

A COLLABORATIVE FILTERING APPROACH TO PREDICT WEB PAGES OF INTEREST FROM
NAVIGATION PATTERNS OF PAST USERS WITHIN AN ACADEMIC WEBSITE

by

Denis Lemongew Nkweteyim

BSc. Hons. in Electrical and Electronic Engineering, University College, Cardiff, 1988

MSc. in Digital Communication Systems, Loughborough University of Technology, 1989

Submitted to the Graduate Faculty of

School of Information Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/12208302?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ii

UNIVERSITY OF PITTSBURGH

SCHOOL OF INFORMATION SCIENCES

This dissertation was presented

by

Denis Lemongew Nkweteyim

It was defended on

27 April, 2005

and approved by

Professor Peter Brusilovsky
Department of Information Science and Telecommunications

Professor Jerrold H. May

Joseph M. Katz Graduate School of Business

Professor Paul Munro
Department of Information Science and Telecommunications

Professor Michael B. Spring

Department of Information Science and Telecommunications

Professor Stephen C. Hirtle
Department of Information Science and Telecommunications

Dissertation Director

 iii

A COLLABORATIVE FILTERING APPROACH TO PREDICT WEB PAGES OF INTEREST FROM

NAVIGATION PATTERNS OF PAST USERS WITHIN AN ACADEMIC WEBSITE

Denis Lemongew Nkweteyim, PhD

University of Pittsburgh, 2005

This dissertation is a simulation study of factors and techniques involved in designing hyperlink recommender
systems that recommend to users, web pages that past users with similar navigation behaviors found
interesting. The methodology involves identification of pertinent factors or techniques, and for each one,
addresses the following questions: (a) room for improvement; (b) better approach, if any; and (c) performance
characteristics of the technique in environments that hyperlink recommender systems operate in. The
following four problems are addressed:

Web Page Classification. A new metric (PageRank × Inverse Links-to-Word count ratio) is proposed for
classifying web pages as content or navigation, to help in the discovery of user navigation behaviors from web
user access logs. Results of a small user study suggest that this metric leads to desirable results.

Data Mining. A new apriori algorithm for mining association rules from large databases is proposed. The new
algorithm addresses the problem of scaling of the classical apriori algorithm by eliminating an expensive join
step, and applying the apriori property to every row of the database. In this study, association rules show the
correlation relationships between user navigation behaviors and web pages they find interesting. The new
algorithm has better space complexity than the classical one, and better time efficiency under some conditions
and comparable time efficiency under other conditions.

Prediction Models for User Interests. We demonstrate that association rules that show the correlation
relationships between user navigation patterns and web pages they find interesting can be transformed into
collaborative filtering data. We investigate collaborative filtering prediction models based on two approaches
for computing prediction scores: using simple averages and weighted averages. Our findings suggest that the
weighted averages scheme more accurately computes predictions of user interests than the simple averages
scheme does.

Clustering. Clustering techniques are frequently applied in the design of personalization systems. We studied
the performance of the CLARANS clustering algorithm in high dimensional space in relation to the PAM and
CLARA clustering algorithms. While CLARA had the best time performance, CLARANS resulted in clusters
with the lowest intra-cluster dissimilarities, and so was most effective in this regard.

 iv

TABLE OF CONTENTS

LIST OF TABLES...vi
LIST OF FIGURES ..vii
ABBREVIATIONS ..x
ACKNOWLEDGEMENTS...xi
1. INTRODUCTION ...1
2. RECOMMENDER SYSTEMS: BACKGROUND ...4

2.1. What is a Recommender System ..4
2.2. Framework for Understanding Recommender Systems ...6

2.2.1. Target of Recommendation ...6
2.2.2. Type of Recommender System..7

2.2.2.1. Collaborative Filtering (CF) Systems ...8
2.2.2.2. Content-based Recommenders..10
2.2.2.3. Knowledge-based Recommenders ..12
2.2.2.4. Demographic Recommenders ...12
2.2.2.5. Hybrid Recommender Systems...13

2.2.3. User Profiling ..13
2.2.3.1. Approaches in User Profile Construction ...13
2.2.3.2. Concept Drift ..14
2.2.3.3. Acquisition of User Profiling Data ...15
2.2.3.4. Implicit Indicators of User Interests..16
2.2.3.5. Sources of Data Used to Infer User Profile Implicitly ..18
2.2.3.6. Representation of User Profiles ..19

2.2.4. Associated Technologies in Recommender System Design..20
2.2.4.1. Data Mining Tools ..20
2.2.4.2. Machine Learning of User Profile...21
2.2.4.3. Information Retrieval Tools..23
2.2.4.4. Graph Techniques ...25
2.2.4.5. Clustering..25

2.2.5. Recommender Systems in the Context of Other Related Technologies26
2.2.6. Recommender Systems Application Areas ...29

2.2.6.1. Web Navigation ..29
2.2.6.2. Other Domains ..33

2.3. Improving Performance of Recommender Systems ...36
2.3.1.1. Dimensionality Reduction...36
2.3.1.2. Use of Filtering Agents ...37

2.4. Recommender Systems and Privacy...38
3. PROBLEM STATEMENT..41

3.1. Using Web Server Access Log Data to Model Past User Navigation Behaviors: Difficulties and
Useful Heuristics ..43
3.2. Research Objectives ...48

3.2.1. Transactions Generation Objectives ..51
3.2.2. Association Rule Mining Objectives ...53
3.2.3. Construction of Prediction Models for Current User’s Interests ...55
3.2.4. Clustering Objectives ..57

4. IMPLEMENTATION..58
4.1. Determination of Website Topology and Content ..58

4.1.1. Discovery and Parsing of Web Pages Found in the Site..58
4.1.2. Web Site Topology..61

4.2. Generation of Transactions Log ...61

 v

4.2.1. Data Cleaning ..62
4.2.2. Session Identification ..63
4.2.3. Transaction Identification..64
4.2.4. From Session to Transactions Data – An Example ...64
4.2.5. User Study 1: Web Page Classification Study...67

4.3. Discovery of Association Rules from Transaction Logs ..70
4.3.1. The Classical Apriori Algorithm ...71
4.3.2. The Joinless Apriori Algorithm...74
4.3.3. C-Annotated Databases and the Joinless Apriori Algorithm...77

4.3.3.1. Generation of Association Rules from Frequent Itemsets ..79
4.3.3.2. Implementation of the Classical and Joinless Apriori Algorithms on a c-annotated
Database 80

4.3.4. Experiment 1: Evaluation of Joinless Apriori Algorithm..81
4.4. Design of the CLARANS Clustering Algorithm for High Dimensional Data..................................82

4.4.1. Memory/Computation Time Tradeoffs in CLARANS..83
4.4.2. Review of PAM, CLARA and CLARANS ...83
4.4.3. Similarity Measure ..85
4.4.4. Evaluation of CLARANS..86

4.5. Design of the Collaborative Filtering Prediction Models ...89
4.6. Experiment 2: Evaluation of Performance of Collaborative Filtering Prediction Models................93

5. RESULTS AND DISCUSSION..95
5.1. Web Pages and Access Logs ..95
5.2. Web Page Classification Study Results ..98
5.3. User Profiling Data...101
5.4. Evaluation of Joinless Apriori Algorithm...103
5.5. Evaluation of CLARANS in High Dimensional Space ..106

5.5.1. Calibration of CLARANS ...106
5.5.2. Performance of CLARANS...112

5.6. Evaluation of Collaborative Filtering-based Prediction Models...115
5.6.1. Collaborative Filtering Prediction Model I..115
5.6.2. Collaborative Filtering Prediction Model II ..124

6. CONCLUSIONS AND FUTURE DIRECTIONS...126
APPENDIX A...130

Computation of Cosine Similarity Between Two Vectors ...130
APPENDIX B...132

Stop List Used to Filter out HTML Page Presentation Code from Contents ...132
BIBLIOGRAPHY...134

 vi

LIST OF TABLES

Table 1. Intra- and inter-cluster cosine similarity scores for generated data. ...88
Table 2. Web site HTML page statistics: Links-to-Word count ratio (LW), Page Rank (PR), and Page Rank ×

Inverse Links-to-Word count ratio (PR × ILW). ...95
Table 3. Distribution of terms in web pages (a) before and (b) after elimination of high and low frequency

terms. ...97
Table 4. Combining LW and PR × ILW thresholds to classify web pages as content or navigation.100
Table 5. Distribution of sessions discovered in user access logs. ...102
Table 6. Distribution of transactions discovered in user sessions using MFR alone and both MFR and PR ×

ILW for PR and PR × ILW thresholds of 0.05 and 1.8..102
Table 7. Distribution of association rule count and association rule matrix size for various values of minimum

support count ...103
Table 8. Comparison of performance (execution times and average cluster dissimilarities) of CLARANS on

datasets R′n,k and R′′n,k. ...113
Table 9. Mean execution time for CLARANS, CLARA, and PAM for datasets Rn,k.114
Table 10. Association rule counts and computation times for 3 iterations of program used to compute

predictions using aggregate-based scheme for determination of KNN vectors.125

 vii

LIST OF FIGURES

Figure 1. Components of a recommender system. Arrow directions indicate the sources and destinations

of data used by the system, and of user actions.. 5
Figure 2. Recommender system taxomomy.. 7
Figure 3. The Collaborative Filtering Process. Source: Sarwar et al. (2001). .. 8
Figure 4. A fully connected acyclic neural network. .. 22
Figure 5. Comparison of recommender systems and IR & IF, based on comparison of IR & IF by Belkin

and Croft (1992), Folz and Dumais (1992), and Hanani et al. (2001). .. 28
Figure 6. Information Seeking Space – adapted from Oard (1997). ... 28
Figure 7. Illustrating the effect of caches on data recorded in web server logs. Source: Pitkow (1997). .. 45
Figure 8. Illustrating difficulties in identifying the correct sequence of linked page accesses from web

server logs. Source: Pitkow (1997). .. 46
Figure 9. Portion of a sample web site used to illustrate maximal forward reference. 47
Figure 10. Sample website showing relative frequencies of node accesses.. 48
Figure 11. Steps involved in the design of a hyperlink recommender system based on past user navigation

behaviors. ... 49
Figure 12. Illustrating the effect of ILW on PR in the PR × ILW metric. .. 53
Figure 13. Illustrating Mobasher et al.’s (2000) approach to computation of hyperlink recommendations

from association rules: (a) sample association rules; (b) sample user session; (c) changes in the state
of the user behavior vector. The highlighted association rules are the only ones that matche any of
the user behavior vectors.. 56

Figure 14. Illustrating adjacency list representation of website topology. (a) sample website; (b)
corresponding adjacency list representation... 61

Figure 15. Sample web server access log file. .. 65
Figure 16. Sample website used to illustrate generation of transaction logs. ... 66
Figure 17. Sessions obtained from access log in Figure 15. ... 66
Figure 18. Transactions resulting from access logs in Figure 15: (a) using MFR heuristic; (b) using PR ×

ILW heuristic. .. 67
Figure 19. Research design for the web page classification study.. 68
Figure 20. Subject instructions for web page classification study: (a) welcome page; (b) description of

task. .. 69
Figure 21. Screenshot of one of the web pages that subjects were required to classify as content or

navigation. The top panel contains directions to subjects, the middle panel, the page currently being
classified, and the bottom panel, page URLs and their ratings. ... 70

Figure 22. Sample transactions database, D, for illustration of the classical and joinless apriori algorithms.
.. 71

Figure 23. Applying the classical apriori algorithm to determine frequent itemsets of the database in
Figure 22. ... 72

Figure 24. The classical Apriori Algorithm. Source: Han and Kamber (2001), with minor rewording. ... 74
Figure 25. Applying the joinless apriori algorithm to determine frequent itemsets for the database in

Figure 22. ... 76
Figure 26. The joinless apriori algorithm.. 77
Figure 27. Sample consequent-annotated database used to illustrate the application of the joinless apriori

algorithm to a c-annotated database. .. 79

 viii

Figure 28. Applying the joinless apriori algorithm to determine frequent itemsets for the c-annotated
database in Figure 27.. 79

Figure 29. Data structure used to determine frequent itemsets from a transactions database..................... 81
Figure 30. Experimental design for the evlauation of the joinless apriori algorithm.................................. 82
Figure 31. Graphical representation of the search space for the PAM algorithm. This example illustrates a

search space with 4 objects (A,B,C,D, i.e., n = 4), and with 2 clusters (k = 2). Each node has k(n-k)
neighbors. ... 84

Figure 32. Illustrating generation of test data used to evaluate CLARANS, CLARA, and PAM. 87
Figure 33. Adjacency list representation of association rule matrix used in the design of the collaborative

filtering-based recommendation models. Each row on the left of the figure shows a unique linked
list of web page sequences (corresponding to an association rule antecedent) pointed to by the
corresponding array index. Each row on the right of the figure shows a linked list of web pages of
interest corresponding to the rule antecedent. .. 90

Figure 34. Summary of neighborhood formation processes for (a) center-based scheme, and (b)
aggregate-based scheme. .. 92

Figure 35. Subject ratings of the web pages presented in User Study 1. The commented items refer to
cases where there were large discrepancies in subject ratings. Results of 3 out of the 36 web pages
that were presented to user are omitted because these pages were no longer linked to by the time the
results were analyzed. .. 99

Figure 36. Variation of page ratings with LW on the content, navigation and dual content/navigation
ratings scales. ... 100

Figure 37. Variation of execution time with minimum support count for (a) joinless apriori algorithm and
(b) classical apriori algorithm. Vaiation of corresponding average rule length with minimum support
count (c). .. 104

Figure 38. Variation of average generation time per rule with rule length for R10,1.................................. 105
Figure 39. Variation of execution time with rule length for R10,1.. 105
Figure 40. Determination of CLARANS parameter maxneighbors. Variation of execution time and mean

cluster dissimilarity with percentage of neighboring nodes checked (parameter numlocal set to 10)
for: (a) dataset R′1100,k; (b) dataset R′4500,k. The execution times in the second graph level off when
the maximum value of maxneighbors (10000) is encountered. ... 108

Figure 41. Determination of CLARANS parameter maxneighbors. Variation of execution time and mean
cluster dissimilarity with percentage of neighboring nodes checked (parameter numlocal set to 10)
for: (a) dataset R′′1100,k; (b) dataset R′′4500,k. The execution times in the second graph level off when
the maximum value of maxneighbors (10000) is encountered. ... 109

Figure 42. Variation of execution time and mean cluster dissimilarity, versus numlocal (parameter
maxneighbors set to 3.5% of number of neighboring nodes – k(n-k)) for: (a) dataset R′1100,k; (b)
dataset R′4500,k. .. 110

Figure 43. Variation of execution time and mean cluster dissimilarity, versus numlocal (parameter
maxneighbors set to 3.5% of number of neighboring nodes – k(n-k)) for: (a) dataset R′′1100,k; (b)
dataset R′′4500,k. ... 111

Figure 44. Comparison of mean intra-cluster similarities of CLARANS, CLARA, and PAM for: (a)
datasets R’1100,k & R’’1100,k and (b) R’4500,k & R’’4500,k. .. 114

Figure 45. (a) Mean absolute errors on prediction of user interests vs. cosine similarity thresholds for
various values of association rule minimum support using the center-based neighborhood formation
scheme for predictions computed using average of neighborhood vectors; (b) corresponding
standard deviations of error.. 116

Figure 46. (a) Mean absolute errors on prediction of user interests vs. cosine similarity thresholds for
various values of association rule minimum support using the center-based neighborhood formation
scheme for predictions computed using weighted average of neighborhood vectors; (b)
corresponding standard deviations of error. ... 117

 ix

Figure 47. Illustrating regions of operation of a prediction model. The shaded cells show the desired
region of operation. All other cells within the thick borders are labeled with the prediction errors.118

Figure 48. Distribution of counts of target and prediction scores for Prediction Model I, based on average
neighborhood scores... 120

Figure 49. Distribution of percentages of target and prediction scores for Prediction Model I, based on
average neighborhood scores. .. 121

Figure 50. Distribution of counts of target and prediction scores for Prediction Model I, based on
weighted average neighborhood scores.. 122

Figure 51. Distribution of percentages of target and prediction scores for Prediction Model I, based on
weighted average neighborhood scores.. 123

Figure 52. ROC curves for predictors of user interests based on average and weighted averages........... 124
Figure 55. Illustrating computation of cosine similarity. .. 130

 x

ABBREVIATIONS

AGNES – Agglomerative NESting
AH – Adaptive Hypermedia
CF – Collaborative filtering
CLARA – Clustering LARge Applications
CLARANS – Clustering Large Applications based on RANdomized Search
DIANA – Divisive ANAlysis
E-commerce – Electronic Commerce
HTML – HyperText Markup Language
HTTP – HyperText Transfer Protocol
IF – Information Filtering
ILW – Inverse Links-to-Word count
IP – Internet Protocol
IR – Information Retrieval
KDD – Knowledge Discovery from Databases
KNN – k Nearest Neighbors
LRU – Least Recently Used
LSI – Latent Semantic Indexing
LW –Links-to-Word count
MFR – Maximal Forward Reference
MLP – Multi-layer Perceptron
P3P – Platform for Privacy Preferences
PAM – Partitioning About the Medoid
PR – Page Rank
PR × ILW – Page Rank × Inverse Links-to-Word count
SIS – School of Information Sciences, University of Pittsburgh
SVD – Single Value Decomposition
TFIDF – Term Frequency Inverse Document Frequency
URL – Uniform Resource Locator
W3C – WWW Consortium
WAP – Wireless Applications Protocol
WWW – World Wide Web

 xi

ACKNOWLEDGEMENTS

I sincerely thank my advisor Professor Stephen C. Hirtle, for all the help I have had from him during my stay

at the University of Pittsburgh. The mentorship, dissertation guidance, and patience given to my work are very

greatly appreciated. I also thank all the other members of my dissertation committee for the very useful

feedback I got from them in the course of this study.

I heartily thank the Fulbright program for sponsoring the first two years of my stay in the U.S., and the

School of Information Sciences, University of Pittsburgh, for giving me the opportunity to complete my

studies through the student assistantship program of the school.

I am forever grateful to the University of Buea in my home country of Cameroon, and especially the

Vice-Chancellor, Dr. Dorothy L. Njeuma, for endorsing my application to pursue my doctoral studies, and for

guaranteeing my return to employment at the end of my studies.

My mentor for over 20 years, Mark Hammond of Huntington, W.V., his family, and Grandma

Dorothy Hammond have been a source of great support and encouragement for me and my family, and I thank

them sincerely for their friendship and kindness.

I have also received invaluable support from my church, the Bellefield Presbyterian Church of

Pittsburgh, PA, and I would like to thank them for all the love and support they have given me and my family.

My parents, Thomas and Matilda Nkweteyim, and all my siblings: Emmanuel, Pat, Odilia, Joan,

Vivian, Joyce, and Clifford, and my uncle, Philip Forlemu and his family, have all been pillars of support for

me, and I thank them very sincerely.

Finally, my wife Beatrice, and our three daughters Daisy, Raisa, and Whitney, have given me all the

love and support I could ever ask for, and I thank them for being so patient with me.

 i

Dedicated to sweet memories of

My mother, Matilda Yimnai Nkweteyim, who lost

Her battle with cancer just before I completed this report,

And my friend and brother-in-law, François Temeching.

1

1. INTRODUCTION

The need for web navigation aids is a paradox of the new information age: at the same time that technology is

meeting the user’s thirst for access to information anytime and anywhere by making the retrieval, production

and distribution of information easy and affordable, additional technology is required to spare the user from

being inundated with too much of this information, so that he gets just what he needs with little or no

distracting information. The problem the user faces is how to divide his attention between the numerous

sources of information available to him, much of it irrelevant or inaccurate (i.e., data smog (Shenk, 1997)). As

Herbert Simon put it: “What information consumes is rather obvious: it consumes the attention of its

recipients. Hence a wealth of information creates a poverty of attention, and a need to allocate that attention

efficiently among the overabundance of information sources that might consume it” (as quoted by Varian

(1995)). There is therefore, a need to guide the user to relevant information without causing him to navigate

through noisy, but equally attention-seeking information. This need is particularly necessary, as more and

more of the available information, much of it on the Internet1, is unstructured at the same time that the web

user base, comprising largely of ordinary computer users, and not the expert programmers that early computer

users were, is expanding.

Users are inundated with information not only when they actively seek it as in web browsing, but also

when they do not, as evidenced by the amount of unwanted email that they receive in their mailboxes, or spy

ware that they may not even be aware is installed on their computers. The combination of these factors means

that more and more people many of them not able to effectively specify their information needs, are now

required to manage more and more information, if they are to be able to access the information they really

need and ignore what they do not need. Marchionini (1995) summarizes the dilemma faced by users in the

following way:

…we travel a narrow road between our goals with a sea of seductive
information to distract us on one side and a spiraling abyss of confusion and
information overload on the other. Technology increases the rate at which

1 It has been estimated that (1) print, film, magnetic, and optical storage media produced about 5 exabytes of new
information in 2002 with 92% of the new information stored on magnetic media, mostly in hard disks; (2) the amount of
new information stored on paper, film, magnetic, and optical media doubled between 1999 and 2002; and (3) information
flows through electronic channels—telephone, radio, TV, and the Internet—contained almost 18 exabytes of new
information in 2002, with 98% of this sent and received in telephone calls - including both voice and data. Sources of this
information flow include the World Wide Web (170 terabytes, equivalent to seventeen times the size of the Library of
Congress print collections; instant messaging (274 terabytes a year); email (400,000 terabytes a year), and increasingly,
P2P file exchanges (Lyman & Varian, 2004).

2

we are able to travel towards our goals, but it also increases the scope and
peril of the two sides.

The terms information overload and lost in hyperspace (Thimbleby, Jones, & Theng, 1997) are used

to describe problems that users face as they try to manage the information they have to deal with. Alvin

Toffler coined the term information overload (also known as cognitive overload), which “refers to the state of

having too much information to make a decision or remain informed about a topic” (Wikipedia, 2004), which

often exceed their cognitive capacities. The overload is the consequence of the need for additional effort and

concentration if users are to perform several tasks at the same time. Lost in hyperspace describes the tendency

of users to lose their way because of the nonlinear nature of browsing in a hypertext environment. Nielsen

(1995) described the lost in hyperspace phenomenon as follows:

When users move around a large information space as much as they do in
hypertext, there is a real risk that they may become disorientated or have
trouble finding the information they need...Even in [a] small document,
which could be read in one hour, users experienced the 'lost in hyperspace'
phenomenon as exemplified by the following user comment: 'I soon realized
that if I did not read something when I stumbled across it, then I would not
be able to find it later.

Nentwich (2002) described the same phenomenon as follows:

When reading a hypertext, following links just as they seem interesting may
soon lead to the reader's perception to be somewhat "lost", i.e. that s/he does
not know any more where exactly one "stands" in the hypertext structure,
how far it is until the end, how much of the whole is already read etc. This is
due to the fact that – in contrast to a linear paper – we have much less hints
with regard to the whole.

Traditionally, web users have made use of a number of technologies to help them access information

on the web. These include the use of search engines, human-organized directory browsing like Yahoo and

membership to distribution lists. These systems have shortcomings though. Human-organized directories are

expensive to create and update, and coverage of topics is not exhaustive. For search engines, there are two

main problems (Belkin, 2000). The first problem is that most users do not know exactly how to phrase queries

to retrieve the documents that they really need. The second problem is that most users are not aware of the

underlying operation of search engines, and the nature of the vocabulary (keyword-based, or the use of a

controlled vocabulary) that the search engine requires in user queries. Hence, in spite of the usefulness of

search engines, the results returned from queries are usually noisy, comprising of both relevant and irrelevant

documents. Finally, distribution lists have the problem of attempting to serve the general interests of a group

of users, and not the particular needs of the individual user (Malone, Grant, Turbak, Brobst, & Cohen, 1987).

Personalization systems can alleviate both the information overload and lost in hyperspace problems

by causing a website to be more responsive to the unique and individual needs of each user (Cingil, Dogac, &

Azgin, 2000). Personalization involves the creation of user profiles and tailoring the information received by

the user to his profile. The following remark by Bezos, the CEO of Amazon.com, probably the most famous

3

e-commerce site, illustrates well, the importance of website personalization: “If I have 10 million visitors to

my website, I should have 10 million websites for my visitors” (as quoted by Riedl, 2001).

Recommender systems are a category of personalization systems that make individualized

recommendations to users during a live interaction with the system (Sarwar, Karypis, Konstan, & Riedl, 2001).

The majority of recommender systems in use today are in the domain of e-commerce. Most of them require

some input from users in the creation of their profiles.

There is however, need for recommender systems in domains other than e-commerce. In some

domains like web navigation, it is unrealistic to expect users to continually provide user profiling or document

ratings information to the system as their interests change, or as they navigate a website. There is therefore a

need to develop recommender systems that do not require the user to explicitly provide information on their

interests.

This project is a study of factors and approaches used in the design of hyperlink recommender

systems, based on implicitly acquired user profiling data, in the domain of web navigation for a user visiting a

website. The work involves an analysis of some existing approaches and technologies currently used in

recommender systems design, it proposes possible improvements to some existing approaches, and proposes

some new ones. All of the proposals were implemented and evaluated to determine their benefits.

The underlying assumption in the project was that hyperlink recommendations to a user of a website

can be based on the web pages that past users with similar browsing behavior of that web site found

interesting. Hence, by discovering patterns of past user navigation behaviors from user access logs, a

hyperlink recommendation system can be constructed for current users.

The rest of this report is divided into the following sections. Section 2 is a literature survey of issues

related to recommender system design, and application areas. Section 3 defines the problem that this study

addresses. Section 4 presents the implementations of simulations used to test the hypotheses that were tested

in the study. Section 5 presents the findings and discussion of results, Section 6 the conclusions and an

overview of future directions of the study.

4

2. RECOMMENDER SYSTEMS: BACKGROUND

This section presents a survey of recommender systems technology. The section is discussed under the

following headings. Section 2.1 defines recommender systems, highlights differences from other systems that

serve as aids to users of large information spaces, and describes the components of a typical recommender

system. Section 2.2 presents a framework for understanding recommender systems. Section 2.3 discusses

performance related issues in recommender system design. Section 2.4 discusses privacy issues in

recommender system design, highlighting the tension between users’ desire for privacy and designers’ desire

for more information about users.

2.1. What is a Recommender System

Resnick and Varian (1997) proposed the term recommender system to represent a system that takes people’s

recommendations of items as inputs and uses these recommendations as a basis for making recommendations

to other people. Today, this definition only applies to one class of recommender systems: collaborative

filtering systems. A more inclusive definition today is “any system that produces individualized

recommendations as output, or has the effect of guiding the user in a personalized way to interesting or useful

objects in a large space of possible options” Burke (2002). Recommender systems may be regarded as tools

that help users in their information-seeking task2. They are a specialized kind of personalization systems that

use dynamic user profiling to generate personalized recommendations in a live interaction with the system.

This contrasts with other personalization systems in which the user profile is static, and for the same user

action, the user always receives the same information personalized to that profile. Recommender system

designs employ a wide range of techniques drawn from various domains, including information retrieval (IR),

user modeling, and machine learning. Application areas of recommender technology have also evolved from

the traditional domains of music, movie and news, to others, including recommendation of products at e-

commerce sites, restaurant recommendation, job recommendations, recommendation of relevant research

2 Marchionini (1995) defined information seeking as “any process by which people purposefully engage in a process to
change the state of their knowledge as they seek to obtain information from automated information systems.” The
information sought may or may not be available in the information system.

5

literature, TV viewing recommendations, and recommendation of hyperlinks to help users more easily navigate

websites.

Recommender systems differ from other information management systems in that recommendations

are tailored to the needs of the individual user, and not to the needs of a group of users as in a distribution list,

for example. Another characteristic feature that distinguishes recommender systems from other information

seeking tools is the fact that recommendations are computed during a live interaction with the system (Sarwar,

Karypis, Konstan, & Riedl, 2000b; Sarwar et al., 2001). Latency is thus an important consideration in

recommender system design; users will be put off if it takes too long for the system to generate

recommendations.

Figure 1 is a sketch of the components of a recommendation system. The user interacts with the

system, and this interaction, coupled with the user profile, leads to generation of individualized

recommendations, and updating of his profile.

The User Profile. As can be seen from the figure, there is a distinction between the user who has

information needs to satisfy, and the user profile, which is a machine representation of what the system

believes the user’s needs to be. The major difficulty in generating relevant recommendations is the potential

for mismatch between real user interests and the user profile. A major goal in recommender system design

therefore, is to model the user well enough for the system to be able to generate relevant recommendations and

at the same time filter out irrelevant ones.

Figure 1. Components of a recommender system. Arrow directions indicate the sources and destinations of data used by
the system, and of user actions.

When a user starts using the system, his profile is initialized to one of the following states: a

predetermined state, the previous state for that user if the system maintains a long-term record of user profiles,

User Profile

Information System
(Data Source)

Recommendations
(Data Source)

User

Recommendation
Engine

User Profile
Update Module

6

or a state explicitly specified by the user. The user profile may then be updated based on his interaction with

the system.

User. The user is the central component of the recommender system. The user receives data from the

information system through an interface. This data could be static (for example, the web pages in a website) or

dynamic in the form of recommendations that the system makes. The user in turn interacts with these data, and

these interactions, together with his current profile, determine what recommendations are made, and how his

profile is updated.

Recommendation Engine. The recommendation engine examines the user profile and makes

recommendation of items from the information system, based on the profile.

2.2. Framework for Understanding Recommender Systems

This section presents a taxonomic framework that depicts different ways to view and classify recommender

systems. The framework (Figure 2) presents recommender systems with respect to six main parameters,

namely the target of the recommendations, type of recommender system, user profiling issues, associated

technologies, recommender system in the context of other related technologies (IR, information filtering (IF),

and adaptive hypermedia (AH)), and major application domains. Each major category is further divided into

sub categories. It should be noted that this taxonomy does not place recommender systems firmly in one group

or another. It is simply a tool to help explain what recommender systems are. As a matter of fact, several

recommender systems share characteristics that belong to several of the groupings that are identified in the

taxonomy.

2.2.1. Target of Recommendation

Most recommender systems are designed to make recommendations based on the needs of individual users.

Recently however, there has been some work on group recommendations. For example, PolyLens (O'Connor,

Cosley, Konstan, & Riedl, 2001) is designed to make movie recommendations to a group of

users, as opposed to individual users; MUSICFX (McCarthy & Anagnost, 1998) allows members of a fitness

center to influence, though not directly control, the selection of music in a fitness center based on

7

Figure 2. Recommender system taxomomy.

the music preferences of members of the center, and which of those members are currently using the center.

Group recommendation makes sense in situations where participants would prefer to act in a group, like

watching a movie together.

2.2.2. Type of Recommender System

Collaborative filtering and content-based recommenders are the most widely available categories of

recommender systems. Some more recent systems use a knowledge-based approach to generating

recommendations. Recommender systems that make use of demographic information have also been

proposed. Finally, hybrid systems, which make use of more than one recommendation technique, are

common. This section reviews recommender systems based on this categorization3.

3 Other types of recommender systems that do not fit into this categorization exist. For example, Shani, Brafman, and
Heckerman (2002) describe an approach to recommender systems design based on Markov decision processes. We limit
our discussion to the four categories mentioned here.

Type of
Recommender

System

User
Profiling

In context of other
Related

Technologies

Application Areas

Associated
Technologies

Target of
Recommend-ation

Recommender
System

Collaborative filtering
Content-based
Knowledge-based
Demographic
Hybrid

Individual
Group

Modeling data
Representation

Data mining
Machine learning
Information retrieval
Clustering
Graphs

Web navigation
E-commerce
Movies
Restaurant
Online Jobs
TV viewing
Research papers

Information retrieval
Information filtering
Adaptive hypermedia

8

2.2.2.1. Collaborative Filtering (CF) Systems
Collaborative recommenders or collaborative filtering systems suggest new items or predict the utility of a

certain item for a particular user based on the user’s previous likings and the opinions of other like-minded

users (Sarwar et al., 2001). The process of generating recommendations by collaborative filtering is

summarized in Figure 3.

The system comprises a database of m users U = {u1,u2, …,um} and n items I = {i1,i2, …,in}. Each user

ui has rated a number of items Iui either explicitly or implicitly from the set I. The aim of collaborative

filtering for the active user ua, is either to predict the likeness score for item ij ∉ Iua, where Iua is the set of items

already rated by ua, or to recommend a list of N items, Ir ⊂ I and Ir ∩ Iua = φ. By comparing the active user’s

ratings to those of other users using some similarity measure, the system determines users who are most

similar to the active user, and makes predictions or recommendations based on items that other similar users

have previously rated highly. The profile of a user comprises a vector of items ratings, with the ratings being

binary or real-valued.

Collaborative recommenders may be memory-based or model-based (Sarwar et al., 2001). A

memory-based collaborative filtering algorithm uses a nearest-neighbor algorithm that determines a set of

neighboring users who have similar ratings characteristics as the active user, and combines their preferences to

determine a prediction or list of recommendations for the active user. Most current collaborative filtering

systems are memory-based, and work as shown in Figure 3. They are more efficient than model-based ones if

the ratings database is not too large. Speed however, becomes a bottleneck if the ratings database is large

because of a much larger number of nearest neighbor computations, and in such situations, model-based

recommenders are an attractive alternative.

Figure 3. The Collaborative Filtering Process. Source: Sarwar et al. (2001).

Model-based collaborative recommenders do not use the user-item database directly to make

recommendations or predictions. Instead, they use a machine learning approach to build a model of user

 i1 i2 … ij … in
u1
u2
. .
ua
. .
um

Prediction

Recommendation

Paj (prediction on item j
for active user)

{Tj1, Tj2,…,TjN} Top-N
recommendations for
active user

Active user

Item for which
prediction is sought

user/item ratings matrix

9

ratings, and make future predictions and recommendations based on this model. For example, item-based

collaborative filtering (Sarwar et al., 2001), is a model-based approach to predicting a user’s likeness for an

item that depends on the following intuition: a user would be interested in items that he liked before and would

tend to avoid items that he did not like before. The technique first analyzes the user-item ratings matrix to

identify the similarity between items, where the similarity between two items is computed by a function that

compares the ratings given to the items by users who co-rated them with the current user. Once the items most

similar to the one the user is interested in are found, the prediction score for the item of interest can be

computed based on the weighted sum of the user’s ratings of the similar items, or using a regression model.

Item-based techniques are useful in large databases where the set of items is relatively static as in a typical e-

commerce scenario, and item-item similarities can be computed off-line, which means considerably less time

spent generating recommendations during a live interaction with the system. But this requires an O(n2)

increase in space requirements. The space complexity could be minimized if only the k (k<n) most similar

items to the item of interest are considered.

Several factors make classical collaborative filtering systems good for making recommendations.

First, they are independent of machine-readable representation of objects being recommended and the

associated errors that such representations entail. This makes them good choices for cross-genre

recommendation. For example, in music and movie recommendations, where preferences are determined by

personal tastes, a system that makes recommendations based solely on attributes like actor and producer

names, film or music genre, etc., will miss these personal tastes. Second, there is no need for domain

knowledge to make recommendations; hence they avoid a possibly difficult knowledge engineering problem.

Third, system effectiveness improves over time as more items are rated, increasing the number of similar users

whose ratings can be compared with those of the current user.

There are also a number of problems associated with the collaborative filtering technique.

The ramp-up problem (Burke, 2001) comprises two related problems: the new user or cold-start

problem (Burke, 2001) and the new item, also called early rater problem (Burke, 2001; Claypool et al., 1999).

The problem with the new user is that he has made too few or no recommendations, and any attempt to make

predictions or recommendations for such a user by comparing his ratings with those of others who have made

similar recommendations as him, is error prone. A new item is a problem because it may have very few

ratings, and the early raters gain little because their ratings only go to improve recommendations for other

users. There is thus little incentive for users to rate new items.

The sparsity problem (Konstan et al., 1997) arises from the reliance of collaborative filtering systems

on the overlap between different users’ ratings of objects to determine similarity between users. The problem

arises if there are several items that have been rated by only a few users, even if these users have each rated

several other items, but only few of the ratings overlap between them, resulting in low ratings densities for

10

these items. In such situations, the system will not be able to make reliable recommendations because there

are not enough similar users available.

Scalability is a major problem with collaborative filtering systems (Ungar & Foster, 1998). The

improvement in system accuracy with increasing ratings comes at a price: as the number of users and items in

the database increases, so too does the number of nearest-neighbor computations required for the determination

of similar users, and since recommendations are made in real time, these systems suffer as a result.

The gray sheep problem (Burke, 2002; Claypool et al., 1999) occurs in collaborative recommenders

when there are users—the gray sheep—whose profiles fall on the border between existing classes of users,

making it hard to determine what recommendations to make for these users.

Collaborative recommenders also suffer from the portfolio effect (Towle & Quin, 2002). This occurs

in domains where it is desirable not to recommend an item that the user already has, for example, news items

that the user has already read. A collaborative filtering system will continue to recommend very similar news

stories if they had not been recommended to the user before.

The synonymy problem (Sarwar et al., 2000b) arises from the lack of any form of semantic

interpretation by collaborative filtering systems. Hence, items that are very similar are not treated as such

when recommendations are made. For example, two almost identical concepts like recycled paper pad and

recycled memo pad are not considered as highly similar, namely, recycled office products4. They are treated as

distinct items, and both may be recommended to the same user. A related problem resulting from the lack of

semantic interpretation in collaborative filtering and related technologies is the polysemy problem, which refers

to the inability of the system to recognize that the same term may have different meanings, depending on the

context of use, and erroneously failing to recommend them in these different contexts.

Other problems with collaborative recommendation systems include the subjective nature of the

ratings, which is prone to user bias, and the fact that user profiles may easily become outdated if users’

interests change and they do not use the system regularly enough for their profiles to be updated.

2.2.2.2. Content-based Recommenders

In content-based recommendation, features of the recommendable objects are used to define them

(Balabanovic & Shoham, 1997a; Claypool et al., 1999). For example, the words in a document could be used

as the defining features of that document. The user profile in such systems is based on how these features are

rated for the user. Typically, the system watches the user as he interacts with the information space, updates

his profile accordingly, and recommends new pages that correlate with his profile.

4 This example is taken from Sarwar et al. (2000b).

11

Content-based recommenders typically represent documents similarly to IR techniques, for example,

making use of indexing and the vector space5 model to represent documents and the user. The model

represents objects as unique fixed-length vectors of features, usually words of a document, weighted by some

criteria. Recommendations are made by comparing the user profile with documents present in the system, and

only those documents that are very similar to the user profile are recommended. This is analogous to

comparing a user query with a document collection in a search task, and returning the documents that are most

similar to the query, as the result of the search.

There are a number of advantages in content-based recommendation. First, recommendation is based

on features of the document and not other users’ biased opinions about the document. Second, it is possible to

generate explanations for why a document was recommended based on a comparison of the user profile and

the features of the document that contribute to the recommendations. Third, the sparsity problem is avoided

since modeling information is present in the features of the document and does not need to be provided by

other users of the system.

There are also a number of problems associated with content-based recommender systems. First, the

vector representation for documents and user profiles, also called the bag-of-words model, does not consider

the meanings or order of words in a document as being important. The effect of this is to miss any semantic or

syntactic interpretation that could be sources of useful information.

Another problem with content-based recommenders is the start-up problem. These recommenders

require a large number of training items before they can correctly rate and classify them.

A third problem arises from the fact that content-based recommenders are feature-based: the

recommenders will only give good results if the features that are selected to represent documents and user

profiles are rich enough to correctly represent them. This is not always possible, for example, in the movie

domain, where only simple features like names of actors and producers, and expert commentaries, are used to

describe the movies. The problem is that natural language (and the corresponding computer representation) is

not rich enough to capture all relevant features, like taste.

Content-based recommenders also suffer from the portfolio effect. In domains like news

recommendation, it is possible to filter out news items that are very similar to those that have been presented

before, but the problem arises with follow-up news items that may be very similar to a previous one, but at the

same time, present some new and important facts. Some systems (e.g., Billsus & Pazzani, 1999b, 2000)

attempt to overcome the problem by using a high threshold value to filter similar news items.

The user profiles of collaborative and content-based recommenders as described above, are long-term

generalizations about the user, and can be updated as the system learns more about the user or as the user

preferences change. These systems suffer the ramp-up problem in one way or another, for which reason casual

users will not benefit fully from them. On the other hand, long-term users who are willing to allow the system

5 The vector space model is examined in Section 2.2.4.3.

12

to learn their profiles over time may reap significant benefits from the recommendations they receive. A

converse problem to the ramp-up problem faced by collaborative filtering and content-based recommenders is

the stability vs. plasticity problem for user profile-learning algorithms (Burke, 2002). Once a user profile has

been established, it is hard for the learner to adapt to changes in the profile, until a sufficiently large number of

newer ratings have been collected. This is the problem of adapting to concept drift, discussed in Section

2.2.3.2.

2.2.2.3. Knowledge-based Recommenders

Knowledge-based recommenders like Entrée (Burke, 2001, 2002) and Quickstep (S. Middleton, De Roure, &

Shadbolt, 2001) make recommendations based on inferences about a user’s needs and preferences. These

systems have knowledge about how a particular item meets a particular user needs and can reason about a need

and possible recommendations. The user profile could be any knowledge structure that can make these

inferences.

Strong points of knowledge-based recommenders include (1) the absence of a start up problem since

ratings are not required, and (2) the fact that they do not place additional cognitive load in the form of a

requirement for user ratings, which makes them ideal for the casual user.

Knowledge-based recommenders suffer from two main problems: model construction may require a

significant amount of knowledge engineering effort, and second, the models are more difficult to adapt or

extend. The difficulty of adapting and extending the model is particularly significant in noisy environments

like the web, where it is more difficult to continually handcraft a representative knowledge base for these

changing data (Zukerman & Albrecht, 2001).

2.2.2.4. Demographic Recommenders

Demographic recommenders categorize users based on personal attributes, which are used to classify them as

belonging to a given stereotypical group, usually for marketing purposes. For example, indicators such as zip

code or annual salary could be useful in determining which demographic stereotype a user belongs to. The

recommendations that a user receives are the same that other users of the same demographic class receive.

The LifeStyle Finder (Krulwich, 1997), for example, used demographic groups from marketing

research to suggest a range of products and services depending on which one of 62 demographic groups the

user belonged to; a survey was used to gather the data for user categorization. Pazzani (1999) on the other

hand, used machine learning to extract demographic features like ethnicity and user home town from their

home pages, and these features were used to predict which restaurants they would like, and which they would

not like.

13

One advantage of demographic recommenders is that they lack the new user problem since they do

not require user ratings. Second, as with collaborative recommenders, demographic recommenders can make

cross-genre recommendations.

These recommenders do have a number of problems though. The “gray sheep” problem is one of

them, and arises for users whose characteristics fall somewhere between those of existing groups of users. A

much more serious problem has to do with privacy concerns: users are not likely to disclose important

demographic information that they consider private, for example their salaries, for fear of misuse. Like

collaborative and content-based recommenders, demographic recommenders suffer the stability/plasticity

problems.

2.2.2.5. Hybrid Recommender Systems

Hybrid recommenders Burke (2002) combine more than one recommendation technique to gain better

performance with fewer of the drawbacks of any one technique used alone. This approach has been used in a

number of recommender systems, including Fab (Balabanovic & Shoham, 1997b) and Profbuilder (Ahmad,

1999) for web navigation, ClixSmart (Smyth & Cotter, 2000) and TV Scout (Baudisch & Brueckner, 2002) for

TV viewing recommendation, and Quickstep (E. S. Middleton, Shadbolt, & De Roure, May 2002; S.

Middleton et al., 2001) for research paper recommendation.

2.2.3. User Profiling

A user profile is a representation of the user’s current interests, and forms the basis for the generation of

recommendations; fairly accurate user profiling leads to relevant recommendations, while poor user profiling

results in poor recommendations. As users interact with recommender systems, their profiles, are generated,

stored, and updated, based on their interaction with the system. User profiling is a challenging aspect of

personalization systems due mainly to the fact that the process is very uncertain. This uncertainty results from

the fact that the information available to model user behavior is usually limited or noisy, making it hard to

infer non-trivial assumptions about the user. This section discusses the following important considerations in

the construction of user profiles in personalization systems: approach used (Section 2.2.3.1); concept drift

(Section 2.2.3.2); methods of acquisition of profiling data (Section 2.2.3.3); useful indicators of user interests

(Section 2.2.3.4); sources of data used to construct user profiles implicitly (Section 2.2.3.5); and representation

of user profile (Section 2.2.3.6).

2.2.3.1. Approaches in User Profile Construction
There are two main approaches to constructing a user model for recommender systems: knowledge-based and

behavior-based. Knowledge-based models are pre-programmed knowledge representation structures that are

14

constructed by analyzing a representative sample of instances of the problem and dynamically matching users

to the closest model. Behavior-based models on the other hand, are statistical models that use users’ behaviors

as the basis of recommendation. Rather than rely on a preprogrammed model, the knowledge about the user is

acquired incrementally by making inferences from user actions. Construction of behavior-based models

typically involves applying some machine-learning algorithm to users’ past behaviors in order to predict their

future behavior. Two main approaches are used to learn the user model in behavior-based systems: content-

based and collaborative approaches. The content-based approach assumes that people will behave similarly

under similar circumstances. Hence, if a user liked an item before, similar items may be recommended for that

user in future. The collaborative approach assumes that like-minded people exhibit similar behaviors under

similar circumstances. Hence, prediction of a user’s preference for an item is based on the aggregate behaviors

of other similar users.

2.2.3.2. Concept Drift
The term concept drift is used to describe the continuous change in a user’s interests and behaviors as he

interacts with an information system. Learning algorithms that track a user’s profile as he interacts with the

system need to adapt to these changes quickly, so that the profile can be updated. Research on machine

learning of the user model has traditionally been based on the assumption that the user is engaged in repeated

and unchanging behavior, which the learning algorithm can learn (Maes, 1994). The consequence of this has

been that users are placed under static classes that may meet the characteristics of groups of users but that are

not flexible enough to the changing characteristics of individual users. Because of the dynamic nature of the

user profile in recommender systems, good user profiling needs to allow for dynamic profile update as the

user’s interests change.

Webb et al. (2001) presented a number of approaches that may be used to alleviate the problem of

concept drift in personalization systems. They included the following:

Placing Less Weight on Older Observations. The idea here is to make more recent user activity play a

greater role in determining the current user interests. But this is done at the risk of losing information about

interests that are long-term but occur only sporadically. For example, a user in a news recommendation system

may be interested in volcanic mountain eruptions, but because mountains only seldom erupt, the system may

fail to recommend a news item on the next mountain eruption to the user because by the time it occurs, the

profile indicator for mountain eruptions may have decayed below the recommendable threshold.

Use of Windowing Techniques. Using this approach, user modeling data is limited to a time window,

which is considered to represent the user’s interests at that period in time.

Use of Dual User Models. This approach makes use of long- and short-term user models. The short-

term model, trained with recent data, is initially consulted and if accuracy is low, the long-term model is used

instead. Billsus and Pazzani (1999a; 1999b) for example, used a nearest-neighbor short-term user

15

model to adapt rapidly to changing user interests, and a Bayesian classifier long term model to track

long term user interests.

2.2.3.3. Acquisition of User Profiling Data
Data that are used to construct user profiles may be acquired explicitly, implicitly, or using a combination of

both explicit and implicit approaches (Hanani, Shapira, & Shoval, 2001). Systems that acquire user modeling

data explicitly require users to provide personal information about their interests, likes and dislikes.

Acquisition of this information may take a variety of forms, including: form filling to indicate interests,

selection of one of several predefined profiles, selection of a set of terms, with the possibility to weight terms

based on their relative importance, and rating of items in collaborative filtering (Hanani et al., 2001). Other

methods to explicitly acquire the user profile include user interviews, and stereotypical inferences (M. Bauer,

Pohl, & Webb, 1997).

 The main advantage of explicitly acquiring the user profile is that resulting profile would be

reasonably accurate if the user succeeds in choosing the right terms to describe himself. Another advantage is

that the system output would be predictable, as the user can usually guess why he is receiving the

recommendations he gets, knowing the way he constructed his profile.

There are a few disadvantages in acquiring the user profile explicitly though. First, if users are

required to update their profiles each time their interests change, that may place a large cognitive load on them,

defeating the original objective of building a system that reduces information load. Furthermore, in systems

involving navigation in large information spaces, the additional cognitive load my end up disorienting the user,

confounding the lost in hyperspace problem. Some of these problems can be alleviated by requiring minimal

input from the user, perhaps in the form of a single click of the mouse to rate the quality of the system’s

output.

Another problem related to explicitly acquiring the user profile is the possibility that the user may not

be willing to cooperate, especially if he cannot immediately see the benefits of making personal information

available to the system (Mulvenna, Anand, & Büchner, 2000), and also because of privacy concerns. And

even if the user is willing to provide modeling data, he may not be able to correctly specify information that

correctly defines his profile. Reasons for this range from the failure to know the correct vocabulary to use to

correctly describe himself to the system, to, in systems in which a controlled vocabulary is provided for user

profile definition, misinterpretation by the user of the meanings of the vocabulary terms (Belkin, 2000).

Systems that do not acquire user profiling data explicitly do so implicitly, through a machine learning

procedure. In such systems, the user is not required to be actively involved in the task of acquiring his profile.

Instead, the system watches the user’s actions and infers a model or profile for the user based on those actions.

The underlying assumption in such systems is that by analyzing the behaviors of users, it is possible to find

clues on how to personalize the system to their needs.

16

The main disadvantage of the implicit model is the greater uncertainty of the inferences made simply

by observing user behaviors. However, there are a number of advantages. First, the approach is unobtrusive.

Second, relieving the user of the burden of building and maintaining a profile is an attractive option. Third, the

amount of modeling information that is collected can be very large, and that means a statistically accurate user

model can be constructed as a result.

2.2.3.4. Implicit Indicators of User Interests
A number of studies have been performed to determine factors that could serve as implicit indicators of users’

interests in documents they encounter as they browse the web. Of these, the amount of time the user spends

reading a document has been the most studied. This, and other implicit interest indicators are presented in this

section.

Reading Time. Reading time is the time spent reading a page. For web server log data, the reading

time for a page can be determined by the difference in the time between the request of the page and a

subsequent page request. Reading time can only be an approximate measure, as it depends on network traffic,

which is not guaranteed to be steady, and also on actual user action on the document, which may be different

from reading the document, but which the system cannot be aware of. Nevertheless, for a statistically large

sample, the measured reading time should give an accurate assessment of the actual reading time.

Morita and Shinoda (1994) in a tightly controlled experiment, studied the time used by users of

NetNews articles and made the following findings:

• Users spent a long time reading articles they rated as interesting

• Users did not spend a long time to read articles they rated as not interesting

• A very low correlation between the length of an article and the time to read it, suggesting that not all

articles were read completely; after reading the first few lines of an article, the user probably

abandoned it if he found the article uninteresting

• Readability (i.e. denseness, determined by number of characters per line, or per article, or number of

blank lines) of an article was not an important factor affecting its reading time

• A very low correlation between the number of unread articles and reading time, that is, users did not

rush over articles even if they had a backlog.

Konstan et al. (1997) also reported that in a loosely controlled, natural setting, the time spent reading

USENET articles was a good indicator of user preference, irrespective of the length of the article.

In the domain of technical literature, Kim, Oard, and Romanik (2001) found that users spent more

time reading interesting material than they spent reading less interesting ones. They also concluded that the

interpretation of reading time should depend on the type of document, with abstracts of journal articles taking

longer to read than the times taken to read news articles reported by Konstan et al. (1997) and Morita and

17

Shinoda (1994). Kim et al. (2001) reported that a combination of reading time and printing of a document

could provide a more useful indicator of user interest in a document than reading time alone.

Claypool, Le, Waseda, and Brown (2001) monitored potential interests indicators as users browsed the

pages of a college website, and found that the time spent on a page, the amount of scrolling on a page, and a

combination of time and scrolling had a strong correlation with explicit user ratings for those pages. The

number of mouse clicks was not a good indicator of interest on pages. However, the time spent moving the

mouse on a page was a good indicator of low recommendations (little time spent moving the mouse if the page

was not interesting), but could not distinguish among high interest pages.

Kelly and Belkin (2001) came up with an apparently contradictory finding to the notion that the time

users spend reading a document is an indicator of the user’s interest in that document. The authors found that

users spent significantly less time reading documents that they classified as belonging to one of six topics, than

did users who rated documents as interesting in Morita and Shinoda (1994). In addition, they found no

significant difference in the time spent by users reading both documents that belonged to, and documents that

do not belong to the topic under consideration. But as the authors pointed out, their results did not really

contradict earlier findings; they simply suggested that the earlier findings apply to a narrower scope than

previously thought. Their work differed from earlier works on reading time in a number of ways: it was

carried out in the IR domain where the tasks were unfamiliar and were not necessarily interesting to the user as

was the case in earlier studies where the users rated items in newsgroups that they were interested in; also, in

Kelly and Belkin (2001), users were given less time than in earlier studies, and were required to perform more

complex tasks involving query construction and reading, evaluation and labeling of returned documents.

The studies mentioned above on the significance of time as an indicator of user interests appear to

suffer from two factors: first, the studies considered average reading times, and not individual user reading

times. Average times may be indicative of group preferences, but they do not say much about individual user

preferences, since different people read at different rates, and even the same person may read at different rates

at different times, or depending on the nature of the material they are reading. Second, the studies did not

account adequately for varying document lengths. One can expect longer documents to take longer to read

than shorter ones. It would be interesting to find the relationship between individual users’ reading times—

perhaps normalized by document length—and their interests in the documents.

Maximal Forward Reference (MFR). Another implicit indicator of user interests is maximal forward

reference (Chen, Park, & Yu, 1996), in the domain of web navigation. This approach is based on tracking

users’ forward and backward references as they navigate a website. A forward reference is a page not in the

set of pages already visited by the user in the current browsing session. A backward reference is a page that is

already in the set of pages for the current session. A maximal forward reference is the last forward reference

page requested by a user before backtracking occurs, where the user requests a page previously viewed during

that session, and is considered a page of interest to the user.

18

Edit Wear and Read Wear: Hill, Hollan, Dave, and McCandless (1992) used the idea of physical wear

that an object experiences with use, to describe edit wear and read wear as useful relevance clues left behind

by documents that experience extensive use by authors (edit wear) or users (read wear).

Examination, Retention and Reference: These interests indicators were examined by Nichols (1998)

and Oard and Kim (1998).

Examination comprises the following user behaviors: selection of documents for further examination;

reading time; edit wear to describe for example, interests in particular sections of a document based on amount

of scrolling; repetition to characterize repeated actions; purchase, an important interest indicator in situations

where the user is willing to pay for an item.

Retention groups behaviors that suggest some interest to make use of an object in the future. This

category comprises the following user behaviors: save (creating a bookmark, creating a symbolic link in a file

system or saving an object with or without annotation, perhaps in a special folder as opposed to the default

folder); printing; deleting (e.g., deleting an email to indicate lack of interest in that email).

Reference includes user behaviors that create implicit or explicit links between information objects,

for example, forwarding email, replying or posting follow-up messages in a discussion group, following

hypertext links or cited documents, cutting and pasting.

2.2.3.5. Sources of Data Used to Infer User Profile Implicitly
There are three primary sources of data used to infer web user profiles implicitly: the client computer, the

user’s navigation context, and user access logs.

Collecting Profiling Data from the Client Computer. User profiling data can be collected from the

client computer through the use of cookies6 (Pirolli, Pitkow, & Rao, 1996) or remote agents7. The main

problem with these approaches is that users may to block them from their machines.

Collecting Profiling Data from User Navigation Context. The context of the current user’s navigation

can also be used as the source of user profiling data. This approach is useful in systems that do not keep a

persistent record of user navigation, for example, when browsing an encyclopedia on CD. Hirashima,

Hachiya, Kashihara, and Toyoda (1997) for example, used context-sensitive filtering, which involved

combining the index terms and recency of pages visited as the basis for the user profile.

Collecting Profiling Data from User Access Logs. Implicit user modeling data can also be obtained

from user access logs stored in server logs. This is useful for example, in systems that model users based on

6 A cookie is a server-generated identifier stored on the client machine, used to overcome the problem with statelessness of
the HTTP protocol by tracking user interaction with the server.
7 Just like a cookie, a remote agent is a program that resides on the client machine. But unlike a cookie, the remote agent
provides usage information on user interaction not only with the server that generated it, but with other servers as well.

19

web server access logs. Most server logs amongst other things, maintain information on the pages accessed,

the time each page was first accessed, and the IP address of the computer from which the request was made to

the web server. Using server log data has the advantage of a plentiful supply of modeling data.

2.2.3.6. Representation of User Profiles

The data corresponding to user profiles must have appropriate representation for use by the system. In

knowledge-based recommender systems, the representation makes use of any knowledge structure that can be

used to draw inferences from the user’s interaction with the system. Entrée (Burke, 2001, 2002) for example,

uses techniques from case-based reasoning8.

In behavior-based systems, the representation could be in the form of stereotypes or overlays.

Stereotyping (Brusilovsky, 1996; Rich, 1979) is a simple but effective user modeling approach in systems that

need to adapt to different classes of users. A stereotype comprises a set of related attribute-value pairs. The

user is assigned to a stereotypical group based for example, on demographic information. The same attribute-

value pair defines each stereotype, and a user assigned to a stereotype inherits all the attribute-value pairs of

that stereotype, and in the case of a recommender system, receives the same recommendations. One attraction

in the use of stereotypes in modeling the user stems from the fact that some of the modeling data may not be

readily available and so the user is classified by grouping him with other people who have other similar

attributes to his. The main disadvantage of the use of stereotypes is that of large granularity: minor but

possibly important differences are not taken into consideration.

Overlays (Brusilovsky, 1996, 2000) are more powerful and flexible than stereotypes in representing

user interests, and are more widely used as a result. The model estimates how much the user is interested in an

item, by using a set of attribute-value pairs. Each value in the pair is an estimation of how strongly the

attribute or concept can be associated to the user, with the values taking discrete or probabilistic values.

Examples of the use of the overlay model include: the use of vectors of term weights in content-based systems

to represent a user profile, and the use of item rating vectors to represent a user profile in collaborative filtering

systems. Stereotypes and overlays can be combined to give better results, for example, using a stereotype to

define the initial user model, and an overlay to update the model.

8 A case-based reasoning (CBR) system uses the recall of examples (cases) as the fundamental problem-solving process.
It comprises a number of knowledge containers: the case-base, the vocabulary used to describe cases, the similarity
measure used to compare cases, and the knowledge needed to transform recalled solutions.

20

2.2.4. Associated Technologies in Recommender System Design

Recommender system design usually involves one or more of a large number of technologies. This section

discusses the following commonly used ones: data mining, machine learning, IR, use of graphs, and clustering.

2.2.4.1. Data Mining Tools

Data mining, or knowledge discovery in databases (KDD), is the automated or convenient extraction of

patterns representing knowledge implicitly stored in large databases, data warehouses, and other massive

information repositories (Han & Kamber, 2001). Application areas of data miming include customer profiling,

fraud detection, evaluation of retail promotions by commercial enterprises, credit risk analysis, market

segmentation9, and now increasingly, web mining.

The application of data mining techniques to discover knowledge from web data has recently become

popular partly because of the large amounts of such data available. Cooley, Mobasher, and Srivastava (1997)

defined web mining as the “discovery and analysis of useful information from the World Wide Web.” They

distinguished between web content mining, which involves automatic on-line search for information, and web

usage mining, which involves discovery of user access patterns.

Web content mining approaches are either agent-based or make use of the database approach. Agent-

based approaches include: the use of intelligent search agents that conduct searches based on user profiles; IF

and categorization agents that retrieve, filter and categorize documents; and the use of personalized web agents

that learn user preferences and return personalized information to them based on their individual preferences.

The database approach attempts to organize semi-structured web data into a more structured collection,

suitable for database-like querying.

Web usage mining relies on the navigation patterns of past users of a website, stored in web server log

files. These server logs are an invaluable source of useful information, as they can be analyzed for purposes

ranging from improving marketing strategies to better structuring of websites and hyperlink recommendation.

Web usage mining involves one or both of the following two steps: discovery of significant access patterns (or

user navigation behaviors), and analysis (e.g. interpretation or visualization) of the discovered access patterns.

The mining is based on the following premise: if it is known that several users have visited the same set of

pages, then it can be said with some certainty that the pages are related. In recommender systems, this

knowledge is used as the basis for making recommendations to an active user.

One common goal of data mining is the discovery of association rules, or interesting correlations

among a set of data items (also known as transactions) in a database. An illustrative example of the use of

9 Market segmentation is the selection of groups of people who will be most receptive to a product. Segmentation methods
make use of demographic variables (age, sex, race, income, occupation, education, household status, and geographic
location), psychographic variables (life-style, activities, interests, and opinions) and product use patterns.

21

association rules is in market basket analysis10, where the mining algorithm seeks to find groups of items that

customers tend to buy together, perhaps to help with better planning of the shop display.

2.2.4.2. Machine Learning of User Profile

Machine learning investigates the mechanisms by which knowledge is acquired through experience. In

recommender systems design, machine-learning techniques are commonly used to learn a model that is used to

profile users as they use the system. Three commonly used machine learning approaches include k-nearest

neighbor algorithms, use of neural networks, and the use of Bayesian networks.

 K Nearest Neighbors (KNN) Algorithms. A KNN algorithm (Sarwar et al., 2000b, 2001) is a memory-

based classification algorithm which, given an object O, searches the space of classified documents for the

class of objects which has the greatest number of members that are similar to object O, and assigns object O to

that class. The algorithm uses three components: a positive integer k, a similarity function D, and a training set

of n correctly labeled feature vectors Sn = {(x1,C1),(x2,C2),…(xn,Cn)} where xi is vector i and Ci is the class to

which xi belongs. Given an unclassified feature vector x, the algorithm identifies the subset of k vectors that

are closest to x (the k nearest neighbors) based on the similarity metric D. Then, of the k nearest neighboring

vectors, the class that occurs with greatest frequency is determined and vector x assigned to that class.

The first stage in KNN classification is identification of the k nearest neighbors, or neighborhood

formation. The goal is to find for vector x, an ordered list of k vectors X = {X1, X2,..., Xk} such that x∉X and

sim(x,X1) is highest, sim(x,X2) is next highest, etc., where sim is the similarity measure. Two commonly used

neighborhood formation schemes are center-based and aggregate (Sarwar, Karypis, Konstan, & Riedl, 2000a).

The center-based scheme forms a neighborhood by selecting the k vectors that are most similar to x. The

aggregate neighborhood scheme uses the current members of the neighborhood to determine the future

members of the neighborhood. Using this scheme, the neighborhood is formed by first selecting the closest

vector to x, and then using the following steps to select the other k-1 neighbors.

• Let there be j (j<k) vectors currently in the neighborhood x

• Compute the centroid of x: xvj vC 1r

• Select vector w ∉ x as j+1th neighbor if w is closest toC
r

• Repeat until k=x

KNN classifiers are instance-based or lazy learners because they store all the training data in memory,

and only proceed to build a classifier at problem solving time when a new unlabelled document arrives to be

10 Market Basket Analysis is an algorithm that analyzes customer buying habits by finding associations between the
different items that are most frequently purchased together (Han & Kamber, 2001). It takes its name from the idea of a
person in a supermarket putting the items they intend to buy in a shopping cart (i.e., a "market basket").

22

classified. This is in contrast to eager learners like neural networks, which construct a generalization of the

model before new samples arrive for classification. There is a tradeoff between training and classification time

in lazy and eager learners: lazy learners have faster training times but slower classification times, and the

converse is true for eager learners (McKenna & Smyth, 2000). If the number of potential nearest neighbors in

a KNN algorithm is large, performance may significantly degrade since matching to the nearest neighbor is

done online.

Neural Networks. Neural networks (Swingler, 1996) are statistical models of real world systems, built

by tuning a set of weights. The model maps inputs from the world to corresponding outputs, with the weights

of the network defining a model of the system.

A neural network learns a model of the system through training by example: input and output pairs are

fed into the system and the weights adjusted to minimize the error (i.e., difference between the system output,

and the known, correct output). After the network is trained, its weights are frozen, and a test set of unseen

input/output pairs fed into the network. If the error between the network’s outputs and the correct outputs in

the test set is acceptably small, the network is assumed to generalize well to all other unseen inputs.

The most common class of neural networks is the multi-layer perceptron (MLP). It comprises a set of

small computational units arranged in three or more layers: an input layer that takes input from the world, and

passes them through interconnecting weights to one or more hidden layers which in turn, pass the resultant

signals through connecting weights to the output layer, where the results of the model are read. The hidden

layer units extract useful features from the input data, and form an internal representation of the corresponding

outputs. An example of an MLP is shown in Figure 4.

Figure 4. A fully connected acyclic neural network.

An MLP is fully connected if each unit of a layer is connected to each of the units in the next layer,

and to no other units. An MLP could also be acyclic, if there is no feedback from the output of any unit to the

Input Layer

Output Layer

Hidden Layer
Activation

23

input of a unit at a lower layer, or cyclic if there is at least one such feedback. Figure 4 for example, is a fully

connected, acyclic neural network, with one hidden layer.

The value, or activation, of each unit flows to the units above it through the connecting weights. The

activation received by a unit receiving activation from one or more lower level units is determined by

computing the sum of products of the lower level activations and the connecting weights and passing the

results through a squashing function that bounds the activation to a given range, usually –1 to +1.

The most widely used weight adjustment (or learning) procedure for MLPs is a gradient descent

approach called back propagation of error (Rumelhart, Hinton, & Williams, 1986). The procedure involves

determining the error at each output unit, assigning blame for the error proportionately to the connecting

weights and their corresponding lower level activations, and adjusting the weights such that the error would be

smaller the next time the same activations are provided to the output unit. The blame (or error) attributed to

each hidden layer unit is similarly back propagated to the connecting lower level units until the input layer is

reached.

Bayesian Classifiers. Bayesian classifiers apply Bayes Theorem to classify items. Bayes Theorem is

itself based on the intuition that “a hypothesis is confirmed by any body of data that its truth renders probable”

(James, 2003). Two commonly used Bayesian classifiers are the naïve Bayesian classifier and the Bayesian

network.

The naïve Bayesian classifier is a supervised learning algorithm that stores a single probabilistic

summary for each class. The algorithm makes the assumption that the attributes of a class are independent and

that the classes are mutually exclusive and exhaustive. In spite of these naïve assumptions, naïve Bayesian

classifiers have been found to be useful in practice. For example Miyahara and Pazzani (2000) developed a

naïve Bayesian classifier that performed collaborative filtering on users’ preferences for movies.

Belief (Bayesian) networks (Clemen, 1996) store knowledge in a directed acyclic graph in which

nodes correspond to attributes and links indicate dependencies between attributes. The Lumiere Project

(Horvitz, Breese, Heckerman, Hovel, & Rommelse, 1998) which formed the basis of the Office Assistant in the

Microsoft Office suite of application programs for example, used Bayesian user models to infer a user's needs

by considering the user's background, actions, and queries.

2.2.4.3. Information Retrieval Tools

IR techniques, especially the vector space Term Frequency Inverse Document Frequency (TFIDF) model

(Salton, 1989; Salton & McGill, 1983; Salton & Wong, 1975), are heavily used in recommender system

design. The TFIDF model represents a document as an N-dimensional vector, where N is the number of

distinct terms in the collection of documents being considered. Each term is represented in the document

space as a weight based on heuristics that are described shortly. The similarity between two documents, where

a document could be one of the documents in the collection, a user query, a user profile vector, or any N-

24

dimensional representation of the terms of the document collection, is determined by any of several similarity

measures.

The vector space model comprises three stages. The first stage involves document indexing. Indexing

involves extracting the features of the document, typically words. Because of difficulties involved in working

in a high-dimensional space and because many words in a document do not sufficiently describe the document

content, dimensionality of the document representation is reduced by passing the terms of the document

collection as parameters of a stop-list algorithm to remove the less descriptive terms. Dimensionality is also

reduced by eliminating very high- or very low-frequency terms, which do not carry much information.

The second stage assigns weights to the index terms to enhance retrieval of relevant documents when

a query is issued, or to improve filtering results based on the user profile under consideration. Assignment of

term weights assumes that the importance of a term within a document is proportional to the frequency of its

occurrence within the document and inversely proportional to its frequency across the document collection,

hence the name TFIDF. The intuition used in assigning the term weights is as follows: the frequency of

occurrence of terms in a particular document is proportional to its importance in the document; but given a

collection of documents, terms that occur in a large number of different documents do not help much in

discriminating between different documents, hence the inverse proportion. In order to avoid giving preference

to longer documents in which terms are likely going to appear more frequently, document lengths are

normalized. The weight given to any term is typically proportional to the product of the term frequency,

inverse document frequency and the length normalization factor.

The last stage of the model involves determining the similarity between the document and query

vectors in the case of IR or between the document and user profile vectors in the case of a filtering system.

The similarity is determined from associative coefficients based on the inner product of the document vector

and query or user profile vector. The most commonly used measure of similarity between two documents is the

cosine similarity coefficient11, which measures the cosine of the angle between the two document vectors.

Other measures of similarity include the Pearson correlation index, Jaccard coefficients, and Dice coefficients.

Typically, documents returned by the model are presented as a list, ranked in order of similarity (i.e. relevance)

to the user query or profile.

One major criticism of the vector space model is its bag-of-words approach, which refers to the fact

that the model simply considers the occurrences of words in the document with no regard to the semantics or

syntax associated with them. Nevertheless, the approach is widely used and has proven successful in IR and in

machine learning algorithms despite this apparent limitation.

11 The cosine similarity measure was used throughout this work to determine the similarity between any two vectors. The
steps involved in computing cosine similarity are shown in Appendix A.

25

2.2.4.4. Graph Techniques

Pirolli, Pitkow, and Rao (1996) presented a number of uses to which graph structures can be put to identify

usable structures in the web, which recommender system design can benefit from. Graph structures used to

represent web pages comprise nodes representing web pages, and arcs representing the strength of association

between the web pages.

One of the most commonly used graph structures for web pages stores the hyperlink topology of a

website or collection of sites. In this representation, directed arcs are used to connect one web page to another

if a hyperlink links the former to the latter. This representation could be useful in recommender systems if

there is the need to know if a given page p is reachable from a set of pages S, in which case, the task would be

to determine if an edge in the graph exists between any of the nodes present in S and Node p.

Another use of graph structures is to represent the similarities between web pages, or user behaviors.

In such a representation, arcs between nodes are labeled with the similarities between web pages. This

representation could be useful in determining which pages to cluster together, and so treat them similarly.

Yet another graph representation could be used to show the frequencies of user accesses from one

node to another. In this representation, directed arcs between nodes are labeled with the access frequencies

between them.

2.2.4.5. Clustering

Clustering is an unsupervised learning task: items are assigned to classes (clusters) without any prior

knowledge of what class the items belong to (Han & Kamber, 2001). Cluster analysis aims at finding structure

in data by grouping together (or clustering), data items that are highly similar to each other, and very dissimilar

from data items in other clusters (Aldenderfer & Blashfield, 1984; Han & Kamber, 2001; Kaufman &

Rousseeuw, 1990). In recommender systems, clustering may be used to classify similar data together so that

recommendations could be made only from clusters that have been determined to be interesting. This could

lead to the design of systems that scale well due to considerable savings on the time used to generate

recommendations, which could be considerable if the complete document space had to be searched for relevant

documents.

Five broad categories of clustering methods are in use. These are partitioning (or iterative) methods,

hierarchical methods (agglomerative and divisive hierarchical clustering), density-based methods, grid-based

methods, and model-based methods.

Partitioning methods result in the creation of k (k < n) clusters out of n objects. These methods

involve the creation of an initial cluster, and then iteratively, up to k partitions are created by moving objects

from one group to another more suitable group. The exhaustive enumeration of all possible partitions can be

very expensive, and in practice, heuristic approaches are used to determine partitions. These heuristic

approaches include k-means and k-medoids algorithms. K-means represents a cluster by the mean value, and

26

attempts to move objects to the clusters that would result in the minimum intercluster similarities. One

weakness with k-means is it sensitivity to outliers. The k-medoid algorithm attempts to reduce this sensitivity

by taking the medoid, or most centrally located object to represent a cluster.

One problem with the partitioning approach is the difficulty of correctly estimating the number of

partitions to create. Hierarchical clustering methods create a hierarchical decomposition of a data set. Two

approaches are commonly followed: agglomerative and divisive. The agglomerative approach starts with the

assumption that every object belongs to a separate cluster, and iteratively merges objects or groups that are

similar to each other until all the groups are merged or a terminating condition met. The divisive approach

assumes that there is initially only one cluster, and the algorithm iteratively splits clusters into smaller units

until every object is in a separate cluster or until a terminating condition is reached. Examples of hierarchical

clustering algorithms are AGNES (AGglomerative NESting) and DIANA (DIvisive ANAlysis). The main

disadvantage of hierarchical clustering is that once an object is merged into a cluster, it cannot be reassigned to

another cluster.

Density-based clustering algorithms assume that clusters are dense regions of data—represented by

high density data points—separated by noisy regions—represented by low density data points. These

algorithms can discover clusters of arbitrary shape and are commonly used in spatial databases.

Grid-based clustering approaches quantize the data space into a number of cells on which clustering is

done. The main advantage of these approaches is speed since clustering time depends on the number of cells,

and not the number of data points present. Typically, statistical information on the data in each cell are

precomputed and stored for later use.

Model-based clustering methods attempt to fit the data into some mathematical model. Two

approaches are commonly used: a statistical approach that uses probability theory to determine what cluster an

object belongs to, and a neural network approach. The neural network approach uses an exemplar (a prototype

vector) to represent each cluster, and uses some similarity measure to place a new object to the cluster that is

most similar to it.

2.2.5. Recommender Systems in the Context of Other Related Technologies

Recommender Systems in the Context of Information Retrieval and Information Filtering. At an abstract level,

both IR and IF have the goal of retrieving information that is relevant to the user’s information needs while

minimizing the amount of irrelevant information retrieved (Folz & Dumais, 1992; Hanani et al., 2001; Malone

et al., 1987; Oard, 1997). But how they go about fulfilling this goal differs. Belkin and Croft (1992)

emphasized the similarities between IF and IR which led them to conclude that the two technologies “are in

fact two sides of the same coin.” Belkin and Croft (1992), Folz and Dumais (1992), and Hanani et al. (2001)

also pointed out some differences between IR and IF. These similarities and differences, and how they relate

to recommender systems, are presented in Figure 5.

27

As can be seen from the figure, recommender systems are quite similar to IF systems. Recommender

systems can be viewed as a kind of filtering system in which the user profile is very dynamic (and not static),

as in the typical IF system. Recommender systems may be considered as active – using autonomous agents to

continuously traverse the information space and collect items to recommend or classify (Sarwar et al., 1998),

or interface agents that watch and learn from users – and eventually automate some of the tasks that users do

routinely (Maes, 1994). Recommender systems may also be considered passive, such as those used to make

recommendations on email messages. These recommenders accept all incoming messages and do not actively

search for information for the user.

Based on similarities between IR and IF
Similarity Information Retrieval Information Filtering Recommender Systems
Need to satisfy an
information need

IR users specify their
information needs in the
form of queries

User information needs are specified
in the form of user profiles

User information needs are
specified in the form of user
profiles

Use of text12
surrogates to
represent
information sources

Representation involves
creation of indexes from
text

Representation is the text produced
and distributed to users with matching
profiles

Representation is the text produced
and distributed to users whose
current profile state matches the
text

Matching of
information need
and text surrogate

Typically involves
comparison of user query
with the text surrogate
representing the document

Filtering process involves comparison
of the user profile with the text
surrogate representing the document

Available documents are filtered
based on the current state of the
changing user profile

Use and Evaluation
of retrieved text

Evaluation may lead to
query modification in a
process called relevance
feedback

User evaluation involves updating
his/her profile. If system maintains
profile, then the system will need to
be able to learn from the user
behavior, how to update the profile.

System learns from user behavior
and updates profile (and thus,
recommendations) accordingly

Based on differences between IR and IF

Difference Information Retrieval Information Filtering Recommender Systems
Frequency of use

Designed for ad-hoc use
by persons with a one-
time search goal

Designed for repeated use by long
term users with long term information
needs

Depends on system. Some
systems (e.g., news
recommenders) maintain long term
user profile; others (e.g., web
browsing), do not.

Process of
determination of
user information

User actively specifies
information need in a
query

User not actively involved in
retrieving relevant information once
profile is defined

User not actively involved in
retrieving relevant information
once profile is defined

Goal Selection of relevant data
from databases

System concerned with removal of
irrelevant data from incoming data
streams, or collection and distribution
of relevant data from specified
sources.

System concerned with selection
and presentation of most relevant
information to user as he interacts
with the system

Data source Relatively static13 (e.g.
CDROM)

Dynamic Dynamic

12 Information sources are normally text or multimedia. Research on retrieval and filtering on non-text documents is still
in its infancy and throughout this report, information sources and information surrogates are assumed to be purely text.
13 With the explosion of WWW usage and content, this assumption is no longer true; search engines need to, and do
constantly monitor available content on the web.

28

Types of users

Not known by the system Known to the system by their profiles. Known to the system by their
profiles.

Privacy issues Not of much concern;
users not profiled

Important, as users are profiled Important, as users are profiled

Figure 5. Comparison of recommender systems and IR & IF, based on comparison of IR & IF by Belkin and Croft (1992),
Folz and Dumais (1992), and Hanani et al. (2001).

Figure 6. Information Seeking Space – adapted from Oard (1997).

Oard (1997) presented a useful way to visualize the areas in information space that are occupied by

most IF and IR systems (see Figure 6). As can be seen from the diagram, IF systems typically have dynamic

information sources while the user needs are fairly constant; on the other hand, IR systems traditionally deal

with stable information sources, but changing user needs. Figure 6 also shows that both IR (stable information

sources but changing user needs) and IF (stable user needs but changing information sources) are

specializations of a more difficult problem of dealing with both changing information sources and changing

user needs – the grand challenge. The recommendation problem may be considered to be somewhat more

challenging than the search or filtering problem alone. As in IF, the information source may change

continuously, but the system must also monitor changes in the user profile. Similarly, as in IR systems with

changing user queries, the user profile changes in recommender systems; unlike in IR systems in which the

user specifies his changing interest in a new query however, recommender systems are responsible for keeping

track of these changes.

Recommender System in the Context of Adaptive Hypermedia. AH research aims to develop

hypermedia systems that personalize their behavior to goals, tasks, interests, and other features of individual

In
fo

rm
at

io
n

Fi
lte

rin
g

Information
Retrieval

Grand
Challenge

Information Need Change

In
fo

rm
at

io
n

So
ur

ce
 C

ha
ng

e

29

users and groups of users (Brusilovsky & Maybury, 2002). They help users navigate through hyperspace by

providing adaptation in three main areas: adaptive content selection, adaptive navigation support and adaptive

presentation.

Adaptive content selection may be used for example, in a search system where the role of adaptation

is to select and prioritize the most relevant candidate items to present (Brusilovsky & Maybury, 2002).

Adaptive navigation support may involve direct guidance (e.g. the use of Next and Previous buttons);

adaptive link sorting, presenting the most relevant links first; adaptive link hiding (hiding, disabling and/or

removal of links); adaptive link annotation, where particularly interested links are specially annotated; adaptive

link generation, where relevant links that were not preauthored on a page are generated in the course of

browsing the page; and map adaptation, i.e., adapting the hypermedia map that is presented to the user

(Brusilovsky, 1996, 2001; Brusilovsky & Maybury, 2002).

Adaptive presentation deals with adaptation of the content that is presented. This may involve

adaptive text presentation, adaptive multimedia presentation and adaptation of modality, which is useful if

there is need to choose between different types of presentation forms—i.e., audio, video or text (Brusilovsky,

1996, 2001; Brusilovsky & Maybury, 2002).

As in recommendation systems, AH systems make use of a user profile to determine what kind of

adaptation to perform. The main difference between the AH and other information seeking processes like

search, recommendation and filtering systems, is that AH systems typically use the output of these other

systems as the basis of adaptation. For example, a hyperlink recommendation system generates a set of

hyperlinks to present to a user; adapting the hypermedia would typically involve determination of how the

generated links are presented to different users. Or the output of a search engine may be adapted by sorting in

order of relevance before display.

2.2.6. Recommender Systems Application Areas

This section presents a sample of past and present recommender systems for web navigation, and a cross-

section of other domains in which recommender systems are used.

2.2.6.1. Web Navigation

Web navigation recommendation takes the form of recommended hyperlinks for users to follow. Depending

on the system, recommendations are either site-specific, or unrestricted to the hypermedia, e.g., for the whole

web. In the former case, although coverage is much narrower, the system designer has much greater control of

possible system inputs, and there is a better chance of constructing an accurate recommendation model, while

the converse situation holds in the latter case.

30

Siteseer. Siteseer (Rucker & Polanco, 1997) is a web page collaborative filtering recommendation

system that uses users’ bookmarks and the organization of bookmarks within folders as the basis of

recommending relevant pages. Siteseer capitalizes on the fact that bookmarks, especially those placed in a

folder are the result of an intentional act hence are less noisy as a source of inference of user intention.

Disadvantages of the system included the following: several pages important to the user are never

bookmarked; some bookmarks are only used to indicate transient interest in a page; bookmarks cannot be used

to indicate a lack of interest.

The user profile comprises a combination of folders and the various URLs stored in them. Siteuser

uses a nearest neighbor algorithm to find a pool of reviewers qualified as trusted recommenders. The process

involves determining the similarity between different users’ bookmark folders by determining the percentage

of common URLs in them. The system’s recommendations comprise pages that the active user’s virtual

neighbors have bookmarked, with preference given to pages in folders with the greatest overlap and also pages

occurring in multiple folders.

Fab. Fab (Balabanovic & Shoham, 1997b), is an adaptive multi-agent hybrid recommender system

that uses content-based and collaborative filtering techniques to recommend web pages to users. User profiles

are based on analyzing the contents of documents that the user has rated on a 7-point scale in the past. The

collaborative component of the hybrid is achieved by comparing different user profiles to determine

neighboring users for collaborative recommendation. Items are recommended if they are rated highly both by

the active user and by other similar users.

The content-based part of the system makes use of 3 components: collection agents that find web

pages for a specific topic for a group of users, selection agents that find pages from the pool of collected pages

for a specific user, and a central router. For each user, each collection agent maintains a keyword-based profile

for a particular topic, with the various topics dynamically generated as clusters based on the characteristics of

all the users of the system. Collection agents that consistently find documents that users rate poorly, or that

users do not bother to rate, are purged, while more successful collection agents are duplicated to replace them.

Selection agents maintain keyword-based profiles of individual users. They receive (via the router)

matching pages from the collection agents and do some processing, like discarding already seen pages.

Explicit user ratings of received documents are used to update the selection agents’ profile.

Letizia. Letizia (Lieberman, 1995; Lieberman, Fry, & Weitzman, 2001) is a reconnaissance agent14

that tracks a user’s browsing behavior while at the same time searches the links from the current web page, to

determine potentials pages to recommend when the user requests recommendations from the system.

Recommendations are generated following content analysis of candidate (i.e., potential) pages.

14 A reconnaissance agent searches new territory (web pages in this case) before the user ever gets there.

31

Simple heuristics are used to determine interestingness of a page and to guide the search. Letizia’s

search is performed breadth-first for hyperlinks that the system may recommend while visiting the current

page. Breadth-first search compensates for the fact that users tend to browse depth-first often missing useful

neighboring links on previous pages, which Letizia can recommend any time the user asks for

recommendations. The system considers factors like book marking of a page, following a link from the current

page, and repeatedly returning to the same page, as indicators of the interestingness of the page. Rapidly

leaving a page is assumed to indicate lack of interest in that page while following a link that is farther away in

a left–right, top–bottom direction is considered lack of interest in the preceding links.

Letizia maintains a set of keywords from the pages the user has visited with weights corresponding to

the relevance of the words to the user’s profile. By comparing this profile with vector representations of pages

that the agent searches, a similarity measure is determined, which acts as a measure of the usefulness of the

page to the user if he requests recommendations.

IndexFinder. IndexFinder, (Perkowitz & Etzioni, 2000) is the recommendation engine of an AH

system that automatically generates index pages to help a webmaster transform a site by adding the generated

pages to the index page if they are judged to be appropriate, or to reject them if he does not deem them

necessary.

IndexFinder makes the assumption that an index page should have links to related pages, that is, pages

that cover a particular topic. Generating an index page involves determination of related but unlinked pages,

where two pages are considered linked if there is a link from one to the other or if there exists a page that links

to both of them. The aim is to generate for each index page, all the links that are related to a particular topic,

but no link that is unrelated to the topic.

Adaptation is not based on a single user’s profile, but rather on a profile based on the consistent

navigation pattern of a large group of users. IndexFinder uses a statistical cluster mining technique that

depends on the co-occurrence of web page requests during user visits, to deduce candidate page clusters from

web server logs. Each candidate cluster is fed to a concept-learning algorithm that produces a concept

description for the cluster, comprising a conjunction of attribute-value pairs, e.g. instrument type = drums

AND file type = audio, for a cluster that should contain music files involving drums. Pages in a candidate

cluster that do not fit the concept description are then discarded. The resulting cluster is then presented to the

webmaster as an HTML page of sorted links, which he can provide a header for and a link from an appropriate

page in the site, or which he can reject.

ProfBuilder. Profile Builder (ProfBuilder) (Ahmad, 1999) is a hybrid recommender system that

combines collaborative and content-based filtering and the use of autonomous agents to recommend interesting

pages within a website to users. Profbuilder maintains user profiles based on the vector space model, using

keywords as tokens. Each time the user visits a new page, his profile is updated thus: Qj_new = Qj + tij * Di,

32

where Qi is the vector space representation of the user profile, tij is the weighting factor for document I and

user profile j, and Di is the vector space representation of the current page.

Learning the user profile involves inferring the value of tij. The method is based on determining the

conditional probability that a user will visit page B, given that she visited another page, A, based on evidence

from access log data. Using classical information theory, the value of information of a page is then quantified

as a decreasing function (or entropy) of this conditional probability. Hence tij is precomputed for various i and

j values from data stored in user log data.

ProfBuilder performs collaborative filtering based on finite context modeling on the active user’s

navigation pattern. The procedure depends on the assumption that the current page being browsed depends on

a context consisting of a finite set of m preceding pages. Collaborative filtering is performed by comparing the

user’s current navigational context to navigation patterns of previous users and using the conditional

probabilities of visiting a page given the recent navigation history, as a measure of the user’s ratings for pages.

Content-based filtering is performed by correlating the vector representations of contents of pages in

the website and the user profile.

Profbuilder does not merge recommendations from the two filtering techniques into a single list;

instead, two separate lists are generated, one for each recommendation technique.

Calvin. Calvin (T. Bauer & Leake, 2002) is a multi-agent content-based recommender system that

recommends web pages used in similar prior browsing contexts. It aims particularly to provide useful

recommendations in situations that answer questions similar to the following: is a user who is browsing a page

about a topic (say intelligent agents) in a company’s website, interested in agents technology or is he trying to

learn more about the company for some other reason like applying for a job? Calvin takes into consideration

other pages that the user has browsed to determine what his real interests are before making recommendations.

Calvin uses WordSieve, a real time competitive learning text analysis algorithm to learn keywords that

partition the user’s access patterns into different contexts and uses these keywords to characterize his current

browsing context. The user profile comprises these access patterns, which WordSieve uses to index individual

documents and identify similar contexts in future. The keywords are arranged in a hierarchy with the first

layer comprising words that occur frequently in the current document stream, the second layer comprising

words that occur frequently over broader periods of time and the third layer comprising words that

occasionally cease occurring, making them candidates for partitioning sets of related documents.

Webwatcher. Webwatcher (Armstrong, Freitag, Joachims, & Mitchell, 1995) is an information search

agent that interactively assists and advises users as they search for information by following hyperlinks. As a

user browses the web, Webwatcher builds a log of his navigation history, makes recommendations on possible

interesting links found on the currently accessed page, and learns from both the links that the user follows and

those that he does not.

33

The user starts by filling a form with keywords that describe the information he is looking for, e.g.,

author name, article title, subject area, author’s institution, etc., for a user searching for an article. As the user

starts browsing, Webwatcher learns which links on the current page to recommend by computing a link utility

function for every link on the current page. The utility function estimates the probability of the usefulness of a

link on the current page, for given a search goal and user.

The profile of the generic user is represented as a Boolean vector of about 530 features (words). The

first 200 features are the most informative that are determined from the words of the hyperlinks recorded in the

currently logged navigation history. The next 200 features are the most informative that are extracted from the

words of the sentences of the current page that contain hyperlinks. The next 100 features are allocated to

indicate selected keywords that appear in the page heading. The last set of words (about 30), indicate words

entered by the user as he specified his search goals. Armed with this information, Webwatcher uses a machine

learning algorithm to determine which hyperlinks on the current page if any, to recommend.

Syskill & Webert. Syskill & Webert (Pazzani & Billsus, 1997; Pazzani, Muramatsu, & Billsus, 1996)

is a content-based recommender that makes use of an intelligent agent to learn users’ long term information

needs, and uses that knowledge to recommend interesting web pages to them.

A user profile is determined for each user for each topic. A topic is created and named by the user, as

well as the URL of an index page (a page with several links to other pages that deal with the topic). User

profiles comprise the most informative words on the topic. These words are learned by determining the

expected information gain that the presence or absence of the word would have on the classification of the

page. These profiles may be optionally initialized by words provided by the user.

The user may rate each page as hot (two thumbs up), mild (one thumb up and one down), or cold (two

thumbs down), vis-a-vis the current topic, although internally, the agent combines the mild and cold pages to a

single category, cold.

Syskill & Webert may then be requested to make recommendations from the links present on the

current page. Alternatively, the agent may be requested to construct a query comprising the most frequently

occurring words and the words that most sufficiently discriminate between topics, to submit to the Lycos

search engine to find interesting pages, and evaluate the returned pages to determine their interestingness.

The user profile is learned by constructing a binary word vector indicating the absence or presence of

the selected informative words of a topic, and combining this vector with the user’s rating for that page in a

naive Bayesian classifier that is used to update the profile.

2.2.6.2. Other Domains

E-commerce

The use of recommenders in E-commerce is usually to entice users to buy items from an E-commerce

site, and to come back in future. Amazon.com’s book recommender system (Schafer, Konstan, & Riedl, 1999)

34

for example comprises several features which provide a wide variety of functions, including information of

buying habits of similar customers, an email notification system to inform users of new items, customer ratings

of books that are used in collaborative recommendation, and a facility for customers to make informed buying

decisions based on comments of other users of the system.

Movies

MovieLens. MovieLens (2002) is one of the most successful music recommendation system currently

in use. It is a collaborative filtering system with a user base of several thousands, and with millions of

recommendations, which can be downloaded by researchers. PolyLens (O'Connor et al., 2001) is an extension

of MovieLens, designed to present group recommendations.

Restaurant Recommendation

Entrée. Entree (Burke, 2002) is an interactive knowledge-based recommender system that uses case-

based reasoning to select and rank restaurants. The user submits either a known restaurant or a set of criteria,

and the system returns one main recommendation plus a short list of similar (neighboring) restaurants based on

the following attributes, each of which the user can critique to change recommendations: cuisine, price, quality

and atmosphere. Entrée is stateless and does not store a user profile; its response is determined by the chosen

example restaurant and the user critique.

Recommendation is based on knowledge-based similarity retrieval. The technique involves

similarity-finding, which returns a sorted list of similar restaurants (based on attributes like niceness) from the

system database, and critique-based navigation, which filters out similar restaurants that do not meet the user’s

critique.

The similarity measure for each attribute is an integer based on simple heuristics. For example, a

more expensive restaurant is generally considered worse than a less expensive one, and a more highly rated

restaurant better than a lower rated one. The most complex similarity measure used is on the cuisine attribute.

This metric is based on a semantic network of 150 cuisines, with the similarity values considered inversely

proportional to the distance separating them in the network.

EntréeC is a knowledge-based/collaborative hybrid recommender system derived from Entrée. The

collaborative component gets its ratings implicitly by watching the user’s navigational actions and deciphering

ratings (positive or negative based on those actions).

Three approaches to finding similar users based on implicit indicators are used. First, a coarse-grained

approach that uses four interest indicators is used to weight the user interest in each restaurant in a scale of –1

to +1: entry point, i.e,. starting point for browsing is given a rating of 1; exit point, i.e., user either found the

restaurant he wanted or simply gave up, rated at 0.8; browsing, i.e. a negative interest indicator since user is

navigating away from the current restaurant, rated at –0.5; and critiquing a restaurant, rated at –1. Different

users’ profiles are then correlated to find similarities between them.

35

The next approach is finer-grained and aims to avoid losing semantic details that the coarser-grained

approach encounters. The approach depends on a binary vector comprising various levels of each of the

attributes specified for each restaurant. The difficulty posed by this approach is that the user profiles are now

represented by a very large multidimensional, sparse matrix, the size of which increases rapidly as more

restaurants are added to the system.

Finally, EntreeC makes use of a heuristic-similarity approach which takes account of the semantics of

the ratings themselves. For example, a livelier restaurant is considered to be not only different but opposite to

a quieter one.

On-line Recruitment

CASPER. CASPER (Rafter, Bradley, & Smyth, 2000), is a recommender system that uses implicit

user profiling data as collaborative filtering data, and uses that knowledge to make job recommendations to

users. CASPER is integrated in an Irish job search website, JobFinder (http://www.jobfinder.ie/). The user

profile is constructed by mining JobFinder’s server log. The server log holds data on user ID, jobs visited, and

type and time of access to the job. For each user, a profile is constructed which comprises jobs visited, and for

each job, the action taken (e.g. read, apply on line, email to self), number of revisits to the same job and read

time. To avoid the sparsity problem of collaborative filtering systems and the scaling problems related to the

KNN approach, a pre-processing clustering stage is used to identify virtual communities of similar profiles.

The online recommendation stage then makes use of items rated highly for users in the same virtual

community as the active user.

TV Viewing

We preview two systems that recommend TV programs to users based on their viewing habits:

ClixSmart and TV Scout.

ClixSmart (Smyth & Cotter, 2000) is a content-based/collaborative filtering hybrid recommender

system that recommends TV programs to users. The collaborative filtering component of the system makes

program recommendations based on the similarities between a user’s ratings for programs to those of other

users with similar ratings, while the content-based component supplements recommendations by comparing

the textual attributes (program name, channel, viewing time, textual description) of recommended programs to

the same attributes of other programs, and selecting those that are similar as additional recommendations.

TV Scout (Baudisch & Brueckner, 2002) also makes TV program recommendations using a

collaborative filtering/content-based hybrid. Content filtering is prominent earlier on, when the user receives

recommendations based on the result of queries he selects from a menu of system-stored queries. The user

may then select or ignore the programs recommended based on the queries he selects. The collaborative

filtering component interprets each of the user’s selections as a vote for that program, and generates ratings in

36

relation to the query or queries that generated it, before applying collaborative filtering techniques to compute

a recommendations list.

Research Paper Recommendation

Quickstep. Quickstep (E. S. Middleton et al., May 2002; S. Middleton et al., 2001) is a content-

based/collaborative filtering hybrid recommender system that combines knowledge-based and behavioral

approaches to user profile construction, to recommend research papers to users. Domain knowledge of the

topic (or class) of computer science-related papers is obtained by classifying an initial set of papers into an

ontology. Future papers are classified into one of these classes using a nearest neighbor algorithm.

The user profile is a vector of weights that indicate the user’s interests in particular topics. The weight

for each topic is updated in two ways. The first approach is by adding a numeric score to the weight of the

class of the currently selected paper, based on what action the user takes on a paper that belongs to that topic: 1

for simple browsing; 2 if the user follows a recommended page; 10 for a positive rating; –10 for a negative

rating. The second method used to update the profile is by using a decay function that decreases topic weights

by the inverse of the number of days since the user last browsed a page in that class.

2.3. Improving Performance of Recommender Systems

One of the main problems faced by recommender systems is that of poor scaling, resulting from the need to

handle very high dimensional data. In collaborative filtering systems, nearest-neighbor algorithms do not scale

well for large and sparse databases; in content-based filtering systems making use of the vector space model, it

is difficult to handle high dimensional vectors because a typical object will only exhibit a small subset of the

features, causing document vectors to be virtually indistinguishable from each other. Performance may be

improved by a number of preprocessing techniques, including the following: dimensionality reduction; use of

filtering agents to populate a sparse collaborative filtering user-item matrix; clustering of documents to limit

the amount of data that needs to be consulted at recommendation time to matching clusters; and mining of the

available data for information that could be useful at recommendation time. The rest of this section discusses

dimensionality reduction and use of filtering agents; data mining and clustering techniques were presented in

Sections 2.2.4.1 and 2.2.4.5 respectively.

2.3.1.1. Dimensionality Reduction

Learning in a high-dimensional space – or the “curse of dimensionality” (Lang, 1995) is a problem

because many more examples are needed to determine which dimensions are important in the document space.

The aim of dimensionality reduction of a CF system ratings matrix, or the term frequency matrix of the vector

37

space model, is to create a search space that is small enough for real time computations to be completed in

reasonable time.

One commonly used technique for dimensionality reduction is singular value decomposition (SVD).

The technique involves reducing a high-dimensional matrix into the product of three matrices '
000 DST , such

that the columns of T0 and D0 are orthonormal to each other and S0 is diagonal. Latent Semantic Indexing

(LSI) (Deerwester, Dumais, Furnas, Landauer, & Harshman, 1990) is an example of a SVD dimensionality

reduction technique. LSI makes the assumption that there is some underlying latent semantic structure in data

that is partially obscured in the bag-of-words representation of documents. Using SVD, a semantic space15 is

constructed from the term-document matrix, placing closely related terms and documents together, while

ignoring less important term-document associations. Position in the semantic space acts as semantic indexing,

and determination of relevant documents involves identifying a point in the space that is represented by the

terms in the query in IR, or the user profile in personalization systems.

Principal Component analysis is another dimensionality reduction technique. It is a statistical

procedure that can identify the directions (principal components) along which data components are correlated.

The first principal component accounts for as much of the variability in the data as possible, and each

succeeding component accounts for as much of the remaining variability as possible. Directions with little

variability can then be ignored at the cost of a small error.

Another dimensionality reduction approach involves the use of auto-encoding neural networks, which

attempt to reduce the document representation space while at the same time retain the information contained in

the original document. The autoencoder network is strictly layered, comprising N input units, K<N hidden

units and N output units whose values should match the values of the input unit. For linear autoencoders, the

reduction in dimensions takes place at the hidden layer.

2.3.1.2. Use of Filtering Agents

Filtering agents can be used to evaluate and rate each item in a collaborative filtering system, resulting

in a dense rating. This alleviates the sparsity and early rater problems in collaborative filtering systems. In the

Usenet domain, Sarwar et al. (1998) used automated rating robots called filterbots, to evaluate new documents

as soon as they were published and rate them using a number of algorithms. The agents behaved like ordinary

users of the system, but because they provided ratings for articles as soon as the articles were published, real

users had sufficient data that the system could compare with theirs. If a filterbot’s ratings matched the ratings

of a real user, then recommendations originating from the agent could be made for the user.

The system by Sarwar et al. (1998) made use of three filterbots to verify the hypothesis that filterbots

can improve user utility: a Spellcheckerbot, an IncludedMsgBot and a Lengthbot. The spellcheckerbot rated

15 The meaning of semantic here is limited to the proximity of similar terms and documents which is assumed to entail
some latent information; it does not refer to the meaning of the terms themselves.

38

articles based on the proportion of spelling errors present in the article text, assigning higher ratings to articles

with fewer errors. The IncludedMsgBot rated each article based on the percentage of text quoted from other

articles, using the intuition that users dislike long messages with little new content, and so are not happy if a

discussion thread is made unnecessarily long by including previously seen message in the text. The lengthbot

rated articles based on the hypothesis that Usenet readers valued brevity, and so rated shorter articles higher

than longer ones.

The authors found that in four of the five newsgroups they considered, there was at least one filterbot

that improved user utility for two metrics: coverage and accuracy16.

2.4. Recommender Systems and Privacy

When users visit websites, especially e-commerce sites, they leave behind a trail of information (Schafer,

Konstan, & Riedl, 2001), including the following:

• Preference information explicitly provided in the form of product ratings, comments, or

attributes defining their interests

• Preference information implicitly provided in the form of products and information viewed,

time spent viewing, kinds of searches performed, etc.

• If purchases are made, transactional information like type of payment, credit card account,

shipping address, products purchased, etc.

• Explicitly provided identification information like name, email address, and telephone

number

• Implicitly provided information like machine IP address, or domain from which the user is

browsing

In addition, companies can acquire a lot more information about users from other companies.

These factors make recommenders a “double-edged sword”: while they promise benefits like greater

convenience, they also have the potential of invading personal privacy. Personalizing a website requires that

information about users be known, and the deeper this knowledge, the more personalized the experience can

be. But used wrongly, for example, if personal information is made available to third parties, this gives the

third parties the opportunity to invade user privacy in ways ranging from inundating the user with unwanted

mail, to unwanted phone calls, or even unauthorized financial transactions. So there is a clear need to balance

16 Coverage measured the percentage of items for which a recommendation system can provide recommendations.
Accuracy measured how effectively recommendations helped users select high-quality items.

39

users’ desire for personalized service with their concerns about privacy (Riedl, 2001). This section discusses

some of the privacy issues related to recommender and other personalization systems.

Some websites attempt to achieve the balance between their need for information and the user’s need

for privacy by making use of privacy policies. A site’s privacy policy usually includes one or more of the

following:

• A promise not to sell personal information to third parties without the user’s prior permission

• A promise not to use the customer’s email address for advertising and not to call their phone

numbers for purposes other than in connection with the current transaction.

But privacy policies alone do not provide sufficient protection or reassurance for the user. Reasons

for this include the following: the very confusing nature of the legal language used; the fact that websites

reserve the right to change their privacy policies without notice, or to use user information for unspecified

“business interests” of the company; and the danger of private information falling into unanticipated hands as

businesses consolidate.

Riedl (2001) and Schafer et al. (2001) argued for privacy assurance to be based on the Platform for

Privacy Preferences (P3P) initiative of the WWW consortium (W3C). P3P is designed to be integrated into

browsers to let users easily manage relationships with multiple websites and identify what types of information

they are willing to share with each. Using the P3P protocol, a site creates a machine readable version of its

privacy policy in a format that computers can understand and negotiate about privacy. A user agent (usually

the browser) is entrusted with the responsibility to negotiate the user’s privacy demands with the sites he visits.

For P3P to work, a third party would be required to enforce these privacy policies by auditing businesses to

ensure that they are following their stated policies. The down side to such centralized control however, is that

it would serve as a convenient target for hackers to try to access information about millions of people from a

single site.

Singh (2001) discussed the privacy-related conflict that results from the advancement and merging of

two technologies that have somewhat conflicting philosophies: communications and Internet technologies.

The success of the Internet has been largely due to its openness – users need not divulge information they

consider privileged, or even operate under their true identities unless it suits their purposes to do so.

Telecommunication companies on the other hand, operate a closed service, in which individual telephones are

attributable to individual users; these services lack the anonymity of the Internet. With the development of

Wireless Applications Protocol (WAP) based services, telephone operators can now also determine the exact

geographic location of their customers. And there is pressure from governments for telecommunication

companies to make geographical locations of the origin of all nature of telephone calls available to emergency

services in case of need. But the same equipment that makes geographic information readily available can also

be used to determine customer location when there is no emergency. There is thus the possibility for invasion

40

of privacy if this information is abused. This leaves not only customers vulnerable, but also the telephone

companies, which may face expensive litigations, even if customer privacy was violated by a third party.

Singh (2002) proposed the use of a subscriber agent and one or more service agents to deal with these

problems that result from this potential compromise in user privacy. The subscriber agent represents the user’s

interests, while the service agents negotiate with the subscriber agent regarding what information and

authorizations can be made available to third parties, in return for a given quality of service.

Claypool, Brown, Le, and Waseda (2001) highlighted privacy concerns resulting from the implicit

acquisition of user profiles through devices like web usage mining, java scripts embedded in web pages,

cookies, and Active X controls. The benefit of unobtrusively collecting user profiling data comes at a cost to

personal privacy, because implicit interest indicators also lend themselves to potential privacy abuses.

Because it is possible to predict a user’s interest based on his navigational behavior, this information could be

misused if it falls into the wrong hands, for example, a rival CEO.

Faber (2001a; 2001b) highlighted two privacy-related issues: first, the conflict between the user’s

need for privacy on the one hand, and the government’s for more information on citizens, and second, the need

to address security (and privacy) problems inherent in the design of communications infrastructure.

On the first problem, citizens demand that their governments provide them with safety without

compromising their privacy, but the government argues that they cannot guarantee safety if government is not

allowed to learn even more about the citizenry. These conflicting demands became very apparent following

the September 11 2001 terrorist attacks on the US.

The second problem highlighted by Faber deals with the lack of security on the Internet, primarily

because of the way the technology developed. The Internet started as a university research project with the

aim of linking universities together, and priority was given to a working, and not a secure system. As the

Internet grew, there was little time and energy available to address the security problems, and as a result, most

security-related problems are today simply patched, not solved. Faber pointed out an opportunity with the

arrival of fast end-to-end optical communications links, and argued that information security and network

resource security should be a fundamental requirement in the design of these new networks.

The recommendation technique used may also be a source of concern for privacy. Ramakrishnan,

Keller, Mirza, Grama, and Karypis (2001) identified a privacy risk faced by straddlers, or users of

collaborative filtering systems, with eclectic tastes. The risk stems from the ability of these recommenders to

make serendipitous or cross-genre recommendations. If there is a small number of users with distinct interests

and a person receives one or more recommendations relating to these interests, it could be possible in certain

circumstances with some probing, to correctly guess the identities of other users whose profiles are responsible

for these recommendation(s).

41

3. PROBLEM STATEMENT

Catledge and Pitkow (1995) identified three browsing strategies for a website user: (1) search browsing:

directed search, where the goal is known; (2) general purpose browsing: consulting sources that have a high

likelihood of items of interest; and (3) serendipitous browsing, which is purely random. The goal of

personalization is to provide users with what they want without requiring them to ask for it explicitly

(Mulvenna et al., 2000). In the context of web navigation, personalization can be achieved by conveniently

presenting to a user, hyperlinks that are relevant to that user’s current navigation goals. These relevant

hyperlinks are recommendations that are computed by the system on behalf of the current user, and should be

tailored to that user’s specific needs. While hyperlink recommendations are meaningless for the serendipitous

user, users engaged in search and general purpose browsing can reap significant benefits from such

recommendations.

Recommended hyperlinks can be limited to the pages available in a particular website or collection of

websites (e.g., Profbuilder (Ahmad, 1999); Calvin (T. Bauer & Leake, 2002)), or to the whole web (e.g., Fab

(Balabanovic & Shoham, 1997b); Webwatcher (Armstrong et al., 1995); Syskill & Webert (Pazzani & Billsus,

1997; Pazzani et al., 1996)). This work considers the case of generating hyperlink recommendations for a user

browsing a single website. We limit our recommendations to hard-coded hyperlinks. We recognize the fact

that an increasing number of web pages that users receive in their browsers are generated dynamically, but we

do not attempt to personalize the delivery of these pages. We expect nevertheless, that personalization based

on static hyperlinks will improve the overall navigation experience.

The problem of deciding on relevant hyperlinks to recommend is a difficult one largely because

relevance is a subjective measure. IR researchers have studied a number of approaches to try to make the

documents returned in a search task more relevant. Relevance feedback (Rocchio, 1971) for example, is based

on the assumption that although users cannot adequately specify their needs in a query, they can recognize

relevant information when it is retrieved. Such user feedback can then be used to reformulate the query and

retrieve even more relevant documents.

In a navigation task a user follows hyperlinks the labeling of which suggest to the user that he is

moving to pages that will meet his current information needs. Hyperlink labels are conceived by the website

designer to serve as local cues that users process in making judgments on which hyperlinks to follow. In

foraging theory (Card et al., 2001; Larson & Czerwinski, 1998; Pirolli, 1997; Pirolli & Fu, 2003), these cues

42

are referred to as information scent17. But information scent is a subjective measure. In the domain of web

navigation, the difficulty is that there is usually a conflict between the website designer’s view of how the site

should be navigated, and the actual navigation paths that users follow. Just as the user in a search task is

expected to correctly recognize relevant feedback from search engines, it is hoped that in a navigation task, the

user will be able to recognize relevant hyperlink recommendations. If that is the case, the user should follow

these recommended links if they take him to pages that are of interest to him, faster than if he relied solely on

hard-coded hyperlinks, some of which may be several mouse clicks away.

This work is based on the notion that navigation behaviors of past users can be used to model the

navigation behaviors of current users. We equate a navigation behavior to any set of HTML pages that users

of a website visit together frequently, irrespective of the sequence in which the pages are visited18. A

navigation behavior may comprise a user session, or only part of a session. We seek to discover frequent, past

user navigation behaviors which could then be compared to those of current users, recommending to current

users the same web pages that past users with similar navigation behaviors are believed to have been interested

in. The fundamental assumption is that users interested in the same web pages exhibit similar navigation

behaviors as they browse a website, and so if a statistically significant number of past users are known to have

had a similar navigation behavior, then the web pages that those past users were interested in can be

recommended to a current user with similar navigation behavior. We used user access log data collected by

web servers as users visit a website to model past user navigation behaviors.

The problems tackled in this research are the following:

• Analysis of some existing approaches and technologies currently used in the design of

hyperlink recommender systems based on past users’ navigation behaviors

• Proposals on improvements to existing approaches

• Proposals of some new approaches

• Implementation and evaluation of the improvements and new approaches mentioned above

The website of the School of Information Sciences, University of Pittsburgh (SIS), henceforth referred to as

“the website”, was used to test the ideas presented in this work.

17 The concept of information scent characterizes how users—like organisms that use scent to determine where go next—
evaluate the utility of hypermedia actions to lead them to their target information. The greater the scent, the more likely is
the user to access the target information.

Pirolli (1997) notion of information scent is similar to Furnas’ (1997) use of the term “residue” to refer to the
cues left behind in the text or graphic used to represent the distal object that lies behind a hyperlink. Card et al. (2001)
defined information scent as a user’s “(imperfect) perception of the value, cost, or access path of information sources
obtained from proximal cues, such as WWW links.”
18 Researchers like Zimdars, Chickering, and Meek (2001) have argued that more meaningful decisions on data such as
web user navigation patterns and TV viewing histories can be made if the temporal nature of the data is taken into account.
In this research however, navigation behaviors were handled using the simpler bag-of-words approach.

43

The rest of this section presents the following: difficulties involved in modeling past user behaviors

using user access logs and heuristics used by past researchers to overcome the difficulties, some of which are

adopted in this work (Section 3.1); and the specific research objectives of this study, detailing similarities to,

and differences from similar works in the past (Section 3.2).

3.1. Using Web Server Access Log Data to Model Past User Navigation Behaviors:
Difficulties and Useful Heuristics

Past user access logs are a rich source of data that can be used to learn which web pages to recommend to a

user browsing a website. By applying a web usage mining procedure on user access log data, general rules

describing the relationship between past users’ navigation behaviors and the corresponding pages that they

found interesting can be discovered. A recommender system could then be designed that recommends these

interesting pages to active users with similar navigation behaviors. Following work on web page classification

(Cooley et al., 1997; Cooley, Mobasher, & Srivastava, 1999; Mobasher, Cooley, & Srivastava, 2000;

Mobasher, Dai, Luo, & Nakagawa, 2001; Pirolli et al., 1996; Pitkow, 1997), we refer to the interesting pages

as content pages, and the pages that are traversed before getting to content pages as navigation pages.

There are several levels of difficulty involved in the discovery of navigation and content pages from

web server user access logs. The first is determining the identities19 of users of the website. The second is

determining all the web pages (or navigation paths) accessed by each user, each time they browse the website,

and the third, determining the various navigation behaviors (referred to as transactions elsewhere in this

report) exhibited by the user for a given session. These difficulties, and heuristics used to address them, are

presented below as the user identification problem, navigation path identification problem, and transactions

identification problem.

User Identification Problem. User identification is difficult because most web servers do not require

user authentication. Even for sites that require user authentication, as Pitkow (1997) points out, it cannot be

certain that the information provided by users is accurate and reliable, because users are very concerned about

privacy, and to protect themselves, may register multiple times, or provide misleading information.

One way to try to identify users is by using the IP addresses of their machines as a first step.

Problems in using IP addresses include errors introduced if the client machine is shared by more than one user,

which makes the task of identifying different users difficult; difficulty identifying users whose machines are

located behind a proxy server or firewall, which results in a single IP address (the IP address of the proxy

server or firewall) reaching the web server.

19 Identity here refers to the attribution of web page accesses to the correct user without necessarily knowing the true
identity of that user.

44

Navigation Path Identification Problem. Even if all page accesses recorded in user access logs could

be correctly attributed to the right users, it is still hard to know all of the pages that a user visited during a

session because of problems relating to caching between users’ browsers and the web server. Pitkow (1997)

and Pirolli et al. (1996) discussed difficulties in tracking a user’s navigation path.

The first problem is related to the way the HTTP protocol (Fielding et al., 1999) works. A single

HTML page requested from a web server may contain other URLs, like image, sound and video files, and

applets, embedded in it. In order to retrieve these additional files, the HTTP protocol makes a separate

connection to the web server to retrieve each of them, and as a result, a separate entry is made into the server

log files for each of these requests. The problem this introduces to navigation path identification takes several

forms. First, the number of additional pages retrieved differs, and depends on the number of embedded URLs

that the web page designer placed in the requested page. This has an impact on path identification first as it

results in varying path lengths for the same number of pages requested. Second, the order in which the

embedded pages are retrieved is not the same, even if the only difference between two web pages is the order

in which the embedded documents are placed in them. This would have an impact on path identification if the

sequence of pages accessed is an important consideration. Third, some of the embedded pages could be pages

that the user may sometimes explicitly request, and the web server logs would have no way of distinguishing a

page that is explicitly requested from one that just happens to be embedded in a requested page.

Another problem that hinders accurate tracking of a user’s navigation behavior is the failure of some

user requests to be recorded in web server logs. This problem results from the presence of caches at proxy

servers and at the user’s browser. Normally, caches improve client-server interaction by making available,

cached pages, instead of requiring a new connection to the web server for every page request.

45

Figure 7. Illustrating the effect of caches on data recorded in web server logs. Source: Pitkow (1997).

Caches introduce problems though, as illustrated in Figure 7, which shows 3 visitors accessing a website with

two of their machines behind a proxy server, and the third connected directly to the web server. Both the

proxy server and the computers used by Visitor 1 and Visitor 2 have caches, while Visitor 3’s computer has no

local cache. If Visitor 1 requests Page A, followed by Page B, and then uses his browser’s Back button to

return to Page A, only two page accesses, one for Page A, and the other for Page B, will be recorded in the

user access log file because the second access to Page A will be provided by the local browser cache. On the

other hand, an identical sequence of page accesses by Visitor 3 will result in three page accesses recorded in

the server logs, two for Page A and one for Page B because the absence of a local cache means that every page

request from Visitor 3 will reach the web server.

Another problem caused by browser caching can be appreciated if one considers a simple scenario

where pages A, B, C, and D of Figure 7 are linked as shown in Figure 8. If Visitor 1, who started off by

accessing pages A and B, followed by the browser’s Back button, also visits Page D, then if referrer logs are

not kept by the web server, it would not be possible to tell from the server logs if he reached Page D via the

hyperlink on Page A, or that on Page B.

Proxy Server
(with cache)

Visitor 1
(Browser has local cache)

Visitor 2
(Browser has local cache)

Page D Page B Page C Page A

Web Server

Visitor 3
(Browser has no cache)

46

Figure 8. Illustrating difficulties in identifying the correct sequence of linked page accesses from web server logs. Source:
Pitkow (1997).

Yet another problem caused by caching at the proxy server can be illustrated by examining what

happens when 2 requests are made for the same page, the first from Visitor 1 and the second from Visitor 2.

This sequence of requests results in only one entry in the user access logs because the first request from Visitor

1 places the page in the proxy server cache, and the second request from Visitor 2 results in a page fetch from

the proxy server cache, and never reaches the web server.

Another difficulty in determining navigation paths from access log data is determining when one

session ends, and when another begins. This would not be much of a problem if the time separating sessions

with the same IP address were large; this, in general, is not the case.

A commonly used heuristic to reduce the problem of correctly identifying separate navigation paths is

to define session boundaries (Chen et al., 1996; Cooley et al., 1997, 1999; Schechter, Krishnan, & Smith,

1998), by using a timeout mechanism to determine when a current session must end. Thirty minutes is

commonly used to define the maximum session window for a user. Hence, for the same IP address, the first

web page access beyond the 30 minute window is assumed to denote the start of a new session.

Pirolli et al. (1996), Pitkow (1997), and Cooley et al. (1997) presented a number of heuristics for

identifying unique users and user sessions from web server logs.

• For the same IP address, if a request is known to come from a different browser or operating

system, then it can be assumed that there is a different user with the same IP address (Cooley et

al., 1997).

• For a given IP address if a page is requested that is not directly reachable by hyperlink from one

of the pages already viewed by the user, it may be assumed that the request is coming from a

different user (Cooley et al., 1997; Pirolli et al., 1996; Pitkow, 1997). It should be noted that this

assumption breaks down if the user arrived the page by directly typing the URL instead of

following a hyperlink. But because typing the URL is not a typical browsing strategy, this

category of errors is expected to be few, and should not severely affect the user or session

identification process. Pirolli et al. (1996) and Pitkow (1997) suggested that a least recently used

Page DPage B Page C

Page A

47

(LRU) policy be used to attribute a page to a user if there is ambiguity as to which of several users

with the same IP address, made the request. Knowledge of whether a page is reachable from

another page can be obtained from the topology of the website, which shows which and how

pages are linked to each other.

Transactions Identification Problem. A user session comprises one or more transactions.

Identification of transactions—or user behaviors—from session data is complicated by the fact that web pages

cannot be classified strictly as navigation or content pages. Some pages that serve as navigation pages for

some navigation behaviors can serve as content pages for other behaviors, and vice versa.

Chen et al. (1996) introduced the notion of maximal forward reference (also see Section 2.2.3.4, Page

17) as a useful indicator of content pages from a stream of navigation and content pages. The idea is to track

users’ forward and backward references to determine maximal forward reference (or content) pages, each of

which denotes the end of a transaction.

Consider Figure 9 for example, which shows a graph representation of a small portion of a website

comprising nine web pages A – I as nodes, and edges connecting nodes that are linked to each other; we ignore

the direction of the links for now. If a user navigates this portion of the website by visiting pages in the order

A-B-C-D-C-F-G-F-I-B, then the maximal forward references are D, G and I. The next forward reference

following a maximal forward reference signals the start of a new navigation path, while the maximal forward

reference page at the end of a navigation path is assumed to denote a page of interest for that navigation

behavior.

Figure 9. Portion of a sample web site used to illustrate maximal forward reference.

I

H

G

F

E

D

C

B

A

48

3.2. Research Objectives

Consider a user navigating a website, part of which link structure is shown in the directed graph in Figure 10,

where the nodes are web pages and each directed edge denotes a hyperlink from one page to another. The

numbers indicate the relative number of visits that each node is known to witness over time. Now consider the

problem of recommending to a user, what pages to visit in the site, assuming the user starts at node A. A naïve

approach to making recommendations to this user would be to recommend Page B when the user is at Node A,

and assuming the user navigates to Page B, to recommend Page D, because these recommended pages are the

most likely to be accessed for the general user.

There are three problems with this approach to making hyperlink recommendations. First, the

recommendation process is reduced to annotating the currently accessed web page with the most likely

hyperlinks that the general user follows, which may be very different from the pages that are of interest to the

user. Second, relying solely on the statistics of likely page accesses from the current node does not capture the

history of the user’s navigation up to the current node, a source of useful information on which page the user is

likely to visit next. Finally, with this approach, only hyperlinks that are present on the current web page can be

recommended; potentially useful web pages that are not linked to from the current page cannot be

recommended.

It is desirable to design a hyperlink recommender system (1) that is capable of recommending not only

pages that are directly linked to from the current page, but other pages as well, if such pages are deemed

interesting; (2) to use the history of the user’s navigation up to the current node as a guide to what pages to

recommend next. Assume for example that it is known that the user has visited pages A and B, and we know

from past experience that 80% of users who visited pages A and B proceeded to Page C. For such users, Page

C, and not D, is the preferred page to recommend.

Figure 10. Sample website showing relative frequencies of node accesses.

A flowchart of key steps involved in the design of a hyperlink recommender system based on past user

navigation behaviors is shown in Figure 11. As can be seen from the figure, the design involves offline and

F

B

E

DC

A

50

13

1225

22 28

25

49

online processes. This is important because recommendation is a live process, and the more of the

computations that are done offline, the better the recommendation latency, and the better the chance of user

acceptance of the system. The goal of the system is to use past user navigation behaviors to predict the web

pages current users with similar navigation behaviors would be interested in, and then compute a

recommendation score for each of those pages. The clustering stage is not mandatory, but if present, could be

used to influence the construction of a prediction model, or for augmenting recommendations by suggesting

other pages from the same cluster as recommended pages.

This research is limited to the off-line section of the figure. The specific problems tackled in this

work are introduced below.

Figure 11. Steps involved in the design of a hyperlink recommender system based on past user navigation behaviors.

Generation of Transactions from Web Server Logs. The transactions log is the collection of past user

behaviors (i.e., series navigation pages, followed by a content page) extracted from web server logs. We

applied the heuristics presented in Section 3.1 to extract past user behaviors from web server logs as a starting

point, and then investigated an additional, new heuristic, Page Rank by Inverse Links-to-Word count ratio –

Construct prediction models

Generate transactions log

Generate association rules

Generate recommendations

End

Web user access logs

OFFLINE
PROCESSING

ONLINE
PROCESSING

Generate website
topology & content

Website

Clustering

50

PR × ILW (Nkweteyim, 2005) to use to classify web pages as content or navigation, and thus determine

additional navigation/content page boundaries for very long transactions. We then ran a small user study to

compare web page classification by humans to classification using the new approach.

Generation of Association Rules. The association rules show the relationships between past user

navigation behaviors and the pages that they were interested in. We investigated the apriori algorithm that has

been influential in the mining of association rules, and demonstrated that a modification of the classical apriori

algorithm that aims to reduce the space and time complexities of the algorithm is possible. We then ran

simulations to compare performance of the classical apriori algorithm to the new one.

Construction of Prediction Models. As mentioned earlier, the basis of hyperlink recommendation in

this study was the similarity between the current user’s navigation behavior to those of past users of the

website. The aim of each prediction model was to predict what pages the current user would be interested in,

given his current navigation behavior determined by the last N pages visited by the user. Once these

predictions were made, the recommendation engine could then compute which of them to recommend, and the

order in which the recommendations should be presented. Two approaches to the construction of prediction

model were studied, both based on collaborative filtering. The two models used KNN algorithms to compute

predictions but differed in the way the neighborhood was computed: the first model used the center-based and

the second, the aggregate-based neighborhood formation schemes (see Section 2.2.4.2).

Clustering. Commercially available clustering algorithms do not perform well when there are more

than about 1000 objects to cluster, or when the dimensionality of the objects to cluster is very high. In this

research, we implemented the CLARANS (Clustering Large Applications based on RANdomized Search)

clustering algorithm to cluster the web pages of the web site based on similarity of the page contents. We also

performed a simulation study to compare CLARANS to two other clustering algorithms: CLARA (Clustering

LARge Applications) and PAM (PArtitioning about the Medoids), on which CLARANS is based. Such a

study is not new, but traditionally, CLARANS has been applied to spatial, low-dimensional objects; this study

involved the clustering of high-dimensional data objects.

The rest of this section shows in more detail, the objectives that this study sought to accomplish.

51

3.2.1. Transactions Generation Objectives

As mentioned above, we propose PR × ILW as a new metric to help in classifying web pages as content or

navigation. The motivation for this new metric was the following: Yan et al. (1996) in their work, which

tracked user web navigation behavior, found that 50% of users accessed 2 pages or more, 20% accessed 5

pages or more, and under 10% accessed 10 pages or more, to get to a page of interest. These results suggest

that most users follow between two and five hyperlinks before reaching a page of interest. Our initial results

of discovering navigation and content pages based on the MFR heuristic showed that there were several cases

where the transactions were still very long, some longer than 150 pages. There were two possible reasons for

such situations: they could represent users whose browsing did not involve a return to a page seen earlier; or

the transactions may have resulted from failure of a session or transaction identification heuristic to correctly

predict a past user’s navigation behavior. We speculated that these long transactions contained one or more

hidden content (and thus recommendable) pages, which MFR alone was not able to detect. The challenge

therefore, was to find a heuristic that could be used to make plausible guesses on what these hidden content

pages were. Our approach combined the ratio hyperlink count:term count of web pages, and the topology of

the web site to compute a number that determined whether a page within a very long transaction should be

classified as content or navigation, and hence determine new transaction boundaries.

Parameters Considered in the Classification Process

Based on Web Page Characteristics. A content page is a page with information that could be of

interest to a user as he browses a web site. The size of a web page can be considered equal to the number of

terms found on the page. The larger the page size, the more likely it is that the page is a content page. A web

page also typically has one or more hyperlinks. In general, the larger the number of hyperlinks on a web page,

the more likely it is that the page is a navigation page. Because web pages usually comprise text and

hyperlinks, most web pages exhibit both navigation and content properties, and one or more metrics other than

page size and the number of hyperlinks present, are required to correctly classify them. Besides, other factors

may influence the classification of web pages (for example, the links to word count ratio, LW). Intuitively, the

larger the value of LW, the more likely it is that the page is a navigation page, and vice versa for content pages.

It should be noted though, that some web pages with high LW values could be content rich; likewise, some

pages with low LW values may have too little content.

Based on Web Site Topology. In a navigation task hyperlink labels serve as navigation aids, and as

cues (or scent) to the pages they represent. These cues can be exploited to determine pages in a web site that

can be treated as important and thus recommendable. In this research, we measured information scent using a

variation of Google’s PageRank algorithm.

52

PageRank PR, (Craven, 2003; Rogers, 2003) is a number that Google20 uses to determine the

importance of a web page, and is used as one of several parameters to determine the ranking of pages returned

by the Google search engine. The PageRank algorithm assumes that a hyperlink from one page to another is a

vote from the former to the latter. The more votes a page receives, the more important that page is assumed to

be. Also, the importance of a vote cast on a page is dependent on the importance of the page from which the

hyperlink originates. The following equation is used to determine the page rank of Page A:

))(/)(...)1(/)1(()1()(nTCnTPRTCTPRddAPR +++−= (1)

where, PR(TI) is the rank of page I; C(TI) is the number of hyperlinks on page I; PR(TI)/C(TI) is the

contribution of page I to the rank of page A, if there is a link from page I to page A; and d is a damping factor,

usually set to 0.85. PageRank can be computed through an iterative process, with the PageRanks on the right

hand side of the equation initialized to any value; after a number of iterations, the page rank of each page

converges.

The problem with PageRank in the domain of web navigation is that it is based solely on the network

of links between web pages; it does not predict correctly how real users navigate the website, and it says

nothing about the content or size of pages. Hence, a page with several links pointing to it is likely going to be

judged important, even if its content is minimal (and hence, not recommendable), while a page with several

outgoing links is likely to lose much of its page rank, even if its content is important. For example, the index

page of a website usually has very many incoming links, and a large PageRank, even though the user is

unlikely to be particularly interested in the contents of that page.

Combining PR and LW. One way to improve usefulness of PageRank in determining the importance

of a web page in a navigation task is to combine it with information quantifying the contents of, and the

number of hyperlinks on the page. We use the intuition that a page with many incoming links, but with little

content is not as worth recommending, even if its page rank value is high, as a page with very few incoming

links, but with much content, even if its page rank is low. As mentioned above on Page 51, a plausible

categorization of web pages as navigation or content can be based on a comparison between the term count of

the page and the number of outgoing hyperlinks on the page. Let LW represent the links-to-Word count ratio

(i.e., number of outgoing hyperlinks/term count). Let ILW represent the

20 www.google.com

53

Figure 12. Illustrating the effect of ILW on PR in the PR × ILW metric.

inverse links-to-word count ratio (i.e.,1/LW).

Figure 12 suggests that PR × ILW is a better metric to use to determine the content rating (how likely it is that

a page is a content page) of a page than PR alone, since it uses evidence from two sources: LW and PR, to

determine content pages. For example, the third row of the figure represents pages with low LW values (i.e.,

high content rating), and large incoming/outgoing links ratio (i.e., high PR). The corresponding PR × ILW is

equivalent to a large increase in the PR score from its current large value, since both PR and ILW are large,

i.e., both page parameters and website topology suggest that the page is important. On the other hand, for the

fourth row, which corresponds to web pages with high PR and low content rating, there is only a small

increase in PR from its current large value since one parameter (LW) suggests that the page is not a content

page while PR suggests that it is an important page. A similar argument can be made for all the other rows of

the figure.

3.2.2. Association Rule Mining Objectives

Data mining—or knowledge discovery from databases (KDD)—aims to find useful patterns in large databases.

Association rule mining is a data mining technique that finds interesting correlation relationships among a

large set of data items (Agrawal, Imielinski, & Swami, 1993). Association rules that describe the correlation

relationships between typical past user navigation paths and corresponding pages that they found interesting

can be mined from user access logs, and these rules used to compute prediction models for current user

interests. The main ideas in association rules mining are presented below.

An association rule is an implication with a support value, and a confidence value. For example, the

association rule:

Outgoing
Links Count

Incoming
Links Count

LW Content
Rating (ILW)

PageRank
(PR)

PR × ILW
compared to PR

L L L H M M++
L L H L M M+
L H L H H H++
L H H L H H+
H L L H L L++
H L H L L L+
H H L H M M++
H H H L M M+

L = Low ; H = High; M = Moderate; + = small increase; ++ = large increase

54

70%] confidence 1%, [support
)milk""buys(X,)cereals""buys(X,)bread""buys(X,

states that a person who buys bread and cereals has a 70% chance of also buying milk, and this rule is valid for

1% of the entries in the database of transactions. Support and confidence are rule interestingness measures,

respectively of usefulness and certainty of the rule. Support is the percentage of items in the rule that occur

together in the set of transactions. Confidence is the percentage of the rule antecedent that leads to the

consequent. Minimum support and confidence levels can be set at the start of the mining process to prune out

uninteresting patterns, and in the process, reduce the computational load on the system.

Let the database of items (e.g., goods in a shop, web page URLs, etc.) to be mined be referred to as the

transactions database, J. Let the set of items in J be represented by {i1, i2, …, in}. Let D be the set of database

transactions (D ⊆ J) that are being mined (e.g., monthly sales, URLs visited in a month, etc.). Let X be a set of

items (e.g., items in a shopping basket, URLs representing a user’s browsing behavior, etc.). X is referred to as

an itemset. A transaction, T is said to contain X if X ⊆ T.

An association rule is an implication of the form A ⇒ B where A ⊂ J, B ⊂ J, and A ∩ B =φ. The

support of the rule is the probability, P(A ∪ B), i.e., percentage of the transactions in D that contain both

itemsets A and B. The confidence of the rule is the conditional probability, P(B/A), i.e., the percentage of

transactions in D containing A that also contain B.

An itemset comprising k items is referred to as a k-itemset. The occurrence frequency of an itemset,

also known as the support count, is the number of transactions in D that contain the itemset. An itemset is

considered to be frequent if its support count is greater than a predefined minimum support count. The

objective of association rule mining is to determine correlations between items in frequent itemsets. The

discovered rules are considered strong or interesting if they meet both the minimum support count and a

minimum confidence level.

The apriori property is useful in association rules mining; it states that all nonempty subsets of a

frequent itemset must also be frequent, and is based on the observation that if an item A is added to a non-

frequent itemset I, the new itemset (A ∪ I) cannot be more frequent than I. Another way of saying this is that

if (A ∪ I) is frequent, then both A and I must necessarily be frequent for, if A or I were infrequent, then (A ∪ I)

would have been infrequent. The apriori property is an example of an anti-monotone property with the

characteristic that if a set cannot pass a test, then all of its supersets will fail the same test (Han & Kamber,

2001).

The apriori algorithm (Aggarwal & Srikant, 1994; Han & Kamber, 2001; Mannila, Toivonen, &

Verkamo, 1994) has been influential in association rule mining (Han & Kamber, 2001). The algorithm makes

use of the apriori property to reduce the search space required to determine candidate itemsets for inclusion in

the association rule set. The classical apriori algorithm involves a join in each of n transactions database scans,

to determine candidate itemsets for inclusion in the association rules set. There are two main drawbacks to the

55

classical apriori algorithm: (1) the number of candidate itemsets generated by the join step may be too large to

fit into main memory; and (2) high latency which results from the need to scan the database during each

iteration. Any algorithm that tackles any of these problems is likely to lead to significant improvement on the

efficiency of the mining process.

The two problems mentioned above were investigated in this study, resulting in the development of a

new, joinless apriori algorithm that, in general, significantly reduces the search space required to determine

frequent itemsets. The new algorithm eliminates the join step in the classical algorithm, and applies the apriori

property to each record in the transactions database.

3.2.3. Construction of Prediction Models for Current User’s Interests

Two approaches for the prediction of what web pages users with a given navigation behavior would be

interested in, both based on collaborative filtering, were investigated. Collaborative Filtering Model I used the

center-based scheme and Model II, the aggregate-based scheme in determining the neighborhood vectors used

to compute the predictions.

The starting point in our approach to building the prediction model is previous research by Mobasher

and colleagues (Mobasher et al., 2000). They described an approach to computing hyperlink recommendations

from association rules mined from web server logs, which involved sliding the current user’s page accesses

through a fix sized window, using the window to represent user’s current navigation behavior, and computing

a recommendation score for a user’s navigation behavior if the corresponding window corresponded to the

antecedent of one or more association rules. The process involved is illustrated in Figure 13. The figure

shows (a) sample association rules depicting user navigation behaviors for two pages of interest X and Y; (b) a

sample user session; and (c) the different states of the user behavior vector as the user browses the website.

Assuming the window size is 4, then only State 8 of the window triggers the computation of a new set of

recommendation scores for pages X and Y because that is the only state that corresponds to one or more

association rule antecedents (shown shaded in Figure 13 (a)). Recommendation scores for pages X and Y

would then be computed as follows: rx = cx × ldfx and ry = cy × ldfy respectively, where c is the confidence of

the association rule and ldf (link distance factor21) is a number that is inversely proportional to the link distance

(i.e., number of hops) from the current

21 The overall effect of link distance factor is to boost the recommendation score of high confidence pages that are far
away from the current navigation window, thus increasing their chances of making it to the recommendation list.

56

Figure 13. Illustrating Mobasher et al.’s (2000) approach to computation of hyperlink recommendations from association
rules: (a) sample association rules; (b) sample user session; (c) changes in the state of the user behavior vector. The
highlighted association rules are the only ones that matche any of the user behavior vectors.

navigation window, to the recommendable page. Since this research is restricted to the off-line computations

involved in recommender system design, we do not consider the computation of recommendation scores any

further.

We make the following observations from the approach used by Mobasher et al. (2000). First, only

association rules whose antecedents match the user’s current behavior vector contribute to the computation of

recommendation scores. Second, there are a number of similar navigation behaviors exhibited by users that do

not contribute to the recommendation score (e.g., states 4, 5, 6, and 7 in Figure 13(c), each of which has only

one page different from one or more association rules). It is desirable to have association rules of varying

lengths and/or whose antecedents are very similar to the current navigation window contribute to the

computation of recommendation scores, especially if these rules have high confidence values.

This work tackled the shortcomings mentioned above by converting the recommendation process to a

collaborative filtering problem in which user navigational behaviors represented on the left hand side of the

mined association rules are analogous to users in a classical collaborative filtering problem, and the confidence

values of their likeness for the pages on the right hand side of the rules are analogous to user ratings for items.

When a user interacts with the system, the similarity between his navigation window to the association rule

antecedents could then be computed, and the most similar rules (i.e., nearest neighbors) selected.

Navigation Window States
(Window size = 4)

1 ----
2 ---A
3 --AB
4 -ABC ◘
5 ABCA ◘
6 BCAB ◘
7 CABC ◘
8 ABCD ☺
9 BCDP

◘ Very similar to one or more frequent itemset(s)
☺Exact match with a frequent itemset

(c)

Sample user navigation behavior
A B C A B C D P …

(b)(a)
Sample Association Rules

A ⇒ X A ⇒ Y
B ⇒ X B ⇒ Y
C ⇒ X C ⇒ Y

AB ⇒ X AB ⇒ Y
AC ⇒ X AC ⇒ Y
BC ⇒ X BC ⇒ Y

ABC ⇒ X ABC ⇒ Y
ABD ⇒ X ABD ⇒ Y
ABE ⇒ X ABE ⇒ Y
ABF ⇒ X ABF ⇒ Y
BCD ⇒ X BCD ⇒ Y
BCE ⇒ X BCE ⇒ Y
BCF ⇒ X BCF ⇒ Y
CDF ⇒ X CDF ⇒ Y

ABCD ⇒ X ABCD ⇒ Y
ABCE ⇒ X ABCF ⇒ Y
BCDF ⇒ X BCEF ⇒ Y

…

…

57

Collaborative filtering techniques could then be used to predict the confidence scores for web pages that could

be recommended to the user, and recommendation scores computed for these pages. Our expectation was that

the system would benefit from the numerous advantages of collaborative filtering (see Section 2.2.2.1, Page 9),

and at the same time, avoid the following problems typical in collaborative filtering systems: the sparsity, new

user, and new item problems (see Section 2.2.2.1, Page 9). These problems were expected to be avoided

because the database of user transactions vs. pages of interest would already be populated with confidence

values from association rule mining, and it is the exceptional user whose navigation pattern will not be similar

to one of those already mined.

3.2.4. Clustering Objectives

Clustering is commonly used in the design of some offline components of recommender and other

personalization systems. Traditional approaches to clustering include partitioning methods like k-means and

k-medoids, and hierarchical approaches. One characteristic that limits the utility of these approaches is the fact

that they are only efficient when dealing with small amounts of data, typically with very few dimensions.

Recently though, researchers have devised new approaches that deal with larger data sets. Examples include

partitioning approaches like CLARA (Kaufman & Rousseeuw, 1990) and CLARANS (Ng & Han, 1994,

2002); hierarchical methods like CURE (Guha, Rastogi, & Shim, 1998) and CHAMELEON (Karypis, Han, &

Kumar, 1999); integration of iterative and hierarchical approaches like BIRCH (Zhang, Ramakrishnan, &

Livny, 1996); density-based methods like DBSCAN (Sander, Ester, Kriegel, & Xu, 1998); and grid-based

methods like STING (Wei, Yang, & Muntz, 1997). Most of these works have however, been limited to low-,

(typically 2-) dimensional data.

Ng and Han (1994; 2002) proposed CLARANS as a memory-based approach to effectively cluster

large amounts of spatial data. These data are commonly represented with a series of data points in 2- and

sometimes 3-dimensional space, with the similarity measures between objects in the space usually determined

from Euclidean distances between them. By simulating high dimensional document spaces, we sought to

determine if CLARANS can be extended to generate clusters from much higher dimensional data using a non-

Euclidean measure (the angle between document vectors) for the dissimilarity measure. The need of a non-

Euclidian measure for dissimilarity resulted from the inadequacy of Euclidean measures in high dimensional

space, where vectors are not very distinguishable from each other. If CLARANS turned out to perform well in

high dimensional space, them it would be an attractive clustering algorithm in IR and related domains like

hyperlink recommender systems design, in which data (documents) are usually represented in high

dimensional space.

58

4. IMPLEMENTATION

This section presents the work that was done in relation to the problems identified in Section 3. The material

is presented in the following order: determination of website topology and content (Section 4.1); generation of

transaction logs (Section 4.2); discovery of association rules from transaction logs (Section 4.3); design and

application of CLARANS clustering algorithm (Section 4.4); and design of prediction models for current user

interests (Section 4.5).

4.1. Determination of Website Topology and Content

Knowing the topology of the website is important for at least two reasons: (1) it helps in one of the heuristics

used in determining pasts user navigation paths by starting a new path if a page access is found that is not

reachable by hyperlink from any of the currently visited pages; and (2) the site topology may be useful at

recommendation time by favoring those recommendable pages that are far from the user’s current navigation

path. Determination of the topology of the website and contents of the HTML pages involved discovering the

web pages and their contents, and the site’s link structure. The process involved two steps: (1) design and use

of a web crawler to discover, parse and code the HTML pages of the website and (2) construction of a graph

structure from the discovered HTML pages, to represent the site’s topology.

4.1.1. Discovery and Parsing of Web Pages Found in the Site

A crawler was designed to search for, and parse the HTML pages in the website. The crawler was a breadth-

first search program that iteratively performed the following tasks on the HTML pages it found, starting at

index page of the website.

1. Get the URL of the next static HTML page in the queue of pages awaiting parsing

2. Make an HTTP connection, and read the HTML page

3. Extract the individual words on the current HTML page (representing page contents)

4. Parse the page to determine outgoing hyperlinks to other HTML pages

5. Add all outgoing hyperlinks that have not yet been parsed and that referenced pages internal

to the site, to the end of a queue of pages awaiting parsing

6. Code the current page and store its contents

It should be noted that there was no guarantee that the crawler would find all the HTML pages of the

website. That would be the case for example, if there were pages that were not referenced from any other page

59

in the website. Likewise, an HTML page would not be found if it were buried several layers deep such that the

crawler terminated before it had the opportunity to reach the page. In spite of these shortcomings, most of the

HTML pages in the website were expected to be found.

We next detail the steps that were followed to accomplish Steps 3 and 4 above.

Extraction of Page Contents from Current HTML Page. HTML pages comprise not only the content

the user sees, but also hidden code whose primary purpose is to help with presentation of the contents. It was

necessary to filter out these presentation-related codes to get a more accurate representation of page contents

from the point of view of the user. The following steps were involved:

• Define a stop list (see Appendix B) to filter out HTML tags

• Parse the terms between the HTML body start and end tags, and use the following heuristics

to determine if a term should be kept or ignored

o Reject everything between “<!--” and “-->”, since these denote HTML comments or

introduce scripts, which have nothing to do with page content

o Reject terms that begin with ‘&’ and end with ‘;’; they denote special characters

o Reject terms between “<” and “>”, if the first term after “<” is in the HTML stop list

o Ignore pages with long character sequences with no white space or tags; these

usually indicate the use of some foreign alphabet, not considered in this study.

The steps outlined below were used to reduce the dimensionality of the HTML document space

• Use of the Porter stemming algorithm (Porter, 1980) to represent several words with the same

stem as the same

• Use of SMART stoplist (Rocchio, 1971) to remove very commonly used words in the English

language, which as a consequence do not help in distinguishing documents in which these

words are used

• Elimination of low and high frequency terms by applying the following heuristics:

o Consider all terms whose occurrence frequency is less than 1% of the total number of

HTML pages available in the web site as low frequency terms

o Consider all terms whose occurrence frequency is more than 25% of the total number

of HTML pages available in the web site as high frequency terms

Finally, the vector space (or TFIDF) model was used to represent each web page. Equation 2 was

used to assign term weights to the index terms of the web page collection.

)1)((log2 +=
kD

N
ikik fw (2)

60

where,

k termcontaining documents ofnumber
collection in the documents ofnumber

idocument in k termoffrequency
idocument in k termofweight

=
=
=
=

k

ik

ik

D
N
f

w

We notice that the assigned weight for each index term is proportional to its frequency in that document, but

inversely proportional to its frequency across all available documents as required by the model. It is also

necessary to avoid giving preference to longer documents in which any given term is likely to occur more

frequently than in shorter documents, and so document lengths need to be normalized. Normalization comes

as a side effect when document similarities are computed using the cosine similarity measure, since the

document lengths appear at the denominator of the cosine similarity metric (see Appendix A). Logarithm was

used in Equation 2 because it is insensitive to large variations in N and D.

Determination of Hyperlinks from Current HTML Page. The following steps were used to determine

valid hyperlinks from a current HTML page:

• Search for anchor (<A> and) and area (<AREA> and </AREA>) HTML tags, and the

corresponding URLs preceded by an HREF tag

• Ignore the URL if the corresponding page is hosted by a server other than the server of the

web site of interest (absolute addresses of web pages of interest were assumed to be preceded

by “http://www.sis.pitt.edu” or “http://www2.sis.pitt.edu”).

• Ignore the URL if it references a bookmark within the current page, to avoid duplicate

treatment of the same page

• Ignore the URL if its name did not have an htm or html extension

• Normalize file names to avoid treating the same file with different name representations as

different. The following two normalization steps were implemented:

o Convert abbreviated path names to full path names, for example, path names of the

form abc/def/../ghi were changed to the equivalent abc/ghi form.

o Convert the commonly used “%7E” and “%7e” escape sequences in file names to

corresponding character, “~”.

61

Figure 14. Illustrating adjacency list representation of website topology. (a) sample website; (b) corresponding adjacency
list representation.

4.1.2. Web Site Topology

The HTML pages found by the crawler were used to construct the website’s topology, which was coded as a

graph that had vertices as web pages (nodes), and edges as directed hyperlinks. For each node, the directed

hyperlinks were simply the outgoing links that were found on the pages as described in in Section 4.1.1 above.

The graph was constructed using an adjacency-lists representation. The representation comprised an

array of linked lists, with each array index representing a vertex, and the entries in each linked list, the nodes

that the current vertex linked to. Figure 14 illustrates the representation used.

4.2. Generation of Transactions Log

This section describes the approach that was followed to derive the transactions log (past user behavior data)

from the user access log file. The user access log data used were structured in the common log format (W3C,

2003), which comprises the following fields for every record:

remotehost: Remote hostname (or IP address number if DNS hostname is not available or was not

provided);

rfc931: The remote login name of the user (if not available a minus sign is typically placed in the

field);

1

8

9

7

6

5

4

3

2

(a)

2

2 3

4 6

2

6

8

6

8

7

2

9

1

2

3

4

5

6

7

9

8

(b)

62

authuser: The username with which the user has authenticated himself. This is available when using

password protected WWW pages (if not available a minus sign is typically placed in the

field);

[date]: Date and time of the request.;

“request”: The request line exactly as it came from the client (i.e., the file name, and the method used

to retrieve it (typically GET));

status: The HTTP response code returned to the client; it indicates whether or not the file was

successfully retrieved, and if not, what error message was returned;

bytes: The number of bytes transferred.

When a user request reaches a web server, the web server records a page view (Mobasher et al., 2000),

comprising the requested page and if present, other files (e.g. graphic and sound files embedded in the page).

This happens because the HTTP protocol requires a separate request for each of these files embedded in the

requested page. Because a web server receives and logs several user requests simultaneously, one user’s

session data are typically interspersed with those of other users. Generation of the transaction logs involves

extracting individual user sessions from the access logs, and transactions within individual user sessions. The

only fields of interest in this work were remotehost, date, and request. The rest of this section shows how

the access log data were cleaned to obtain the required data, discusses the application of heuristics to determine

user sessions from the data, and transactions within the sessions, and presents an example to illustrate the

processes involved.

4.2.1. Data Cleaning

The main objective of data cleaning was to obtain data that comprised only the pages that were explicitly

requested by the user, by deleting the additional entries in the server logs that corresponded to files embedded

within the requested pages. These additional files needed to be filtered out lest they introduced noise to the

transactions log, and subsequently to the mined association rules.

The first stage of data cleaning involved the removal of all records of non-HTML pages. The second

stage of data cleaning involved deleting all records from the access logs that represented single page accesses

(i.e., the IP address only appeared once) since such data were unlikely to represent valid user browsing, and

since the objective was to eventually generate association rules that showed the relationship between at least

two pages: one or more navigation page(s) and a content page.

63

4.2.2. Session Identification

A session comprises the complete history of web pages that a user visits each time he visits a website. Session

identification was the first step in the discovery of user navigation behaviors. The process of identifying user

sessions was complicated by two problems: caching at user browsers, proxy servers and firewalls (see Section

3.1), which resulted in some user requests not reaching the web server, and the absence of user IDs from the

web logs.

The following steps were used to identify user sessions.

• Sorting of the cleaned access logs in order of IP address and order in which the requests were

recorded

• Use of the remotehost field (i.e., IP address) of the request as a surrogate for user ID. This

was only a first step since IP addresses do not uniquely identify the source of the requested

page, as described in Section 3.1.

• Requests from the same IP address typically spanned several hours, days, or even weeks

partly because the IP address represented different users at different times, and/or the same

user at different sessions. The following heuristic was used to break user sessions into

manageable lengths: a session was assumed to last no more than 30 minutes. Hence, for the

same IP address, a new user session was started at the next occurrence of the IP address if the

time of the later access was more than 30 minutes after the first occurrence of the same IP

address in the current session.

• To help distinguish different users who shared the same IP address within the same 30-minute

(or less) block of requests, the following heuristic was used: if a web page was accessed that

was not directly reachable22 from any of the pages previously visited by any of the users

sharing the same IP address, then that page access was assumed to come from a different user,

and a new session started for that user.

This last heuristic would fail if a user accessed a URL that was not in the list of

already accessed URLs, by typing it out rather than by following a hyperlink. But this is not

a typical browsing behavior, and only a small percentage of such cases were expected to be

found in the access log file.

If a page that was directly reachable from more than one session with the same IP

address was accessed, then a least recently used (LRU) policy was used to attribute that page

access to the user who had the least recent navigation action attributed to him. This situation

22 A web page is reachable from another web page if there is a hyperlink from the former to the latter. A hyperlink is
represented by a directed edge on the graph representing the website.

64

was expected to occur only when several users sharing the same IP address were browsing a

similar set of pages at the same time. This was not expected to occur frequently, and so the

errors resulting from this heuristic were not expected to be severe.

4.2.3. Transaction Identification

A user session comprises all the pages that a user accesses during a single visit to a website; a transaction on

the other hand, is a complete logical unit within a session comprising a set of navigation pages followed by a

corresponding content page (assumed to be a page of interest to the user). In this study, each transaction was

used to represent the user’s changing navigation behavior at that stage of his browsing activity.

Having discovered individual user sessions from the server logs, the next task was to discover

individual transactions within user sessions. Two heuristics were used to determine transactions. The first

heuristic made use of the notion of maximal forward reference, MFR, (Chen et al., 1996). During web

browsing, the MFR is the last page that is accessed before the user requests a page previously viewed during

that session. All MFR pages were considered to be pages of interest, while the pages before the MFR were

considered to be navigation pages. After a MFR page was discovered, the next navigation path was assumed

to start with the page following the MFR page.

Following the discovery of transactions using the MFR heuristic, the PR × ILW heuristic was applied

to discover further transactions within transactions that had lengths greater than 5 by classifying the pages

involved as content or navigation, and breaking the transaction at the first content page found. The following

procedure was used to classify the pages:

• Compute PR, LW, ILW, and PR × ILW for every page of the Web site

• Have a panel of experts rate a sample of HTML pages as content or navigation

• Aggregate the experts’ ratings to determine boundary values for LW and PR × ILW

• Extrapolate the results to the other web pages of the site

The study that involved rating of web pages by experts is presented in User Study 1, Section 4.2.5.

4.2.4. From Session to Transactions Data – An Example

We present an example involving a small web access log file to illustrate the process of converting web access

log data to a transactions database. Assume that the access log comprises the entries shown in Figure 15,

where the date has been replaced by a timestamp that shows the order in which the entries were made in the

log file. Also assume Figure 16 to represent the website. We start by identifying the various user sessions

present. Figure 17 shows that three sessions can be extracted for the access log in Figure 15 – sessions S001

65

(F, Y, A, B, C, D, C, B, D, E, F, G, H, I, J, K, L, G, L, Q) and S002 (D, E, F, C, Q, M, L, Q, M, G, L, F, C, Q,

B) with the same IP address (IP1), and S003 (C, D, E, Y, A, C, Q) with a different IP address (IP2).

The following checks are made for every record of the access log:

• If a new IP address is encountered, a new session is started

• If an existing IP address is encountered but the page requested is not reachable from any of

the pages previously encountered for that session, then a new session is started

• If an existing IP address is encountered and the page requested is reachable from a user

session, then the page is added to that session; if more than one of the sessions share that IP

address, then the page is added to the session that was least recently updated.

Figure 15. Sample web server access log file.

Date Remote
host

Requested
page

Date Remote
host

Requested
page

Date Remote
host

Requested
page

1
2
3
4
5
6
7
8
9

10
11
12
13
14

IP1
IP1
IP1
IP2
IP1
IP1
IP2
IP1
IP1
IP1
IP2
IP1
IP1
IP1

F
D
Y
C
A
B
D
E
C
F
E
D
C
C

15
16
17
18
19
20
21
22
23
24
25
26
27
28

IP2
IP1
IP1
IP1
IP1
IP2
IP1
IP1
IP1
IP1
IP1
IP1
IP1
IP1

Y
Q
B
M
D
A
L
E
Q
F
M
G
G
H

29
30
31
32
33
34
35
36
37
38
39
40
41
42

IP1
IP1
IP1
IP1
IP1
IP1
IP1
IP1
IP1
IP1
IP1
IP1
IP2
IP2

L
I
J
K
F
L
C
G
Q
L
B
Q
C
Q

66

Figure 16. Sample website used to illustrate generation of transaction logs.

Figure 17. Sessions obtained from access log in Figure 15.

Link present in both
directons

Link present in one
directon only

A

Y

B

D

E

F

C

G

H

J

I

L

K

M

Q

Session
& IP
addr.

Page assignments to sessions

S001 IP1 F Y A B C D C B D E F G H I J K L G L Q

S002 IP1 D E F C Q M L Q M G L F C Q B

S003 IP2 C D E Y A

 C Q

 Iteration & reason for assignment

 1
I

2
N

3
R

4
I

5
R

6
R

7
R

8
R

9
L

10
L

11
R

12
L

13
L

14
L

15
R

16
L

17
L

18
R

19
L

20
R

21
R

22
L

23
L

24
L

25
R

26
L

27
L

28
L

29
L

30
R

31
R

32
R

33
L

34
L

35
L

36
L

37
L

38
L

39
L

40
L

41
R

42
R

I: New IP addr. – create new session
R: Page reachable from this session only

L: Page reachable from several sessions – choose least recently updated session
N: IP addr. seen before but page nor reachable from any session with that IP address – create new session

67

With the sessions identified, the next step is to break them into transactions. Let us consider session S001: {F

Y A B C D C B D E F G H I J K L G L Q}.

• The first step in the discovery of transactions within the session is to determine all maximal

forward references. These are shown shaded below.

F Y A B C D C B D E F G H I J K L G L Q
• Next, we break up the session into transactions at the MFR page, treating the MFR page as

content (or recommendable page). Figure 18(a) shows the resulting transactions.

• Finally, we use the PR × ILW metric to determine if there are other content pages in the

transactions that the MFR heuristic could not detect. Let us assume that pages A, G, and K

are the only pages that have PR × ILW values above a threshold, meaning they are considered

to be content pages. We scan the transactions and break them up further at these content

pages. Figure 18(b) shows the results. In this example, the user session breaks down into ten

separate transactions, with the last URL in each transaction representing a content page, and

the preceding URLs, navigation pages. All other user sessions are treated in a similar

manner.

Figure 18. Transactions resulting from access logs in Figure 15: (a) using MFR heuristic; (b) using PR × ILW heuristic.

4.2.5. User Study 1: Web Page Classification Study

The objective of this study was to determine threshold values for the LW and PR × ILW parameters, which

determined whether web pages were classified as content or navigation pages. This classification would then

determine transaction boundaries for very long transactions that the MFR heuristic alone could not break down

into smaller sizes.

Subjects. The subjects comprised three users who were very familiar with the website of SIS: two fifth

year and one third year Information Science graduate students.

S001 T001 F Y A B C D
S001 T002 C
S001 T003 B
S001 T004 D E
S001 T005 F G H I J K L
S001 T006 G
S001 T007 L Q

(a)

S001 T001 F Y A
S001 T002 B C D
S001 T008 C
S001 T003 B
S001 T004 D E
S001 T005 F G
S001 T009 H I J K
S001 T0010 L
S001 T006 G
S001 T007 L Q

(b)

68

Procedure. The HTML pages of the website and their contents were collected as described in Section

4.1.1, and the site topology determined as described in Section 4.1.2. Next, the PR, LW, and PR × ILW

metrics were computed for each of the pages as follows:

PR for each page was computed using Equation 1 (Page 52). The value of the damping factor d, was

set to 0.15, PR for each page initialized to 1/N, where N was the number of web pages in the site, and the

computation was repeated for 30 iterations.

LW for each page was simply the ratio of the number of hyperlinks on the page to the term count (or

page size) for that page.

Finally PR × ILW was computed as PR/LW, with the following provision made for pages with LW

value of zero: for such pages, PR × ILW was computed using the formula PR × term count for that page. That

way, the following desirable goals were achieved: (1) the divide by zero error was eliminated; and (2) longer

pages (higher content) were favored over shorter ones.

The URLs of 4 web pages were then randomly assigned without replacement to each of the following

9 groups: PRhigh (PR of the page is among the top third of page ranks), PRmed (mid third of PR values) and

PRlow (bottom third of PR values); ILWhigh, ILWmed, ILWlow, for the ILW metric; and PR × ILWhigh, PR ×

ILWmed, PR × ILWlow, for the PR × ILW metric. Finally, all 36 randomly assigned URLs were presented as

hyperlinks on a web page to the subjects, who were instructed to view the corresponding web pages and rate

them on a scale of 0 to 10 using three different scales: a content scale, a navigation scale, and a dual

content/navigation scale. Subjects responses were collected using an HTML form.

Figure 19 is a summary of the research design. Figure 20 shows the instructions that each subject

received, and Figure 21 a screenshot of one of the rating screens presented them.

Figure 19. Research design for the web page classification study.

Page characteristics Users PRhigh PRmed PRlow PR × ILWhigh PR × ILWmed PR × ILWlow LWhigh LWmed LWlow

1
2
3

User ratings of web pages using content,
navigation, and dual content/navigation scales

69

Figure 20. Subject instructions for web page classification study: (a) welcome page; (b) description of task.

(a)

(b)

70

Figure 21. Screenshot of one of the web pages that subjects were required to classify as content or navigation. The top
panel contains directions to subjects, the middle panel, the page currently being classified, and the bottom panel, page
URLs and their ratings.

4.3. Discovery of Association Rules from Transaction Logs

As discussed in Section 3.2.2, a new joinless apriori algorithm was investigated in this study to help tackle the

space and time complexity problems of the classical apriori algorithm. This section presents the joinless

apriori algorithm (Nkweteyim & Hirtle, 2005), and its application to the mining of association rules from

transaction logs. To help with the understanding of the procedure, we start with a description of the

implementation of the classical apriori algorithm and the problems inherent in it (Section 4.3.1). We then

present the new algorithm and the procedure used to tackle the problems of the classical algorithm, and

demonstrate that both algorithms lead to the same mining results (Section 4.3.2). Finally, we describe the

peculiar nature of the transaction logs that were mined, and describe the implementation of the new algorithm

to those data (Section 4.3.3).

71

4.3.1. The Classical Apriori Algorithm

The apriori algorithm uses prior knowledge (the apriori property) of frequent k-itemsets to prune the search

space for the mining of (k+1)-itemsets. It begins by finding frequent 1-itemsets, L1, during the first iteration of

the algorithm, and L1 used to find frequent 2-itemsets, L2, in the second iteration, L2 used to determine L3, in

the third, etc. Every iteration of the algorithm involves a join and prune steps. The join step is used to

determine frequent k-itemsets (Lk) from frequent (k-1)-itemsets (Lk-1) by joining Lk-1 to itself to generate

candidate k-itemsets (Ck), which, being a superset of Lk-1, may or may not be frequent. The prune step scans

the transactions database to determine which of the itemsets (if any) in Ck are frequent. These frequent

itemsets form the members of Lk.

The join step is performed as follows. First, the items within a transaction or itemset are assumed to

be sorted in lexicographic order. The itemsets l1, l2, … lk-1 of Lk-1 are then joined to each other, where two

itemsets lI, lJ of Lk-1 are joinable if their first k-2 items are common (i.e. (lI[1] = lJ[1]) ∧ (lI[2] = lJ[2]) ∧ … ∧

(lI[k-3] = lJ[k-3]) ∧ (lI[k-2] = lJ[k-2]) ∧ (lI[k-1] < lJ[k-1]), where li[j] is the jth item in itemset li). The

condition lI[k-1] < lJ[k-1] ensures that no duplicates occur. The result of joining itemsets lI and lJ is (lI[1]lI[2]

…lI[k-3]lI[k-2]lI[k-1]lJ[k-1]).

To illustrate the working of the classical apriori algorithm, let the database D, of transactions be as

represented in Figure 22, which shows transaction IDs and corresponding transactions. Let the minimum

support count be 3. The steps required to generate all frequent itemsets are illustrated in Figure 23. As can be

seen from the figure, the algorithm iterates through the following steps:

• Determine candidate k-itemsets, Ck

• Scan the database to determine support count for each of the itemsets in Ck

• Compare the support count for each itemset in Ck with minimum support count, to determine

frequent itemsets Lk

• Join Lk to itself and apply the apriori property to determine Ck+1; Ck+1 may or may not contain

non-frequent itemsets, but the apriori property ensures that it only contains itemsets with

frequent subsequences.

Figure 22. Sample transactions database, D, for illustration of the classical and joinless apriori algorithms.

TID Transaction Items
T001 A,B,C,E
T002 B,C
T003 A,B,D
T004 A,C
T005 B,C
T006 A,B,C
T007 A,B,C,E
T008 A,B,E

72

Figure 23. Applying the classical apriori algorithm to determine frequent itemsets of the database in Figure 22.

Consider in greater detail, the steps involved in the determinations of candidate itemsets and the

support counts of the candidate itemsets (i.e. the join and scan steps of the algorithm). Consider for example,

the join between L2 and itself, which generates an initial candidate 3-itemsets C3
′.

1. Join L2 to itself, where L2 = {{AB}{AC}{AE}{BC}{BE}}

• Initial candidate 3-itemsets C3
′: {{ABC}{ABE}{ACE}{BCE}}

2. Determinine all the 2-itemset subsequences of C3
′:

• (ABC): {AB}{AC}{BC}

Step 1a: Scan database D for count of each candidate 1-itemset C1
Step 1b: Compare C1 itemsets with minimum support & generate L1

 C1 Itemset Support
count L1 Itemset Support

count
 {A} 6 {A} 6
 {B} 7 {B} 7
 {C} 6 {C} 6
 {D} 1

Compare C1 support
count with minimum

support

{E} 3

Scan D to get
candidate 1-itemset

counts

{E} 3
Step 2a: Join L1 to itself and use the Apriori property to generate candidate 2-itemsets C2
Step 2b: Scan database D for count of each C2
Step 2c: Compare C2 itemsets with minimum support & generate L2

Itemset C2 Itemset Support
count L2 Itemset Support

count
{A,B} {A,B} 5 {A,B} 5
{A,C} {A,C} 4 {A,C} 4
{A,E} {A,E} 3 {A,E} 3
{B,C} {B,C} 5 {B,C} 5
{B,E} {B,E} 3 {B,E} 3

Join(L1
L1) &
apply

Apriori

{C,E}

Scan D to get
candidate 2-itemset

counts

{C,E} 2

Compare C2 support
count with minimum

support

Step 3a: Join L2 to itself and use the Apriori property to generate candidate 2-itemsets C3
Step 3b: Scan database D for count of each C3
Step 3c: Compare C3 itemsets with minimum support & generate L3

Itemset C3 Itemset Support
count L3 Itemset Support

count
{A,B,C} {A,B,C} 3 {A,B,C} 3

Join(L2
L2) &
apply

Apriori {A,B,E}

Scan D to get
candidate 3-itemset

counts
{A,B,E} 3

Compare C3 support
count with minimum

support
{A,B,E} 3

73

• (ABE): {AB}{AE}{BE}

• (ACE): {AC}{AE}{CE}

• (BCE): {BC}{BE}{CE}

3. Use the apriori property to reject all members of C3
′ that have one or more 2-itemset

subsequences that are not present in L2 (i.e. in Lk-1), i.e., whose support counts are less than

the minimum support count. This leaves candidate 3-itemset subsequences

C3 = {{ABC}{ABE}}. In the example, CE does not have sufficient support and is crossed

out.

4. Determine if the itemsets in C3 are frequent by scanning the database for all 3-itemset

subsequences and counting the number of occurrences of each C3 itemsets.

• {ABC}: T001, T006, T007 (3 occurrences)

• {ABE}: T001, T007, T008 (3 occurrences)

We notice that both of the candidate 3-itemsets selected above meet the minimum support count of 3 in this

example, and so they are both included in L3.

 The classical apriori algorithm is summarized in Figure 24.

74

Figure 24. The classical Apriori Algorithm. Source: Han and Kamber (2001), with minor rewording.

4.3.2. The Joinless Apriori Algorithm

The main benefit of the apriori property is the reduction in the number of candidate itemsets generated, which

leads to a reduction in both the space- and time-complexities of the algorithm. But with the implementation in

the classical apriori algorithm, the number of candidate itemsets generated may still be non-trivial, too big to

fit into main memory. This, together with the potentially high latency, motivated the development of the

joinless apriori algorithm.

The key differences between the joinless and the classical apriori algorithms relate to the stage at

which the apriori property is applied as the transactions database is scanned. In kth iteration of the classical

algorithm, the apriori property is applied to the results of a join of frequent (k-1)-itemsets to determine

candidate k-itemsets, and the database scanned to determine which of the candidate itemsets are frequent. In

the joinless algorithm, the join step is eliminated: during the kth database scan the apriori property is applied to

every transaction of length l (l ≥ k) to determine candidate k-itemsets, and their support counts incremented to

enable determination of frequent k-itemsets at the end of the iteration. This difference is illustrated below, by

repeating Steps 1– 4 of the classical apriori algorithm on Page 72, this time for the joinless algorithm.

Method
1. L1 = find_frequent_1-itemsets(D);
2. for (k = 2; Lk-1 ≠ ∅; k++) {
3. Ck = classical_apriori(Lk-1, min_sup);
4. for each transaction t ∈ D { //scan D for counts
5. Ct = subset(Ck, t); //get the subsets of t that are candidates
6. for each candidate c ∈ Ct
7. c.count++;
8. }
9. Lk = {c ∈ Ck⎟ c.count ≥ min_sup}
10. }
11. return L = ∪kLk

procedure classical_apriori(Lk-1:frequent (k-1)-itemsets; min_sup: minimum support threshold)
1. for each iteset l1 ∈ Lk-1
2. for each iteset l2 ∈ Lk-1
3. if (l1[1] = l2[1]) ∧ (l1[2] = l2[2]) ∧ … ∧ (l1[k-3] = l2[k-3]) ∧ (l1[k-2] = l2[k-2]) ∧ (l1[k-1] < l2[k-1]) then {
4. c = join(l1, l2) //join step; generate candidates
5. if has_infrequent_subset(c,Lk-1) then
6. delete c; //prune step; remove unfruitful candidate
7. else add c to Ck
8. }
9. return Ck

procedure has_infrequent_subset(c: candidate k-itemset,Lk-1: frequent (k-1)-itemsets)
 //use prior knowledge
1. for each (k-1)-subsets s of c
2. if s∉ Lk-1 then
3. return TRUE
4. return FALSE

75

1. Scan the transactions database for transactions involving 3 or more items, and determine an

initial candidate 3-itemsets C3
′.

• T001 (ABCE):{ABC}{ABE} {ACE} {BCE}

• T003 (ABD): {ABD}

• T006 (ABC): {ABC}

• T007 (ABCE):{ABC}{ABE} {ACE}{BCE}

• T008 (ABE): {ABE}

2. Determine all the 2-itemset subsequences of the C3
′

• T001 (A,B,C): {AB}{AC}{BC}

• T001 (A,B,E): {AB}{AE}{BE}

• T001 (A,C,E): {AC}{AE}{CE}

• T001 (B,C,E): {BC}{BE}{CE}

• T003 (A,B,D): {AB}{AD}{BD}

• T006 (A,B,C): {AB}{AC}{BC}

• T007 (A,B,C): {AB}{AC}{BC}

• T007 (A,B,E): {AB}{AE}{BE}

• T007 (A,C,E): {AC}{AE}{CE}

• T007 (B,C,E): {BC}{BE}{CE}

• T008 (A,B,E): {AB}{AE}{BE}

3. Use the apriori property to reject all 3-itemsets with one or more 2-itemset subsequences that

do not appear in L2 (i.e. Lk-1), i.e., whose support counts are less than the minimum support

count (recall L2 = {{AB}{AC}{AE}{BC}{BE}}). In the example, CE and BD do not have

support and are crossed out.

4. Count the occurrences of each 3-itemset subsequences that are not rejected in the previous

step to get their support counts. In this example, both {ABC} and {ABE} meet minimum the

support count of 3, and so are added to L3.

We note that the absence of the join step results in general, to better space complexity in the joinless

apriori algorithm. This is so because the apriori property is applied to individual transactions, which usually

involve much fewer items than the total number of items in the transactions database. Figure 25 summarizes

the steps involved in finding frequent itemsets for the database of Figure 22, using the joinless apriori

algorithm. As can be seen from the figure, exactly the same frequent itemsets are determined by both the

classical and joinless Apriori algorithms. Figure 26 shows the joinless apriori algorithm.

76

Figure 25. Applying the joinless apriori algorithm to determine frequent itemsets for the database in Figure 22.

Step 1a: Scan database D for count of each candidate 1-itemset C1
Step 1b: Compare C1 itemsets with minimum support & generate L1

 C1
Itemset

Support
count

L1
Itemset

Support
count

 {A} 6 {A} 6
 {B} 7 {B} 7
 {C} 6 {C} 6
 {D} 1 {E} 3

Scan D to get candidate 1-itemset counts

{E} 3

Compare
C1

support
count
with

minimum
support

Step 2a: Scan database D for transactions >= 2
Step 2b: Determine 2-itemset subsequences and apply Apriori property to get C2
Step 2c: Count each subsequence to determine support count for C2
Step 2d: Compare C2 itemsets with minimum support & generate L2

Transaction C2 Itemsets C2
Itemset

Support
count

L2
Itemset

Support
count

{A,B,C,E} {A,B}{A,C}{A,E}{B,C}{B,E}{C,E} {A,B} 5 {A,B} 5
{B,C} {B,C} {A,C} 4 {A,C} 4

{A,B,D} {A,B} {A,E} 3 {A,E} 3
{A,C} {A,C} {B,C} 5 {B,C} 5
{B,C} {B,C} {B,E} 3 {B,E} 3

{A,B,C} {A,B}{A,C}{B,C} {C,E} 2
{A,B,C,E} {A,B}{A,C}{A,E}{B,C}{B,E}{C,E}

Scan D for
transactions

with 2 or
more items

{A,B,E}

Candidate 2-
itemset = 2-

itemset
subsequences

+ Apriori

{A,B}{A,E}{B,E}

Compare
C2

support
count
with

minimum
support

Step 3a: Scan database D for transactions >= 3
Step 3b: Determine 3-itemset subsequences and apply Apriori property to get C3
Step 3c: Count each subsequence to determine support count for C3
Step 3d: Compare C3 itemsets with minimum support & generate L3

Transaction C3 Itemsets C3
Itemset

Support
count

L3
Itemset

Support
count

{A,B,C,E} {A,B,C}{A,B,E} {A,B,C} 3 {A,B,C} 3
{A,B,D} {A,B,E} 3 {A,B,E} 3
{A,B,C} {A,B,C}

{A,B,C,E} {A,B,C}{A,B,E}

Scan D for
transactions

with 3 or
more items

{A,B,E}

Candidate 3-
itemset = 3-

itemset
subsequences

+ Apriori
{A,B,E}

Compare
C3

support
count
with

minimum
support

77

Figure 26. The joinless apriori algorithm.

4.3.3. C-Annotated Databases and the Joinless Apriori Algorithm

The structure of the transactions data used in this study is different from the general format used for example,

in market basket analysis. In the later case, the frequent itemsets that are mined shoe the correlation relations

among all the items in each transaction of the database. In the former case however, the data in each

transaction comprises one or more navigation pages, followed by a content page, with the navigation page(s)

representing the association rule antecedent, and the content page, the rule consequent. In this study, we refer

to such transactions databases with a well known consequent for every row as consequent-annotated, or c-

annotated.

To illustrate the difference between mining a consequent-annotated transactions database, and a

general transactions database, consider two examples involving market basket analysis. Assume that milk,

bread, and cereals are the entries in the transactions database. The goal of association rule mining in the

general case would be to discover strong association rules of the following forms:

buys(X, “milk”) ∧ buys(X, “bread”) ⇒ buys(X, “cereals”)

Method
1. L1 = find_frequent_1-itemsets(D);
2. for (k = 2; Lk-1 ≠ ∅; k++) {
3. for each transaction t ∈ D {
4. Ct = t | card(t) ≥ k {//scan D for all transactions with itemset size ≥ k
5. Ct = subset(Ck, t); //get the subsets of t that are candidates
6. c += subseq(Ct, k); //add k-subsequences of transaction t to list of candidate itemsets
7. }
6. Ck = joinless_apriori(Lk-1,Ct, min_sup);
7. Lk = {c ∈ Ck⎟ c.count ≥ min_sup}
8. }
9. return L = ∪kLk

procedure joinless _apriori(Lk-1:frequent (k-1)-itemsets; c: list of k-itemsets in D min_sup: min. support threshold)

1. for each itemset i ∈ c {

2. i.count++;
3. if has_infrequent_subset(i,Lk-1) then
6. delete c; //prune step; remove unfruitful candidate
7. else add c to Ck;
8. }
9. return Ck

procedure has_infrequent_subset(c: candidate k-itemset,Lk-1: frequent (k-1)-itemsets)
 //use prior knowledge
1. for each (k-1)-subsets s of c
2. if s∉ Lk-1 then
3. return TRUE
4. return FALSE

78

buys(X, “milk”) ∧ buys(X, “cereals”) ⇒ buys(X, “bread”)

buys(X, “cereals”) ∧ buys(X, “bread”) ⇒ buys(X, “milk”)

buys(X, “cereals”) ⇒ buys(X, “milk”) ∧ buys(X, “bread”)

buys(X, “bread”) ⇒ buys(X, “milk”) ∧ buys(X, “cereals”)

buys(X, “milk”) ⇒ buys(X, “cereals”) ∧ buys(X, “bread”)

buys(X, “milk”) ⇒ buys(X, “cereals”)

buys(X, “milk”) ⇒ buys(X, “bread”)

buys(X, “bread”) ⇒ buys(X, “cereals”)

buys(X, “bread”) ⇒ buys(X, “milk”)

buys(X, “cereals”) ⇒ buys(X, “bread”)

buys(X, “cereals”) ⇒ buys(X, “milk”)

On the other hand, if the database is consequent-annotated, for example with cereals as the item of

interest, then the only association rules that need be generated should be of the forms:

buys(X, “milk”) ∧ buys(X, “bread”) ⇒ buys(X, “cereals”)

buys(X, “milk”) ⇒ buys(X, “cereals”)

buys(X, “bread”) ⇒ buys(X, “cereals”)

Clearly, because of the constraint of limiting the association rules to a predetermined consequent, the

search space required for the determination of association rules is much smaller in the case of a consequent-

annotated database than in the general case. The procedure to obtain frequent itemsets for a c-annotated

transactions database is identical to the case for a general transactions database, except that: (1) one of the

items in each transaction is annotated as the consequent of the association rule for that transaction and all of its

subsequences; and (2) candidate frequent itemsets and frequent itemsets are generated only for the unannotated

items of the transactions. For example, if the last item of each transaction in the database in Figure 22 is

annotated as the consequent, the resulting transactions database is given in Figure 27 and the procedure to

obtain frequent itemsets using the joinless apriori algorithm is summarized in Figure 28.

79

Figure 27. Sample consequent-annotated database used to illustrate the application of the joinless apriori algorithm to a c-
annotated database.

Figure 28. Applying the joinless apriori algorithm to determine frequent itemsets for the c-annotated database in Figure
27.

4.3.3.1. Generation of Association Rules from Frequent Itemsets
Frequent itemsets correspond to potential association rules: they may be pruned if they do not meet a minimum

support or rule confidence. The support of a rule is the fraction of items in the rule that occur together in the

set of transactions, and can be computed using the following formula:

 Support(A ⇒ B) = P(A ∪ B) =|(A ∪ B)| / |transactions database| (3)

Confidence is the percentage of the rule antecedent that leads to the consequent and is computed as the

conditional probability of the rule consequent, given the antecedent:

 confidence(A ⇒ B) = P(B/A) = support_count(A ∪ B)/support_count(A) (4)

TID Transaction Items Rule Consequent
T001 A,B,C E
T002 B C
T003 A,B D
T004 A C
T005 B C
T006 A,B C
T007 A,B,C E
T008 A,B E

Step 1a: Scan database D transactions for count of each candidate 1-itemset C1
Step 1b: Compare C1 itemsets with minimum support & generate L1
 C1

Itemset
Conse-
quent

Support
count

L1
Itemset

Conse-
quent

Support
count

 {A} C 2 {B} C 3

 {B} C 3 {A} E 3

 {A} D 1 {B} E 3

 {B} D 1

 {A} E 3

 {B} E 3

Scan D to get candidate 1-itemset counts

{C} E 2

Compare
C1 support
count with
minimum
support

Step 2a: Scan database D transactions for transactions >= 2
Step 2b: Determine 2-itemset subsequences and apply Apriori property to get C2
Step 2c: Count each subsequence to determine support count for C2
Step 2d: Compare C2 itemsets with minimum support & generate L2

Transaction C2
Itemsets

Conse
quent

C2
Itemset

Conse-
quent

Support
count

L2
Itemset

Conse-
quent

Support
count

{A,B,C} {A,B}{A,C}{B,C} E {A,B} E 3 {A,B} E 3
{A,B} {A,B} D {A,C} E 2
{A,B} {A,B} C {B,C} E 2

{A,B,C} {A,B}{A,C}{B,C} E {A,B} D 1

Scan D for
transactions

with 2 or
more items

{A,B}

Candidate 2-
itemset = 2-

itemset
subsequences

+ Apriori
{A,B} E {A,B} C 1

Compare
C2 support
count with
minimum
support

80

For example, for the c-annotated database of Figure 27, the following association rules can be derived from

frequent itemsets L1 and L2 in Figure 28; rules that meet both a predetermined minimum support and

confidence score are kept, and the rest discarded.

B ⇒ C [support = 3/8; confidence = 3/7]

A ⇒ E [support = 3/8; confidence = 3/6]

B ⇒ E [support = 3/8; confidence = 3/7]

A ∧ B ⇒ E [support = 3/8; confidence = 3/5]

4.3.3.2. Implementation of the Classical and Joinless Apriori Algorithms on a c-annotated Database
Figure 29 shows the data structure used in this study to mine a c-annotated database for association rules. The

transactions database contained user navigation paths with the following structure for each record: {url1, url2,

…, urln, urlI: n ≥ 1) where, url1…urln were the navigation urls that corresponded to a page of interest, ulrI. The

objective of the mining process was to generate rules of the form:

user_follows(X, “urli”) ∧ user_follows(X, “urlj”) ∧ … ∧ user_follows(X, “urln”) ⇒

user_interested_in(X, “urlI”)

The data structure comprises an interconnection of linked lists. The backbone of the structure (top of

figure) comprised w hash tables (w = number of distinct association rule antecedent lengths), each with h

buckets, where h, the hash table size was set to 251. The first hash table dealt with all association rules

comprising 1 navigation page and one content page, the second hash table dealt with association rules

comprising 2 navigation pages and one content page, etc. For a given entry in the transactions database with

antecedent length l, the following hash function was used to determine which hash bucket in hash table l would

be used to handle the transaction:

 () hIDs page content & navigationbuckethash mod_ ∑= (5)

For a given navigation pattern, the hash tables reduced the search space required to locate the pattern by

directing the search first to the hash table with the corresponding length, and then, to the bucket that

corresponded to that pattern’s hash value.

Each hash bucket had a pointer to a linked list (middle of figure) of all the navigation pages that

hashed to that bucket. A count (pattern_count) was maintained for the number of occurrences of each of these

navigation patterns. This count was useful in determining the confidence values of association rules that had

the corresponding navigation pages at the left hand side of the association rule.

81

Figure 29. Data structure used to determine frequent itemsets from a transactions database.

Finally, because the same navigation pages corresponded to different interest pages, a pointer was

used to link every navigational pattern to a linked list of the various pages of interest that were observed

(bottom of figure). A count (int_cnt) was maintained for the number of occurrences of these pages of interest

for each set of navigation pages, and was used to compute the support of the rule.

4.3.4. Experiment 1: Evaluation of Joinless Apriori Algorithm

The new joinless apriori algorithm proposed in this study was evaluated relative to the classical apriori

algorithm by running simulations of the two algorithms for varying values set for the following parameters:

minimum support count (which determines total number of rules generated), and mean transaction record

length, to determine which, if any, of the algorithms works better under these varying conditions. Performance

statistics relating to execution time, association rule length, and association rule

Each navigation pattern points to a linked list of pages of interest

Hash Table 1 for navigation
behavior involving 1 navigation

page & 1 content page
1 2 3 4 … h

Hash Table 2 for navigation
behavior involving 2 navigation

pages & 1 content page
1 2 3 4 … h

Hash Table w for navigation
behavior involving w navigation

pages & 1 content page
1 2 3 4 … h

…

Each hash bucket points to a linked list of navigation behaviors whose pages hatched to the bucket value

1st navigation patternj of length i
NavPg1 NavPg2 … NavPgi

pattern_cnt

2nd navigation patternj of length i
NavPg1 NavPg2 … NavPgi

pattern_cnt

jth navigation patternj of length i
NavPg1 NavPg2 … NavPgi

pattern_cnt

…

Interest_Pgk1

int_cnt

Interest_Pgk2

int_cnt

Interest_PgkI

int_cnt

…

pointer from hash bucketi,j (i = hash table ID; j =
hash bucket ID)

pointer from kth navigation patternj of length i

82

Figure 30. Experimental design for the evlauation of the joinless apriori algorithm.

count were then collected, and compared. All the simulations were run on a SunBlade 2500 workstation

running the Sun Solaris 9 UNIX operating system. The programs were all written in ANSI C, and compiled

using the C compiler that comes with the operating system.

Data and Procedure. The data comprised the user access log for the website of SIS for the months of

June to August 2004. The raw data were stored in the common log format (W3C, 2003) and totaled about

500MB. We followed the procedure described in Section 4.2 to generate the transactions database, and then

ran both the classical and joinless apriori algorithms on the transactions database for the following values of

minimum support count: 1, 2, 12, 24, 59, 118, and 235, (corresponding to the following fractions of the

transaction database size: 0.000005, 0.00001, 0.00005, 0.0001, 0.00025, 0.0005, 0.001), and for different

average association rule lengths. Average association rule lengths were controlled by varying the maximum

acceptable transaction length Lmax between 5 and 10. For each run, all transactions whose lengths were larger

than Lmax were ignored. The experimental design used is summarized in Figure 30.

4.4. Design of the CLARANS Clustering Algorithm for High Dimensional Data

As discussed in Section 3.2.4, the CLARANS clustering algorithm was investigated to determine its suitability

in high dimensional spaces comprising large document collections, since personalization systems operate in

such environments. We start by discussing the memory/computation time tradeoff that was made because of

the large size and dimensionality of the data sets considered (Section 4.4.1). This is followed by a review of

the PAM and CLARA clustering algorithms on which CLARANS is based, and of CLARANS (Section 4.4.2),

choice of similarity measure (Section 4.4.3), and the evaluation procedure (Section 4.4.4).

Maximum acceptable transaction antecedent length Lmax
(Determines mean association rule length) Minimum

support count 5 6 7 8 9 10
1
2
3
4
5
6
7

Performance statistics for
classical and joinless apriori algorithms

83

4.4.1. Memory/Computation Time Tradeoffs in CLARANS

In a main-memory clustering algorithm like CLARANS, it is desirable to process all or most of the

computations using data held in primary memory, and make as few accesses as possible to secondary storage.

This is not much of a problem for low dimensional data, where relatively few bytes are required to represent

data objects. And with such few dimensions, both the computation of object-object similarities and the

clustering algorithm can be done efficiently in main memory.

For very high dimensional data however, main memory is a much more limited resource as it may not

be feasible to store all the data objects and their object-object similarity scores in main memory at the same

time. Computation time also becomes a critical factor, as it takes much longer to compare the numerous

dimensions for similarity computations.

The memory/computation time tradeoff adopted here was to divide the clustering process into off- and

on-line stages. The off-line stage computed object-object similarity scores by loading the object vectors in turn

from secondary storage into main memory, and computing their similarity scores. The many accesses to the

relatively slow, secondary memory made the process of computing similarities slow. The on-line process

involved the discovery of clusters, and was possible because all that needed to be loaded into main memory

were the similarity scores and the clustering algorithm.

4.4.2. Review of PAM, CLARA and CLARANS

PAM (Kaufman & Rousseeuw, 1990) is a partitioning algorithm that generates k clusters by finding k

representative objects, or medoids, and assigning each of the remaining objects to the medoid that is most

similar to it. The quality of a clustering is defined as the average dissimilarity between the objects in each

cluster and their associated medoid (the lower the average dissimilarity, the better the clustering). The

algorithm begins with k arbitrary medoids and their associated clusterings. Then, for each medoid object, the

cost (i.e. change in average dissimilarity) is computed if the medoid were replaced with a non-medoid object,

and new clusterings formed. If the cost is negative, meaning there is an improvement in the quality of the

clustering, the medoid is replaced by the non-medoid, and the process continues until the quality of the clusters

cannot be improved further. Kaufman and Rousseeuw (1990) and Ng and Han (1994; 2002) provided

complete details on the PAM algorithm.

84

Figure 31. Graphical representation of the search space for the PAM algorithm. This example illustrates a search space
with 4 objects (A,B,C,D, i.e., n = 4), and with 2 clusters (k = 2). Each node has k(n-k) neighbors.

Conceptually, PAM can be viewed as a search for a minimum node (the node that corresponds to the

best quality of clustering) on a graph Gn,k, where n is the number of objects in the set being considered, and k is

the number of clusters to be formed. Such a graph has the following properties: (1) each node on the graph

comprises a set of k objects {Om1,…,Omk} corresponding to medoids; (2) two nodes in the graph, S1 and S2 are

neighbors and linked with an arc if they differ in only one object, i.e., if .121 kSS The graph has k(n-k)

neighbors, as illustrated in the simple example in Figure 31, which shows the graph G4,2. Moving from one

node containing object Om to a neighboring node containing object Op if the two nodes differ in Op and Om

),21,but ,2 and 1 (i.e. SSpOmOSpOSmO ∩∉∈∈ is equivalent to replacing medoid Om with non-medoid Op.

The problem with PAM is that it is computationally too expensive for large values of n and k; a single iteration

is of O(k(n-k)2) (Ng & Han, 1994, 2002).

CLARA (Kaufman & Rousseeuw, 1990) was designed to handle large datasets. CLARA is similar to

PAM in that it involves a search for a minimum node in a graph structure. But instead of finding medoids

from the whole dataset, CLARA relies on a random sampling approach. Several samples are drawn from the

data set, and the PAM algorithm applied to each sample. The quality of the clustering, based on the entire

dataset, is obtained for each sample, and the best quality medoids considered the best for the entire data set.

CLARA is thus equivalent to searching for the best node in a subgraph G’
n,k of graph Gn,k. The problem with

CLARA is that if the minimum node is not in the selected sample, it will never be found. A complete

description of CLARA is provided by Kaufman and Rousseeuw (1990).

The objective of CLARANS is to overcome this shortcoming of CLARA. CLARANS takes two

parameters (numlocal and maxneighbors). Parameter numlocal determines how many times the algorithm will

iterate to find the best quality medoids, i.e., how many local minima will be determined so that they can be

compared, and the one with the best quality selected. The second parameter maxneighbors determines for each

node, how many neighboring nodes should be searched for a node with a lower cost before the algorithm

DC

AC

BC
AB

BD
AD

85

concludes that the current node is a local minimum. The expectation is that with graph Gn,k being as highly

connected as it is, searching a sample of neighboring nodes should usually find a lower cost node if one exists.

And even if the current local minimum is not the global minimum, repeating the search numlocal times should

lead to very good clustering.

CLARANS is similar to PAM in that the search in not confined to a subgraph as in CLARA;

CLARANS (like CLARA) is different from PAM however, in that, not all the nodes of a given graph are

searched. CLARANS is also different from CLARA in that instead of confining the search to a set of nodes,

determined at the start of the algorithm by a sample of objects, CLARANS selects a sample of neighboring

nodes in each step of the search. Complete details on algorithm CLARANS were presented by Ng and Han

(1994; 2002)

4.4.3. Similarity Measure

In this section, we present properties of any dissimilarity metric that are useful for cluster analysis, and observe

that Euclidean distances are not suitable in clustering high dimensional data, making it necessary to use a non-

Euclidean dissimilarity metric. The properties are listed below.

Symmetry. This property states that given two objects a and b, the distance or dissimilarity, d, between

them satisfies the expression .0),(),(abdbad

Triangular Inequality. This property states that the dissimilarities between three objects a, b, and c

satisfy the expression).,(),(),(cbdcadbad

Distinguishability of Non-identicals. If the dissimilarity between two objects a and b is not zero, then

the objects are different, i.e., b.a then ,0),(if bad

Indistinguishability of Identicals: If two objects a and b are identical, then the dissimilarity between

them is zero, i.e., 0),(then b,a if == bad

A commonly used measure for dissimilarity in clustering algorithms is the Euclidean distance. This is fine in

2-D space, but in high dimensional space, the Euclidean distance does not work well as (1) in high dimensional

space, distances between vectors are not very distinguishable from each other and are almost meaningless (the

Euclidean distances from any two points tend to be very similar), and (2) data in high-dimensional spaces tend

to be sparse; Euclidean distance does not take this into consideration. Several other similarity measures like

the cosine measure have been found to be useful in IR and related fields, if the documents are represented as

vectors whose components are tokens (typically words) derived from the document. One advantage in using

the cosine measure is the fact that the computation treats small documents (as it does larger documents) fairly

in the sense that the measure is normalized for document length. The inverse of the cosine similarity, or angle,

between two vectors P and Q (arcos(sim(P,Q))), where sim(P,Q) is the cosine similarity between the vectors,

meets the conditions listed above for a suitable dissimilarity metric for cluster analysis. The metric has been

86

used by a number of researchers (e.g., Ullman (2003b) and Yongling (2004)), and was adopted for use in this

study. It should be noted that even with a change of dissimilarity metric, other problems persist in high

dimensional data analysis. For example, it is likely that two vectors that are very similar in most dimensions

may be very dissimilar in one or more other dimensions, making them appear very dissimilar (Ullman, 2003a,

2003c).

4.4.4. Evaluation of CLARANS

As mentioned in Section 4.4.2, the CLARANS clustering algorithm requires 2 parameters: numlocal which

determines the number of times the algorithm should iterate to find the best quality medoids, and

maxneighbors which determines for each node of the graph representation of the clustering problem, the

optimal number of neighboring nodes to search for a node with a lower cost before the algorithm concludes

that the current node is a local minimum. The CLARANS algorithm was evaluated in 2 stages: the first was to

determine optimal values for parameters numlocal and maxneighbors, and the second to evaluate the

performance (effectiveness and efficiency) of CLARANS with respect to the PAM and CLARA algorithms on

which it is based.

Determination of optimal values of parameters numlocal and maxneighbors involved running a batch

of simulations of the algorithm with these parameters set to different values to determine which one resulted in

the best quality clusters of high dimensional data objects. Another set of simulations was run to compare the

efficiency (execution times) and quality of clusters discovered by the CLARANS, PAM and CLARA

algorithms. All the simulations were performed on a SunBlade 2500 workstation running the Sun Solaris 9.1

UNIX operating system. The programs were all written in ANSI C, and compiled using the C compiler that

comes with the operating system.

Test Data. We simulated two high dimensional object spaces by generating sets of vectors

(representing objects to be clustered) with dimensionalities of d1 and d2 to represent documents in d1- and d2-

dimensional spaces. The generated vectors were constrained to belong to predetermined clusters, and it was

the task of the 3 clustering algorithms being compared to attempt to assign the vectors to their correct clusters.

16 sets of simulated documents divided into two groups of 8 sets each were generated. The first group

comprised document collections of sizes 1100 in a 4500-dimensional space, and sizes 4500 in 3000-

dimensional space. There were 4 sets of 1100-sized documents comprising 10, 20, 30, and 40 clusters

respectively, and 4 sets of 4500-sized documents, respectively comprising 15, 30, 45, and 60 clusters. The

second group of 8 simulated document sets comprised the same object and cluster sizes as the first. The

difference between the two groups was in their inter-cluster and intra-cluster similarities: the first group was

designed to have larger intra-cluster similarities and smaller inter-cluster similarities than the second.

87

Our choices of document collection sizes and dimensionalities were influenced by two factors: (1) the

values of these parameters in the collection of web pages in the web site which were clustered based on the

similarities of their contents, and (2) main memory limitations.

• There were 4490 web pages, and 3027 index terms (dimensionality), spread across the web

pages. The 4500-sized objects were representative of these web pages.

• We also wanted to investigate the performance of the clustering algorithms in higher

dimensional space, and chose a dimensionality of 4500. Because of main memory

limitations, we restricted the number of documents with this dimensionality to 1100.

We used the notation Rn,k to represent a dataset comprising n documents and k clusters, and the

notation R′n,k and R′′n,k to specify the first and second groups respectively. We next consider how the clusters

were formed.

Figure 32 is a 2-D illustration of the approach used to generate documents used in the evaluation,

except that we worked with 3000- and 4500-, and not 2-dimensional objects as the figure suggests. Each

square in the figure has length b, and delineates a bounded region that holds objects in a cluster. By randomly

generating vectors with components of length ld in the dth dimension (0 < ld ≤ b) of the document space, we

can create a cluster bounded by the square near the origin. A translation operation can then be applied to the

cluster to place it in a different area of the 2-D space. The process of generating a cluster near the origin and

applying a different translation operator can be repeated until a sufficient number of document clusters are

generated.

Figure 32. Illustrating generation of test data used to evaluate CLARANS, CLARA, and PAM.

88

Table 1. Intra- and inter-cluster cosine similarity scores for generated data.

One difficulty handling objects in such high dimensional spaces is that a single dimension cannot

adequately distinguish one object from the next. Our approach to creating clusters for dataset Rn,k was first to

earmark the first n/k documents for the first cluster, the next n/k documents for the second cluster, and so on.

Second, we earmarked the first N/k dimensions to use for translating the first cluster generated near the origin

of the document space to a different region of the space, the next N/k dimensions for the second cluster, etc.,

where N is the dimensionality of the space. Then we generated each cluster near the origin of the document

space bounded by a region not greater than length b along each dimension, and performed the translation

operation along the designated dimensions by adding a constant separation value s, to the designated

components for each of the vectors in the cluster. In this study, we set the separation variable s to 12 for each

of the two groups of data sets that were generated. The value of boundary variable b determined the intra-

cluster similarities (the smaller the value of b, the more packed together the documents would be, and the

greater their intra-cluster similarities). Variable b was set to 6 for datasets R′n,k, and to 12 for datasets R′′n,k.

Table 1 shows the distribution of intra- and inter-cluster cosine similarity values for the generated datasets,

obtained by examining the similarity values of objects within the same clusters and across clusters.

Dissimilarity Matrix. With the simulated document vectors in secondary storage, the object-object

cosine similarity values were computed and stored as an upper triangular matrix, to minimize both the time and

storage requirements. The steps involved iteratively reading a document vector into primary memory and for

every such vector read, reading the document vectors that followed it, and computing the cosine similarity

value as explained in Appendix A.

Calibration of CLARANS. As mentioned before, CLARANS takes two parameters, maxneighbors and

numlocal. Ng and Han (2002) suggested that the optimal value for maxneighbors is a function of a fraction of

number of neighboring nodes k(n-k) to each node in the graph representation of the problem. The steps

involved in the calibration of the algorithm are detailed in the following paragraphs.

 R′n,k R′′n,k

Dataset Intracluster
cosine similarity

Intercluster
cosine similarity

 Intracluster
cosine similarity

Intercluster
cosine similarity

R1100,10 0.90-0.92 0.46-0.51 0.82-0.86 0.63-0.68
R1100,20 0.82-0.88 0.52-0.58 0.79-0.82 0.67-0.72
R1100,30 0.83-0.85 0.57-0.62 0.78-0.81 0.68-0.73
R1100,40 081.-0.84 0.59-0.65 0.77-0.80 0.69-0.74
R 4500,15 0.87-0.90 0.49-0.56 0.80-0.84 0.64-0.71
R4500,30 0.83-0.86 0.55-0.63 0.77-0.81 0.67-0.74
R4500,45 0.80-0.84 0.59-0.67 0.76-0.80 0.69-0.75
R4500,60 0.79-0.83 0.61-0.69 0.76-0.79 0.69-0.75

89

First, we determined what fraction of the neighboring nodes to use for parameter maxneighbors that

would ensure that the algorithm resulted in high quality clusters without at the same time being too expensive

in terms of execution time. That involved running CLARANS with maxneighbors set to varying percentages

(p) of k(n-k), up to a maximum value of 100%, or 10000 neighbors, whichever was smaller, and the numlocal

parameter set to a high value (10 in this study). The number of neighboring nodes examined was limited to

10000 because of the excessive cost in time that would result otherwise. Three iterations of the algorithm were

run, and for each value of p, we determined the average cluster dissimilarity and average execution time

required to run the algorithm. The value of p that resulted in good quality clusters without requiring an

excessive amount of processing time was considered optimal.

The second stage in the calibration of CLARANS involved determining an optimal value for

parameter numlocal. This was done by first determining the execution times and average dissimilarity values

for values of parameter numlocal between 1 and 5 for the optimal value of the maxneighbors parameter. As

with maxneighbors, the value for numlocal that corresponded to high quality clusters without a very heavy cost

on computation time was chosen to be optimal.

Comparing PAM, CLARA, and CLARANS. Following the calibration of CLARANS, the three

clustering algorithms were evaluated for the generated data sets based on their execution times and average

intra-cluster dissimilarity values.

4.5. Design of the Collaborative Filtering Prediction Models

The last objective of this work (discussed in Section 3.2.3) was to investigate the design of collaborative

filtering prediction models for current user interests as they browse a website. Classical collaborative filtering

computations require input data that are equivalent to a matrix, with the rows representing users, and the

columns their ratings of objects. The association rules mined as described in Section 4.3.3 were used as

collaborative filtering data as outlined below:

• Every unique rule antecedent (i.e., navigation pages) was considered equivalent to a user in

classical collaborative filtering (i.e., row label)

• Every rule consequent (i.e. corresponding page of interest) was considered equivalent to an

item of interest rated by the user (i.e. column label) in classical collaborative filtering

90

Figure 33. Adjacency list representation of association rule matrix used in the design of the collaborative filtering-based
recommendation models. Each row on the left of the figure shows a unique linked list of web page sequences
(corresponding to an association rule antecedent) pointed to by the corresponding array index. Each row on the right of
the figure shows a linked list of web pages of interest corresponding to the rule antecedent.

• The rule confidence value for a given rule antecedent and consequent was considered

equivalent to the user rating for that rule and page of interest

• For each rule, all pages of interest that the mining process did not find interesting were

considered to have a rating of zero

The resulting data were a very large and sparse matrix with each row having only a few page ratings.

The data structure shown in Figure 33, also referred to elsewhere in this report as the association rules matrix,

was used to hold the matrix data efficiently. The data structure was an array of linked lists, where each array

index was a 2-pointer data structure: the first pointer pointed to a list of pages that corresponded to a unique

rule antecedent (user), and the second, to a list of pages of interest with ratings greater than zero.

Predicting the interests score for web pages for a user with a given navigation behavior involved the

following stages:

• Store the user’s navigation behavior in a fixed-width window w (an integer vector) of size n, where

the contents of w were IDs of the n pages last visited by the user

• Compute the k nearest neighboring navigation behaviors (neighborhood formation) from the

association rules matrix (equivalent to finding the k most similar users)

• Predict the confidence values (ratings) for the recommendable hyperlinks for the current user, based

on the ratings of the k nearest neighbors. For a fully functional recommender system, these predicted

confidence scores would be used to compute recommendation scores for the various web pages, which

would guide the decision on which pages to recommend to an the user

Pr1 Pr2 Pr3 … Prn

…

…

Qr1 Qr2 Qr3 … Qry
…

…

Qr4 Qr5

P11 P12 P13 … P1i Q11 Q12 Q13 … Q1u Q14 Q15

P21 P22 P23 … P2j Q21 Q22 Q23 … Q2v Q24 Q25

P31 P32 P33 … P3k Q31 Q32 Q33 … Q3w Q34 Q35

P41 P42 P43 … P4m Q41 Q42 Q43 … Q4x Q44 Q45

91

Computing the k Nearest Neighboring Navigation Behaviors. The following steps were followed to

determine which k row vectors of the association rules matrix of Figure 33 to use in the prediction of

recommendable page ratings for an active user of the system. Recall (from Section 3.2.3) that two

neighborhood formation approaches were implemented: center-based (Collaborative Filtering Model I) and

aggregate-based (Collaborative Filtering Model II).

In the center-based scheme, the following steps were involved:

1. Compute the cosine similarity between the current user navigation behavior vector (window

w), and each of the row vectors of the association rules matrix

2. Select the k row vectors whose similarities with the current user navigation vector exceed a

threshold value23.

In the aggregate-based scheme, the following steps were involved in the neighborhood formation

process:

1. Compute the cosine similarity between the current user navigation behavior vector (window

w), and each of the row vectors of the association rules matrix

2. Select the most similar association rule row vector as the initial member of the neighborhood

3. Compute the cosine similarity between the current neighborhood, and each of the row vectors

of the association rules matrix not currently selected as a member of the neighborhood

4. Select the most similar association rule row vector as the next member of the neighborhood

5. Aggregate the current neighborhood vector by adding to it URLS from the new member of

the neighborhood determined in Step 4 above, that were not present in the neighborhood

6. Repeat Steps 3–5 until the cosine similarity falls below the threshold

23 The similarity threshold was determined by selecting the value that resulted in minimum prediction error (also see
Section 4.6, which deals with the evaluation of the collaborative filtering-based models).

92

Figure 34. Summary of neighborhood formation processes for (a) center-based scheme, and (b) aggregate-based scheme.

Compute similarity between vector w
and past user navigation vectors (i.e.

rows of association rules matrix)

Neighboring vectors = all association
rules matrix rows with cosine

similarity above threshold

Initialize aggregate neighborhood to blank

Get user navigation vector, w

Start Start

End

End

Compute similarity between vector w
and past user navigation vectors (i.e.

rows of association rules matrix)

Get association rules matrix row (r) with
highest similarity score

Get user navigation vector, w

Highest similarity score
above threshold?

Aggregate
neighborhood

vector = blank?

Expand aggregate neighborhood
vector to include components of
vector r that are absent from the

neighborhood

Aggregate
neighborhood

vector = r

Compute similarity between vector w
and past user navigation vectors (i.e.

rows of association rules matrix)

(a)

(b)

93

The steps involved in determining the neighborhood vectors in both the center-based and aggregate-

based schemes are summarized in Figure 34. As can be seen from the figure, the neighborhood formation

process for the aggregate-based scheme is computationally very expensive. For that reason, during the

evaluation of the prediction model using this scheme, the neighborhood size was not allowed to grow beyond

50.

Clearly in both the center-based scheme and the aggregate-based scheme, k was not a constant value

as it depended on the number of past user navigation vectors whose similarity to the current user vector

exceeded a threshold value.

Predicting Confidence Values (Ratings) for Recommendable Hyperlinks. For each neighborhood

formation scheme, the confidence scores for the active user (u’s) rating for HTML Page i, was computed using

2 approaches: as the average of the k nearest neighbor ratings, and as a weighted average of the k nearest

neighbor ratings for that page. The two formulas used were:

 ∑
=

=
N

j
ijiu R

N
P

1
,,

1 for average similarity, (6)

 and
uj

N

j
ijiu SimR

N
P ,

1
,, *1

∑
=

= , for weighted average similarity, (7)

where, Pu,i is User u’s predicted rating for page i, N is the neighborhood count, Rj,i is the rating of page i for

Vector j of the neighborhood, and Simj,u, the weighting factor, is the similarity between the navigation vectors

of user u and Vector j.

4.6. Experiment 2: Evaluation of Performance of Collaborative Filtering Prediction Models

Experiment 2 was a simulation study designed to answer the following question: do the collaborative filtering

models correctly predict the confidence values of an active user’s interest in various web pages as the user

navigates the website? If the models correctly predict these confidence values, then appropriate

recommendations can be computed.

Data. The data used were the association rule matrix. The data were divided into a training and a test

sets with 80% of the rows randomly assigned to the training set, and 20% to the test set.

94

Method. The general approach to evaluate performance was to use the training data alone to predict

the test data, and use the predictions and prediction errors to determine the effectiveness of the prediction

model. The evaluation involved three iterations, with each iteration involving a different set of training and

test data, and the predictions of user interests averaged over the three iterations.

Center-based Neighborhood Formation Scheme. The navigation behavior vector for each row of the

test data was used to simulate an active user’s navigation behavior. The cosine similarity between each

simulated user’s navigation vector and each of the navigation vectors in the training set was then computed,

and the k training vectors whose similarities to the current test vector were above a threshold selected as

nearest neighbors. As explained in Section 4.5, k was a function of the similarity threshold chosen. The KNN

vectors were computed for different similarity thresholds, and the threshold that resulted in optimal prediction

errors selected.

Aggregate-based Neighborhood Formation Scheme. The approach used to evaluate the prediction

model based on the aggregate-based prediction scheme was very similar to the method for the center-based

scheme, except that we now took into consideration the much larger computation times required to generate

the neighborhood. The following modifications were made:

• A random selection of only 250 data items from the test set was used, and predictions made

using all of the training set data as before

• A maximum of 50 vectors were allowed in the neighborhood

95

5. RESULTS AND DISCUSSION

This section presents the data that were used in this study, as well as results of the implementation procedures

described in Section 4. We begin by presenting statistics on the primary data used, namely web pages of the

web site and the user access logs (Section 5.1). Section 5.2 follows with results of the web page classification

study that were used to classify web pages as navigation or content pages. Section 5.3 summarizes the data

that were used to construct past user profiles, against which current users could be compared. These data

comprise past user sessions data, transactions data, and association rules derived from the transactions.

Section 5.4 presents an evaluation of the newly proposed joinless apriori algorithm relative to the classical

apriori algorithm; Section 5.5 an evaluation of the performance of the CLARANS clustering algorithm in high

dimensional space and relative to the PAM and CLARA clustering algorithms on which CLARANS is based;

and Section 5.6, evaluation of the effectiveness of the prediction models for current users’ pages of interest as

they navigate a website.

5.1. Web Pages and Access Logs

This section presents statistics on the number and contents of HTML pages in the website, as well as on the

user access logs that were used in the study. Knowledge of the web pages was required to construct the web

site topology, which as pointed out in Section 3.1, was required by one of the heuristic that were applied to

deduce past user navigation paths. The PR, LW, and PR × ILW metrics of these pages were also useful in the

determination of user navigation behaviors as explained in Section 3.2.1. The access logs on the other hand,

contained past user navigation paths which were mined to determine the relationships between typical user

navigation behaviors and the web pages they found interesting.

Web Page Statistics. 4491 HTML pages were discovered by the web crawler. Table 2 shows the

following statistics of these pages: LW, PR, and PR × ILW frequencies.

Table 2. Web site HTML page statistics: Links-to-Word count ratio (LW), Page Rank (PR), and Page Rank × Inverse
Links-to-Word count ratio (PR × ILW).

96

Web Page Terms. As explained in Section 4.1.1, the HTML pages of the website were parsed, the

contents extracted, and the vector space model used to represent them. The dimensionality of the document

vectors were reduced by stemming and elimination of low- and high-frequency terms. Table 3 shows the

distribution of terms across the web pages before and after the elimination of high and low frequency terms.

LW PR PR × ILW
Range Frequency Range Frequency Range Frequency

0<=LW<0.05 1575 0<=PR<0.15 733 0<=PR x ILW <0.15 24
0.05<=LW<0.10 919 0.15<=PR<0.20 1572 0.5<=PR x ILW <1.0 810
0.10<=LW<0.15 759 0.20<=PR<0.25 540 1.0<=PR x ILW <1.5 1057
0.15<=LW<0.20 351 0.25<=PR<0.30 207 1.5<=PR x ILW <2.0 489
0.20<=LW<0.25 162 0.30<=PR<0.35 147 2.0<=PR x ILW <2.5 312
0.25<=LW<0.30 144 0.35<=PR<0.40 119 2.5<=PR x ILW <3.0 204
0.30<=LW<0.35 168 0.40<=PR<0.45 80 3.0<=PR x ILW <3.5 168
0.35<=LW<0.40 198 0.45<=PR<0.50 66 3.5<=PR x ILW <4.0 181
0.40<=LW<0.45 117 0.50<=PR<0.55 70 4.0<=PR x ILW <4.5 178
0.45<=LW<0.50 31 0.55<=PR<0.60 66 4.5<=PR x ILW <5.0 124
0.50<=LW<0.55 15 0.60<=PR<0.65 62 5.0<=PR x ILW <5.5 117
0.55<=LW<0.60 8 0.65<=PR<0.70 62 5.5<=PR x ILW <6.0 85
0.60<=LW<0.65 2 0.70<=PR<0.75 40 6.0<=PR x ILW <6.5 75
0.65<=LW<0.70 0 0.75<=PR<0.80 35 6.5<=PR x ILW <7.0 55
0.70<=LW<0.75 3 0.80<=PR<0.85 33 7.0<=PR x ILW <7.5 68
0.75<=LW<0.80 12 0.85<=PR<0.90 24 7.5<=PR x ILW <8.0 56
0.80<=LW<0.85 6 0.90<=PR<0.95 30 8.0<=PR x ILW <8.5 41
0.85<=LW<0.90 0 0.95<=PR<1.0 18 8.5<=PR x ILW <9.0 38
0.90<=LW<0.95 2 1<=PR<2 252 9.0<=PR x ILW <9.5 35

0.95<=LW<1 19 2<=PR<3 169 9.5<=PR x ILW <10.0 43
 3<=PR<4 16 10.0<=PR x ILW <10.5 35
 4<=PR<5 13 10.5<=PR x ILW <11.0 16
 5<=PR<6 64 11.0<=PR x ILW <11.5 31
 6<=PR<7 5 11.5<=PR x ILW <12.0 23
 7<=PR<8 20 12.0<=PR x ILW <12.5 17
 8<=PR<9 6 12.5<=PR x ILW <13.0 12
 9<=PR<10 20 13.0<=PR x ILW <13.5 16
 10<=PR<15 7 13.5<=PR x ILW <14.0 15
 15<=PR<20 3 14.0<=PR x ILW <14.5 13
 20<=PR<25 6 14.5<=PR x ILW <15.0 10
 25<=PR<30 3 15.0<=PR x ILW <15.5 15
 30<=PR<35 1 15.5<=PR x ILW <16.0 3
 35<=PR<40 1 16.0<=PR x ILW <16.5 15
 40<=PR<45 0 16.5<=PR x ILW <17.0 3
 45<=PR<50 0 17.0<=PR x ILW <17.5 8
 50<=PR<55 1 17.5<=PR x ILW <18.0 5
 18.0<=PR x ILW <18.5 6
 18.5<=PR x ILW <19.0 5
 19.0<=PR x ILW <19.5 6
 19.5<=PR x ILW <20.0 3
 20<=PR x ILW <25 24
 25<=PR x ILW <30 20
 30<=PR x ILW <35 14
 35<=PR x ILW <40 4
 40<=PR x ILW <45 4
 45<=PR x ILW <50 4
 50<=PR x ILW <55 2
 55<=PR x ILW <60 1
 60<=PR x ILW <65 0
 65<=PR x ILW <70 0
 70<=PR x ILW <75 1

97

There were a total of 25882 terms before high and low frequency terms were eliminated and 3027 terms after.

The low frequency term threshold was 40 (i.e. all terms that occurred less than 40 times in the web site were

eliminated – roughly equivalent to 1% of the web pages), while the high frequency threshold was 1000 (all

terms that occurred more than 1000 times in the web site were eliminated – i.e., roughly equivalent to 25% of

the web pages).

Table 3. Distribution of terms in web pages (a) before and (b) after elimination of high and low frequency terms.

(a)
term frequency

range
(f)

No of terms with
frequency in range f

(t) Percentage
Cumulative
percentage

1 7245 28.46 28.46
2 4629 11.74 40.20
3 1963 9.21 49.41
4 1636 7.30 56.72
5 926 4.62 61.34

5<f<=10 2782 11.26 72.59
10<f<=20 1991 8.66 81.26
20<f<=30 827 3.75 85.01
30<f<=40 516 2.21 87.22
40<f<=50 349 1.53 88.74
50<f<=60 237 1.11 89.85
60<f<=70 193 0.88 90.73
70<f<=80 169 0.73 91.47
80<f<=90 146 0.52 91.98
90<f<=100 92 0.49 92.48
100<f<=150 414 1.65 94.13
150<f<=200 242 1.10 95.23

200<f<=1000 813 3.49 98.72
1000<f<=10000 254 1.26 99.97

(b)
term frequency

range
(f)

No of terms with
frequency in range f

(t) Percentage
Cumulative
percentage

5<f<=50 445 14.70 14.70
5<f<=100 967 31.95 46.65
5<f<=150 427 14.11 60.75
5<f<=200 285 9.42 70.17
5<f<=250 170 5.62 75.78
5<f<=300 136 4.49 80.28
5<f<=350 99 3.27 83.55
5<f<=400 89 2.94 86.49
5<f<=450 63 2.08 88.57
5<f<=500 58 1.92 90.49
5<f<=550 44 1.45 91.94
5<f<=600 35 1.16 93.10
5<f<=650 43 1.42 94.52
5<f<=700 21 0.69 95.21
5<f<=750 39 1.29 96.50
5<f<=800 27 0.89 97.39
5<f<=850 17 0.56 97.95
5<f<=900 26 0.86 98.81
5<f<=950 19 0.63 99.44
5<f<=1000 17 0.56 100.00

98

User Access Log Data. These were the user access log for the website of SIS for the months of June to

August 2004. The raw data were stored in the common log format (W3C, 2003) and totaled about 500MB.

5.2. Web Page Classification Study Results

As explained in Section 4.2.5, the objective of the web page classification study was to evaluate the utility of

the LW, PR, and PR × ILW metrics in the classification of web pages as content or navigation. By

determining appropriate thresholds for these metrics, it would be possible to break down very long transactions

determined using the MFR heuristic into smaller, more desirable ones. Three users who were very familiar

with the web site were asked to classify a sample of pages from the site as content or navigation. Figure 35

shows the page ratings on the content, navigation and dual content/navigation scales by each of the subjects

(S1, S2, and S3). As can be seen from the figure, the ratings were largely consistent, except for some of the

ratings by Subject S2, which we believed were errors (see comments in the last column of Figure 35). For

these erroneous cases, the relevant ratings were not used in computing average ratings.

The variation of average user ratings with LW is shown in Figure 36. As expected, web pages were

generally classified as content (high content and dual scale ratings) for low values of LW (left of graph), and as

navigation (high navigation scale ratings) for high LW (right of graph). Navigation ratings were strongly

inversely correlated with content ratings. We also notice from Figure 36 that ratings on the content scale

closely mirror those on the dual scale. These results suggest that a single content scale is sufficient for this

type of study.

The results presented in Figure 36 also suggest that LW alone is not sufficient to correctly classify

content and navigation pages. For example, there are a number of pages with relatively high LW ratio that

subjects classified as content pages, but that using the LW parameter alone, would be classified as navigation

pages. We present next, results that examine the LW, PR, and PR × ILW metrics more closely.

Table 4 shows the mean content ratings, LW, PR, and PR × ILW values arranged first in order of LW,

then in order of PR, and finally in order of PR × ILW. From the table, it can be seen that in general, web pages

with a LW value below 0.05 or a PR × ILW value above 1.8 can be classified as content pages. PR alone,

however, does not afford such a dividing line that separates content from navigation pages.

99

Figure 35. Subject ratings of the web pages presented in User Study 1. The commented items refer to cases where there
were large discrepancies in subject ratings. Results of 3 out of the 36 web pages that were presented to user are omitted
because these pages were no longer linked to by the time the results were analyzed.

 Content Scale Navigation Scale Dual Content &
Navigation Scale Comments

Item No S1 S2 S3 S1 S2 S3 S1 S2 S3
1 5 5 5 5 5 3 5 10 6 d S2: dual rating inconsistent
2 8 3 4 2 7 4 7 2 5
3 10 10 10 0 0 0 10 10 10
4 9 7 7 1 2 7 9 6 5

6 2 10 2 8 0 8 2 10 2 a S2: Page comprises moderate amount of text, followed by a long list of
hyperlinks at bottom which S2 must have missed

7 9 8 7 2 1 2 8 8 7
8 8 8 4 3 1 6 7 7 4
9 1 8 1 6 1 10 3 8 1 a S2: Page comprises almost entirely of hyperlinks

10 9 2 9 7 2 8 8 2 9 c S2: Content rating too low; page comprises mainly plain text and a few
hyperlinks at the top and bottom of the page

11 1 1 1 10 9 10 0 1 0
12 10 7 9 1 1 1 9 7 10
13 10 8 9 3 1 3 8 8 9
14 8 8 7 7 1 4 5 8 7
15 10 10 10 0 0 0 10 10 10
16 9 10 10 2 0 1 9 10 9
17 9 10 10 1 0 1 9 10 10

18 5 10 6 8 0 4 4 10 5 a S2: All ratings by S2 inconsistent with the page characteristics; page is a
large table with several hyperlinks and a moderate amount of text

19 9 9 6 2 1 3 9 9 7
20 9 9 8 2 1 2 9 9 8
21 8 10 7 3 0 7 8 10 5
22 7 10 9 2 0 2 8 10 9
23 10 9 5 0 0 1 9 9 9
24 10 9 9 0 0 1 10 9 10

25 1 10 1 9 0 9 1 10 0 a S2: Ratings inconsistent with the page characteristic; page has a high number
of hyperlinks relative to page contents

26 1 10 1 9 0 10 1 10 0 a S2: Ratings inconsistent with the page characteristic; page has a high number
of hyperlinks relative to page contents

27 9 10 8 1 0 2 9 10 9
28 10 5 7 2 5 7 9 5 5
30 9 5 2 2 5 8 8 5 1
31 10 10 10 0 0 0 10 10 10
32 7 6 7 3 4 3 6 6 7
33 5 10 2 9 0 3 2 10 3
34 9 8 10 1 1 2 9 8 10
35 9 9 10 1 1 3 9 9 9

a – all 3 of subject’s ratings not used in computing average score
d – subject’s dual scale rating not used in computing average score

c - subject’s content scale rating not used in computing average score

100

Figure 36. Variation of page ratings with LW on the content, navigation and dual content/navigation ratings scales.

Table 4. Combining LW and PR × ILW thresholds to classify web pages as content or navigation.

0

2

4

6

8

10

12

0 0
0.0

1
0.0

1
0.0

1
0.0

3
0.0

3
0.0

3
0.0

4
0.0

7
0.0

7
0.0

8 0.1 0.1
1

0.1
4

0.1
7 0.4

Outgoing Hyperlinks:Word Count ratio (LW)

M
ea

n
P

ag
e

R
at

in
g

Content Scale Navigation Scale Dual Content/Navigation Scale

Sorted by LW Sorted by PR Sorted by PR×ILW

Page
ID

Mean
Content
Rating LW PR PR×ILW

Page
ID

Mean
Content
Rating LW PR PR×ILW

Page
ID

Mean
Content
Rating LW PR PR×ILW

31 10.00 0.00 0.16 6.20 2 5.00 0.14 7.65 7.30 2 5.00 0.14 7.65 7.30
15 10.00 0.00 0.19 6.14 8 6.67 0.07 2.04 5.55 31 10.00 0.00 0.16 6.20

3 10.00 0.00 0.15 2.63 4 7.67 0.17 1.85 3.27 15 10.00 0.00 0.19 6.14
28 7.33 0.01 0.18 3.80 1 5.00 0.09 1.12 3.48 12 8.67 0.01 0.41 5.95
12 8.67 0.01 0.41 5.95 35 9.33 0.07 0.80 3.44 23 8.00 0.01 0.18 5.84
22 8.67 0.01 0.18 3.77 11 1.00 0.34 0.78 1.51 8 6.67 0.07 2.04 5.55
17 9.67 0.01 0.17 3.86 7 8.00 0.08 0.77 3.12 24 9.33 0.01 0.17 5.05
23 8.00 0.01 0.18 5.84 34 9.00 0.04 0.63 3.88 13 9.00 0.02 0.34 4.68
24 9.33 0.01 0.17 5.05 9 1.00 0.40 0.60 1.23 34 9.00 0.04 0.63 3.88
13 9.00 0.02 0.34 4.68 10 9.00 0.05 0.56 3.37 17 9.67 0.01 0.17 3.86
14 7.67 0.03 0.23 2.65 6 2.00 0.07 0.53 2.80 28 7.33 0.01 0.18 3.80
21 8.33 0.03 0.17 2.57 12 8.67 0.01 0.41 5.95 22 8.67 0.01 0.18 3.77
16 9.67 0.03 0.18 2.61 13 9.00 0.02 0.34 4.68 1 5.00 0.09 1.12 3.48
32 6.67 0.03 0.15 2.15 30 5.33 0.11 0.29 1.62 35 9.33 0.07 0.80 3.44
27 9.00 0.03 0.20 2.58 14 7.67 0.03 0.23 2.65 10 9.00 0.05 0.56 3.37
20 8.67 0.04 0.15 1.85 27 9.00 0.03 0.20 2.58 4 7.67 0.17 1.85 3.27
34 9.00 0.04 0.63 3.88 15 10.00 0.00 0.19 6.14 7 8.00 0.08 0.77 3.12
10 9.00 0.05 0.56 3.37 23 8.00 0.01 0.18 5.84 6 2.00 0.07 0.53 2.80
35 9.33 0.07 0.80 3.44 28 7.33 0.01 0.18 3.80 14 7.67 0.03 0.23 2.65

8 6.67 0.07 2.04 5.55 22 8.67 0.01 0.18 3.77 3 10.00 0.00 0.15 2.63
6 2.00 0.07 0.53 2.80 16 9.67 0.03 0.18 2.61 16 9.67 0.03 0.18 2.61

*18 5.50 0.08 0.15 1.36 24 9.33 0.01 0.17 5.05 27 9.00 0.03 0.20 2.58
7 8.00 0.08 0.77 3.12 17 9.67 0.01 0.17 3.86 21 8.33 0.03 0.17 2.57
1 5.00 0.09 1.12 3.48 21 8.33 0.03 0.17 2.57 32 6.67 0.03 0.15 2.15

26 1.00 0.10 0.16 1.28 25 1.00 0.11 0.17 1.21 20 8.67 0.04 0.15 1.85
*30 5.33 0.11 0.29 1.62 33 5.67 0.14 0.17 1.08 *30 5.33 0.11 0.29 1.62
25 1.00 0.11 0.17 1.21 31 10.00 0.00 0.16 6.20 11 1.00 0.34 0.78 1.51

2 5.00 0.14 7.65 7.30 26 1.00 0.10 0.16 1.28 *18 5.50 0.08 0.15 1.36
*33 5.67 0.14 0.17 1.08 3 10.00 0.00 0.15 2.63 26 1.00 0.10 0.16 1.28
*19 8.00 0.16 0.15 0.97 32 6.67 0.03 0.15 2.15 9 1.00 0.40 0.60 1.23

4 7.67 0.17 1.85 3.27 20 8.67 0.04 0.15 1.85 25 1.00 0.11 0.17 1.21
11 1.00 0.34 0.78 1.51 18 5.50 0.08 0.15 1.36 *33 5.67 0.14 0.17 1.08

9 1.00 0.40 0.60 1.23 19 8.00 0.16 0.15 0.97 *19 8.00 0.16 0.15 0.97

101

Using the LW and PR × ILW thresholds mentioned above, we notice from Table 4 that using LW

alone, content pages 35, 8, 7, 1, 2, and 4 (shaded) would normally be classified as navigation pages because

their LW values are above the minimum threshold of 0.05. However, because the corresponding PR × ILW

values are above the 1.8 threshold value for classifying pages as content pages, these pages can be correctly

classified using the PR × ILW metric. On the other hand, navigation Page 6 which was correctly classified

using LW alone is now incorrectly classified using PR × ILW as a content page.

The shaded pages marked with an asterisk, “*” (30, 18, 33, and 19) could not be correctly classified as

content pages. We consider each of them in turn. Pages 18, 30 and 33 happen to be borderline content pages,

and they happen to have only 2 and 1 incoming links respectively. Page 19 on the other hand was rated very

highly as a content page by subjects, but both LW and PR × ILW failed to classify it as a content page. This

page too is linked to from only one other page in the website. In all 4 cases mentioned above, the PR score

was too low (because they had too few incoming links) to have made a large impact on the PR × ILW score

and so the pages continued to be classified as navigation. Because these pages are linked to from so few

pages, web users have very few occasions to ever reach them, and so not treating them as content or potentially

recommendable pages is actually desirable.

5.3. User Profiling Data

This section presents a summary of the distribution of user sessions that were extracted from the user access

logs, the transactions (or user behavior vectors) that were extracted from the sessions, and the distribution of

association rules mined from the transactions data, for various levels of the minimum rule support count.

Sessions and Transactions. Statistics on the number and size distribution of unique user sessions that

were extracted from the user access log are presented in Table 5, while Table 6 shows the distribution of

transactions following applications of the MFR heuristic, and the PR × ILW heuristic with LW threshold of

0.05 and PR × ILW threshold of 1.8. As can be seen from Table 6, the PR × ILW heuristic resulted in a

reduction of the average transaction vector length, a desirable property for the application of association rule

mining algorithms.

Association Rules. Both the joinless and classical apriori algorithms yielded the same association

rules as expected, and so there was no question of evaluating accuracy. Table 7 shows the number of

association rules discovered, and the number of rows of the association rules matrix for LW and PR × ILW

thresholds of 0.05 and 1.8 respectively, and for various values of minimum support count.

102

Table 5. Distribution of sessions discovered in user access logs.

Table 6. Distribution of transactions discovered in user sessions using MFR alone and both MFR and PR × ILW for PR
and PR × ILW thresholds of 0.05 and 1.8.

Session length Count Session length Count Session length Count
1 269486 13 277 41-45 68
2 13496 14 224 46-50 53
3 7516 15 185 51-75 106
4 4348 16 163 76-100 49
5 2775 17 144 101-200 51
6 1978 18 101 201-300 31
7 1372 19 105 301-400 47
8 974 20 64 401-500 20
9 701 21-25 289 501-750 33

10 576 26-30 177 751-1000 59
11 421 31-35 119 1001-2000 75
12 349 36-40 83 2001-3000 3

Session Count: 306513
Mean session Length: 1.31

Transaction Length Using MFR heuristic Using MFR and PR × ILW
2 12041 180377
3 7461 34203
4 4296 11183
5 2805 4926
6 1806 2735
7 1341 492
8 868 226
9 615 155

10 536 118
11–15 1363 234
16–20 678 105
21–25 510 78
26–30 587 51
31–40 804 58
41–50 551 33
51–75 909 4

76–100 359 0
101–150 222 0
151–200 114 0

Total number of transactions 37866 234979
Mean transaction length 9.53 2.42

103

Table 7. Distribution of association rule count and association rule matrix size for various values of minimum support
count

5.4. Evaluation of Joinless Apriori Algorithm

One of the contributions of this research has been the development of a new apriori algorithm that avoids the

join step in the classical apriori algorithm. In Section 4.3, it was demonstrated that both the classical and the

new algorithms are equivalent in that they result in the same association rules, and a procedure to evaluate the

new algorithm by comparing it with the classical algorithm was presented in Section 4.3.4. This section

presents the evaluation results.

The distributions of execution time and minimum support count for the joinless and classical apriori

algorithms are shown in Figure 37 ((a) and (b)). The corresponding variation in average rule length with

minimum support count is shown in Figure 37c. Figure 38 shows the typical variation of average execution

time per rule with rule length. Figure 39 shows the typical variation of total execution time as a function of

rule length for the joinless and classical apriori algorithms.

As can be seen from Figure 37 (a), and (b), for both the joinless and classical apriori algorithms, the

execution time increases with average association rule length (see each of the curves in the figure); this is

expected. In the joinless algorithm however, the execution time is fairly constant for different values of

minimum rule support count and the same average rule length. Intuitively, one would expect the execution

time to decrease with increase in the minimum support count (as is the case with the classical algorithm

(Figure 37 (b)), since larger support threshold translate to fewer rules generated. We also notice from Figure

37 (a) and (b) that the joinless apriori algorithm performs much better than the classical algorithm for small

values of minimum support count when a large number of rules are generated (see execution times), but the

classical algorithm performs slightly better for large values of minimum support count (when a smaller number

of rules are generated). The reason for this is related to the fact that the join step is a critical factor in the

classical algorithm: the smaller the number of rules generated, the smaller the sizes of tables resulting from the

join, and the better the performance.

 Minimum support count
 1 2 12 24 59 118 235
No of association rules 99426 86477 50120 41046 33403 26285 16293
No of rows in association rules matrix 50094 37145 7374 3691 1678 927 388

104

Figure 37. Variation of execution time with minimum support count for (a) joinless apriori algorithm and (b) classical
apriori algorithm. Vaiation of corresponding average rule length with minimum support count (c).

0
10

20
30
40
50

60
70

1 2 12 24 59 118 235

Minimum support count

E
xe

cu
tio

n
tim

e
(s

)

R5,s R6,s R7,s R8,s R9,s R10,s

0

50

100
150

200

250

300

1 2 12 24 59 118 235

Minimum support count

E
xe

cu
tio

n
tim

e
(s

)

R5,s R6,s R7,s R8,s R9,s R10,s

0

0.5

1

1.5

2

1 2 12 24 59 118 235

Minimum support count

M
ea

n
ru

le
 a

nt
ec

ed
en

t
le

ng
th

R5,s R6,s R7,s R8,s R9,s R10,s

(c)

(a)

(b)

105

Figure 38. Variation of average generation time per rule with rule length for R10,1.

Figure 39. Variation of execution time with rule length for R10,1.

For both the joinless and classical apriori algorithms, the time it takes to generate a single association

rule increases exponentially with the length of the rule (see Figure 38). This may initially suggest that both

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

1 2 3 4 5 6 7 8

Rule antecedent length

Ti
m

e
pe

r r
ul

e
(s

)

Joinless Apriori Algorithm Classical Apriori Algorithm

0
20
40
60
80

100
120
140

1 2 3 4 5 6 7 8 9

Rule antecedent length

To
t.

tim
e

(s
)

Classical Apriori Algorithm Joniless Apriori Algorithm

106

algorithms face an explosion in computational time as longer rules are generated. This is however, not the

case as we saw in Figure 37 (a) and (b). The reason for this is the fact that number of these expensive, longer

rules is small.

The relative time efficiencies of the joinless and classical apriori algorithms for different rule lengths

are illustrated in Figure 39. As can be seen from the figure, the classical apriori algorithm performs much

worse than the joinless algorithm when the rule length is 2, while the performance of the classical apriori

algorithms is slightly better for higher rule lengths. The shape of the classical apriori algorithm curve can be

explained as follows: the first pass of the algorithm is relatively inexpensive, involving simply a count of 1-

itemsets in the database; the second pass is very expensive because it involves a join; subsequent passes turn

out to be progressively less expensive because the joins progressively become relatively inexpensive as the

apriori property is used to prune the input to the join.

5.5. Evaluation of CLARANS in High Dimensional Space

In this section, we present an evaluation of the CLARANS clustering algorithm. We recall that the data that

were used were simulated documents in high-dimensional document spaces. The procedure to generate these

documents, which were divided into 2 groups R′ and R′′ (respectively with high and low intra-cluster

similarities) is outlined in Section 4.4.4. The evaluation is done in two stages. In the first stage, we calibrate

the algorithm for the available data by determining optimal values for the two CLARANS parameters:

maxneighbors, the number of neighboring nodes that need to be checked for a node with a lower cost before

the algorithm concludes that the current node is a local minimum, and numlocal, the number of times the

algorithm should iterate before concluding that the current set of medoids is the global minimum (Section

5.5.1).

Following the calibration of CLARANS, we present evaluation results on the performance of the

algorithm (Section 5.5.2). We nwxt illustrate the behavior of CLARANS on the datasets under study, and then

compare the efficiency and effectiveness of CLARANS with respect to the PAM and CLARA clustering

algorithms.

5.5.1. Calibration of CLARANS

Parameter maxneighbors. The distribution of mean execution time and mean cluster dissimilarity for

different values of parameter maxneighbors in the CLARANS algorithm, using data sets R′1100,k and R′4500,k, is

shown in Figure 40. Figure 41 shows the same results for data sets data sets R′′1100,k and R′′4500,k. Parameter

numlocal was set to a high value of 10, and so the execution times and cluster dissimilarities were averaged

107

over 10 iterations of the algorithm. The number of neighboring nodes examined was not allowed to exceed

10000 because of the computational costs that would be involved otherwise; that accounts for the leveling off

of execution times for data sets R′4500,k and R′′4500,k.

As can be seen from these results, the trend in cluster dissimilarities experiences only a slight decrease

with increasing values of parameter maxneighbors, while execution time increases exponentially. So the main

factor in the choice of parameter maxneighbors was execution time. The value 3.5% of total number of

neighboring nodes to any medoid (k(n-k), which evaluates to a maximum value of 3.5% of 60(4500-60), a

value close to 10000), was chosen as optimal.

Parameter numlocal. The distribution of mean execution time and mean cluster dissimilarity for

various values of parameter numlocal for a fixed value of parameter maxneighbors set to 3.5% k(n-k), using

data sets R′1100,k and R′4500,k, is shown in Figure 42. Figure 43 shows the same results for data sets data sets

R′′1100,k and R′′4500,k. As in the case of determination of parameter maxneighbors, the main factor in the choice

of parameter maxneighbors was execution time. A value of 2 for parameter numlocal was judged to be

appropriate first because it is greater than 1 (meaning the algorithm has the opportunity for at least a second

iteration to search for better clusters, and second because the cluster dissimilarity values do not change much

for larger values of parameter numlocal.

108

Figure 40. Determination of CLARANS parameter maxneighbors. Variation of execution time and mean cluster
dissimilarity with percentage of neighboring nodes checked (parameter numlocal set to 10) for: (a) dataset R′1100,k; (b)
dataset R′4500,k. The execution times in the second graph level off when the maximum value of maxneighbors (10000) is
encountered.

0

20

40

60

80

100

120

140

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 100

Percentage of neighboring nodes used to define parameter maxneighbors
(maximum of 10000 neighbors)

M
ea

n
ex

ec
ut

io
n

tim
e

(s
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n
cl

us
te

r d
is

si
m

ila
rit

y

Time R'1100,10 Time R'1100,20 Time R'1100,30 Time R'1100,40
Dissim R'1100,10 Dissim R'1100,20 Dissim R'1100,30 Dissim R'1100,40

0

200

400

600

800

1000

1200

1400

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 100
Percentage of neighboring nodes used to define parameter maxneighbors

(maximum of 10000 neighbors)

M
ea

n
ex

ec
ut

io
n

tim
e

(s
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n
cl

us
te

r d
is

si
m

ila
rit

y

Time R'4500,15 Time R'4500,30 Time R'4500,45 Time R'4500,60
Dissim R'4500,15 Dissim R'4500,30 Dissim R'4500,45 Dissim R'4500,60

(a)

(b)

109

Figure 41. Determination of CLARANS parameter maxneighbors. Variation of execution time and mean cluster
dissimilarity with percentage of neighboring nodes checked (parameter numlocal set to 10) for: (a) dataset R′′1100,k; (b)
dataset R′′4500,k. The execution times in the second graph level off when the maximum value of maxneighbors (10000) is
encountered.

0

20

40

60

80

100

120

140

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 100

Percentage of neighboring nodes used to define parameter maxneighbors
(maximum of 10000 neighbors)

M
ea

n
ex

ec
ut

io
n

tim
e

(s
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n
cl

us
te

r d
is

si
m

ila
rit

y

Time R''1100,10 Time R''1100,20 Time R''1100,30 Time R''1100,40
Dissim R''1100,10 Dissim R''1100,20 Dissim R''1100,30 Dissim R''1100,40

(a)

0

200

400

600

800

1000

1200

1400

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 100

Percentage of neighboring nodes used to define parameter maxneighbors
(maximum of 10000 neighbors)

M
ea

n
ex

ec
ut

io
n

tim
e

(s
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n
cl

us
te

r d
is

si
m

ila
rit

y

Time R''4500,15 Time R''4500,30 Time R''4500,45 Time R''4500,60
Dissim R''4500,15 Dissim R''4500,30 Dissim R''4500,45 Dissim R''4500,60

(b)

110

Figure 42. Variation of execution time and mean cluster dissimilarity, versus numlocal (parameter maxneighbors set to
3.5% of number of neighboring nodes – k(n-k)) for: (a) dataset R′1100,k; (b) dataset R′4500,k.

-1

1

3

5

7

9

11

13

15

1 2 3 4

Value of variable numloc

E
xe

cu
tio

n
tim

e
(s

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n
cl

us
te

r d
is

si
m

ila
rit

y

Time R'1100,10 Time R'1100,20 Time R'1100,30 Time R'1100,40
Dissim R'1100,10 Dissim R'1100,20 Dissim R'1100,30 Dissim R'1100,40

0

100

200

300

400

500

600

700

800

1 2 3 4

Value of variable numloc

E
xe

cu
tio

n
tim

e
(s

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n
cl

us
te

r d
is

si
m

ila
rit

y

Time R'4500,15 Time R'4500,30 Time R'4500,30 Time R'4500,60
Dissim R'4500,15 Dissim R'4500,30 Dissim R'4500,45 Dissim R'4500,60

(a)

(b)

111

Figure 43. Variation of execution time and mean cluster dissimilarity, versus numlocal (parameter maxneighbors set to
3.5% of number of neighboring nodes – k(n-k)) for: (a) dataset R′′1100,k; (b) dataset R′′4500,k.

-1

1

3

5

7

9

11

13

15

1 2 3 4
Value of variable numloc

E
xe

cu
tio

n
tim

e
(s

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n
cl

us
te

r d
is

si
m

ila
rit

y

Time R''1100,10 Time R''1100,20 Time R''1100,30 Time R''1100,40
Dissim R''1100,10 Dissim R''1100,20 Dissim R''1100,30 Dissim R''1100,40

0

100

200

300

400

500

600

700

800

1 2 3 4

Value of variable numloc

E
xe

cu
tio

n
tim

e
(s

)

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7
M

ea
n

cl
us

te
r d

is
si

m
ila

rit
y

Time R''4500,15 Time R''4500,30 Time R''4500,45 Time R''4500,60
Dissim R''4500,15 Dissim R''4500,30 Dissim R''4500,45 Dissim R''4500,60

(a)

(b)

112

5.5.2. Performance of CLARANS

Performance on Data Sets. A comparison of the efficiency (execution times) and effectiveness (average

dissimilarity values) of CLARANS on the datasets R′1100,k, R′4500,k, R′′1100,k, and R′′4500,k is presented in Table 8.

The following observations can be made from the results.

• The quality of clusters discovered is comparable for different values of the maxneighbors

parameter

• CLARANS is more effective (lower dissimilarity scores) when the clusters are more distinct

(datasets R′n,k) than when they are not (datasets R′′n,k), and more so for smaller values of n

and k

• The times required to generate clusters increases for increasing values of parameter

maxneighbors (this is expected) and are comparable for datasets R′n,k and datasets R′′n,k

Comparison of CLARANS to PAM and CLARA

Effectiveness. The distributions of average dissimilarities of discovered clusters using CLARA,

CLARANS and PAM on datasets R′1100,k and R′′1100,k are presented in Figure 44 (a) and using data sets R′4500,k

and R′′4500,k, in Figure 44 (b). The distributions suggest that CLARANS is more effective (lower dissimilarity

scores) than both CLARA and PAM; the effectiveness of CLARA and PAM on the other hand are about equal.

Efficiency. Table 9 shows the execution times of CLARA, CLARANS and PAM on datasets R′n,k and

R′′n,k. For each of the algorithms, execution time increases with n and with k. Comparing efficiency across

algorithms, we see that CLARA is much better than both CLARANS and PAM; CLARANS in turn is much

better than PAM.

113

Table 8. Comparison of performance (execution times and average cluster dissimilarities) of CLARANS on datasets R′n,k
and R′′n,k.

Number of clusters (k) Number of clusters (k)
k=10 k=20 k=30 k=40 k=15 k=30 k=45 k=60

Time
(s)

Avg.
Dissim.

Time
(s)

Avg.
Dissim.

Time
(s)

Avg.
Dissim.

Time
(s)

Avg.
Dissim.

Time
(s)

Avg.
Dissim.

Time
(s)

Avg.
Dissim.

Time
(s)

Avg.
Dissim.

Time
(s)

Avg.
Dissim.

M
ax

ne
ig

hb
or

s
(%

)

R’1100,k R’4500,k
0.5 0 0.44 0 0.51 0 0.57 1 0.54 13 0.55 35 0.61 66 0.63 70 0.62

1 0 0.41 1 0.52 2 0.58 2 0.58 44 0.54 80 0.61 161 0.63 249 0.62
1.5 1 0.41 3 0.51 4 0.57 4 0.56 61 0.5 148 0.6 181 0.62 318 0.62

2 1 0.41 4 0.51 5 0.57 8 0.54 70 0.54 207 0.6 319 0.62 482 0.61
2.5 2 0.42 5 0.48 6 0.58 14 0.55 80 0.49 279 0.59 445 0.59 569 0.63

3 2 0.41 8 0.49 12 0.55 12 0.55 117 0.52 260 0.59 447 0.61 786 0.62
3.5 3 0.4 9 0.46 16 0.53 17 0.54 135 0.51 331 0.6 618 0.61 828 0.61

4 4 0.4 6 0.51 15 0.56 24 0.51 142 0.51 390 0.58 598 0.61 863 0.6
4.5 4 0.39 9 0.46 18 0.56 22 0.52 139 0.53 422 0.59 754 0.62 1109 0.6

5 3 0.41 11 0.5 20 0.54 31 0.56 178 0.46 534 0.57 901 0.57 953 0.61
5.5 5 0.37 12 0.46 26 0.55 26 0.52 177 0.49 506 0.59 921 0.6 840 0.62

6 6 0.41 14 0.47 21 0.53 39 0.56 198 0.51 502 0.6 1081 0.61 962 0.61
6.5 6 0.4 14 0.44 25 0.56 41 0.51 208 0.5 492 0.59 954 0.61 1006 0.6

7 7 0.42 14 0.47 28 0.56 44 0.54 264 0.5 777 0.58 945 0.61 872 0.62
7.5 7 0.41 10 0.51 30 0.54 45 0.55 242 0.5 572 0.59 913 0.61 1221 0.61

8 7 0.39 15 0.49 35 0.53 56 0.52 263 0.52 583 0.57 814 0.6 1049 0.61
8.5 7 0.39 17 0.5 33 0.55 41 0.54 283 0.51 522 0.61 838 0.61 886 0.62

9 8 0.41 20 0.46 36 0.54 54 0.54 294 0.51 705 0.58 857 0.61 1021 0.63
9.5 8 0.4 20 0.44 40 0.53 59 0.53 329 0.53 680 0.58 779 0.61 988 0.59
10 10 0.42 24 0.49 41 0.56 48 0.51 335 0.5 684 0.59 883 0.61 1020 0.62

100 74 0.41 78 0.48 114 0.53 118 0.52 567 0.5 732 0.6 998 0.61 1124 0.61
 R’’1100,k R’’4500,k

0.5 0 0.57 0 0.62 0 0.6 1 0.61 19 0.62 37 0.64 60 0.66 76 0.66
1 0 0.56 1 0.58 1 0.61 2 0.6 33 0.62 61 0.66 146 0.65 235 0.65

1.5 0 0.59 2 0.59 5 0.59 4 0.6 54 0.62 136 0.65 236 0.65 400 0.65
2 1 0.56 2 0.61 4 0.59 9 0.61 65 0.61 199 0.65 376 0.64 608 0.64

2.5 1 0.57 3 0.6 7 0.61 11 0.59 92 0.61 225 0.65 392 0.65 699 0.64
3 3 0.53 5 0.56 9 0.61 15 0.61 106 0.62 237 0.63 434 0.65 779 0.63

3.5 2 0.58 7 0.56 14 0.57 18 0.57 107 0.61 268 0.63 499 0.64 1083 0.64
4 4 0.58 8 0.56 15 0.58 21 0.59 141 0.6 404 0.62 669 0.63 1022 0.63

4.5 3 0.57 7 0.59 14 0.56 27 0.6 196 0.61 358 0.65 636 0.64 949 0.62
5 5 0.58 12 0.55 20 0.59 30 0.55 166 0.6 455 0.64 867 0.64 1128 0.62

5.5 6 0.57 12 0.55 25 0.57 30 0.6 196 0.58 520 0.63 914 0.64 891 0.64
6 5 0.56 14 0.59 23 0.57 37 0.57 239 0.59 473 0.63 764 0.63 901 0.64

6.5 6 0.56 17 0.56 26 0.56 37 0.58 188 0.61 563 0.63 833 0.63 1130 0.63
7 6 0.58 14 0.57 24 0.6 46 0.57 217 0.61 702 0.64 833 0.64 1037 0.62

7.5 7 0.56 19 0.58 36 0.56 45 0.57 239 0.6 731 0.64 621 0.63 1100 0.62
8 7 0.53 17 0.57 30 0.56 52 0.57 268 0.6 642 0.63 767 0.62 950 0.64

8.5 8 0.57 16 0.55 32 0.58 56 0.55 292 0.6 654 0.62 759 0.64 893 0.64
9 10 0.53 15 0.52 33 0.56 54 0.58 295 0.58 626 0.63 798 0.63 1041 0.65

9.5 8 0.56 20 0.56 41 0.57 63 0.59 347 0.61 651 0.63 880 0.64 989 0.65
10 8 0.54 23 0.54 40 0.52 64 0.59 371 0.6 795 0.62 821 0.64 1192 0.62

100 59 0.52 87 0.49 116 0.54 112 0.58 479 0.57 726 0.61 706 0.63 1120 0.62

114

Figure 44. Comparison of mean intra-cluster similarities of CLARANS, CLARA, and PAM for: (a) datasets R’1100,k &
R’’1100,k and (b) R’4500,k & R’’4500,k.

Table 9. Mean execution time for CLARANS, CLARA, and PAM for datasets Rn,k.

Execution time (s) Execution time (s)
Dataset CLARANS CLARA PAM Dataset CLARANS CLARA PAM
R’1100,10 1 0.15 84 R’’1100,10 1 0.14 84
R’1100,20 2 0.5 169 R’’1100,20 2 0.5 169
R’1100,30 6 1.31 255 R’’1100,30 5 1.28 255
R’1100,40 6 2.58 343 R’’1100,40 9 2.65 341
R’4500,15 45 0.35 ~2.3hr R’’4500,15 43 0.37 ~2.3hr
R’4500,30 148 1.48 ~5.3hr R’’4500,30 137 1.47 ~5.3hr
R’4500,45 241 4.1 ~7 hr R’’4500,45 203 8.87 ~7 hr
R’4500,60 397 8.95 ~9.3hr R’'4500,60 307 8.44 ~9.3hr

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R'1100,10 R'1100,20 R'1100,30 R'1100,40 R''1100,10 R''1100,20 R''1100,30 R''1100,40

Clustering method and dataset

M
ea

n
in

tra
cl

us
te

r d
is

si
m

ila
rit

y

CLARANS CLARA PAM

(a)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

R'4500,15 R'4500,30 R'4500,45 R'4500,60 R''4500,15 R''4500,30 R''4500,45 R''4500,60

Clustering method and dataset

M
ea

n
in

tra
cl

us
te

r d
is

si
m

ila
rit

y

CLARANS CLARA PAM

(b)

115

5.6. Evaluation of Collaborative Filtering-based Prediction Models

This section presents an evaluation of the effectiveness of prediction models for user interests, using

collaborative filtering techniques applied to the mined association rules. As discussed in Section 4.5, the

evaluation data were the association rules matrix derived from the individual association rules that were mined

from the user access logs.

As discussed in Section 4.5, two collaborative filtering models were studied: Models I used the center-

based approach to compute neighborhood vectors, and Model II used the aggregate-based approach. Model II

was found to be very expensive in terms of computation time and accuracy, while the results of Model I were

promising.

We recall that prediction of a current user’s interest involved the following steps:

• Determination of nearest neighboring navigation vectors

• Computation of a recommendation score for each of the pages of the web site using either (1)

a simple average of the scores of the neighboring vector ratings, or (2) a weighted average,

which computed the average of the neighboring vector scores, weighted by the cosine

similarity between the current user’s navigation vector and the neighboring navigation vector

Evaluation of the predictions involved setting different cosine similarity thresholds for a navigation

behavior vector to belong to the current neighborhood, computing the mean prediction error for all the test data

vectors, and selecting the similarity threshold that resulted in the smallest error.

5.6.1. Collaborative Filtering Prediction Model I

The distribution of mean absolute errors for different thresholds of the cosine similarity between the active

user’s navigation vector and the nearest neighbor navigation vectors for Collaborative Filtering Model I using

average confidence values to compute predictions are shown in Figure 45 (a); Figure 45 (b) shows the

distribution of the corresponding standard deviations of error. Figure 46 (a) and (b) show similar distributions

when weighted average confidence values were used to compute the predictions.

116

Figure 45. (a) Mean absolute errors on prediction of user interests vs. cosine similarity thresholds for various values of
association rule minimum support using the center-based neighborhood formation scheme for predictions computed using
average of neighborhood vectors; (b) corresponding standard deviations of error.

(a)

(b)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Cosine similarity threshold of source and target navigation vectors

S
ta

nd
ar

d
de

vi
at

io
n

of
 e

rro
r

Minimum support count = 1 Minimum support count = 2 Minimum support count = 12
Minimum support count = 24 Minimum support count = 59 Minimum support count = 118
Minimum support count = 235

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Cosine Similarity Threshold of source and target navigation
vectors

M
ea

n
Ab

so
lu

te

Pr
ed

ic
tio

n
Er

ro
r

Minimum support count = 1 Minimum support count = 2 Minimum support count = 12
Minimum support count = 24 Minimum support count = 59 Minimum support count = 118
Minimum support count = 235

117

Figure 46. (a) Mean absolute errors on prediction of user interests vs. cosine similarity thresholds for various values of
association rule minimum support using the center-based neighborhood formation scheme for predictions computed using
weighted average of neighborhood vectors; (b) corresponding standard deviations of error.

The variation in prediction errors is similar in both cases, and had the following characteristics:

(a)

(b)

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Cosine Similarity Threshold of source and target navigation vectors

M
ea

n
A

bs
ol

ut
e

P
re

di
ct

io
n

E
rro

r
Minimum support count = 1 Minimum support count = 2 Minimum support count = 12
Minimum support count = 24 Minimum support count = 59 Minimum support count = 118
Minimum support count = 235

0

0.0005

0.001

0.0015

0.002

0.0025

0.0
5 0.1 0.1

5 0.2 0.2
5 0.3 0.3

5 0.4 0.4
5 0.5 0.5

5 0.6 0.6
5 0.7 0.7

5 0.8 0.8
5 0.9 0.9

5

Cosine similarity threshold of source and target navigation vectors

S
ta

nd
ar

d
de

vi
at

io
n

of

er
ro

r

Minimum support count = 1 Minimum support count = 2 Minimum support count = 12
Minimum support count = 24 Minimum support count = 59 Minimum support count = 118
Minimum support count = 235

118

• High prediction errors for small and large values of cosine similarity threshold, and a dip in

the prediction errors for cosine similarity thresholds between these extremes

• Prediction error consistently lower for association rule matrices computed from association

rules with low minimum support counts than from rules with high minimum support count

• Minimum mean prediction error occurred in both cases when the cosine similarity threshold

was 0.8

The standard deviations of mean prediction error were fairly constant for small and large values of

cosine similarity threshold, but decreased from high values to a minimum at the 0.8 cosine similarity threshold

for the same association rules (those with low minimum support count) that resulted in low prediction errors.

This was highly desirable.

To summarize, the optimal prediction models using the center-based neighborhood scheme had the

following properties:

• Association rules were generated with a minimum support count of 1

• Only neighborhood vectors with a cosine similarity threshold equal to or greater that 0.8 were

used in the computation of predictions of user interests

Comparison of Predictions Computed Using Average and Weighted Average Values for Collaborative
Filtering Model I

Consider a model that predicts test (or target) data from training data. Assuming that the data can be

classified as low, medium and high, Figure 47 illustrates the different predictions that the model can make for

given target values. The ideal model would predict low values if the target value were low, medium values for

medium target values, and high values for high target values (i.e., the shaded regions in the diagram). In the

following paragraphs, we compare the predictions computed using the average and weighted average

confidence values by comparing the results of the models to Figure 47.

Figure 47. Illustrating regions of operation of a prediction model. The shaded cells show the desired region of operation.
All other cells within the thick borders are labeled with the prediction errors.

Figure 48 shows the distribution of the prediction scores using training data alone, for known test

(target) data using simple averages of neighborhood training data confidence scores to compute the

Predicted Score
Low Medium High

Low DESIRED Prediction
HIGH

Prediction
TOO HIGH

Medium Prediction
LOW DESIRED Prediction

HIGH

Ta
rg

et
 S

co
re

High Prediction
TOO LOW

Prediction
LOW DESIRED

119

predictions. The row and column labels of the table begin from “0”, and increase in steps of 0.2, up to 1.0.

The address of each cell is of the form (target range, predicted range). Hence, Cell(0, 0) contains the number

of HTML pages that were predicted to have a score of “0” when the target score was “0”; Cell(0.2, 0.4) the

number of pages that were predicted to have a score of between 0.2 and 0.4 when the target score was between

0 and 0.2, etc. Each row in the figure comprised the following:

• The count of the target value that is being predicted

• The target value that is being predicted

• Counts of a range of predictions for the given target values

The following procedure was followed to generate the figure:

• For each test vector, the known target value for each component was noted and the corresponding

count incremented.

• The prediction vector for the given test vector was then computed, the vector components noted,

and the corresponding prediction counts incremented.

Figure 49 shows the same distributions as Figure 48, but with the counts replaced by their

corresponding percentages. Figure 50 and Figure 51 show similar distributions as Figure 48 and Figure 49, but

this time for predictions computed using weighted average scores of the neighborhood vectors. Comparing the

prediction results computed from the average and weighted average approaches, we see that the weighted

average approach fits better into the model depicted in Figure 47, suggesting that the weighted average model

is preferred over the simple average model. This observation was investigated further using the signal

detection theory approach. For each row of Figure 48 and Figure 50, the following table was generated,

 Actual prediction

True False

True TT TF Target
prediction False FT FF

where, for each target value T

Cell TT is the is the number of predictions P that are equal to T within a predetermined threshold h (i.e.

P = T ± hval | 0 ≤ hval ≤ h);

Cell TF is the number of predictions for T that are outside the threshold h, i.e., different from T ± hval

Cell FT is the number of non-target values NT whose predictions are within threshold h, (i.e. P ≠ NT ±

hval | 0 ≤ hval ≤ h); and

Cell FF is the number of non-target values whose predictions are outside threshold h, i.e., different from

T ± hval.

120

 Prediction

Count Ta
rg

et

0 .02 .04 .06 .08 .10 .12 .14 .16 .18 .20 .22 .24 .26 .28 .30 .32 .34 .36 .38 .40 .42 .44 .46 .48 .50 .52 .54 .56 .58 .60 .62 .64 .66 .68 .70 .72 .74 .76 .78 1
13703786 0 13666900 25736 4522 2013 1199 675 530 406 279 242 171 144 125 129 71 64 67 57 52 48 52 39 38 35 31 36 27 13 9 8 7 4 3 7 11 3 5 5 7 3 17

3427 .02 3099 255 21 16 8 6 2 2 1 2 2 1 2 2 1 2 2 1 1 1
1679 .04 1432 137 37 25 8 7 5 4 2 3 2 1 2 1 1 3 1 1 1 2
926 .06 717 86 56 21 10 5 4 5 3 3 2 1 2 1 2 2 1 1 1 2
629 .08 435 64 44 26 12 13 6 4 5 1 1 1 1 3 1 1 1 1 1 1 1 1 1 2
521 .1 331 39 35 27 20 14 9 12 6 3 4 1 1 1 1 1 2 1 1 3 2 1 1 2 1 1
395 .12 248 32 25 19 12 8 4 6 6 5 4 4 3 2 1 1 1 1 1 3 1 1 1 1 1 1 1
329 .14 172 25 22 25 18 15 6 6 6 5 3 2 2 2 4 2 1 1 1 1 1 1 1 1 1 1 1
325 .16 150 30 25 20 14 13 8 12 5 9 8 3 6 2 3 3 2 1 2 1 1 1 1 1 1 1
242 .18 128 16 17 8 8 6 5 9 5 6 4 1 3 4 2 3 2 2 1 2 2 1 1 3 1 1 1
336 .2 135 30 14 14 8 12 14 9 9 16 22 4 5 10 2 4 4 1 3 1 4 1 3 1 3 1 1 1 2
116 .22 60 8 3 4 1 2 3 5 4 4 2 2 2 1 2 2 1 1 2 1 1 1 1 1
394 .24 203 20 10 10 10 8 7 9 15 20 15 11 12 9 5 4 4 2 1 1 3 1 3 2 1 3 1 1 1 1 1
256 .26 87 18 10 10 9 8 6 3 8 10 14 20 10 6 5 8 3 4 3 2 3 1 1 1 1 2 1 1 1 1
125 .28 49 5 4 1 2 5 2 5 4 7 3 3 4 3 1 4 3 2 2 2 1 1 1 1 1 1 1 1 1 1
496 .3 86 25 13 18 17 15 14 18 32 27 30 37 26 24 20 32 10 13 3 2 4 4 5 2 2 6 1 1 1 2 1 2 1 1 1 1
81 .32 28 4 2 3 2 3 6 3 2 1 5 2 2 2 2 1 2 1 1 1 2 2 1 1

363 .34 100 22 15 12 10 6 9 10 13 16 9 9 11 5 14 11 20 18 6 6 8 6 3 2 2 4 2 3 3 1 1 1 4 3
94 .36 22 3 3 4 3 3 1 1 3 1 3 1 2 2 1 3 4 5 6 3 4 3 2 3 1 2 1 1 1 1 1 1

125 .38 34 4 6 6 5 2 4 3 7 6 6 11 3 2 2 1 2 2 1 1 1 2 2 1 1 3 1 1 1 1 2
282 .4 89 18 15 10 10 7 6 8 6 7 9 6 7 7 6 4 5 7 5 2 9 2 4 3 3 6 2 2 4 1 3 1 1 1 5 1 1
33 .42 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

102 .44 25 4 6 2 1 2 2 1 4 3 3 3 2 3 3 1 2 1 4 2 2 1 1 5 2 1 1 2 2 1 1 1 2 1 1 3
82 .46 26 5 4 2 3 1 1 2 2 2 1 3 3 1 2 1 1 3 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1
35 .48 9 2 3 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1

826 .5 380 30 18 13 12 13 7 11 7 10 6 6 10 12 11 13 16 13 14 18 16 12 16 23 22 27 12 10 6 2 7 6 4 5 8 6 3 2 6 3 8
6 .52 3 1 1

26 .54 11 2 1 1 2 1 1 2 1 1 1 1
89 .56 15 2 2 1 2 1 1 1 1 2 2 2 4 2 3 1 2 1 1 1 4 2 3 3 4 1 6 4 3 2 1 3 2 1
79 .58 19 3 4 2 4 1 1 3 1 1 1 2 2 1 1 1 1 2 2 1 2 1 2 2 1 3 1 1 4 1 1 1 2 1 3

186 .6 51 9 6 4 3 3 1 1 3 2 1 1 4 2 1 4 3 2 2 1 1 5 1 2 2 4 2 3 5 3 23 1 1 1 3 3 1 1 2 4 10
18 .62 6 1 1 1 1 1 1 1 1 1

109 .64 13 2 2 3 1 1 1 1 1 3 2 1 3 2 2 2 7 5 6 4 2 1 1 1 1 1 3 7 2 2 5 5 6 1 6
11 .66 2 1 1 1 1 1 1

668 .68 285 31 15 14 9 8 8 10 6 11 8 7 6 6 13 13 13 10 4 8 14 8 8 4 5 14 6 3 8 7 7 10 6 9 35 4 11 2 5 2 16
16 .7 5 1 1 1 1 1 2

184 .72 21 2 2 2 2 3 1 2 1 2 2 2 2 1 1 2 1 3 1 2 2 1 1 1 2 1 8 3 4 13 11 7 25 10 39
20 .74 5 1 2 1 2 1 1 3

304 .76 77 5 17 4 4 2 2 2 2 2 2 1 2 4 1 4 2 3 3 2 3 2 2 4 2 2 2 2 5 4 3 3 7 1 8 7 14 17 73
146 .78 116 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 8

3494 1 270 29 44 25 19 20 8 9 14 9 10 10 8 11 23 7 19 12 24 17 16 23 23 30 34 27 23 18 13 17 17 20 20 24 25 24 49 41 46 63 2352

Figure 48. Distribution of counts of target and prediction scores for Prediction Model I, based on average neighborhood scores.

121

 Prediction
Target 0 .02 .04 .06 .08 .10 .12 .14 .16 .18 .20 .22 .24 .26 .28 .30 .32 .34 .36 .38 .40 .42 .44 .46 .48 .50 .52 .54 .56 .58 .60 .62 .64 .66 .68 .70 .72 .74 .76 .78 1

0 1
.02 .90 .07 .01
.04 .85 .08 .02 .01
.06 .77 .09 .06 .02 .01 .01 .01
.08 .69 .10 .07 .04 .02 .02 .01 .01 .01
.10 .64 .08 .07 .05 .04 .03 .02 .02 .01 .01 .01 .01
.12 .63 .08 .06 .05 .03 .02 .01 .02 .02 .01 .01 .01 .01 .01 .01
.14 .52 .08 .07 .08 .05 .05 .02 .02 .02 .01 .01 .01 .01 .01 .01 .01
.16 .46 .09 .08 .06 .04 .04 .02 .04 .02 .03 .03 .01 .02 .01 .01 .01 .01 .01
.18 .53 .07 .07 .03 .03 .02 .02 .04 .02 .03 .02 .01 .02 .01 .01 .01 .01 .01 .01 .01 .01
.20 .40 .09 .04 .04 .02 .03 .04 .03 .03 .05 .07 .01 .01 .03 .01 .01 .01 .01 .01 .01 .01 .01
.22 .52 .07 .03 .04 .01 .01 .03 .04 .03 .03 .02 .01 .02 .01 .01 .02 .01 .01 .02 .01 .01 .01 .01 .01
.24 .51 .05 .03 .02 .03 .02 .02 .02 .04 .05 .04 .03 .03 .02 .01 .01 .01 .01 .01 .01 .01
.26 .34 .07 .04 .04 .04 .03 .02 .01 .03 .04 .05 .08 .04 .02 .02 .03 .01 .02 .01 .01 .01 .01 .01
.28 .39 .04 .03 .01 .01 .04 .02 .04 .03 .05 .03 .03 .03 .02 .01 .03 .02 .01 .02 .02 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01
.30 .17 .05 .03 .04 .03 .03 .03 .04 .07 .05 .06 .08 .05 .05 .04 .07 .02 .03 .01 .01 .01 .01 .01
.32 .35 .05 .02 .04 .02 .03 .07 .03 .03 .01 .06 .03 .02 .03 .03 .02 .02 .02 .01 .02 .02 .02 .01 .01
.34 .27 .06 .04 .03 .03 .02 .02 .03 .03 .04 .03 .02 .03 .01 .04 .03 .06 .05 .02 .02 .02 .02 .01 .01 .01 .01 .01 .01 .01 .01
.36 .24 .03 .03 .04 .03 .03 .01 .01 .03 .01 .04 .01 .02 .02 .01 .03 .05 .05 .06 .03 .04 .03 .02 .03 .01 .02 .01 .01 .01 .01 .01 .01
.38 .27 .03 .05 .05 .04 .02 .03 .03 .06 .05 .05 .09 .02 .01 .02 .01 .02 .02 .01 .01 .01 .02 .01 .01 .01 .02 .01 .01 .01 .01 .01
.40 .32 .06 .05 .04 .03 .02 .02 .03 .02 .02 .03 .02 .03 .02 .02 .01 .02 .03 .02 .01 .03 .01 .01 .01 .01 .02 .01 .01 .01 .01 .02
.42 .42 .01 .04 .03 .01 .03 .02 .02 .02 .01 .03 .01 .03 .03 .01 .01 .02 .02 .03 .03 .01 .01 .01 .02 .01 .03 .01 .01 .03 .02
.44 .25 .04 .06 .02 .01 .02 .02 .01 .04 .03 .03 .03 .02 .03 .03 .01 .02 .01 .04 .02 .02 .01 .01 .05 .02 .01 .01 .02 .02 .01 .01 .01 .02 .01 .01 .03
.46 .31 .06 .04 .02 .04 .02 .01 .02 .03 .02 .02 .03 .04 .01 .02 .01 .01 .03 .02 .01 .02 .01 .03 .01 .01 .02 .01 .02 .02 .01 .01 .01 .01 .01 .01
.48 .26 .05 .08 .04 .01 .01 .02 .01 .03 .02 .01 .02 .04 .03 .03 .04 .04 .01 .01 .04 .03 .01 .01 .07 .03 .03 .01 .02 .01 .01 .01
.50 .46 .04 .02 .02 .01 .02 .01 .01 .01 .01 .01 .01 .01 .01 .01 .02 .02 .02 .02 .02 .02 .01 .02 .03 .03 .03 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01
.52 .42 .05 .16 .05 .11 .05 .05 .05 .05
.54 .41 .01 .01 .06 .01 .01 .01 .01 .01 .03 .01 .01 .03 .01 .01 .06 .03 .03 .06 .01 .04 .03 .03 .05
.56 .17 .03 .02 .01 .03 .01 .01 .01 .01 .02 .02 .03 .04 .02 .04 .01 .02 .01 .01 .01 .04 .02 .03 .03 .05 .01 .07 .04 .04 .02 .01 .03 .02 .01
.58 .24 .04 .05 .03 .05 .02 .02 .03 .01 .01 .01 .02 .03 .01 .01 .02 .01 .02 .02 .01 .03 .01 .02 .03 .02 .04 .01 .01 .06 .02 .01 .01 .03 .02 .04
.60 .28 .05 .03 .02 .02 .02 .01 .01 .02 .01 .01 .02 .01 .01 .02 .02 .01 .01 .01 .01 .03 .01 .01 .01 .02 .01 .02 .03 .02 .13 .01 .01 .01 .02 .02 .01 .01 .01 .02 .05
.62 .36 .02 .04 .04 .04 .02 .02 .04 .02 .02 .04 .02 .02 .02 .02 .02 .02 .04 .04 .02 .08 .02 .06
.64 .12 .02 .02 .03 .01 .01 .01 .01 .01 .03 .02 .01 .02 .02 .02 .02 .07 .04 .06 .03 .02 .01 .01 .01 .01 .01 .03 .06 .02 .02 .05 .05 .05 .01 .06
.66 .18 .03 .03 .03 .03 .09 .03 .03 .03 .03 .06 .06 .12 .03 .03 .06 .06 .03 .03
.68 .43 .05 .02 .02 .01 .01 .01 .01 .01 .02 .01 .01 .01 .01 .02 .02 .02 .01 .01 .01 .02 .01 .01 .01 .01 .02 .01 .01 .01 .01 .02 .01 .01 .05 .01 .02 .01 .02
.70 .29 .06 .04 .04 .04 .02 .02 .02 .02 .02 .02 .02 .02 .04 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .12
.72 .12 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .04 .02 .02 .07 .06 .04 .14 .06 .21
.74 .25 .02 .02 .02 .05 .02 .02 .02 .02 .02 .02 .02 .08 .02 .02 .02 .02 .03 .02 .08 .05 .03 .17
.76 .25 .02 .05 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .02 .01 .01 .01 .02 .03 .02 .05 .06 .24
.78 .79 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .06

1.00 .08 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .02 .67
Figure 49. Distribution of percentages of target and prediction scores for Prediction Model I, based on average neighborhood scores.

122

 Prediction

Count Ta
rg

et

0 .02 .04 .06 .08 .10 .12 .14 .16 .18 .20 .22 .24 .26 .28 .30 .32 .34 .36 .38 .40 .42 .44 .46 .48 .50 .52 .54 .56 .58 .60 .62 .64 .66 .68 .70 .72 .74 .76 .78 1

18544949 0 18531007 9469 2140 992 495 273 189 117 84 59 34 29 21 10 7 7 6 3 1 1 1 1 1
3520 .02 3367 129 15 5 2 2
1677 .04 1490 122 30 10 9 7 4 2 1 1
923 .06 747 78 39 11 13 11 5 6 4 3 2 1 1 1
623 .08 439 39 51 23 17 8 6 8 9 6 5 4 1 2 1 1 1
507 .1 319 21 41 31 18 18 16 11 5 4 2 1 3 2 4 2 1 1 2 1 2 1
378 .12 225 8 26 24 17 10 12 13 6 7 5 6 1 1 3 2 1 1 1 1 1 1 1 1 1 1
336 .14 166 3 19 23 23 20 18 15 5 11 5 3 5 2 3 1 3 1 1 3 1 2 1 3 1
330 .16 165 5 14 20 15 16 19 16 11 11 6 5 4 3 5 2 2 2 1 1 2 1 1 1 1
248 .18 125 5 12 8 14 14 10 9 9 6 8 5 3 5 2 1 2 2 1 1 4 1 1
362 .2 151 2 6 6 14 17 21 21 20 26 11 13 5 5 6 4 2 5 3 2 1 4 1 1 1 1 2 4 1 1 2 3
112 .22 55 1 3 2 2 2 3 5 6 3 4 4 2 2 4 3 3 2 1 1 1 1 1 1
385 .24 96 4 5 5 9 10 19 51 88 22 12 9 8 8 3 2 4 2 3 3 6 1 1 1 1 2 4 1 1 2
263 .26 84 3 4 6 6 12 12 22 24 11 15 10 10 6 2 3 4 4 2 2 6 2 2 1 1 1 4 1 3
134 .28 46 1 1 3 3 5 10 9 7 5 7 7 4 2 4 1 2 1 2 4 1 1 1 1 1 1 1
483 .3 83 1 2 5 6 16 21 52 62 58 31 20 38 21 7 3 8 4 4 2 13 4 3 2 2 1 4 1 1 2 1 3
84 .32 24 1 1 1 2 2 4 4 4 3 4 5 6 2 6 3 1 1 1 1 1 1 1 1
391 .34 100 2 3 2 5 6 10 9 17 20 26 22 17 28 17 12 13 9 8 4 9 7 2 5 2 2 2 8 5 5 3 2 1 1 8
85 .36 11 1 1 1 1 2 4 2 2 1 2 4 6 11 9 7 5 2 1 1 2 2 1 1 2
139 .38 31 1 1 1 3 1 4 5 8 12 13 5 7 5 3 5 2 4 2 7 1 2 1 1 2 1 3 2 2 1 1 3
280 .4 69 1 2 3 3 2 5 8 8 12 8 16 10 9 7 13 8 8 5 14 8 8 4 5 5 4 11 2 2 4 1 1 1 5 9
33 .42 13 1 1 1 1 1 1 1 1 2 1 2 2 2 1
101 .44 24 1 1 2 2 2 5 1 7 4 2 3 6 2 4 1 6 3 2 3 3 3 1 3 1 2 1 1 2
86 .46 20 1 2 4 4 2 3 2 3 2 3 4 3 3 2 1 2 3 5 3 2 2 1 2 2 1 2
39 .48 11 1 2 2 3 2 2 1 3 2 3 1 1 1 1
806 .5 107 1 1 3 2 3 3 2 5 8 13 10 13 15 16 19 24 37 77 50 66 42 34 55 48 26 19 29 12 10 15 6 4 6 8 2 3 1 1 14
6 .52 4 1 1

24 .54 5 1 1 1 1 1 1 1 1 1 1 1 2 3 1 1 1
92 .56 11 1 1 2 1 4 3 4 1 2 1 1 3 3 7 9 10 9 7 6 2 1 1 2
70 .58 18 1 1 1 1 1 1 1 2 1 1 2 1 1 4 3 3 4 2 1 3 6 4 2 1 1 1 1 1 2
181 .6 33 1 1 1 3 1 3 2 2 3 1 6 4 4 8 11 35 8 10 9 5 7 3 5 3 3 1 1 1 6
19 .62 7 1 1 1 1 2 1 2 1
110 .64 12 1 2 1 1 2 1 1 2 2 2 2 2 6 12 14 10 11 5 7 3 1 1 1 1 1 2 3
11 .66 3 1 1 1 1 1 1 1 1 1
672 .68 88 2 2 2 1 3 2 4 5 6 6 7 11 10 10 7 12 12 14 14 18 22 15 51 32 44 60 53 41 20 23 13 17 10 5 33
18 .7 5 1 1 1 1 1 1 1 1 1 1 1 1
197 .72 14 1 1 1 1 2 1 1 1 2 3 4 10 16 19 20 36 30 14 8 3 2 1 1 3
26 .74 6 1 1 1 1 2 1 2 4 1 1 1 1 1
270 .76 24 1 1 2 1 1 2 3 2 3 6 3 10 9 6 19 19 34 23 14 17 24 20 11 14
143 .78 6 1 1 2 1 1 3 1 1 3 1 5 13 55 37 7 1 1 3

6096 1 242 1 2 1 1 1 2 2 3 4 2 4 4 7 5 12 8 14 17 16 20 19 25 34 49 58 67 98 101 149 150 187 209 347 4233
Figure 50. Distribution of counts of target and prediction scores for Prediction Model I, based on weighted average neighborhood scores.

123

 Prediction
Target 0 .02 .04 .06 .08 .10 .12 .14 .16 .18 .20 .22 .24 .26 .28 .30 .32 .34 .36 .38 .40 .42 .44 .46 .48 .50 .52 .54 .56 .58 .60 .62 .64 .66 .68 .70 .72 .74 .76 .78 1.00

0 1.00
.02 .96 .04
.04 .89 .07 .02 .01 .01
.06 .81 .08 .04 .01 .01 .01 .01 .01
.08 .70 .06 .08 .04 .03 .01 .01 .01 .01 .01 .01 .01
.10 .63 .04 .08 .06 .04 .04 .03 .02 .01 .01 .01 .01
.12 .60 .02 .07 .06 .05 .03 .03 .03 .02 .02 .01 .02 .01 .01
.14 .49 .01 .06 .07 .07 .06 .05 .04 .01 .03 .01 .01 .01 .01 .01 .01 .01 .01 .01
.16 .50 .02 .04 .06 .05 .05 .06 .05 .03 .03 .02 .02 .01 .01 .02 .01 .01 .01 .01
.18 .51 .02 .05 .03 .06 .06 .04 .03 .03 .02 .03 .02 .01 .02 .01 .01 .01 .01
.20 .42 .02 .02 .04 .05 .06 .06 .05 .07 .03 .04 .01 .01 .02 .01 .01 .01 .01 .01 .01 .01 .01
.22 .49 .01 .03 .02 .02 .01 .03 .04 .05 .02 .03 .04 .02 .01 .04 .02 .03 .02 .01 .01 .01 .01 .01 .01
.24 .25 .01 .01 .01 .02 .03 .05 .13 .23 .06 .03 .02 .02 .02 .01 .01 .01 .01 .01 .02 .01 .01
.26 .32 .01 .02 .02 .02 .04 .05 .08 .09 .04 .06 .04 .04 .02 .01 .01 .02 .02 .01 .01 .02 .01 .01 .01 .02 .01
.28 .34 .02 .02 .04 .08 .06 .05 .04 .05 .05 .03 .02 .03 .02 .01 .01 .03 .01 .01 .01 .01
.30 .17 .01 .01 .03 .04 .11 .13 .12 .06 .04 .08 .04 .01 .01 .02 .01 .01 .03 .01 .01 .01 .01
.32 .29 .01 .01 .01 .03 .03 .05 .05 .05 .04 .05 .06 .07 .03 .08 .04 .01 .01 .02 .01 .01 .01 .01 .01
.34 .26 .01 .01 .01 .01 .01 .02 .02 .04 .05 .07 .06 .04 .07 .04 .03 .03 .02 .02 .01 .02 .02 .01 .01 .01 .02 .01 .01 .01 .02
.36 .13 .01 .02 .02 .01 .02 .04 .02 .02 .01 .02 .05 .07 .13 .11 .08 .06 .03 .02 .02 .02 .03 .01 .01 .03
.38 .22 .01 .01 .02 .01 .03 .04 .06 .08 .09 .04 .05 .04 .02 .03 .02 .03 .01 .05 .01 .02 .01 .01 .02 .01 .01 .02
.40 .25 .01 .01 .01 .01 .02 .03 .03 .04 .03 .06 .03 .03 .03 .05 .03 .03 .02 .05 .03 .03 .02 .02 .02 .01 .04 .01 .01 .02 .02 .03
.42 .39 .03 .01 .03 .03 .03 .03 .02 .04 .03 .01 .06 .03 .06 .01 .01 .01 .05 .05 .04 .01 .01
.44 .24 .01 .01 .02 .02 .02 .05 .01 .07 .04 .02 .03 .06 .02 .04 .01 .06 .03 .02 .03 .03 .03 .01 .03 .01 .02 .01 .01 .02
.46 .24 .02 .03 .05 .05 .02 .03 .03 .04 .03 .04 .05 .03 .04 .02 .02 .03 .03 .06 .04 .02 .02 .01 .02 .02 .01 .03
.48 .28 .01 .01 .01 .02 .01 .04 .04 .08 .05 .01 .06 .02 .09 .06 .08 .01 .03 .03 .03 .03 .01 .01
.50 .13 .01 .01 .02 .01 .02 .02 .02 .02 .03 .05 .10 .06 .08 .05 .04 .07 .06 .03 .02 .04 .01 .01 .02 .01 .01 .01 .02
.52 .58 .05 .05 .11 .05 .11 .05
.54 .19 .01 .01 .01 .01 .03 .03 .06 .03 .03 .03 .06 .04 .04 .04 .06 .07 .11 .04 .04 .03 .01 .01
.56 .12 .01 .01 .02 .01 .04 .03 .04 .01 .03 .01 .01 .03 .03 .08 .09 .11 .10 .08 .07 .02 .01 .01 .02
.58 .25 .01 .01 .01 .01 .01 .01 .02 .03 .01 .02 .03 .01 .01 .06 .04 .04 .06 .02 .02 .04 .08 .06 .02 .01 .01 .01 .01 .01 .02
.60 .18 .02 .01 .01 .01 .01 .02 .01 .03 .02 .02 .04 .06 .19 .04 .06 .05 .03 .04 .02 .03 .01 .02 .01 .03
.62 .37 .02 .02 .02 .02 .02 .04 .07 .04 .02 .02 .02 .05 .02 .11 .04 .09 .04 .02
.64 .11 .01 .02 .01 .01 .02 .01 .01 .02 .02 .02 .02 .02 .06 .11 .13 .09 .10 .05 .06 .02 .01 .01 .01 .01 .01 .02 .02
.66 .24 .06 .03 .06 .06 .06 .06 .06 .06 .03 .03 .06 .03 .12 .03
.68 .13 .01 .01 .01 .01 .01 .02 .01 .01 .01 .02 .02 .02 .02 .03 .03 .02 .08 .05 .06 .09 .08 .06 .03 .03 .02 .02 .01 .01 .05
.70 .30 .02 .04 .02 .02 .04 .02 .06 .02 .04 .06 .02 .04 .04 .06 .06 .04 .02 .04 .08
.72 .07 .01 .01 .01 .01 .01 .01 .02 .05 .08 .09 .10 .18 .15 .07 .04 .02 .01 .01 .01 .02
.74 .22 .01 .01 .01 .01 .01 .04 .03 .05 .04 .06 .04 .08 .15 .04 .05 .01 .04 .03 .01 .01 .01 .03
.76 .09 .01 .01 .01 .01 .01 .02 .01 .04 .03 .02 .07 .07 .13 .08 .05 .06 .09 .07 .04 .05
.78 .04 .01 .01 .02 .01 .02 .01 .03 .09 .39 .26 .05 .01 .02

1.00 .04 .01 .01 .01 .01 .02 .02 .02 .02 .03 .03 .06 .69
Figure 51. Distribution of percentages of target and prediction scores for Prediction Model I, based on weighted average neighborhood scores.

124

Figure 52. ROC curves for predictors of user interests based on average and weighted averages

Corresponding cells of the tables were then summed, and sensitivity and specificity derived from them

as follows:

• Sensitivity = TT/(TT + TF)

• Specificity = FF/(FF + FT)

Sensitivity and specificity were determined for 4 levels of threshold h: 0.04, 0.08, 0.12, and 0.16. The

resulting ROC curves are shown in Figure 52. As can be seen from the figure, the curve corresponding to the

weighted average predictor is closer to the left and upper borders, confirming our suspicion that it is a better

predictor than the predictor based on simple average of neighboring vector values.

5.6.2. Collaborative Filtering Prediction Model II

As was mentioned in Section 4.5, Prediction Model II computed user interests by using contributions for

neighborhood vectors generated user the aggregate-based scheme. Preliminary investigation of the model

showed that it was computationally too expensive, even after the following simplifications were made:

• A limit of 50 nearest neighboring vectors in a neighborhood

• Selection of a maximum of 250 items from the target data for the computation of predictions.

Table 10 for instance, shows the computation times for 3 iterations of the algorithm, using association rule

matrices computed with various minimum support counts.

Apart from the large computation times involved, accuracy of this model was also a problem, with all

predictions equal to, or close to zero. Because of these difficulties, this model was not pursued any further.

0.9988

0.999

0.9992

0.9994

0.9996

0.9998

1

0 0.0001 0.0002 0.0003 0.0004

1 - specificity

Se
ns

iti
vi

ty

By simple average By weighted average

125

Table 10. Association rule counts and computation times for 3 iterations of program used to compute predictions using
aggregate-based scheme for determination of KNN vectors.

 Minimum rule support count
 1 2 3 4 5 6 7
Rule count 99426 86477 50120 41046 33403 26285 16293
Computation time (min) 1172 814 126 60 40 36 25

126

6. CONCLUSIONS AND FUTURE DIRECTIONS

As mentioned in the Introduction, the objective of this research was to examine the design process of hyperlink

recommender systems that deduce user profiles by comparing their navigation behaviors to those of past users

of a web site, and propose improvements. This section presents the following: a summary of the approach

used – its strengths, weaknesses, and possible improvements; a summary of findings of the research; and

pointers to future directions of the work.

Approach. The underlying assumption of the work was that if users of a web site exhibit similar navigation

behaviors, then they must be interested in the same set of web pages. User navigation behaviors were deduced

by applying heuristics to determine user sessions from user access logs, and transactions (or user navigation

behaviors) within sessions. The transactions database was then mined to discover useful user navigation

behaviors, which were used as data in a collaborative filtering model for predicting the current user’s interests.

Determination of user navigation behaviors as described above is not new (see for example, Pirolli et

al. (1996), Pitkow (1997), and Chen (1996) for heuristics used in the determination of user navigation

behaviors. What is new is the way these navigation behaviors have been analyzed to predict user interests. In

work by and colleagues (Cooley et al., 1997, 1999), prediction was done by matching a window corresponding

to the last n pages visited by the user to identical patterns mined from server logs, and performing a simple

computation to determine prediction score. In this research, we have harnessed the power of collaborative

filtering to consider not only identical navigation patterns in the computation of prediction score, but also

similar navigation patterns, provided the similarity of these patterns to the current user’s navigation vector

exceeds a threshold.

The main advantages of using user access logs are their plentiful supply, which leads to a better

chance of discovering meaningful patterns within the data, and the fact that the user is spared the burden of

having to specify their profile to the system. The main disadvantages of this approach stem from the noisy

nature of the logs, and inaccuracies in the heuristics applied on them. Errors in the logs result from the

presence of caches at various levels between a user’s browser and the web server logs, which results in some

user requests not making it to the web server. The format of the log files used also affects the accuracy of the

heuristics. In this study for example, the log file was stored in the common log format, which is not as useful

as the extended common log format, which has two additional fields: the referer and user_agent fields. The

127

referer field indicates which URL a user had previously accessed before requesting the current page. This

information can be used to more correctly attribute page accesses to the correct user. Likewise, the user_agent

field, which refers to the generic name of browser from which a request is made, can be used to attribute the

correct pages to two or more users with similar navigation behaviors, but with different browsers. In spite of

the problems with the user access logs mentioned above, the association rules mining results showed several

frequent navigation patterns, which suggested that these patterns were important.

Research Findings. Recommender system design involves the application of techniques from a variety of

disciplines. This research made contributions in four areas: a new metric for web page classification; a new

data mining algorithm; extension of previous work on hyperlink recommender that use past user navigation

behaviors to profile current users by converting the problem of predicting user interests from a simple

computation to a collaborative filtering problem with all its advantages; and an in-depth study of the behavior

of CLARANS clustering algorithm in high dimensional space, and a comparison of CLARANS with PAM and

CLARA, both of them related clustering algorithms. We summarize each of these contributions below.

Web Page Classification Study. Faced with the need of a metric that can be used to automatically

classify web pages as content or navigation, where content pages are considered to be recommendable to a

user, we sought to combine properties of individual web pages and the web site designer’s view of important

pages to determine this new metric. The LW ratio (ratio of number of outgoing links on a page to the word

count of that page) was chosen as an appropriate property of a web page. The notion of information scent was

considered appropriate in describing the importance the web site designer attaches to individual pages.

Information scent is a subjective measure, but we reasoned that web pages that have relatively more incoming

links than outgoing links are generally more important than pages with less, and so should have a larger scent.

These ideas were captured using the PR metric. Hence PR and LW were combined to form the PR × ILW

metric, which was computed for every page of the web site.

The small user study that was conducted suggested that PR alone does not help in classifying web

pages; but PR × ILW does a better job than LW alone. A bigger user study would be required to authenticate

this finding.

It should be noted that the LW and PR metrics are not new. What this research has contributed in the

use of these metrics is the novel way in which they have been combined to generate a more powerful

classification metric.

Data Mining. The contribution of this research in this area has been the development of a new

implementation of the apriori algorithm that is influential in association rule mining. Our objective was to

attempt to solve the major problem with the apriori algorithm: scalability. The classical implementation of the

algorithm makes use of a join of k-1 frequent itemsets of the transactions database to itself, to obtain candidate

k-itemsets, and the apriori property applied to the candidate itemsets to determine which of them are frequent.

128

The problem with the join is that if there are too many items in the database, then the results of the join may be

too large to fit into main memory.

Our implementation of the apriori algorithm eliminates the join step by applying the apriori property

during the kth iteration of the algorithm, to every record of the transactions database with itemset count greater

than or equal to k. Because each transaction in the database almost always has fewer items than there are items

in the database, the problem of a large join result in the classical algorithm is avoided.

Evaluation of the performance of the joinless apriori algorithm showed that it has better computation

time for small values of minimum support count than the classical algorithm, and comparable computation

time for large values of minimum support count.

Prediction Models for User Interests. We demonstrated in this research that association rules

representing the correlations between user navigation behaviors and the pages they are interested in can be

represented as an association rules matrix, with the navigation pages corresponding to user, the content pages

corresponding to items rated by the users, and the rule confidence values corresponding to user ratings. The

advantages of doing this include the following: prediction of the pages that a user with a given navigation

behavior is interested in can be computed from the confidence scores of similar past navigation behaviors; the

approach inherits the advantages inherent in collaborative filtering; the problems of collaborative filtering that

stem from sparse ratings densities are avoided however, because the association rules matrix is already

populated with the confidence values of most user navigation behaviors that are likely going to be encountered.

As was shown in Section 5.6, a prediction model that determined neighborhood vectors using the

center-based approach, and that computed predictions of user interests using weighted average of

neighborhood vectors, showed promising results. In this study, the similarity between vectors was computed

using the cosine measure.

Clustering. Clustering is a frequently used technique in various stages of recommender system

design. Although the CLARANS clustering algorithm was first proposed about a decade ago, there has not

been much study on the behavior of the algorithm in high dimensional spaces of the type recommender

systems operate in. Using the angle between document vectors as an appropriate measure for dissimilarity, it

was demonstrated in this study that the quality of clusters discovered by CLARANS is better than those

discovered by PAM and CLARA, although CLARA was fastest of the three algorithms.

Future Work. There are a number of directions that this work could proceed in. These include: determination

of ranking of web pages that are judged to be interesting and recommendable, evaluation of generated

recommendations, and the construction of a friendly user interface for the system. We consider each of these

in turn.

129

Ranking of Recommendable Pages. The prediction scores of a user’s interest in web pages should not

be the only factor that determines the pages’ relative position on the recommendation list. A page that is

several mouse clicks away from the current page, for example, could be given a higher recommendation score

than a page that is only one mouse click away, if the former has a lower prediction score. Link distance factor

(Mobasher et al., 2000) for example, could be used as an appropriate weighting factor on the prediction score

when recommendation scores are computed.

Evaluation of Recommended Pages. Ultimately, a recommender system’s acceptance would depend

on users’ judgment of the recommendations they receive. As mentioned earlier, Prediction Model I that

computed predictions of user interests using weighted average of neighborhood vectors, showed that the model

correctly predicts user interests based on the available data. A user study would be required to determine if

users find computed recommendations useful. Such a user study could be complicated by the fact that it may

be influenced by the system interface.

One useful evaluation strategy may require the user to perform a task, for example, find all the web

pages in the web site that provide information on a particular topic, say admissions. Meanwhile, in the

background, the system computes recommendations based on the user’s changing navigation behavior and

presents them in a window as he browses the site. The system could then keep track of the recommended

hyperlinks that the user follows, and also presents a list of all the computed recommendations at the end of

browsing session for the user to indicate which ones would have helped him navigate easily to the desired

pages. If users find several of the system generated recommendations useful, that would be an indication that

the system computes relevant recommendations.

User Interface Construction. After it is determined that the system generates relevant

recommendations, user acceptance of the system may be enhanced with a good user interface. A good design

should be simple and introduce as little distraction as possible from the screen the user would see if the

recommendation component were absent.

130

APPENDIX A

Computation of Cosine Similarity Between Two Vectors

The cosine similarity measure is the cosine of the angle between two vectors, and is computed using the

procedure outlined below.

Consider two vectors A and B in 2-dimensional space (Figure 53). The dot product between the

vectors is defined as: .cos. θAB BA

But sin,sinA ,cos ,cos βαβα BBABBAA yyxx and .βαθ −=

It follows that:

yyxx BABA
BABA

AB
AB

+=
+=
+=

−=⋅

βαβα
βαβα

βα

sinsincoscos
)sinsincos(cos

)cos(BA

In general, ,
1
∑
=

=⋅
n

i
ii yxYX where n is the dimension of the vectors. It follows from the definition of

dot product that ,cos

1
2)(

1
2)(

1

n

i iy
n

i ix

n

i
ii yx

θ since for any vector z, .)(
1

2

n

i
izz Hence, given two vectors

with vector representations P and Q, the cosine similarity measure between them is:

,cos

1

2)(
1

2)(
1

2)(
1

2)(

11

n

i
ipw

n

i
iqw

n

i
ipw

n

i
iqw

n

i
iqip

n

i
iqip wwww

θ where wij is the weight of term i in vector j.

If P and Q are binary vectors, the cosine similarity measure reduces to .cos
QP

QP

 θ

Figure 53. Illustrating computation of cosine similarity.

θ

A

α

B

β

131

We notice that if the vector components represent the words in a document, the cosine measure

normalizes for document lengths at the denominator. That helps in text processing, since long documents do

not get an unfair advantage in the weighting of the terms in them. We next consider the steps involved in

system design.

132

APPENDIX B

Stop List Used to Filter out HTML Page Presentation Code from Contents

Æ
Á
Â
À
Å
Ã
Ä
Ç
Ð
É
Ê
È
Ë
Í
Î
Ì
Ï
Ñ
Ó
Ô
Ò
Ø
Õ
Ö
Þ
Ú
Û
Ù
Ü
Ý
á
â
æ
à
å
ã
ä
ç
é
ê
è
ð
ë
í
î

ì
ï
ñ
ó
ô
ò
ø
õ
ö
ß
þ
ú
û
ù
ü
ý
ÿ
<
>
&
"
&NBSP
®
©
&ENSP
&EMSP
&ENDASH
&EMDASH
<!--
<![
</A
</ABBR
</ABBREV
</ACRONYM
</ADDRESS
</APPLET
</AU
</AUTHOR
</B
</BANNER
</BDO
</BIG
</BLINK
</BLOCKQUOTE
</BODY

</BQ
</BUTTON
</CAPTION
</CENTER
</CITE
</CODE
</COL
</COLGROUP
</CREDIT
</DEL
</DEL
</DFN
</DIR
</DIV
</DL
</DT
</EM
</EMBED
</FIELDSET
</FIG
</FN
</FONT
</FORM
</FRAME
</FRAMESET
</H1
</H2
</H3
</H4
</H5
</H6
</HEAD
</HTML
</I
</IFRAME
</INS
</KBD
</LABEL
</LANG
</LEGEND
</LH
</LI
</LINK
</LISTING
</MAP

</MARQUEE
</MATH
</MENU
</NOBR
</NOFRAMES
</NOSCRIPT
</NOTE
</O:P
</OBJECT
</OL
</OPTGROUP
</OPTION
</P
</PERSON
</PLAINTEXT
</PRE
</Q
</S
</SAMP
</SCRIPT
</SELECT
</SMALL
</SPAN
</STRIKE
</STRONG
</STYLE
</SUB
</SUP
</TABLE
</TBODY
</TD
</TEXTAREA
</TITLE
</TR
</TT
</U
</UL
</VAR
</WBR
</XMP
<A
<ABBR
<ABBREV
<ACRONYM
<ADDRESS

<APPLET
<AREA
<AU
<AUTHOR
<B
<BANNER
<BASE
<BASEFONT
<BDO
<BGSOUND
<BIG
<BLINK
<BLOCKQUOTE
<BODY
<BQ
<BR
<BUTTON
<CAPTION
<CENTER
<CITE
<CODE
<COL
<COLGROUP
<CREDIT
<DD
<DEL
<DEL
<DFN
<DIR
<DIV
<DL
<DT
<EM
<EMBED
<FIELDSET
<FIG
<FN
<FONT
<FORM
<FRAME
<FRAMESET
<H1
<H2
<H3
<H4

133

<H5
<H6
<HEAD
<HR
<HTML
<I
<IFRAME
<IMG
<INPUT
<INS
<ISINDEX
<KBD
<LABEL
<LANG
<LEGEND
<LH

<LI
<LINK
<LISTING
<MAP
<MARQUEE
<MATH
<MENU
<META
<MULTICOL
<NOBR
<NOFRAMES
<NOSCRIPT
<NOTE
<O:P
<OBJECT
<OL

<OPTGROUP
<OPTION
<OVERLAY
<P
<PARAM
<PERSON
<PLAINTEXT
<PRE
<Q
<RANGE
<S
<SAMP
<SCRIPT
<SELECT
<SMALL
<SPACER

<SPAN
<SPOT
<STRIKE
<STRONG
<STYLE
<SUB
<SUB
<SUP
<SUP
<TAB
<TABLE
<TBODY
<TBODY
<TD
<TD
<TEXTAREA

<TEXTAREA
<TEXTFLOW
<TFOOT
<TH
<THEAD
<TITLE
<TR
<TT
<U
<UL
<VAR
<WBR
<XMP

134

BIBLIOGRAPHY

Aggarwal, C., & Srikant, R. (1994). Fast algorithms for mining association rules. Paper presented at the Proc.

20th Int. Conf. Very Large Data Bases, VLDB.

Agrawal, R., Imielinski, T., & Swami, A. (1993). Mining association rules between sets of items in large
databases. Paper presented at the ACM SIGMOD International Conference on Management of Data.

Ahmad, M. A. W. (1999). Collecting user access patterns for building user profiles and collaborative filtering.
In 4th International Conference on Intelligent User Interfaces (pp. 57-64). Los Angeles, California:
ACM Press, New York.

Aldenderfer, M. S., & Blashfield, R. K. (1984). Cluster analysis (Vol. 07-004). Newbury Park, US: SAGE.

Armstrong, R., Freitag, T., Joachims, T., & Mitchell, T. (1995). WebWatcher: A learning apprentice for the
world wide web. In Proceedings of AAAI Spring Symposium on Information Gathering from
Heterogeneous Distributed Environments.

Balabanovic, M., & Shoham, Y. (1997a). Content-based collaborative recommendation. Communications of
the ACM, 40, 60-72.

Balabanovic, M., & Shoham, Y. (1997b). Fab: Content-based, collaborative recommendation.
Communications of the ACM, 40, 66-72.

Baudisch, P., & Brueckner, L. (2002). TV Scout: Lowering the entry barrier to personalized TV program
recommendation. In In Proceedings of the 2nd International Conference on Adaptive Hypermedia and
Adaptive Web Based Systems (AH2002). Malaga, Spain.

Bauer, M., Pohl, W., & Webb, G. (1997). Workshop on machine learning for user modeling, from
http://www.dfki.de/~bauer/um-ws/

Bauer, T., & Leake, D. (2002). Exploiting information access patterns for context-based retrieval. In
Proceedings of the 7th international conference on Intelligent user interfaces. San Francisco,
California, USA.

Belkin, N. (2000). Helping people find what they don't know. Communications of the ACM, 43, 58-61.

Belkin, N., & Croft, B. (1992, December 1992). Information filtering and information retrieval: Two sides of
the same coin? Communications of the ACM, 35, 29-38.

Billsus, D., & Pazzani, M. (1999a). A hybrid user model for news story classification. In Proceedings of the
7th International Conference on User Modeling. Banff, Canada.

Billsus, D., & Pazzani, M. (1999b). A personal news agent that talks, learns and explains. In Proceedings of
the Third Annual Conference on Autonomous Agents (pp. 268-275).

Billsus, D., & Pazzani, M. (2000). User modeling for adaptive news access. User Modeling and User-Adapted
Interaction, 10(2-3), 147-180.

Brusilovsky, P. (1996). Methods and techniques of adaptive hypermedia. User Modeling and User-Adapted
Interaction, 6(2-3), 87-129.

135

Brusilovsky, P. (2000). Adaptive hypermedia: an attempt to analyse and generalize, 2002, from
http://wwwis.win.tue.nl/ah94/Brusilovsky.html

Brusilovsky, P. (2001). Adaptive hypermedia. User Modeling and User-Adapted Interaction, 11, 87-110.

Brusilovsky, P., & Maybury, M. (2002). From adaptive hypermedia to the adaptive web. Communications of
the ACM, 45(5), 30-33.

Burke, R. (2001). Knowledge-based recommender systems. In Encyclopedia of library and information
science (Vol. 69/supl. 32).

Burke, R. (2002). Hybrid Recommender Systems: Survey and Experiments. User Modeling and User-Adapted
Interaction, 12(4), 331-370.

Card, S. K., Pirolli, P., Van Der Wege, M., Morrison, J. B., Reeder, R. W., Schraedley, P. K., et al. (2001).
Information scent as a driver of Web behavior graphs: Results of a protocol analysis method for Web
usability. In Proceedings of the Conference on Human factors in computing systems, CHI '01 (pp.
498-505). Seattle, WA: ACM Press.

Catledge, L., & Pitkow, J. (1995). Characterizing browsing strategies in the world wide web. Computer
Networks and ISDN Systems, 27(6), 1065-1073.

Chen, M. S., Park, J. S., & Yu, P. S. (1996). Data mining for path traversal patterns in a Web environment. In
Proceedings of the 16th International Conference on Distributed Computing Systems (pp. 385-392).

Cingil, I., Dogac, A., & Azgin, A. (2000, August 2000). A broader approach to personalization.
Communications of the ACM, 43, 136-142.

Claypool, M., Brown, D., Le, P., & Waseda, M. (2001). Inferring user interest. IEEE Internet Computing, 5,
32-39.

Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., & Sartin, M. (1999). Combining content-
based and collaborative filters in an online newspaper. In ACM SIGIR '99 Workshop on Recommender
Systems: Algorithms and Evaluation. University of California, Berkeley , USA.

Claypool, M., Le, P., Waseda, M., & Brown, D. (2001). Implicit interest indicators. In 6th international
conference on Intelligent user interfaces (pp. 33-40). Santa Fe, New Mexico, United States.

Clemen, R. T. (1996). Making hard decisions: An introduction to decision analysis (2nd ed.). Belmont CA,
USA: Duxbury Press.

Cooley, R., Mobasher, B., & Srivastava, J. (1997). Web mining: Information and pattern discovery on the
World Wide Web. In International Conference on Tools With Artificial Intelligence (pp. 558-567).
Newport Beach, CA, USA.

Cooley, R., Mobasher, B., & Srivastava, J. (1999). Data preparation for mining world wide web browsing
patterns. Journal of Knowledge and Information Systems, 1(1), 1999.

Craven, P. (2003). Google's PageRank explained and how to make the most of it. Retrieved 1 July, 2003, from
http://www.webworkshop.net/pagerank.html

Deerwester, S., Dumais, T. S., Furnas, G., Landauer, T., & Harshman, R. (1990). Indexing by latent semantic
analysis. Journal of the American Society for Information Science, 41(6), 391-407.

136

Farber, D. (2001a). Balancing security and liberty. IEEE Internet Computing, 5, 96-96.

Farber, D. (2001b). Balancing security and liberty, 2001, from http://computer.org/internet/v5n6

Fielding, R., Gettys, J., Mogul, J., Frystk, H., Masinter, L., Leach, P., et al. (Artist). (1999). Hypertext transfer
protocol -- HTTP/1.1

Folz, W. P., & Dumais, T. S. (1992, December 1992). Personalized information delivery: An analysis of
information filtering methods. Communications of the ACM, 35, 51-218.

Furnas, G. (1997). Effective view navigation. In Proceedings of the Human Factors in Computing Systems,
CHI '97 (pp. 367-374). Atlanta, GA: ACM Press.

GroupLens. (2002). Movielens, 2002, from http://www.movielens.umn.edu/login

Guha, S., Rastogi, R., & Shim, K. (1998). CURE: An efficient clustering algorithm for large databases. In
Proceedings of ACM SIGMOD International Conference on Management of Data (pp. 73--84).
Seattle, WA.

Han, J., & Kamber, M. (2001). Data mining: Concepts and techniques. San Diego, CA, USA: Academic Press.

Hanani, U., Shapira, B., & Shoval, P. (2001). Information filtering: Overview of issues, research and systems.
User Modeling and User-Adapted Interaction, 11, 203-259.

Hill, C. W., Hollan, D. J., Dave, W., & McCandless, T. (1992). Edit wear and read wear. In Conference on
Human Factors and Computing Systems. Monterey, California, United States.

Hirashima, T., Hachiya, K., Kashihara, A., & Toyoda, J. (1997). Information filterng using user's context on
browsing in hypertext. User Modeling and User-Adapted Interaction, 7, 239-256.

Horvitz, E., Breese, J., Heckerman, D., Hovel, D., & Rommelse, K. (1998, July 1998). The lumiere project:
Bayesian user modeling for inferring the goals and needs of software users. Paper presented at the
Fourteenth Conference on Uncertainty in Artificial Intelligence.

James, J. (2003). Bayes' theorem. In E. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Vol.
forthcoming).

Karypis, G., Han, E.-H., & Kumar, V. (1999). Chameleon: A hierarchical clustering algorithm using dynamic
modeling. IEEE Computer: Special Issue on Data Analysis and Mining, 32(8).

Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data: An introduction to cluster analysis. New
York: John Wiley & Sons.

Kelly, D., & Belkin, N. (2001). Reading time, scrolling and interaction. In 24th annual international ACM
SIGIR conference on Research and development in information retrieval (pp. 408-409).

Kim, J., Oard, W. D., & Romanik, K. (2001). User modeling for information filtering based on implicit
feedback. In ISKO-France 2001. Nanterre, France.

Konstan, A. J., Miller, N. B., Maltz, D., Herlocker, L. J., Lee, R. G., & Riedl, J. (1997, March 1997).
GroupLens: applying collaborative filtering to Usenet news. Communications of the ACM, 40, 77-87.

137

Krulwich, B. (1997). Lifestyle finder: Intelligent user profiling using large-scale demographic data. AI
Magazine, 18, 37-45.

Lang, K. (1995). Newsweeder: Learning to filter news. In 12th International Conference on Machine Learning
(pp. 331-339). Lake Tahoe, CA, USA.

Larson, K., & Czerwinski, M. (1998). Web page design: Implications of memory, structure, and scent for
information retrieval. Paper presented at the CHI'98 Human Factors in Computing Systems.

Lieberman, H. (1995). Letzia: An agent that assists Web browsing. In In: Proceedings of the Fourteenth
International Joint Conference on Artificial Intelligence. (pp. 924--929.). Montreal, Canada.

Lieberman, H., Fry, C., & Weitzman, L. (2001). Exploring reconaissance agents. Communications of the ACM,
44(8).

Lyman, P., & Varian, H. R. (2004). How much information 2003? Retrieved December 31, 2004

Maes, P. (1994). Agents that reduce work and information overload. Communications of the ACM, 37.

Malone, T., Grant, K., Turbak, F., Brobst, S., & Cohen, M. (1987). Intelligent information sharing systems.
Communications of the ACM, 30, 390-402.

Mannila, H., Toivonen, H., & Verkamo, I. (1994). Efficient algorithms for discovering association rules. In
AAAI Workshop on Knowledge Discovery in Databases (KDD-94).

Marchionini, G. (1995). Information seeking in electronic environments. Cambridge, New York: Cambridge
University Press.

McCarthy, J. F., & Anagnost, T. D. (1998). MUSICFX: An arbiter of group preferences. In Proceedings of the
1998 ACM Conference on Computer Supported Cooperative Work (pp. 363-372). Seattle, WA.

McKenna, E., & Smyth, B. (2000). Competence-guided editing methods for lazy learning. In Proceedings of
the 14th European Conference on Artificial Intelligence. Berlin.

Middleton, E. S., Shadbolt, N., & De Roure, C. D. (May 2002). Exploiting synergy between ontologies and
recommender systems, The Eleventh International World Wide Web Conference (WWW2002).
Hawaii, USA.

Middleton, S., De Roure, D., & Shadbolt, N. (2001). Capturing knowledge of user preferences: ontologies in
recommender systems. In International Conference On Knowledge Capture (pp. 100-107). Victoria,
British Columbia, Canada: ACM Press, New York.

Miyahara, K., & Pazzani, M. (2000). Collaborative filtering with the simple bayesian classifier. Paper
presented at the The Sixth Pacific Rim International Conference on Artificial Intelligence (PRICAI),
Melbourne, Australia.

Mobasher, B., Cooley, R., & Srivastava, J. (2000, August 2000). Automatic personalization based on Web
usage mining. Communications of the ACM, 43, 142-151.

Mobasher, B., Dai, D., Luo, L., & Nakagawa, M. (2001). Effective personalization based on association rule
discovery from web usage data. In Third international workshop on Web information and data
management (pp. 9-15).

138

Morita, M., & Shinoda, Y. (1994). Information filtering based on user behavior analysis and best match text
retrieval. In Seventeenth annual international ACM-SIGIR conference on Research and development
in information retrieval (pp. 272-281).

Mulvenna, D. M., Anand, S. S., & Büchner, G. A. (2000, August 2000). Personalization on the net using web
mining. Communications of the ACM, 43, 123-125.

Nentwich, M. (2002). Lost in hyperspace, from http://www.oeaw.ac.at/ita/ebene5/dsk/APSA/
lost_in_hyperspace.htm

Ng, R., & Han, J. (1994). Efficient and effective clustering methods for spatial data mining. In Proceedings of
the 20th International Conference on Very Large Data Bases (pp. 144--155). Santiago, Chile: Morgan
Kaufmann Publishers.

Ng, R., & Han, J. (2002). CLARANS: A method for clustering objects for spatial data mining. In IEEE
Transactions on Knowledge and Data Engineering (Vol. 14, pp. 1003-1016).

Nichols, D. (1998). Implicit rating and filtering. In Fifth DELOS Workshop on Filtering and Collaborative
Filtering (pp. 31-36). Budapest, Hungary.

Nielsen, J. (1995). Multimedia and hypertext: The internet and beyond: Academic Press Professional.

Nkweteyim, D. L. (2005). Web page classification based on web page size and hyperlinks and website
hyperlink structure. In H. Gamboa & A. Fred (Eds.), Fifth International Workshop on Pattern
Recognition in Information Systems – PRIS 2005, 7th International Conference on Enterprise
Information Systems. Miami, FL.

Nkweteyim, D. L., & Hirtle, S. C. (2005). A new joinless apriori algorithm for mining association rules. In H.
Gamboa & A. Fred (Eds.), Fifth International Workshop on Pattern Recognition in Information
Systems – PRIS 2005, 7th International Conference on Enterprise Information Systems. Miami, FL.

Oard, W. D. (1997). The state of the art in text filtering. User Modeling and User-Adapted Interaction, 7, 141-
178.

Oard, W. D., & Kim, J. (1998). Implicit feedback for recommender systems. In AAAI Workshop on
Recommender Systems. Madison, WI, USA.

O'Connor, M., Cosley, D., Konstan, A. J., & Riedl, J. (2001). PolyLens: A recommender system for groups of
users. In In Proceedings of ECSCW 2001 (pp. 199-218). Bonn, Germany.

Pazzani, M. (1999). A framework for collaborative, content-based and demographic filtering. Artificial
Intelligence Review, 13(5/6), 393-408.

Pazzani, M., & Billsus, D. (1997). Learning and revising user profiles: The identification of interesting Web
sites. User Modeling and User-Adapted Interaction, 27, 313-331.

Pazzani, M., Muramatsu, J., & Billsus, D. (1996). Syskill & Webert: Identifying interesting Web sites. In Proc.
13th Nat'l Conf. AI AAAI 96 (pp. 54--61). Menlo Park, California.: AAAI Press.

Perkowitz, M., & Etzioni, O. (2000, August 2000). Adaptive Web sites. Communications of the ACM, 43, 152-
158.

139

Pirolli, P. (1997). Computational models of information scent-following in a very large browsable text
collection. Paper presented at the CHI ’97 Human Factors in Computing Systems, Atlanta, GA.

Pirolli, P., & Fu, W. (2003). SNIF-ACT: A model of information foraging on the World Wide Web. In P.
Brusilovsky, A. Corbert & F. De Rosis (Eds.), User Modeling 2003.

Pirolli, P., Pitkow, J., & Rao, R. (1996). Silk from a sow's ear: Extracting usable structures from the Web. In
Conference on Human Factors in Computing Systems (CHI-96).

Pitkow, J. (1997). In search of reliable usage data on the WWW. In Proceedings of the Sixth International
WWW Conference (pp. 1343-1355).

Porter, M. (1980). An algorithm for suffix stripping. Program, 14, 130-137.

Rafter, R., Bradley, K., & Smyth, B. (2000). Automated collaborative filtering applications for online
recruitment services. In AH2000 (pp. 363-368). Trento, Italy: Springer.

Ramakrishnan, N., Keller, B., Mirza, B., Grama, A., & Karypis, G. (2001, November-December 2001).
Privacy risks in recommender systems. IEEE Internet Computing, 54-62.

Resnick, P., & Varian, H. R. (1997). Recommender systems. Communications of the ACM, 40, 56-58.

Rich, E. (1979). User modeling via stereotypes. Cognitive Science, 3, 329-354.

Riedl, J. (2001, November/December 2001). Personalization and privacy. IEEE Internet Computing, 5, 29-31.

Rocchio, J. (1971). Relevance feedback in information retrieval. In G. Salton (Ed.), The Smart retrieval
system: Experiments in automatic document processing (pp. 313-323). Englewood, NJ: Prentice-Hall.

Rogers, I. (2003). The Google pagerank algorithm and how it works. Retrieved 1 July, 2003, from
http://www.iprcom.com/papers/pagerank/

Rucker, J., & Polanco, M. (1997). SiteSeer: Personalized navigation for the Web. Communications of the
ACM, 40, 73-75.

Rumelhart, D., Hinton, R., & Williams, R. (1986). Learning internal representations by error propagation. In
D. Rumelhart (Ed.), Parallel Distributed Processing I (pp. 318-362): MIT Press.

Salton, G. (1989). Automatic text processing. Reading, Massachusetts: Addison-Wesley.

Salton, G., & McGill, W. J. (1983). Introduction to modern information retrieval. New York: McGraw-Hill.

Salton, G., & Wong, A. (1975). A vector space model for automatic indexing. Communications of the ACM,
18.

Sander, J., Ester, M., Kriegel, H., & Xu, X. (1998). Density-based clustering in spatial databases: The
algorithm GDBSCAN and its applications. Data Mining and Knowledge Discovery, 2(2).

Sarwar, B., Karypis, G., Konstan, A. J., & Riedl, J. (2000a). Analysis of recommendation algorithms for e-
commerce. In ACM Conference on Electronic Commerce (pp. 158-167).

Sarwar, B., Karypis, G., Konstan, A. J., & Riedl, J. (2000b). Application of dimensionality reduction in
recommender systems. In Web Mining for E-Commerce. Boston, MA, USA.

140

Sarwar, B., Karypis, G., Konstan, A. J., & Riedl, J. (2001). Item-based collaborative filtering recommendation
algorithms. In Proceedings of the tenth international conference on World Wide Web (pp. 285-295).
Hong Kong.

Sarwar, B., Konstan, A. J., Borchers, A., Herlocker, L. J., Miller, N. B., & Riedl, J. (1998). Using filtering
agents to improve prediction quality in the GroupLens research collaborative filtering system. In In
Proc. ACM Conf. Computer Support Cooperative Work (CSCVO 1998).

Schafer, J. B., Konstan, A. J., & Riedl, J. (2001). E-commerce recommendation applications. Data Mining and
Knowledge Discovery, 5(1), 115-153.

Schafer, J. B., Konstan, J., & Riedl, J. (1999). Recommender systems in e-commerce. In First ACM
conference on Electronic commerce (pp. 158-166). Denver, Colorado, USA: ACM Press, New York,
USA.

Schechter, S., Krishnan, M., & Smith, M. (1998). Using path profiles to predict HTTP requests. In 7th
International World Wide Web Conference. Brisbane, Australia.

Shani, G., Brafman, R., & Heckerman, D. (2002). An MDP-based recommender system. In Proceedings of
Eighteenth Conference on Uncertainty in Artificial Intelligence. Edmonton, Alberta, Canada: Morgan
Kaufmann Publishers.

Shenk, D. (1997). Data smog: Surviving the information glut. New York: Harper Collins.

Singh, M. P. (2001). Privacy and Open Services. IEEE Internet Computing, 4-5.

Singh, M. P. (2002). Privacy for telecom services. IEEE Internet Computing, 6, 4-5.

Smyth, B., & Cotter, P. (2000, August 2000). A personalized television listings service. Communications of
the ACM, 43, 107-111.

Swingler. (1996). Applying neural networks: A practical guide. San Diego, California: Academic Press.

Thimbleby, H., Jones, M., & Theng, Y. L. (1997). Is "lost in hyperspace" lost in controversy? In Hypertext'97.
Southampton, UK.

Towle, B., & Quin, C. (2002). Knowledge based recommender systems using explicit user models, from
http://www.igec.umbc.edu/kbem/towle.pdf

Ullman, J. D. (2003a). Clustering. Retrieved December 27, 2004, from http://www-db.stanford.edu/~ullman/
mining/cluster1.pdf

Ullman, J. D. (2003b). Clustering, part I. Retrieved February 10, 2004, from http://www-db.stanford.edu/
~ullman/cs345notes/cs345-cl.pdf

Ullman, J. D. (2003c). Clustering, part II. Retrieved December 27, 2004, from http://www-
db.stanford.edu/~ullman/cs345notes/cs345-cl2.pdf

Ungar, L., & Foster, D. (1998). Clustering methods for collaborative filtering. In AAAI Workshop on
Recommendation Systems.

Varian, H. R. (1995). The information economy: How much will two bits be worth in the digital marketplace?
Scientific American, 200-201.

141

W3C. (2003). The common logfile format, from http://www.w3.org/Daemon/User/Config/
Logging.html#common-logfile-format

Webb, G., Pazzani, M., & Billsus, D. (2001). Machine learning for user modeling. User Modeling and User-
Adapted Interaction, 11, 19-29.

Wei, W., Yang, J., & Muntz, R. (1997). STING: A statistical infromation grid approach to spatial data mining.
In Proceedings of the 23rd International Conference on Very Large Databases (pp. 186--195).

Wikipedia. (2004). Information overload. Retrieved December 31, 2004, from http://en.wikipedia.org/w/
index.php?title=Information_overload&action=history

Yan, T., Jacobsen, M., Garcia-Molina, H., & Dayal, U. (1996). From user access patterns to dynamic hypertext
linking. In 5th World Wide Web Conference. Paris.

Yongling, D. (2004). Pure statistical analysis of security returns, from http://mywebpages.comcast.net/
ylding/returns/html/node4.html#SECTION00041000000000000000

Zhang, T., Ramakrishnan, R., & Livny, M. (1996). BIRCH: An efficient data clustering method for very large
databases. In Proceedings of ACM SIGMOD International Conference on Management of Data (Vol.
34, pp. 103--114). Montreal.

Zimdars, A., Chickering, D. M., & Meek, C. (2001). Using temporal data for making recommendations. In
Proceedings of Seventeenth Conference on Uncertainty in Artificial Intelligence (pp. 580-588).
Seattle, WA: Morgan Kaufmann Publishers.

Zukerman, I., & Albrecht, W. (2001). Predictive statistical models for user modeling. User Modeling and
User-Adapted Interaction, 11(1-2), 5-18.

	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	ACKNOWLEDGEMENTS
	INTRODUCTION
	RECOMMENDER SYSTEMS: BACKGROUND
	What is a Recommender System

	Figure 1. Components of a recommender system. Arrow directio
	Framework for Understanding Recommender Systems
	Target of Recommendation

	Figure 2. Recommender system taxomomy.
	Type of Recommender System
	Collaborative Filtering (CF) Systems

	Figure 3. The Collaborative Filtering Process. Source: Sar
	Content-based Recommenders
	Knowledge-based Recommenders
	Demographic Recommenders
	Hybrid Recommender Systems

	User Profiling
	Approaches in User Profile Construction
	Concept Drift
	Acquisition of User Profiling Data
	Implicit Indicators of User Interests
	Sources of Data Used to Infer User Profile Implicitly
	Representation of User Profiles

	Associated Technologies in Recommender System Design
	Data Mining Tools
	Machine Learning of User Profile

	Figure 4. A fully connected acyclic neural network.
	Information Retrieval Tools
	Graph Techniques
	Clustering

	Recommender Systems in the Context of Other Related Technolo

	Figure 5. Comparison of recommender systems and IR & IF, bas
	Figure 6. Information Seeking Space – adapted from Oard (199
	Recommender Systems Application Areas
	Web Navigation
	Other Domains

	Improving Performance of Recommender Systems
	Dimensionality Reduction
	Use of Filtering Agents

	Recommender Systems and Privacy

	PROBLEM STATEMENT
	Using Web Server Access Log Data to Model Past User Navigati

	Figure 7. Illustrating the effect of caches on data recorded
	Figure 8. Illustrating difficulties in identifying the corre
	Figure 9. Portion of a sample web site used to illustrate ma
	Research Objectives

	Figure 10. Sample website showing relative frequencies of no
	Figure 11. Steps involved in the design of a hyperlink recom
	Transactions Generation Objectives
	Association Rule Mining Objectives
	Construction of Prediction Models for Current User’s Interes

	Figure 13. Illustrating Mobasher et al.’s (2000) approach to
	Clustering Objectives

	IMPLEMENTATION
	Determination of Website Topology and Content
	Discovery and Parsing of Web Pages Found in the Site

	Figure 14. Illustrating adjacency list representation of web
	Web Site Topology
	Generation of Transactions Log
	Data Cleaning
	Session Identification
	Transaction Identification
	From Session to Transactions Data – An Example

	Figure 15. Sample web server access log file.
	Figure 16. Sample website used to illustrate generation of t
	Figure 17. Sessions obtained from access log in Figure 15.
	Figure 18. Transactions resulting from access logs in Figure 15: (a) using MFR heuristic; (b) using PR (ILW heuristic.
	User Study 1: Web Page Classification Study

	Figure 19. Research design for the web page classification s
	Figure 20. Subject instructions for web page classification
	Figure 21. Screenshot of one of the web pages that subjects
	Discovery of Association Rules from Transaction Logs
	The Classical Apriori Algorithm

	Figure 22. Sample transactions database, D, for illustration
	Figure 23. Applying the classical apriori algorithm to deter
	Figure 24. The classical Apriori Algorithm. Source: Han and
	The Joinless Apriori Algorithm

	Figure 25. Applying the joinless apriori algorithm to determ
	Figure 26. The joinless apriori algorithm.
	C-Annotated Databases and the Joinless Apriori Algorithm

	Figure 27. Sample consequent-annotated database used to illu
	Figure 28. Applying the joinless apriori algorithm to determ
	Generation of Association Rules from Frequent Itemsets
	Implementation of the Classical and Joinless Apriori Algorit

	Figure 29. Data structure used to determine frequent itemset
	Experiment 1: Evaluation of Joinless Apriori Algorithm

	Figure 30. Experimental design for the evlauation of the joi
	Design of the CLARANS Clustering Algorithm for High Dimensio
	Memory/Computation Time Tradeoffs in CLARANS
	Review of PAM, CLARA and CLARANS

	Figure 31. Graphical representation of the search space for
	Similarity Measure
	Evaluation of CLARANS

	Figure 32. Illustrating generation of test data used to eval
	Table 1. Intra- and inter-cluster cosine similarity scores f
	Design of the Collaborative Filtering Prediction Models

	Figure 33. Adjacency list representation of association rule
	Figure 34. Summary of neighborhood formation processes for (
	�
	Experiment 2: Evaluation of Performance of Collaborative Fil

	RESULTS AND DISCUSSION
	Web Pages and Access Logs

	Table 3. Distribution of terms in web pages (a) before and (
	Web Page Classification Study Results

	Figure 35. Subject ratings of the web pages presented in Use
	Figure 36. Variation of page ratings with LW on the content,
	Table 4. Combining LW and PR × ILW thresholds to classify w
	User Profiling Data

	Table 5. Distribution of sessions discovered in user access
	Table 6. Distribution of transactions discovered in user ses
	Table 7. Distribution of association rule count and associat
	Evaluation of Joinless Apriori Algorithm

	Figure 37. Variation of execution time with minimum support
	Figure 38. Variation of average generation time per rule wit
	Figure 39. Variation of execution time with rule length for
	Evaluation of CLARANS in High Dimensional Space
	Calibration of CLARANS

	Figure 40. Determination of CLARANS parameter maxneighbors.
	Figure 41. Determination of CLARANS parameter maxneighbors.
	Figure 42. Variation of execution time and mean cluster diss
	Figure 43. Variation of execution time and mean cluster diss
	Performance of CLARANS

	Table 8. Comparison of performance (execution times and aver
	Figure 44. Comparison of mean intra-cluster similarities of
	Table 9. Mean execution time for CLARANS, CLARA, and PAM for
	Evaluation of Collaborative Filtering-based Prediction Model
	Collaborative Filtering Prediction Model I

	Figure 45. (a) Mean absolute errors on prediction of user in
	Figure 46. (a) Mean absolute errors on prediction of user in
	Figure 47. Illustrating regions of operation of a prediction
	Figure 48. Distribution of counts of target and prediction s
	Figure 49. Distribution of percentages of target and predict
	Figure 50. Distribution of counts of target and prediction s
	Figure 51. Distribution of percentages of target and predict
	Figure 52. ROC curves for predictors of user interests based
	Collaborative Filtering Prediction Model II

	Table 10. Association rule counts and computation times for
	CONCLUSIONS AND FUTURE DIRECTIONS
	APPENDIX A
	Figure 53. Illustrating computation of cosine similarity.
	APPENDIX B
	BIBLIOGRAPHY

