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 Abstract 
 

In the thesis we present novel algorithms for academic search, recommendation and association rule 

mining that have been developed and optimized for different commercial as well as academic purpose 

systems. Along with the design and implementation of algorithms, a major part of the work involves 

the development of new systems both for commercial as well as for academic use.  

In the first part of the work we introduce a novel hierarchical heuristic scheme for re-ranking 

academic publications retrieved from standard digital libraries such as the ACM Portal among 

others. The scheme is based on the hierarchical combination of a custom implementation of the term 

frequency heuristic, a time-depreciated citation score and a graph-theoretic computed score that relates 

the paper’s index terms with each other. In order to evaluate the performance of the introduced 

algorithms, a meta-search engine has been designed and developed that submits user queries to 

standard digital repositories of academic publications and re-ranks the top-n results using the 

introduced hierarchical heuristic scheme. 

On the second part we describe the design of novel recommendation algorithms with application 

in different types of e-commerce systems. The newly introduced algorithms are a part of a developed 

Movie Recommendation system, the first such system to be commercially deployed in Greece by a 

major Triple Play services provider. The initial version of the system uses a 

novel hybrid recommender (user, item and content based) and provides daily recommendations to all 

active subscribers of the provider (currently more than 30,000). The recommenders that we are 

presenting are hybrid by nature, using an ensemble configuration of different content, user as well as 

item-based recommenders in order to provide more accurate recommendation results. 

In the third part of the work we present the design of a quantitative association rule mining 

algorithm. Quantitative association rules refer to a special type of association rules of the form that 

antecedent implies consequent consisting of a set of numerical or quantitative attributes. The 

introduced mining algorithm processes a specific number of user histories in order to generate a set of 

association rules with a minimally required support and confidence value. The generated rules show 

strong relationships that exist between the consequent and the antecedent of each rule, representing 



iv 

 

different items that have been consumed at specific price levels. This provides valuable knowledge 

that can be used for boosting the performance of recommender algorithms. We have introduced a post 

processor that uses the generated association rules and improves the quality (in terms of recall) of the 

original recommendation functionality. The algorithm has been extensively tested on available 

production data, publically available datasets as well as custom generated synthetic datasets simulating 

different market scenarios with respect the number of users and the respective number of transaction 

as well as fluctuation in prices depending on changes in demand. 

 

Danish Translation 

I afhandlingen præsenterer vi de nyeste algoritmer til akademisk søgning, anbefalingssystemer samt 

såkaldt associationsregel mining, der er blevet udviklet og optimeret til forskellige kommercielle såvel 

som akademiske formål. Sammen med design og implementering af algoritmer, indeholder arbejdet 

en stor del udvikling af nye systemer til både kommerciel såvel som akademisk brug.  

 

I den første del af afhandlingen introducerer vi et nyt hierarkisk heuristisk system til re-rangering 

af akademiske publikationer hentet fra standard digitale biblioteker såsom bl.a. ACM Portal. Systemet 

er baseret på en hierarkisk kombination af brugerdefineret implementering af begrebet heuristisk 

frekvens, en tidsafskrevet citationsscore og en grafteoretisk beregnet score, der forbinder 

publikationens indeksvilkår. For at evaluere resultaterne af de indførte algoritmer er der designet og 

udviklet en meta- søgemaskine, der sender brugerforespørgsler til standard digitale arkiver af 

akademiske publikationer og re-rangerer top-n resultater ved hjælp af det indførte hierarkisk 

heuristiske system. 

 

I anden del beskriver vi konstruktionen af nye anbefalingsalgoritmer med anvendelse i forskellige 

typer af e-handelssystemer. De nyligt indførte algoritmer er en del af et udviklet Movie 

anbefalingssystem, som er det første system til at blive brugt kommercielt i Grækenland af en større 

Triple Play udbyder. Den oprindelige version af systemet anvender en ny hybrid anbefaler (bruger-, 

emne- og indholdsbaseret ), og giver daglige anbefalinger til alle udbyderens aktive abonnenter (i 

øjeblikket mere end 30.000). Anbefalerne, som vi præsenterer, er hybride af natur og anvender en 
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ensemblekonfiguration med forskelligt indhold, brugervenlighed samt post-baserede anbefalere for at 

give mere præcise anbefalingsresultater. 

 

I tredje del af afhandlingen præsenterer vi udformningen af en kvantitativ associationsregel 

mining algoritme. Kvantitative associationsregler referer til en speciel type as associationsregler, der 

forudsætter konsekvent indhold af et sæt numeriske eller kvantitative attributter.  Algoritmen 

behandler et bestemt antal brugeres historikker med henblik på at generere et sæt af associationsregel 

algoritmer med minimum støtte og troværdighed. De genererede regler viser stærke sammenhænge 

mellem konsekvensen og forudsætningerne for hver regel, der repræsenterer de forskellige elementer 

brugt på bestemte prisniveauer. Dette genererer værdifuld viden til at forbedre 

anbefalingsalgoritmernes ydeevne.  
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1.1 Introduction 
 

With the wide spread of the World Wide Web and the exponential growth of content –both online and 

offline– there is nowadays, more than ever, a need for efficient information retrieval solutions that aim 

to organize and efficiently utilize the vast amount of available data. 

In addition to the increase in data volume, available information has increased both with respect 

to semantic depth and breadth. Although general purpose search engines are still extensively used for 

a wide range of search applications, there are still many cases of repositories containing specialized 

data and require information retrieval solutions that address the specific issues that characterize them. 

For instance, online repositories like scientific libraries, host an ever increasing number of 

scientific publications many of which tend to be interdisciplinary in nature, covering a wide range of 

topics, and at the same time, are hard to index using static classification schemes. And to add more 

complexity, the submitted queries tend to be very specialized and even difficult to classify, thus making 

the task of retrieving useful information even more difficult to tackle with, especially for general 

purpose search engines.  

Academic search engines have achieved some very noteworthy improvements during recent 

years. Still there is room for improvement, especially in cases of publications (as well as queries) that 

deal with interdisciplinary topics of research. This proves to be a very challenging task, especially in 

cases of online libraries with a corpus of documents of considerable size as well as diversity. 

Furthermore the increase in volume of available content, makes the task of identifying newer, trending 

publications even more cumbersome, especially in areas where authority publications seem to prevail. 

In addition to the aforementioned situation concerning the volume and nature of available content, 

there is also a significant increase in the number of available online web services that offer consumable 

content to users. The rate by which such online services are expanding and are being used by a 

continuously increasing number of subscribers, makes recommender systems an emerging, promising 

area of research. Recommender systems aim to push personalized information –deemed of potential 

interest to specific users– based on prior knowledge, by means of historical data concerning the 
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preferences of both the specific user –for whom recommendations are generated– as well as of a wider 

group of potentially similar users. 

Furthermore, the increase of available consumable content, unavoidably results to a parallel 

increase in the number of available options for consumers, which makes price –in many cases– a 

determining factor with respect to the consuming behavior of a specific user. This introduces an 

interesting challenge in the design of recommendation systems, i.e. how to combine a user’s preference 

with respect to specific content with the user’s sensitivity towards a certain maximum reference price 

that the user might be willing to pay. This information also provides a useful insight towards providing 

more attractive pricing schemes towards potential consumers, eventually resulting in improvement in 

profits for service providers as well a way for achieving customer retention. 

During recent years, major companies in the search industry, including Google and Microsoft, 

have introduced some significant innovations in the field of academic search. Most notably, the 

aforementioned companies have launched search products, namely Google Scholar and Microsoft 

Academic Search, that to a great extend have achieved efficient retrieval of academic publications 

online. Also a number of standard digital libraries, including as ACM Portal and SpringerLink have 

provided search solutions in an attempt to improve their online search functionality in order to facilitate 

the efficient retrieval of scientific publications located in their databases.  

In addition to providing general purpose, as well as academic search functionality, companies 

like Google have expanded their efforts in areas beyond search. Specifically Google, having acquired 

YouTube, the online service for uploading and streaming user-submitted videos, Google offers 

recommendation functionality to subscribers of the service based on their watching history. Users of 

the service may also tag certain videos as favorable or not, which in turns affects the videos which are 

recommended to them. Having access to user ratings, as well as information concerning user behavior 

(percentage of total playing time watched among others) boosts the effectiveness of the 

recommendation process since there is a strong indication concerning user preference.  

Although significant improvements and contributions have been introduced, there is still a big 

motivation for expanding knowledge and the current state-of-the-art in most of the aforementioned 

areas. 
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1.2 Motivation and Research Objectives 
 

In the first part of our research, our aim was to provide an improvement on the search functionality 

provided by available academic search engines. Even though existing academic search engines have 

improved significantly during the last few years, being able to provide efficient results in response to 

complex queries, still remains an unsolved problem which attracts scientific interest. Being able to 

develop novel ranking algorithms for academic search engines would require a great effort with respect 

to obtaining a document database of such a size that would allow retrieval of relevant publications in 

response to an arbitrary number of diverse user queries from different fields. Therefore in an attempt 

to limit the scope and focus of our research, our aim was to improve existing ranking algorithms, by 

introducing a meta-search engine system that aims to re-rank results retrieved from existing online 

search engines, in order to improve the quality of their top-n generated results. Also, although we 

limited our scope to publications dealing with the field of computer science and electrical engineering, 

the developed algorithms are applicable to any other scientific field, given that certain criteria are met 

as we will explain in a later section. 

During recent years, considerable significance has been attributed to identifying collaboration 

networks, i.e. communities of scientists with common interests. By examining author co-authorship, 

and repeating the process for each author iteratively, one can form such networks of variable size and 

complexity. The idea of utilizing information concerning collaboration networks in different 

information retrieval areas has been attracting significant interest during past years. Our motivation 

was to be able to examine the degree to which such collaborative networks of scientists can reveal 

common interests of different strength, and if so, identify the extend at which such information can be 

incorporated in the design of powerful ranking algorithms. This would require examining a document 

corpus of considerable size in order to be able to identify frequently co-occurring topics of interests as 

witnessed in the published work of scientists. Being able to identify such interests, provides an insight 

about the overall relationships existing among different topics of research which might be part of 

interdisciplinary research work. 
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Another major concern of the current work was to be able to identify those publications with the 

strongest affinity (content-wise) with the terms contained in a submitted search query. Using standard 

information retrieval heuristics such as TF-IDF was not possible, since the Inverse Document 

Frequency part of the heuristic requires access to the entire corpus of publications, which is not 

commonly available to parties not affiliated with online repositories. This limitation introduced 

complexity in coming up with an efficient heuristic that is able to measure the degree of affinity among 

certain query terms and a specific publication. 

Furthermore, another very important aspect was to be able to identify trending publications and 

promote those against older publications that may have higher citation score but may considerably 

older. This would allow “unearthing” publications that may be positioned lower in the ranking based 

on absolute citation count values. The aforementioned approach gives credit to newer publications 

which might have lower citation count (in absolute value), but still may have an emerging popularity 

that potentially makes the specific publication seem as more favorable than an older one with a higher 

citation count. 

As part of the current research work, we also developed a commercial movie recommendation 

system for a major Greek triple play services provider. In the context of this project we needed to 

design a system that incorporates novel recommender algorithms which are based solely on the users’ 

watching history without having access to any input concerning user preference from a rating scheme 

or any other information such as the percentage of watching time for each item consumed by a specific 

user.  

Apart from the absence of any additional information, save only the users’ watching history, the 

recommender algorithms used by the system need to be able to address the issue that a single user 

account serves more than a single user. Specifically, most user accounts of the video-on-demand 

service are registered to a single household, which further connects a number of different viewers, 

belonging to different user categories which may have different preferences. So, the algorithms needed 

to be able to provide different recommendations based on different subsets of the user histories, which 

potentially correspond to different users bound with a single account. 

Our motivation was to develop such a system that addressed the aforementioned issues, and 

furthermore employed an ensemble of diverse recommenders (item, content and user based) which 
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aimed to provide more accurate recommendation functionality comparing to existing implementations 

of other similar algorithms. Furthermore, an additional constraint was that the system needs to have 

updated recommendations on a daily basis, requiring at the same time that the system is always 

responsive to recommendation requests and that it provides them using a minimum amount of the 

limited available resources. 

As already mentioned, with the increasing number of available content items, it becomes apparent 

that a single user has a number of available choices as far as consumable content is concerned. This 

has as a logical implication that the users become very sensitive towards item pricing (considering the 

amount of available choices), which introduces an interesting aspect for recommender systems, that of 

being able to recommend items at a price that the user is most willing to pay. With respect to that, the 

motivation is to be able to examine user behavior by means of the relationships among different items 

consumed by years at specific price levels.  

These relationships, or association rules of the form antecedent implies consequent need to reflect 

the strongest (in terms of confidence) relationships between the antecedent and consequent of the rule 

by identifying the maximum price for which the consequent item may be consumed for a given 

minimum price at which the antecedent items are consumed. This information would give valuable 

insight with respect to not just the way different items are related, but also the prices at which they are 

consumed. 

 

1.3 Related Work 
 

Graph-theoretic methods have been very popular in application in search algorithms. Since the early 

search engines, graph-theoretic methods have been developed and extensively used by general purpose 

search engines. For example the influential Page-Rank algorithm used by the Google search engine, is 

based on the link-structure of the web, and is deemed as one of the most powerful algorithms for 

identifying web pages considered to be authorities in their respective fields. This concept has been 

very influential for search algorithms and the core concept has been expanded to other areas of 

information retrieval, like for example in academic search.  
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So similarly to the link structure of the web, additional methods based on social or academic 

collaboration networks have been used in citation analysis in (Ma et al., 2008) in order to identify 

researchers which are considered to be “authorities” in (Kirsch et al., 2006) in their respective fields. 

Additionally, the authors at (Martinez-Bazan et al., 2007) have developed a graph database querying 

system that is aimed to perform information retrieval in social networks. Similarly the authors in 

(Newman, 2001, 2004) have examined graphs depicting scientific collaboration networks with respect 

to structure to demonstrate collaboration patterns among different scientific fields, including the 

number of publications that authors write, their co-author network, as well as the distance between 

scientists in the network among others. 

With respect to graph-theoretic models the work performed by (Harpale et al., 2010) is considered 

to be among the most relevant recent works in the literature. The authors have constructed CiteData, a 

collection of academic papers selected from CiteULike social tagging web-site’s database and filtered 

through CiteSeer’s database for cleaning meta-data regarding each paper. The specific dataset contains 

a rich link structure comprising of the references between papers as well as personalized queries and 

relevance feedback scores on the results of those queries obtained through various algorithms. The 

authors report that personalized search algorithms produce much better results than non-personalized 

algorithms for information retrieval in academic paper corpuses.  

There have been additional attempts to model the strength of different relationships between 

collaborators of such networks. Specifically the authors in (Liben-Nowell, 2007) use graph structures 

to examine the proximity of the members of social networks (represented as network vertices) which 

the authors claim that can help estimate the likelihood of new interactions occurring among network 

members in the future by examining the network topology alone. Furthermore, the community 

structure property of networks in which the vertices of the network form strong groups consisted of 

nodes with only looser connections has also been examined in order to identify such groups and the 

boundaries that define them, a concept based on the concept of centrality indices (Girvan et al., 2002).  

In the same direction with an aim to examine the evolution as well as topology of collaboration 

networks, the authors in (Barabsi et al., 2001) examined a number of journals from the fields of 

mathematics and neuroscience covering an 8-year period. The method consisted of empirical 

measurements that attempt to characterize the specific network at different points in time as well as a 

model for capturing the network's evolution in time in addition to numerical simulations. The 
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combination of numerical and analytical results allowed the authors to identify the importance of 

internal links as far as scaling behaviour and topology of the network are concerned. 

Similarly to the aforementioned approaches which aimed to examine collaboration networks of 

scientists with respect to structure, relationship strength as well as topology, there have been attempts 

that aimed to examine the relationships among different topics of interest in the published works of 

scientists. Specifically (Aljaber et al., 2009) identify important topics covered by journal articles using 

citation information in combination with the original full-text in order to identify come up with relevant 

synonymous and related vocabulary to determine the context of a particular publication. This 

publication representation scheme, when used by the clustering algorithm that is presented in their 

paper, shows an improvement over both full-text as well as link-based clustering. Topic modelling 

integrated into the random walk framework for academic search has been shown to produce promising 

results and has been the basis of the academic search system ArnetMiner (http://arnetminer.org) (Tang 

et al., 2008). Relationships between documents in the context of their usage by specific users 

representing the relevance value of the document in a specific context rather than the document content 

can be identified by capturing data from user computer interface interactions (Campbell et al., 2007). 

Many of the aforementioned approaches use information related to collaborating authors, as well 

as topics of interest, in order to be able to come up with sophisticated information retrieval algorithms 

that address a series of issues in academic search. There are different approaches in the current state-

of-the-art; some methods utilize the graph structure and topology of the generated graphs, while others 

attempt to identify the presence of clusters in the graphs revealing patterns of collaboration. 

Furthermore, the application of such methods proves to be very powerful in order to identify patterns 

in the graphs which allow to perform more accurate predictions about the future with respect to 

collaborating authors or co-existing topics of interests in scientific publications. 

Standard information retrieval techniques including term frequency are necessary but not 

sufficient technology for academic paper retrieval. Clustering algorithms prove to be also helpful in 

cases in order to determine the context of a particular publication by identifying relevant synonyms 

(or so-called searchonyms, see (Attar and Fraenkel, 1977)) and related vocabulary. It seems that the 

link structure of the academic papers literature as well as other (primal and derived) properties of the 

corpus should be used in order to enhance retrieval accuracy in an academic research search engine. 
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Similarly to academic search engines, recommender systems have gained widespread popularity 

in recent years and are considered to have reached sufficient maturity as a technology (Jahrer et al., 

2010), (Ricci et al., 2011)). The research performed in this particular field has started more than 20 

years ago (Goldberg et. al., 1992), (Shardanand et al., 1995) etc.), and it focuses on examining different 

ways that recommendation systems can better identify user interests and preferences based on 

knowledge of the users’ behavior as well as on characteristics of the items that they have consumed. 

Many different types of algorithms have been introduced (content, item and user based), with each 

type focusing on different properties. 

Contrary to the field of academic search (at least in non-personalized search context), a very 

common issue appearing in many commercial recommender systems is the fact that the systems are 

unable to promote in high positions results that happen to be of higher relevance to a specific user 

(based on the user’s historical data), and in contrast, promote results which happen to be either trending 

well for the majority of users, or are considered to be of higher in popularity overall. The authors in 

(Cha et al., 2007) spot such a behavior in the recommendation functionality of YouTube, as well as 

general purpose search engines. Whereas in general purpose search, such a behavior is anticipated, 

user-based and item-based collaborative filtering approaches should attempt to minimize this effect by 

using special formulae that promote less popular items when computing the user- or item-

neighborhoods (see Karypis, 2001)). 

The performance evaluation of recommenders is deemed to be a very demanding task, since 

different approaches have been introduced. Shani & Gunawardana (2011) present a property-directed 

evaluation of recommendation systems attempting to explain how recommenders can be ranked with 

respect to properties such as diversity of recommendations, scalability, robustness etc. In their work, 

they rank recommenders based on specific properties under the assumption that an improved handling 

of the property at focus will improve the overall user experience. 

Also the datasets used in evaluating recommenders may have an impact on the performance of a 

recommender. Specifically, the authors in (Herlocker et al., 2004) suggest that depending on the 

datasets used, different recommenders have displayed a variation in performance. Additionally, the 

authors note that a similar effect resulted using differently structured datasets. Dataset structure and 

size is also mentioned in Mild et al., (2002) where the authors claim that dataset size in terms of users 

plays a significant role in the type of recommenders that should be used by a recommender system. In 
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their work, the authors also show that for a large dataset linear regression with simple model selection 

provides improved results compared to collaborative filtering algorithms. 

Similar to the use of information gained from scientific collaborative networks (which as we 

already saw, has gained momentum in academic search), collaborative filtering algorithms have been 

extensively used in various implementations of movie recommendation systems. Both user-based as 

well as item-based neighborhood exploration strategies met huge early success (for the first, the name 

“Collaborative Filtering” was coined early in the 90’s) and have been applied in many different 

recommendation systems. (Golbeck et al., 2006) present FilmTrust a system that combines information 

about the user’s semantic web social network including information about networks peers, to generate 

movie recommendations. Similarly, Li et al., (2005) introduce a method that uses collaborative 

filtering approaches in e-commerce based on both users and items alike. They also show that 

collaborative filtering based on users is not successfully adaptive to data sets of users with different 

interests.  

A very challenging issue in recommender systems research, is for recommenders to address the 

issue of absence of user ratings. The situation where user rating are simply unavailable, or nonexistent 

makes the task of recommendation very challenging, since there are no direct indicator concerning 

user preference, and that kind of information should be implied by different types of information. For 

instance, Li et al., (2014), having no user ratings available in the dataset, present a novel one-class 

collaborative filtering recommender system that utilizes rich user information showing that such 

information can significantly enhance recommendation accuracy.   

Collaborative filtering may prove to be very powerful, but many recommender systems are able 

to provide accurate recommendations by use of content-based recommenders exclusively. For instance 

the authors in (Christou et al., 2012) present a system that uses a content-based recommendation 

approach in order to address the problem of finding interesting TV programs for users without 

requiring previous explicit profile setup, but by applying continuous profile adaptation via classifier 

ensembles trained on sliding time-windows to avoid topic drift.  Similarly, the authors in Pazzani et 

al., (2007) focus on content-based recommenders and review different classification algorithms based 

on the idea that certain algorithms perform better when having specific data representation. The 

algorithms are used to build models for specific users based on both explicit information submitted by 

users as well as by relevance judgments submitted by them. 
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Association rule mining in the field of e-commerce is an idea that has been occasionally pursued 

during recent years and has been triggered by the success and popularity of e-commerce which has 

introduced massive databases of transactional data (Kotsiantis et al., 2006). Association rule mining is 

considered as one of the most commonly used data mining techniques for e-commerce (Sarwar et al., 

2000) and there have been different approaches introduced, all of which aim to optimize different 

aspects of the mining process in order to be able to provide more accurate recommendation results.  

The authors in (Lin et al., 2002) propose a mining algorithm for e-commerce systems that does 

not require prior specification of minimum required support value for the generation of the rules. 

Contrary, they consider that by specifying a minimum required support, a rule mining system, may 

end up with either too many or too few association rules which has a negative effect to the performance 

of a recommender system. The authors suggest an approach where they need to specify only a target 

range, in terms of number of association rules that such a system shall generate, and the system 

automatically determines the support value. The generated rules are mined for a specific user, reducing 

the mining processing time considerably, and associations between users as well as between items are 

employed in making recommendations. 

In (Mobasher et al., 2001) the authors describe a technique for performing scalable Web 

personalization after mining association rules from clickstream data from different sessions. In their 

introduced method, they use a custom data structure that is able to store frequent item sets and allows 

for efficient mining of association rules in real-time without the need to generate all possible 

association rules from the frequent item sets. The authors state that their recommendation methodology 

improves effectiveness in terms of recommendation quality and has a computational advantage over 

certain approaches to collaborative filtering such as the k-nearest-neighbor. 

In (Leung et al., 2006) the authors introduce a collaborative filtering framework based on Fuzzy 

Association Rules and Multiple-level Similarity (FARAMS) which extends existing techniques by 

using fuzzy association rule mining taking advantage of product similarities in taxonomies to address 

data sparseness and non-transitive associations. The experimental results presented show that 

FARAMS improves prediction quality, as compared to similar approaches. 

(Wong, et al., 2001) introduce a novel approach for discovering and predicting web access 

patterns. Specifically, their introduced methodology (which takes into consideration various 
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parameters, including the duration of a user session) is based on the case-based reasoning approach, 

and the main goal is to discover user access patterns by mining fuzzy association rules from the 

historical web log data. In order for the proposed method to perform fast matching of the rules, fuzzy 

index tree is used, and the system's performance is also enhanced using user profile data through an 

adaptation process. An effort for predicting user-browsing behavior using association-mining 

approach by the authors in (Wang et al.,  2004) where the authors propose a new personalized 

recommendation method that integrates user clustering as well as association-mining techniques. In 

their work, the authors divide user session data into frames corresponding to specific time intervals, 

which are then clustered together in specific time-framed navigation sessions using a newly introduced 

method, called HBM (Hierarchical Bisecting Medoids) algorithm. The formed clusters are then 

analyzed using the association-mining method to establish a recommendation model for similar 

students in the future. They apply their introduced method to an e-learning web site and their results 

showed that the recommendation model built with user clustering by time-framed navigation sessions 

improves the recommendation services effectively. 

(Sarwar et al.) examine methods and techniques for performing live product recommendations 

for customers, and they have developed several techniques for analyzing large scale data purchase data 

obtained from an e-commerce company, as well as user preference data from the MovieLens dataset. 

The recommendation generation process is divided into different sub-processes that include: 

representation of the input, formation of user neighborhoods and finally the actual recommendation 

generation, which –among others– include association rules mining; specifically they aim to discover 

associations between two sets of products such that the presence of some products in a particular 

transaction implies that products from the other set are also present in the same transaction. 
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1.4 Contribution 
 

In the current dissertation a number of algorithmic contributions are presented that apply in different 

areas of data mining and information retrieval. 

In the area of academic search, we have introduced a heuristic hierarchical scheme that aims to 

improve the ranking quality of search engines for scientific publications developed for standard 

academic libraries such as ACM Portal, which contain certain classification schemes based on which 

publications can be efficiently indexed by authors. Specifically our contribution aims improve the 

ranking quality of a set of results generated by a default search engine, by actually re-ranking the top-

n specified search results originally generated by the search engine.  Our proposed ranking scheme is 

based on a number of different heuristic methods applied in a hierarchical configuration. Specifically, 

our scheme is based on a set of methods that are applied in an order hierarchy that reflects the actual 

strength (or significance) of the heuristic algorithm at the specific level in being able to rank the results 

based on different publication criteria.  

The proposed scheme contains three different heuristics applied in a hierarchy as determined by 

the following index: i) Term Frequency (TF), ii) Depreciated Citation Count (DCC) and iii) Maximal 

Weighted Cliques (MWC). 

At the first level of the hierarchy we have introduced a custom implementation of the Term 

Frequency heuristic that, contrary to the default implementation of the heuristic which takes into 

consideration just the number of occurrences of the query terms in a publication, our implementation 

considers different information such as term co-occurrences, as well as the distance of co-occurrences 

in different parts/levels of the publication (sentence, paragraph, section). 

At the second level of the scheme hierarchy, we have introduced a heuristic that aims to evaluate 

the depreciated citation count score for each publication. This particular score represents both the 

popularity of a particular publication with respect to the total number of citations received, but also 

aims to identify trending publications, i.e. publications with emerging popularity, and promote those 

against other publications that might have a higher citation count which has been achieved by virtue 

of popularity as well of an older publication date which allowed the accumulation of a higher citation 
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count. The depreciated citation count score aims to depreciate citations received during older years, 

eventually emphasizing on the importance of publications received during latter years.  

At the third level in the scheme hierarchy, we have introduced a heuristic that evaluates the 

maximal weight clique matching score for a particular publication. During a preparatory stage, we 

have developed a scientific publication index term crawler that extracts index terms from a set of 

publications. We have extracted more than ten thousand publications in order to then build a set of 

maximal weighted cliques of weight above a certain threshold value. Then for each publication in the 

set, the heuristic attempts to calculate the degree to which the index terms of a publication match to 

those of the established maximal weighted cliques and provide a score value that can be used for 

further ranking the results. 

At each level in the hierarchy, a specific structure is provided as input containing an ordered set 

of search results generated (provided) by a third-party search engine in response to a specific query. 

The scheme is designed and implemented in a way, that at each level, a heuristic algorithm processes 

the aforementioned structure resulting to an updated version of the structure which contains all 

elements of the original set, but in a possibly different order, as determined by the heuristic method at 

the level. The output of each heuristic is then provided as input to the immediate next lower level in 

the hierarchy and is processed according to the aforementioned procedure. 

Each heuristic algorithm in the hierarchical scheme processes the search results contained in the 

provided input structure, based on different properties of the scientific publication (relevant to the 

heuristic algorithm at the level) and places the results into buckets of different range size according to 

the score generated by the heuristic algorithm at each level. The number of buckets as well as the size 

of the bucket range has been determined empirically.  

The ordering (ranking) of results based on different buckets aims to apply a strict policy which 

prohibits a heuristic that is lower in the hierarchy to significantly alter the ranking order of a set of 

search results that has been provided by a certain higher level heuristic. It is safe to say that a heuristic 

that is higher in the hierarchy majorly determines the final order of the results. The aforementioned 

principle is reflected in the bucketing logic, which aims to group together publications of similar 

strength with respect to a certain set of properties, relevant to specific heuristic. And in turn, each 
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lower-level heuristic that follows, basically re-ranks the results contained within each bucket, and 

places them in even finer buckets, that are passed to the immediate lower level for processing. 

In the area of recommender systems we have developed a fully parallelized ensemble of 

recommenders that allows for improved recommendation functionality. Specifically we are using an 

ensemble of hybrid, content and user item predictor that is able to perform accurate recommendation 

predictions. Part of our research included the design and development of AMORE, a commercial 

movie recommendation system, the first such commercial movie recommendation system deployed in 

Greece by a major Triple Play services provider. AMORE has been developed as a web service in a 

black box architecture, meaning that the system does not expose in any way its implementation details. 

AMORE is expecting recommendation requests by service consumers based on pre-specified web 

service contracts in order to provide relevant responses. AMORE communicates with other back-end 

systems via web services, and those systems also follow the black box architecture hiding their 

implementation details. 

In addition to the exposed web service which provides a set of methods, AMORE contains another 

component, the AMORE batch job which aims to facilitate the process of pre-caching recommendation 

results, that would allow to part of the methods of the web service to retrieve cached recommendations 

with the minimum, most cost-effective number of operations. 

In order to facilitate the caching process, the system uses two schemas, following the exact same 

data model (we would refer to those schemas as the main and auxiliary to distinguish among them). 

So as already mentioned, the purpose of the batch job is to maintain a constantly updated state of the 

recommendation data, reflecting the most updated estimated user recommendations based on the most 

recent user histories. In order to achieve this, the batch job aims to cache the recommendations 

generated for web service methods that are called most frequently, i.e. operations that are part of the 

core recommendation functionality, such as retrieving the top-n recommendations for a particular user. 

So the generated recommendations are cached and stored in persistence, and when a web service 

request arrives to the server, the server is able to retrieve and return the web service response by 

retrieving the already cached recommendations from persistence using the minimum number of 

operations (a simple select SQL operation). And furthermore, the caching operation is designed in a 

way that allows the system to be able to have fresh results available which are updated within fixed 

configurable intervals. The rate at which new recommendations should be generated and cached is 
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determined by the system administrator. It makes sense to update the cached recommendations at 

intervals during which it is estimated that some minimal change in user transaction history may occur 

(which in sequence will cause an update in the list of generated recommendations). In the initial version 

of the system recommendations are generated on a daily basis. This has also been a business 

requirement, since the Movie Rental platform caches on a daily basis all user recommendations. 

The batch process involves the following steps: First the system aims to examine whether the 

back-end services of the provider are responsive. These back end services provide information related 

to the subscribers of the movie rental service including their histories as well as the entire set of 

available items that are available for consumption. Once the system verifies the back-end systems’ 

responsiveness, the system then calls the web service that retrieves the most recent, up-to-date 

transaction history for each of the active users of the service. The recent histories are then used as input 

to the recommender in order to generate updated recommendations for each active user of the service. 

Upon the completion of the aforementioned task, the batch process proceeds to the generation of top 

recommendations based on the transaction histories of all users. 

Upon the completion of this final task, the system then calls a web service to notify the server 

that the process completed on the database schema referenced by the batch job so that the server will 

proceed with an update of its database reference to point to the schema containing the most recent 

recommendations. 

By doing so, the server will always be able to return the recommendations that have been most 

recently added to the database, while at the same time the batch process will proceed with the update 

of the auxiliary schema. 

The system has been developed to be fully configurable with respect to the frequency by which 

the batch process runs, as well as additional parameters including the top-n number of recommendation 

to generate for each user among others. The web service uses a connection pooling mechanism that 

reads the database connection reference (which always corresponds to the last fully cached schema). 

Additionally, the web service exposes a set of complementary methods for generating 

recommendations on-the-fly under different constraints. For example, one of the major issues that 

AMORE is facing is to be able to distinguish among different users that are possibly bound with a 

single account. This situation is very common, since many households which happen to be subscribers 
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of the movie rental service, have a number of different viewers bound to a single account. To address 

this situation, the web service has a set of methods which allow for specifying different parameters in 

order to be able to specify the time frame during which recommendations should be generated. By 

doing this, the system is able to generate recommendations corresponding to certain watching 

behaviors during specific hours of the day. 

A very powerful aspect of recommendation systems is to be able to recommend items at prices 

that are deemed attractive to potential consumers. Specifically the intention is to correlate user 

preference (in terms of content) with price and come up with relationships that link related items (as 

well as their purchase price) as evidenced in user transaction histories. These relationships, called 

quantitative association rules of the form antecedent implies consequent (where both antecedent and 

consequent are sets of item-price pairs) assume that if a certain user consumes all items contained in 

the rule’s antecedent at a price level at least equal to the one specified in the antecedent for each item, 

then with a given support and confidence value the rule can predict that the user will also consume the 

item that is part of the rule’s consequent at a price level that is at least equal to the one specified in the 

consequent of the rule.  

We have introduced a post processor which aims to use association rules generated in order to 

improve the quality of the recommendations. Specifically, we have introduced a post processor that 

uses the set of generated recommendations and applies a post processing step by examining which of 

the generated association rules fire for each of the user, meaning the rules whose antecedent items 

have been consumed by a specific user at a price which is at least equal to the price specified. For 

those rules, the items contained in the rule’s consequent are promoted only in case that the items have 

not been consumed by a user changing in this way the original recommendation list. The post processor 

gives an extra weight to the recommendations that are part of the rule’s consequent than the ones 

included in the recommendation list generated by the original recommender. In case that a 

recommendation contained in the post-processor is also part of the original recommendation list, then 

the number of positions that the specific recommendation is promoted up to the recommendation list 

is significantly higher, as an extra boost resulted by the increased confidence that the specific 

recommendation has been deemed relevant by both the recommender as well as some association rule. 

Our effort has shown a performance increase in terms of recall for the recommender containing 

the post-processor compared to the original recommender.  
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2. Academic Search Algorithms 
 

2.1. Collecting data from scientific publications 
 

In the early stages of our research we focused on examining associations among different topics of 

interest in the works of computer scientists, information that we have used in the design of powerful 

ranking algorithms. In this direction, we have developed a web crawler for retrieving basic information 

about scientific publications (such as the publication’s authors, co-authors, year of publication and 

index terms) in order to start building a database containing the aforementioned data which could be 

later processed. Specifically, by crawling the ACM Portal web site we have managed to collect 

approximately 10,000 publications and all respective data. The reason why we have chosen to retrieve 

publications from ACM Portal is that the latter contains a coherent scheme for authors to index their 

publications, which we could efficiently use for the needs of our own research. During the time when 

we worked on the academic publication crawler, ACM used the 1998 version of the ACM 

Classification Scheme, which has been revised in 2012, but still, both schemes are for the time being 

supported by ACM Portal.  

The crawler is initially provided with a number of influential, highly cited Computer Science 

authors which are considered to be authorities in their respective fields. For each of these authors the 

crawler submits a search query via Google Scholar (which has the richest coverage in terms of 

scientific bibliography and consequently, it has the best estimates of the paper’s citation counts) in 

order to retrieve all publications published by the respective author. From the retrieved list, the crawler 

needs to process all those publications containing index terms (based on the ACM Classification 

Scheme) so all publication URLs not belonging to the ACM Portal are filtered out and are not 

processed. For all those publications belonging to ACM Portal the application extracts and stores in 

persistence the publication’s index terms, names of all authors, date of publication, citation count as 

well as all ACM Portal publications citing the current publication. All encountered authors that are not 

already processed by the crawler are stored in the database, in order to be processed at a following 

iteration. The flow of the process is visualized in figure 2.1. 
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Figure 2.1 Flow of Academic Crawling Process 

 

2.2. Topic Similarity Using Graphs 
 

2.2.1. Graph Construction 
 

After we have collected data from approximately ten thousand publications, we proceeded with the 

construction of two types of graphs, each having a different type of semantic value.  

 
 

2.2.2. Type I Graph 
 

The strongest type of graph corresponds to the most direct relationship between index terms, namely 

that of index terms coexisting in the same publication. So, in a Type I graph, two index terms t1 and t2 

are connected by an edge (t1, t2) with weight w, if and only if there are exactly w papers in the collection 

indexed under both index terms t1 and t2.  

 
Let M: E→R be a map containing as key an edge e and as value the edge’s weight we for the specific 

type of association. Let P be the set of publications crawled for a specific period. Let G1 be an 

undirected graph with initially no edges whose nodes are all the index terms covered in P. 

1. foreach publication p in P do 

a. Let Tp be the set of all index terms of p. 

b. foreach 
p pt T∈ do 

i. foreach ,p p p pu T u t∈ ≠ do 

1. if 
1( , )p pe t u G= ∉ then 
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a. add (tp,up) in G1. 

b. Set M(e)=1. 

2. else Set M(e)=M(e)+1. 

3. endif 

ii. endfor 

c. endfor 

2. endfor 

3. end. 

 

2.2.3. Type II Graph 
 

The next strongest type of graph involves index terms that happen to exist in different publications of 

the same author, but do not coexist in the same publication. Specifically, in a Type II graph, two index 

terms t1 and t2 are connected by an edge (t1, t2) with weight w, if and only if there are w distinct authors 

that have published at least one paper where  t1 appears but not  t2 and also at least one paper where t2 

appears but not t1.   

We construct the Type II graphs as follows: Let P be the set of publications crawled for a specific 

period. Let A be the set of all authors of publications in P. Let G2=(V,E) be an undirected graph with 

initially no edges in E2 whose node-set V are all the index terms covered in P. Let M: E→R be a map 

containing as key an edge e and as value the edge’s weight we for the specific type of association. 

1. foreach author a in A do 

a. Let { }| ,  co-authored by aP p p A p a= ∈ . 

b. Let Va={}. 

c. foreach ap P∈ do 

i. foreach ,au P u p∈ ≠ do 

1. if ( ), ap u V∉ then 

a. Let Tp be the set of index terms of p. 

b. Let Tu be the set of index terms of u. 
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c. foreach |p ut T t T∈ ∉ do 

i. foreach |u pr T r T∈ ∉ do 

1. if 2( , )r t E∉ then 

a. add e=(r,t) in E. 

b. Set M(e)=1. 

2. else Set M(e)=M(e)+1. 

3. endif 

ii. endfor 

d. endfor 

e. add (p,u) in Va. 

2. endif 

ii. endfor 

d. endfor 

2. endfor 

3. end. 

 

2.3. Topic Similarity Using Graphs 
 

We have constructed graphs of the aforementioned types covering different 5-year periods, in 

order to be able to model changes in associations of topics of interest in the time dimension. After we 

have constructed the aforementioned graphs we are able to mine heavily-connected clusters in these 

graphs by computing all maximal weighted cliques in these graphs. The fact that the graphs are of 

limited size with only up to 300 nodes (each graph has only up to 13 node degree) addresses the issue 

of mining graphs being an intractable problem both in time and in space complexity. We further reduce 

the problem complexity by considering edges whose weight exceeds a certain user-defined threshold 

w0 (by default set to 5). Given these restrictions, the standard Bron-Kerbosch algorithm with pivoting 

(Bron et al., 1973) applied to the restricted graph containing only those edges whose weight exceeds 

w0 computes all maximally weighted cliques for all graphs in our databases in less than 1 minute of 
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CPU time on a standard commodity workstation (these graphs can be interactively visualized via a 

web-based application by visiting http://hermes.ait.gr/scholarGraph/index). 

 

2.4. System Architecture 
 

The entire system architecture is depicted in the Data Flow Diagram in figure 2.2. Overall, the system 

consists of 7 different processes. Process P1 implements a focused crawler that crawls the ACM Portal 

in order to extract information about the relationships between authors who happen to have 

collaborated as well as the different topics they have worked on (as evidenced by the index terms used 

to tag their published work). 

 

 

Figure 2.2 System Architecture 

 

 

This information is analysed in process P2 ("Analysis of topic associations and connections 

among authors and co-authors") and produces a set of edge-weighted graphs that connect index terms 

with each other. The process P3 ("Construction of max. weighted cliques") computes fully-connected 

subsets of nodes. The subsets form cliques that are an indirect measure of the likelihood that a 

researcher working in an area described by a subset of the index terms in a clique might also be 

interested in the other index terms in the same clique. All these cliques can be visualized via the 

components developed for the implementation of process P7 ("Interactive graph visualizations") using 

the Prefuse’s Information Visualization Toolkit (Heer et al., 2005). 
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Processes P4-P6 form the heart of the prototype search engine we have developed, which includes 

a web-based application allowing the user (after registering to the site) to submit their queries. Each 

user query is then submitted to the ACM Portal and the prototype re-ranks the top-n ACM Portal 

results, and then returns the new top ten results to the user. It is important to mention that in the testing 

and evaluation phase of the system, the results were returned to the user randomly re-ordered, along 

with a user feedback form via which the system got relevance feedback scores from the user, as 

explained in section. 

 

2.5. Heuristic Hierarchy 
 

The hierarchical scheme that we have introduced includes three heuristics, each located at a separate 

level in the overall hierarchy. The hierarchical structure of the configuration ensures that a heuristic at 

the top level in the hierarchy is considered as more significant in determining the final ranking of the 

results compared to a heuristic at a lower level. Therefore, heuristics are placed in a hierarchical 

structure to ensure that the ranking order is significantly determined by higher level heuristics but 

improved and fine-tuned by heuristics at lower levels. 

There are three levels in our hierarchical heuristic scheme. At the first level, we have a custom 

implementation of the term frequency (TF) heuristic which aims to identify the degree at which 

specific query terms match the actual text context of a specific publication. Our implementation of the 

heuristic takes into consideration not just term occurrences, but details such as term co-occurrences in 

different levels (sentence, paragraph, section) parts of the publications (title, abstract, body). After 

calculating the TF score for each publication, based on the calculated value, the publication is placed 

in one of the pre-configured buckets, representing TF values of certain range size.  

After the TF score is calculated and each of the available publications is placed in a bucket, the 

hierarchical scheme applies the second level heuristic; the depreciated citation count (DCC). DCC 

aims to estimate for each publication the degree of its emerging popularity. Specifically the aim of the 

heuristic is to identify publications which have an increasing number of citations during recent years 

contrary to popular, older publications which have accumulated a significant number of citations over 

an extended course of several years. So the heuristic basically depreciates the citation score based on 
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the number of years lapsed since the paper has been cited. The heuristic applies on the buckets 

generated from the first heuristic and in sequence placed in finer grained second-level buckets. 

At the third level in the hierarchy lies the Maximal Weighted Clique heuristic (MWC) which is 

applied on the two-level bucket structure filled by the second heuristic. Specifically, the MWC 

heuristic aims to find the matching degree between the index terms of each of the publications in the 

structure and each of the maximal weighted cliques stored in the database. The heuristic then sorts 

each of the publications in the two-level buckets based on the MWC score and ends up with a sorted 

list of results. 

The heuristic hierarchy we use for re-ranking the ACM Portal search results for a given query is 

schematically shown in figure 2.3. 

 

Figure 2.3 Re-ranking Heuristic Hierarchy 



24 

 

2.5.1. Term Frequency Heuristic 
 

As already mentioned, at the top-level of our hierarchical heuristic algorithm, we use a custom 

implementation of the term frequency heuristic. Term frequency (TF) is used as the primary heuristic 

in our scheme in order to identify the most relevant publications as far as pure content is concerned 

(for a detailed description of the now standard TF-IDF scheme see for example (Manning et al., 2009) 

or (Jackson et al., 2002)). When designing the term frequency heuristic we have taken into 

consideration the fact that calculating the frequency of all terms individually does not provide an 

accurate measure for the relevance of a specific publication with respect to a specific query. To 

illustrate this, let’s assume that for the query “distributed systems architecture” we have two 

publication results p1 and p2 with individual term frequency scores s1 and s2, respectively, where s1, s2 

are equal to the sum of the individual term frequencies for the query terms encountered in each 

publication. Let’s also assume that s1 > s2, then based on the scores alone the term frequency heuristic 

would assume that p1 is more relevant than p2 ignoring whether all or a subset of the query terms 

appear in each publication. So, in our example, p1 might be strongly related to the topic “distributed 

systems” but have nothing to do with “distributed systems architecture” whereas p2 might be a highly 

relevant “distributed systems architecture” publication, and yet p1 would be considered more relevant 

publication. 

In order to overcome this limitation, our implementation identifies the number of occurrences of 

all combinations of the query terms appearing in close proximity in different sections of each 

publication. After experimenting with different implementations of the term frequency heuristic, the 

experiment results showed that this approach performs significantly better in identifying relevant 

documents than the classical case of the sum of all individual term frequencies. 

Our implementation assigns different weights to term occurrences appearing in different sections 

of the publication (Amolochitis et al., 2012) for results from an initial implementation that utilized the 

standard TF heuristic as described in most textbooks on Information Retrieval. Term occurrences in 

the title are more significant than term occurrences in the abstract and similarly, term occurrences in 

the abstract are more significant than term occurrences in the publication body. Additionally we take 

into consideration the proximity level of the term occurrences, meaning the distance among 

encountered terms in different segments of the publication. By proximity level we denote the distance 



25 
 

among encountered terms in different segments of the publication and for simplicity we have two 

proximity levels: sentence and paragraph. Furthermore, we distinguish the following two types of 

term occurrence completeness: complete and partial. A complete term occurrence is when all query 

terms appear together in the same proximity level and similarly, a partial occurrence is when a strict 

subset of the query terms appears together in the same proximity level. The significance of a specific 

term occurrence is based on its completeness as well as the proximity level; complete term occurrences 

are more significant than partial ones and similarly term occurrences at sentence level are more 

significant than term occurrences at paragraph level. 

Before discussing the details of our custom TF scheme, a word is in order to justify the omission 

of the “Inverse Document Frequency” (IDF) part from our scheme. The reason for omitting IDF is that 

we cannot maintain a full database of academic publications such as the ACM Digital Library (as we 

do not have any legal agreements with ACM) but instead fetch the results another engine provides 

(e.g. ACM Portal) and simply work with those results. It would be expected then that computing the 

IDF score for only the limited result-set that another engine returns would not improve the results of 

our proposed scheme and initial experiments with the TF scheme proved this intuition is correct.  

We now return to the formal description of our custom TF scheme. Let { }1 nQ T T= K  be the set 

of all terms in the original query, and letO Q⊆  be the subset of terms in Q appearing together in the 

same proximity level.  We define the term occurrence score is   for the ith term occurrence simply as

/is O Q= . By ith occurrence we denote the ith (co)occurrence of any of the original terms of Q in the 

publication In case of a complete occurrence (meaning all query terms in the ith term occurrence appear 

in the original query as well) clearly, si = 1 sinceO Q= . Method calcTermOccurenceScore(O,Q) 

implements this formula. 

Now, let T denote the set of all sections of a paper, P the set of all paragraphs in a section and S 

the set of all sentences in a paragraph. The method splitSectionIntoParagraphs(Section) splits the 

specified section into a set of paragraphs. Similarly splitParagraphIntoSentences(Paragraph) splits the 

specified paragraph into a set of sentences. The method 

findAllUniqueTermOccurInSentence(Sentence, Q) returns all unique occurrences of the query terms 

(that are members of Q) in the specified sentence. Similarly 

findAllUniqueTermOccurInAllSentences(S,Q) returns a set of all unique occurrences of the query 
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terms (members of Q) in each sentence (members of S). The method noCompleteMatchExists(S) 

evaluates whether no complete term occurrence score exists in the sentences of S.  

We have also introduced a set of weight values to apply a different significance to different term 

occurrence types appearing: (i) in different publication sections: tWeight represents the term 

occurrence weight at different publication sections (title, abstract, body), and (ii) in different proximity 

levels: sWeight represents the term occurrence weight at sentence level, whereas pWeight represents 

the term occurrence weight at paragraph level. The method determineSectionWeight(t) determines the 

type of the specified section ( title, abstract or body) and returns a different weight score that should 

be applied in each case. All weight values have been determined empirically after experimenting with 

different weight value ranges. Overall, our term-frequency heuristic is implemented as follows: 

Algorithm calculateTF(Publication d, Query q) 

1. Let S←{}, T←{}, P←{}, O←{}, tf←0 

2. Set T←splitPublicationIntoSections(d). 

3. foreach section t in T do 

a. Let sectionScore←0. 

b. Set P←splitSectionIntoParagraphs(t). 

c. Let scoreInSegment←0. 

d. foreach paragraph p in P do 

i. Set S←splitParagraphIntoSentences(p). 

ii. Let sentenceScore←0. 

iii. foreach sentence s in S do 

1. Set O←findAllUniqueTermOccurInSentence(s). 

2. Let sScore←calcTermOccurrenceScore(O, Q). 

3. Set sentenceScore←sentenceScore + sScore. 

iv. endfor 

v. Set sentenceScore←sentenceScore ·  sWeight. 

vi. Let paragraphScore←0. 

vii. Let partialMatch← noCompleteMatchExists (S). 

viii. if (partialMatch === true) then 

1. Set O←findAllUniqueTermOccurrInAllSentences(S, Q). 
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2. Set paragraphScore←calcTermOccurrenceScore(O, Q). 

ix. else Set paragraphScore←1. 

x. endif. 

xi. Set paragraphScore ← paragraphScore ·   pWeight. 

xii. Set scoreInSegment←sentenceScore + paragraphScore. 

e. endfor 

f. Let tWeight←determineSectionWeight(t). 

g. Set sectionScore← tWeight ·  scoreInSegment. 

h. Set tf←tf + sectionScore. 

4. endfor 

5. return tf. 

6. end. 

 

After calculating the total query term frequency for each publication, the algorithm groups all 

publications with similar term frequency scores into buckets of specified range. This grouping of the 

publications allows bringing together publications with similar term frequency scores in order to apply 

further heuristics to determine an improved ranking scheme. Results placed in higher range term 

frequency buckets are promoted at the expense of publications placed in lower term frequency buckets.   

2.5.2. Depreciated Citation Count Heuristic 
 

At the second level of our hierarchical ranking scheme, the results within each bucket created in the 

previous step are ordered according to a depreciated citation count score. Specifically we analyse the 

annual citation distribution of a particular publication examining the number of citations that a paper 

has received within a specific year. We analyse all citations of a particular paper via Google Scholar 

and for each citing publication we consider the date of publication. After all citing publications are 

examined we create a distribution of the total citation count that the cited publication received 

annually. Our formula then depreciates each annual citation count based on the years lapsed since the 

publication date. After all annual depreciation scores are calculated then the scores are summed and 

produce a total depreciation count score for a particular publication obeying the formulae: 
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where 
pc is the total (time-depreciated) citation-based score for paper p, 

,j pn  is the total number of 

citations that the paper has received in a particular year j, n is the current year, 
,j pd is the depreciation 

factor for the particular year j and ( )y p is the publication year of the paper p. A graph of the citation 

depreciation function ( ) ( )( )1 1 tanh 10 / 4 / 2d x x = − + −  as a function of x  is shown in figure 2.4. 

 

 

Figure 2.4 Annual depreciation of citation-count of a publication 

 

As already mentioned, our intention is to identify recent publications with high impact in their 

respective fields and promote them in the ranking order to the expense of older publications that might 

have a higher citation count but a considerable number of years have passed since the date of 

publication. In order to achieve this we determine the significance of a publication’s citation count as 

a function of the number of citations received depreciated by the years lapsed since its publication 

date. Once publications have been sorted in decreasing order of the criterion cp, we further partition 

them into second-level buckets of like-score publications. 
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2.5.3. Maximal Weighted Cliques Heuristic 
 

Within each bucket of the second-level heuristic, we further order the results by examining each 

publication’s index terms and calculate their degree of matching with all topical maximal weighted 

cliques, the off-line computation of which has already been described in section 2.2. Additionally we 

assigned specific weight values to the calculated cliques based on certain different characteristics such 

as the types of associations they represent and the time period they belong to. The system calculates 

for each publication a total clique matching score which corresponds to the sum of matching score of 

the publication’s index terms with all maximal weighted cliques.  

The calculation details are as follows. 

Let C be the set of all cliques to examine. Let ci denote the total number of index terms in clique i. Let 

d denote the total number of index terms of publication p and pi denote the total number of index terms 

of publication p that belong to clique i; for each clique i∈C the system calculates the matching degree 

of all publication index terms with those of a clique. In cases of a perfect match (meaning that all index 

terms of i appear as index terms of p) in order to avoid bias towards publications with a big number of 

index terms against cliques with a small number of index terms we calculate the percentage match mi 

as follows: 

�� =
��
�  

For all remaining cases (non-perfect match) the percentage matching is calculated using: 

�� =
��
��  

If mi > t where t is a configurable threshold for the accepted matching level (in our case t = 0.75) the 

process continues, else the system stops processing the current clique and moves to the next one. In 

case that the matching level is above t the system calculates a weight score wp,i representing the overall 

value of the association of p with ci as follows: 

wp, i = wi ×mi ×es× aci  

where wi is the weight score of the examined maximal weighted clique i, and aci is a score related to 

the association type that the current graph that the current clique  belongs to represents ( aci = 1 for 

association type I, aci = 0.6 for type II). Finally, es is an exponential smoothing factor that depreciates 

cliques of graphs covering older periods in order to promote more recent ones. Since each type of 



30 

 

graph has a different significance, we consider recent graphs of stronger association types as more 

significant and thus we assign greater value to maximal weighted cliques of such graphs. 

The algorithm calculates for each publication a total clique matching score Sp which corresponds to 

the sum of matching score of the publication’s index terms with all maximal weighted cliques and 

determines the final ranking of the results accordingly. 

�	 =
�	,�
�∈


 

The total clique matching score determines the order of the results within the current second level 
bucket and eventually determines the final ranking of the results. 

 

2.6. Experiments Design 
 
As previously mentioned we have developed a meta-search engine application in order to evaluate our 

ranking algorithm. Registered users can submit a number of queries via our meta-search engine’s user 

interface. The search interface allows users to use quotes for specifying exact sequence of terms in 

cases that it is applicable for improving query accuracy for both PubSearch and ACM Portal.  

For each query in the processing queue, our system queries ACM Portal using the exact query 

phrase submitted by the user and crawls ACM Portal’s result page in order to extract the top ten search 

results. The top ten search results as well as the default ranking order provided by ACM Portal are 

stored. For each of the returned results our system automatically crawls each publication’s summary 

page in order to extract all required information. Additionally, for each of the returned results, the 

system queries Google Scholar to extract the total number of citations and find a downloadable copy 

of the full publication text if possible. 

When all available publication information is gathered, the system executes our own ranking 

algorithm with the goal of improving the default rank by re-ranking the default top ten results provided 

by ACM Portal. The rank order generated by our algorithm is stored in the database and when the 

process is complete the query status is updated and the user is notified in order to provide feedback. 

The user is presented with the default top ten results produced by ACM Portal in a random order and 

is asked to provide feedback based on the relevance of each search result with respect to the user’s 

preference and overall information need. The provided relevance feedback score for each result is used 

for evaluating the overall feedback score of both ACM Portal as well as our own algorithm, since both 
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systems attempt to process the same set of results. We use a 1 to 5 feedback score scheme where 1 

corresponds to “least relevant” and 5 corresponds “most relevant”. 

In order to compare an IR system’s ranking performance, we use two commonly encountered 

metrics: i) Normalized Discounted Cumulative Gain (NDCG) and ii) Expected Reciprocal Rank 

(ERR). We also introduce a new metric, the lexicographic ordering metric (LEX), that can be 

considered a more extreme version of the ERR metric. 

Normalized Discounted Cumulative Gain (Järvelin et al., 2000) is a metric commonly used for 

evaluating ranking algorithms in cases where graded relevance judgments exist. Discounted 

Cumulative Gain (DCG) measures the usefulness of a document based on its rank position. DCG is 

calculated as follows: 
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where ( )if p is the relevance judgment (user relevance feedback) of the result at position i. The DCG 

score is then normalized by dividing it with its ideal score which is the DCG score for the sorted result 

list on descending based on the relevance scores resulting to:  
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The term IDCGp (acronym for “Ideal DCG till position p”) is the DCGp value of the result list 

ordered in descending order of relevance feedback, so that in a perfect ranking algorithm nDCGp will 

always equal 1.0 for all positions of the list. Expected Reciprocal Rank (Chapelle, Metlzer et al., 2009) 

is a metric that attempts to compute the expectation of the inverse of the rank position in which the 

user locates the document they need (so that when for example ERR = 0.2 the required document 

should be found near the 5th position in the list of search results), assuming that after the user locates 

the document they need, they stop looking further down the list of results. ERR is defined as follows: 
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where maxf is the maximum value the user relevance feedback score (in our case, 5). 

Besides the common NDCG and ERR metrics, we also calculate a total feedback score LEX(q) 

for the (re-) ranked results of any particular query q by following a lexicographic ordering approach 

to produce a weighted sum of all independent feedback result scores: 
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the normalized relevance feedback provided by the user for the publication pi with values in the set

{ }0, , 2 , 1
f f

δ δ K . In our case, 0.25, 0.2f aδ = = . In this way, in any two rankings of some results 

list produced by two different schemes, the scheme that assigns a higher score for the highest ranked 

publication always receives a better overall score LEX(q) regardless of how good or bad the 

publications in lower positions score. To see why this is so, ignoring the normalizing denominator 

constant in (5), and without loss of generality, we must simply show that if two result-lists ( )1,1 1,,
n

r rK

and ( )2,1 2,,
n

r rK for the same query q get normalized feedback scores 

( ) ( )( ),1 ,, , 1,2norm i norm i nf r f r i =K  and ( ) ( )1,1 2,1norm norm
f r f r> , then the LEX score of the first result 

list will always be greater than the LEX score of the second result list. Given that if two normalized 

feedback scores are different, their absolute difference will be at least equal to
fδ , and at most equal 

to 1, we need to show that   
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the lexicographic ordering property always holds regardless of the result list size or feedback values. 

Clearly, it always holds that ( ) [ ]LEX 0,1q ∈ , with the value 1 being assigned to a result list where all 

papers were assigned the value maxf  whereas if the user assigns the lowest possible score (1) for all 

papers in the results list, the LEX score for the query will be zero. Also, notice that if the user assigns 

the median value 
max 1

3
2

f +
=  to all papers in the results list for a query, the LEX score for that query 

will also be the median value 0.5.  

The LEX scoring scheme can be considered as a more extreme version of the ERR and NDGC 

metrics and is inspired from the fact that people always place much more importance to the top results 

(and usually judge the whole list of results by the quality of the top 2-3 results) that are returned from 

any search engine than on lower ranked results. This is probably due to the very strong faith of users 

in the ability of search engines to rank results correctly and place the most relevant results on top, a 

faith that (if it exists) apparently does not have solid grounding with regards to academic search 

engines —at least, not yet. 

2.7. Experimental Results 
 

In an initial training phase, the results of a limited set of relevance feedback scores from a limited base 

of five volunteer users were used in order to optimize the bucket ranges of our heuristic hierarchical 

ranking scheme as well as the values for the parameters tWeight, pWeight, and sWeight for the 

proposed TF-scheme. The bucket ranges are as follows:  

� For the TF-heuristic, we always compute exactly 10 buckets by first computing the proposed 

TF metric for each publication and then we normalize the calculated scores in the range [0,1] 

in a linear transformation that assigns the score 1 to the publication with the max. calculated 

TF score, and then we “bucketize” the publications in the 10 intervals [0, 0.1], (0.1, 0.2], … 

(0.9, 1]. 

�   For the 2nd level-heuristic, the bucket range is set to 5.20. 
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Values for the other parameters are set as follows: sWeight=15.25, pWeight=4.10, and 

tWeighttitle=125.50, tWeightabstract=45.25, tWeightbody=5.30.   

Given these parameters, we proceeded into testing the system by processing 58 new queries that 

were submitted by 15 different users (other than the authors of the paper) specializing in different areas 

of computer science and electrical & computer engineering. The users were selected based on their 

expertise in different areas of computer science and electrical engineering and they are researchers of 

different levels from the authors’ universities. Each of our test users submitted a number of queries 

and provided feedback for all produced query results without knowing which algorithm produced each 

ranking. We used the three metrics mentioned before (NDCG, ERR, and LEX) to evaluate the quality 

of our ranking algorithm.  

 

2.7.1. Comparisons with ACM Portal 
 

Our ranking approach, PubSearch, compares very well with ACM Portal, and in fact outperforms 

ACM Portal in most query evaluations as the tests reveal using all three metrics. We illustrate the 

performance of each system in table 2.1: 

 

Table 2.1 Comparison of PubSearch with ACM Portal Performance Using Different Metrics 

Metric 
Number of queries for 

which PubSearch wins 

Number of queries for 

which ACM Portal wins 

Num. of queries for which 

both systems performed 

the same 

LEX 46 4 8 

NDCG 49 1 8 

ERR 44 3 11 
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Table 2.2 shows the average score of each system using the three different metrics: 

 

Table 2.2 Average Performance Score of the Different Metrics 

Metric PubSearch ACM Portal 

LEX 0.742 0.453 

NDCG 0.976 0.879 

ERR 0.739 0.454 

 

We witness that PubSearch performs much better than ACM Portal in most of the 58 queries used 

to evaluate our system under all metrics. On average, the percentage gap of performance between 

PubSearch and ACM Portal in terms of LEX metric is 907.5%(!), in terms of NDCG is 11.94%, and 

in terms of ERR, the average gap is 77.5%. The large average gap in the LEX metric is due to the fact 

that for some queries, ACM Portal produces a LEX score close to zero, whereas PubSearch re-orders 

the results so that it produces a LEX score close to 1, leading to huge percentage deviations for such 

queries.  

Even though it is clear to the naked eye, statistical analysis using the t-test, the sign test and the 

signed rank test all show that the performance difference between the two systems is statistically 

significant at the 95% confidence level for all performance metrics. In table 2.7 we present an 

analytical comparison of the evaluation scores of the two systems using the three different metrics. 

To highlight the difference of the ranking orders produced by the two systems, consider query#1 

(‘query privacy “sensor networks” ’): The ACM Portal results list was given the following relevance 

judgement by the user: 1,1,2,3,2,1,1,4,3,5. PubSearch re-orders the ACM Portal results in a sequence 

that corresponds to the following relevance judgement: 5,4,3,3,1,2,2,1,1,1. PubSearch produces the 

best possible ordering of the given search results (with the exception of the document in 5th position 

that should have been placed in 7th position). Similarly, consider query #46 (‘resource management 

grid computing’): ACM Portal orders its top ten results in a sequence that received the following 

scores: 1,1,3,3,4,4,4,5,1,3. PubSearch on the other hand re-orders the list of results so that the 

sequence’s scores appear as follows: 5,4,3,4,4,3,1,1,3,1, which is a much improved ordering than 

ACM Portal. 
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2.7.2. Comparison with Other Heuristic Configurations 
 

In Table 2.3, a head-to-head comparison of the performance of our hierarchical heuristic scheme using 

our custom implementation of the TF heuristic against using the traditional Boolean method. The 

results clearly show that our implementation of the heuristic outperforms the “traditional” TF heuristic. 

 

Table 2.3 Comparing the hierarchical heuristic scheme (complete, including all three level of heuristics) using 

our implementation of the TF heuristic against the simple, Boolean TF heuristic 

# 

PubSearch PubSearch PubSearch PubSearch PubSearch PubSearch 

Boolean TF TF Boolean TF TF Boolean TF TF 

LEX LEX NDCG NDCG ERR ERR 

1 0.553 0.939 0.938 0.995 0.537 0.978 

2 0.709 0.748 0.959 1.000 0.627 0.656 

3 0.591 0.999 0.914 0.990 0.604 0.984 

4 0.670 0.750 0.930 0.998 0.618 0.664 

5 0.388 0.990 0.884 1.000 0.540 0.984 

6 0.792 1.000 0.962 1.000 0.731 0.984 

7 0.798 0.990 0.976 1.000 0.732 0.984 

8 0.760 0.998 0.953 1.000 0.687 0.984 

9 0.534 0.748 0.934 0.995 0.482 0.654 

10 0.760 1.000 0.947 1.000 0.687 0.984 

11 0.063 0.445 0.751 0.780 0.311 0.407 

12 0.314 0.890 0.918 1.000 0.423 0.974 

13 0.000 0.000 0.803 0.803 0.117 0.117 

14 0.000 0.000 0.803 1.000 0.117 0.124 

15 0.559 0.988 0.920 0.991 0.539 0.984 

16 0.559 0.988 0.922 0.996 0.539 0.984 

17 0.563 0.896 0.967 0.986 0.599 0.975 



37 
 

18 0.542 0.748 0.955 0.993 0.496 0.661 

19 0.751 0.950 0.933 0.963 0.674 0.981 

20 0.550 0.790 0.937 0.998 0.514 0.730 

21 0.719 0.998 0.916 0.996 0.664 0.984 

22 0.543 0.948 0.924 0.984 0.512 0.980 

23 0.952 0.998 0.968 1.000 0.981 0.984 

24 0.720 0.988 0.929 0.995 0.664 0.984 

25 0.709 0.748 0.960 0.992 0.625 0.653 

26 0.759 0.989 0.952 0.994 0.687 0.984 

27 0.260 0.498 0.910 1.000 0.264 0.379 

28 0.091 0.488 0.893 0.989 0.217 0.346 

29 0.550 0.748 0.968 0.998 0.503 0.656 

30 0.750 0.750 1.000 1.000 0.668 0.668 

31 0.302 0.740 0.891 0.997 0.346 0.638 

32 0.540 0.700 0.999 0.999 0.473 0.598 

33 0.110 0.747 0.848 0.988 0.329 0.653 

34 0.758 0.990 0.954 0.998 0.686 0.984 

35 0.760 0.992 0.951 0.993 0.687 0.984 

36 0.000 0.000 1.000 1.000 0.085 0.085 

37 0.718 0.990 0.919 0.999 0.664 0.984 

38 0.300 0.540 0.886 0.955 0.340 0.480 

39 0.830 0.950 0.899 1.000 0.977 0.980 

40 0.000 0.000 1.000 1.000 0.085 0.085 

41 0.062 0.062 0.768 0.768 0.284 0.284 

42 0.720 0.998 0.915 0.989 0.664 0.984 

43 0.000 0.000 1.000 1.000 0.056 0.056 

44 0.800 1.000 0.974 0.998 0.732 0.984 
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45 0.552 0.996 0.912 0.992 0.521 0.984 

46 0.551 0.942 0.936 0.984 0.521 0.980 

47 0.359 0.986 0.871 0.960 0.465 0.984 

48 0.558 0.942 0.942 0.982 0.538 0.980 

49 0.000 0.000 1.000 1.000 0.085 0.085 

50 0.000 0.000 1.000 1.000 0.085 0.085 

51 0.788 0.948 0.987 0.987 0.730 0.980 

52 0.550 0.742 0.970 0.992 0.504 0.651 

53 0.000 0.000 1.000 1.000 0.069 0.069 

54 0.796 0.956 0.973 0.973 0.732 0.982 

55 0.155 0.923 0.836 0.908 0.428 0.979 

56 0.958 0.990 0.981 0.998 0.982 0.984 

57 0.316 0.892 0.870 0.926 0.425 0.977 

58 0.960 1.000 0.975 1.000 0.982 0.984 

 

In figures 2.5, 2.6 and 2.7, we show the effects of the third and last heuristic in our proposed 

hierarchy (using the three different metrics), namely the ranking based on the matching of a paper’s 

index terms to maximally weighted cliques in the topic graphs computed offline. The charts also show 

visualizations of the results in table 2.4. Statistical analysis using the t-test, the sign-test and the signed-

rank test all show that the effect of the third heuristic in the hierarchy is significant, i.e. the hypothesis 

that the mean of the distribution of the percentage gap between the solutions produced by PubSearch 

when utilizing the 3rd heuristic in the hierarchy, and the solutions produced by PubSearch when the 3rd 

heuristic is excluded, is zero, must be rejected at 95% confidence level. The gap is small, but 

statistically significant. It is evident that all heuristics in the hierarchy are needed so as to obtain the 

best possible feedback score in terms of all metrics considered. 
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Figure 2.5 Comparison between two versions of PubSearch and ACM Portal 

 

 

Figure 2.6 Comparison between two versions of PubSearch and ACM Portal (figure uses scores produced by 

the NDCG metric) 
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Figure 2.7 Comparison between two versions of PubSearch and ACM Portal (figure uses scores produced by 

the ERR metric) 

 

 

Table 2.4 Comparing TF/DCC/MWC against TF on Retrieval Score 

Query # 
TF-only 

TF/DCC 

/MWC 
TF-only 

TF/DCC 

/MWC 
TF-only 

TF/DCC 

/MWC 

LEX LEX NDCG NDCG ERR ERR 

1 0.905 0.939 0.959 0.995 0.977 0.978 

2 0.550 0.748 0.967 1.000 0.503 0.656 

3 0.991 0.999 0.977 0.990 0.984 0.984 

4 0.742 0.750 0.986 0.998 0.656 0.664 

5 0.944 0.990 0.961 1.000 0.980 0.984 

6 0.991 1.000 0.981 1.000 0.984 0.984 

7 0.957 0.990 0.972 1.000 0.982 0.984 

8 0.960 0.998 0.977 1.000 0.982 0.984 

9 0.709 0.748 0.962 0.995 0.626 0.654 

10 0.960 1.000 0.970 1.000 0.982 0.984 

11 0.413 0.445 0.757 0.780 0.399 0.407 
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12 0.858 0.890 0.962 1.000 0.974 0.974 

13 0.008 0.000 0.827 0.803 0.126 0.117 

14 0.000 0.000 1.000 0.822 0.077 0.124 

15 0.719 0.988 0.920 0.991 0.664 0.984 

16 0.988 0.988 0.995 0.996 0.984 0.984 

17 0.896 0.896 0.986 0.986 0.975 0.975 

18 0.710 0.748 0.965 0.993 0.633 0.661 

19 0.787 0.950 0.946 0.963 0.730 0.981 

20 0.758 0.790 0.974 0.998 0.686 0.730 

21 0.944 0.998 0.953 0.996 0.981 0.984 

22 0.788 0.948 0.987 0.984 0.730 0.980 

23 0.998 0.998 0.998 1.000 0.984 0.984 

24 0.943 0.988 0.959 0.995 0.980 0.984 

25 0.709 0.748 0.956 0.992 0.625 0.653 

26 0.990 0.989 0.997 0.994 0.984 0.984 

27 0.460 0.498 0.953 1.000 0.356 0.379 

28 0.443 0.488 0.928 0.989 0.318 0.346 

29 0.708 0.748 0.964 0.998 0.625 0.656 

30 0.750 0.750 0.999 1.000 0.668 0.668 

31 0.694 0.740 0.948 0.997 0.601 0.638 

32 0.700 0.700 0.997 0.999 0.598 0.598 

33 0.747 0.747 0.984 0.988 0.652 0.653 

34 0.944 0.990 0.964 0.998 0.980 0.984 

35 0.990 0.992 0.984 0.993 0.984 0.984 

36 0.000 0.000 1.000 1.000 0.085 0.085 

37 0.951 0.990 0.973 0.999 0.981 0.984 

38 0.538 0.540 0.953 0.955 0.478 0.480 
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39 0.950 0.950 0.999 1.000 0.980 0.980 

40 0.000 0.000 1.000 1.000 0.085 0.085 

41 0.068 0.062 0.775 0.768 0.302 0.284 

42 0.991 0.998 0.986 0.989 0.984 0.984 

43 0.000 0.000 1.000 1.000 0.056 0.056 

44 0.992 1.000 0.990 0.998 0.984 0.984 

45 0.918 0.996 0.945 0.992 0.980 0.984 

46 0.909 0.942 0.956 0.984 0.978 0.980 

47 0.973 0.986 0.955 0.960 0.984 0.984 

48 0.910 0.942 0.953 0.982 0.978 0.980 

49 0.000 0.000 1.000 1.000 0.085 0.085 

50 0.000 0.000 1.000 1.000 0.085 0.085 

51 0.948 0.948 0.989 0.987 0.980 0.980 

52 0.748 0.742 1.000 0.992 0.657 0.651 

53 0.000 0.000 1.000 1.000 0.069 0.069 

54 0.988 0.956 0.988 0.973 0.984 0.982 

55 0.923 0.923 0.907 0.908 0.979 0.979 

56 0.958 0.990 0.979 0.998 0.982 0.984 

57 0.660 0.892 0.873 0.926 0.597 0.977 

58 0.798 1.000 0.970 1.000 0.732 0.984 

 

In figures 2.8, 2.9 and 2.10 we show the performance of our proposed heuristic configuration 

when comparing it with different hierarchies of heuristics. Each chart presents the average 

performance of each heuristic configuration under a different metric. Note that we specify the different 

heuristic hierarchies by separating each heuristic in a hierarchy with a slash ("/") character. For each 

hierarchy, each left-side heuristic argument is higher in the suggested hierarchy than its right-side 

argument.  
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We consider the following configurations: 

1. TF/DCC/MWC (the proposed scheme) 

2. TF/DCC 

3. TF 

4. DCC 

5. MWC 

6. TF/MWC 

 

 

 

Figure 2.8 Comparison of different heuristic configurations (LEX scores) 
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Figure 2.9 Comparison of different heuristic configurations (NDCG scores) 

 

The MWC heuristic adds the most value in the full PubSearch system when measuring 

performance against the NDCG metric as can be seen in figure 2.9. 
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Figure 2.10 Comparison of different heuristic configurations (ERR scores) 

 

It can be seen from these figures that our proposed configuration is the best performing 

configuration in terms of all metrics considered. The percentage difference between the proposed full 

PubSearch configuration (TF/DCC/MWC) and applying the proposed TF heuristic alone is 3.26% for 

the LEX metric, 1.54% for the NDCG metric, and 5.96% for the ERR metric. Furthermore, statistical 

analysis using the t-test, sign test, and signed-rank test show that the differences between 

TF/DCC/MWC and TF heuristic alone are statistically significant for all the metrics considered at the 

95% confidence level. To illustrate further, the results produced by running our proposed TF heuristic 

alone are shown in table 2.4 under the multi-column labelled “TF-only”, and compared against the full 

PubSearch system. 

To make the comparison with TF-IDF methods clearer, we also compare PubSearch against the 

standard Okapi BM25 weighting scheme (Sparck Jones et al., 2000). However, in our comparison, 

since as we have already mentioned we do not maintain an academic paper database but instead simply 
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assume that the entire database consists of the returned results of the base engine only (ACM Portal’s 

top ten results for a given query). As expected, the results from BM25 are quite inferior to those 

obtained by PubSearch.  The results are summarized in table 2.5, where we show the average score 

obtained for the 58 queries on each metric for each of the two systems. 

 

Table 2.5 Comparing PubSearch with BM25 Weighting Scheme 

Metric PubSearch Okapi BM25 

LEX 0.742 0.235 

NDCG 0.976 0.817 

ERR 0.739 0.302 

 

The average percentage difference between PubSearch and Okapi BM25 in terms of the LEX 

metric is 1898% (due to BM25 producing a LEX score of less than 0.004 for some queries while for 

the same query PubSearch producing scores of more than 0.7) in terms of the NDCG metric is 20.9% 

and in terms of the ERR metric it reaches 144%. Statistical analysis (though not really needed) in 

terms of t-test, sign test and signed rank test shows these differences to be very significant. This result 

is not surprising as BM25 is a generic non-binary information retrieval model that has no specific 

domain knowledge about academic publications. 

We also compare our proposed approach against a more standard fusion scheme (Kuncheva, 

2004) where for each heuristic h (that can be TF, DCC, or MWC) we compute a score hA that 

represents an “inverse accuracy” score of the heuristic in obtaining the best possible sequence of a 

query’s search results (measured against the training set query data). This score hA is computed as 

follows: assume the search results for a query q ranked in descending order of relevance feedback by 

the user are as follows:
,1 ,,q q nd dK  having relevance feedback scores

,1 ,2 ,q q q nf f f≥ ≥ ≥K . Now, 

assume the heuristic h scores the documents so that they are ranked according to the following order: 

1 2, , ,, ,
nq h q h q hd d dK . Define the quantity 

,q ig as follows: 
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, ,

1

n

q h q i

i

A g
=

=∑ . Clearly, 
, 0q hA ≥ , and 

, 0q hA = if and only if the heuristic h obtains a 

perfect sorting of the result set of query q (as indicated by the user relevance judgements.) The 

measured inverse accuracy of a heuristic h on the training set trainQ is then defined as
,

train

h q h

q Q

A A
∈

= ∑ . 

We compare PubSearch against an ensemble of the three heuristics from the set 

{ }, ,H TF DCC MWC=  that works as follows: each heuristic in the set of heuristics produces a re-

ranked order of results
1 2, , ,, ,

nq h q h q hd d dK . The final ensemble result is the list of results sorted in 

ascending order of the combined value 

                                         ( )
( )

1

1 ,
1

1

d h

d h

h H h H h

r
r A

A

−

−

∈ ∈

 
= +  + 
∑ ∑                                  (2.7) 

of each document in the result list where 
,d hr is the position of document d in the result list according 

to heuristic h. The ensemble fusion results are comparable with ACM Portal on the NDCG and ERR 

metrics (0.5% better in terms of NDCG, and 8.1% better in terms of ERR metric); the ensemble fusion 

also does a much better job than ACM Portal in terms of the LEX metric (442% better). Still, the 

ensemble fusion results do not compare well with PubSearch as can be seen in table 2.6.  

 

Table 2.6 Comparing PubSearch with Heuristic Ensemble Fusion Performance Average 

Metric PubSearch 

TF-DCC-MWC 

Ensemble Fusion 

LEX 0.742 0.431 

NDCG 0.976 0.879 

ERR 0.739 0.451 
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PubSearch is on average more than 472% better than the fusion heuristic described above in terms 

of LEX metric, more than 12% better in terms of the NDCG metric, and more than 70% better than 

the fusion heuristic in terms of the ERR metric. 

 

2.7.3. Comparison with Other Academic Search Engines 
 

We performed a head-to-head comparison between PubSearch and the three state-of-the-art 

academic search engines: 

1. Google Scholar (http://scholar.google.com)  

2. Microsoft Academic Search (http://academic.research.microsoft.com) 

3. ArnetMiner (http://arnetminer.org) 

The comparison was made on a sizeable subset of our original query set of 58 user queries shown 

in table 2.7, comprising a total of 20 user queries, augmented by 4 new user queries, for a total of 24 

user queries. The four new user queries were Q59=‘Page Rank clustering’, Q60=‘social network 

information retrieval’, Q61=‘unsupervised learning’, and Q62=‘web mining’ respectively. 

 

Table 2.7 Comparing PubSearch with ACM Portal on Retrieval Score 

# Submitted Query 
ACM 

Pub 

Search 
ACM 

Pub 

Search 
ACM 

Pub 

Search 

LEX LEX NDCG NDCG ERR ERR 

1 query privacy "sensor networks" 0.012 0.939 0.662 0.995 0.204 0.978 

2 
wormhole attacks adhoc 
networks 

0.492 0.748 0.880 1.000 0.417 0.656 

3 gameplay artificial intelligence 0.748 0.999 0.894 0.990 0.663 0.984 

4 human-level ai 0.548 0.750 0.953 0.998 0.502 0.664 

5 ambient intelligence 0.988 0.990 0.985 1.000 0.984 0.984 

6 cloud computing 0.794 1.000 0.936 1.000 0.732 0.984 

7 Autonomous agents 0.961 0.990 0.926 1.000 0.984 0.984 
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8 service-oriented architecture 0.748 0.998 0.911 1.000 0.664 0.984 

9 
routing wavelength assignment 
heuristic 

0.748 0.748 0.995 0.995 0.654 0.654 

10 gmpls "path computation" 0.760 1.000 0.935 1.000 0.687 0.984 

11 
background subtraction for 
"rotating camera" 

0.446 0.445 0.777 0.780 0.415 0.407 

12 
image registration in "video 
sequences" 

0.250 0.890 0.800 1.000 0.290 0.974 

13 computer vision code in matlab 0.002 0.000 0.817 0.803 0.123 0.117 

14 Secure Decentralized Voting 0.002 0.000 0.822 1.000 0.124 0.124 

15 license plate recognition 0.539 0.988 0.864 0.991 0.485 0.984 

16 ellipse fitting 0.638 0.988 0.837 0.996 0.647 0.984 

17 single channel echo cancellation 0.000 0.896 0.632 0.986 0.166 0.975 

18 analysis time varying systems 0.466 0.748 0.867 0.993 0.422 0.661 

19 
time varying system 
identification 

0.070 0.950 0.779 0.963 0.318 0.981 

20 amazon mechanical turk 0.548 0.790 0.921 0.998 0.506 0.730 

21 music color association 0.988 0.998 0.970 0.996 0.984 0.984 

22 mobile tv user experience 0.502 0.948 0.883 0.984 0.447 0.980 

23 mobile television convergence 0.796 0.998 0.959 1.000 0.732 0.984 

24 music instrument recognition 0.540 0.988 0.869 0.995 0.487 0.984 

25 
bayesian n gram estimation 
prior 

0.536 0.748 0.911 0.992 0.470 0.653 

26 
statistical parametric speech 
synthesis 

0.510 0.989 0.864 0.994 0.462 0.984 

27 cover song identification 0.419 0.498 0.889 1.000 0.339 0.379 

28 Bayesian spectral estimation 0.012 0.488 0.773 0.989 0.161 0.346 

29 object-oriented programming 0.708 0.748 0.959 0.998 0.623 0.656 

30 XML database integration 0.550 0.750 0.966 1.000 0.512 0.668 

31 agile software development 0.491 0.740 0.889 0.997 0.406 0.638 
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32 script languages 0.251 0.700 0.829 0.999 0.266 0.598 

33 
distributed computing web 
services 

0.458 0.747 0.817 0.988 0.373 0.653 

34 database performance tuning 0.548 0.990 0.882 0.998 0.503 0.984 

35 database scaling 0.708 0.992 0.881 0.993 0.631 0.984 

36 database optimization 0.000 0.000 1.000 1.000 0.085 0.085 

37 distributed database architecture 0.735 0.990 0.915 0.999 0.665 0.984 

38 large scale database clustering 0.492 0.540 0.899 0.955 0.412 0.480 

39 
autonomous agents and multi-
agent systems 

0.747 0.950 0.939 1.000 0.663 0.980 

40 distributed autonomous agents 0.000 0.000 1.000 1.000 0.085 0.085 

41 
Self-organizing autonomous 
agents 

0.070 0.062 0.762 0.768 0.329 0.284 

42 
large scale distributed 
middleware 

0.752 0.998 0.937 0.989 0.675 0.984 

43 intelligent autonomous agents 0.000 0.000 1.000 1.000 0.056 0.056 

44 
Grid computing cloud 
computing 

0.712 1.000 0.901 0.998 0.646 0.984 

45 cloud computing platforms 0.750 0.996 0.920 0.992 0.668 0.984 

46 
resource management grid 
computing 

0.020 0.942 0.721 0.984 0.254 0.980 

47 cloud computing architectures 0.666 0.986 0.827 0.960 0.610 0.984 

48 cloud computing state of the art 0.004 0.942 0.679 0.982 0.218 0.980 

49 user interface technologies 0.000 0.000 1.000 1.000 0.085 0.085 

50 mobile user interfaces 0.000 0.000 1.000 1.000 0.085 0.085 

51 web 2.0 0.100 0.948 0.804 0.987 0.304 0.980 

52 mobile social networks 0.483 0.742 0.841 0.992 0.397 0.651 

53 social network privacy 0.000 0.000 1.000 1.000 0.069 0.069 

54 game engine architecture 0.492 0.956 0.835 0.973 0.428 0.982 

55 3d game engine 0.549 0.923 0.878 0.908 0.509 0.979 
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56 Opengl 0.709 0.990 0.902 0.998 0.638 0.984 

57 texture mapping 0.460 0.892 0.837 0.926 0.405 0.977 

58 polygonal meshes 0.748 1.000 0.908 1.000 0.666 0.984 

 

Each query was given to each of the above mentioned search engines, and the top-10 results (from 

each of the above search engines) were then presented to the users for relevance feedback in random 

order. The results produced by each search engine, as well as the re-ranked results produced by 

PubSearch when given the same list of results are shown in tables 2.8, 2.9 and 2.10 respectively. 

 

 

Table 2.8 Comparison between Microsoft Academic Search and PubSearch 

Query # 

Microsoft 

PubSearch 

Microsoft 

PubSearch 

Microsoft 

PubSearch 
Academic 

Search 

Academic 

Search 

Academic 

Search 

LEX LEX NDCG NDCG ERR ERR 

59 0.52 0.72 0.89 0.91 0.5 0.66 

60 0.47 0.86 0.8 0.85 0.48 0.97 

61 0.88 0.80 0.89 0.97 0.97 0.73 

62 0.99 0.96 0.97 0.96 0.98 0.98 

34 0.74 0.71 0.97 0.95 0.64 0.62 

35 0.45 0.49 0.85 0.89 0.38 0.41 

36 0.49 0.46 0.98 0.96 0.35 0.34 

37 0.69 0.75 0.92 0.99 0.61 0.65 

58 0.44 0.46 0.9 0.94 0.33 0.35 

38 0.67 0.79 0.89 0.99 0.62 0.73 

39 0.70 0.53 0.99 0.98 0.57 0.44 

40 0.46 0.45 0.92 0.92 0.35 0.35 

41 0.30 0.69 0.9 0.95 0.31 0.56 

42 0.50 0.46 0.98 0.93 0.38 0.36 
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43 0.24 0.25 0.91 0.93 0.21 0.22 

44 0.45 0.46 0.89 0.91 0.37 0.39 

45 0.29 0.29 0.91 0.93 0.27 0.28 

46 0.74 0.71 0.94 0.94 0.63 0.61 

47 0.31 0.53 0.91 0.97 0.34 0.45 

49 0.46 0.49 0.95 0.98 0.33 0.35 

54 0.71 0.74 0.95 0.98 0.62 0.64 

55 0.53 0.46 0.96 0.9 0.45 0.38 

56 0.25 0.24 0.97 0.95 0.18 0.18 

57 0.48 0.77 0.87 0.98 0.48 0.72 

 

The average percentage difference between PubSearch and Microsoft Academic Search is 15% 

for the LEX metric, 2.6% for the ERR metric, and 11.7% for the NDCG metric. Statistical analysis 

shows that for the ERR and LEX metric, the differences are significant at the 95% confidence level 

according to the t-test and signed-rank test but not according to the sign test. The results are visualized 

in figure 2.11. 
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Figure 2.11 Plot of the percentage difference between the PubSearch score and Microsoft Academic Search 

score in terms of the three metrics LEX, ERR and NDGC 

 

Table 2.9 Comparison between Google Scholar and PubSearch 

Query # 

Google 
PubSearch 

Google 
PubSearch 

Google 
PubSearch 

Scholar Scholar Scholar 

LEX LEX NDCG NDCG ERR ERR 

59 0.45 0.56 0.4 0.53 0.79 0.91 

60 0.34 0.71 0.41 0.64 0.84 0.9 

61 0.99 1.00 0.98 0.98 0.95 0.98 

62 0.19 0.99 0.51 0.98 0.83 0.97 

34 0.94 0.79 0.97 0.72 0.98 0.99 

35 0.48 0.54 0.393 0.44 0.91 0.98 

36 0.31 0.66 0.345 0.57 0.91 0.94 

37 0.61 0.54 0.54 0.46 0.87 0.99 
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58 0.96 0.76 0.98 0.68 0.97 0.94 

38 0.51 0.55 0.446 0.5 0.9 0.96 

39 0.66 0.53 0.54 0.43 0.95 0.99 

40 0.27 0.46 0.307 0.38 0.86 0.91 

41 0.62 0.53 0.54 0.44 0.89 0.96 

42 0.75 0.70 0.65 0.62 0.99 0.95 

43 0.91 0.99 0.97 0.98 0.91 0.99 

44 0.69 0.53 0.6 0.48 0.91 0.91 

45 0.71 0.74 0.62 0.64 0.96 0.98 

46 0.78 0.98 0.73 0.98 0.96 0.98 

47 0.70 0.50 0.59 0.42 0.99 0.95 

49 0.99 0.70 0.98 0.62 0.99 0.89 

54 0.70 0.53 0.57 0.44 0.99 0.98 

55 0.95 0.76 0.98 0.68 0.98 0.97 

56 0.31 0.94 0.376 0.97 0.85 0.98 

57 0.31 0.78 0.39 0.72 0.87 0.99 

 

The average percentage difference between PubSearch and Google Scholar in terms of LEX is 

39%, in terms of ERR metric is 4.6% and in terms of NDCG is 13.4%. The results of applying the t-

test, the signed-rank test as well as the sign test on the ERR metric shows that the improvement is 

statistically significant at the 95% confidence level. However the same does not apply for the other 

two metrics, although the t-test shows that the results for the LEX metric are also statistically 

significant at the 93% confidence level. A visualization of the comparison results is shown in figure 

2.12. 



55 
 

 

Figure 2.12 Plot of the percentage difference between the PubSearch and Google Scholar 

 

Table 2.10 Comparison between ArnetMiner and PubSearch 

Query # 
ArnetMiner PubSearch ArnetMiner PubSearch ArnetMiner PubSearch 

LEX LEX NDCG NDCG ERR ERR 

59 0.56 0.72 0.88 0.94 0.6 0.66 

60 0.27 0.75 0.8 0.97 0.35 0.68 

61 0.36 0.80 0.87 0.97 0.46 0.73 

62 0.80 0.95 0.96 0.96 0.73 0.98 

34 0.95 0.76 0.97 0.95 0.98 0.68 

35 0.75 0.75 0.99 0.99 0.66 0.66 

36 0.50 0.51 0.9 0.91 0.43 0.45 

37 0.55 0.59 0.91 0.93 0.51 0.6 

58 0.73 0.69 0.95 0.92 0.63 0.6 

38 0.53 0.55 0.85 0.89 0.49 0.53 

39 0.45 0.46 0.9 0.93 0.34 0.36 

40 0.46 0.74 0.88 0.98 0.41 0.65 

41 0.70 0.54 0.87 0.89 0.61 0.51 
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42 0.71 0.74 0.9 0.94 0.62 0.65 

43 0.49 0.49 0.84 0.86 0.41 0.43 

44 0.55 0.71 0.93 0.94 0.49 0.62 

45 0.59 0.79 0.94 0.98 0.6 0.73 

46 0.46 0.49 0.91 0.98 0.33 0.36 

47 0.70 0.70 0.89 0.91 0.61 0.62 

49 0.69 0.54 0.94 0.96 0.6 0.48 

54 0.67 0.69 0.92 0.93 0.6 0.6 

55 0.30 0.49 0.88 0.92 0.31 0.39 

56 0.70 0.51 0.97 0.96 0.58 0.43 

57 0.65 0.73 0.88 0.98 0.55 0.62 

 

The average percentage improvement of PubSearch over the ArnetMiner results in terms of LEX score 

is 19.9%, in terms of ERR is 4.1%, and in terms of NDCG metric is 12.6%.  

 

Figure 2.13 Plot of the percentage difference between the PubSearch and ArnetMiner 
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The results of all statistical tests are statistically significant for the LEX and ERR metrics, but 

only the sign test shows statistical significance for the NDCG metric at the 95% confidence level. 

Figure 2.13 visualizes these results. 

 

2.7.4. Can PubSearch Promote Good Publications “Buried” in ACM Portal Results? 
 

For the query “Web Information Retrieval”, because ACM Portal fails to return “The anatomy of a 

large-scale hyper textual web search engine” paper within the first 5000 search results, we manually 

added the “Google” paper into the top 50 results from ACM Portal and asked PubSearch to re-rank the 

new list of 51 search results. The Page-Rank paper comes out in 5th place, immediately below the 

following papers:  

1. Contextual relevance feedback in web information retrieval (Limbu et al., 2006) 

2. Concept unification of terms in different languages via web mining for information retrieval 

(Li et al., 2009) 

3. An architecture for personal semantic web information retrieval system (Yu et al., 2005) 

4. An algebraic multi-grid solution of large hierarchical Markovian models arising in web 

information retrieval (Krieger, 2011) 

The papers appearing above the Page-Rank paper all share the following characteristics: (i) they 

have all terms of the query appearing in the title, and (ii) they are more recent papers. Because of this, 

our custom implementation of the TF heuristic promotes the other papers high in the result list so that 

the Google paper ends up in the 2nd TF bucket, and then, its citation count alone cannot promote it 

higher than the 5th position. Still, PubSearch manages to promote the Google paper in the top 5 results 

which is much better than the other academic search engines we experimented with. 

To further enhance our confidence in the ability of PubSearch to promote “good” publications —

for a particular user information need— that happen to appear much lower than the top ten positions 

in the results list of ACM Portal, we ran a small experiment where the users ranked the top 25 results 

of 5 queries. The results are very good, as the system shows again very significant performance 

improvement against ACM Portal in all metrics considered, and in fact, it significantly improves its 

performance gap over ACM Portal in terms of both the LEX and the NDCG metrics. 
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The results are shown in table 2.11. The percentage improvement of PubSearch over ACM Portal 

on average in terms of the LEX metric is 460.98%, in terms of the ERR metric is 16.7%, and in terms 

of the NDCG metric is 111.6%. All the results are statistically significant at the 95% confidence level. 

The very high gap in terms of LEX score for the case of the top-25 results is exactly due to the fact 

that good publications that are a good match for the user’s information needs are actually promoted 

from the bottom of the list of the top-25 ACM Portal results to the top positions. The LEX score is 

therefore a useful indicator when investigating the ability of ranking schemes to promote otherwise 

“buried” publications high in the result list as it amplifies this effect to the maximum extent. 

 

Table 2.11 Limited comparison between ACM Portal and PubSearch for the top-25 results of ACM Portal. 

Q63 is the query ‘clustering “information retrieval”’ 

Query # ACM PubSearch ACM PubSearch ACM PubSearch 

 LEX LEX NDCG NDCG ERR ERR 

33 0.46 1.00 0.79 0.99 0.38 0.98 

34 0.55 0.99 0.87 0.99 0.50 0.98 

35 0.70 0.95 0.90 0.97 0.63 0.98 

36 0.00 0.69 0.68 0.98 0.12 0.57 

37 1.00 0.99 0.98 0.98 0.98 0.98 

38 0.45 1.00 0.84 0.98 0.42 0.98 

39 0.75 0.95 0.91 0.99 0.66 0.98 

40 0.00 0.49 0.72 0.99 0.11 0.36 

41 0.07 0.99 0.79 0.96 0.33 0.98 

42 0.75 0.99 0.92 0.97 0.68 0.98 

45 0.75 1.00 0.90 0.99 0.67 0.98 

46 0.02 0.80 0.75 0.97 0.25 0.73 

59 0.46 0.98 0.83 0.97 0.44 0.98 

60 0.04 0.78 0.75 0.97 0.22 0.73 

61 0.88 0.95 0.87 0.96 0.97 0.98 
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62 0.31 0.96 0.86 0.97 0.42 0.98 

63 0.33 0.74 0.86 0.98 0.39 0.66 

 

 

2.7.5. Run-time Overhead 
 

The run-time overhead of our initial prototype requires to perform the re-ranking of the search results 

given a query and a set of results from another engine (i.e. ACM Portal, or Google Scholar or Microsoft 

Academic Search, or ArnetMiner) is in the order of three (3) seconds per document. This run-time 

applies for a commodity hardware workstation. However, the computation of the TF-score (by far the 

most compute intensive process in the whole system) for each document is independent of the other 

documents in the result list, and therefore can be done in parallel so that the total computation time for 

a full list of search results will still be in the order of seconds in a server farm. Furthermore, our 

prototype is not in any way optimized for speed at this point. We are in the process of optimizing the 

response time of the system to reduce the run-time processing requirements per document by one order 

of magnitude to make the system commercially feasible. 
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3. Recommender Systems 
 

3.1. System Architecture Overview 
 

We have developed a commercial movie recommendation system (called AMORE) for a major Greek 

Triple Play services provider. The provider uses the Microsoft Media Room® movie rental platform 

that allows service subscribers to stream movies online. AMORE is implemented based on a Service-

Oriented Architecture (SOA) which aims to expose only the required interfaces to service consumers, 

without revealing any implementation details. Similarly, AMORE retrieves all updated data, related 

to user transactions, as well as available content items, via exposed data retrieval web services from 

the provider’s side. This loose-coupling of the overall architecture design allows for flexible 

integration of all involved subsystems.  

Furthermore, AMORE, in addition to offering on-the-fly generation of recommendations, also 

supports a daily update and caching of recommendations in an attempt to minimize computational 

overhead in the deployment configuration which has limited computational resources. In order to 

achieve that, AMORE is divided into the following components: i) the AMORE web service, ii) the 

AMORE batch job process and iii) two different database instances that use the exact same data model. 

As we will explain in detail in this chapter, the AMORE batch job generates and caches a predefined 

number of recommendations for each active subscriber of the service, as well as overall top-n 

recommendations (of all users), both of which facilitate the AMORE web service methods to retrieve 

cached recommendations with the minimum number of operations. 

In the following chapter we will describe the architecture of the AMORE system as well as well 

as the design of the recommendation algorithms used. We have not been involved in any technical 

aspect of the movie rental platform itself, which is entirely operated by the triple play provider, so 

anything related to that system is considered irrelevant to the current work and will be skipped. 
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3.1.1. AMORE web service 
 

The AMORE web service exposes a set of recommendation related methods. These methods can be 

distinguished into: i) those that generate recommendations on-the-fly by processing user histories real-

time using different views of the database, bounded by specific time limits, and ii) those that simply 

retrieve daily updated cached recommendations from DB. 

Caching of recommendations speeds up system responsiveness to client invocation by eliminating 

the overhead of having the recommender engine generate recommendations on-the-fly each time a 

web service request is submitted. Having access to cached results, the web service can easily retrieve 

recommendations with the minimum number of operations (at standard time O(1), by means of a 

simple SQL select statement from a single table) to retrieve a specified number of recommendations 

for a specific user. Also due to the fact that there are no significant variations in the watching behavior 

of a single user account within very small intervals of time (within one or two hour units), caching of 

the recommendations proves to be justified, and it is a matter of business related decision (which does 

not related to the current discussion) on the frequency with which recommendations are going to be 

updated at the movie rental front-end tier, although it is worth noting, that we are able to generate fresh 

results every two hours approximately for a database containing nearly a year’s worth of transaction 

data from approximately thirty thousand (30,000) users. 

In addition to caching of results, there are cases of methods were caching cannot apply. These are 

methods that offer service consumers the possibility to narrow down the user transaction history to a 

specific subset bound by specific time limits based on which recommendations are generated. This 

functionality allows service consumers to retrieve recommendations based on user histories of 

different time slots within the day (we define as a time slot a three-hour interval, but the range is fully 

configurable) with the aim to push different recommendations corresponding to each (or even a 

sequential combination of more than one) time slot. Most likely, different kinds of users (bound with 

a single account) have different watching behaviors at different time slots within a day, so to illustrate 

with a rather simplified example; most likely, we would expect young children to watch movies during 

morning hours, elderly people during early evening hours and adults during late evening hours. So 

providing time-bound recommendations, allows the system to address preferences of users who 

happen to watch movies at specific moments within a day mapped with certain time slots. 
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When the user logs into the triple play provider’s front-end screen, he is presented with custom 

account-based recommendations, which are essentially retrieved by the front-end tier by calling the 

respective web service method of AMORE that retrieves the latest cached results for the specific user. 

As we will describe in the following section, the caching of results in DB, is performed by a batch job 

that performs a series of tasks for the “offline” updating and caching of the recommendation results. 

To facilitate the uninterrupted running of both —the web service and the batch job in parallel— the 

system uses two databases (schemas) that we will refer to as the main and the auxiliary, that follow 

the exact same data model. Having two schemas allows our system to serve web service requests by 

retrieving cached results from one schema (for instance, the main) while the batch job uses the second 

schema (in this case, the auxiliary) to store the updated results. 

 

3.1.2. AMORE batch process 
 

Since AMORE is configured to run in a Linux based OS, we have designed the batch process to run 

as a CRON job. The CRON job is registered to run indefinitely at specified time intervals attempting 

to spawn a new instance of the batch process, in case one is not already running. The batch process 

runs a series of steps in order to update and cache new recommendations that the exposed web service 

methods can retrieve upon completion of all steps. As already mentioned, the overall system 

architecture includes the existence of two schemas (we will reference them as main and auxiliary) that 

allow the uninterrupted, efficient service of web service requests, while at the same time updated 

recommendations are generated as part of a background process. The batch process also controls the 

data source references used by each component and is also responsible for updating them (by switching 

pointers) upon process completion, as we will explain in detail later. 

The AMORE batch process runs a series of steps sequentially. First, the process determines the 

data source reference to use, which has to be the opposite of the data source currently used by the web 

service. To illustrate, say that the web service uses the main data source reference, retrieving cached 

recommendations from the main database, the batch process should then establish a DB connection 

using the data source reference to the auxiliary schema, which must contain the most outdated 

recommendations, since the web service always serves recommendation requests retrieving data from 

the database containing the most recent recommendations. 
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The first real task that the batch process performs, is attempting to verify that all external, back-

end web services are responsive to submitted web service requests, the AMORE batch job calls two 

provision web services (user and data respectively), in order to update the system’s database with the 

latest data for all active users, and that includes all user transactions as well as the full list of available 

content items. After all retrieved are stored in persistence, the system refreshes all memory caches 

(user and item respectively) that will be referenced by recommenders in the recommendation 

generation step. So after caches have been loaded and renewed, the process invokes the recommender 

ensemble (described in-depth in the next section) in order to efficiently generate for each active user 

the updated top-n recommendations and cache them, so that they can be later retrieved by the web 

service upon process completion. A certain pre-specified number of recommendations is generated of 

size that is consider to be sufficient in order to cover all different business requirements of the provider. 

The provider, at a middle tier in the overall architecture, may perform some filtering on the generated 

recommendation results by promoting at higher positions certain items which they consider to be 

trending, or others that are deemed of high relevance to a specific user (by the recommender engine) 

and are priced higher than other items in the list, which might occupy higher positions. Also there is a 

business case where the provider might be even willing to eliminate certain items from the list (or 

move them to lower positions in the rank), because they are lower (or even zero-) priced. But this 

discussion is beyond the scope of the current work, and does not affect in any way the experiments 

that we will present. 

One of the frequently occurring issues that our system needed to address, concerns 

recommendations that keep on appearing for a certain user (since the items are considered to be 

relevant), but these items are never consumed by the user. Some of the main reasons that may cause 

this is the fact that the user may have seen the recommended item in the past via a different 

broadcasting medium, or the fact that a specific recommendation is not attractive enough, or even 

highly priced based on the maximum reference price that a specific user is willing to pay. So in order 

to avoid a situation where certain recommendations remain forever in the suggested recommendations 

of a specific user, without being eventually consumed, we have devised a post-processing mechanism 

that discounts the score assigned by our recommender ensemble for each item, proportionally to the 

number of times that the specific item has been shown in the recommendation list of a specific user. 

This would eventually cause recommendations that are shown, but are not consumed, to eventually 

“fall off the charts” (see Lathia et. al. (2010) for a detailed evaluation of methods for solving exactly 
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this kind of temporal diversity issue in recommender systems; (Hurley et al., 2011) for a thorough 

review of different approaches to the related problem of maximizing diversity to item 

recommendations to users; Zhang & Hurley (2008) formulate an optimization problem for maximizing 

diversity in recommendation lists subject to maintaining high relevance of the recommended items).  

One additional frequent issue for recommender systems is the cold start problem which refers to 

the inability of a recommender system to generate accurate recommendations for a specific user due 

to lack of user data by means of transaction history. This is a frequent issue in cases of new users to 

the service. Also the problem persists but takes a different form, in cases of users with very small 

histories. This would still allow recommenders to come up with recommendation results, still 

recommendations cannot be accurate enough until the user builds a transaction history that would 

allow the system to generate recommendations with higher confidence. In order to address the first 

part of the cold start problem which refers to new users with no transaction histories whatsoever, the 

batch process generates a list of top-n recommendations, which corresponds to a sorted list of all items 

in the DB, ordered using the lexicographic ordering rule. Specifically the ordering happens by 

generating a vector of integer values vit for each item in the database of size n corresponding to the 

total number of recommendations generated for each user at the previous step of the process. Each 

element of vit contains the count value corresponding to the number of times that the particular item it 

appeared in the ith position in the top-n result list of each user for which recommendations have been 

generated. 

As a final step, after all recommendations have been generated and successfully cached, the batch 

process calls a web service method (only available to the process) that instructs the AMORE web 

service to switch the active data source from the currently used schema to its opposite; after doing so, 

the web service is able, upon request, to return cached recommendation of results stored in the schema 

that the last process instance has populated. Similarly, the AMORE job updates a file that specifies to 

the next process instance that will be spawned at some point by the CRON scheduler to use a data 

source reference to the schema containing the most outdated results in order to repeat the 

aforementioned process. 

Furthermore, in order to ensure that all cached data as well as all data retrieved from persistence 

at any point are consistent with the currently active data source, we have implemented a mechanism 
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that ensures and protects the system resources from “dirty” reads/writes. This mechanism is based on 

a fast reentrant global read/write lock with the following properties:  

1. A thread owning the write-lock may request (and get) the same lock in read- or write-

mode any number of times, but must call the corresponding release method for every time it 

has called the request method in order for the locks to be eventually released 

2. A thread owning a read-lock may request an upgrade to the write-lock, and the method 

will grant the new type lock, unless at the time of request is at least one other thread having 

the read-lock, in which case there is a danger of dead-lock; in such a situation a checked 

exception is thrown 

3. Threads executing a request for a read-lock will yield the first time if there exists a 

thread waiting for the write-lock so as to avoid any possible live-lock issues 

Given this global lock, we implement a simple pattern in all related methods for creating, 

maintaining, and/or updating the in-memory caches: whenever a method needs to access the in-

memory caches, it must first obtain the global read-lock, whereas methods that need to update the in-

memory caches must first obtain the global write-lock. Upon start-up of the AMORE web-service, the 

first thread started, spawns a new thread that obtains the global write-lock and starts loading the data 

from the database into the in-memory caches, while the first thread waits for the new thread to 

complete (calling the thread’s join() method). Once the new thread has loaded the latest snapshot of 

the database, it releases the write-lock and finishes, returning control to the first thread to continue its 

operation. Coordination between the AMORE batch job and the AMORE web service (two distinct 

processes residing in distinct address spaces) is obtained as follows: when the AMORE batch job is 

about to complete, as a last step, it calls the special AMORE web service method mentioned above, 

which in turn, first obtains the global write-lock of the system, then switches the DB pointer to the 

current active DB schema, then refreshes all in-memory caches of the system, and finally releases the 

global write-lock, allowing pending recommendation requests (waiting to obtain the global read-lock) 

to proceed using the most updated data. Figure 3.1 provides a visual representation of the overall 

system architecture, as discussed above. 
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Figure 3.1 AMORE: High Level Architecture 
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3.2. Recommender Ensemble 
 

3.2.1. Recommendation Approach 
 

In configurations where no relevance judgments exist, there have been different attempts to determine 

user preference by means of different available parameters. Specifically, in (Christou et al., 2012), the 

authors introduce a novel content-based recommender that takes a pure machine learning approach for 

performing movie recommendation functionality to subscribers of a Content-Delivery Network. The 

introduced approach uses the percentage of watching time of a specific show by a specific user as a 

criterion that determines the degree of preference that the user has for the watched show. Based on 

that knowledge, the introduced recommender attempts to classify a certain movie into one of two 

classes (“like” or “dislike”). A similar idea has been used in Bambini et al., (2011), where the authors 

introduce an online classifier ensemble based on the Hedge-β algorithm to determine class membership 

of previously unseen content in order to be able to recommend shows in the category “like”.  

The aforementioned approach could not be applied in our own case, since there have been 

absolutely no such information with respect to a particular user’s watching behavior or the total 

watching time devoted to a certain movie item. Additionally, the complete absence of any user 

relevance judgments or feedback led us to resort on an algorithmic approach that uses a user’s 

transaction history, in terms of consumed content items, and based on that information alone, we 

designed and implemented a hybrid recommender ensemble composed of a i) content, ii) item and iii) 

user based recommender.  
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3.2.2. Content-based Recommender 
 

To explain the algorithm behind the content-based recommender we implemented, we define set 

{ }
1, ,, ,

ku u i u i
H p p= K to denote the set of item content item purchases as evidenced in the transaction 

history of user u.  

For each purchase ,u ip
in the set H, we have the following associated meta-data: 

1. An ordered list of actors iA that appear in the content-item i (in order of appearance). Each 

element in this list is an element of the full set of actors A  known to the system. 

2. An ordered list of directors iD that directed the content-item. Each element in this list is an 

element of the full set of directors D  known to the system. 

3. An ordered list of producers iP that produced the content-item. Similarly, each element of 

the list is a member of the set P of producers known to the system. 

4. An ordered list of the genres iG  of the content-item, each element of which is a member of 

the full set of genres G that the service provider has defined. 

5. The year iy  the content-item was produced. 

6. An ordered list of the countries iC  that participated in the production of the content-item. 

7. An ordered list of the languages iL  in which the content-item is available. 

8. An ordered list of the languages iS  in which subtitles in the content-item is available. 

9. The total duration of the content-item id  (in seconds). 

10. The price , 0u im ≥  the user paid to view the item. 

11. The exact date and time ,u it the user started viewing the content-item. 

Given the above information, our custom content-based recommender is able to compute the 

following functions: 
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Similarly, the functions 
, ,L S CF F F

are defined; all are cached in appropriate hash-tables in 

memory so that the computations are only performed once, right after the system’s databases are 

updated. Each of the above functions provides an estimate of the degree of “matching” of a user u with 

the value of the appropriate attribute x: for example, ���"Tom	Cruise", "�668275"! represents the 

system’s estimate of the matching of user “S668275” with actor “Tom Cruise”, and the estimate is 

essentially the sum of euro the user has paid to see movies starring Tom Cruise plus the total number 

of times the user saw movies starring that actor.  

The prediction score of a content-item i  that has not been already viewed by user u then is 

computed according to the following formula: 

                                           
{ }

, ,

, , , , , , ,

/j j

u i u i u
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∈

= ∑                                   (3.2) 

where the quantities , ,j

u i uR M are defined as follows: 
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          (3.3) 

and the set iY  is defined as	"� = #$ ∈ ℕ: |$ − )�| < +,- where y
l is a non-negative parameter. The 

score [ ], 0,1u iR ∈  is therefore a weighted non-linear combination of the “likeness” of the user towards 

each of the content-item attributes as measured by the total percentage of the amount of money the 

user has paid to view items with such an attribute as well as by the number of times the user has viewed 
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such items. The top-n recommendations are the n items currently available for viewing having the 

highest ,u iR  score for each user u. 

The parameters ,y jl w as well as the exponents j
k for , , , , , , ,j A D P G L S C Y=  were considered 

to be independent non-negative variables to be optimized, with objective criterion the Recall metric 

( )10R specified in the experimental results section. Different values for the , ,y j jl w k produce 

different recall metric values. We optimized these parameters, using again the popt4jlib Open Source 

library via a standard Genetic Algorithm process. 

 

3.2.3. Item-based Recommender 
 

Our custom implementation of the k-NN-item-based recommender is as follows (we simplify 

somewhat our description to avoid discussing issues that are not essential to the algorithm such as 

availability of content-items, filtering of the user histories according to certain time-windows etc.). 

Let U denote the set of all users that have subscribed at some point to the video-on-demand 

service; for every user u U∈ let their unique sequential user-id be ( ) { }1,sid u U∈ K , and similarly 

let Ibe the set of all content-items known to the system, and for every item i I∈ let its unique sequential 

item-id be ( ) { }1,sid i I∈ K . For every user u U∈ we compute and store the (sparse) vector ( )uh

with dimensions equal to I , whose j-th component ( ) is defined according to the equation 

                                                 ( )
,

( ) ,

: ( )

1
u i u

u u i
j

p H sid i j

h m
∈ =

 = + ∑                                 (3.4) 

Since relevance judgments are not available, we can only use price as the closest indication of 

user preference for certain items. Although the computational results showed that this formula 

improves quality of results, still the drawback of this approach is that prices are solely determined by 

the service provider, and do not reflect true relevance judgment of the specific user.  

1j I= K
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Using these vectors, we build for each item i I∈ another (sparse) vector ( )ig with dimensions 

equal to U whose j-th component ( 1j U= K ) is defined to be  

                                ( )
,

( )

1
, ( )

0 , else

u i u

ui j

sid u j p H
Hg


= ∧ ∈

= 



                             (3.5) 

where uH denotes the number of purchases user u has made so far.  

Having these data structures available in shared memory, a number of threads are then spawned 

and execute in parallel without any further synchronization required, to compute for each item they 

have been assigned to, the k most similar items to it, together with their corresponding similarity 

values. Following loosely the SUGGEST recommendation library implementation (Karypis, 2001), 

(Deshpande et al., 2004)), we define the similarity ( )1 2,sim i i between two items 1 2,i i to be the 

following quantity: 

                                             ( )

( )
( )

2

( )1

1 2

( )

: 0

1 2

( ) ( )

,
i

j

i
j

j g

i i
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sim i i
g g

>
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⋅

∑
                                      (3.6) 

where g  denotes the number of non-zero components of the vector g (notice how the similarity 

relationship between two items fails to be reflective i.e. ( ) ( )1 2 2 1, ,sim i i sim i i≠ for 1 2i i≠ in general). 

This computation is fully parallelized in an “embarrassingly parallel” loop since no communication 

or synchronization between the threads is required.   

Having computed (in parallel) and stored for each item, the k most similar items’ indices and their 

corresponding similarity values, the k-NN-item-based recommender computes the top-n 

recommendations for a user u, using the following procedure: for each non-zero element of the vector 

( )uh , i , the k most similar items to i  are examined, and those that are available and not already 

purchased by the user are added to a hash-table uC whose keys are items j and values the sum of the 

quantities ( )( ) ( )
/

u sid j
h q  where q denotes the position in the list of k most similar items to j that 
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item i  is found in. Once all the non-zero elements of ( )uh  have been examined, the n key-value pairs 

in uC with the highest values are proposed as the top-n recommendations for the user u.  

 

3.2.4. User-based Recommender 
 

Our custom multi-threaded implementation of the k-NN-user-based recommender is completely 

analogous to our custom implementation of the k-NN-item-based recommender. For every user u U∈  

we define the (sparse) vector ( )
ˆ

uh in I dimensions, whose j-th component ( 1j I= K ) is simply 

defined to be 1 if item isatisfying ( )sid i j=  was purchased by the user, and zero otherwise. Having 

obtained these vectors in a global shared memory, a number of threads are spawned that independently 

and concurrently execute in another embarrassingly parallel loop that does not require any 

synchronization or communication among them. The loop in each thread computes for each of a set of 

users it has been assigned to, the similarity between this user and every other user in the database, 

according to the cosine-similarity formula ./��01, 02! = ℎ4�56! ∙ ℎ4�58! 9:ℎ4�56!::ℎ4�58!:;<  (notice the 

reflective relationship that holds in this definition of similarity between users: the “amount of 

similarity” that 1u has with 2u is the same as that of 2u to 1u .) Once the k(=150) most similar users 

to the given user u have been computed along with their similarity scores, these top k similarity scores 

are normalized to sum up to unity (by dividing each score by the sum of the k scores). These k most 

similar users to u define the k-Nearest-Neighbors of u. 

Having created the above data structures in shared memory, our k-NN-user-based recommender 

computes the top-n recommendations for a given user u by computing for each (available and not 

already purchased) item in the history of the k most similar users to u, the sum of the (normalized) 

similarity scores of the users that purchased that item; the algorithm then simply recommends the n 

highest scoring items to user u. 
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3.2.5. Final Hybrid Parallel Recommender Ensemble 
 

The final top-n recommendations for a particular user u are computed by first asking each of the three 

recommenders (in parallel) to compute the top-5n  recommendations for u and then computing for 

each recommended item (by any of the individual recommenders), a linear weighted combination of 

the recommendation values of all three recommenders, whereby if an item is not in the top-5n list of 

some recommender, it assumes by default the value zero for this recommender. The weights 

, ,i u cw w w of the item-based, user-based, and content-based recommenders were set (using the same 

optimization process that was employed for the computation of optimal weights for the parameters of 

the content-based recommender) to values approximately equal to 0.75, 0.15, and 0.1 respectively. 

The resulting values are sorted in descending order, and the top-n items are returned. The same linear-

weighted combination process (with the same weights) applies when the recommender ensemble is 

asked to produce the final value of a (user-id,item-id) pair recommendation (Amolochitis et al., 2013) 

for a detailed discussion of fusing ordered lists of search results of various heuristics in an ensemble 

to produce superior final ordered result lists). 

 

3.2.6. Experiments with Other Base Recommender Algorithms 
 

Two quite different base recommender algorithms are also very popular today. The first is the so-called 

SlopeOne recommender algorithm (Owen et. al., 2011), which is not applicable in our case as it only 

works with data-sets containing explicit user-ratings of items. The second is reduced-dimensionality-

based recommenders using Singular Value Decomposition (SVD, originally proposed as a method to 

make recommender systems more scalable in the face of very large data-sets). Since our data-set is 

more than 99% sparse, we expected that SVD-based top-n recommendation results on this data-set 

would be inferior to the results of k-NN-based algorithms, as (Sarwar et. al., 2000) had reported 

previously. Indeed, the results produced by Apache Mahout’s SVDRecommender implementation 

were quite worse than the results obtained by the other Boolean user-based recommender 

implementations available in Mahout, and for this reason we do not investigate their use any further 
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(similar quality results were produced using the Open-Source FunkSVD implementation (Ekstrand et. 

al., 2011)).  

 

3.3. Computational Results 

 

In this section we compare the performance of the introduced recommender ensemble with that of a 

Boolean recommender provided by the Apache Mahout Machine Learning platform. Due to the fact 

that no relevance judgments exist in our available data, we chose to use a Boolean recommender of 

Apache Mahout which requires no relevance judgments whatsoever, and specifically we have used a 

Boolean recommender algorithm with Log-Likelihood similarity measure and threshold-based 

definition of user-neighborhood, with threshold set at 0.3 (that we found to be the optimal threshold 

level for our data-set) as well as the individual performance of each of the three recommenders 

participating in our ensemble.  

In order to evaluate the performance of the Mahout-based recommenders, we are have used the 

Recall metric (10)R as defined in (Karypis, 2001). Recall (together with so-called precision-at-n 

metric) is considered to be an appropriate metric in order to evaluate top-n recommendation results 

similar to our case. 

The experiment was performed under the following configuration; for each specific user in the 

database, we have removed a single, randomly chosen item from the user’s watching history and then 

apply the recommender ensemble in order to generate the top-10 recommendations for each user. In 

case that the top-10 recommendations include the removed item, then the objective function value is 

increased by one. The final objective function value, forming the ( )10R value, is the resulting sum 

divided by the total number of users in the database that had an item removed. With the given definition 

of recall, and test-bed construction, the average precision-at-n ( )P n  satisfies ( ) ( ) /P n R n n= . 

In order to optimize the objective function using a standard alternating-variables optimization 

process, we have used the popt4jlib Open Source library (available for download at 

http://www.ait.edu.gr/ait_web_site/faculty/ichr/pop4jlib.zip).  
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All test runs reported below were performed on a desktop PC with Intel Core-2 Quad CPU 

running at 2.4GHz having 2GB RAM running Windows. The testing data-set, being a snapshot of the 

data-base taken on Apr. 2013, comprises more than 20.000 users in total, with a little more than one 

million purchases (views) in total. The total number of items in the database are a little less than 7.000, 

but it is worth noting that the service provider’s database contains a significant number of duplicate 

entries (entries with different item-ids for items with the same title, year of production, actors, directors 

etc. with the possible exception that the genres in one entry are sometimes a subset of the genres in the 

other entry) that we had to keep track of, so that we never recommend an item that the user has already 

purchased, even though it is quite common in this data-set for the same user account to have purchased 

the same item many times (often 10 times or more); this holds especially true for items that belong to 

genres such as “Mickey Mouse’ Fun Club” and others that are available free of charge. The user-item 

matrix’s non-zero entries are less than 0.9% of the total number of cells in the matrix. 

Table 3.1 provides the recall R(n) values and associated running times Tn for the final ensemble, 

its individual recommenders acting alone, and Apache Mahout, for n = 10, 20, 30, …100, for 

recommendations produced using the entire history of each user, except a single item randomly chosen 

from each user’s history to act as the “hidden” item to measure recall against (Karypis, 2001). 

 

Table 3.1 Comparing recommenders’ quality and response times given the entire user histories (Apr. 2013) 

 

 

 

Load Rec. Load Rec. Load Rec. Load Rec. Load Rec.

10 0,286 238 1076 0,158 238 17821 0,263 238 325 0,250 238 446 0,046 238 362,4

20 0,388 238 1176 0,232 238 17558 0,365 238 324 0,339 238 427 0,069 238 358,8

30 0,460 238 1325 0,286 238 17061 0,433 238 327 0,400 238 431 0,085 238 361,6

40 0,518 238 1452 0,326 238 17068 0,490 238 322 0,447 238 640 0,100 238 366

50 0,565 238 1618 0,367 238 17083 0,531 238 321 0,484 238 462 0,115 238 369,2

60 0,602 238 1729 0,403 238 17063 0,566 238 323 0,515 238 462 0,128 238 379,2

70 0,633 238 1752 0,435 238 17047 0,591 238 371 0,542 238 476 0,140 238 382,8

80 0,659 238 1989 0,465 238 17089 0,613 238 375 0,566 238 471 0,151 238 392,8

90 0,683 238 2161 0,489 238 17112 0,635 238 325 0,588 238 475 0,160 238 401,6

100 0,706 238 2814 0,512 238 17160 0,653 238 323 0,605 238 485 0,170 238 436,4

R(n)R(n) R(n)

AMORE Ensemble Apache Mahout AMORE Item-based

R(n)

AMORE content-based

n

Time (secs) Time (secs) Time (secs) Time (secs) Time (secs)

R(n)

AMORE User-based
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Figure 3.2 Plot of the Recall metric R(n) as a function of n for various recommenders trained on the entire user 

purchase histories 

 

 

Figure 3.3 Plot of the response time   as a function of n for various recommenders trained on the entire user 

purchase histories 
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A graphical illustration of the above results is shown in figures 3.2 and 3.3, showing recall and 

response-times of the various recommenders. Quite surprisingly, Apache Mahout’s user-based 

recommender lacks very significantly behind both the AMORE ensemble, as well as our custom 

implementation of the user- and item-based recommenders in terms of recall (and equivalently, 

precision), as well as response times, and it is only better than our content-based recommender in terms 

of recall (but is much slower). This pattern holds for all values of n. As it can be easily verified, our 

AMORE ensemble is more than 80% better than Mahout in terms of the R(10) metric, and is about 15 

times faster than Mahout.  

The ensemble’s R(10) value for those users whose history of purchases includes 50 or more items 

is 0.316, quite above the overall recall value of 0.28575, implying that for low values of n the system 

is able to better understand the preferences of users with a large history of purchases. However, the 

ensemble R(30) value is 0.475 for those users having made 50 purchases or more, which is now much 

closer to the overall R(30) value of 0.45995, showing that as n gets larger, the recall value for the 

ensemble is approximately the same between users with small purchase histories and those with large 

ones.  

Notice that the recall values obtained compare well with the best values obtained for much more 

controlled data-sets, such as the movie-lens data-set where the ratings information that is made 

available for each user is the true rating the particular user has given to the item, as opposed to our 

data-set that only contains the purchase history of each user-account (that is often used by all members 

of the household). To alleviate this additional problem with our data-set, we have provided an 

additional feature to our algorithms, namely the ability to train them using only those content-items 

seen by the user within a particular time-window. The rationale behind this choice is that by narrowing 

the user history to items seen for example during prime-time, the chances that this user history is the 

union of more than one actual person in the household should be reduced, and therefore, the accuracy 

of the system should be increased. In table 3.2 we show the results of running the various 

recommenders trained using only items that were seen by the users during a time that overlaps with 

the “prime-time” window between 9 p.m. and 1 a.m. The results again show a very clear superiority 

of our ensemble, even though they do not improve upon the results obtained when training the 

classifiers with the entire history of user purchases, thereby the hypothesis that time-windows can help 

narrow down the persons using the service from each user account does not have statistical support. 
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The quality of the results is visualized in figure 3.4. Regarding running times, our ensemble is between 

1.98 and 6.46 times faster than Apache Mahout. 

 

Table 3.2 Comparing recommenders’ quality and response times given the history of user purchases that 

occurred between 9p.m. and 1a.m. (data-set of Apr. 2013) 

 

 

 

Figure 3.4 Plots of the Recall metric R(n) as a function of n for various recommenders trained on user histories 

on the interval 9p.m. to 1a.m. 

  

Load Rec. Load Rec. Load Rec. Load Rec. Load Rec.

10 0,243 241 498 0,165 241 4531 0,223 241 243 0,202 241 259 0,062 241 999

20 0,334 241 578 0,237 241 4529 0,314 241 242 0,282 241 401 0,089 241 1009

30 0,401 241 704 0,293 241 4431 0,379 241 253 0,335 241 399 0,111 241 1026

40 0,453 241 872 0,339 241 4482 0,428 241 243 0,381 241 396 0,133 241 1008

50 0,495 241 1043 0,373 241 4459 0,466 241 246 0,416 241 399 0,151 241 1061

60 0,534 241 1040 0,409 241 4489 0,496 241 240 0,444 241 401 0,167 241 1042

70 0,566 241 1272 0,439 241 4434 0,521 241 244 0,471 241 404 0,183 241 1054

80 0,593 241 1507 0,470 241 4435 0,543 241 247 0,495 241 403 0,195 241 1076

90 0,620 241 1798 0,499 241 4444 0,562 241 246 0,514 241 405 0,208 241 1094

100 0,642 241 2170 0,518 241 4524 0,578 241 247 0,533 241 405 0,217 241 1128
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We attribute the much faster response times of our system to two main reasons: 

1. a sophisticated multi-threading design and implementation that allows the software to utilize 

100% of the available cores of the CPU and obtain essentially linear speedups. To achieve 

this performance, each running thread never creates any objects on the heap (that 

dramatically reduce parallel performance) using the operator new and of course, does not 

have to obtain any synchronization locks as they only write data in different areas of the 

same arrays and do not require any data computed in parallel from the other threads 

2. a better-suited implementation of sparse vectors for k-NN-based implementations of 

recommender algorithms than the one available in the Colt numeric library that was adopted 

for Apache Mahout’s core numeric computations, combined with a very fast implementation 

of thread-local object pools for light-weight objects that make it possible for the computing 

threads never to call the new operator as stated in reason #1 above.   

As another experiment, we have deleted from the snapshot of our database taken on Apr. 2013, 

all user purchases that occurred during the last two weeks recorded in the system, and have trained the 

system with the remaining older data, to see the levels of the precision and recall metrics on this 

differently constructed test dataset. The plots in figure 3.5 show how average precision, recall, and the 

combined F-metric vary with different recommendation list lengths (measured in points that are 

multiples of 5 and 8). The reduced recall values are expected since the system must now be able to 

find not just one of the items the user has selected at any random point in the past, but the items the 

user saw in the last two weeks: but within the last two weeks, items made available within that time-

frame, may have not been seen yet by a statistically significant number of users so that the system can 

“understand” to what other items they are similar with, thus the drop in the recall values. 

We have performed an empirical small-scale test where we asked 8 volunteer users (other than 

the authors) to explicitly state the relevance (like/dislike) of the top-10 recommendations the systems 

produced for them, after declaring just five of their favorite movies. The precision of the results is 

shown in figure 3.6, and is much more encouraging. The significant difference between explicitly 

stated user-relevance and calculated system accuracy from user histories can be attributed to many 

factors, the most prominent of which would be the fact that users are very likely to have already seen 

in the theaters their favorite movies that the system calculates for them, or the sometimes high pricing 

of specific content items available for viewing. 
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Figure 3.5 Plots of Precision, Recall, and F-metric for the AMORE ensemble when the test-data are the last two 

weeks of user purchases. The F-metric is maximized at n=10 

 

 

 

Figure 3.6 Empirical average AMORE Precision-at-n measured after users have stated exactly 5 of their most 

favorite movies 
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Finally, in figure 3.7 we show how AMORE performance has evolved over time.  

 

 

Figure 3.7 Temporal Evolution of AMORE and Mahout Performance 

 

The latest experimental results on system recall and response times (Sep. 2013, on a database of 

more than 26.000 users and more than 1.9 million views) show that AMORE outperforms Apache 

Mahout by more than 100% in terms of the R(10) metric, and more than 6300% in terms of speed! 

AMORE has been increasing its performance as time passes by, by more than 13.8% between April 

and Sep. 2013. Mahout’s user-based recommender (using the Log-Likelihood metric) on the other 

hand, dropped its performance by more than 10% in the same time interval.  

In Cremonesi & Turrin (2009) and Bambini et al (2010), the authors showed that in their own 

production environments, the recall rate of item-based recommenders may deteriorate as time passes 

by, due to cold start issues and the fact that once new users view so-called “easy-to-recommend” items 

(i.e. block-busters), the task of the recommender engine becomes much more difficult. In contrast, our 

results indicate that the combination of our custom item-based recommender, user-based, and content-

based, leads to a system that evolves so that it improves its recall rate as time passes, and the 

improvement is significant. 
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Finally, we have performed a series of experiments using an alternative ensemble configuration 

consisted of the: i) Content and ii) Item based recommender (instead of the three recommenders of the 

original ensemble). We have measured the performance of the particular ensemble using the R(n) 

metric and we depict the results in figure 3.8. 

 

Figure 3.8 Recall metric R(n) using an alternative ensemble (consisted of: i) Content and ii) Item based 

recommenders) 

 

In table 3.3, we compare the performance of the original (Content, Item, User based) ensemble, 

with the alternative (Content, Item based). The results show that the original 3-recommender ensemble 

outperforms the alternative 2-recommender in terms of the R(n) metric for all different values of n. 

 

Table 3.3 Comparing the original (Content, Item, User) AMORE ensemble with the alternative (Content, Item 

based)  

n 

R(n) 

AMORE  

ensemble 

Content, Item based 

ensemble 

10 0.286 0.200 

20 0.388 0.292 

30 0.460 0.357 

40 0.518 0.399 

50 0.565 0.438 

60 0.602 0.461 
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70 0.633 0.481 

80 0.659 0.500 

90 0.683 0.514 

100 0.706 0.526 

 

 

3.4. User & System Interfaces 

 

AMORE recommendations are shown to the service subscribers on their TV-screen in a special screen 

shown in figure 3.9. The first row shows the recommended movies for the user account, whereas the 

second row immediately below it shows the month’s most popular movies. 

 

Figure 3.9 AMORE End-User On-TV-Screen Interface 
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While figure 3.8 shows a screen-shot of the user interface as seen by the end-user (the service 

subscriber), AMORE offers a variety of other interfaces. In figure 3.10, we show a SOAP-UI snapshot 

of the WSDL interface that AMORE exposes to its consumers, that simply consists of item 

recommendations for a particular user subject to certain constraints (such as time-window constraints, 

item-availability constraints etc.). 

 

Figure 3.10 AMORE WSDL interface (SOAP-UI screenshot) 



85 
 

 

Figure 3.11 AMORE Developer Desktop UI 

 

In figure 3.11, we show a developer GUI, developed particularly for the purposes of easier testing 

of the recommendations produced by AMORE. The developer GUI connects to the same databases 

that AMORE connects and consumes the AMORE web services, but allows the user to see much more 

quickly most information relevant to a user and their past choices as well as the recommendations the 

system makes for them, thus allowing easier testing and validation of the system. This GUI was the 

tool used to measure the empirical performance of the system regarding precision-at-n P(n) for our 8 

volunteer users. 
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4. Quantitative Association Rules Mining 
 

4.1. Why Quantitative Association Rules? 
 

Quantitative association rules, refer to a special type of association rules of the form of S implies I, 

where S is the rule’s antecedent and I is the rule’s consequent, both of which consist of a set of 

numerical or quantitative attributes. In contrast, Boolean association rules, also of the form S implies 

I, are consisted of categorical (nominal or discrete) attributes. The quantitative aspect of the association 

rules, allows for a wide range of application in different types of settings containing transactional data. 

Such transactional data can be found for instance in e-commerce applications.  

During recent years, there has been an emergence of such e-commerce services (Kotsiantis et al., 

2006), which signals a need for efficient recommendation algorithms that address the various issues 

that are raised. In such a setting, traditional data mining techniques, including association rules mining 

are very frequently used (Sarwar et al., 2000) and as the amount of available, consumable content 

increases, price proves to be, in many cases, a determining factor that motivates certain consuming 

behavior.  

Furthermore, certain online services, including video-on-demand services offered by triple play 

providers, which charge a certain monthly fee to users of their services have an even more limited 

potential of making significant additional profits (beyond income coming from subscription fees) since 

users usually expect to get most movies for free, since they have already paid in advance for the 

benefits of the service. Therefore, in such a setting, which contains users who prove to be skeptical in 

paying additional charges for streaming a movie, price is perhaps the most important factor that would 

motivate their decision to consume the item, or not. 

Being able to model patterns of consuming behavior, in relation to certain prices (deemed to be 

attractive by users), provides valuable knowledge for the design of efficient recommender systems. 

Item associations that take into consideration numerical attributes, like price, can be efficiently 

represented via quantitative association rules, and mining such rules, proves to be a very powerful 

recommendation technique. 
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We have introduced an algorithm for mining quantitative association rules by processing a 

number of user histories from transactional databases containing numeric attributes, in order to 

generate a set of association rules with a minimum support and confidence value. The generated rules 

show strong relationships between certain items that have been consumed at specific price levels, 

information that is used in a novel recommendation post-processing algorithm, that uses the generated 

association rules in order to improve the quality (in terms of recall) of an original set of 

recommendations. We have experimented extensively with available production data from a major 

triple play services provider, as well as a publically available dataset.  

Finally, we have implemented a custom synthetic dataset generator that allows for the generation 

of different datasets (under different parameters), simulating e-commerce related scenarios with 

respect the number of users and their respective number of transaction in different cycles, as well as 

price fluctuations based on demand changes. 

 

4.2. Algorithm Overview 
 

In this section the design of the Quantitative Association Rules Mining (QARM) algorithm is 

presented.  

Specifically, QARM is an algorithm for computing all Quantitative Association Rules (QAR) 

from a transactional database D containing “user histories” of the form: user u purchased a set of {i,p} 

pairs, where i corresponds to the item purchased and p corresponds to the price at which item i has 

been purchased. All generated QARs are of the form: “IF a user has paid at least
1 kA Ap pK for 

products 1 kA AK , THEN such a user would be willing to pay Cp for product C . 

Apart from the database of “user histories”, the algorithms requires as input a minimum required 

support value s as well as a minimum required confidence valuec. The output of the algorithm includes 

all QARs of the aforementioned form having support and confidence above the minimum specified 

thresholds. 
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4.3. Algorithm Design 
 

A detailed description of the QARM algorithm follows. 

First QARM calls the method computePriceLevelsIncreasingOrder(D) that computes all different 

price levels p that occur in D and sorts them in increasing order 1 20 np p p≤ < <K . The total number 

of distinct price levels n, which is equal to the size of set p is returned by the method sizeof (p). 

Next, the algorithm uses the FP-Growth algorithm to generate all frequent item-sets sF with 

supportsor higher, assuming zero price level, i.e. by treating the database as a qualitative database 

where all prices paid were exactly 0. 

The algorithm then defines the following sets: R containing all QAR that are mined by the 

algorithm, and set C containing all candidate association rules that the algorithm needs to examine. 

Specifically, set C is populated as follows: For each i, in each frequent item set f in the set of sF a new 

candidate rules is formed. So for each item i in the frequent item set f, the algorithms forms a new 

candidate rule where i is placed as the consequent I of the rule, and all other items in f are placed as 

antecedents S of the rule. The newly formed candidate rule is then placed in set C. Note, that the 

algorithm considers only those frequent item sets f where the total number of items is higher than 1. 

After set C is populated, QARM performs for each candidate rule r that is member of C the 

following process: 

Defines set T which is a stack of sets of pairs of the form { }( )1,k nA p p p∈ ∈l K . 

For each price level pi of p (in decreasing order) QARM sets the price of consequent item I to pi  

by defining a set Q consisted of pairs of items of the form (I, pi).  

Definition 3.1: SUPPORT (r | Q) 

SUPPORT (r | Q) calculates the support value s for a rule ( )|r S I Q= →  equals the number of users 

that purchased each of the items in { }S I∪ at a price at least equal to the price specified for that item 
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in Q divided by the total number of user-histories in the database. If for an item, no price is specified 

in Q , the condition is that the user has purchased the item (for free or for any price). 

QARM invokes method SUPPORT (r | Q) and if the constraint ( )|SUPPORT r Q s<  holds, 

meaning that the output of the SUPPORT method is below the minimum required support threshold s 

then the algorithm skips the current iteration and proceeds to the next value for pi.  

Alternatively, the algorithm continues with the current iteration and pushes Q onto T. While T is 

not empty, the algorithm pops a Q from T and iterates over each element J contained in set S that is 

not already part of set Q, and for each such element it further iterates over all different price levels 

values (sorted in ascending order). The algorithm then creates set Q΄which is consisted of all elements 

in set Q in addition to a new pair of item J at a price specified in the current iteration step (see previous 

statement). 

Definition 3.2: CONFIDENCE: A rule ( )|r S I Q= →  

A rule ( )|r S I Q= → has confidence c that equals the number of users that purchased each of the 

items in { }S I∪ at a price at least equal to the price specified for that item in Q divided by the number 

of users that purchased each of the items in S at a price at least equal to the price specified for that 

item in Q . If for an item, no price is specified in Q , the condition is that the user has purchased the 

item (for free or for any price). 

Returning back to the description of QARM, and the main algorithm flow, if the constraint 

( ) ( )| |SUPPORT r Q s CONFIDENCE r Q c′ ′≥ ∧ ≥ (1) holds, meaning that the output of the 

SUPPORT method is above the minimum required support threshold s as well as the output of the 

CONFIDENCE method is above the minimum required confidence threshold c, then the algorithm 

proceeds otherwise, the algorithm examines whether the condition ( )|SUPPORT r Q s′ < holds and 

if so, breaks the current iteration, returning to the iterator that examines next J item, or otherwise, the 

algorithm control returns to the ascending price iterator. 



90 

 

Returning back to the normal flow where condition (1) holds, the algorithm then calls method 

Add-non-dominated ( )|r Q′ to R  and pushes Q΄onto set T. 

Definition 3.3: Add-non-dominated ( )|r Q to R  

The operation “Add-non-dominated ( )|r Q to R ” will add the QAR ( )|r Q into the QAR-set R

only if R does not contain already another rule ( )|r Q′ ′ that dominates the rule to be added. A rule 

( )|r S I Q= → is dominated by another rule ( ),r S I Q′ ′ ′= → if: 

 S S ′⊇ AND 

the consequent’s price for r ′ is higher than the consequent’s price in ( )|r Q AND 

( ) ( )| |SUPPORT r Q SUPPORT r Q′ ′≤ AND 

( ) ( )| |CONFIDENCE r Q CONFIDENCE r Q′ ′≤  AND 

( ), : ( , )A p S A p S p p′ ′ ′∀ ∈ ∈ → ≤ . 

When a rule ( )|r Q is added onto R , the function must also ensure that it will remove from the set R 

any rules dominated by ( )|r Q . The algorithm then proceeds with all subsequent iterations up until 

all candidate rules are processed, or a specified maximum limit of number of rules to process is reached. 

A code representation of the QARM algorithm follows. 

Definition 3.4: QARM algorithm 

Begin 

0. Let p all different price levels that occur in D in ascending order 1 20 np p p≤ < <K . 

1. Let sF the set of all frequent item-sets sF  

2. Let ;C R= ∅ = ∅ . 

3. foreach frequent k-itemset , 2k sF k∈ ≥l do: 

  3.1. Create the set ( ){ }1 : ,k kH r S I S I I= = → = − ∈l l . 
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  3.2. Set 1C C H= ∪ . 

4. endfor. 

5. foreach rule ( )r S I C= → ∈ do: 

  5.1. Let T = ∅ .  // T  is a stack of sets of pairs of the form { }( )1,k nA p p p∈ ∈l K  

  5.2. foreach 1i n= K  do: 

    5.2.1. Let ( ){ }, iQ I p= .  // set the price of Ito ip . 

    5.2.2. if ( )|SUPPORT r Q s< continue; 

    5.2.3. Push Q ontoT . 

    5.2.4. while T ≠ ∅  do: 

      5.2.4.1. Pop a Q  from T . 

      5.2.4.2. foreach 
( ),A p Q

J S A
∈

∈ − ∪ do: 

        5.2.4.2.1. foreach 1j n= K do: 

          5.2.4.2.1.1. Let ( ){ },
j

Q Q J p′ = ∪ . 

          5.2.4.2.1.2. if ( ) ( )| |SUPPORT r Q s CONFIDENCE r Q c′ ′≥ ∧ ≥  

            5.2.4.2.1.2.1. Add-non-dominated ( )|r Q′ to R . 

            5.2.4.2.1.2.1. PushQ′  onto T . 

          5.2.4.2.1.3. else if ( )|SUPPORT r Q s′ <  break. 

          5.2.4.2.1.4. endif. 

        5.2.4.2.2. endfor.  // j 

      5.2.4.3. endfor.  // J  

    5.2.5. endwhile.  // T  

  5.3.  endfor.  // i  
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6. endfor.  // r  

7. return R . 

 

4.4. Recommender Post-Processor 
 

4.4.1. Overview 
 

The original set of recommendation results can be enhanced with the use of a Post-Processor that 

updates the results based on knowledge extracted from the generated set of quantitative association 

rules under minimum support and confidence values. The Post-Processor aims to promote certain 

recommendations that are part of the consequent of quantitative association rules that fire for a specific 

user, therefore are considered to be relevant for the specific user. The number of positions that a 

consequent item is promoted in the original recommendation list, depends on the confidence value c 

of the rule as well as whether the item exists in the original recommendation list. Specifically an item 

that is recommended by both a fired rule as well as a recommender, is promoted at higher positions 

(due to the increased confidence that the item is indeed relevant to a user) than an item that is only part 

of a fired rule. Also the confidence value of the fired rule boosts the number of positions to promote. 

Nevertheless, the algorithm considers that items contained in fired rules, to be of high relevance, 

therefore promotes them whatsoever in the expense of other items contained at the lowest ranks of the 

original recommendation list. 

 

4.4.2. Post-Processing Algorithm 
 

Given a set of recommendations L generated for user u and a set of quantitative association rules R, 

the processor examines which of the rules in R fire for user u. A rule r fires for user u only when: i) u 

has consumed all items in the antecedent S of r at a price at least equal to the one specified in S and ii) 

u has not consumed the item in the consequent I of r. The set F corresponds to all rules that fire for 

user u. 
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For each fired rule f in F the algorithm runs the following process: First, the algorithm defines as 

orgIdx the index of the consequent item in the original recommendation list. In case the item is not 

contained in the original list, the value of orgIdx is equal to “-1”, otherwise orgIdx has a value greater 

or equal to zero, and less than or equal to the length of the original recommendation list minus “1” 

(assuming a 0-based indexing scheme). Then the value of newIdx is calculated by calling calcNewIdx 

which receives as parameters orgIdx, the rule’s confidence value c as well as the size of the original 

recommendation list, recListSize. The value of newIdx corresponds to the index position that the 

consequent item is going to be placed in the original list, and is calculated as follows:  

Define method calcNewIdx (orgIdx, c, recListSize). 

0. Let isNew ← false. 

1. if orgIdx = -1 then 

a. isNew ← true. 

2. end if. 

3. Let addPosToPromote ← isNew ? 7 : 8. 

4. Let totalPosToPromote ← calcNumOfPosToPromote(c) + addPosToPromote. 

5. Let startIdx ← isNew ? recListSize -1 : orgIdx. 

6. Let newIdx ← startIdx – totalPosToPromote. 

7. if newIdx < 0 then 

a. newIdx ← 0. 

8. end if 

9. return newIdx. 

 

Define method calcNumOfPosToPromote (c). 

1. Let confMin ← 0.4.  

2. Let confThreshold ← 1.5.  

3. Let confThresholdStep ← 0.2.  

4. Let confRatio ← c / confMin. 

5. Let confRatioDelta ← confRatio – confThreshold 

6. Let numOfPos ← confRatioDelta / confThresholdStep. 



94 

 

7. return numOfPos. 

After the Post-Processor calculates the values of orgIdx and newIdx respectively, it applies the 

re-ordering of the original recommendation list by moving the item, originally at position orgIdx to the 

position newIdx, pushing at the same time all elements with original index less or equal to newIdx one 

index position lower, eventually causing the last item (in the original list) to be eliminated. 

 

4.5. Synthetic Dataset Generator 
 

The proposed QARM algorithm has high applicability in different e-commerce settings, therefore we 

performed a series of simulations for different e-commerce related scenarios. These simulations 

allowed the evaluation of the performance of QARM under different datasets with specific 

characteristics as we will explain in the following section. We have designed and implemented a 

Synthetic Dataset Generator (SDG), a program that allows the generation of datasets according to 

specific predefined configuration parameters.  

 

4.6. Configuration Parameters 

 

The SDG configuration parameters, which are specified prior to the generation of a dataset instance, 

include information such as: i) the number of users as well as ii) the number of items that exist in the 

dataset, iii) the number of cycles to run; i.e. arbitrarily defined, short-term periods during which items 

are consumed (say, weekly or biweekly) and iv) the maximum number of items that may consumed by 

a user during a cycle. Additional configuration parameters include: v) the different price levels, i.e. an 

ordered collection of distinct price values that are randomly assigned to each generated item, vi) the 

different maximum reference price levels, i.e. an ordered collection of distinct maximum price values 

that are randomly assigned to each generated user, representing the maximum price that the specific 

user is willing to pay for every available elastic item. 
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4.7. Item Demand Elasticity 
 

All generated items are distinguished into one of two main categories; a) elastic and b) inelastic items. 

We consider as inelastic, items that are deemed of high popularity, to the point that price has 

absolutely no effect on their high demand levels. So inelastic items will be consumed by a user 

regardless of the maximum reference price level constraint that a specific user has towards elastic 

items. 

Contrary, we consider as elastic, items whose demand has a direct relationship to their price, and 

therefore, the criterion based on which these items are consumed (or not) is whether the item price is 

below (or equal to) the maximum reference price that a specific user is willing to pay for an elastic 

item. 

 

4.8. Dataset Generation Process 
 

Initially SDG generates the configured number n of items I. All generated items have id values of 

integer type which is assigned using an incremental approach. 

4. Set I ← {}. 

5. Set n ← 1000. 

6. Set idx ← 1. 

7. foreach idx in n do 

a. Set c ← createItem(idx). 

b. add (c) in I. 

8. endfor 

9. end. 

 

Where createItem(idx) creates a new item instance with id value equal to the specified idx parameter. 

Each generated item is assigned: i) elasticity type (inelastic or elastic) and ii) price.  With respect to 

the elasticity type, our implementation offers two alternative ways of assigning values to items; either 
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a) creates a specific number of inelastic items that equals a configured percentage of the total set of 

generated items, or b) for each generated item, assigns the elasticity type by generating a random 

Boolean value. Finally, the price is randomly assigned from a specific fixed, ordered collection of 

distinct price values. 

At a second step, SDG generates the configured number of users. We have introduced a structure 

named user groups which corresponds to the different user categories, each of which is characterized 

by a distinct maximum reference price value that each user belonging to the group is willing to pay for 

every available elastic item in the dataset. We then randomly place each of the generated users in one 

of the previously mentioned user groups so that they subscribe to the maximum reference price value 

of the group she belongs to. 

At a third step, SDG generates a specific number of mock association rules, which are fully 

configurable with respect to the number of items that will form the antecedent of the rule (the 

consequent always has one item). Each mock rule is generated by randomly picking items to fill the 

antecedent and consequent of the rule respectively. The only constraint is that all randomly picked 

items are not already part of the rule either as part of the antecedent or the consequent. Generated mock 

rules are then persisted for future reference. 

At a fourth step, SDG runs the dataset population process using the generated item and user sets 

by simulating a specified number of transactions for each generated user for a specified number of 

cycles. Each cycle simulates an arbitrary short-term period during which a maximum, pre-configured 

number of items may be consumed. SDG runs the following simulation:  

 

4.8.1. Generation Cycle 
 

In the case of the first cycle, the program generates the first instance of the dataset. For each 

different user group, the program processes all users belonging to the group level. Each user in the 

group randomly picks a specified number of items from the collection of available items with the 

following logic. 
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Our simulation, aims to model the real-case scenario where certain items are considered to 

be more attractive to users compared to other items. We model this variance in popularity with set 

M, which corresponds to a set of weight values for each respective item in set I (an element of set 

M is mapped based on its index with the respective item in set I). The weight value increases, as 

the id value increases, therefore items with higher id values are considered as more popular than 

those with lower id values. 

1. Set M ← {}. 

2. Set n ← 1000. 

3. Set exp ← 0.6. 

4. Set idx ← 1. 

5. foreach idx in n do 

a. Set id ← getItemId(I, idx). 

b. Set m ← id exp. 

c. add m to M. 

6. endfor 

7. end. 

Where getItemId(I, idx) returns the id of the item at index idx in the set of items I. 

Define method chooseRandomItemFromSet. 

1. Set r. 

2. Set b← -∞. 

3. Set d ← 20.0. 

4. Set seed ← 7. 

5. Set idx ← 1. 

6. foreach m in M do 

a. Set v ← m + nextGaussian(seed) * m / d 

b. if (v > b) then 

i. r = getItemId(I, idx) 

ii. b = v. 

c. endif 

d. idx ← idx +1. 
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7. endfor 

8. return r. 

9. end. 

 

Where r is the randomly picked item from the set of items I and nextGaussian(seed) returns the next 

pseudorandom, Gaussian ("normally") distributed value with mean 0.0 and standard deviation 1.0.  

 

In case that the user has picked an inelastic item, then the item is immediately consumed by the 

user. Contrary, in case that the user has picked an elastic item, then the program examines whether the 

maximum reference price specified in the group (that the specific user belongs to), is higher than or at 

least equal to the actual price of the picked item, and if so, the user consumes the item, otherwise the 

item is discarded. When the aforementioned process completes for the first cycle, then an initial 

instance of the dataset is generated containing the user transaction history generated during the cycle. 

 

4.8.2. Update Cycle 
 

For all following cycles, SDG applies the update process logic, maintaining at the same time 

snapshots of the dataset for each specific cycle, is then used for later reference. The update process is 

very similar to the generation process, in the sense that the steps followed are identical with the 

exception of one additional step applied in the beginning of the cycle (prior to performing the process 

for each user) that aims to adjust the item prices based on the items’ change in demand. This last step 

is applied only while processing a cycle with index value greater than “2” (assuming a 1-based 

indexing scheme).  

In the price adjustment step, SDG examines for each item, the demand change, d as witnessed 

during the previous two cycles. So for each item, the program calculates d, which is defined to be the 

ratio of the absolute demand change over total user histories. At configuration parameter level, the 

lower and upper ratio limit values for d, are specified. If the demand change, d, is below the lower 

limit, the item price is lowered by one unit, and similarly, if d is higher than the specified upper limit, 

its price is increased by one unit. 
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This latter step allows SDG to simulate some real-world consuming behavior where prices 

fluctuate as a function of their change in demand, and eventually reach a state of equilibrium (with 

respect to user’s maximum reference price levels) after a sufficient number of cycles.  

Finally, SDG iterates the structure containing all cycle-specific data to saves the entire generated 

dataset into file. 

 

4.9. Experimental Results 
 

4.9.1. Metric 
 

In order to evaluate the performance of the quantitative association rules mining algorithm over the 

synthetically generated datasets (under different parameter values), we use the precision metric, which 

in this context is defined as the ratio of the sum of all (rule) hits over the sum of all (rule) hits plus the 

sum of all (rule) misses: 

�=>�/./?@ = ∑ℎ/B.
∑ℎ/B. +	∑ 	�/..>.	 

We define that: a rule r fires for user u when all antecedent items S of r have been consumed by 

u at prices that are at least equal to the ones specified in r. For all rules R that fire for user u, we define 

as a hit those rules whose consequent set I (in our case, all consequents sets I are of size “1”) contains 

an item that has been consumed by u at a price at least equal to the one specified in the rule. Similarly, 

we define as a miss those rules whose consequent contains an item that has been consumed by u at a 

price above the one specified in the rule. The sum values of total hits and total misses are calculated 

by examining the total number of hits and misses respectively for all active users in the database which 

are included in the current experiment 

4.9.2. QARM results using Synthetically Generated Datasets  

In this section we will present the experimental results for the QARM algorithm on a number of 

different synthetically generated datasets using different configuration parameters, which affected the 
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dataset size and complexity. The experiments we have conducted show the performance of QARM 

both with respect to precision accuracy as well as processing time.  

We have constructed different synthetically generated datasets using different configuration 

parameters. The main three types of configuration parameters are presented in table 4.1. The parameter 

variables represent the following:  

• Number of Items, represents the total number of available content items that can be consumed 

by users.  

• As previously mentioned, each item can be either elastic or inelastic and item prices are 

randomly chosen from a predefined set of ten distinct price levels. % of Elastic  

Items specifies the percentage of the total set of items that is of type elastic. 

• Number of Users, represents the total number of users in the dataset. Each user has a maximum 

reference price level which is assigned randomly from a predefined set of ten distinct 

maximum price levels.  

• Number of Cycles, represents the total number of cycles for which the dataset generation 

process will run. Cycles, simulate small periods of time during which items are consumed. 

Within each cycle, each user can consume up to a specified maximum number of items, which 

is defined by the parameter Purchases per User per Cycle. The user randomly picks an 

aforementioned number of items, and for each picked item, the code examines whether the 

item is inelastic (and if so, it is consumed immediately despite the item’s price), otherwise the 

code examines whether the item’s price is below or equal to the maximum reference price set 

for the specific user. 

  

Table 4.1 Main dataset configuration parameters 

Configuration 
Number  

of Items 

Number  

of Users 

Number  

of Cycles 

Purchases  

per User  

per Cycle 

% of  

Elastic  

Items 

1 2000 2000 10 10 51% 

2 3000 3000 10 10 50% 

3 1000 1000 100 1 52% 
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In figures 4.1 to 4.4 we depict the performance of QARM under a synthetically generated dataset 

with the parameters specified in Configuration “1” in terms of precision accuracy and computational 

performance. 

Figure 4.1 depicts the performance of QARM in terms of precision accuracy for a different set of 

minimum confidence values for a fixed minimum support value of 0.3.  

 

 

Figure 4.1 Precision of QARM with fixed support value under Configuration “1” 

 

 

Figure 4.2 depicts the computational performance of QARM, in terms of minutes lapsed, for the 

experiment depicted in Figure 4.1. 
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Figure 4.2 Performance of QARM with fixed support value under Configuration “1” 

Figure 4.3 depicts the performance of QARM in terms of precision accuracy for a different set of 

minimum support values for a fixed minimum confidence value of 0.6.  

 

Figure 4.3 Precision of QARM with fixed confidence value under Configuration “1” 
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Figure 4.4 depicts the computational performance of QARM, in terms of minutes lapsed, for the 

experiment depicted in Figure 4.3. 

 

Figure 4.4 Performance of QARM with fixed confidence value under Configuration “1” 

 

In figures 4.5 to 4.8 we depict the performance of QARM under a synthetically generated dataset 

with the parameters specified in Configuration “2” in terms of precision accuracy and computational 

performance. 

Figure 4.5 depicts the performance of QARM in terms of precision accuracy for a different set of 

minimum confidence values for a fixed minimum support value of 0.3.  
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Figure 4.5 Precision of QARM with fixed support value under Configuration “2” 

Figure 4.6 depicts the computational performance of QARM, in terms of minutes lapsed, for the 

experiment depicted in Figure 4.5. 

 

Figure 4.6 Performance of QARM with fixed support value under Configuration “2” 
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Figure 4.7 depicts the performance of QARM in terms of precision accuracy for a different set of 

minimum support values for a fixed minimum confidence value of 0.6.  

 

 

Figure 4.7 Precision of QARM with fixed confidence value under Configuration “2” 

Figure 4.8 depicts the computational performance of QARM, in terms of seconds lapsed, for the 

experiment depicted in Figure 4.7. 

 

 

Figure 4.8 Performance of QARM with fixed confidence value under Configuration “2” 
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In figures 4.9 and 4.10 we depict the performance of QARM under a synthetically generated 

dataset with the parameters specified in Configuration “3” in terms of precision accuracy and 

computational performance. 

Figure 4.9 depicts the performance of QARM in terms of precision accuracy for a different set of 

minimum confidence values for a fixed minimum support value of 0.7.  

 

 

Figure 4.9 Precision of QARM with fixed support value under Configuration “3” 

Figure 4.10 depicts the computational performance of QARM, in terms of minutes lapsed, for the 

experiment depicted in Figure 4.9. 
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Figure 4.10 Performance of QARM with fixed support value under Configuration “3” 

 

4.9.3. QARM results using MovieLens Dataset 

We have also conducted a series of experiments for the QARM algorithm using the MovieLens dataset 

(specifically the version of the dataset containing one hundred thousand transactions) with different 

confidence values for a set of fixed support value. In this section we will present the experimental 

results for the QARM algorithm on the aforementioned dataset both with respect to precision accuracy. 

We will also present charts depicting the total candidate rules processed for each different case.  

In figures 4.11 and 4.18 we depict the variation in precision accuracy using different fixed 

minimum required support values ranging from 0.3 to 0.45 (with a “step” incremental value of 0.5) 

and variable confidence values. Additionally we depict the number of quantitative association rules 

generated under each such configuration.  
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Figure 4.11 Precision of QARM with MovieLens dataset using fixed support = 0.3 

 

 
Figure 4.12 Total rules generated using MovieLens dataset using fixed support = 0.3 
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Figure 4.13 Precision of QARM with MovieLens dataset using fixed support = 0.35 

 

 
Figure 4.14 Total rules generated using MovieLens dataset using fixed support = 0.35 
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Figure 4.15 Precision of QARM with MovieLens dataset using fixed support = 0.4 

 

 
Figure 4.16 Total rules generated using MovieLens dataset using fixed support = 0.4 
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Figure 4.17 Precision of QARM with MovieLens dataset using fixed support = 0.45 

 

 
Figure 4.18 Total rules generated using MovieLens dataset using fixed support = 0.4 
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4.9.4. QARM results using Post-Processor 

 

We have performed a series of experiments to evaluate the percentage of improvement by using the 

Post-Processor on top of the results generated by the Hybrid (Item, Content based) recommender. We 

have conducted the experiment on production data provided by the Triple Play service provider.  

From the entire database containing the entire transaction history of all users, we filtered out all 

users (and their respective histories) that have size that is less than15 transactions. This resulted to a 

total of 18,290 users , which we split into two subsets: i) test set that equaled the 30% of the users, and 

ii) training set that equaled the 70% of the total users. 

Because of the nature of the dataset, and in order to generate some association rules, we had to 

lower the support value to as low as 0.5% and we generated a set of association rules under different 

confidence values (specifically we experiment with confidence values {0.1, 0.2, 0.3, 0.4}). The 

number of association rules generated is depicted in figure 4.19. 

  

Figure 4.19 Total rules generated on production data with variable confidence values and fixed support 
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The introduced Post-Processor then used the generated association rules in order to perform the 

post-processing functionality on a set of generated recommendations by the Hybrid recommender for 

all users in the test set. The different recall values of the enhanced recommender which combined both 

the Hybrid recommender as well as well as the Post-Processor is depicted in figure 4.20. As we showed 

in the experimental section of the previous chapter (on Recommender Systems) and specifically in 

table 3.3 the recall value for the Hybrid recommender (for n=10) resulted to a recall value equal to 0.2, 

which shows that the Post-Processing step improves the performance of the recommender in terms of 

recall. 

 

 

Figure 4.20 Recall value of Post-Processor using generated association rules with fixed support and variable 

confidence values 
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5. Conclusions and Future Directions 
 

In the current work we presented different algorithms for academic search as well as recommender 

systems. The introduced algorithms share many common characteristics, the most important being that 

they aim to recommend content –be it academic publications or consumable content– that is 

considered to be relevant for users under specific parameters, including whether prior knowledge for 

a specific user exists. The introduced algorithms have high applicability in a range of settings and our 

implementation is fully modular so that transition to other settings may occur using the minimum 

possible required effort. 

In the first part of the work, we have presented a novel ranking algorithm for academic search. 

We have presented a hierarchical heuristic scheme that aims to re-rank a set of results generated by 

third-party search engines in response to specific user-submitted queries. We have developed a meta-

search engine that allows our heuristic scheme to generate alternative rankings of the original result 

set by taking into consideration different characteristics of the academic publications. 

 In order to measure the performance of the introduced scheme we have performed a series of 

experiments against different commercial academic search engines including ACM Portal, Google 

Scholar, Microsoft Academic Search and ArnetMiner and have used evaluations from a set of 

volunteers. Our experiments showed, that for most queries the introduced scheme outperformed many 

of the aforementioned search systems in terms of the score generated using different metrics. 

The results of t-test, sign-test and signed-rank test, all indicate that PubSearch outperforms ACM 

Portal by a large and statistically significant margin in terms of all metrics considered, namely 

lexicographic ordering LEX, NDCG and ERR metrics. In terms of lexicographic ordering, the average 

improvement is in the order of 907.5%, in terms of NDCG the average improvement is almost 12% 

and in terms of the ERR metric the average improvement is more than 77%. Similarly, comparing 

PubSearch against the standard Okapi BM25 scheme shows that PubSearch offers very significant 

advantages for ranking academic search results.  

Even when comparing PubSearch against the current state-of-the-art academic search engines 

Google Scholar, Microsoft Academic Search, and ArnetMiner, the comparisons show that PubSearch 
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outperforms these other engines in terms of all metrics considered, and in the vast majority of cases, 

by statistically significant margins. 

Without detailed knowledge of the ranking system behind ACM Portal or the other academic 

search engines we compared our system with, we postulate that the main reasons for the better quality 

of our ranking scheme is in the custom implementation of the term frequency heuristic we have 

developed that takes into account the position of the various terms of a query in the document and the 

relative distance between the terms, as well as in the chosen architecture itself: the custom 

implementation of the term frequency score roughly determines whether a publication is relevant to a 

particular query, the time-depreciated citation distribution is a good indicator of the overall current 

value of a paper, and finally the clique score criterion accords extra value to (otherwise similarly 

ranked) papers that are classified in subjects that are strongly linked together as evidenced by the 

cliques formed in the Type I & II graphs that connect index terms together in a relatively small but 

typical publication base crawled for this purpose. 

We have shown through extensive experimentation that the proposed configuration outperforms 

all the other configurations we have experimented with, as well as the popular ensemble fusion 

approach using linear weights (that is present in many if not most modern classifier, clustering, and 

recommender systems designed today, e.g. Christou et al., 2011).  

In the second part of the work, we have presented a commercial, hybrid movie recommendation 

system that uses a novel ensemble of recommender algorithms of different types for improving 

performance in terms of recall. The implemented system addresses certain commonly encountered 

issues that many such commercial systems need to address, as well as many limitations originating 

from business specific requirements. The most significant issue that our system needed to address was 

to determine user preference given only information based on the items that have been consumed by 

members bound to a specific user account, in the absence of any relevance judgments. 

Furthermore, the fact that a large percentage of all available content is currently offered at zero-

price levels, makes it easier for anyone to “purchase” items that they would not otherwise choose to 

purchase. And to add further complexity into this, without any information whatsoever concerning the 

percentage of the total playtime that the user actually watched any item, user histories can easily 

contain many consumed items which in fact not relevant at all to the user’s true preferences. 
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By using different types of recommenders including item-based, user-based as well as content-

based, the ensemble is able to handle cases where a significant number of users have consumed a 

significant number of items, thus taking advantage of the benefits of collaborative filtering, as well as 

cases where new content items have not been yet consumed by any user but by using its content-based 

recommender, the ensemble can still provide meaningful recommendations (thus, at least partially, 

solving the “new content” cold-start type problem).  

The system also deals with the “new user” cold-start type problem (when new users are added to 

the system), using the following business rule: whenever a new user is inserted into the system, and 

before they have purchased any items, the system simply recommends the top recommendations made 

for all other users in the system at that time. 

Finally the system addresses hardware infrastructure constraints; we have introduced a cost-

effective way with which the system is able to provide instant replies to web service requests and at 

the same time renew user recommendations as frequently as possible (in the order of 15 minutes or 

less). This was made possible by the architecture of the system, as well as the two databases following 

the same data model that are used to separate the updates of the system (performed by the AMORE 

batch job) from the response to web-service requests for recommendations (performed by the AMORE 

web-services that live in a web application server).  

AMORE is currently the only live commercial recommender system for video-on-demand in 

Greece, and has been successfully deployed in the production environment of a prominent Greek 

Triple Play services provider and has already contributed to an increase of the provider’s profits in 

terms of movie rental sales, while at the same time offers customer retention support allowing the 

company’s Marketing Department to offer more interesting subscription offers to both old and new 

customers alike. 

We have experimented with the application of various algorithms implemented in the Apache 

Mahout suit-case (upon which myrrix is also based, see http://myrrix.com) but the results were not 

deemed satisfactory neither in terms of quality nor in terms of response times, thus necessitating the 

development of our own parallel multi-threaded custom implementation of the well-known k-NN-

item-based and k-NN-user-based recommenders and variants thereof. Various other experimental 

recommendation systems have already shown the superiority of hybrid systems incorporating tens or 
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even hundreds of individual recommender algorithms over schemes incorporating only a single 

algorithm (the best Netflix prize contestants belong in this category). AMORE results have shown that 

a very small number of different types of recommender algorithms (that can be updated very fast) are 

sufficient to produce high-quality recommendations that users enjoy: currently, the users make a rental 

from the proposed recommendations once for every two visits to the AMORE recommendations 

screen. In the immediate future, we are aiming to introduce novel algorithms which take into 

consideration additional information about user behavior patterns including the prices that users are 

willing to pay in order to provide improved recommendation services to them. 

Finally, in the third part of the work we have presented QARM, a novel algorithm for mining 

quantitative association rules. QARM mines such quantitative association rules by processing a large 

number of user histories in order to generate a set of association rules with a minimally required 

support and confidence value. The generated rules show strong relationships that exist between the 

consequent and the antecedent of each rule, representing different items that have been consumed at 

specific price levels. We are then using the aforementioned information as part of a post processing 

mechanism that is used on top of the recommendation results generated by recommenders. Our 

experiments show that using the post processor on top of the results generated by our introduced 

recommenders, improves the original recommendation functionality. 

Furthermore, since the introduced QARM algorithm has high applicability in a range of different 

e-commerce related settings, we have performed a series of simulations under different datasets (with 

respect to size and complexity) and are characterized by different parameters such as the total number 

of users that exist, the available consumable items in the dataset as well as the number of cycles during 

each every user consumed a pre-specified number of items, all of which represent different business 

scenarios. We then executed a series of experiments on the generated datasets to show the performance 

of the QARM algorithm. 
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