3,809 research outputs found

    On Heterogeneous Neighbor Discovery in Wireless Sensor Networks

    Full text link
    Neighbor discovery plays a crucial role in the formation of wireless sensor networks and mobile networks where the power of sensors (or mobile devices) is constrained. Due to the difficulty of clock synchronization, many asynchronous protocols based on wake-up scheduling have been developed over the years in order to enable timely neighbor discovery between neighboring sensors while saving energy. However, existing protocols are not fine-grained enough to support all heterogeneous battery duty cycles, which can lead to a more rapid deterioration of long-term battery health for those without support. Existing research can be broadly divided into two categories according to their neighbor-discovery techniques---the quorum based protocols and the co-primality based protocols.In this paper, we propose two neighbor discovery protocols, called Hedis and Todis, that optimize the duty cycle granularity of quorum and co-primality based protocols respectively, by enabling the finest-grained control of heterogeneous duty cycles. We compare the two optimal protocols via analytical and simulation results, which show that although the optimal co-primality based protocol (Todis) is simpler in its design, the optimal quorum based protocol (Hedis) has a better performance since it has a lower relative error rate and smaller discovery delay, while still allowing the sensor nodes to wake up at a more infrequent rate.Comment: Accepted by IEEE INFOCOM 201

    Enabling limited traffic scheduling in asynchronous ad hoc networks

    Get PDF
    We present work-in-progress developing a communication framework that addresses the communication challenges of the decentralized multihop wireless environment. The main contribution is the combination of a fully distributed, asynchronous power save mechanism with adaptation of the timing patterns defined by the power save mechanism to improve the energy and bandwidth efficiency of communication in multihop wireless networks. The possibility of leveraging this strategy to provide more complex forms of traffic management is explored

    The impact of wakeup schedule distribution in synchronous power save protocols on the performance of multihop wireless networks

    Get PDF
    By definition, the operation of an asynchronous power save protocol permits an arbitrary distribution of nodes' wakeup schedules. This wakeup schedule distribution creates an uncoordinated pattern of times at which nodes will attempt to transmit. Intuitively, we would expect that some patterns will be more (or less) favorable than others for a given traffic pattern. We investigate the impact of this wakeup pattern on network capacity and present simulation data showing that the capacity associated with the best wakeup patterns is significantly larger than that of the worst. This result not only gives insight to the behavior of such protocols, but also acts as a feasibility study showing the potential benefit of mechanisms by which nodes adapt their wakeup schedules to obtain improved performance

    EASND: Energy Adaptive Secure Neighbour Discovery Scheme for Wireless Sensor Networks

    Get PDF
    Wireless Sensor Network (WSN) is defined as a distributed system of networking, which is enabled with set of resource constrained sensors, thus attempt to providing a large set of capabilities and connectivity interferences. After deployment nodes in the network must automatically affected heterogeneity of framework and design framework steps, including obtaining knowledge of neighbor nodes for relaying information. The primary goal of the neighbor discovery process is reducing power consumption and enhancing the lifespan of sensor devices. The sensor devices incorporate with advanced multi-purpose protocols, and specifically communication models with the pre-eminent objective of WSN applications. This paper introduces the power and security aware neighbor discovery for WSNs in symmetric and asymmetric scenarios. We have used different of neighbor discovery protocols and security models to make the network as a realistic application dependent model. Finally, we conduct simulation to analyze the performance of the proposed EASND in terms of energy efficiency, collisions, and security. The node channel utilization is exceptionally elevated, and the energy consumption to the discovery of neighbor nodes will also be significantly minimized. Experimental results show that the proposed model has valid accomplishment

    HotMobile 2008: Postconference Report

    Get PDF
    HotMobile 2008 presented a two-day program on mobile computing systems and applications. The authors focuses on the sessions on sensors, modularity, wireless, security, systems, and screens. The mobile device is the most amazing invention in history and that it has had the largest impact on human kind. Because mobile phones combine mobile devices with ongoing developments in software and communication technologies, they have the potential to change the way people think and act
    corecore