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Abstract

Our increasing reliance on complex algorithms for recommendations calls for models and

methods for explainable, scrutable, and trustworthy AI. While explainability is required for

understanding the relationships between model inputs and outputs, a scrutable system allows us

to modify its behavior as desired. These properties help bridge the gap between our expectations

and the algorithm’s behavior and accordingly boost our trust in AI.

Aiming to cope with information overload, recommender systems play a crucial role in

filtering content (such as products, news, songs, and movies) and shaping a personalized

experience for their users. Consequently, there has been a growing demand from the information

consumers to receive proper explanations for their personalized recommendations. These

explanations aim at helping users understand why certain items are recommended to them

and how their previous inputs to the system relate to the generation of such recommendations.

Besides, in the event of receiving undesirable content, explanations could possibly contain

valuable information as to how the system’s behavior can be modified accordingly.

In this thesis, we present our contributions towards explainability and scrutability of recom-

mender systems:

• We introduce a user-centric framework, FAIRY, for discovering and ranking post-hoc

explanations for the social feeds generated by black-box platforms. These explanations

reveal relationships between users’ profiles and their feed items and are extracted from the

local interaction graphs of users. FAIRY employs a learning-to-rank (LTR) method to score

candidate explanations based on their relevance and surprisal.

• We propose a method, PRINCE, to facilitate provider-side explainability in graph-based

recommender systems that use personalized PageRank at their core. PRINCE explanations are

comprehensible for users, because they present subsets of the user’s prior actions responsible

for the received recommendations. PRINCE operates in a counterfactual setup and builds on

a polynomial-time algorithm for finding the smallest counterfactual explanations.

• We propose a human-in-the-loop framework, ELIXIR, for enhancing scrutability and subse-

quently the recommendation models by leveraging user feedback on explanations. ELIXIR

enables recommender systems to collect user feedback on pairs of recommendations and

explanations. The feedback is incorporated into the model by imposing a soft constraint for

learning user-specific item representations.

We evaluate all proposed models and methods with real user studies and demonstrate their

benefits at achieving explainability and scrutability in recommender systems.
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Kurzfassung
Unsere zunehmende Abhängigkeit von komplexen Algorithmen für maschinelle Empfehlungen

erfordert Modelle und Methoden für erklärbare, nachvollziehbare und vertrauenswürdige KI.

Zum Verstehen der Beziehungen zwischen Modellein- und ausgaben muss KI erklärbar sein.

Möchten wir das Verhalten des Systems hingegen nach unseren Vorstellungen ändern, muss

dessen Entscheidungsprozess nachvollziehbar sein. Erklärbarkeit und Nachvollziehbarkeit

von KI helfen uns dabei, die Lücke zwischen dem von uns erwarteten und dem tatsächlichen

Verhalten der Algorithmen zu schließen und unser Vertrauen in KI-Systeme entsprechend zu

stärken.

Um ein Übermaß an Informationen zu verhindern, spielen Empfehlungsdienste eine entschei-

dende Rolle um Inhalte (z.B. Produkten, Nachrichten, Musik und Filmen) zu filtern und deren

Benutzern eine personalisierte Erfahrung zu bieten. Infolgedessen erheben immer mehr In-

formationskonsumenten Anspruch auf angemessene Erklärungen für deren personalisierte

Empfehlungen. Diese Erklärungen sollen den Benutzern helfen zu verstehen, warum ihnen

bestimmte Dinge empfohlen wurden und wie sich ihre früheren Eingaben in das System auf die

Generierung solcher Empfehlungen auswirken. Außerdem können Erklärungen für den Fall,

dass unerwünschte Inhalte empfohlen werden, wertvolle Informationen darüber enthalten, wie

das Verhalten des Systems entsprechend geändert werden kann.

In dieser Dissertation stellen wir unsere Beiträge zu Erklärbarkeit und Nachvollziehbarkeit

von Empfehlungsdiensten vor.

• Mit FAIRY stellen wir ein benutzerzentriertes Framework vor, mit dem post-hoc Erklärun-

gen für die von Black-Box-Plattformen generierten sozialen Feeds entdeckt und bewertet

werden können. Diese Erklärungen zeigen Beziehungen zwischen Benutzerprofilen und

deren Feeds auf und werden aus den lokalen Interaktionsgraphen der Benutzer extrahiert.

FAIRY verwendet eine LTR-Methode (Learning-to-Rank), um die Erklärungen anhand ihrer

Relevanz und ihres Grads unerwarteter Empfehlungen zu bewerten.

• Mit der PRINCE-Methode erleichtern wir das anbieterseitige Generieren von Erklärungen

für PageRank-basierte Empfehlungsdienste. PRINCE-Erklärungen sind für Benutzer ver-

ständlich, da sie Teilmengen früherer Nutzerinteraktionen darstellen, die für die erhaltenen

Empfehlungen verantwortlich sind. PRINCE-Erklärungen sind somit kausaler Natur und

werden von einem Algorithmus mit polynomieller Laufzeit erzeugt , um präzise Erklärungen

zu finden.

• Wir präsentieren ein Human-in-the-Loop-Framework, ELIXIR, um die Nachvollziehbarkeit

der Empfehlungsmodelle und die Qualität der Empfehlungen zu verbessern. Mit ELIXIR

können Empfehlungsdienste Benutzerfeedback zu Empfehlungen und Erklärungen sammeln.

Das Feedback wird in das Modell einbezogen, indem benutzerspezifischer Einbettungen von

Objekten gelernt werden.

Wir evaluieren alle Modelle und Methoden in Benutzerstudien und demonstrieren ihren
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Nutzen hinsichtlich Erklärbarkeit und Nachvollziehbarkeit von Empfehlungsdiensten.
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1.1 Motivation

Our increasing reliance on complex algorithms for recommendations calls for models and

methods for explainable and scrutable AI. While explainability helps us understand the cause

of a decision made by an algorithm [Miller, 2019], a scrutable system enables users to correct

system’s assumptions when needed [Tintarev and Masthoff, 2007]. These properties bring about

trust by bridging the gap between humans and AI.

Aiming to think on our behalf and predict our information need, recommender systems are

perceived as advice-givers that can improve our acceptance through explanations [Ricci et al.,

2015]. With the emergence of more complex models [Koren et al., 2009] outperforming the

simpler and more explainable ones [Sarwar et al., 2001], Explainable AI has progressively

received more attention from the Recommender Systems (RecSys) community [Zhang and

Chen, 2020]. Lack of transparency in recommender systems can have a direct impact on user

acceptance, as based on the content personalized for users, they may feel that the system is

labeling them inappropriately1 or misusing their private information2. To highlight the gravity of

this matter, recently, laws have been passed to establish users’ right to explanations [Goodman

and Flaxman, 2017].
1https://www.wsj.com/articles/SB1038261936872356908
2https://www.wired.co.uk/article/tiktok-filter-bubbles

https://www.wsj.com/articles/SB1038261936872356908
https://www.wired.co.uk/article/tiktok-filter-bubbles
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Despite the close tie between explainability and scrutability [Balog and Radlinski, 2020],

they do not necessarily entail each other. In other words, knowing why the algorithm makes

particular choices may not be sufficient for realizing how to modify it. For instance, imagine a

user of an online movie streaming service who is frequently recommended with action movies.

The system explains its choices by drawing connections between the recommended movies and

the action movies the user previously watched on the platform. Now, consider the situation

where the user wants to stop receiving such movies as they do not entirely match her interest.

Here, the provided explanations do not act as a precise guide as to how she can effectively exert

control over her recommendations. Therefore, scrutability in recommender systems requires

separate consideration and handling.

Approaches to explainable recommendations differ based on who consumes the explanations.

For instance, system developers can benefit from detailed statistics to perform error analysis [Wu

et al., 2019b]. Such explanations, however, are often beyond users’ comprehension and thus

hardly useful to them. Furthermore, evidence suggests that too much transparency may hurt

users’ trust in the system [Ananny and Crawford, 2018]. End users are often interested in

receiving local explanations which reveal how their own inputs affect the system’s decision for

them [Doshi-Velez et al., 2017]. In this thesis, we assume that explanations are generated for

the end users, and they are the ones who seek to scrutinize the model.

This thesis develops models and methods for enhancing explainability and scrutability of

recommenders systems for end users.

1.1.1 Explainable recommendations

Recommender systems aim at delivering personalized content such as products, movies, books,

and songs to their users. The chosen content is often visualized in a ranked list, where the order

reflects the relevance of the items to the user. To compute these relevance scores, recommender

systems usually train models based on various inputs collected from their users. User inputs can

be explicit (e.g., rating or liking an item) or implicit (e.g., watching a movie or listening to a

song). The abundance of implicit signals has facilitated data collection by service providers.

Providing the systems with an enormous amount of data over time, users might not be able to

remember all the details of their interactions, and hence experience difficulty in understanding

why they receive certain items as their recommendations. This problem particularly worsens

when users do not even have access to the complete history of their interaction with the system,

a phenomenon referred to as inverse privacy [Gurevich and Wing, 2016]. Therefore, it is

imperative for the recommender systems to be explainable, i.e., to enable users to understand

the relationships between their own input to the system and the recommendations they receive.

To illustrate how a recommendation can be explained, imagine a user who is a member of a

social cataloging website like Goodreads3 and receives a book recommendation, titled Recovery:

3https://www.goodreads.com/

https://www.goodreads.com/
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Freedom from Our Addictions. Examples 1.1.1 and 1.1.2 present two possible ways of explaining

this recommendation to the user by outlining connections between the given recommendation

and her past actions on the platform:

Example 1.1.1. You liked−−→ Becoming
has genre−−−−−→ Autobiography

belongs to−−−−−→ Recovery: Freedom

from Our Addictions

Example 1.1.2. You follow−−−→ Alice follows−−−−→ Addiction Topic
belongs to−−−−−→ Recovery: Freedom from

Our Addictions

As depicted in Example 1.1.2, showing the full connections between a user and her recom-

mendation may reveal private and possibly sensitive information about other users (Alice in

this example). This concern could be addressed by showing only the user’s own actions in

explanations. For instance, to prevent disclosing Alice’s interest in the topic of Addiction, we

can replace the explanation in Example 1.1.2 by “because you follow Alice”.

Apart from describing why a certain item is relevant to a user, recommender systems are also

expected to be able to explain the rankings, i.e., to reason why a certain item is more relevant

than the others. For instance, the following statement explains the cause of receiving the book

Recovery: Freedom from Our Addictions as the top-ranked recommendation:

Example 1.1.3. You are recommended with the book Recovery: Freedom from Our Addictions

because you liked the books Becoming and Dreams from My Father. If you did not like these

two books, your top-ranked recommendation would be the book Food and Nutrition.

Example 1.1.3 shows that liking the books Becoming and Dreams from My Father is the key

reason that the book Recovery: Freedom from Our Addictions is more relevant to the user than

the book Food and Nutrition. The blue text in this example demonstrates the causality between

user’s previous action and system’s outcome. Such explanations are referred to as counterfactual;

they pinpoint those user actions whose absence would result in a different recommendation for

her. Identifying the true reasons behind the recommendations, these explanations pave the way

towards scrutability, i.e., they help shed light on how users can control what they see as their

recommendations.

1.1.2 Scrutable recommendations

A scrutable recommender system allows its users to tell the system when it is wrong and

enables users to steer their recommendations accordingly [Tintarev and Masthoff, 2007]. This

feature is particularly useful when users experience drifts in their interests or when the system

cannot correctly infer their preferences. Evidence suggests that scrutability can improve user’s

engagement level and their satisfaction [Hijikata et al., 2012, Knijnenburg et al., 2012a, Parra

and Brusilovsky, 2015].



4 1. Introduction

Critique-enabled recommenders have already taken the first step towards scrutability. These

systems employ a feedback mechanism called critiquing that enable users to express their

dissatisfaction with some characteristics of the recommended item [Chen and Pu, 2012]. For

instance, imagine a student who relies on an online service like Yelp 4 to find a nice place to

have dinner. The recommended restaurants, however, are not suitable for her as they are mostly

expensive and far from her place. In this scenario, she will benefit from system-suggested

critiques such as show me a cheaper or closer restaurant that enables her to explore other

options that suit her interest better. These initial attempts open up new research opportunities for

the development of scrutable systems that are capable of learning fine-grained user preferences.

1.2 Challenges

On the path towards explainable and scrutable recommendations, we encounter numerous

challenges. In this thesis, we particularly try to overcome the following challenges:

• Explaining black-box recommendations: As the generator of recommendations, service

providers are in the best position to explain recommendations. Nevertheless, in many online

services, recommended content still lacks (satisfying) explanations. A prominent example is

social platforms that provide their users with personalized streams of content, also known as

feeds. For instance, in Quora5, a social Q&A platform, user feed constitutes a number of

questions and answers posted by other users. These feed items are often only tagged with

Recommended for you or Topic you might like. Such statements, however, hardly yield any

insight to the user as to why some content is selected for her or why she is supposed to like

them.

In the absence of system-generated explanations, it is impossible to determine and evaluate

the true reasons behind the social feeds generated by black-box models. In this situation,

however, users would still benefit from post-hoc explanations for their feed items. These are

merely plausible justifications that might be decoupled from the actual model, and hence are

not faithful to the model. Nonetheless, they can still help users realize how their feeds relate

to their profiles. Considering the abundance and diversity of actions in social platforms (e.g.,

following friends or topics, liking content, sharing posts), it would be a non-trivial task for

the user to find these justifications on her own. This demands development of services and

tools that provide users with such post-hoc explanations for their social feeds.

• Counterfactual explanations: The major criticism on post-hoc rationalizations is that

they do not guarantee faithfulness, i.e., they do not necessarily yield an honest account

of the underlying recommendation mechanism. Counterfactual explanations, on the other

hand, aim at identifying the smallest subset of inputs that have caused a particular system

outcome, and hence are faithful to the underlying model [Molnar, 2020]. In other words,
4https://www.yelp.com
5https://www.quora.com/

https://www.yelp.com
https://www.quora.com/
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such explanations identify a subset of user inputs whose absence would have resulted in

a different output. Example 1.1.3 illustrates a counterfactual explanation in the context

of recommender systems. Generating such explanations for recommendations can be

computationally expensive, as the search space grows exponentially with the user input size.

This calls for the development of efficient methods for generating minimal counterfactual

explanations for recommendations.

• Scrutable recommender models: Counterfactual explanations contain valuable informa-

tion that can point the user towards scrutability, i.e., a course of action to avoid receiving

certain recommendations. For instance, based on the explanation in Example 1.1.3, it is

natural for the user to infer that if she removed her ratings for the books Becoming and

Dreams from My Father, she would stop receiving books like Recovery: Freedom from Our

Addictions. Therefore, a trivial solution for controlling recommendations is through undoing

or modifying the already performed actions. The manual removal of previous actions, how-

ever, can become tedious for the user over time and more importantly it may have an adverse

effect on the quality of future recommendations. For instance, by removing the ratings in the

previous example, user would stop receiving all the interesting recommendations that could

come about through their similarity with the books Becoming and Dreams from My Father.

This indicates the need to develop models and methods for enabling users to give lightweight

feedback on their recommendations and their associated explanations, and subsequently

incorporating the collected user feedback into the model.

1.3 Prior work and its limitations

Despite the growing body of literature for justifying recommendations, very little attention

has been paid to explaining social feeds in particular. The initial attempts mostly aimed at

raising user awareness of curation algorithms behind the social feeds and analysing the impact

of personalization on user’s behavior [Eslami et al., 2015, Cotter et al., 2017, Rader et al., 2018].

The existing works for generating post-hoc explanations mainly suffer from two limitations that

make them unsuited for explaining social feeds generated by black-box models: (i) they assume

access to information such as the complete history of all (or a large group of) users [Peake and

Wang, 2018], textual side information about the items [Wang et al., 2018c], latent features of

users and items [Yang et al., 2018] or gradient and Hessian matrix of the model [Cheng et al.,

2019], which are hardly made available by social platforms, and (ii) they often neglect user’s

opinion for ranking the explanations, and instead rely on heuristic metrics to score them [Yang

et al., 2018].

Decoupled from the underpinning model, post-hoc justifications raise the risk of generating

misleading explanations [Lipton, 2018]. To address this shortcoming, several works have

attempted to introduce explainable recommendation models. These works bring explainability

to the design level and leverage user-generated reviews [Zhang et al., 2014b, Chen et al., 2016,
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Wang et al., 2018b, Tao et al., 2019] or structured knowledge [Catherine et al., 2017a, Ai et al.,

2018, Huang et al., 2018, Wang et al., 2019a, Xian et al., 2019] to enhance the recommendation

performance as well as the explainability of their models. The proposed approaches, however,

are not directly applicable to the existing opaque recommenders. To address this need, several

works have been introduced to generate faithful explanations via techniques such as surrogate

models [Nóbrega and Marinho, 2019], subgroup discovery [Lonjarret et al., 2020] or association

rule mining [Peake and Wang, 2018]. Most of these works, however, do not validate the

causality of their explanations. This demands development of methods that guarantee the

causality between the explanations and the ranking of the recommendations.

Revealing the true reasons behind the recommendations, causal explanations provide the

grounds for actionability. Recently, there has been growing attention on critique-enabled recom-

mender systems whereby users are enabled to critique the explanations of the recommended

items [Wu et al., 2019a, Luo et al., 2020a]. For instance, consider a user of a critique-enabled

music service who is recommended with the song In The Zone. The explanation for this item

outlines the features deemed to be relevant to her, such as Pop, Dance, and R&B. Assume that

she does not like this recommendation because it is a Pop song. In this scenario, the system

allows her to critique the Pop feature and accordingly adjust her future recommendations. In the

prior work, critiquing is mostly limited to coarse-grained item features that need to be explicit

and extracted apriori. This highlights the need for the development of methods for collection

and incorporation of user feedback on explanations that are both lightweight and suitable for

learning more fine-grained preferences.

1.4 Contributions

We tackle the challenges outlined in Section 1.2 and address the limitations of the prior work

described in the previous section by making the following contributions:

• Post-hoc explanations for black-box recommendations. We develop a framework, FAIRY,

that generates post-hoc justifications for recommendations generated by black-box models.

We showcase application of FAIRY for explaining social feeds, in particular. FAIRY helps

users understand the relationships between their actions on the platform and their feed items.

For this, we first model the user’s local neighborhood on the platform as an interaction

graph. This graph is constructed solely from the information available to the user. In a

user’s interaction graph, the set of simple paths connecting the user to her feed item are

treated as pertinent explanations. Next, FAIRY scores the discovered explanations with

learning-to-rank models built upon users’ judgements on relevance and surprisal of the

explanation paths. Longitudinal user studies on two social platforms, Quora and Last.fm6,

demonstrate the practical viability and user benefits of this framework in different domains.

6https://www.last.fm/

https://www.last.fm/
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The results of this work have been published as a full paper in WSDM 2019 [Ghazimatin

et al., 2019].

• Counterfactual explanations for recommendations. To address the limitations of the post-

hoc justifications, we propose a mechanism, PRINCE, for generating causal and tangible

explanations in a class of recommenders which use personalized PageRank at their core.

Given a ranked list of recommendations, PRINCE generates a counterfactual explanation

with the smallest size for the top-ranked item. In other words, PRINCE explains the most

relevant recommendation to the user by identifying the minimum number of her actions

whose removal displaces the top-ranked item. PRINCE uses a polynomial-time algorithm to

find the minimal counterfactual explanations from an exponential search space, and hence

it is efficient. Experiments on two real-world datasets show that PRINCE provides more

compact explanations than intuitive baselines and insights from a crowdsourced user-study

demonstrate the viability of such action-based explanations. The results of this work have

appeared as a full paper in WSDM 2020 [Ghazimatin et al., 2020].

• Using explanations to improve recommender models. We develop a human-in-the-loop

framework, ELIXIR, that leverages user feedback on explanations to enhance scrutability and

subsequently the quality of recommendations for the user. ELIXIR enables recommenders to

obtain user feedback on pairs of recommendation and explanation items, where users are

asked to give a binary rating on the shared aspects of the items in a pair. To incorporate

the collected feedback, ELIXIR proposes a method to learn user-specific latent preference

vectors used for updating item-item similarities. The underlying intuition is to increase

(decrease) the distance of disliked (liked) items and the like to the user’s profile, such that

the quality of future recommendations is improved. Our framework is instantiated using

generalized graph recommendation based on personalized PageRank. Insightful experiments

with a real user study show significant improvements for movie and book recommendations

over item-level feedback. The results of this work have been published as a full paper in

The Web Conference 2021 [Ghazimatin et al., 2021].

1.5 Publications

The results of this thesis have appeared in the following conference articles whose lead author is

the author of this thesis:

1. Ghazimatin, A., Saha Roy, R., and Weikum, G. (2019). FAIRY: A framework for under-
standing relationships between users’ actions and their social feeds. In WSDM ’19:

The Twelfth ACM International Conference on Web Search and Data Mining, Melbourne,

VIC, Australia, February 11-15, 2019, pages 240–248.

2. Ghazimatin, A., Balalau, O., Saha Roy, R., and Weikum, G. (2020). PRINCE: provider-
side interpretability with counterfactual explanations in recommender systems. In
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WSDM ’20: The Thirteenth ACM International Conference on Web Search and Data

Mining, Houston, TX, USA, February 3-7, 2020, pages 196–204.

3. Ghazimatin, A., Pramanik, S., Roy, R. S., and Weikum, G. (2021). ELIXIR: learning
from user feedback on explanations to improve recommender models. In WWW ’21:

The Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April 19-23, 2021, pages

3850–3860

In addition, the summary of this thesis has been presented at the Doctoral Consortium at

SIGIR 2020 [Ghazimatin, 2020].

1.6 Organization

The rest of this dissertation proceeds as follows. Chapter 2 discusses the necessary background

on explainability and scrutability of recommender systems. Chapter 3 presents FAIRY, our con-

tributions towards explaining social feeds generated by black-box models. Chapter 4 describes

PRINCE, a method that enables a class of recommenders to generate counterfactual explanations

for their recommendations. Chapter 5 presents ELIXIR, a framework that leverages user feed-

back on explanations to improve scrutability. Lastly, Chapter 6 concludes the dissertation and

presents future research directions.
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This chapter presents the necessary background on explainable and scrutable recommenda-

tions. In Section 2.1, we briefly discuss the popular models, methods, and evaluation criteria

used in recommender systems. Section 2.2, provides an overview of explainable recommenda-

tions by describing the aims of explanations, relevant definitions, and classification of methods

for explaining recommendations. Section 2.3 covers notions and methods used in scrutable

recommenders.

2.1 Overview of recommender models

Recommender systems are crucial to overcoming information overload in the online world.

To narrow down user’s choices, recommender systems apply techniques to rank the available

options based on user’s preferences and constraints. In this section, we briefly discuss the

popular models, methods, and evaluation criteria used in recommender systems.
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2.1.1 Models and methods

Content-based recommenders: Content-based recommenders try to find interesting items for

a user by matching up the attributes of her profile with the content of the items. Common

indicators of content are item descriptions and user-generated reviews for items and users,

respectively. In early approaches, content was often represented using simple techniques such

as TF-IDF [Ahn et al., 2007]. Modern approaches, however, mostly rely on more advanced

techniques such as dimension reduction (e.g., Latent Semantic Analysis) [Musto et al., 2016b],

graphical models (e.g., Latent Dirichlet Analysis) [Li et al., 2011], and deep learning [Musto

et al., 2018] to encode the content. While content-based recommenders offer transparency owing

to their interpretable design, they often fall short on generating diverse recommendations, as

they rely on content similarity of items to the ones already liked by the user.

Collaborative filtering (CF): The key idea of collaborative filtering is to automate word-of-

mount recommendations by leveraging the ratings of all users. The proposed approaches to CF

can be grouped into two classes of neighborhood-based and model-based methods [Ricci et al.,

2015].

In neighborhood-based CF, user-item ratings are directly used to predict unknown ratings.

This can be done in two ways: (i) user-based CF, or (ii) item-based CF. In user-based CF,

predictions for a target user rely on the ratings of her neighbors (like-minded users) [Miller

et al., 2003]. Neighbor users are those who share at least one common rating with the target

user. Item-based CF, on the other hand, recommends a user with items similar to those already

rated by her [Sarwar et al., 2001]. Here, two items are considered similar, if they have received

similar ratings from the crowd.

In contrast to neighborhood-based CF, model-based CF uses ratings to learn a predictive

model. The common techniques used in model-based CF include matrix factorization [Koren,

2008, Koren et al., 2009], Bayesian clustering [Breese et al., 1998], support vector machine [Gr-

car et al., 2006] and neural networks [He et al., 2017].

Graph-based recommenders: Neighborhood-based CF relies on the existence of direct neigh-

bors. As a result, these approaches suffer from limited coverage and sensitivity to sparse

data [Ricci et al., 2015]. To address these limitations, graph-based recommenders were intro-

duced [Aggarwal et al., 1999]. In these models, the data is represented in a graph whose nodes

are users and items, and edges encode interactions and similarities between the nodes. Such

graphs exemplify Heterogeneous Information Networks (HINs) [Sun and Han, 2012]. HINs

are graphs that are able to model multiple types of nodes (e.g., users and items) and edges (e.g.,

user-item interactions and item-item similarities).

To compute the similarity between users and items, these models often use path-based similar-

ity measures such as random-walk similarity. Therefore, nodes that are not direct neighbors can

still influence each other. Pixie [Eksombatchai et al., 2018] and RecWalk [Nikolakopoulos and
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Karypis, 2019] are two recent graph-based recommender models that apply biased random walk

and personalized PageRank, respectively, to compute recommendation scores for a target user.

Knowledge-based recommenders: Leveraging side information about users and items, knowledge-

based recommenders unify the interaction-level and content-level similarities [Guo et al., 2020].

Like graph-based methods, these recommenders represent data in a HIN. Methods for computing

the affinity scores between users and items in a HIN are either embedding-based or path-based.

Embedding-based methods often apply multi-task learning to jointly train the recommenda-

tion task and learn the low-rank representations of graph entities and relations [Zhang et al.,

2016a, Xin et al., 2019]. Some of the techniques for encoding the graph components into

low-dimensional vector spaces include TransE [Bordes et al., 2013], TransH [Wang et al., 2014]

and TransR [Lin et al., 2015].

In path-based methods, the connectivity patterns of the entities are leveraged to generate

recommendations. To capture different similarity semantics, these methods often rely on a set

of pre-defined meta-paths (path patterns) [Sun et al., 2011, Yu et al., 2013, Yu et al., 2014].

Recent models such as RippleNet [Wang et al., 2018a] and Graph Neural Network (GNN) [Fan

et al., 2019] attempt to unify the embedding-based and path-based methods using preference

propagation. More details about knowledge-based recommenders can be found in [Guo et al.,

2020].

2.1.2 Evaluation criteria

There are several criteria for evaluating recommender systems. The primary criterion is the

accuracy of the model with respect to user preferences which can be measured in multiple ways.

For instance, predicted ratings are typically evaluated using (Root) Mean Square Error (RMSE

or MSE) or Mean Absolute Error (MAE). In many applications, however, recommender systems

predict item usage instead of numerical ratings, i.e, given an item they predict whether the user

is going to use it (e.g., liking or buying an item) or not. Similar to the classification tasks, usage

prediction is often evaluated using metrics such as precision, mean average precision (MAP),

recall, and AUC (Area Under Curve).

To evaluate a ranked list of recommendations, other metrics such as normalized cumulative

discounted gain (nDCG), hit ratio (HR), mean reciprocal rank (MRR), and average reciprocal

hit rank (ARHR) are used [Ricci et al., 2015]. Assuming the availability of the ground truth

ranking, Spearman’s ρ or Kendall’s τ can be used to measure the correlation between the true

and the predicted ranking lists.

Other criteria for evaluating recommender systems include fairness [Beutel et al., 2019],

diversity [Kunaver and Pozrl, 2017], serendipity [Manca et al., 2018], and privacy [Beigi et al.,

2020]. More evaluation criteria can be found in [Ricci et al., 2015]. Table 2.1 presents formal

definitions of common metrics used in recommender systems.
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Metric Formal definition Description

MSE 1
|T |
∑

(u,i)∈T (ru,i − r̂u,i)2
T : set of user-item interactions
ru,i: rating of user u for item i
r̂u,i: predicted rating of user u for item i

P@k #tpk
k

#tpk: no. true positives up to position k

R@k #tpk
#tp+#fn

#tp: no. true positives
#fn: no. false negatives

MAP@k
∑k

i=1 AP@i
k

AP@i =
∑i

j=1 P@j×rel(j)
#tpi

rel(j): 1 if item j is relevant, 0 otherwise.

nDCG@k DCG@k
IDCG@k

DCG@k =
∑k

i=1
2rel(i)−1
log2(i+1)

IDCG@k: Ideal DCG@k

HR@k
∑

u∈U I(u,k)

|U |
U : set of users
I(u, k): 1 if the top-k recommendations
for user u contain at least one relevant item,
0 otherwise.

MRR@k 1
|U |
∑

u∈U
1

rank(u,k) rank(u, k): position of the first relevant
item for user u among her top-k recom-
mendations.

Table 2.1: Common metrics used for evaluating recommendations [Burges et al., 2005, Ricci et al.,
2015].

2.2 Explaining recommendations

The importance of explaining system-generated advice has long been known for recommender

systems [Clancey, 1983, Sinha and Swearingen, 2002]. Early recommenders mostly employed

neighborhood-based or content-based filtering to personalize items for their users. The resulting

recommendations could simply be explained by presenting similar neighbors [Sarwar et al.,

2001, Herlocker et al., 2000] or overlapping content tags between recommendation items

and users’ profiles [Degemmis et al., 2007, Degemmis et al., 2008]. Since the Netflix Prize

competition [Bennett and Lanning, 2007], the popularity of Latent factor models (LFM) [Koren,

2008, Koren et al., 2009] surged. The latent features learned by these models, however, are not

directly explainable, fueling the progress of research on Explainable Recommendation [Zhang

and Chen, 2020]. This chapter presents an overview of explainability in recommender systems.

2.2.1 Definitions

Explanation versus interpretation: The term explanation is historically defined as the infor-

mation provided about the causal history of an event [Lewis, 1986]. In the context of machine
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learning, the term interpretation has a similar definition. Miller [Miller, 2019] defines inter-

pretability as the extent to which a human can understand the cause of a decision. Kim et

al. [Kim et al., 2016] describe an interpretable model as one whose outcome can be consistently

predicted by human.

While most researchers use the terms interpretability and explainability interchangeably,

some draw a line between them. For instance, according to Rudin [Rudin, 2019], explanations

are post-hoc justifications for black-box models, and unlike interpretations, they may not be

faithful to the original model. Therefore, she encourages researchers to stop explaining black-

box models (explainable ML) and start developing predictive models that are both accurate

and understandable by humans (interpretable ML). In some online scientific forums, however,

explainability refers to the extent to which the internal mechanics of a model can be explained in

human terms1. According to these forums, an interpretation describes a more abstract account

of the model whose aim is to only outline the causal relations between the input and output of

the model. In this thesis, we use the terms explanation and interpretation interchangeably.

Justifications: When identifying the true cause of an event is too challenging, humans invent

a plausible story consistent with their knowledge to justify the event [Riedl, 2019]. These

rationales, however, are not necessarily accurate reflections on actual causes. Inspired by human-

like rationales, Vig et al. [Vig et al., 2009] attempt to justify the recommended items by showing

relevant item tags that previously received positive sentiment from the user. Another example

of such rationales in the context of recommender systems is the statistics such as the rating

histogram of a user’s neighbors to justify the relevance of her recommendations [Herlocker

et al., 2000].

2.2.2 Purposes of explanations

Research on explainable recommendations has received considerable attention from both the

Recommender Systems (RecSys) [Zhang and Chen, 2020] and the Human-Computer Interaction

(HCI) research communities [Tintarev and Masthoff, 2007]. Tintarev and Masthoff [Tintarev

and Masthoff, 2007] highlight seven goals for explaining recommendations which can also be

used for evaluating the explanations. These aims are as follows:

Trust: To increase user confidence in the system. Trust in a system can be evaluated explicitly

using qualitative surveys [Pu and Chen, 2007] or implicitly by measuring users’ loyalty to the

system indicated by their level of engagement [McNee et al., 2003].

Transparency: To help users understand how the system works and how the recommendations

are chosen for them. Sinha and Swearingen [Sinha and Swearingen, 2002] evaluate transparency

1https://www.kdnuggets.com/2018/12/machine-learning-explainability-interpretability-ai.
html

https://www.kdnuggets.com/2018/12/machine-learning-explainability-interpretability-ai.html
https://www.kdnuggets.com/2018/12/machine-learning-explainability-interpretability-ai.html
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by asking users whether they understand why the system recommended certain items to them.

Scrutability: To allow users to scrutinize their recommendations and tell the system when it

is wrong. Scrutability enables users to modify their profiles and influence their future recom-

mendations accordingly [Czarkowski, 2006]. This feature is particularly useful when users

do not like their recommendations [Balog et al., 2019]. To evaluate scrutability, it is common

to measure the quality of recommendations after incorporating user feedback [Zhang and Pu,

2006] or to count the number of conversation cycles a system requires to find a suitable item for

the user [McCarthy et al., 2005].

Effectiveness: To help users make good decisions. An explanation is effective if it convinces

the user to consume an item (e.g., watching a movie) which will be liked by her [Bilgic and

Mooney, 2005]. Therefore, the effectiveness of explanations can be evaluated according to users’

ratings for the explained items [Herlocker et al., 2000].

Persuasiveness: To convince users to adopt the recommended items. Evidence suggests that

providing information about the recommendations affects user’s opinions about the items

and subsequently increases the likelihood of consuming or buying an item [Herlocker et al.,

2000, Cosley et al., 2003, Bilgic and Mooney, 2005].

Efficiency: To help users make decisions faster. Explanations can significantly reduce users’

cognitive effort and the amount of time they require for locating a desirable item [Pu and Chen,

2006]. In conversational recommender systems, explanations help elicit user preferences within

a smaller number of cycles [Reilly et al., 2004a].

User satisfaction: To increase ease of use or engagement. Tintarev and Masthoff [Tintarev and

Masthoff, 2007] distinguish between user satisfaction with the process of recommendation and

with the recommended products. Satisfactory explanations inform users about the process of

generating recommendations and help improve their overall acceptance of the system. User

satisfaction can be evaluated explicitly via questionnaires or implicitly by measuring users’

engagement levels [McInerney et al., 2018]. Nunes and Jannach [Nunes and Jannach, 2017] do

not consider user satisfaction as a single objective and instead split it into ease of use, enjoyment

and usefulness.

Relation between different goals: Most studies on explainable recommendations are con-

cerned with only one of the goals described above [Zhang and Chen, 2020]. These goals,

however, are not entirely independent of each other. For instance, an early study by Sinha and

Swearingen [Sinha and Swearingen, 2002] suggests that transparency increases user’s trust in the

system. This connection, however, was rejected by Cramer et al. who showed that transparency

and trust are not necessarily related to each other [Cramer et al., 2008]. Another notable relation

is between effectiveness and persuasiveness. Persuasive explanations can manipulate users
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into consuming items they do not like, and thus might harm effectiveness [Bilgic and Mooney,

2005]. Balog and Radlinski [Balog and Radlinski, 2020] have recently investigated interactions

between all the described explanation goals. Their systematic evaluation exhibits that all goals

are moderately correlated. Besides, user satisfaction was shown to be the most correlated metric

with all others, which along with transparency and scrutability could provide the most complete

assessment of the explanation quality.

2.2.3 Technical properties of explanations

Approaches to explainability are often guided by certain technical desiderata for the generated

explanations. In what follows, we describe some of the prevalent requirements for explanations.

Counterfactual: A counterfactual explanation of a prediction is defined as the smallest change

to the feature values that causes the prediction to change to an alternative value [Molnar, 2020].

To give an example, consider a user who is recommended with the book Harry Potter II. The

explanation because you read Harry Potter I is counterfactual, if without watching Harry Potter

I, the user would not be recommended with Harry Potter II. Finding counterfactual explanations

for recommendations is particularly challenging for two reasons: (i) the input features are often

categorical (e.g., item tags or user actions) which can lead to a combinatorial explosion when

searching for minimal changes in the input, and (ii) the set of possible outcomes is huge as it

contains all the conceivable item rankings, demanding explicit specification of the alternative,

counterfactual outcomes.

Faithfulness: Recently, Jacovi and Goldberg [Jacovi and Goldberg, 2020] have identified three

criteria for faithful explanations. The first criterion is the consistency of the explanations with

the model’s prediction. For instance, the explanation because you like Italian foods is not

in agreement with the high recommendation score predicted for a Chinese restaurant, and

hence is unfaithful to the model. The second criterion demands the uniqueness of explanations

for the same inputs and outputs [Jain and Wallace, 2019]. This criterion, however, has been

brought under scrutiny by some other researchers [Wiegreffe and Pinter, 2019]. Lastly, a faithful

explanation should pinpoint the important features for model reasoning. The importance/rel-

evance/contribution of features is typically quantified as the amount of change caused in the

model output as a result of their removal from the input. For instance, if the removal of the book

Harry Potter I from the user’s history, substantially reduces the relevance score of Harry Potter

II, then the explanation because you read Harry Potter I for the recommendation item Harry

Potter II is faithful to the model. This technique is referred to as erasure [Jacovi and Goldberg,

2020], leave-one-out (LOO) [Jain and Wallace, 2019], or ablation [Covert et al., 2020]. A

similar notion of faithfulness is credibility which has been used in graph-based recommenders,

and is estimated as the strength of the explanation paths between the user and the recommended

item [Lin et al., 2014, Yang et al., 2018].
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Diversity: Another perspective for evaluating explanations is their diversity. In path-based

explanations, heterogeneity of the relation types (edge labels) [Yang et al., 2018] and path

patterns [Fu et al., 2020] are indicators of explanations’ diversity. For instance, according to

Yang et al. the explanation You liked−−→ Harry Potter I has author−−−−−→ J.K. Rowling
authored by−−−−−−→ Harry

Potter II is more diverse than You liked−−→ Harry Potter I
liked by−−−−→ User1 liked−−→ Harry Potter II as it

contains multiple edge types. The benefit of diversifying explanations goes beyond facilitating

human comprehension; when brought to the design level, they help diversify and subsequently

improve the quality of the recommendations as well [Yu et al., 2009].

Readability: For explanations to be comprehensible, they are expected to be short and readable.

Readability can be quantified with the size of the explanation set [Das et al., 2011], the length

of the explanation path [Yang et al., 2018], or the number of words and sentences in textual

explanations [Costa et al., 2018].

Global versus local explanations: Global explanations help understand the distribution of the

target outcome based on the input features [Murdoch et al., 2019, Molnar, 2020]. An example

of a global explanation in the context of recommender systems is because you read Harry Potter

I when the system recommends the book Harry Potter II. This explanation reveals the recurring

pattern of recommending the next book in a series. Local explanations, on the other hand, zoom

in on a single instance and examine why a model predicts a certain outcome for it [Molnar,

2020]. For instance, the explanation because your friends liked Harry Potter II is considered

local for a given user.

2.2.4 Explanation styles

There are different presentation styles for explaining recommendations. Below, we describe the

most common styles [Zhang and Chen, 2020] and present some examples in Table 2.2.

Neighborhood-based explanations: These explanations exploit the similarity of the recom-

mended item to a user’s neighborhood to justify its relevance. These explanations are particularly

common in recommenders based on collaborative filtering, and are either user-based [Abdollahi

and Nasraoui, 2017, Heckel et al., 2017, Cheng et al., 2019] or item-based [Sarwar et al.,

2001, Abdollahi and Nasraoui, 2017, Heckel et al., 2017, Catherine et al., 2017b, Chen et al.,

2018b, Peake and Wang, 2018, Cheng et al., 2019]. User-based explanations (e.g., because

users similar to you also liked item A) are grounded in the ratings given by similar users to the

recommended item. Item-based explanations, on the other hand, attribute the relevance of the

recommendation item to the user’s similar ratings in the past. A common template for such

explanations is because you liked item B which is similar to item A. As users might not know

other similar users, user-based explanation style is deemed less trustworthy than the item-based

style where users are familiar with all the items mentioned in the explanation [Zhang and Chen,



2.2. Explaining recommendations 17

2020].

Feature-based explanations These explanations justify the relevance of the recommended

items by relating their content to user’s preferences. Content-based recommenders use this

strategy for generating recommendations as well as their explanations [Pazzani and Billsus,

2007, Vig et al., 2009]. An example of a feature-based explanation is because you like movies

tagged as “twist ending” [Balog et al., 2019]. Such explanations require external sources (e.g.,

review texts [Hou et al., 2019] or social microblogs [Zhao et al., 2014, Zhao et al., 2016]) for

extracting crisp user and item features.

Textual explanations These explanations leverage user-generated reviews to justify the rele-

vance of the recommended items in natural language. A common approach to generate these

explanations is to exploit the stated user sentiments towards different item features and align

them with the aspects present in the recommend item [Zhao et al., 2015, Zhang et al., 2014b].

The resulting explanations are either presented in predefined templates such as you might be

interested in [aspect] on which this product performs well [Zhang et al., 2014b], produced by

crowd-workers [Chang et al., 2016], or automatically generated using sequence-to-sequence

models [Costa et al., 2018, Li et al., 2020]. Some examples of textual explanation with free form

are the price and the sound quality is great for an electronic device and the bottle is very light

and the smell is very strong for a beauty product [Chen et al., 2021]. According to a comparison

made by Chang et al. [Chang et al., 2016], textual explanations lead to a higher level of trust

and user satisfaction compared to feature-based explanations.

Visual explanations These explanations use graphical designs to draw connections between the

recommended item and user’s preferences. These explanations are widely used in graph-based

recommenders, where paths [Lao et al., 2011, Yang et al., 2018, Ai et al., 2018, Wang et al.,

2019b, Xian et al., 2019, Ma et al., 2019], trees [Tao et al., 2019, Kouki et al., 2019] and

subgraphs [Fang et al., 2011, Musto et al., 2016a, Seufert et al., 2016] present the relationships

between different entities (in this context, between a user and her recommendation). Another

type of visual explanation is saliency maps that highlight the important regions in the image of

an item [Chen et al., 2019a]. Histograms have also been long used to summarize information

related to the recommended items, user’s interests, and her neighborhood [Herlocker et al.,

2000, Donkers and Ziegler, 2020]. Word clouds are another type of visual explanations that help

users quickly spot the interesting item properties [Wu and Ester, 2015].

Social explanations These explanations establish the relevance of the recommended items

through user’s social links [Papadimitriou et al., 2012, Sharma and Cosley, 2013]. A common

template for these explanations is because your friends A and B also liked item C. This style of

explanation is particularly effective in social recommender systems [Sánchez et al., 2017].
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Explanation style Example explanation for the recommendation Harry Potter II

Item-based Because you read Harry Potter I.

User-based Because similar users to you liked Harry Potter II.

Feature-based Because you like books tagged as fantasy.

Textual Because you like books that blend action, mystery and humor.

Path-based You liked−−→ Harry Potter I has author−−−−−→ J.K.R
authored by−−−−−−→ Harry Potter II

Social Because your friend Alice loved Harry Potter II.

Table 2.2: Examples of different explanation styles.

2.2.5 Post-hoc explanations

Post-hoc explainability aims at justifying a model’s outcomes using methods that are decoupled

from the original model [Zhang and Chen, 2020]. In other words, post-hoc explanations are

model-agnostic, i.e., they do not assume prior knowledge of the model, and hence are suitable

for explaining black-box models. Common techniques for generating post-hoc explanations

include surrogate models [Nóbrega and Marinho, 2019, Lee et al., 2020], subgroup/subgraph

discovery [Lonjarret et al., 2020], and association rule mining [Peake and Wang, 2018] as

described below.

Surrogate models: Inspired by LIME (Local Interpretable Model-agnostic Explanations) [Ribeiro

et al., 2016], multiple methods have been developed to explain black-box recommendations

using surrogate models. The goal of these methods is to train an interpretable model that can

approximate the local behavior of the original model. Common choices for surrogate models in-

clude decision trees [Singh and Anand, 2018], logistic regression [Xu et al., 2020], and Bayesian

networks [Carmona et al., 2015]. These models, however, often have limited predictive power,

curbing their faithfulness to the original model.

To address this limitation, Wang et al. [Wang et al., 2018c] have recently proposed a rein-

forcement learning framework for generating explanations that are faithful to the model and

have a good quality of presentation. For this, they introduce agents for generating explanations

and predicting user ratings. The environment rewards the agents if they can correctly predict the

output rating and generate explanations that are both readable and consistent with the model’s

prediction.

Data mining techniques: Recommendations can be explained by identifying the most con-

tributing user inputs (e.g., the items in user history) to the prediction. To this end, several works

have adopted data mining techniques such as association rule mining, subgroup discovery and

influence functions. For instance, Peake and Wang [Peake and Wang, 2018] propose a method
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for extracting global rules from user profiles. The resulting rules, however, often have limited

fidelity, i.e., they may not be able to explain all the recommendations generated by the original

model. Besides, the explanations provided in this model are not personalized to a specific user.

Lonjarret et al. [Lonjarret et al., 2020] resolve these issues by applying subgroup discovery to

find the most influential user inputs. In this work, a subgroup is defined as a subset of items in a

user’s history. The predictive power of each subgroup for a certain recommendation is assessed

using a scoring function. Subgroups with the highest scores are then treated as explanations for

the respective recommendation. In another work, Ying et al. [Ying et al., 2019] try to explain

the predictions of graph neural networks (GNNs) by identifying a subgraph that has the highest

mutual information with the given output.

Provided that the gradients and the Hessian matrix of the model are accessible, one can

approximate the influence of individual data points on the model’s prediction using influence

functions [Cheng et al., 2019]. This method, however, falls short on assessing the influence of a

group of data points, reducing its effectiveness for generating counterfactual explanations.

Selected other methods: SHAP (SHapley Additive exPlanations) is another method that

employs concepts from game theory to compute contribution scores of input features for a

particular prediction [Lundberg and Lee, 2017]. This method, however, has a large computa-

tional cost [Molnar, 2020], and hence is not commonly used for explaining recommendations.

Other approaches for post-hoc explainability use ad-hoc criteria for discovering and ranking

explanations. For instance, Vig et al. [Vig et al., 2009] use item tags (e.g., comedy in movie

domain) to justify their relevance to the users. These tags are scored according to their relevance

to the item and the user’s profile. Sorted Explanation Paths (SEP) is another method for generat-

ing post-hoc explanations for recommendations [Yang et al., 2018]. This method first builds

a unified information network to incorporate all available information about users and items.

Next, the simple paths connecting the user to her recommendation are extracted and ranked

based on three heuristic metrics; credibility, readability, and diversity. The top-ranked paths are

selected as explanations for the final interpretation.

2.2.6 Model-aware explanations

Post-hoc explanations may not be faithful to the model and, as a result, can potentially mislead

users [Lipton, 2018]. A natural solution to eliminate such a risk is to develop models that are

explainable by design. We describe the most common explainable recommendation models

(see [Zhang and Chen, 2020] for a broad survey) in the rest of this section.

Content-based models: As described in Section 2.1.1, in content-based models, items are

recommended based on their content similarity to the user’s profile. Early approaches repre-

sented both the items and the user profile with term vectors, computed their proximity using

cosine similarity, and explained recommendations by highlighting the key terms present in
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both the item description and user profile [Billsus and Pazzani, 2000, Ahn et al., 2007]. Later

approaches adopted ontological similarities and topic modeling to capture word semantics

and further improved the ranking models [Magnini and Strapparava, 2001, Middleton et al.,

2004, Zhao et al., 2015]. With the recent emphasis on designing interpretable models [Rudin,

2019], content-based models are regaining prominence. For instance, Rana and Bridge [Rana

and Bridge, 2018] propose Recommendation by Explanation (r-by-e), where items are sorted

according to their content overlap with users’ histories. In another work, Balog et al. [Balog

et al., 2019] devised a model for learning set-based preferences which uses the probability

ranking principle in IR [Robertson, 1977] to rank items according to their probability of being

liked by the user. In this model, the extracted set of tags are used as explanations.

Neighborhood-based models: These models comprise a class of collaborative filtering recom-

menders that rely on the neighbors of the target user [Ricci et al., 2015]. Recommendations

generated in these models are simply justified by showing a list of neighbor users [Luo et al.,

2008] or neighbor items [Sarwar et al., 2001] along with their similarity weights used at the time

of prediction. In a more recent work, Heckel et al. [Heckel et al., 2017] employs co-clustering

for generating recommendations and their corresponding neighborhood-based explanations.

Graph-based models: These models enhance explainability through capturing side information

in user-item interaction graphs. For instance, He et al. [He et al., 2015] model item aspects as

separate nodes and build a tripartite graph that captures user-item-aspect relations. They propose

TriRank, a method for scoring the vertices of the graph such that the scores are consistent with

user ratings and the nearby vertices receive close values. In this model, recommendations are

explained using the top-ranked aspects connecting the target user to her recommended item.

In another work, Park et al. [Park et al., 2017] build a unified graph that combines user-item

interactions with a social network, and use random walk sampling to pick similar entities for

recommendation. The explanations in this model identify the most similar users to the target

user and most similar items in user’s history to the recommended item.

Knowledge graph-based (KG-based) models: In the context of recommender systems, a

knowledge graph is described as a heterogeneous information network (HIN) that models differ-

ent entity types (e.g., movies, actors, and directors) and the relationships between them (e.g.,

directed by and stars in) [Guo et al., 2020]. The KG-based models leverage the rich factual

information about the items available in knowledge graphs (or knowledge bases) to improve

recommendations and their explainability. Catherine et al. [Catherine et al., 2017a] propose

a KG-based model that takes as input a set of rules and a database of facts and constructs a

proof graph via grounding the rules. Running personalized PageRank on the proof graph, they

jointly rank items and entities in the KG where the entities can serve as an explanation for the

recommendation.
More recent KG-based models embed the entities and relations in KG into feature vectors and

plug them as input to the recommendation model. Huang et al. [Huang et al., 2018] use relation
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embeddings to model attribute-level preferences and explain recommendations by referring to

the attributes with the highest attention weights. Ai et al. [Ai et al., 2018] adopt a relaxed version

of TransE [Bordes et al., 2013] for learning the KG representations and use a soft matching

algorithm to generate short explanation paths for the recommendations. Wang et al. [Wang

et al., 2018a] learn item-specific user embeddings by propagating user interests iteratively along

the KG links and averaging the similarity of the user’s neighborhood to a given item. In this

model, the paths with the highest relevance probabilities are used as explanations. In another

work [Xian et al., 2019], a policy-guided graph search algorithm is proposed to effectively

sample reasoning paths for recommendations.

Factorization models: The lack of intuitive meanings for latent features has motivated re-

searchers to introduce interpretability in latent factor models. One approach is to enforce close

proximity of similar entities (users and items) through additional regularizers [Abdollahi and

Nasraoui, 2017, Hsieh et al., 2017], and use neighborhood-based explanations to justify the

relevance of the recommendations. Another common approach is to exploit user preferences

towards explicit item features and combine them with latent factors. Zhang et al. [Zhang

et al., 2014b] introduce two additional input matrices, namely the user-feature matrix and the

item-feature matrix that were factorized jointly with the rating matrix. They also employ a

ranking scheme which aligns users’ preferences with the features present in the items, and thus

generate explainable recommendations. Built upon these initial attempts, other approaches have

been proposed that utilize techniques such as factorizing user aspect preference (UAP) and item

aspect quality (IAQ) matrices [Hou et al., 2019], user-item-feature tensor factorization [Chen

et al., 2016, Wang et al., 2018b], aspect topic modeling [Cheng et al., 2018] or aligning latent

features to the topics/crisp features extracted from review texts [McAuley and Leskovec, 2013]

or knowledge graphs [Anelli et al., 2020].

Deep learning models: The attention mechanism is known to improve interpretability of deep

models. Deep recommenders use attention scores to highlight interpretable reasons such as

important words/sentences in user’s reviews [Seo et al., 2017, Lu et al., 2018a, Avinesh et al.,

2019, Chen et al., 2019c], regions of interests in product images [Chen et al., 2019a], interesting

item aspects/features [Gao et al., 2019, Xin et al., 2019, Suzuki et al., 2019, Pan et al., 2020],

useful item reviews [Chen et al., 2018a], or relevant items in a user’s history [Chen et al., 2018b].

In another work, Fusco et al. [Fusco et al., 2019] introduce an interpretable neural architecture

which adopts layer-wise relevance propagation (LRP) [Bach et al., 2015] to determine the

contributing input factors for a prediction. To increase the usefulness of explanations, recent

studies have developed interpretable models that generate free-form explanations from review

texts using sequence-to-sequence models [Costa et al., 2018, Lu et al., 2018b, Chen et al.,

2019d, Chen et al., 2021].

Rule-based models: These models employ techniques such as decision trees for mining rules



22 2. Background

for recommendations [Gutta et al., 2000]. Ma et al. [Ma et al., 2019] propose a model that

uses different schemes for learning and ranking rules based on existing item-item associations

in the training set. The induced rules are then used to generate recommendations that can be

explained using the premises of the rules. HyPER (HYbrid Probabilistic Extensible Recom-

mender) [Kouki et al., 2015] is another rule-based recommender that incorporates a wide range

of signals such as item-item and user-user similarities using a set of rules. For instance, in the

context of music recommendation, these rules can capture the intuition that similar users like

similar artists [Kouki et al., 2019]. Wang et al. [Wang et al., 2018d] build a Gradient Boosting

Decision Tree (GDBT) to derive a set of predictive rules based on features of users and items.

The premises of the resulting decision rules are then used as interpretable input features to an

attention-based network where attention weights highlight the importance of features for the

prediction.

2.3 Scrutable recommenders

Modeling user preferences is critical to the effectiveness of recommender systems. Incorrect

assumptions about users’ preferences can lead to wrong or outdated user models. In such

scenarios, systems would benefit from scrutability. To recall, scrutable recommenders enable

users to inform the system when it is wrong, exert control over the personalization process and

accordingly influence their future recommendations [Tintarev and Masthoff, 2007].

To enhance scrutability of recommender systems, it is natural to assume that users must first

understand or at least have an intuition of the reasoning behind their received recommendations.

Therefore, mechanisms for scrutability are often designed in the context of explanations [Jan-

nach et al., 2016].

Critiquing-based recommender systems are prominent examples of scrutable recommenders,

where users are allowed to critique their recommended items [Chen and Pu, 2012]. For instance,

if a user wants to purchase a camera, she may ask the system to display similar cameras to

the one recommended but with a lower price. Critiquing is a post-filtering functionality that

helps users incrementally refine the preference models learned from their interactions with

the system as they see more recommendations. Existing critique-based recommenders use

either user-initiated, system-suggested, or natural language-based critiquing [Chen and Pu,

2012], which will be explained next. Since user-initiated critiquing is the most common type of

critiquing, we dedicate the majority of our discussion to this type.

• User-initiated critiquing: This type of critiquing aims at assisting users in creating cri-

tiquing criteria on their own. For this, systems enable their users to interact with the

attributes of the recommended items or their explanations and modify their influence on

future recommendations. The existing methods for user-initiated critiquing mainly differ

based on how they collect and incorporate user feedback. Early approaches mostly em-

ployed interpretable recommendation models whose inputs or internal parameters could be
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directly controlled by the user. Some examples of such direct user control are modifying

the weight of recommendation rules [Jannach and Kreutler, 2007], adding terms to (or

removing terms from) own profile for better news recommendations [Ahn et al., 2007],

decreasing (or increasing) the influence of friends on social recommendations [Bostandjiev

et al., 2012, Knijnenburg et al., 2012b], removing tracks from own history to stop receiving

similar songs as recommendations [Jin et al., 2018], and deactivating set-based preferences

inferred about the user in the movie domain [Balog et al., 2019].

With the recent advances in feature engineering, modern approaches to scrutability are able

to offer more fine-grained user control. Wu et al. [Wu et al., 2019a] propose a deep model

that jointly predicts item ratings and personalized keyphrases as their explanations. When a

user critiques a keyphrase (such as Hip-hop for a recommended song), the model generates

a new explanation vector by zeroing out the critiqued phrases, updates the learned latent

variables accordingly, and subsequently produces new recommendations. Built upon this

work, Luo et al. [Luo et al., 2020a] extend the model to enable multi-step critiquing. For

this, they formulate a linear programming (LP)-based optimization problem to compute the

optimal amount of change in model parameters in response to the user’s critiques.

Another technique to incorporate users’ critiques into the model is through expanding the

training set with biased input data to shift the decision boundary in the desired direction.

This method is particularly beneficial for exerting control over black-box classifiers whose

parameters cannot be directly modified. Lee et al. [Lee et al., 2020] propose a method for

creating labeled pseudo-examples according to users’ feedback. When a user gives positive

(negative) feedback on an item feature, pseudo-examples are created such that they feature

the acted-upon attribute and are assigned positive (negative) labels. The influence of each

pseudo-example is determined according to their proximity to the critiqued recommendation.

• System-suggested critiquing: This type of critiquing aims at guiding the search process by

proposing a set of critique suggestions from which users can select. An example of such

a suggestion is “cheaper with lower resolution” for a recommended camera. McCarthy et

al. [McCarthy et al., 2004] propose dynamic critiquing, where in each recommendation cycle,

association rule mining is applied to discover frequent sets of value differences between the

current recommendation and the remaining products. The resulting sets identify multiple

ways to filter out the search space (e.g., moving on to cheaper cameras). This approach was

later improved by Zhang and Pu [Zhang and Pu, 2006] who also took into account user’s

preferences when suggesting critiques.

• Natural language-based critiquing: This type of critiquing enables users to enter their

critiques in natural language. In conversational recommender systems, this technique helps

refine the user’s preferences in the course of a conversation with her. ExpertClerk [Shimazu,

2001], Adaptive Place Advisor [Thompson et al., 2004], and MusicBot [Jin et al., 2019]

are examples of conversational recommender systems that exploit natural language-based

critiquing for improving their recommendations.
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Users increasingly rely on recommendations generated by social platforms (hereinafter

referred to as feeds) for consuming daily information. The items in a feed, such as news,

questions, songs, etc., usually result from the complex interplay of a user’s social contacts, her

interests, and her actions on the platform. The relationship between the user’s own behavior and

the received feed is often puzzling, and many users would like to have a clear explanation for

why certain items were shown to them. Transparency and explainability are critical in social

platforms considering the potential concerns such as filter bubbles and privacy risks.

This chapter presents a framework that systematically discovers, ranks, and explains relation-

ships between users’ actions and items in their social media feeds. In Section 3.2, we describe

how to model the user’s local neighborhood on the platform as an interaction graph, a form of a

heterogeneous information network (HIN) constructed solely from the information that is easily

accessible to the concerned user. We posit that paths in this interaction graph connecting the

user and her feed items can act as post-hoc explanations for the user. In Section 3.3, we propose
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a learning-to-rank (LTR) model based on ordinal regression to score the paths based on two

criteria; relevance (usefulness) and surprisal. We evaluate our framework using real user studies

on two social platforms and demonstrate the practical viability and user benefits of the proposed

framework in Sections 3.4-3.6.

3.1 Introduction

Motivation. Web users interact with a huge volume of content every day, be it for news,

entertainment, or inside social conversations. To save time and effort, users are progressively

depending on curated feeds for such content. A feed is a stream of individualized content items

that a service provider tailors to a user. Well-known kinds of feeds include Facebook and Twitter

for social networks, Quora and StackExchange for community question-answering, Spotify and

Last.fm for music, Google News and Mashable for news, and so on. Since a feed is a one-stop

source for information, it is important that users understand how items in their feed relate to

their profile and activity on the platform.

On some platforms like Twitter and Tumblr, the feed originates solely from updates in the

user’s social neighborhood or from their explicitly stated interest categories, and the connection

is almost always obvious to the user. However, as service providers gather an increasing amount

of user-specific information in an attempt to better cater to personal preferences, more and more

platforms (like Quora, LinkedIn, and Last.fm), are generating complex feeds. Here, a feed

results from an intricate combination of one’s interests, friendship network, her actions on the

platform, and external trends. Such platforms are our focus in this chapter.

Over time, a user accumulates several thousands of actions that together constitute her profile

(posts, upvotes, likes, comments, etc.), making it impossible for the user to remember all these

details. Further, the user may not even possess a complete record of her actions on the platform,

a common situation that has been referred to as the problem of inverse privacy [Gurevich and

Wing, 2016].

In such situations, identifying explanatory relationships between the users’ online behavior

(social network, thematic interests, actions like clicks and votes) and the feed items they receive,

is useful for at least three reasons: (i) they can convince the user of their relevance, whenever a

received item’s connection to the user is non-obvious or surprising; (ii) they can point the user

towards future actionability (a course of action to avoid seeing more of certain kinds of items),

and (iii) due to the sheer scale and complexity of data and models that service providers deal

with, it is not always realistically possible to show end users the real reasons behind the feed

items recommended to them; in such cases, these relationships act as justifications that the users

could find plausible.

For example, if Alice sees a post on making bombs in her feed when she herself is unaware of

any explicit connection to such, she might be highly curious as to what she might have done

to create such an association. In this context, Alice would definitely find it useful if she is now
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shown explanations like the following, that could remind her of some relevant actions: (i) her

good friend Bob is a close friend of Charlie, who follows Chemistry and the bomb post was

tagged as belonging to this category, or, (ii) she recently asked a question about food, that is

recorded as a sub-category of Organics in the platform’s taxonomy, and the author of the bomb

post has also categorized the post under Organics. In our study involving 20 users each on

two platforms, participants reported seeing 2, 410 such non-obvious items in their feeds over a

period of two months.

Limitations of state-of-the-art. In principle, service providers are in the best position to

offer such explanations. But they rarely do so in practice. For example, Quora simply tags

items not emanating directly from one’s neighborhood or interest profile with ‘Topic you might

like’, and Last.fm often has notes like ‘Similar to Shayne Ward’ for a track recommendation,

neither elaborating the user’s relationship to the artist Shayne Ward, nor how the similarity

was determined in the first place. Facebook’s explanations have similarly been brought into

question [Andreou et al., 2018]. Except [Eslami et al., 2015], there is very little work in-

vestigating relationships between user interactions on the platform and items in their feeds

(outside of Twitter [Edwards et al., 2014], where the feed is generated exclusively from the

network). Relationship discovery [Liang et al., 2016], however, has been explored in other

contexts and for different goals, most notably for understanding entity relatedness in knowledge

graphs [Lao et al., 2011, Fang et al., 2011, Pirrò, 2015, Seufert et al., 2016, Bianchi et al.,

2017], predicting links on social networks [Zhang et al., 2014a], and generating personalized

recommendations [Yu et al., 2014, Lao and Cohen, 2010].

Understanding connections between user preferences and online advertisements has been

investigated in simulated environments to some extent [Lécuyer et al., 2014, Lécuyer et al.,

2015, Parra-Arnau et al., 2017]. We differentiate ourselves from these approaches in the

following ways:

• Prior works have aimed to discover the true provenance of an item using models of causality,

and are typically aimed at reverse-engineering the platform. This is very different from our

goal where we try to unravel connections between a user’s own actions and what she sees in

her feed, to enable her to better understand the interplay between her and the platform, and

for her to have a better handle on the cognitive overload resulting from interactions with the

platform;

• A common approach in this setting is to use what-if analysis methods [Lécuyer et al.,

2014, Lécuyer et al., 2015] like differential correlation, which are intractable in a setting

where a user makes thousands of interactions with the platform over an extended period of

time;

• Mechanisms underlying advertisement targeting are guided by completely different (finan-

cial) incentives in comparison to regular feed items.

Approach. We propose FAIRY, a Framework for Activity-Item Relationship discoverY, that
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Figure 3.1: Toy interaction graph for Quora user Alice.

(i) addresses the discussed challenges by building user-specific interaction graphs exclusively

using information visible to the user herself, (ii) learns models for predicting relevance and

surprisal, trained on data from real user-studies on two platforms (Quora and Last.fm), and (iii)

uses learning-to-rank (LTR) techniques to rank relationships derived from the above interaction

graphs.

Since our goal is to pinpoint a set of user actions and their subsequent associations to the

recommended feed item, FAIRY starts out by building an interaction graph connecting items

in the user’s local neighborhood. An example of such an interaction graph for a Quora user is

shown in Fig. 3.1. The interaction graph is modeled as a heterogeneous information network

(HIN) [Sun and Han, 2012, Sun et al., 2011, Deng et al., 2011, Liang et al., 2016]. The HIN

is a graph with different types of nodes (users {ul}, categories {cm}, and items {in}) and

edges (corresponding to different action types like follow, ask, and upvote, shown in different

colors). Nodes and edges in this HIN are weighted (not marked in Fig. 3.1 for simplicity). Edges

are directed and timestamped, corresponding to the time an action was performed, wherever

applicable (τj’s in Fig. 3.1). In the FAIRY framework, each path in this interaction graph

that connects the user u (Alice) to a feed item f (post on bombs) corresponds to a potential

explanation for that item, provided that each edge e on the path has timestamp τ(e) < τ(f),

where τ(f) is the time the feed item was seen by u. Two possible explanation paths (out of

many more) are shown via solid edges in Fig. 3.1.

The high number of such explanation paths in the HIN demands a subsequent ranking module.

We employ a learning-to-rank (LTR) model based on ordinal regression [Joachims, 2006], that

models judgments of relevance and surprisal, collected from the same users who received the

feed item. Features used in the LTR models correspond to lightweight estimations of user

influence, category specificity, item engagement, path pattern frequency, and so on. These are
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derived from node and edge weights in the HIN, and are intentionally kept simple, to make them

tangible and interpretable to the end user.

We compare FAIRY to three baselines: ESPRESSO [Seufert et al., 2016], REX [Fang et al.,

2011], and PRA [Lao and Cohen, 2010], based on different underlying algorithms. These

are state-of-the-art methods for computing entity relatedness over knowledge graphs. FAIRY

outperforms these baselines on two representative platforms in modeling both relevance and

surprisal.

The key contributions presented in this chapter are:

• the first user-centric framework for discovering and ranking explanation paths between users’

activities on a social network and items in their feed;

• models for capturing the subtle aspects of user-relevance and surprisal for such explanations,

with learning-to-rank techniques over lightweight features;

• extensive experiments including ablation studies, showing systematic improvements over

multiple baselines, and identifying vital factors in such models;

• a user study conducted over two months involving 20 users each on Quora and Last.fm,

providing useful design guidelines for future research on feed analysis.

3.2 Discovering explanations

The FAIRY framework uses a heterogeneous information network (HIN) [Sun and Han, 2012]

to represent a user’s presence and activities on a social network S as a graph, and relies

on a learning-to-rank (LTR) model to order explanation paths mined from this user-specific

interaction graph.

We are given a user u ∈ U , where U is the set of members of S, and her feed on S, FSu .

Our goal here is to find and rank the set of explanation relations Ruf = {r1, ...., rk} between

u and f ∈ FSu , where k = |Ruf |. Ruf is the set of connections between u and f via u’s local

neighborhood on S. This local neighborhood is initialized using the set of activities that u

performs: Au = {a1, ..., am}, where m = |Au|. Examples of such activities are ‘asking a

question’ on Quora or ‘loving an album’ on Last.fm. Connections to f via Au are identified by

traversing the vicinity of u in S, and recorded in u’s interaction graph, Gu. Strictly speaking,

Gu may not be fully connected. Typically, however, S has an underlying taxonomy T of topics

that all entities in the network must belong to, and overlaying T on the vicinities of u and f

ensures connectivity in Gu. Specifically, a path between any pair of entities may be found

by first associating them via the categories they directly belong to, followed by subsequent

generalization by traversing higher up in T, till a connection is established (see [Kasneci et al.,

2009] for an application of this strategy in relationship mining). More formally, each Gu is an

instance of a HIN, defined as [Liang et al., 2016]:
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Definition 3.2.1. The Interaction Graph of a user u is a directed and weighted multi-graph

Gu = (N,E,MT
N ,M

T
E ,M

W
N ,MW

E ,MT ), where: N is the set of nodes, E is the set of edges,

MT
N : N 7→ TN and MT

E : E 7→ TE are functions mapping nodes and edges to their correspond-

ing types (sets TN and TE), MW
N : N 7→ R≥0 and MW

E : E 7→ R≥0 are node and edge weight

mapping functions respectively, and MT : E 7→ T maps each edge e ∈ E to a timestamp τ(e).

The user u, her actions Au, and the feed item f are naturally part of Gu (u, f ∈ N,Au ⊆ E).

Fig. 3.1 shows a representative interaction graph where u is the leftmost user Alice, and f is the

rightmost item marked with a bomb. We now explain each property of this HIN, instantiating

them with corresponding features of social networks.

Nodes {n ∈ N} in Gu correspond to entities in the social network. Node types are either

users or various classes of content (categories, tags, posts, songs, etc.). Via mapping MT
N ,

we have MT
N (n) = tnN , where tnN ∈ TN is one of the types above for node n. In Fig. 3.1,

N = {Alice, . . . ,Health, , . . . , bomb-post}, MT
N (Alice) = user, and MT

N (Health) = category.

An edge e ∈ E represents a relationship (interchangeably referred to as actions henceforth)

between two nodes n1, n2 ∈ N . Edges represent the following connections: (i) user-content:

these capture engagement or actions by the users on the content in S (in Fig. 3.1, user Alice
follows−−−−−→ category Health), (ii) user-user: they capture social relationships between users (Charlie
follows−−−−−→ Sam), and (iii) content-content: these edges capture relationships between content items

(Food
belongs to−−−−−−→ Organics). Each e is mapped to an edge type MT

E (e) = teE , where teE ∈ TE ,

instantiated depending on the platform (e.g., asks, answers, follows, . . . for Quora); t(Charlie
follows−−−−−→ Sam) = follows). For each edge in the HIN, we add an opposite edge typed with the

inverse relation between the same pair of nodes (e.g., we add Health
follows−1

−−−−−−→ Alice). This

enables bi-directional traversal of the HIN.

Nodes n ∈ N and edges e ∈ E in Gu are associated with non-negative weights. The node
weightMW

N (n) may reflect node influence, specificity, or engagement depending upon the entity

type. The value of MW
N (n) itself may be derived from measurable features of the platform that

are visible to u. For example, if the post on food was upvoted by 30 users,MW
N (food-post) = 30.

An edge weight MW
E (e) counts the number of times the action was performed, e.g., if a Last.fm

user scrobbles (listens to) a specific song five times, then MW
E (e) = 5.

Gu is a multi-graph, implying that there may exist more than one edge between any two

nodes, corresponding to multiple actions. For example, Twitter users can both like and re-tweet

a Tweet, and users on Last.fm can both scrobble a song, and love it.

There exists a unique edge timestamp denoted by τ(e), which is the time when the corre-

sponding action was performed (e.g., τ(Bob
follows−−−−−→ Charlie) = τ5). This is possibly null, if e

has existed since the epoch (category memberships are assumed to be such edges in this work).

For edges with w(e) > 1 (action performed multiple times), we define τ(e) as the timestamp of

the first instance of this action.

The size of the interaction graph Gu is characterized by the eccentricity of u, ε(u). This
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is the greatest graph (geodesic) distance (length of shortest path) d between u and any other

node n′ in Gu, i.e., ε(u) = maxn′∈G,n′ 6=u d(u, n
′). In other words, ε(u) = 3 yields the 3-hop

neighborhood of u in Gu. In Fig. 3.1, ε(Alice) = 4.

We are now in a position to discover the set of explanation relations Ruf , formally defined

below.

Definition 3.2.2. An Explanation Path is a path r connecting u and f in Gu such that the

timestamp of every edge τ(e) in r is less than the time when f was seen by u, i.e. τ(f) >

maxe∈r τ(e).

In Fig. 3.1, for (Alice, bomb-post f ), if we have τ(bomb-post) = 13, then Alice
follows−−−−−→

Health
belongs to−1

−−−−−−−−→ health-post
posts−1

−−−−−→ Sam asks−−−→ bomb-post, is a valid explanation path.

However, the following path: Alice
follows−−−−−→ Bob

follows−−−−−→ Charlie
upvotes−−−−−→ health-post

posts−1

−−−−−→
Sam asks−−−→ bomb-post, is invalid as the timestamp τ(Charlie

upvotes−−−−−→ health-post) = 14 > 13.

Henceforth, explanations and relations (with or without paths) are used interchangeably, and

should be understood as equivalent. An explanation path can thus be a combination of user-

content, user-user, and content-content edges. For example, the path outlined earlier in this

paragraph is a mixture of user-content and content-content edges, but lacks any user-user

connection. Thus, given, u, f , and Gu, we extract all explanation paths between u and f from

Gu as candidates for further processing.

It can be argued that since the interaction graph could often be dense, explanations could

be better presented as sub-graphs [Seufert et al., 2016] instead. But we prefer paths in this

work due to the following reasons: (i) sub-graphs are difficult to isolate by influence, especially

for dense neighborhoods; (ii) paths (simple, without loops), are atomic units of relationships,

and subgraphs can, in fact, be reduced to a number of constituent paths; and (iii) subgraphs

are harder to interpret for the average user, and may be more difficult to make comparative

assessments.

3.3 Ranking explanations

Due to the high activity count aggregated by a user over her time as a member of the platform,

and due to the richness of the platform itself (allowing a post to have multiple categories,

having a detailed directed acyclic graph (DAG) taxonomy, etc.), the usual number of candidate

explanation paths is too high to be processed by a user, if presented all at once. Measurements

from our user study show that the number of such paths can vary from a few thousand to even

millions (depending on the graph size determined by ε(u), and length of relation path r). Thus,

it is imperative that we rank these paths and present only a top few, to prevent a cognitive

overload.
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3.3.1 Learning to rank explanations

Over the last decade or so, learning-to-rank (LTR) [Joachims, 2006, Cao et al., 2007] has

emerged as the de facto framework for supervised ranking in information retrieval and data

mining, which motivates its application to FAIRY. LTR has three basic variants: pointwise,

pairwise, and listwise, with each type proving beneficial in specific contexts [Radlinski and

Joachims, 2005, Bast and Haussmann, 2015].

The common guiding criterion, though, is the nature of gold label judgments that can be

collected (and/or inferred). In our case, we want to model relevance and surprisal of the

explanation paths. Generally, it is difficult for a user to score a standalone explanation path on

scale of 0− 10, say. At the other extreme, it might be even harder to score a complete list of say,

a heuristically chosen sample of ten paths. Collecting preference judgments is the most natural

thing to do in our setting: it is a conceivable task for an end user (an average social media user,

here) to rate a path as being more relevant (generally useful as a satisfactory explanation to

her), or it being more surprising (such as discovering a forgotten/unknown connection in her

vicinity), than another path connecting her to the same feed item. Collecting such explicit

pairwise annotations has been suggested as being cognitively preferable to the user in other

contexts like document relevance assessments [Carterette et al., 2008]. In a similar vein, we

use a pairwise learning-to-rank model based on ordinal regression, that directly makes use of

the users’ preference judgments on pairs of explanations [Joachims, 2006]. We used SVM rank

with a linear kernel, as it is very fast to train, and has been shown to be highly effective in

ranking result pages for search queries [Schuhmacher et al., 2015].

3.3.2 Learning to rank features

The general principles guiding this work are explainability and transparency. This influences

the choice of our features in two ways: (i) while the provided explanation should already be

insightful to the user, it is not unreasonable to assume that the user could, in turn, want to know

what was responsible for a few chosen paths to be shown as more surprising or relevant than

others. This points towards using simple and interpretable features that can give a naive user

a handle on what was found to be “important” in this context; and, (ii) the features should be

visible to the user in question: either public, or easily accessible in a few clicks, or by visiting

a user-specific URL. Data that only the service provider has access to (derived measures of

user-user similarity), or requires excessive crawling (total number of authors of all posts in

a category) are clearly unsuitable in the task at hand. With these guidelines, we define the

following sets of features for the FAIRY framework. These are grouped into five sets: (i) user,

(ii) category, (iii) item, (iv) path instance, and (v) path pattern. For the first three sets, if there

are multiple instances of the same type on a path (two users or three categories), the feature

value is averaged over these instances.
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3.3.2.1 User features

We consider two factors for users on explanation paths: (i) user influence, and (ii) user activity.

Influence is typically measured using number of followers or the link ratio (ratio of followers to

followees, wherever friendship is not mutual) on social networks [Srijith et al., 2017]. Higher

the link ratio, higher is the perceived influence. For activity, we measure the individual types of

activity that the user is allowed on the platform (scrobbling tracks, loving tracks, and following

other users on Last.fm). More influential and active users may have a discriminative effect on

the user’s judgments for relevance.

3.3.2.2 Category features

(i) Popularity or influence can be estimated for categories too, for example, by counting the

number of posts in them, or looking at their total numbers of followers or subscribers. Such

aggregates are often made visible by providers, and it is not necessary to actually visit and count

the items concerned. (ii) We also consider category specificity [Ramakrishnan et al., 2005],

which is reflected by its depth in the category hierarchy (the higher the level, the more specific it

is, root assumed to be level 0) and the number of children (sub-categories) it has in the taxonomy

(more children implying less specificity). While popularity may influence user’s judgments on

relevance, high category specificity may directly affect the surprisal factor.

3.3.2.3 Item features

(i) Specificity for items (songs, posts, etc.) may be analogously computed by counting the

number of different categories that the item belongs to. (ii) Engagement is an important measure

for items, which represents the different actions that have been performed on it (typically the

same as the number of users who have interacted with the item). Examples include the number

of different listeners of a song on Last.fm, or the number of different answers that a question

has on Quora, etc. Engagement may be perceived as analogous to influence or popularity for

users and categories in its role in FAIRY.

3.3.2.4 Path instance features

There are some properties of the explanation path as a whole: these can be understood better by

further separating them into path instance and path pattern features. Instance features measure

aspects of the specific path in question. These include: (i) Aggregate similarity of feed item

f to relation path r, i.e., sim(f, r) =
∑

n∈r,n6=u,f sim(n,f)

len(r)−1 , where n is any internal node on

the path, and len(r) is the path length (−1 gives the number of such internal nodes). This

normalized similarity function sim( · , · ) ∈ [0, 1] is treated as a plug-in and can be instantiated

via embedding-based similarities, or computed locally from Gu itself. The item-path similarity
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function, in a sense, measures the coherence of the extracted relation path to the recommended

item. If it is very low, the path could be quite surprising to the user. (ii) Analogous aggregate

similarity of user u with r: sim(u, r) =
∑

n∈r,n6=u,f sim(n,u)

len(r)−1 . This feature models the familiarity

of the user with the path as a whole. (iii) Path length len(r): The length of an explanation is

easily one of the most tangible factors for a user to make decisions on: while shorter paths may

imply obvious connections, longer paths may be more surprising. (iv) Path recency: This is a

temporal feature, and is defined as the most recent edge on the path with respect to the feed:

mine∈r τ(f)− τ(e). The difference is measured in days. Highly recent paths will have a low

value of this feature; the idea is that relatively newer paths may be more relevant to the user due

to freshness, while older paths may have an associated surprise factor. (v) Edge weights: This

feature averages the number of times each action on the path has been repeated (e.g., number of

times a user has listened to a specific song). Note that this feature cannot be used for Quora as

none of the actions can be repeated, i.e, the user cannot upvote/follow/ask/answer the same item

more than once.

3.3.2.5 Path pattern features

Pattern features drop concrete instantiations {n} and {e} in r and deal with the underlying

sequence of node and edge types MT
N (n) and MT

E (e) instead (r1 in Fig. 3.1 has the path pattern:

user
follows−−−−−→ user

follows−−−−−→ user
follows−−−−−→ category

belongs to−1

−−−−−−−−→ post). We consider the

following features: (i) Pattern frequency: This is the average support count of a pattern between

any u and f (frequent patterns may be less surprising). (ii) Pattern confidence: The percentage

of (u, f) pairs with at least one observed instance of the pattern. (iii) Edge type counts: Users in

our study explicitly mentioned the effect of some edge types on their choice of relevance and

surprisal. Thus, to zoom into the effect produced by the aggregate measure of pattern frequency,

we also considered the counts of each edge (action) type present on the path as features (#likes,

#follows, #belongs to, etc).

The general intuition here is that the user has clear mental models of relevance and surprisal;

the above features are what she sees in her daily interactions with the platform. These are

therefore tangible perceptions that influence her models, and the aim here is to learn how these

factors combine to mimic her assessments.

3.4 User studies

Platforms. Since user feeds are never public, we needed to design user studies from where we

could collect gold judgments on explanation paths extracted and ranked by FAIRY. While there

are a plethora of social network platforms providing personalized feeds, we chose Quora and

Last.fm as they possess the richness that can truly test the full power of our HIN model. To be

specific, these platforms have node types, edge types, non-obvious feed items, properties for



3.4. User studies 35

(a) Quora (b) Last.fm

Figure 3.2: Logical schemata for the Quora and Last.fm platforms, showing permissible relationships
between node (entity) and edge (action) types.

estimating node and edge weights, have millions of members, and have been subject of previous

research (e.g., Quora in [Wang et al., 2013], Last.fm in [Jäschke et al., 2007]). Also, one

being a community-question answering site, and the other an online music recommender, they

represent two completely different application platforms, and hence are ideal to evaluate FAIRY

on. We use a slightly simplified version of these platforms’ schemata, as shown in Fig. 3.2.

Users. We hired 20 users each for Quora and Last.fm, for interacting with the platforms and

assessing explanations, in May - July 2018. Users had to set up fresh accounts (using real

credentials for accountability) so that all their activity can be recorded. Each user had to spend

20 hours on one platform in total. This total time was divided into one hour sessions per day,

with a gap of one day between consecutive sessions. Interactions were planned in this staged

manner so as to allow the service provider enough time to build up user profiles, and generate

personalized feeds. The hired users were graduate students of mixed background who were

familiar with Quora and Last.fm. They were paid $10 per 1-hour session, for three tasks: (i)

interacting with the platform (a minimum of 12 activities per session from permissible actions

in Fig. 3.2, no upper bound, “natural” behavior recommended), (ii) identifying non-obvious

feed items after going through their complete feed (both platforms have a countable feed at a

given point of time), and (iii) providing assessments of relevance and surprisal. Their complete

activity and feed on the platforms were recorded. Users were given a random set of ten initial

topics to follow on Quora, due to such a requirement by the platform. They were assigned five

initial followers from within the study group on Quora and Last.fm. More details about the

design of this study can be found in Appendix A.

Judgments. After each session, we updated the interaction graphs of users, selected three

non-obvious recommendations per user, and mined explanation paths for these feed items. Path

length was restricted to four for Quora and five in Last.fm, which resulted in about 2k − 30k
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Platform #Activity |N| |E| #(u, f ) paths

Quora 217 31, 769 532, 569 28, 527
Last.fm 132 22, 815 79, 252 1, 897

Table 3.1: User study statistics (nos. averaged over users except for the last column).

paths on average over (u, f) pairs. Increasing path length led to an exponential increase in the

number of explanations. For each session, we chose 1 to 3 random feed items (among the ones

reported by the user) and randomly sampled 25 pairs of paths per item to be assessed by the user

on two questions: (i) Which explanation path is more relevant (useful) to you for this feed item?

(ii) Which explanation path is more surprising to you for this feed item? The users were allowed

to give free-text comments on reasons motivating their choices. Several of these intuitions and

allusions were encoded into our design considerations.

Statement on ethics. To comply with standard ethical guidelines, all participants were informed

about the purpose of the study, and that their data was being collected for research purposes.

They signed documents to confirm their awareness of the same. Users signed up with their real

credentials; no terms of service of the providers were violated over the course of the research.

All users deleted their accounts at the conclusion of the study.

3.5 Evaluation setup

Datasets. For Quora, we used 11, 677 pairs of explanation paths evaluated by 20 users as the

gold standard. These explanation paths covered 459 distinct (u, f) pairs. Each explanation path

appeared in 1.9 pairs on average. For Last.fm, we collected 4, 791 evaluated pairs from 20 users.

These paths were extracted as potential explanations for 235 distinct (u, f) pairs. Each path

occurred in about 1.7 pairs. Details on the interaction graphs are in Table 3.1.

LTR. To run LTR, we divided each dataset into 80% training, 10% development, and 10% test

sets. We used SVM rank [Joachims, 2006] with a linear kernel in all our experiments.

Baselines. FAIRY was compared with three baselines for relationship discovery: ESPRESSO [Seufert

et al., 2016], REX [Fang et al., 2011] and PRA [Lao and Cohen, 2010]. In ESPRESSO [Seufert

et al., 2016], the goal is to find relatedness cores (dense subgraphs) between two sets of query

nodes. For this, they first identify a center, i.e, a node with the highest similarity to both the

input query sets. Then, they expand the subgraph by adding other key entities, their context

entities, and query context entities. In each step, the entities are selected based on random

walk-based scores. To apply this algorithm, we consider {u} and {f} as the input query sets.

To compute the score of each path, we first find the most similar node on the path to both u and

f as the center. We then expand the set of selected nodes by adding their adjacent nodes on the
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Platform Method FAIRY ESPRESSO [Seufert et al., 2016] REX [Fang et al., 2011] PRA [Lao and Cohen, 2010]

Quora
Relevance 60.33* 49.93 23.47 30.84
Surprisal 60.38* 49.93 21.58 51.93

Last.fm
Relevance 56.24* 48.85 37.66 49.06
Surprisal 54.21* 51.39 36.03 43.29

Table 3.2: Accuracy of FAIRY compared with baselines. The maximum value in a row is marked in bold.
An asterisk (*) denotes statistical significance of FAIRY over the strongest baseline, with p-value ≤ 0.05
for a two-tailed paired t-test.

path. At the time of adding each node, we compute their random walk-based similarity to the

adjacent (already selected) node on the path. In the end, the score of each path is computed by

averaging the scores of its constituent nodes.

REX [Fang et al., 2011] takes a pair of entities and returns a ranked list of its relationship

explanations. Like ESPRESSO, the relationships are in the form of subgraphs. REX ranks

the extracted relationships based on different classes of measures. These measures can also be

used to score paths. We used all aggregate and distributional measures from the original paper.

However, for brevity, we only describe the global distributional measure as it performed the

best. This measure captures the rarity of relations as a signal of interestingness. For this, we sort

explanation paths according to 1−pattern_confidence(.). To recall, pattern_confidence(r)

for explanation r is the percentage of (u, f) pairs with at least one explanation path with the

same pattern as that of r. Accordingly, explanations with less frequent patterns receive higher

scores.

For PRA [Lao and Cohen, 2010], we computed scores of paths via pattern-constrained random

walks. For instance, a pattern like “user
follows−−−−−→ post” only allows the random walker to leave

the source node with type “user” to nodes with type “post” via edges of type “follows”. The

PRA score of the path r between u and f is the probability that a random walker constrained by

the pattern path_pattern(r) starts at u, traverses path r and visits node f .

Metric. We measured the accuracy of each method (or configuration, as applicable) as the ratio

of the correct predictions to all the predictions over pairs of relationship paths.

3.6 Results and insights

3.6.1 Key findings

Comparison of FAIRY with baselines. Table 3.2 shows the comparison of accuracy for the

relevance and surprisal models of FAIRY with baselines on both platforms. In all cases, FAIRY

significantly outperforms all the baselines (paired t-test with p-value < 0.05). Note that all

baselines have the same model for both relevance and surprisal as they try to find either the

most ‘relevant’ or the most ‘interesting’ relationships. All baselines solely rely on the structural

properties of the underlying graphs. In ESPRESSO, scores of cores are affected by the degree
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(a) User-specific models for relevance (Quora). (b) User-specific models for surprisal (Quora).

(c) User-specific models for relevance (Last.fm). (d) User-specific models for surprisal (Last.fm).

Figure 3.3: Performance of user-specific models for ranking explanations. Red: LTR (FAIRY), green:
ESPRESSO [Seufert et al., 2016], blue: REX [Fang et al., 2011], yellow: PRA [Lao and Cohen, 2010].

(no. outgoing edges) of the intermediate nodes. More precisely, on Quora, category nodes have

large degrees as they are connected to many other nodes. This affects scores of paths with many

intermediate category nodes. A similar problem happens in PRA as it is also based on random

walks. Besides, as path scores are computed by multiplying inverse node degrees, PRA is biased

toward shorter paths. In REX, we are only able to compare explanation paths with different path

patterns. This substantially lowers accuracy, as many explanation paths share the same pattern.

User-specific models. To test subjective preferences for relevance and surprisal, we built and

evaluated analogous user-specific LTR models. FAIRY accuracies of user-specific models were

observed to be higher than the aggregate global model for most users (Fig. 3.3a-3.3d). There

are, however, a few users whose judgments we could not easily predict. User ids’ are assigned

in descending order of FAIRY accuracy in Fig. 3.3a, and these ids are used as references for

comparison across all subsequent figures. We found that FAIRY outperforms baselines in user-

specific models as well. Note, again, that baselines do not have separate models for relevance

and surprisal.
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Features Quora Last.fm

Relevance Surprisal Relevance Surprisal

All 60.33 60.38 56.24 54.21

No user features 60.21 60.19 56.03 54.15
No category features 60.33 60.23 56.65 54.80
No item features 60.31 60.38 56.24 54.42
No path instance features 51.69 51.73 54.32 53.65
No path pattern features 60.21 60.71 55.78 54.21

Table 3.3: Ablation study results. The highest value in each column is marked in bold.

3.6.2 Analysis and discussion

Ablation study. To analyze the effects of different feature groups on LTR accuracy, we removed

one group at a time and retrained the models. The key finding was that the removal of any

of the feature groups would hurt the accuracy of the models on at least one platform. For

example, while the removal of path instance features does not affect the accuracy of the models

on Last.fm, it significantly reduces the accuracy on Quora by around 9% (from ' 60% to

' 51%). Therefore, for the sake of consistency, we kept the set of features the same on both

platforms. Details of feature group removal are presented in Table 3.3.

To systematically study variations in features, we tested the effects of adding/removing/re-

placing single features. For instance, to compute the aggregate similarity of the feed item to the

explanation path, we plugged in two different similarity functions: embedding-based similarity

and graph-based similarity. In the former, we computed the similarity of each entity on the

path to the feed item by averaging the pairwise cosine similarity between the embeddings of

the categories/tags associated with the feed and the entity. To learn the embedding of each

category/tag, we first sampled a set of related sentences. On Quora, we sampled 100 questions

at random, posted in the concerned category. For Last.fm tags, we treated each tag as a sentence.

Then we learned the embedding of each sentence using the latent variable generative model in

Arora et al. [Arora et al., 2017] and represented each category/tag with the average embedding

of the sampled sentences.

In the graph-based similarity function, we used the taxonomic distance between categories/-

tags in the category DAG. Replacing the embedding-based similarity with graph-based one

improved the accuracy by 8 percent (from ' 52% to ' 60%). This emphasizes the insufficiency

of graph structures in capturing the similarity of nodes. We tried several other variations, too.

For example, adding counts of node types as a new feature, or replacing total edge label counts

with edge type counts (user-content, user-user, and content-content) counts, or replacing all user

activity features with their maximum values (instead of averages): all of these hurt the accuracy

of the Quora relevance model (' 60%) by at least ' 0.05%.

Perturbation analysis. To understand the effect of instances of each node type on users’ judg-
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Sampling Quora Last.fm

Relevance Surprisal Relevance Surprisal

Random 60.33 60.38 56.24 54.21
Perturb user 56.36 56.66 57.77 58.57
Perturb category 58.51 58.25 55.52 56.84
Perturb item 50.26 50.35 52.85 52.14

Table 3.4: Effect of sampling strategy on FAIRY performance. The highest value in a column is marked
in bold.

ments, we changed our sampling strategy so that paths in each pair differ in only one instance.

In other words, one path can be obtained by perturbing any one instance of the other path. For

example, Alice
follows−−−−−→ Bob

follows−−−−−→ Health is a user-perturbation of the path Alice
follows−−−−−→

Jack follows−−−−−→ Health. We generated perturbed paths for each node type and retrained the LTR

models. Table 3.4 shows that in most cases, random sampling performed better than such

perturbed sampling. The only exception is for user-perturbed paths in Last.fm, indicating that

the chosen user features are particularly effective in the music domain. In one-on-one interviews

with users at the end of the study, some users expressed their interest in receiving explanation

paths with certain friends on it. User-perturbation created pairs of paths where such friends were

present in one but not in the other, resulting in clearer preferences and improved modeling. The

last row of the table, however, shows that item-perturbations greatly degraded performance. This

can be attributed to incomplete knowledge of the users on certain path items in the interaction

graphs: replacing such items with yet other unfamiliar items clearly has an arbitrary effect on

assessments, which seemed to worsen the model’s accuracy.

Transitivity of judgments. Relevance and surprisal are subtle factors, and it is worthwhile to

investigate transitivity in users’ assessments (for both understanding and as a sanity check).

So we extracted all triplets (ri, rj , rk) of explanation paths where we had a user’s judgments

on all the three possible pairs (ri, rj), (ri, rk) and (rj , rk) built from them. We then com-

puted a transitivity_score =

∑
(ri,rj ,rk) I(ri,rj ,rk)∑

(ri,rj ,rk) 1
where I(ri, rj , rk) is the indicator of a

transitive triplet. For instance, if Relevance(ri) < Relevance(rj) and Relevance(rj) <

Relevance(rk), then I(ri, rj , rk) = 1 if Relevance(ri) < Relevance(rk). On a positive note,

it turned out that people’s judgments followed transitivity for 80% and 74% of the Quora and

Last.fm triplets, respectively.

Surprisal and complexity. To make sure that users were not simply using complexity (say,

length) of a path as a proxy for surprisal, we asked about a third of the users to additionally

select the “more complex” path. We noticed that for ' 7.5% of pairs, the more surprising path

was in fact the simpler (shorter) one, indicating that surprisal is based on more implicit factors.

Anecdotal examples. Table 3.5 presents some examples of correct (in blue) and wrong (in red)
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Q
uo

ra
:R

el
ev

an
ce 1

Shrey
follows−−−−−→ Ali

follows−−−−−→ Social Psychology
belongs to−1

−−−−−−−→ What are the things you shouldnt say to people who hate themselves

Shrey
follows−−−−−→ Business

belongs to−−−−−→ Advice on working with people
belongs to−−−−−→ Social psychology

belongs to−1

−−−−−−−→ What are the things ...

2
Ali

follows−−−−−→ Travel
follows−1

−−−−−→ Stephanie
asks−−−→ What is the tackiest thing you have ever seen at a wedding?

Ali
follows−−−−−→ What is something you have tried but will never do again

belongs to−−−−−→ Experiences in Life
belongs to−1

−−−−−−−→ What is the ...

Q
uo

ra
:S

ur
pr

is
al 3

Amr
follows−−−−−→ Cooking

follows−1

−−−−−→ Ratnesh
asks−−−→ How can you learn faster answers−1

−−−−−−→ answer by Ara

Amr
upvotes−−−−−→ answer by James answers−−−−−→ How can you learn faster answers−1

−−−−−−→ answer by Ara

4
Ali

upvotes−−−−−→ answer by Gerry answers−−−−−→ ...something you secretly regret
belongs to−−−−−→ life and living

belongs to−1

−−−−−−−→ How do I give up on life

Ali
follows−−−−−→ Health

belongs to−1

−−−−−−−→ swimwear
belongs to−−−−−→ life and living

belongs to−1

−−−−−−−→ How do I give up on life

L
as

t.f
m

:R
el

ev
an

ce

5
Sahar

scrobbles−−−−−→ Earth
sings−1

−−−−−→ Sleeping at last
belongs to−−−−−→ indie rock

belongs to−1

−−−−−−−→ artist : Kodaline

Sahar
follows−−−−−→ Sana

scrobbles−−−−−→ Adventure of a lifetime
sings−1

−−−−→ Coldplay
belongs to−−−−−→ alternative

belongs to−1

−−−−−−−→ artist : Kodaline

6
Bahar

follows−−−−−→Mojtaba
scrobbles−−−−−→ Baribakh

sings−1

−−−−−→Mansour
belongs to−−−−−→ Persian

belongs to−1

−−−−−−−→ artist : Ebi

Bahar
loves−−→ Twist in my sobriety

belongs to−−−−−→ pop
belongs to−1

−−−−−−−→ track : Pickack
sings−−−→ artist : Ebi

L
as

t.f
m

:S
ur

pr
is

al

7
Elitsa

follows−−−−−→ Engekbert
scrobbles−−−−−→ The prince

belongs to−−−−−→ metal
belongs to−1

−−−−−−−→ track : Rigger
sings−1

−−−−→ artist : Inflames

Elitsa
loves−−−→ Ohne dich contains−1

−−−−−−−→ Reise, Reise
belongs to−−−−−→ metal

belongs to−1

−−−−−−−→ track : Acoustic piece
sings−1

−−−−→ artist : Inflames

8
Ali

loves−−−→ bang bang
belongs to−−−−−→ female vocalists

belongs to−1

−−−−−−−→ album : Dua Lipa (Deluxe) contains−−−−−→ Dreams
sings−1

−−−−→ Dua lipa

Ali
follows−−−−−→ Anna

scrobbles−−−−−→ bad girl friend
belongs to−−−−−→ pop

belongs to−1

−−−−−−−→ track : New rules
sings−1

−−−−−→ Dua lipa

Table 3.5: Anecdotal cases of path pairs with ids. FAIRY makes correct and wrong predictions for blue
and red pairs, respectively.

predictions by FAIRY. In each pair, the first path denotes the preferred one by the user. The

diversity of node and edge types in correct pairs shows the ability of FAIRY to learn underlying

factors determining relevance or surprisal. The wrongly predicted pairs provide insights on the

shortcomings of FAIRY. For example, in the surprisal model, we do not consider sensitivity of

topics or items. Pair #4 is one such example where explanation paths reveal such sensitive items

the users interacted with. Another limitation of FAIRY is that it does not incorporate background

information about the users (such as their gender or nationality) which clearly affects their

preferences. For example, on Last.fm, some users mentioned that presence of regional tags

(such as Persian, Latin or Brazilian) influenced their relevance decisions (pair #6).

3.7 Related work

Social feeds and transparency. Personalizing social feeds has been the focus of many studies,

as the amount of information generated by users’ networks is overwhelming. To increase user

engagement, models have been developed for finding relevant feed items for users by exploiting

their past behavior [Freyne et al., 2010, Hong et al., 2012, Soh et al., 2013, Agarwal et al., 2015].

Users, however, are often unaware of the presence of such curation algorithms [Hamilton et al.,
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2014, Eslami et al., 2015] as service providers generally do not provide insightful explanations.

For example, Cotter et al. [Cotter et al., 2017] demonstrate inadequacy of explanations for feed

ranking in Facebook. Therefore, it is imperative to have mechanisms for more transparency in

social platforms.

Heterogeneous information networks and meta-paths. Due to the limitations of traditional

graphs for capturing complex semantics with different types of entities and relations, heteroge-

neous information networks (HIN) were introduced to model multiple node and edge types [Sun

and Han, 2012]. To analyze such HINs better, a meta-path was defined as the pattern of a path

(sequence of node and edge types). Meta-paths have since been used in different applications

such as similarity search [Sun et al., 2011, Seyler et al., 2018], relationship discovery [Fang

et al., 2011, Kong et al., 2013, Behrens et al., 2018], link prediction [Sun et al., 2012, Zhang

et al., 2014a, Dong et al., 2017, Zhang et al., 2018], and generating recommendations [Lee et al.,

2013, Liu et al., 2014a, Hu et al., 2018] in HINs.

Relationship discovery in knowledge graphs. Finding interesting relationships among graph

concepts is too broad an area to do justice in a short survey: however, mining such connections

for knowledge graph entities is a more pertinent sub-problem that has been well-studied. This

task is either (semi-)supervised, where users are asked for feedback [Behrens et al., 2018],

or unsupervised, where heuristic measures of “interestingness” are applied to detect and rank

relationships. However, user utility is probably multi-faceted: while we have explored relevance

and surprisal, there are probably more, like coherence or complexity. These measures are

normally approximated using topological properties of graphs, such as specificity and rarity of

node/edge/path types [Ramakrishnan et al., 2005, Fang et al., 2011] or connectivity/reachability

of nodes [Lao and Cohen, 2010, Seufert et al., 2016, Liang et al., 2016]. These scoring strategies,

however, implicitly assume a static topology, and may not be useful for dynamic interaction

graphs where nodes and edges are added and deleted with each timestep, and it is imperative

that relationships should take temporal constraints into account.

3.8 Conclusion

We presented FAIRY, a smart user-centric framework that presents ranked explanations to users

for items in their social feeds. Explanations are represented as relationship paths connecting the

user’s own actions to the received feed items. FAIRY was trained and evaluated on data from two

real user studies on the popular platforms of Quora and Last.fm. It outperformed three baselines

on relationship mining on the task of modeling and predicting what users considered relevant

and surprising explanations. The success of FAIRY hinges on two key aspects: a powerful

heterogeneous information network representation of the user’s local neighborhood that can

capture the complexity of current social media platforms, and, (ii) a fast learning-to-rank model

that operates with intuitive and interpretable features that are easily accessible to the user.
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FAIRY is the first step towards a general goal of improving transparency through the user’s

lens. Future directions for research would include, among others: (i) better modeling of

temporal information in the interaction graph, (ii) further exploiting content features to build

better models of entity similarity, and (iii) understanding effects of the user’s activities across

multiple connected platforms.





4
COUNTERFACTUAL EXPLANATIONS

FOR RECOMMENDATIONS

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Computational model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 The PRINCE algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Correctness proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Graph experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5.2 Results and insights . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6 User study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.7 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

In the previous chapter, we proposed a framework for discovering and ranking post-hoc

explanations for social feeds. The resulting explanations, however, are decoupled from the

recommendation model, failing to guarantee faithfulness to the model. Besides, the explanation

paths may contain sensitive information about other users which could violate their privacy.

In this chapter, we address these limitations by presenting PRINCE: a provider-side mechanism

to produce tangible explanations for end users, where an explanation is defined to be a set

of minimal actions performed by the user that, if removed, changes the recommendation to

a different item. We thus posit that PRINCE produces faithful, action-based, and concise

explanations, owing to its use of counterfactual evidence, a user’s own actions, and minimal

sets, respectively.

In Sections 4.3 and 4.4, we present the PRINCE algorithm that finds minimal counterfactual

explanations in recommenders based on personalized PageRank (described in Sections 4.2).

Section 4.5 discusses experiments on two real-world datasets, showing that PRINCE provides

more compact explanations than intuitive baselines. Section 4.6 presents insights from a

crowdsourced user study, demonstrating the viability of such action-based explanations.
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Figure 4.1: PRINCE generates explanations as a minimal set of actions using counterfactual evidence.

4.1 Introduction

Motivation. Explanations for recommenders can take several forms, depending on the generator

(explanations by whom?) and the consumer (explanations for whom?). As generators, only

service providers can produce true explanations for how systems compute the recommended

items [Zhang et al., 2014b, Wang et al., 2018b, Balog et al., 2019]; third parties can merely

discover relationships and create post-hoc rationalizations for black-box models that may look

convincing to users [Peake and Wang, 2018, Wang et al., 2018c, Ghazimatin et al., 2019]. On

the consumer side, end users can grasp tangible aspects like activities, likes/dislikes/ratings, or

demographic factors. Unlike system developers or test engineers, end users would obtain hardly

any insight from the transparency of internal system workings. In this chapter, we deal with

explanations by the provider and for the end user.

Limitations of state-of-the-art. At the core of most recommender systems is some variant

of matrix or tensor decomposition (e.g., [Koren et al., 2009]) or spectral graph analysis (e.g.,

[Jamali and Ester, 2009]), with various forms of regularization and often involving gradient-

descent methods for parameter learning. One of the recent and popular paradigms is based

on heterogeneous information networks (HIN) [Yu et al., 2013, Yu et al., 2014, Shi et al.,

2017, Zhang et al., 2019], a powerful model that represents relevant entities and actions as

a directed and weighted graph with multiple node and edge types. Prior efforts towards
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explanations for HIN-based recommendations have mostly focused on paths that connect the

user with the recommended item [Shi et al., 2015, Yang et al., 2018, Ai et al., 2018, Wang

et al., 2018a, Ghazimatin et al., 2019, Wang et al., 2019b, Xian et al., 2019]. An application of

path-based explanations, for an online shop, would be of the form:

User u received item rec because u follows user v, who bought item j, which has the same

category as that of rec.

However, such methods come with critical privacy concerns arising from nodes in paths that

disclose other users’ actions or interests to user u, like the purchase of user v above. Even

if user v’s id was anonymized, user u would know whom she is following and could often

guess who user v actually is, that bought item j, assuming that u has a relatively small set of

followees [Machanavajjhala et al., 2011]. If entire paths containing other users are suppressed

instead, then such explanations would no longer be faithful to the true cause. Another family

of path-based methods [Peake and Wang, 2018, Wang et al., 2018c, Ghazimatin et al., 2019]

presents plausible connections between users and items as justifications. However, this is merely

post-hoc rationalization, and not actual causality.

Approach. This chapter presents PRINCE, a method for Provider-side Interpretability with

Counterfactual Evidence, that overcomes the outlined limitations. PRINCE is a provider-

side solution aimed at detecting the actual cause responsible for the recommendation, in a

heterogeneous information network with users, items, reviews, and categories. PRINCE’s

explanations are grounded in the user’s own actions, and thus preclude privacy concerns of

path-based models. Fig. 4.1 shows an illustrative example. Here, Alice’s actions like bought

shoes, reviewed a camera, and rated a power bank are deemed as explanations for her backpack

recommendation. One way of identifying a user’s actions for an explanation would be to

compute scores of actions with regard to the recommended item. However, this would be an

unwieldy distribution over potentially hundreds of actions – hardly comprehensible to an end

user. Instead, we operate in a counterfactual setup [Martens and Provost, 2014]. PRINCE

identifies a small (and actually minimal) set of a user’s actions such that removing these actions

would result in replacing the recommended item with a different item. In Fig. 4.1, the item

rec = “Jack Wolfskin backpack” would be replaced, as the system’s top recommendation, by

i3 =“iPad Air” (the i’s represent candidate replacement items). Note that there may be multiple

such minimal sets, but uniqueness is not a concern here.

Another perspective here is that the goal of an explanation is often to show users what they

can do in order to receive more relevant recommendations. Under this claim, the end user has

no control on the network beyond her immediate neighborhood, i.e., the network beyond is not

actionable (shaded zone in Fig. 4.1), motivating PRINCE’s choice of grounding explanations in

users’ own actions.

For true explanations, we need to commit ourselves to a specific family of recommender

models. For this, we choose a general framework based on Personalized PageRank (PPR), as
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used in the state-of-the-art RecWalk system [Nikolakopoulos and Karypis, 2019], and adapt

it to the HIN setup. The heart of PRINCE is a polynomial-time algorithm for exploring the

(potentially exponential) search space of subsets of user actions – the candidates for causing the

recommendation. The algorithm efficiently computes PPR contributions for groups of actions

with regard to an item, by adapting the reverse local push algorithm of [Andersen et al., 2007] to

a dynamic graph setting [Zhang et al., 2016b]. In summary, the desiderata for the explanations

from PRINCE (in bold) connect to the technical approaches adopted (in italics) in the following

ways. Our explanations are:

• Faithful , as they are derived in a counterfactual setup;

• Action-based, as they are grounded in the user’s own actions (analogous to item-based

explanations, see Table 2.2);

• Concise, as they are minimal sets changing a recommendation.

Extensive experiments with Amazon and Goodreads datasets show that PRINCE’s minimal

explanations, achieving the desired item-replacement effect, cannot be easily obtained by

heuristic methods based on contribution scores and shortest paths. A crowdsourced user study

on Amazon Mechanical Turk (AMT) provides additional evidence that PRINCE’s explanations

are more useful than ones based on paths [Yang et al., 2018].

The key contributions presented in this chapter are:

• PRINCE is the first work that explores counterfactual evidence for discovering causal

explanations for recommendations in a heterogeneous information network;

• We present an optimal algorithm that explores the search space of action subsets in polyno-

mial time, for efficient computation of a minimal subset of user actions;

• Experiments with two large datasets and a user study show that PRINCE can effectively aid

a service provider in generating user-comprehensible causal explanations for recommended

items.

4.2 Computational model

Heterogeneous Information Networks (HIN). A Heterogeneous Information Network (or

HIN) is a graph G = (N,E,MT
N ,M

T
E ) that consists of a set of nodes N , a set of edges

E ⊆ N × N, and mappings MT from each node and each edge to their types, such that

MT
N : N → TN and MT

E : E → TE with |TN |+ |TE | > 2 [Shi et al., 2017].

In our problem, a heterogeneous information network (also referred to as a heterogeneous

graph) contains at least two node types, users U ∈ TN and items I ∈ TN . For simplicity, we

use the notations U and I to refer both to the type of a node and the set of all nodes of that type.

A HIN can be weighted if there is a weight assigned to each edge, MW
E : E 7→ R≥0, and is

directed if E is a set of ordered pairs of nodes. We denote with Nout(n) and Nin(n) the sets of



4.2. Computational model 49

out-neighbors and in-neighbors of node n, respectively.

Personalized PageRank (PPR) for recommenders. We use Personalized PageRank (PPR) for

recommendation in HINs [Haveliwala, 2003, Nikolakopoulos and Karypis, 2019, Musto et al.,

2021]. PPR is the stationary distribution of a random walk in G in which, at a given step, with

probability α, a surfer teleports to a set of seed nodes {s}, and with probability 1−α, continues

the walk to a randomly chosen outgoing edge from the current node. More precisely, given G,

teleportation probability α, a single seed s, the one-hot vector es, and the transition matrix W ,

the Personalized PageRank vector PPR(s) is defined recursively as:

PPR(s, · ) = αes + (1− α)PPR(s, · )W (4.1)

Let PPR(s, n) be the PPR score of node n personalized for s. We define the PPR recommen-

dation for user u ∈ U , or the top-1 recommendation, as:

rec = argmax
i∈I\Nout(u)

PPR(u, i) (4.2)

Given a set of u’s actions A ⊂ E modeled as outgoing edges of u, we use the notation

PPR(u, i|A) to define the PPR of an item i personalized for a user u in the graph G =

(N,E\A,MT
N ,M

T
E ,M

W
E ). We refer to this graph asG\A. To improve top-n recommendations,

Nikolakopoulos and Karypis [Nikolakopoulos and Karypis, 2019] define a random walk in an

HIN G as follows:

• With probability α, the surfer teleports to u

• With probability 1− α, the surfer continues the walk in the following manner:

– With probability 1− β, the random surfer moves to a node of the same type, using a

similarity-based stochastic transition matrix

– With probability β, the surfer chooses any outgoing edge at random.

For each node type t in TV , there is an associated stochastic similarity matrix St, which

encodes the relationship between the nodes of type t. When nodes of the same type are not

comparable, the similarity matrix is the identity matrix, i.e. St = I . Otherwise, an entry (i, j)

in St corresponds to the similarity between node i and node j. The stochastic process described

by this walk is a nearly uncoupled Markov chain [Nikolakopoulos and Karypis, 2019]. The

stationary distribution of the random walk is the PPR with teleportation probability α in a graph

Gβ whose transition probability matrix is [Nikolakopoulos and Karypis, 2019]:

W β = βW + (1− β)S (4.3)

The matrix W is the transition probability matrix of the original graph G. Matrix S =

Diag(S1, S2, · · · , S|TV |) is a diagonal matrix of order |V |.

Counterfactual explanations. A user u interacts with items via different types of actions A,



50 4. Counterfactual Explanations for Recommendations

such as clicks, purchases, ratings or reviews, which are captured as interaction edges in the graph

G. Our goal is to present user u with a set of interaction edges A∗ ⊆ {(u, ni)|(u, ni) ∈ A}
(where ni is a neighbor of u) responsible for an item recommendation rec; we refer to this as a

counterfactual explanation. An explanation is counterfactual, if after removing the edges A∗

from the graph, the user receives a different top-ranked recommendation rec∗. A counterfactual

explanation A∗ is minimal if there is no smaller set A′ ⊆ A such that |A′| < |A∗| and A′ is also

a counterfactual explanation for rec.

Formal problem statement. Given a HIN G = (V,E,MT
N ,M

T
E ,M

W
E ) and the top-ranked

recommendation rec ∈ I for user u ∈ U , find a minimum counterfactual explanation for the

item rec.

4.3 The PRINCE algorithm

In this section, we develop an algorithm for computing a minimum counterfactual explanation

for user u receiving recommended item rec, given the PPR-based recommender framework

RecWalk [Nikolakopoulos and Karypis, 2019]. A naive optimal algorithm enumerates all

subsets of actions A∗ ⊆ A, and checks whether the removal of each of these subsets replaces

rec with a different item as the top recommendation, and finally selects the subset with the

minimum size. This approach is exponential in the number of actions of the user.

To devise a more efficient and practically viable algorithm, we express the PPR scores as

follows [Jeh and Widom, 2003], with PPR(u, rec) denoting the PPR of rec personalized for u

(i.e., the random walker can jump back only to u):

PPR(u, rec) = (1− α)
∑

ni∈Nout(u)

W (u, ni)PPR(ni, rec) + αδu,rec (4.4)

where α denotes the teleportation probability (probability of jumping back to u) and δ is the

Kronecker delta function. The only required modification, with regard to RecWalk [Niko-

lakopoulos and Karypis, 2019], is the transformation of the transition probability matrix from

W to W β . For simplicity, we will refer to the adjusted probability matrix as W .

Eq. 4.4 shows that the PPR of rec personalized for user u, PPR(u, rec), is a function

of the PPR values of rec personalized for the neighbors of u. Hence, in order to decrease

PPR(u, rec), we can remove edges (u, ni), ni ∈ Nout(u). To replace the recommendation rec

with a different item rec∗, a simple heuristic would remove edges (u, ni) in decreasing order of

their contributions W (u, ni) ·PPR(ni, rec). However, although this would reduce the PPR of

rec, it also affects and possibly reduces the PPR of other items, too, due to the recursive nature

of PPR, where all paths matter.

Let A be the set of outgoing edges of a user u and let A∗ be a subset of A, such that A∗ ⊆ A.

The main intuition behind our algorithm is that we can express PPR(u, rec) after the removal
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of A∗, denoted by PPR(u, rec|A∗), as a function of two components: PPR(u, u|A∗) and

the values PPR(ni, rec|A), where ni ∈ {ni|(u, ni) ∈ A \ A∗} and ni 6= u. The score

PPR(u, u|A∗) does not depend on rec, and the score PPR(ni, rec|A) is independent of A∗.

Based on these considerations, we present Algorithm 1, proving its correctness in Sec. 4.4.

Algorithm 1 takes as input a graph G, a user u, a recommendation rec, and a set of items I . In

lines 3-9, we iterate through the items I , and find the minimum counterfactual explanation A∗.

Here, Ai refers to the actions whose removal swaps the orders of items rec and i. In addition, we

ensure that after removing A∗, we return the item with the highest PPR score as the replacement

item (lines 10-14). Note that in the next section, we propose an equivalent formulation for the

condition PPR(u, i|Ai) > PPR(u, rec∗|Ai), eliminating the need for recomputing scores in

G \A∗.
The core of our algorithm is the function SwapOrder, which receives as input two items,

rec and rec∗, and a user u. In lines 21-25, we sort the interaction edges (u, ni) ∈ A in

decreasing order of their contributions W (u, ni) · (PPR(ni, rec|A)− PPR(ni, rec∗|A)). In

lines 26-30, we remove at each step, the outgoing interaction edge with the highest contribution,

and update variables sum and A∗ correspondingly. The variable sum is strictly positive if in

the current graph configuration (G \A∗), PPR(u, rec) > PPR(u, rec∗). This constitutes the

main building block of our approach. Fig. 4.2 illustrates the execution of Algorithm 1 on a toy

example.

The time complexity of the algorithm isO(|I|×|A|×log |A|), plus the cost of computing PPR

for these nodes. The key to avoiding the exponential cost of considering all subsets of A is the

insight that we need only to compute PPR values for alternative items with personalization based

on a graph where the set of all user actions A is removed. In other words, instead of iterating

over the 2|A| possible subsets of the user’s actions, we call the SwapOrder function |I| times.

This is feasible because the action deletions affect only outgoing edges of the teleportation target

u, as elaborated in Sec. 4.4.

The PPR computation could simply re-run a power-iteration algorithm for the entire graph, or

compute the principal eigenvector for the underlying matrix. This could be cubic in the graph

size (e.g., if we use full-fledged SVD), but it keeps us in the regime of polynomial runtimes.

In our experiments, we use the much more efficient reverse local push algorithm [Zhang et al.,

2016b] for PPR calculations.

4.4 Correctness proof

We prove two main results:

(i) PPR(u, rec|A∗) can be computed as a product of two components where one depends on

the modified graph with the edge set E \ A (i.e., removing all user actions) and the other

depends on the choice of A∗ but not on the choice of rec.
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Algorithm 1: PRINCE

Input: G = (N,E,MT
N ,M

T
E ,M

W
E ), I ⊂ N , u ∈ N , rec ∈ I

Output: A∗ and rec∗ for (u, rec)
1 A∗ ← A

2 rec∗ ← rec

3 foreach i ∈ I do
4 Ai ← SwapOrder(G, u, rec, i)

// Actions Ai swap orders of rec and i

5 if |Ai| < |A∗| then
6 A∗ ← Ai

7 rec∗ ← i

8 end
9 end
// Finding the correct replacement item.

10 foreach i ∈ I do
11 if PPR(u, i|A∗) > PPR(u, rec∗|A∗) then
12 rec∗ ← i

13 end
14 end
15 return A∗, rec∗

16 Function SwapOrder(G, u, rec, rec∗):
17 A← {(u, ni)|ni ∈ Nout(u), ni 6= u}
18 A∗ ← ∅
19 H ← MaxHeap(φ)
20 sum← 0

21 foreach (u, ni) ∈ A do
22 diff ←W (u, ni) · (PPR(ni, rec|A)− PPR(ni, rec∗|A))
23 H.insert(ni, diff)

24 sum← sum+ diff

25 end
26 while sum ≥ 0 and |H| > 0 do
27 (ni, diff)← H.delete_max()
28 sum← sum− diff
29 A∗ ← A∗ ∪ (u, ni)

// (u, ni) contributes the most to rec and the least to rec∗.

30 end
31 if sum > 0 then A∗ ← A

32 return A∗

33 end
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(a) PPR(n1, n4) = 0.160
PPR(n1, n5) = 0.085

PPR(n1, n4) > PPR(n1, n5)

(b) A = {(n1, n2), (n1, n3)}
W (n1, n2)[PPR(n2, n4|A)−
PPR(n2, n5|A)] = 0.095

W (n1, n3)[PPR(n3, n4|A)−
PPR(n3, n5|A)] = −0.022

(c) A∗ = {(n1, n2)}
PPR(n1, n4|A∗) = 0.078
PPR(n1, n5|A∗) = 0.110
PPR(n1, n5|A∗) >
PPR(n1, n4|A∗)

Figure 4.2: Toy Example. (a) A weighted and directed graph where the PPR scores are personalized for
node n1. Node n4 has higher PPR than n5. (b) Scores in a graph configuration where outgoing edges
(n1, n2), and (n1, n3) are removed (marked in red). (c) Removing (n1, n2) causes n5 to outrank n4.

(ii) To determine if some A∗ replaces the top node rec with a different node rec∗ which is not

an out-neighbor of u, we need to compute only the first of the two components in (i).

Theorem 1. Given a graph G = (V,E), a node u with outgoing edges A such that (u, u) /∈ A,

a set of edges A∗ ⊂ A, a node rec /∈ Nout(u), the PPR of rec personalized for u in the modified

graph G∗ = (V,E \A∗) can be expressed as follows:

PPR(u, rec|A∗) = PPR(u, u|A∗) · f
({
PPR(ni, rec|A)

∣∣(u, ni) ∈ A \A∗})
where f( · ) is an aggregation function.

Proof. Assuming that each node has at least one outgoing edge, the PPR can be expressed as

the sum over the probabilities of walks of length l starting at a node u [Andersen et al., 2006]:

PPR(u, · ) = α
∞∑
l=0

(1− α)leuW l (4.5)

where eu is the one-hot vector for u. To analyze the effect of deletingA∗, we split the walks from

u to rec into two parts, (i) the part representing the sum over probabilities of walks that start at

u and pass again by u, which is equivalent to α−1PPR(u, u|A∗) (division by α is required as

the walk does not stop at u), and (ii) the part representing the sum over probabilities of walks

starting at node u and ending at rec without revisiting u again, denoted by p−u(u, rec|A∗).
Combining these constituent parts, PPR can be stated as follows:

PPR(u, rec|A∗) = α−1PPR(u, u|A∗) · p−u(u, rec|A∗) (4.6)

As stated previously, p−u(u, rec|A∗) represents the sum over the probabilities of the walks

from u to rec without revisiting u. We can express these walks using the remaining neighbors
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of u after removing A∗:

p−u(u, rec|A∗) = (1− α)
∑

(u,ni)∈A\A∗
W (u, ni) · p−u(ni, rec|A∗) (4.7)

where p−u(ni, rec|A∗) refers to the walks starting at ni (ni 6= u) and ending at rec that

do not visit u. We replace p−u(ni, rec|A∗) with its equivalent formulation PPR(ni, rec|A).
PPR(ni, rec) in graph G \A is computed as the sum over the probabilities of walks that never

pass by u. Eq. 4.6 can be rewritten as follows:

PPR(u, rec|A∗)

= PPR(u, u|A∗) ·α−1(1− α)
∑

(u,ni)∈A\A∗
W (u, ni|A∗)PPR(ni, rec|A) (4.8)

This equation directly implies:

PPR(u, rec|A∗) = PPR(u, u|A∗) · f
({
PPR(ni, rec|A)

∣∣(u, ni) ∈ A \A∗}) (4.9)

Theorem 2. The minimum counterfactual explanation for (u, rec) can be computed in polyno-

mial time.

Proof. We show that there exists a polynomial-time algorithm for finding the minimum setA∗ ⊂
A such that PPR(u, rec|A∗) < PPR(u, rec∗|A∗), if such a set exists. Using Theorem 1, we

show that one can compute if some rec∗ can replace the original rec as the top recommendation,

solely based on PPR scores from a single graph where the set of all user actions A is removed:

PPR(u, rec|A∗) < PPR(u, rec∗|A∗)

⇔
∑

(u,ni)∈A\A∗
W (u, ni|A∗)

(
PPR(ni, rec|A)− PPR(ni, rec∗|A)

)
< 0

⇔
∑

(u,ni)∈A\A∗
W (u, ni)

(
PPR(ni, rec|A)− PPR(ni, rec∗|A)

)
< 0 (4.10)

The last equivalence is derived from:

W (u, ni|A∗) =
W (u, ni)

1−
∑

(u,nj)∈A∗W (u, nj)
(4.11)

For a fixed choice of rec∗, the summands in expression 4.10 do not depend on A∗, and so they

are constants for all possible choices of A∗. Therefore, by sorting the summands in descending

order, we can greedily expand A∗ from a single action to many actions until some rec∗ outranks

rec. This approach is then guaranteed to arrive at a minimum subset.
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4.5 Graph experiments

We now describe experiments performed with graph-based recommenders built from real

datasets to evaluate PRINCE.

4.5.1 Setup

Datasets. We used two real datasets:

(i) The Amazon Customer Review dataset (released by Amazon1), and,

(ii) The Goodreads review dataset (crawled by the authors of [Wan and McAuley, 2018]2).

Each record in both datasets consists of a user, an item, its categories, a review, and a rating

value (on a 1− 5 scale). In addition, a Goodreads data record has the book author(s) and the

book description. We augmented the Goodreads collection with social links (users following

users) that we crawled from the Goodreads website.

The high diversity of categories in the Amazon data, ranging from household equipment

to food and toys, allows scope to examine the interplay of cross-category information within

explanations. The key reason for additionally choosing Goodreads is to include the effect of

social connections (absent in the Amazon data). The datasets were converted to graphs with

“users”, “items”, “categories”, and “reviews” as nodes, and “rated” (user-item), “reviewed”

(user-item), “has-review” (item-review), “belongs-to” (item-category) and “follows” (user-user)

as edges. In Goodreads, there is an additional node type “author” and an edge type “has-author”

(item-author). All the edges, except the ones with type “follows”, are bidirectional. Only ratings

with value higher than three were considered, as low-rated items should not influence further

recommendations.

Dataset #Users #Items #Reviews #Categories #Actions

Amazon 2k 54k 58k 43 114k
Goodreads 1k 17k 20k 16 45k

Table 4.1: Properties of the Amazon and Goodreads samples.

Sampling. For our experiments, we sampled 500 seed users who had between 10 and 100

actions, from both Amazon and Goodreads datasets. The filters served to prune out both

under-active and power users (potentially bots). Interaction graphs were constructed for the

sampled users by taking their four-hop neighborhood from the sampled data (Table 4.1). Four is

a reasonably small radius to keep the items relevant and personalized to the seed users.
1s3.amazonaws.com/amazon-reviews-pds/readme.html
2sites.google.com/eng.ucsd.edu/ucsdbookgraph/home

s3.amazonaws.com/amazon-reviews-pds/readme.html
sites.google.com/eng.ucsd.edu/ucsdbookgraph/home
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The graphs were augmented with weighted edges to capture node-node similarities. For Ama-

zon, we added review-review edges where weights were computed using the cosine similarity of

the review embeddings, generated with Google’s Universal Sentence Encoder [Cer et al., 2018],

with a cut-off threshold τ = 0.85 to retain only confident pairs. This resulted in 194 review-

review edges. For Goodreads, we added three types of similarity edges: category-category,

book-book and review-review, with the same similarity measure (24 category-category, 113

book-book, and 1003 review-review edges). Corresponding thresholds were 0.67, 0.85 and 0.95.

We crawled category descriptions from the Goodreads’ website and used book descriptions

and review texts from the raw data. For efficient computation of similarity values, we used

locality-sensitive hashing (LSH) with random binary projections. Table 4.1 gives some statistics

about the sampled datasets.

Initialization. The replacement item for rec is always chosen from the original top-k recom-

mendations generated by the system; we systematically investigate the effect of k on the size of

explanations in our experiments (with a default k = 5). PRINCE does not need to be restricted

to an explicitly specified candidate set, and can actually operate over the full space of items

I . In practice, however, replacement items need to be guided by some measure of relevance

to the user, or item-item similarity, so as not to produce degenerate or trivial explanations if

rec is replaced by some arbitrary item from a pool of thousands. Besides, with the focus of

state-of-the-art recommenders on diversification of top-k recommendations, we can make sure

that the replacement item is not too close to the original top-ranked recommendations.

We use the standard teleportation probability α = 0.15 [Brin and Page, 1998]. The parameter

β is set to 0.5. To compute PPR scores, we used the reverse local push method [Zhang et al.,

2016b] with ε = 1.7e− 08 for Amazon and ε = 2.7e− 08 for Goodreads. With these settings,

PRINCE and the baselines were executed on the constructed HINs to compute an alternative

recommendation (i.e., replacement item) rec* and a counterfactual explanation set A*.

Baselines. Since PRINCE is an optimal algorithm with correctness guarantees, it always finds

minimal sets of actions that replace rec (if they exist). We wanted to investigate, to what extent

other, more heuristic, methods approximate the same effects. To this end, we compared PRINCE

against two natural baselines:

(i) Highest Contributions (HC): This is analogous to counterfactual evidence in feature-based

classifiers for structured data [Moeyersoms et al., 2016, Chen et al., 2017]. It defines the

contribution score of a user action (u, ni) to the recommendation score PPR(u, rec) as

PPR(ni, rec) (Eq. 4.4), and iteratively deletes edges with highest contributions until the

highest-ranked rec changes to a different item.

(ii) Shortest Paths (SP ): SP computes the shortest path from u to rec and deletes the first

edge (u, ni) on this path. This step is repeated on the modified graph, until the top-ranked

rec changes to a different item.
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Evaluation metric. The metric for assessing the quality of an explanation is its size, that is, the

number of actions in A∗ for PRINCE, and the number of edges deleted in HC and SP .

4.5.2 Results and insights

We present our main results in Table 4.2 and discuss insights below. These comparisons were

performed for different values of the parameter k. Wherever applicable, statistical significance

was tested under the 1-tailed paired t-test at p < 0.05.

Anecdotal examples of explanations by PRINCE and the baselines are given in Table 4.4. In

the Amazon example, we observe that our method produces a topically coherent explanation,

with both the recommendation and the explanation items in the same category. The SP and HC

methods give larger explanations, but with poorer quality, as the first action in both methods

seems unrelated to the recommendation. In the Goodreads example, both HC and SP yield the

same replacement item, which is different from that of PRINCE.

Amazon Goodreads

k PRINCE HC SP PRINCE HC SP

3 5.09* 6.87 7.57 2.05* 2.86 5.38
5 3.41* 4.62 5.01 1.66* 2.19 4.37
10 2.66* 3.66 4.15 1.43 1.45 3.28
15 2.13* 3.00 3.68 1.11 1.12 2.90
20 1.80* 2.39 3.28 1.11 1.12 2.90

Table 4.2: Average sizes of counterfactual explanations. The best value per row in a dataset is in bold.
An asterisk (*) indicates statistical significance of PRINCE over the closest baseline, under the 1-tailed
paired t-test at p < 0.05.

Parameter Amazon Goodreads

Pre-computed Dynamic Pre-computed Dynamic

k = 3 0.3ms 39.1s 0.3ms 24.1s
k = 5 0.6ms 60.4s 0.4ms 34.7s
k = 10 1.3ms 121.6s 0.9ms 60.7s
k = 15 2.0ms 169.3s 1.5ms 91.6s
k = 20 2.6ms 224.4s 2ms 118.8s

β = 0.01 0.4ms 1.1s 0.3ms 2.9s
β = 0.1 0.5ms 15.5s 0.3ms 8.9s
β = 0.3 0.5ms 17.0s 0.4ms 12.5s
β = 0.5 0.6ms 60.5s 0.4ms 34.7s

Table 4.3: Average runtime of PRINCE, when the scores are pre-computed (Pre-computed) and when
the scores are dynamically computed using the reverse push algorithm [Zhang et al., 2016b] (Dynamic).
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Method Explanation for “Baby stroller” with category “Baby” [Amazon]

PRINCE Action 1: You rated highly “Badger Basket Storage Cubby” with category “Baby”
Replacement Item: “Google Chromecast HDMI Streaming Media Player” with
categories “Home Entertainment”

HC Action 1: You rated highly “Men’s hair paste” with category “Beauty”
Action 2: You reviewed “Men’s hair paste” with category “Beauty” with text “Good
product. Great price.”
Action 3: You rated highly “Badger Basket Storage Cubby” with category “Baby”
Action 4: You rated highly “Straw bottle” with category “Baby”
Action 5: You rated highly “3 Sprouts Storage Caddy” with category “Baby”
Replacement Item: “Bathtub Waste And Overflow Plate” with categories “Home
Improvement”

SP Action 1: You rated highly “Men’s hair paste” with category “Beauty”
Action 2: You rated highly “Badger Basket Storage Cubby” with category “Baby”
Action 3: You rated highly “Straw bottle” with category “Baby”
Action 4: You rated highly “3 Sprouts Storage Caddy” with category “Baby”
Replacement Item: “Google Chromecast HDMI Streaming Media Player” with
categories “Home Entertainment”

Method Explanation for “The Multiversity” with categories “Comics, Historical-fiction,
Biography, Mystery” [Goodreads]

PRINCE Action 1: You rated highly “Blackest Night” with categories “Comics, Fantasy,
Mystery, Thriller”
Action 2: You rated highly “Green Lantern” with categories “Comics, Fantasy,
Children”
Replacement item: “True Patriot: Heroes of the Great White North” with categories
“Comics, Fiction”

HC Action 1: You follow User ID x
Action 2: You rated highly “Blackest Night” with categories “Comics, Fantasy,
Mystery, Thriller”
Action 3: You rated highly “Green Lantern” with categories “Comics, Fantasy,
Children”
Replacement item: “The Lovecraft Anthology: Volume 2” with categories “Comics,
Crime, Fiction”

SP Action 1: You follow User ID x
Action 2: You rated highly “Fahrenheit 451” with categories “Fantasy, Young-adult,
Fiction”
Action 3: You rated highly “Darkly Dreaming Dexter (Dexter, #1)” with categories
“Mystery, Crime, Fantasy”
And 6 more actions
Replacement item: “The Lovecraft Anthology: Volume 2” with categories “Comics,
Crime, Fiction”

Table 4.4: Anecdotal examples of explanations by PRINCE and the counterfactual baselines.
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Approximating PRINCE is difficult. Explanations generated by PRINCE are more concise

and hence more user-comprehensible than those by the baselines. This advantage is quite

pronounced; for example, in Amazon, all the baselines yield at least one more action in the

explanation set on average. Note that this translates into unnecessary effort for users who want

to act upon the explanations.

Explanations shrink with increasing k. The size of explanations shrinks as the top-k candidate

set for choosing the replacement item is expanded. For example, the explanation size for PRINCE

on Amazon drops from 5.09 at k = 3 to 1.80 at k = 20. This is due to the fact that with a

growing candidate set, it becomes easier to find an item that can outrank rec.

PRINCE is efficient. To generate a counterfactual explanation, PRINCE only relies on the scores

in the graph configuration G \A (where all the outgoing edges of u are deleted). Pre-computing

PPR(ni, rec|A) (for all ni ∈ Nout(u)), PRINCE could find the explanation for each (user, rec)

pair in about 1 millisecond on average (for k ≤ 20). Table 4.3 shows runtimes of PRINCE for

different parameters. As we can see, the runtime grows linearly with k in both datasets. This

is justified by Line 3 in Algorithm 1. Computing PPR(ni, rec|A) on-the-fly slows down the

algorithm. The second and the fourth columns in Table 4.3 present the runtimes of PRINCE

when the scores PPR(ni, rec|A) are computed using the reverse push algorithm for dynamic

graphs [Zhang et al., 2016b]. Increasing β makes the computation slower (experimented at

k = 5). All experiments were performed on an Intel Xeon server with 8 cores@3.2 GHz CPU

and 512 GB main memory.

4.6 User study

Quantitative measurement of usefulness. We conducted a user study3 to compare PRINCE

to a path-based explanation [Yang et al., 2018] (later referred to as CredPaths). We used the

credibility measure from [Yang et al., 2018], scoring paths in descending order of the product

of their edge weights. We refer to this method as CredPaths. We computed the best path for

all 500 user-item pairs (Sec. 4.5.1). This resulted in paths of a maximum length of three edges

(four nodes including user and rec). For a fair comparison in terms of cognitive load, we

eliminated all data points where PRINCE computed larger counterfactual sets. This resulted in

about 200 user-item pairs, from where we sampled exactly 200. As explanations generated by

PRINCE and CredPaths have a different format of presentation (a list of actions versus a path),

we evaluated each method separately to avoid presentation bias. For the sake of readability, we

broke the paths into edges and showed each edge on a new line. Only AMT Master workers4

were allowed to provide assessments. These workers are granted with Masters qualification as

they have consistently demonstrated a high degree of success in performing a wide range of

3The user study was conducted only on Amazon data for resource constraints.
4https://www.mturk.com/worker/help

https://www.mturk.com/worker/help
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HITs (Human Intelligence Tasks, a unit of job on AMT). Having three AMT Masters for each

task, we collected 600 (200× 3) annotations for PRINCE and the same number for CredPaths.

A typical data point looks like a row in Table 4.6, that shows representative examples

(Goodreads shown only for completeness). We divided the samples into ten HITs with 20 data

points in each HIT. For each data point, we showed a recommendation item and its explanation,

and asked users about the usefulness of the explanation on a scale of 1− 3 (“Not useful at all”,

“Partially useful”, and “Completely useful”). For this, workers had to imagine that they were a

user of an e-commerce platform who received the recommendations as result of doing some

actions on the platform. For PRINCE explanations, we provided the following guideline to the

workers:

Imagine that you are a customer of an e-commerce platform and have received

a certain recommendation. In this task, we provide you with explanations for the

above recommendation. These explanations are in terms of actions (such as rated

or reviewed certain items) that you did on the platform. Based on this information,

you have to rate explanations for 20 items according to their usefulness: (how

satisfied are you with these reasons?). Also, please write a short summary for each

item justifying your choices (at least one sentence).

We used a similar guideline for explanations of CredPaths, except that the blue lines were

replaced by:

Each explanation consists of the best connecting path between you and the recom-

mended item. In other words, the explanations reveal how you are related to the

recommendation in terms of other users, items, and categories.

To detect spammers, we planted one honeypot in each of the 10 HITs, that was a completely

impertinent explanation. Subsequently, all annotations of detected spammers (workers who rated

such irrelevant explanations as “completely useful”) were removed (' 25% of all annotations).

Method Mean Std. Dev. #Samples

PRINCE 1.91* 0.66 200
CredPaths [Yang et al., 2018] 1.78 0.63 200

PRINCE (Size=1) 1.87 0.66 154
PRINCE (Size=2) 1.88* 0.70 28
PRINCE (Size=3) 2.21* 0.52 18

Table 4.5: Results from the AMT measurement study on usefulness conducted on the Amazon data. An
asterisk (*) indicates statistical significance of PRINCE over CredPaths (1-tailed paired t-test at p < 0.05).

Table 4.5 shows the results of our user study. It gives average scores and standard deviations,

and it indicates statistical significance of pairwise comparisons with an asterisk. PRINCE

clearly obtains higher usefulness ratings from the AMT judges, on average. Krippendorff’s

alpha [Krippendorff, 2018] for PRINCE and CredPaths were found to be ' 0.5 and ' 0.3

respectively, showing moderate to fair inter-annotator agreement. The superiority of PRINCE
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Method Explanation for “Baby stroller” with category “Baby” [Amazon]

PRINCE Action 1: You rated highly “Badger Basket Storage Cubby” with category
“Baby”

CredPaths You rated highly “Men’s hair paste” with category “Beauty”
that was rated by “Some user”
who also rated highly “Baby stroller” with category “Baby”

Method Explanation for “The Multiversity” with categories “Comics, Historical-
fiction, Biography, Mystery” [Goodreads]

PRINCE Action 1: You rated highly “Blackest Night” with categories “Comics, Fantasy,
Mystery, Thriller”
Action 2: You rated highly “Green Lantern” with categories “Comics, Fantasy,
Children”

CredPaths You follow “Some user”
who has rated highly “The Multiversity” with categories “Comics, Historical-
fiction, Biography, Mystery”

Table 4.6: Explanations from PRINCE vis-à-vis CredPaths [Yang et al., 2018].

Based on multiple actions explained simply and clearly. [PRINCE ]

The recommendation is for a home plumbing item, but the action rated a glue. [PRINCE ]

The explanation is complete as it goes into full details of how to use the product, which is
in alignment of my review and useful to me. [CredPaths]

It’s weird to be given recommendations based on other people. [CredPaths]

Table 4.7: Turkers’ comments on their score justifications.

also holds for slices of samples where PRINCE generated explanations of size 1, 2 and 3. We

also asked Turkers to provide succinct justifications for their scores on each data point. Table 4.7

shows some typical comments, where methods for generating explanations are in brackets.

4.7 Related work

Provider-side explainability. Generating explanations has become tightly coupled with build-

ing systems that are geared for producing more transparent recommendations (like [Balog et al.,

2019]). For broad surveys, see Section 2.2.6 in Chapter 2. Recently, interpretable neural models

have become popular, especially for text [Seo et al., 2017, Chen et al., 2018a, Chen et al., 2018b]

and images [Chen et al., 2019b], where the attention mechanism over words, reviews, items, or

zones in images has been vital for interpretability. The faithfulness of attention scores, however,

has been recently brought into question [Jain and Wallace, 2019] as they may fail to identify the

important features for prediction. Besides, existing works on provider-side interpretability often

lack enough evidence on causality of their explanations, and hence have limited scrutability.
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In this chapter, we addressed these issues by presenting a method for finding counterfactual

explanations.

Path-based explanations. Representing users, items, categories and reviews as a knowledge

graph or a heterogeneous information network (HIN) has become popular, where explanations

take the form of paths between the user and an item. This paradigm comprises a variety of

mechanisms: learning path embeddings [Ai et al., 2018, Wang et al., 2018b], propagating user

preferences [Wang et al., 2018a], learning and reasoning with explainable rules [Ma et al.,

2019, Xian et al., 2019], and ranking user-item connections [Yang et al., 2018, Ghazimatin et al.,

2019]. In this chapter, we choose the recent approach in [Yang et al., 2018] as a representative

for the family of methods generating path-based explanations to compare PRINCE with. The

explanations generated by this method are post-hoc. Other approaches for generating model-

agnostic rationalizations include association rule mining [Peake and Wang, 2018], supervised

ranking of user-item relationships [Ghazimatin et al., 2019], and reinforcement learning [Wang

et al., 2018c].

Personalized PageRank. Random walks over HIN’s have been pursued by a suite of works,

including [Desrosiers and Karypis, 2011, Cooper et al., 2014, Christoffel et al., 2015, Eksom-

batchai et al., 2018, Jiang et al., 2018]. In a nutshell, the Personalized PageRank (PPR) of an

item node in the HIN is used as a ranking criterion for recommendations. [Nikolakopoulos

and Karypis, 2019] introduced the RecWalk method, proposing a random walk with a nearly

uncoupled Markov chain. Our proposed method PRINCE uses this framework. As far as we

know, we are the first to study the problem of computing minimum subsets of edge removals

(user actions) to change the top-ranked node in a counterfactual setup. Prior research on dynamic

graphs, such as [Csáji et al., 2014, Kang et al., 2018a], has addressed related issues, but not

this very problem. A separate line of research focuses on the efficient computation of PPR.

Approximate algorithms include power iteration [Page et al., 1999], local push [Andersen et al.,

2006, Andersen et al., 2007, Zhang et al., 2016b] and Monte Carlo methods [Avrachenkov et al.,

2007, Bahmani et al., 2010].

4.8 Conclusion

This chapter explored a new paradigm of action-based explanations in graph recommenders,

with the goal of identifying minimum sets of user actions with the counterfactual property that

their absence would change the top-ranked recommendation to a different item. In contrast

to prior works on (largely path-based) recommender explanations, this approach offers two

advantages: (i) explanations are concise, faithful, and action-based, as they are minimal sets

derived using a counterfactual setup over a user’s own purchases, ratings and reviews; and (ii)

explanations do not expose any information about other users, thus avoiding privacy breaches

by design.
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The proposed PRINCE method implements these principles using random walks for Personal-

ized PageRank scores as a recommender model. Despite the potentially exponential search space

of user-action subsets, we presented an efficient method for generating minimal counterfactual

explanations for recommendations.

Extensive experiments on large real-life data from Amazon and Goodreads showed that

simpler heuristics fail to find the best explanations, whereas PRINCE can guarantee optimality.

Studies with AMT Master workers showed the superiority of PRINCE over baselines in terms of

explanation usefulness.

Some future directions for research are: (i) exploring provider-side explainability in other

classes of recommenders, (ii) developing methods for generating counterfactual explanations

for a slate of recommendations, i.e., explaining the top-k recommendations instead of only the

top-ranked item, and (iii) explicitly taking into account the diversity of the replacement items

while generating counterfactual explanations.
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System-provided explanations for recommendations are an important component towards

transparent and scrutable AI. In state-of-the-art research (including our contributions described in

Chapters 3 and 4), the primary role of explanations is to improve transparency and subsequently

user acceptance. However, it is often not clear how explanations can be leveraged towards

scrutability of recommender systems, i.e., how to help users act on the explanations to improve

their future recommendations.

In this chapter, we turn the role of explanations around and investigate how they can con-

tribute to enhancing scrutability and improving the quality of the recommendations over time.



66 5. Using Explanations to Improve Recommender Models

We devise a human-in-the-loop framework, called ELIXIR, where user feedback on explana-

tions is leveraged for pairwise learning of user preferences. ELIXIR leverages feedback on

pairs of recommendations and explanations to learn user-specific latent preference vectors. In

Section 5.2, we formalize ELIXIR and propose a label propagation method with item-similarity-

based neighborhoods to overcome sparseness of user feedback. We instantiate our framework

in Section 5.2.4 using generalized graph recommendation via Personalized PageRank. In-

sightful experiments with a real user study described in Sections 5.3 and 5.4 show significant

improvements in movie and book recommendations over item-level feedback.

5.1 Introduction

Motivation. Generating explanations for recommendations like movies, music or news, by

online service providers, has gained high attention in academic and industrial research [Zhang

and Chen, 2020, Balog and Radlinski, 2020, Zhao et al., 2019]. A key goal is to enhance

user trust by transparent and scrutable recommendations, so that users understand how the

recommended item relates to their prior online behavior (search, clicks, likes, ratings, etc.)

Moreover, it is desirable that explanations are causal and actionable, meaning that i) they refer

only to the user’s own action history and not to potentially privacy-sensitive cues about other

users (see Chapter 4) and ii) the user can act on the explanation items by giving confirmation

or refutation signals that affect future recommendations. Critique-enabled recommendation

models [Chen and Pu, 2012, Jin et al., 2019, Luo et al., 2020b, Lee et al., 2020] pursue these

goals, but are restricted to user feedback on the recommended items and associated content (e.g.,

text snippets from item reviews), disregarding the explanation items. In this chapter, we extend

this regime of actionable user feedback to the explanations themselves, by obtaining additional

cues from users in a lightweight manner and incorporating them into a human-in-the-loop

framework to improve future recommendations.

Example. Fig. 5.1 shows an illustrative scenario. User u receives a recommendation for the

movie Fight Club (rec) based on her online history and factors like item-item similarities. This

is accompanied by an explanation referring to three items, all previously liked by u and being

similar, in some aspects, to rec. We have exp1: Seven Years in Tibet, exp2: The Prestige, and

exp3: Pulp Fiction. The system generated these three items for explanation because:

• exp1 features the actor Brad Pitt who also stars in rec,

• exp2 has a surprise ending, similar to rec,

• exp3 contains violent content, like rec.

Now suppose that user u loves Brad Pitt and surprise endings but hates disturbing violence

(she likes Pulp Fiction for other reasons like its star cast and dark comedy, that dominated

her opinion, despite the violence). When receiving rec with the above explanation, user u

could give different kinds of feedback. The established way is to simply dislike rec, as a
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Figure 5.1: Example illustrating the intuitions behind ELIXIR.

signal from which future recommendations can learn. However, this would completely miss

the opportunity of learning from how user u views the three explanation items. User u could

also dislike the explanation as a whole, but this would give only a coarse signal, too, and would

appear conflicting with the fact that she previously liked exp1, exp2, and exp3, confusing the

recommender system. The best feedback would be if user u could inform the system that

she likes Brad Pitt and surprise endings but dislikes violence, for example, by checking item

properties or filling in a form or questionnaire. However, this would be a tedious effort that few

users would engage in. Also, the system would have to come up with a very fine-grained feature

space of properties, way beyond the usual categories of, say, movie genres.

Problem Statement. The goal in this chapter is to leverage user feedback on explanations. This

entails two major problems:

• Feedback: How can we elicit user feedback on properties of both recommended and

explanation items in a lightweight manner, without burdening the user with too much effort?

• Actionability: If we are able to obtain such refined feedback, how can the recommender

system learn from it to improve its future outputs for the user?

Approach. This chapter presents ELIXIR (Efficient Learning from Item-based eXplanations In

Recommenders), a novel framework, for leveraging explanations to improve future recommen-

dations.

We address the Feedback problem by asking users for a binary like/dislike signal about the

similarity of an explanation item exp to the recommended item rec. This can be thought of

as assessing the quality of the item pair 〈rec, exp〉, but it is important that one of these is an

explanation item that was faithfully produced by the recommender system specifically to justify

rec. Our experiments compare this choice against asking for assessments on the similarity of the

recommendation with the least relevant items in the user’s profile, which turns out to be inferior.

As we consider only causal explanations that refer to the user’s own history of actions, the user
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should be reasonably familiar with item exp. This kind of feedback is more refined than simply

disliking the entire recommendation. The feedback is optional and can be given for any subset

of the possible 〈rec, exp〉 pairs. Most importantly, the user is not burdened with identifying

relevant properties of items, to further explain her feedback to the system. So ELIXIR builds on

very lightweight and proactive user feedback.

We address the Actionability problem by extending state-of-the-art recommender models

with a user-feedback matrix that encodes the like/dislike signals on 〈rec, exp〉 pairs. Since this

matrix is inevitably sparse, ELIXIR densifies this input by means of label propagation on item

neighborhoods [Zhu and Ghahramani, 2002]. To avoid the huge cost of computing similarities

for all item pairs, we employ locality sensitive hashing (LSH) to find the closest items to every

〈rec, exp〉 tuple, thereby making ELIXIR efficient and tractable.

The core of our method is the learning of user-specific latent vectors that capture user

preferences, by combining the densified feedback matrix and a prior item-item similarity

matrix through regularized optimization that models the signals in the feedback matrix as soft

constraints. The latent vectors would reflect that user u loves Brad Pitt and sophisticated plots

but dislikes violent movies – without referring to these properties, all by means of learning latent

representations from lightweight feedback. The per-user vectors are plugged into the actual

recommender system to learn user-specific item representations for future recommendations.

We instantiate the ELIXIR framework in a popular family of graph-based recommenders

based on personalized PageRank (PPR) (see, e.g., [Nikolakopoulos and Karypis, 2019]), from

which explanations can be generated in a faithful and causal manner using PRINCE as described

in the previous chapter.

The salient contributions of this chapter are:

• ELIXIR is, to the best of our knowledge, the first framework that leverages user feedback on

explanation items, thus making explanations actionable, whereas prior works only tapped

into feedback on recommendation items.

• ELIXIR elicits lightweight user feedback to learn user-specific item representations, and

incorporates these into the recommender model, instantiated with the PPR methodology.

• We report experiments with data from a longitudinal user study in two domains: (i) movies,

and (ii) books. The results demonstrate the viability of ELIXIR and its substantial gains in

recommendation quality over item-level feedback.

5.2 The ELIXIR framework

In this section, we describe the components of ELIXIR and present its instantiation for a

state-of-the-art recommender, RecWalk [Nikolakopoulos and Karypis, 2019], that is based on

personalized PageRank (PPR). Table 5.1 summarizes concepts and notation discussed in this

section.
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Notation Concept

u A single user
v A single item
~v Latent vector for item v
d Number of latent dimensions
U Set of all users
I Set of all items
Hu Interaction history of user u
Fu(vi, vj) Feedback on item pair (vi, vj) by user u

vij Pseudo-item for item pair (vi, vj) in LP
W Affinity matrix for LP
F du Densified feedback matrix for user u after LP
m Number of non-zero elements in F du
sim(~vi, ~vj) Similarity of item pair (vi, vj)
~wu Preference vector for user u
g(~v, ~wu) Latent representation of item v for user u
γ Regularization coefficient for learning ~wu

G Graph on which the RWR recommender is run
N Set of nodes in graph
E Set of edges in graph
A Matrix of user-item interactions for PPR
S Item-item similarity matrix for PPR
~eu One-hot vector for user u
α Restart probability in PPR
β Probability of walking over interaction edges in PPR
rec Recommendation item
exp Explanation item

Table 5.1: Notation for salient concepts in ELIXIR.

5.2.1 Feedback collection

ELIXIR enables recommender systems to combine individual item ratings with feedback on

pairs of recommendation and explanation items. The set of item-level signals Hu refers to the

set of individual items that appear in the interaction history of user u. Denoting the universe of

all items by I = {v1, v2, ...v|I|}, we have Hu ⊆ I and usually |Hu| � |I|.
While most recommenders train a user model solely based on Hu, ELIXIR exploits signals

from user feedback on item pairs from recommendations and their explanations. We denote

this pair-level feedback by the matrix Fu ∈ {−1, 0,+1}|I|×|I|. The matrix entry Fu(vi, vj)

represents user u’s feedback on recommendation item vi and explanation item vj . To collect

such feedback, we ask users whether they like/dislike the similarity between items vi and vj .

We encode a user’s liking, no feedback, and disliking with +1, 0 and −1, respectively.
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5.2.2 Feedback densification

As the set of all item-pairs is very large, we expect matrix Fu to be extremely sparse. To mitigate

this sparseness, we use the label propagation (LP) algorithm [Zhu and Ghahramani, 2002] on

a graph where nodes are pairs of items, and edges represent the similarity between item-pairs.

To define such a graph, we introduce the concept of a pseudo-item vij for each labeled pair of

items (vi, vj) (that models an item that is like a mixture of the properties of the two items in the

pair) where Fu(vi, vj) 6= 0, with ⊗ denoting the element-wise product:

~vij = (~vi ⊗ ~vj)
1
2 (5.1)

where ~vi is the feature vector for item vi. Depending upon the recommender model, item

features are either learned by the model [Koren et al., 2009, He et al., 2017, Kang et al., 2018b]

or are available from additional sources [Chen et al., 2016, Nikolakopoulos and Karypis, 2019].

More generally, we assume that item features can be cast into a latent representation. Eq. 5.1

defines the pseudo-item ~vij as the element-wise geometric mean of ~vi and ~vj . Compared to

the arithmetic mean, the geometric mean is more appropriate for boosting similarities and

dampening dissimilarities (higher and lower values in the original vectors, respectively).

The original LP algorithm requires an affinity matrix W which encodes item-item similarities.

In our problem, the labels we propagate are feedback points on (vi, vj) pairs: so each pseudo-

item vij represents a pair of items and the affinity matrix thus contains pair-pair similarities.

This makes W huge (W ∈ R|I|2×|I|2) and prohibits full materialization.

Our approach rather is to materialize and populate merely a small subset of W by considering

only the k nearest neighbors of each pseudo-item vij (a labeled feedback point). A naive

approach would require the generation of all possible pairs of items in which the nearest

neighbors are computed (with complexity |I|2)).
To avoid this bottleneck, we compute an approximate kNN set for each pseudo-item vij using

the following technique. We find the kNN set of vij rather among the items in I , denoted by the

itemset kNN I
ij (the superscript I denotes that this is a set of items and not item-pairs or pseudo-

items). Instead of searching in |I| × |I| for the kNN of vij , we search in kNN I
ij × kNN I

ij .

This computation is made efficient using locality sensitive hashing (LSH) to deal with the large

number of pairings. This way, the search space for label propagation is reduced from O(|I|2) to

O(|I|).
To determine the kNNs of vij , an item-item similarity measure is required. Different

recommenders use different measures for capturing such similarities: cosine similarity [Niko-

lakopoulos and Karypis, 2019], Euclidean similarity [Hsieh et al., 2017], weighted inner

products [Kabbur et al., 2013, Nikolakopoulos et al., 2019, Xin et al., 2019], and angular similar-

ity [Sarwar et al., 2001] are a few common choices. We treat the similarity function as a plug-in

module sim(., .), and instantiate it using cosine similarity when required. Cosine similarity
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is emerging as a particularly convenient choice when items (and often users, categories, etc.)

are represented as vectors in a shared latent space. Note that we treat items and pseudo-items

uniformly and use the same function sim(., .) to compute their similarity. The output of this

stage is a densified feedback matrix F du .

5.2.3 Feedback incorporation

Optimization problem. We incorporate matrix F du into the recommender by imposing a soft

constraint for learning a user-specific mapping function g(., .) with ~wu as its parameter vector.

The goal is to learn preference vectors ~wu for each user that can be combined with existing item

representations ~v to produce user-specific item representations and then fed into the underlying

recommender model. To learn ~wu, we formulate the following objective function where the

signals from the densified feedback matrix are incorporated as a soft constraint:

min
~wu

1

m

∑
vi,vj

F du (vi, vj) · (sim(~vi, ~vj)− sim(g(~vi, ~wu), g(~vj , ~wu)))

+ γ|| ~wu||2 (5.2)

where m = |{(vi, vj)|F du (vi, vj) 6= 0}|. Eq. 5.2 includes a mapping or transformation function

g (common choices would be vector translation and scaling), to be computed by the optimization

solver. This serves to map original item representations and re-arrange their positions in the

latent space such that their new similarities reflect the user’s feedback on item pairs. The

underlying intuition is to decrease or increase pairwise similarities whenever F du (vi, vj) = −1
or F du (vi, vj) = 1, respectively. The above objective achieves this two-fold (increasing and

decreasing) effect in a unified manner. Additional L2 regularization is used on ~wu to encourage

small magnitude, avoiding drastic changes when it is applied inside g().

After learning an (near-) optimal ~wu, each item vector ~vi is updated to g(~vi, ~wu); we use these

user-specific item vectors to generate new recommendations. We posit that such user-specific

item representations helps the recommender model to incorporate the more liked and less disliked

latent aspects of similarity for each user, and helps produce improved recommendations.

An alternative choice of formulating Eq. 5.2 would be to have only the L2 regularization

term as the objective and model the signals from F as hard constraints. With this alterna-

tive approach, the constraints would become inequality constraints (F du (vi, vj) · (sim(~vi, ~vj)−
sim(g(~vi, ~wu), g(~vj , ~wu))) < 0) and would require that the KKT (Karush-Kuhn-Tucker) con-

ditions be satisfied for an optimal solution to exist. In practice, experimenting with the hard

constraint formulation resulted in null solutions for most cases; hence our soft-constraint-based

method.

Implementation. The optimization in Eq. 5.2 for learning ~wu is non-convex due to the presence

of the cosine function. Stochastic gradient descent (SGD) (available in libraries like PyTorch) is
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used for computing near-optimal solutions.

5.2.4 ELIXIR in recommenders based on PPR

Generating recommendations. We incorporate our method into RecWalk [Nikolakopoulos

and Karypis, 2019], a state-of-the-art recommender model based on personalized PageRank.

The input to this model is a heterogeneous graph (also referred to as a heterogeneous information

network, HIN) G = (N,E,MT
N ,M

T
E ,M

W
E ) with a set of nodes N , a set of edges E ⊆ N ×N

and mappings MT
N and MT

E from nodes and edges, respectively, to their types, and an edge

weight function MW
E : E 7→ R≥0 (see Section 4.2 for the complete definition). Nodes are

either of type user or item, i.e., N = U ∪ I . Edges capture user-item interactions, denoted by

A ∈ {0, 1}|N |×|N |, and node-node similarities presented by S ∈ R+
|N |×|N |. So we have two

types of nodes and two types of edges in this graph.

In RecWalk, the recommendation score of item vi for user u is computed as PPR(u, vi). To

recall, PPR stands for personalized PageRank [Haveliwala, 2003], and in RecWalk is computed

as follows [Nikolakopoulos and Karypis, 2019]:

~PPR(u, .) = α · ~eu + (1− α) · ~PPR(u, .) · [βA+ (1− β)S] (5.3)

where α is the restart probability, ~eu is the one-hot vector for user u and β is the probability

that a walk traverses an interaction edge. According to Eq. 5.3, a walk either visits one of its

neighbors with probability 1− α or jumps back to user node u. The neighbors are connected

either through interaction or similarity edges. Matrix S encodes similarities between nodes of

the same type. Without loss of generality, we assume that a user is similar only to herself, i.e.,

S(ui, uj) = 1 if and only if i = j. The item-item similarity, however, is defined by the sim(., .)

function, and hence S(vi, vj) = sim(vi, vj). We simplify the notation and use S to refer only

to item-item similarities. Note that RecWalk normalizes matrix S in a certain way to enforce

stochasticity. We omit the details for the sake of brevity and refer users to [Nikolakopoulos and

Karypis, 2019] for more information. The item v in |I| with the highest PPR(u, v) score is

shown as recommendation rec to user u.

Generating explanations. Suppose item rec is recommended to user u. Item-based expla-

nations {exp} in PPR-based recommenders can be generated using the PRINCE algorithm

described in detail in Chapter 4. The resulting explanation item sets are minimal and counter-

factual: they ensure causality relation using the counterfactual setup that u would not receive

rec if she did not have items {exp} in her history Hu. However, minimality of explanations

is not a concern in the current context. Therefore, we take a more straightforward approach to

approximate PRINCE by estimating the contribution score of item vj ∈ Hu to the recommended

item rec:

contribution(vj , rec) = PPR(vj , rec) (vj ∈ Hu) (5.4)
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where PPR(vj , rec) is the PageRank of node rec personalized for node vj . We use the top-k

items with highest contributions in Hu as the explanation set {exp} for item rec.

Incorporating feedback. In RecWalk, item-item similarities are explicitly captured in matrix

S, i.e., S(vi, vj) = sim(vi, vj). Given the items’ latent representations (possibly computed by

running techniques like NMF or SVD from sparse explicit feature vectors), we define sim(vi, vj)

as the cosine similarity between vi and vj , and hence S(vi, vj) = cos(~vi, ~vj). As discussed

earlier, to incorporate densified feedback F du , we introduce a user-specific preference vector

~wu to adjust u’s bias with respect to the latent aspects and update the item representations by

adding ~wu to them. The transformation function g is chosen to be a vector translation, shifting

universal item representations onto user-specific ones:

g(~vi, ~wu) = ~vi + ~wu (5.5)

The intuition behind the mapping described in Eq. 5.5 is to highlight (suppress) the effect

of liked (disliked) features through addition of positive (negative) bias values. Plugging the

definitions for g and sim and the densified matrix F du into the optimization objective (Eq. 5.2),

we learn ~wu as follows:

min
~wu

1

m

∑
vi,vj

F du (vi, vj) · (cos(~vi, ~vj)− cos(~vi + ~wu, ~vj + ~wu)) + γ|| ~wu||2 (5.6)

Using ~wu, we build a user-specific similarity matrix Su defined as:

Su(vi, vj) = cos(~vi + ~wu, ~vj + ~wu) (5.7)

Finally, we update the personalized PageRank recommendation scores accordingly, thereby

completing the integration of pairwise feedback into the recommender model:

~PPR(u, .) = α · ~eu + (1− α) · ~PPR(u, .) · [βA+ (1− β)Su] (5.8)

5.3 User study for data collection

ELIXIR operates in a unique framework of user judgments on similarities between recommenda-

tion and explanation pairs. It hinges on longitudinal observations of the same users providing: i)

original profiles, ii) feedback on rec items and iii) feedback on 〈rec, exp〉 pairs, as well as iv)

item-level assessments on the final recommendations. Thus, a study involving real users was

imperative to demonstrate the practical viability of our proposal. To this end, we recruited 25

volunteers, who were all Masters’ students of the Computer Science Department at the author’s

institute, with payment per hour comparable to that of master workers on a crowdsourcing

platform like Amazon Mechanical Turk.
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5.3.1 Statement on ethics

Participants’ privacy was fully respected: all personally identifying information concerning

participants was kept private during the course of the study, and deleted after its completion.

All data was stored locally, with encryption, firewall protection and other measures of this

sort. During the course of the study, users had to provide ratings on individual as well as

pairs of movies and books. While this is not personally sensitive per se, we recognize that the

data reflects users’ personal preferences. All participants signed a consent document that they

agree to this data being used for research purposes and that it can be released with anonymized

identifiers. The user study and the inclusion of results in this work were approved by the Ethics

Review Board at the authors’ Institute.

The annotation sessions were conducted over online video conferencing, so that participants’

browser activity could be monitored. To respect users’ privacy, no video recordings were made.

A one-hour training session was conducted, where participants were made aware of the goals of

the study and their exact tasks, and were guided through examples.

5.3.2 Setup

The user study was conducted in two domains: (i) movies (restricted to Hollywood, because of

their popularity and the users’ familiarity), and (ii) books. Over the course of six weeks (three

weeks for each domain), each user annotated individual as well as pairs of movies and books

for a total of 28 hours. The payment was 10 Euros per hour, with the total cost amounting to

25× 28× 10 = 7, 000 Euros. For each domain, the annotations were collected in three phases

that lasted three weeks. Table 5.2 shows some statistics on annotations collected during the

study.

Scenario #Item feedback #Pair feedback Sessions Hours

Phase 1 50 − 1 2
Phase 2 30 300 5 10
Phase 3 72 − 1 2

Total 152 300 7 14

Total (All users) ' 4000 7500 175 350

Table 5.2: Annotations per user over stages of the study (spanning a total of 350 person-hours) in each
domain.
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5.3.2.1 Phase 1: Building users’ profiles

It is essential to keep the assessment setup natural: if users were asked to rate arbitrary items

and pairs that they are unfamiliar with, the judgments would be unreliable. Thus, as the first step

of the study for each domain, we asked users to provide us with 50 movies and books each, that

they liked, to build a true history for each user, that would create subsequent recommendations

for her. Since movie or book titles can often be ambiguous, users were asked to provide us

with MovieLens1 and Goodreads2 URLs in individualized spreadsheets. For each domain, we

conducted this phase in a session spanning two hours which provided us with 50× 25 = 1, 250

user actions (likes).

5.3.2.2 Phase 2: Collecting feedback on items and pairs

The obtained user profiles were plugged into the PPR-based recommender model RecWalk [Niko-

lakopoulos and Karypis, 2019], where every liked item contributes an interaction edge to the

network. The union of all items rated by the 25 users forms our universe of items now, from

where we generated the top-30 recommendations for each user. Along with each recommen-

dation, we generated the top-5 explanation items {exp} using the approximated version of the

PRINCE algorithm (Eq. 5.4).

To investigate the role of faithful explanations in pairwise feedback, we also identified the

five items {rand} in the user’s profile that are the least similar to the recommendation item.

These serve as a proxy for pairing the recommendation with random items; they are drawn from

the user’s profile to ensure familiarity. The similarity is computed as the cosine between the

item vectors.

The users are now presented with three tasks: (i) rate the generated recommendations

(like/dislike); (ii) rate the similarity of each 〈rec, exp〉 pair (like/dislike); (iii) rate the similarity

of each 〈rec, rand〉 pair (like/dislike). The two kinds of feedback, item-level in (i), and pair-

level in (ii)+(iii), have very different semantics, and users were appropriately briefed and guided.

Item-level feedback is straightforward, where they comment whether they liked or disliked

an item. Rating an item pair, though, needs a bit more reflection on the possible similarities

between the two items (two movies or two books), deciding on the most important factor in case

of multiple such aspects, and providing the binary preference assessments.

Participants entered their ratings in individualized spreadsheets we prepared for them. Each

sheet contained several blocks where each block corresponded to one recommendation item

followed by ten different explanation items for it (five {exp} and five {rand}). To avoid any

position bias, we randomly shuffled the explanation items in each block.

While the feedback remains lightweight due to the user’s potential familiarity with the items,

1https://movielens.org/home
2https://goodreads.com/

https://movielens.org/home
https://goodreads.com/
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we provided some help to cue their memory. For instance, we presented each movie with its

title and its corresponding MovieLens URL, where the user could see the movie’s summary

and key properties. Moreover, MovieLens provides a rich set of tags on actors, directors, genre,

storyline and content; for item pairs we displayed the intersection set of top tags for the two

movies. Users could nevertheless browse the MovieLens pages or other background sources at

their discretion.

Book recommendations were also presented together with some auxiliary information in-

cluding their descriptions, authors, top genres as listed on their Goodreads pages, and their

corresponding URLs. Similar to the movie domain, we facilitated users’ judgments on pairs of

books by listing their common properties such as genres and authors.

Note that the assessment of 〈rec, exp〉 or 〈rec, rand〉 is decoupled from the fact whether the

user likes rec, exp, or rand individually. To make this distinction clear, the users were walked

through several reference annotations during the training session. For qualitative analysis, we

also asked users to optionally articulate the dimension that was the basis of their similarity

feedback. We report on this in the experimental section.

At the end of this stage, each user provided us with 30 item-level ratings (rec), and 30×5×2 =

300 pair-level ratings (five pairs for each of 〈rec, exp〉 and 〈rec, rand〉). Therefore, for each

domain, we had a total of 750 distinct item-level feedback points and 7, 500 distinct pair-level

feedback points, for a total of 25 users. This phase required ten hours from each user: to avoid

task fatigue, this was spread over five two-hour sessions.

5.3.2.3 Phase 3: Collecting feedback on final recommendations

In the last phase of the longitudinal user study, the collected feedback was incorporated into

the ELIXIR framework to produce improved recommendations for every user. Item-level

feedback was cast into additional interaction edges for the original graph recommender; pair-

level feedback was incorporated using the procedure described in Sec. 5.2. In addition, we

experimented with combined feedback incorporating both item-level and pair-level. These are

the three top-level configurations in our experimental evaluation.

For incorporating pair-level feedback, there are two possibilities of using either exp or rand,

altogether resulting in five variations of the recommender model. These models were each made

to produce 30 recommendations, leading to 180 items to be rated by each user (five pair-level

and one item-level strategy, thus a total of 6 strategies × 30 = 180). However, there were

overlaps in the rec sets across configurations. At the end, a total of ' 1, 800 ratings were

collected from 25 users in each domain (' 72 per user). This phase took two hours per user, on

average, and was completed in a single session at the end of the third week.
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5.4 Evaluation setup

5.4.1 Configurations

We evaluate ELIXIR for different configurations, including the baseline of exploiting solely item-

level feedback on rec items. But before we can go to the results, we need to explain the basic

setup of the experimental framework. Latent vectors necessary to initialize item representations

are learnt by running non-negative matrix factorization (NMF) on the sparse matrix of movie-tag

memberships from MovieLens and book-genre memberships from Goodreads using the Nimfa

Python library3 with the default settings. The number of latent dimensions d is chosen to be 20

which was guided by observations on the reduction of sparsity from the original matrix.

We use the SciPy library4 for subsequent label propagation with the cosine kernel. The

number k for LP was chosen to be 10, which means that for each pseudo-item, we find the 10

nearest items, and hence
(
10
2

)
= 45 pseudo-items. We tried two other values, k = 5 and 20, and

observed similar results.

For LSH, we used NearPy5 with random binary projection as its hash function. LSH assigns

each item vector vi to a bucket where its approximate nearest neighbors lie. While a large

number of buckets decreases the probability of neighbors being assigned to the same bucket,

a small number reduces the efficiency of kNN queries. Considering the choice of k in LP

(k = 10), we chose the number of buckets to be 8 (corresponding to 3 random binary projection

vectors). With this number of buckets, we reduce the failure rate of LSH to 15%, i.e., for only

15% of the kNN queries with k = 10, LSH returns less than 10 neighbors. We use our own

implementations of RecWalk and PRINCE for generating recommendations and explanations,

respectively.

The following five feedback configurations are compared:

• Item-level feedback. This baseline model only absorbs users’ binary preferences on individ-

ual items rec. Such item-level feedback adds interaction edges to the input graph.

• Pair-level feedback with explanations. The model captures only the judgments on pairs of

〈rec, exp〉 items. Such pair-level signals update the similarity matrix used in the recommen-

dation model.

• Pair-level feedback with random items. This is similar to the previous configuration, except

that the explanation items here are replaced by the least relevant items from the user’s history

({rand}).

• Item + pair-level feedback with explanations. The model exploits both individual and

pairwise feedback.

3http://ai.stanford.edu/~marinka/nimfa/
4https://bit.ly/35lVV10
5https://pixelogik.github.io/NearPy/

http://ai.stanford.edu/~marinka/nimfa/
https://bit.ly/35lVV10
https://pixelogik.github.io/NearPy/
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• Item + pair-level feedback with random items. This is similar to the previous configuration

except that the explanation items {exp} are replaced by {rand}.

5.4.2 Metrics

We evaluate the quality of recommendations generated after feedback incorporation using

three metrics: i) Precision at the top-k ranks (P@k), ii) Mean Average Precision at the top-k

ranks (MAP@k), and, iii) normalized discounted cumulated gain at the top-k ranks (nDCG@k,

computed with binary non-graded relevance assessments), as defined in Table 2.1. While P@k

is a set-based metric considering the top-k items, analogous to a slate of recommendations, the

latter two are sensitive to the ranks of relevant items in the lists.

All metrics are computed at three rank cut-off values k: 3, 5, and 10. The relatively low

values of cut-off ranks are chosen to show the effectiveness of ELIXIR in introducing highly

selective items into the top recommendations for individual users.

5.4.3 Initialization

To fairly compare different configurations, we train RecWalk using the same set of parameters.

The restart probability α is set to 0.15 as shown effective in prior works [Brin and Page, 1998].

To highlight the effect of similarity edges, we choose β = 0.1: a lower β indicates a lower

likelihood of sampling an interaction edge for the random walker, and a walker thus traverses

similarity edges in G with probability 0.9. Using smaller values for β is also suggested in the

original model of RecWalk [Nikolakopoulos and Karypis, 2019].

The interaction graph G built for movies had 25 users, 621 movies, 1.3k interaction edges,

and 11k similarity edges. For books, G was larger and denser, with 868 books, 1.3k interaction

edges, and 41k similarity edges. To compute PageRank scores, we use the power-iteration

method with a maximum of 500 iterations.

To construct the similarity matrix S for RecWalk, we employ LSH again with a similar

configuration as discussed for densification. To avoid too many edges in the graph, we only

connect items with large similarities. For this, we use threshold 0.7, i.e., S(vi, vj) = 0 if

cos(vi, vj) < 0.7. Matrix A is built from item-level user feedback: we define A(ui, vj) = 1 if

ui likes item vj , and zero otherwise. Regularization parameter γ in Eq. 5.6, and the learning rate

lr in SGD for finding an optimal ~wu were tuned on a development set containing 20% of each

user’s ratings. We tested 10 different values for γ (1, 2, . . . 10) and 3 values for the learning rate

(0.001, 0.01, 0.1) and chose the values with best performance on the development set: γ = 3

and lr = 0.01.
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5.5 Results and insights

5.5.1 Key findings

Our key findings are presented in Table 5.3, where different feedback absorption strategies are

evaluated over data from the user study. We make the following salient observations:

• Pair-level feedback improves recommendations. The most salient observation from the

results in both domains is that including pairwise feedback (all table rows except the first

one for each domain) on the similarity of item pairs results in substantial improvements

over solely considering item-level feedback. This confirms our hypothesis that procuring

feedback on pairs provides refined and highly beneficial user signals that cannot be captured

through aggregated item-level feedback.

• Pair-level feedback is more discriminative than item-level. Next, we compare the effec-

tiveness of pair-level feedback vis-à-vis item-level. To have a fair comparison with respect

to the volume of feedback, we introduce a new setup, Pair-level (Exp-1), where the volume

of pair-level feedback is similar to that of the Item-level setup. For this, we only consider

users’ feedback on the most relevant explanation item. This results in the incorporation of 30

pairs with distinct recommendation items, that is compared to item-level feedback on these

30 items. We observe that in both domains, Pair-level (Exp-1) significantly outperforms the

Item-level setup. This demonstrates the efficacy of pair-level feedback in capturing users’

fine-grained interests. For completeness, we also provide results when we use top-3 and

top-5 explanations (Exp-3 and Exp-5, respectively).

• Using explanations for pair-level feedback is essential. We set out with the goal of

making explanations actionable towards model improvement. This is validated by the

observation that item+pair-level for explanations are consistently and substantially better

than item+pair-level for random items instead of top-ranked explanation items.

5.5.2 Analysis

Our longitudinal study on collecting pairwise judgments opens up the possibility of gaining

insights on several issues on user behavior and feedback:

Q1. How different are positive and negative feedback by volume?

Q2. Are users who are more likely to provide negative item-level ratings also biased towards

more dislikes on item pairs?

Q3. What are the most common aspects influencing similarity feedback on item pairs?

Q4. How does performance improvement correlate with the diversity of the original profile?

Q5. How do the volumes of positive and negative feedback correlate with performance



5.5. Results and insights 81

improvement?

We address these questions in the subsequent analysis. In the end, Fig. 5.7 and 5.8 show four

representative examples from the user study.

To see the size distribution of different feedback types (Q1), we plot the number of item-level

and pair-level feedback points provided by each user in Fig. 5.2. Users vary in their proportions

of positive and negative feedback. Overall, users enter much more positive feedback than

negative. Reasonable numbers for all four types of judgments (item-/pair-level × like/dislike)

show that, overall, users are willing to provide the necessary effort towards improving their

recommendations. Monitoring feedback assessments over online sessions showed that pairwise

feedback requires indeed a lightweight effort (measured by the time taken for completion) and

does not impose a substantial cognitive load on users.

In particular, we find that users who may be biased towards more negative item-level feedback

often provide substantial volumes of negative feedback on pairs. The corresponding Pearson

correlations in movie and book domains are 0.53 and 0.51, respectively. Therefore, we can

conclude that user behavior carries over from items to pairs (Q2). This leads to an extremely

crucial insight: negative signals on items cannot be harnessed in graph recommenders. Yet

eliciting negative feedback on certain pairs of bad recommendations and good explanation

items, can lead to substantial benefit for the recommender system: similar bad recommendations

become less likely to be recommended to the user.

Next, we show factors influencing pairwise similarity assessment in Fig. 5.3 (Q3). To

compare and contrast, we asked users to mention their reasons for both item- and pair-level

feedback. Qualitative analysis reveals that in the movie domain, genres play the biggest role

in feedback, followed by content, actor, and then director. We observe that genre and content

(the latter includes storylines like plot twists, alien movies, medieval movies, etc.) are much

more likely to influence user preferences than the presence of specific actors or directors. This

underlines the necessity of latent representation of item properties, as storylines are hard to

capture in explicit feature models. Similar trends are observed for books, i.e., genre is the most

frequently mentioned, followed by content and author. The interesting observation is that users

are systematic in their behavior: in both domains, histograms have the same relative distribution

for item- and pair-feedback.

We also investigate whether all users are equally likely to benefit from ELIXIR. Since profile

sizes are kept constant to control for other factors, we try to see if performance improvements

from item+pair-level feedback is connected to the diversity of their original profiles (Q4). To

quantify diversity, we measure the entropy of the distribution of tags associated with the 50

items that were used to initialize profiles of the users (higher entropy is higher diversity).

Plots for movies and books are shown in Fig. 5.4. Our observation for the movie domain is

that ELIXIR helps users with relatively high interest diversity (right half) slightly more (top

right) than the users with more particular interests (languishing towards the bottom left corner).

The corresponding Pearson correlation is 0.29 which indicates a moderate positive correlation
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(a) Movies

(b) Books

Figure 5.2: Per-user volume of feedback by type.
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(a) Movies

(b) Books

Figure 5.3: Key influencers behind feedback assessments.
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between profile diversity and improvement level. For books, however, the Pearson correlation is

−0.17 implying a small negative correlation between the diversity of profiles and effectiveness

of ELIXIR.

(a) Movies

(b) Books

Figure 5.4: Connecting gains via ELIXIR with profile diversity.

Next, we investigate if different volumes of feedback on the four possibilities (item-level

like/dislike; pair-level like/dislike) lead to notably differing performance improvements (Q5).

We show the effect of feedback size on improvement levels in Fig. 5.5 and 5.6, where the

two plots in the top row of each figure correspond to item-level feedback, and the bottom to

pair-level. The scales and limits of x-axes within rows (and all y-axes) are kept the same for easy

comparison. Here we note that dots along the same row (level) of precision correspond to the

same users. The notable observation from these figures is that users who provide more positive
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feedback are likely to see higher improvements. This correlation is particularly more pronounced

for positive item-level feedback. While the benefit of sending more positive signals as more

actionable is understandable, a certain part of the blame may lie on the graph recommender itself,

where “negative edges” cannot be included easily: presence or absence of edges is the standard

model. This suggests further research to explore ELIXIR with other families of recommenders

like matrix or tensor factorization, which can more easily incorporate negative feedback.

(a) (b)

(c) (d)

Figure 5.5: P@5-improvement w.r.t. feedback size (Movies).

Finally, we show anecdotal examples from our user study in Fig. 5.7 and 5.8. For movie

recommendation (Fig. 5.7), incorporating user feedback on pairwise similarity introduces new

items into the top-10 recommendations (The Chronicles of Narnia, The BFG) for their respective

users. These new recommendations possess the similarity aspects liked by the user (fantasy for

Narnia, based on a book for The BFG), and lack the dimensions that the user has implicitly

disliked (crime for the first anecdote, fiction for the second one). Similarly, we present two

instances of improvement in book recommendation in Fig. 5.8, where incorporation of pair-

level feedback results in reducing the relevance score of disliked items (Memoirs of a Geisha,

DotCom Secrets) and bringing up more relevant items (The Iliad, Mindset: The New Psychology
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(a) (b)

(c) (d)

Figure 5.6: P@5-improvement w.r.t. feedback size (Books).

of Success) for the respective users in the ranked list of recommendations.

Limitations imposed by resource constraints. One limitation of our evaluation is the scale of

the user study. Evaluating ELIXIR on a larger scale would incur substantially more monetary

cost and require design and implementation of a large-scale system suitable for orchestrating

and monitoring the longitudinal process of user-system interactions. Resource constraints also

impact the possibility of full exploration of the parameter space in this work, such as a thorough

search for the best number of latent dimensions d, as that might require the repetition of the

whole study. Nevertheless, we evaluated another value d = 10 in the movie domain to verify

the robustness of ELIXIR. Trends were very similar: P@5 values for item-level, pair-level

(top explanations), and item+pair level (top explanations) came out to be 0.520, 0.712, and

0.712, respectively, retaining previously observed statistically significant trends of superiority

of configurations involving pair-level feedback over item-level only.
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5.6 Related work

Critique-based recommenders. In most of the prior works on explainable recommendation,

the role of explanations is limited to providing users with insights into the recommendation

model. This limits scrutability as users might not have a clue as to how to correct the system’s

reasoning. To increase user control over the recommendation process, critique-based recom-

menders were introduced [Chen and Pu, 2007, Chen and Pu, 2012]. For a broad survey, see

Section 2.3.

Critiquing is a method for conversational (a.k.a. sequential and interactive) recommendation

that adapts recommended items in response to user preferences on item attributes. Incremental

critiquing/tuning [McCarthy et al., 2010, Reilly et al., 2004b, Lee et al., 2020, Chen et al., 2020]

was thus proposed to improve recommendation quality over successive recommendation cycles.

However, this restricts users to critique/tune based on explicit item properties which are hard to

generalize.

Recent works in the form of Deep Language-based Critiquing (DLC) [Wu et al., 2019a, Luo

et al., 2020a] address this challenge by accepting arbitrary language-based critiques to improve

the recommendations for latent factor-based recommendation models. In [Luo et al., 2020b],

Luo et al. improve the complexity of the existing critiquing frameworks by revisiting critiquing

from the perspective of Variational Autoencoder (VAE)-based recommendation methods and

keyphrase-based interaction.

Existing critique-enabled recommenders mostly focus on negative feedback on concrete

features of individual recommendation items. In ELIXIR, we address this limitation by enabling

users to give both positive and negative feedback on pairs of recommendation and explanation

items.

Set-based preference. Most recommendation approaches rely on signals provided by users

on individual items. Another mechanism of eliciting preference is to ask users for feedback

on itemsets. Such set-based preference annotations help in faster learning of user interests,

especially in cold start situations [Chang et al., 2015]. Moreover, users who are not willing to

provide explicit feedback on individual items due to privacy concerns may agree to provide a

single rating to a set of items, as it provides a certain level of information abstraction. At the

same time, from the given set-based rating, some information regarding item-wise preference

can be inferred. In the same vein, in [Sharma et al., 2019], authors gathered users’ preferences

on itemsets and developed a collaborative filtering method to predict ratings for individual items

in the set.

Apart from understanding user profiles, set-based learning is also useful in works that have

focused on recommending lists of items or bundles of items to users such as recommendation of

music playlists [Aizenberg et al., 2012], travel packages [Liu et al., 2011], and reading lists [Liu

et al., 2014b]. ELIXIR reinforces this viability of set-based feedback.
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5.7 Conclusion

In this chapter, we have shown how explanations for recommendations can be made actionable

by incorporating user feedback on pairs of items into recommender systems. ELIXIR is a

human-in-the-loop system that proactively elicits lightweight user feedback on the similarity of

recommendation and explanation pairs. ELIXIR subsequently densifies this feedback using a

smart combination of label propagation and locality sensitive hashing, learns user-specific item

representations using a soft-constraint-regularized optimization, and seamlessly injects these

learned signals into the underlying recommender.

We instantiated this framework with a major family of recommender models based on

personalized PageRank, exemplified by the RecWalk method. Our experimental evaluation,

based on a longitudinal user study, showed major gains in recommendation quality. This

demonstrates the power of the proposed ELIXIR framework to learn more discriminative latent

features about user preferences, which are disregarded in traditional item-level ratings.

Future work would naturally focus on extending ELIXIR to other families of recommenders

such as matrix/tensor factorization or neural methods, exploring alternative strategies for ab-

sorbing pairwise feedback, and investigating the effectiveness of ELIXIR for long-tail users with

sparse profiles.
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CONCLUSIONS AND OUTLOOK

This thesis investigates explainability and scrutability of recommender systems. Findings from

our studies demonstrate the benefits of explanations for both end users and service-providers:

users gain insight into the personalization process, and service providers enhance their users’

experiences by offering more transparency and facilitating user control through feedback on

explanations.

In Chapter 3, we presented FAIRY, a framework for explaining black-box recommendations

by discovering and ranking relationships between a user and her recommendation item. The

practical viability of FAIRY implies its applicability in recommender systems with limited

transparency or with complex underlying models where generating faithful explanations is not

feasible.

Chapter 4 presented PRINCE, our contribution towards provider-side explainability. PRINCE

generates counterfactual explanations that are grounded in the user’s own actions. Results from

real user studies show that PRINCE explanations are more useful than path-based justifications,

corroborating the importance of generating faithful explanations.

In Chapter 5, we presented ELIXIR, a framework for leveraging users’ feedback on expla-

nations to improve their recommendations. The results in this chapter show that the role of

explanations is not limited to mere insights into the system; they can also be used for preference

elicitation and subsequent model improvement. This suggests that there is scope for improving

the performance of existing recommenders using explanations.

Our contributions described in this thesis have given rise to many questions in need of further

investigation. Below we describe some conceivable extensions and future directions for research

on explainable recommendations.

Relationships as explanations. A natural progression of our work on explaining black-box

recommendations is to improve the coverage of the discovered relationships between users and

their recommendations and to introduce multi-criteria ranking schemes. To discover as many

relationships as possible, a browser extension can be used to record all user’s heterogeneous

inputs to the system. At the time of generating explanations, it would be helpful to allow users

to select multiple criteria (e.g., diversity, coherence, simplicity) based on which the discovered

relationships can be sorted. Another perceived extension is to devise methods that translate

relationships into natural language explanations.
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Counterfactual explanations. Research on counterfactual explanations is still in its initial stage.

Some future directions related to the generation of such explanations for recommendations

include generating counterfactual explanations in neural recommenders, finding the cause for the

top-k recommendations as opposed to only the top-ranked item, and studying users’ behaviors

when they are provided with counterfactual explanations and whether it would be different from

when explanations are not counterfactual.

Explanations in action. The results of our studies indicate the benefit of leveraging user

feedback on explanation items for improving their recommendations. As explicit feedback is

often scarce, it would be beneficial to investigate the possibility of capturing implicit feedback

on explanation items. Moreover, the data on pair-level user feedback collected in our user

studies could pave the way for designing methods to simulate such feedback.

Offline evaluation of explanations. Evaluating explanations often requires real user studies,

and hence is very costly. The community will certainly benefit from introducing benchmarks or

developing simulators that can mimic users’ responses to explanations.

We hope that this thesis sparks interest in the community towards fulfilling some of these goals

and pushing forward the mindsets and infrastructures required for trustworthy AI.
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A
FAIRY: USER STUDY GUIDELINE

Schedule

As mentioned in the invitation letter, users should spend 20 hours in total. They can work

remotely but they should spend 60 minutes on Mondays, Wednesdays, and Fridays. The

schedules for the first and second sessions are different from that of other sessions.

First Session

Each user has to create a proxy account in both Quora and Last.fm as described later in this

document. Accounts should be created on the same day that the kickoff meeting happens.

Second Session

In this session, users should do the following tasks:

1. Users should start following each other as described next. For this, we assign an ID to

each user in the kickoff meeting.

Each user should refer to her corresponding row (and not the column) in Table A.3 and

follow all the users listed there on both Quora and Last.fm.

2. Users should interact with both Quora and Last.fm by doing a minimum number of

activities described later. Note that users are allowed to do only the activities of types

present in Table A.2.

3. After doing the activities, users should visit the activity and content page (in Quora),

and the library page (in Last.fm) to make sure they have done the minimum number of

activities.

4. At the end of each session users should visit a number of pages described later, save

them in “Webpage complete” mode and send them to us. Note that, for each platform

there is an extra file called “selected_recs.txt” that needs to be sent to us.

Other Sessions

Starting from the third session, users are expected to do the following tasks:
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• Interacting with both Quora and Last.fm

• Visiting the activity and content page (in Quora) and the library page (in Last.fm) at the

end of the session to make sure they have done the minimum number of activities.

• Sending us a number of files described later.

• Evaluating pairs of relations.

End of Study

At the end of the study, users are asked to delete all the accounts created by them. Note that

users should delete their accounts only after receiving the instructions from us.

Creating proxy accounts

We need users to create an email account with which they can register on both Quora and

Last.fm. Users should enter their real name when signing up. However, there is no restriction for

the username. Note that these accounts must be used solely for the purpose of this study.
After creating the email accounts and signing up in the mentioned platforms, please make
sure that you sign off from the email account..

Last.fm

To create an account in Last.fm, users should visit https://www.last.fm/join, and sign up with the

proxy account they have created. After clicking the “Create my account”, users should check

their email and confirm their membership.

Quora

Users should visit Quora website. Clicking on “Continue with Email”, they can start registering

as a member. Note that users should enter their real name as they have to accept the terms of

agreement. As users are all in Germany, a window with the title “you can now join Quora in

German” will appear. Users should click on “Decide later”. Next, they should select 10 topics

to initiate their profile. For this, they should refer to Table A.1 to find the topics they should

follow. In the end, users should check their email to confirm their membership.

Activities

Table A.2 shows the actions that users are allowed to do on Quora and Last.fm together with

a minimum (or maximum) number of activities expected in either each session or in total.

Users should stick to actions shown in Table A.2. They should not fill up their profile with
additional data (such as their place of residence).

https://www.last.fm/join
https://www.quora.com
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U1 U2 U3 U4 U5 U6 U7 U8 U9 U10
Music 6

Health 6 6

Books 6 6 6

Food 6 6 6 6

Visiting and Travel 6 6 6 6 6

Psychology 6 6 6 6 6 6

Fashion and Style 6 6 6 6 6 6 6

Finance 6 6 6 6 6 6 6 6

Politics 6 6 6 6 6 6 6 6 6

Education 6 6 6 6 6 6 6 6 6 6

History 6 6 6 6 6 6 6 6 6

Business 6 6 6 6 6 6 6 6

Writing 6 6 6 6 6 6 6

Mathematics 6 6 6 6 6 6

Movies 6 6 6 6 6

Cooking 6 6 6 6

Photography 6 6 6

Sports 6 6

Philosophy 6

Table A.1: Topics to follow when creating a Quora account. The columns are the user IDs and the rows
are the topics

To limit the effect of the control study on the general platform outside the group, users
should follow only 3-5 users outside the participants of the user study on both Quora and
Last.fm.

Here we list some important points regarding activities in Quora and Last.fm.

Quora

• In each session, users should ask at least 4 questions, provide answers for at least 4

questions and upvote/follow at least 4 answers/questions per session.

• Throughout the whole study, users should follow only 3-5 external users.

• Users should not ask/write objectionable questions/answers (e.g., the ones that are racist

or sexist).

Last.fm

• Users should listen to at least 6 tracks per session. To utilize the time in each session,

users should stop playing a track after a short while. Normally, after around 2 minutes,

the track is added to the user history. To ensure the inclusion of each song, users can visit

their history of scrobbles (under the Library tab in their profile).

• Users should avoid simply playing the recommended list to fill up their history.
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• Users should not listen to multiple tracks simultaneously.

• Users should not scrobble any song outside of a session.

• Users should love at least 6 tracks per session. Note that users may love a track without

playing it.

• During the whole study, users should follow 3-5 external users.

Last.fm Quora

1. listening to a track (at least 6 per ses-
sion)

2. following a user (3-5 in total)

3. loving a track (at least 6 per session)

1. asking question (at least 4 per session)

2. answering a question (at least 4 per ses-
sion)

3. following a question or upvoting an an-
swer (at least 4 per session)

4. following a person (3-5 in all sessions)

Table A.2: Allowed actions in Last.fm and Quora

User network

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10
U1 6 6 6 6 6

U2 6 6 6 6 6

U3 6 6 6 6 6

U4 6 6 6 6 6

U5 6 6 6 6 6

U6 6 6 6 6 6

U7 6 6 6 6 6

U8 6 6 6 6 6

U9 6 6 6 6 6

U10 6 6 6 6 6

Table A.3: Network of users. Users should find their followees in their row.

Files

At the end of each session, users should visit specific pages listed below, save the HTML source

in “Webpage complete” mode and send them to us.

Note that users should scroll down the pages (to be saved) until the end. Users should put

the files from Quora and Last.fm in separate folders named “quora” and “lastfm” respectively.
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Other than the HTML pages, users should select non-obvious recommendations (whose

relationship to their profiles is not clear) and put their urls in a separate file.

The files for each platform are as follows:

Last.fm

• Page of users followed by the user. All users can access this page under the tab “following”

in their profile. “Profile pic”→ “view profile”→ “following tab”

• Page of the followers which can be found under the “followers” tab in their profile.

• Page of recommended artists accessible via link

“https://www.last.fm/home/artists”

• Page of recommended albums accessible via link

“https://www.last.fm/home/albums”

• Page of recommended tracks accessible via link

“https://www.last.fm/home/tracks”

• A text file where each line contains the link to a non-obvious recommended artist, album,

or track. Note that users should skim over all the recommendations, but they need not

examine each item in detail. In the rare cases where users strongly believe that all received

recommendations are obvious, they still need to send us an empty file.

Quora

• Activity page. This page can be found by clicking “Profile pic”→ “Profile”→ “Activity”

• Page of followed topics. “profile pic”→ “Profile”→ “Topics”

• Following page. “profile pic”→ “Profile”→ “Following”

• Content page accessible via link “https://www.quora.com/content”.

• Home page. This page lists the recommended items generated by Quora. To reach this

page, users should simply click on “Home button”.

• A text file where each line contains the link to a surprising recommended item. Each item

can be either a question, an answer or a topic. For example,

“’https://www.quora.com/topic/children’ ,

“’https://www.quora.com/does-god-exists’,

“’https://www.quora.com/does-god-exists/answer/azinmatin’

are example links to a topic, a question and an answer respectively. Note that in Quora,

“Link” is another type of recommendation. Users should exclude these items from their

choices as they are normally redirected to another websites.
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Evaluation of relationships

Starting from the third session, users should give us feedback on the possible relations between

their profiles and the recommended items. For this, they receive a file containing pairs of

relations. They should decide which one is more surprising and which is more relevant (or

useful). Here is an example of a pair of relations together with some meta data:

Recommended item of type topic: Children

Link to recommended item: Link to Children topic Webpage

First explanation: Syndy — follows—Frank —follows — Children

Second explanation: Syndy—follows—Life Lessons— super-category—Children

Which explanation is more surprising to you?:

Which explanation is more relevant/useful to you?:

First explanation’s links: Link to Syndy — follow — Link to Frank — follows — Link to

Children to Frank

Second explanation’s links: Link to Syndy — follow — Link to Life Lessons — super-category

— Link to Children

Users should answer the questions in red. For example, if user thinks the first explanation

is more surprising than the second, she should write “f” (stands for first) in front of “Which

explanation is more surprising to you?”. Here is a valid answer to the red fields:

Which explanation is more surprising to you? f

Which explanation is more useful/relevant to you? s

If users need more information regarding each component on the explanation path, they can

visit their corresponding Webpage using the URLs written under “First explanation’s links” or

“Second explanation’s links”.

For each session, a separate sheet containing the relation pairs will be shared with each user.

Users should always pay attention to the order of the questions as they are randomly ordered.

To avoid task fatigue, users should fill out the sheet for each session before the next one starts.
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