terms of NDCG the average improvement is almost 12%

and in terms of the ERR metric the average improvement is more than 77%. Similarly, comparing

PubSearch against the standard Okapi BM25 scheme shows that PubSearch offers very significant

advantages for ranking academic search results.

Even when comparing PubSearch against the current state-of-the-art academic search engines

Google Scholar, Microsoft Academic Search, and ArnetMiner, the comparisons show that PubSearch

115

outperforms these other engines in terms of all metrics considered, and in the vast majority of cases,

by statistically significant margins.

Without detailed knowledge of the ranking system behind ACM Portal or the other academic

search engines we compared our system with, we postulate that the main reasons for the better quality

of our ranking scheme is in the custom implementation of the term frequency heuristic we have

developed that takes into account the position of the various terms of a query in the document and the

relative distance between the terms, as well as in the chosen architecture itself: the custom

implementation of the term frequency score roughly determines whether a publication is relevant to a

particular query, the time-depreciated citation distribution is a good indicator of the overall current

value of a paper, and finally the clique score criterion accords extra value to (otherwise similarly

ranked) papers that are classified in subjects that are strongly linked together as evidenced by the

cliques formed in the Type I & II graphs that connect index terms together in a relatively small but

typical publication base crawled for this purpose.

We have shown through extensive experimentation that the proposed configuration outperforms

all the other configurations we have experimented with, as well as the popular ensemble fusion

approach using linear weights (that is present in many if not most modern classifier, clustering, and

recommender systems designed today, e.g. Christou et al., 2011).

In the second part of the work, we have presented a commercial, hybrid movie recommendation

system that uses a novel ensemble of recommender algorithms of different types for improving

performance in terms of recall. The implemented system addresses certain commonly encountered

issues that many such commercial systems need to address, as well as many limitations originating

from business specific requirements. The most significant issue that our system needed to address was

to determine user preference given only information based on the items that have been consumed by

members bound to a specific user account, in the absence of any relevance judgments.

Furthermore, the fact that a large percentage of all available content is currently offered at zero-

price levels, makes it easier for anyone to “purchase” items that they would not otherwise choose to

purchase. And to add further complexity into this, without any information whatsoever concerning the

percentage of the total playtime that the user actually watched any item, user histories can easily

contain many consumed items which in fact not relevant at all to the user’s true preferences.

116

By using different types of recommenders including item-based, user-based as well as content-

based, the ensemble is able to handle cases where a significant number of users have consumed a

significant number of items, thus taking advantage of the benefits of collaborative filtering, as well as

cases where new content items have not been yet consumed by any user but by using its content-based

recommender, the ensemble can still provide meaningful recommendations (thus, at least partially,

solving the “new content” cold-start type problem).

The system also deals with the “new user” cold-start type problem (when new users are added to

the system), using the following business rule: whenever a new user is inserted into the system, and

before they have purchased any items, the system simply recommends the top recommendations made

for all other users in the system at that time.

Finally the system addresses hardware infrastructure constraints; we have introduced a cost-

effective way with which the system is able to provide instant replies to web service requests and at

the same time renew user recommendations as frequently as possible (in the order of 15 minutes or

less). This was made possible by the architecture of the system, as well as the two databases following

the same data model that are used to separate the updates of the system (performed by the AMORE

batch job) from the response to web-service requests for recommendations (performed by the AMORE

web-services that live in a web application server).

AMORE is currently the only live commercial recommender system for video-on-demand in

Greece, and has been successfully deployed in the production environment of a prominent Greek

Triple Play services provider and has already contributed to an increase of the provider’s profits in

terms of movie rental sales, while at the same time offers customer retention support allowing the

company’s Marketing Department to offer more interesting subscription offers to both old and new

customers alike.

We have experimented with the application of various algorithms implemented in the Apache

Mahout suit-case (upon which myrrix is also based, see http://myrrix.com) but the results were not

deemed satisfactory neither in terms of quality nor in terms of response times, thus necessitating the

development of our own parallel multi-threaded custom implementation of the well-known k-NN-

item-based and k-NN-user-based recommenders and variants thereof. Various other experimental

recommendation systems have already shown the superiority of hybrid systems incorporating tens or

117

even hundreds of individual recommender algorithms over schemes incorporating only a single

algorithm (the best Netflix prize contestants belong in this category). AMORE results have shown that

a very small number of different types of recommender algorithms (that can be updated very fast) are

sufficient to produce high-quality recommendations that users enjoy: currently, the users make a rental

from the proposed recommendations once for every two visits to the AMORE recommendations

screen. In the immediate future, we are aiming to introduce novel algorithms which take into

consideration additional information about user behavior patterns including the prices that users are

willing to pay in order to provide improved recommendation services to them.

Finally, in the third part of the work we have presented QARM, a novel algorithm for mining

quantitative association rules. QARM mines such quantitative association rules by processing a large

number of user histories in order to generate a set of association rules with a minimally required

support and confidence value. The generated rules show strong relationships that exist between the

consequent and the antecedent of each rule, representing different items that have been consumed at

specific price levels. We are then using the aforementioned information as part of a post processing

mechanism that is used on top of the recommendation results generated by recommenders. Our

experiments show that using the post processor on top of the results generated by our introduced

recommenders, improves the original recommendation functionality.

Furthermore, since the introduced QARM algorithm has high applicability in a range of different

e-commerce related settings, we have performed a series of simulations under different datasets (with

respect to size and complexity) and are characterized by different parameters such as the total number

of users that exist, the available consumable items in the dataset as well as the number of cycles during

each every user consumed a pre-specified number of items, all of which represent different business

scenarios. We then executed a series of experiments on the generated datasets to show the performance

of the QARM algorithm.

118

Bibliography

Amolochitis E., Christou I. T., Tan Z. H. (2012) PubSearch: a hierarchical heuristic scheme for

ranking academic search results. In Proceedings of the 1st Intl. Conference on Pattern Recognition

Applications and Methods, Feb. 6-8, 2012, Algarve, Portugal.

Amolochitis, E., Christou, I. T., Tan, Z. H., & Prasad, R. (2013). A heuristic hierarchical scheme

for academic search and retrieval. Information Processing & Management, 49(6), 1326-1343.

Attar R, Fraenkel AS (1977) Local feedback in full-text retrieval systems. Journal of the ACM,

24(3), pp. 397-417.

Beel J., Gipp B. (2009) Google Scholar’s ranking algorithm: an introductory overview. In: Proc.

12th Intl. Conf. on Scientometrics and Infometrics, Rio de Janeiro, Brazil, 230-241.

Bron C, Kerbosch J (1973) Algorithm 457: finding all cliques of an undirected graph.

Communications of the ACM, 16(9), pp. 575-577.

Cha, M., Kwak, H., Rodriguez, P., Ahn, Y. Y., & Moon, S. (2007, October). I tube, you tube,

everybody tubes: analyzing the world's largest user generated content video system.

In Proceedings of the 7th ACM SIGCOMM conference on Internet measurement (pp. 1-14). ACM.

Chapelle O., Metlzer D., et al., (2009) Expected reciprocal rank for graded relevance. In: Proc.

18th ACM conference on Information and knowledge management, New York, USA, pp. 621–

630.

Cho, J., & Roy, S. (2004, May). Impact of search engines on page popularity. InProceedings of

the 13th international conference on World Wide Web (pp. 20-29). ACM.

Christou I.T., Gkekas G., Kyrikou A. (2011) A Classifier Ensemble Approach to the TV Viewer

Profile Adaptation Problem. Intl. Journal of Machine Learning & Cybernetics. To Appear. DOI:

10.1007/s13042-011-0066-4

Czernicki B (2009) Next-generation business intelligence software with Silverlight 3. Apress, New

York, NY.

119

Deshpande, M., & Karypis, G. (2004). Item-based top-n recommendation algorithms. ACM

Transactions on Information Systems (TOIS), 22(1), 143-177.

Ekstrand, M.D., Ludwig, M., Konstan, J. A., & Riedl, J. T. (2011, October). Rethinking the

recommender research ecosystem: reproducibility, openness, and LensKit. In Proceedings of the

fifth ACM conference on Recommender systems (pp. 133-140). ACM.

Garey M.R., Johnson D.S. (1979) Computers and intractability: A guide to the theory of NP-

Completeness. Freeman, San Francisco, CA.

Golbeck, J., & Hendler, J. (2006, January). Filmtrust: Movie recommendations using trust in web-

based social networks. In Proceedings of the IEEE Consumer communications and networking

conference (Vol. 96). University of Maryland.

Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering to weave

an information tapestry. Communications of the ACM, 35(12), 61-70.

Harpale A., Yang Y., Gopal S., He D., Yue Z. (2010) CiteData: A new multi-faceted dataset for

evaluating personalized search performance. In: Proc. ACM Conf. on Information & Knowledge

Management CIKM 10, Oct. 26-30, 2010, Toronto, Canada.

Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating collaborative

filtering recommender systems. ACM Transactions on Information Systems (TOIS), 22(1), 5-53.

Hurley, N., & Zhang, M. (2011). Novelty and diversity in top-n recommendation--analysis and

evaluation. ACM Transactions on Internet Technology (TOIT),10(4), 14.

Jackson P, Moulinier I (2002) Natural language processing for online applications: Text retrieval,

extraction and categorization. John Benjamins, Amsterdam, The Netherlands.

Jahrer, M., Töscher, A., & Legenstein, R. (2010, July). Combining predictions for accurate

recommender systems. In Proceedings of the 16th ACM SIGKDD international conference on

Knowledge discovery and data mining (pp. 693-702). ACM.

Järvelin K., Kekäläinen J. (2000) IR evaluation methods for retrieving highly relevant documents.

In: Proc. 23rd Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval, July 2010, pp. 131-150.

120

Karypis, G. (2001, October). Evaluation of item-based top-n recommendation algorithms.

In Proceedings of the tenth international conference on Information and knowledge

management (pp. 247-254). ACM., G. (2001, October). Evaluation of item-based top-n

recommendation algorithms. In Proceedings of the tenth international conference on Information

and knowledge management (pp. 247-254). ACM.

Kirsch SM, Gnasa M, Cremers AB (2006) Beyond the web: retrieval in social information spaces.

In: Proc. 2006 European Conference on Advances in Information Retrieval (ECIR), pp. 84-95.

Kotsiantis, S., & Kanellopoulos, D. (2006). Association rules mining: A recent overview. GESTS

International Transactions on Computer Science and Engineering, 32(1), 71-82.

Krieger UD (2011) An algebraic multigrid solution of large hierarchical Markovian models arising

in web information retrieval. Lecture Notes in Computer Science, 5233, pp. 548-570.

Kuncheva, L (2004) Combining pattern classifiers: methods and algorithms. Wiley, Hoboken, NJ.

Kuramochi M, Karypis G (2001) Frequent subgraph discovery. In: Proc. IEEE Intl. Conf. on Data

Mining, San Jose, CA, Nov. 2001, pp. 313-320.

Lathia, N., Hailes, S., Capra, L., & Amatriain, X. (2010, July). Temporal diversity in recommender

systems. In Proceedings of the 33rd international ACM SIGIR conference on Research and

development in information retrieval (pp. 210-217). ACM.

Leung, C. W. K., Chan, S. C. F., & Chung, F. L. (2006). A collaborative filtering framework based

on fuzzy association rules and multiple-level similarity. Knowledge and Information

Systems, 10(3), 357-381.

Li Q, Chen YP, Myaeng S-H, Jin Y, Kang B-Y (2009) Concept unification of terms in different

languages via web mining for information retrieval. Information Processing & Management,

45(2), pp. 246-262.

Li, Y., Lu, L., & Xuefeng, L. (2005). A hybrid collaborative filtering method for multiple-interests

and multiple-content recommendation in E-Commerce. Expert Systems with Applications, 28(1),

67-77.

121

Limbu DK, Connor A, Pears R, MacDonell S (2006) Contextual relevance feedback in web

information retrieval. In: Proc. 1st Intl. Conference on Information Interaction in Context, pp. 138-

143.

Lin, W., Alvarez, S. A., & Ruiz, C. (2002). Efficient adaptive-support association rule mining for

recommender systems. Data mining and knowledge discovery,6(1), 83-105.

Ma N, Guan J, Zhao Y (2008) Bringing PageRank to the citation analysis. Information Processing

& Management, 44(2), pp. 800-810.

Manning CD, Raghavan P, Schutze H (2009) An introduction to information retrieval. Cambridge

University Press, online edition.

Matsuo Y, Mori J, Hamasaki M, Ishida K, Nishimura T, Takeda H, Hasida K, Ishizuku M (2006)

Polyphonet: an advanced social extraction system from the web. In: Proc. of WWW 06, May 23-

26, Edinburgh, Scotland.

Martinez-Bazan N, Muntes-Mulero V, Gomez-Villamor S, Nin J, Sanchez-Martinez M-A, Lariba-

Pey J-L (2007) DEX: High-performance exploration on large graphs for information retrieval. In:

Proc. ACM Conf. on Information & Knowledge Management CIKM 07, Nov. 6-8, 2007, Lisboa,

Portugal.

Mild, A., & Natter, M. (2002). Collaborative filtering or regression models for Internet

recommendation systems?. Journal of Targeting, Measurement and Analysis for Marketing, 10(4),

304-313.

Mobasher, B., Dai, H., Luo, T., & Nakagawa, M. (2001, November). Effective personalization

based on association rule discovery from web usage data. InProceedings of the 3rd international

workshop on Web information and data management (pp. 9-15). ACM.

Owen, S., Anil, R., Dunning, T., & Friedman, E. (2011). Mahout in action (pp. 145-183). Manning.

Pazzani, M. J., & Billsus, D. (2007). Content-based recommendation systems. In The adaptive

web (pp. 325-341). Springer Berlin Heidelberg.

Ricci, F., Rokach, L., & Shapira, B. (2011). Introduction to recommender systems handbook (pp.

1-35). Springer US.

122

Samudrala R, Moult J (1998) A graph-theoretic algorithm for comparative modeling of protein

structure. Journal of Molecular Biology, 279(1), pp. 287-302.

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000, October). Analysis of recommendation

algorithms for e-commerce. In Proceedings of the 2nd ACM conference on Electronic

commerce (pp. 158-167). ACM.

Schaeffer SE (2007) Graph clustering. Computer Science Review 1, pp. 27-64.

Shani, G., & Gunawardana, A. (2011). Evaluating recommendation systems. InRecommender

systems handbook (pp. 257-297). Springer US.

Shardanand, U., & Maes, P. (1995, May). Social information filtering: algorithms for automating

“word of mouth”. In Proceedings of the SIGCHI conference on Human factors in computing

systems (pp. 210-217). ACM Press/Addison-Wesley Publishing Co..

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000). Application of dimensionality reduction

in recommender system-a case study (No. TR-00-043). Minnesota Univ. Minneapolis Dept of

Computer Science.

Sparck Jones K, Walker S, Robertson SE (2000) A probabilistic model of information retrieval:

Development and comparative experiments. Information Processing & Management, 36(6), pp.

779-808.

Stoica I, Morris R, Liben-Nowell D, Karger DR, Kaashoek MF, Dabek F, Balakrishnan H (2003)

Chord: a scalable peer-to-peer lookup protocol for internet applications. IEEE/ACM Transactions

on Networking, 11(1) pp. 17-32.

Tang J, Jin R, Zhang J (2008) A topic modeling approach and its integration into the random walk

framework for academic search. In: Proc. 8th IEEE Intl. Conf. on Data Mining, pp. 1055-1060.

Yu H, Mine T, Amamiya M (2005) An architecture for personal semantic web information

retrieval system integrating web services and web contents. In: Proc. IEEE Intl. Conference on

Web Services (ICWS 05), pp. 329-336.

123

Yu, H., Zheng, D., Zhao, B. Y., & Zheng, W. (2006, April). Understanding user behavior in large-

scale video-on-demand systems. In ACM SIGOPS Operating Systems Review (Vol. 40, No. 4, pp.

333-344). ACM.

Walters WH (2007) Google Scholar Coverage of a Multidisciplinary Field. Information

Processing & Management 43(4), pp. 1121–1132.

Wang, F. H., & Shao, H. M. (2004). Effective personalized recommendation based on time-framed

navigation clustering and association mining. Expert systems with applications, 27(3), 365-377.

Wong, C., Shiu, S., & Pal, S. (2001, July). Mining fuzzy association rules for web access case

adaptation. In Proceedings of the Workshop Program at the Fourth International Conference on

Case-Based Reasoning.

