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Abstract— By definition, the operation of an asynchronous
power save protocol permits an arbitrary distribution of nodes’
wakeup schedules. This wakeup schedule distribution creates an
uncoordinated pattern of times at which nodes will attempt to
transmit. Intuitively, we would expect that some patterns will be
more (or less) favorable than others for a given traffic pattern.

We investigate the impact of this wakeup pattern on network
capacity and present simulation data showing that the capacity
associated with the best wakeup patterns is significantly larger
than that of the worst. This result not only gives insight to the
behavior of such protocols, but also acts as a feasibility study
showing the potential benefit of mechanisms by which nodes
adapt their wakeup schedules to obtain improved performance.

I. INTRODUCTION

Ad hoc networks are intended to operate in a self-organizing
fashion. For the lowest layer communication protocols, this
means that nodes may not enjoy centralized synchronization
or scheduling of channel access. For network layer services,
this means nodes must cooperatively forward traffic for each
other to maintain network connectivity.

Because nodes do not a priori know when they will be
called on receive and forward traffic, they must be prepared
to do so at any time. Unfortunately, listening to the wireless
channel consumes significant energy, requiring the use of
power saving mechanisms that allow the network interface to
spend as much time as possible in a low energy consumption
sleep state. Such a mechanism must provide a way for nodes
to cooperatively buffer traffic for their sleeping neighbors and
arrange appropriate rendezvous times to exchange traffic.

A variety of power save protocols have been proposed for
CSMA/CA-based ad hoc networks: Some proposals are based
on synchronous operation, using periodic broadcast of traffic
announcement messages ([1]), often in conjunction with some
form of clustering ([2]). To avoid the overhead of synchro-
nization, a number of asynchronous protocols have also been
proposed. A few are based on probabilistic mechanisms ([3],
[4]), but most are based on wakeup schedules that ensure some
deterministic overlap between nodes’ wake intervals (Figure
1(a)).

Such asynchronous power save protocols generally require
three elements. (1) A common, periodic wakeup schedule,
which each node follows independently of its neighbors. This

wakeup schedule is defined such that the nodes’ wake intervals
overlap in some deterministic way, regardless of the phase
difference between them. Such wakeup schedules are often
based on quorum scheduling or similar structures ([5], [6],
[7]). (2) A neighbor discovery mechanism, which allows a
node to make use of these structures to rendezvous with a
neighbor. (3) A traffic scheduling mechanism that allows nodes
to predict or negotiate intervals during which a neighbor will
be awake to receive traffic. In this paper, we consider the
simple majority power save protocol [5].

Because neighbors can only exchange traffic when they are
both awake, the distribution of the nodes’ wakeup schedules
creates some spatial and time pattern, which we refer to as a
wakeup pattern, in the nodes’ attempts to access the channel.
Given periodic wakeup schedules and assuming relatively
long-lived flows and slowly changing topologies, such patterns
will exist over moderate time intervals. A natural question
is whether, for a given topology and traffic flows, there are
particularly favorable or unfavorable wakeup patterns.

The answer is obvious in trivial cases: For example, if
nodes A and B are receiving traffic from nodes C and D,
minimal overlap between their wakeup schedules reduces
contention and interference, even though nodes C and D
cannot communicate directly (Figure 1(b)).

The answer is less obvious in more realistic scenarios:
The shared multihop channel is characterized by complex
patterns of inter- and intra-flow contention, extending over
multiple hops. (Many multihop link scheduling problems are
computationally hard [8]). It may be that, in practice, the
cumulative effect of these interactions tends to work against
the possibility of obtaining significant overall advantage.

A positive answer would be particularly interesting, as it
would suggest the potential benefit of improving network
performance by manipulating the wakeup pattern. The current
work may therefore be viewed as a feasibility study in this
regard.

To answer our question, we formulate the following ex-
periment: We fix the topology, the routing, and the offered
load (set of randomly chosen source-destination pairs), then
measure the flow capacity of the network for each of a large
number of randomly generated wakeup patterns. We choose
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(a) Nodes alternate between wake(dark) and sleep
(light) states:The two nodes have the same period,
but the offset is arbitrary.
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(b) Interfering transmissions are separated by
schedules with minimal overlap.

Fig. 1. Distributions of wakeup schedules.
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Fig. 2. In our experiment, we would like to
distinguish between these cases.

the flow capacity metric because it reflects overall network
performance in a practical sense.

These measurements will define some probability distribu-
tion (Figure 2). A very narrow probability distribution would
imply that capacity is not too much affected by the wakeup
pattern: what is good for some flows is bad for others and it
is difficult to obtain some overall advantage. Conversely, a flat
probability distribution would suggest that the capacity is very
sensitive to the wakeup pattern. Because the most interesting
implications of this work are related to the feasibility of
improving performance by managing the wakeup pattern, our
goal is effectively to distinguish between these two cases.

We have developed a simulation tool that allows us to
efficiently determine the number of feasible CBR flows in
a network for a large number of wakeup patterns. The data
show that the flow capacity measurements exhibit a narrow
central distribution with long tails. We conclude that there is
substantial difference between the performance of best and
worst wakeup patterns, but that such patterns are relatively
rare. The result suggests the potential benefit of developing
techniques for nodes to adapt the wakeup pattern to obtain
better performance.

To the best of our knowledge, no previous work has
investigated the whether the performance of an asynchronous
power save protocol is sensitive to the pattern of the nodes’
wakeup schedules. The primary contribution of this work is to
show that the wakeup pattern generated by the operation of an
asynchronous power save protocol has a significant effect on
the network capacity. The result suggests the potential benefits
of developing mechanisms in which the wakeup pattern is
adapted to obtain better performance. The design of such a
mechanism is out of scope of this work.

II. NETWORK MODEL

The experiment above requires that we compute flow ca-
pacity for each of many wakeup patterns, for each of many
topologies and network configurations. This large number of
simulation runs makes it impractical to use more detailed
discrete event simulators, such as ns-2[9].

However, our immediate goal is not protocol design or
optimization. Our goal is to measure the sensitivity of the flow
capacity to wakeup pattern – to distinguish between the two
hypothetical curves in Figure 2. That is, we are interested in
the variation in performance, rather than in the absolute value
of a performance metric.

We therefore develop a network model that is well suited
for this kind of rapid exploration of the performance space.
The key simplification is that we model only the “steady state”
operation of the network, rather than its evolution over time.
This approach requires three closely related assumptions:

First, the model considers only CBR traffic and periodic
power save protocols, which need to have compatible (integer
multiple) periods (e.g. a wakeup schedule with a period
of 100ms and CBR flows of 10 packets per second.) This
assumption allows us to evaluate a single period, which is
assumed to be representative of the steady state performance.

Second, we ignore transient overhead traffic (e.g. routing,
admission control, and upper layer protocols), assuming that
it is sufficiently infrequent that only a small proportion of pe-
riods are affected. It is possible to represent constant periodic
overhead, but there is no reason to, as we are not interested
in protocol optimization.

Third, we assume variation in channel access time is small
compared to the total transmit time for the frame. This is a
particularly strong assumption for a CSMA-based MAC layer,
which does not provide such a structure. However, the CBR
flow capacity metric implies a system in which there is some
soft admission control mechanism (e.g. [10]) and that the
network is thus unlikely to be heavily overloaded.

The model is described in more detail below and in [11].
Each node has fixed transmit radius and an interference

radius that is 40% larger than the transmit radius (the so-
called “protocol model”). Nodes are assumed to communicate
without error to any node within their transmit radius, while
nodes within the interference radius of a transmitter sense the
channel as busy.

We assume that the MAC layer operates without error
to prevent packet loss due to collisions. Each transmission
occupies the channel at all nodes within interference range
of the transmitter and within communication range of the
receiver. This rule roughly models the RTS/CTS operation of
IEEE 802.11.

The time that the transmission occupies the channel is
intended to reflect the complete channel access process, with
an implicit assumption that the variation in channel access time
(e.g. random backoff) is small relative to the total transmission
time. The transmission time is 2.2 ms, which corresponds
with a short (ca 137-byte) IEEE 802.11b frame transmitted
at 11Mbps or a longer frame transmitted on a newer IEEE
802.11 interface.



TABLE I

CONNECTIVITY (MIN-MAX) AND MEAN PATH LENGTH (STDDEV). AVERAGE OVER 50 TOPOLOGIES.

large square nodes connected mean path small square nodes connected mean path
pairs (%) length pairs (%) length

50 39% (11-92) 3.9 (1.2) 15 89% (19-100) 2.1 (0.4)
total area = 1.0 75 79% (27-100) 5.5 (1.1) total area = 1.0 20 96% (47-100) 2.1 (0.3)
6.3 x 6.3 hops 100 94% (49-100) 5.3 (0.6) 2.6 x 2.6 hops 30 99% (63-100) 2.0 (0.2)

125 98% (78-100) 5.0 (0.3) 40 99% (81-100) 2.0 (0.1)

large rectangle nodes connected mean path small rectangle nodes connected mean path
pairs (%) length pairs (%) length

75 58% (21-100) 5.2 (1.6) 20 82% (31-100) 2.4 (0.6)
total area = 1.0 100 86% (33-100) 6.3 (1.2) total area = 1.0 35 98% (48-100) 2.6 (0.3)
3.2 x 13 hops 125 95% (39-100) 6.5 (0.8) 1.3 x 5.2 hops 50 99% (49-100) 2.6 (0.2)

150 99% (45-100) 6.3 (0.4) 65 100% (100) 2.5 (0.1)

We model the simple majority power save protocol[5]. The
wakeup schedule is based on the observation that, if every
node is awake slightly more than half of each period, its
awake interval will overlap with that of each of its neighbors,
regardless of the pattern of their wakeup schedules (Figure 1).
Neighbors use these periods of guaranteed overlap to learn the
phase difference between their wakeup schedules and thus to
predict when it is possible for them to exchange data traffic.
The period of the power save protocol is 100ms, with a 55%
duty cycle (i.e. 55ms awake, 45ms asleep).

We chose this power save protocol, despite its limited
energy saving, for its simplicity and because we expect its
high duty cycle to make it resilient to variation.

A transmission is feasible if the transmitter and receiver
are both awake and have a free channel for an interval
corresponding to the transmission time. The transmission is
assigned to the interval that meets these criteria.

The traffic consists of CBR flows with the same period as
the power save protocol: 10 packets per second. A flow is
feasible if each transmission along its route is feasible in one
period. That is, the source and each forwarding node must be
able to transmit once each period, so that one packet enters
and one packet leaves the network in each period. (Note that
the latency for a given packet may be greater than one period.)
Shortest path routes are computed at initialization time and not
changed.

III. SIMULATION EXPERIMENT

We consider four scenarios: large and small square and large
and small rectangle, each with a variety of node densities
(Table I). A topology is generated according the scenario
parameters, with nodes deployed on a rectangular field, their
x- and y-coordinates uniformly distributed random variables
over the size of the field. Nodes are stationary.

The shortest path routes for all pairs are computed and
an ordered set of candidate flows (offered load) is randomly
selected from the set of connected source-destination pairs.
The size of the candidate set is chosen such that most, but not
all, flows in the set are feasible (see below).

To determine the baseline flow capacity of the topology,
we evaluate the feasibility of each flow in the candidate set
with the power save protocol turned off. This determines the
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Fig. 3. Baseline flow capacity (no power save protocol) as a function of
candidate set size (large rectangle scenario, averaged over 50 topologies).

baseline set of flows, which are known to be feasible in the
absence of any constraints imposed by a wakeup pattern.

We then apply the 55ms on/45ms off wakeup schedule
described above to each node, such that the phase difference
between the nodes’ schedules is randomly and uniformly
distributed over the period. The feasibility of each flow in the
baseline set is evaluated and the total flow capacity computed.
The process is repeated for a large number of wakeup patterns
to obtain the probability distribution of the flow capacity.

We earlier referred to the candidate set size. If the set is
too small, all of the flows are feasible. The network is under-
utilized and unlikely to exhibit significant capacity variation
due to the operation of the power save protocol. If candidate
set is too large, there is a “cherry picking” effect: we are
effectively searching through many candidates for feasible
flows. Such an offered load is also unrealistic in the sense
that the network is badly under-dimensioned, since most user
flows are rejected.

We would therefore like the size of the candidate set to
result in an offered load such that the network is mildly
congested: most, but not all, flows in the offered load are
feasible. The candidate set size should also reflect a reasonable
offered load (flows per user) in the context of the scenario.

To determine the size of the candidate set, we compute
the baseline (no power save protocol) capacity of a given
topology for each of several candidate set sizes (Figure 3).



TABLE II

SIMULATION PARAMETERS

timing period 100ms
resolution 500 slots/period

power mgmt duty cycle 55% ( 55ms on, 45ms off)
pkt size transmit time 2.2ms

(137byte @ 11Mbps IEEE 802.11)
traffi c CBR traffi c 10 pkts / sec
candidate set small sq. 40 flows

small rect. 40 flows
large sq. 50 flows
large rect. 45 flows

experiments 350 wakeup schedules / topology
4 scenarios × 50 topologies

When the size of the candidate set is small, then all of the
flows are feasible and the capacity is equal to the size of the
candidate set. As the size of the candidate set increases, the
network becomes more congested. Some flows are infeasible
and the baseline capacity grows more slowly than the size of
the candidate set. Eventually, no more feasible flows can be
found, no matter how large the candidate set.

Using this data, we (visually) choose the candidate set size
at which 85-90% of the flows are feasible in the absence of
any power save protocol. An extremely precise estimate is not
needed, we just want to define experimental parameters such
that the network is likely to be moderately congested. The
candidate set sizes used for each scenario are shown in Table
II. Depending on the scenario, the size of the candidate set
reflects a load of 0.25–2 flows per node.

IV. SIMULATION RESULTS

We first present a subset of the raw data in some detail
and then present integrated data and compare the baseline
performance with that obtained by the “best” wakeup pattern.

A. Sampling the data

In this section, we examine in detail an instance of the large
rectangle scenario, with 100 nodes and a mean path length of
about six hops.
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Figure 4 shows the probability distributions for the flow
capacity of five topologies (randomly selected from the 50
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Fig. 5. Normalized probability distribution

topologies evaluated for this configuration). Each curve rep-
resents a single topology, showing the probability (y-axis)
of observing a given flow capacity (x-axis), based on flow
capacity measurements for 350 different wakeup patterns.

In general, we observe a roughly symmetric normal distri-
bution. This is not too surprising, given that the underlying
random variable – the overlap between nodes’ wakeup sched-
ules – is (almost) uniformly distributed. Note the considerable
variation in absolute flow capacity among the various topolo-
gies.

Figure 5 shows the same result, with flow capacities nor-
malized to the baseline (no power save) capacity of their
associated topology. The variation between topologies persists:
in some topologies the best wakeup patterns obtain over 80%
of the baseline capacity, while in others they obtain only about
65%.
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Plotting the flow capacity measurements as quartiles loses
some of the detail present in the full distribution, but makes
it possible to present more topologies in a single plot (Figure
6). We observe that the two middle quartiles account for only
a small part of the total variation, while the extremes are sig-
nificantly larger. We further note that the best wakeup patterns
generally obtain about 70-75% of the baseline capacity.



TABLE III

MEDIAN FLOW CAPACITY: MEAN OF THE DISTANCE OF EACH QUARTILE FROM THE MEDIAN, RELATIVE TO THE MEDIAN (COMPUTED FOR EACH

TOPOLOGY). EACH MEAN IS COMPUTED OVER 50 TOPOLOGIES (STDDEV IN PARENTHESES).

nodes median inner quartile min - max
capacity relative to median relative to median

small square 15 20.2 (3.6) -0.06 (0.02) +0.07 (0.02) -0.31 (0.05) +0.25 (0.05)
20 20.8 (2.7) -0.06 (0.02) +0.06 (0.02) -0.28 (0.04) +0.23 (0.04)
30 23.3 (2.7) -0.05 (0.02) +0.05 (0.02) -0.25 (0.05) +0.21 (0.04)
40 24.7 (2.8) -0.05 (0.02) +0.05 (0.01) -0.22 (0.04) +0.19 (0.03)

small rectangle 20 22.3 (5.7) -0.06 (0.02) +0.06 (0.02) -0.27 (0.07) +0.22 (0.05)
50 22.7 (3.2) -0.05 (0.02) +0.05 (0.02) -0.22 (0.05) +0.19 (0.05)
35 22.1 (3.6) -0.06 (0.02) +0.05 (0.02) -0.25 (0.05) +0.21 (0.04)
65 24.1 (3.2) -0.04 (0.01) +0.04 (0.01) -0.21 (0.04) +0.17 (0.03)

large square 50 24.2 (7.3) -0.05 (0.02) +0.06 (0.02) -0.24 (0.05) +0.24 (0.07)
75 23.4 (5.1) -0.05 (0.02) +0.06 (0.02) -0.25 (0.05) +0.23 (0.05)
100 23.6 (3.2) -0.06 (0.02) +0.05 (0.02) -0.23 (0.04) +0.23 (0.05)
125 26.6 (2.7) -0.05 (0.02) +0.05 (0.02) -0.22 (0.03) +0.20 (0.04)

large rectange 75 22.5 (6.2) -0.06 (0.02) +0.06 (0.02) -0.25 (0.06) +0.24 (0.07)
100 21.7 (4.8) -0.06 (0.02) +0.06 (0.02) -0.25 (0.05) +0.23 (0.05)
125 21.3 (3.4) -0.06 (0.02) +0.06 (0.02) -0.25 (0.05) +0.23 (0.05)
150 22.4 (3.1) -0.05 (0.02) +0.05 (0.02) -0.24 (0.04) +0.21 (0.04)

B. Summarizing the data

We present the integrated quartile data for each configura-
tion and compare the baseline performance with that of the
best observed wakeup pattern for each topology.

a) Quartile analysis: For each topology, we compute the
distance from the median flow capacity to each quartile. Each
distance is computed relative to the median for that topology
to eliminate the inherent variation in capacity between topolo-
gies. This relative inter-quartile distance is then averaged over
the 50 topologies simulated in each scenario. The results are
shown in Table III. (Note that the stddev reflects the variation
between topologies and not the wakeup schedule dependent
variation within a topology.)

We see that the inner quartiles lie within a range about
±5% of the median. In absolute terms, this means that 50%
of wakeup patterns will support only one flow more or less
than the median flow capacity of 20-25 flows – a negligible
difference. The max-min excursions are much larger: the
“best” wakeup schedule patterns support some 20-25% more
flows than the median, while the “worst” patterns support some
20-25% fewer flows. This represents a loss or gain of four or
five flows relative to the median capacity of 20-25 flows.

b) Maximum capacity: We also compare the capacity
of the “best” wakeup pattern and the baseline capacity (no
power save protocol). Figure 7 shows, for each scenario, the
proportion of topologies (y-axis) in which the best wakeup
pattern obtains a flow capacity that exceeds some percentage
(x-axis) of the baseline capacity for that topology.

Observe that for all topologies, the ratio between the best
flow capacity and baseline capacity is larger than the 55%
duty cycle. Even in large dense networks, in a majority
topologies, the best wakeup pattern obtains 75-85% of the
baseline capacity. In over 70% of observed topologies, the best
wakeup pattern obtains at least 70% of the baseline capacity
obtained in the absence of the power save protocol.

V. DISCUSSION

In the previous section, we showed that there is considerable
variation in flow capacity, but we did not show that this vari-
ation is an underlying property of the network. One possible
explanation for our result is that variation in the number of
feasible flows simply reflects variation in the path-length of
the admitted flows.

We call this the total “total transmissions hypothesis”: If a
long path-length flow happens to be feasible in some wakeup
pattern, the flow capacity only increases by one, even though
many transmissions are required. Conversely, if the long path-
length flow is not feasible, then two (or more) short path-length
flows may be able to use its transmission times, increasing the
flow capacity by two (or more).

The model of an offered load consisting of flows of varying
path length is realistic. However, the previous results would
not be meaningful with regard to finding wakeup patterns that
improve network performance, since it is trivially possible
to increase the number of admissible flows by preferentially
admitting short path-length flows.

If the total transmission hypothesis were true, we would
expect that the total number of transmissions in the network
– the number of feasible flows times their mean path length –
should be roughly constant for each wakeup pattern.

Figure 8 shows the mean distance of each quartile from
the median, calculated as described in the previous section.
Generally speaking, the inner quartiles (50% of the observed
flow capacities) vary ±10% from the median, while the
extremes vary ±30 − 40%, which is even larger than the
variation in the flow capacity. In short, there does not seem
to be any evidence for a pattern of small variation around the
natural total capacity of each topology – and thus little support
for the total transmission hypothesis.
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Fig. 7. Maximum flow capacity (relative to baseline)
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Fig. 8. Quartiles: Variation in the total number of transmissions. The variation in the total number of transmissions is large, suggesting that flow capacity
does not simply reflect the variation in path length among the flows in the offered load.

VI. CONCLUSION AND FUTURE WORK

We investigated the impact of the wakeup pattern created
by the operation of an asynchronous power save protocol on
the capacity of a multihop wireless network. To do this, we
defined a simple model of network operation that is suitable
for rapid exploration of the performance space and allows us
to efficiently compute flow capacity for a large number of
wakeup patterns.

We determined that, for a given topology and offered load,
the flow capacity (and total number of transmissions) in a net-
work can vary significantly depending on the wakeup pattern.
The simulation results show that the probability distribution
of flow capacity measurements has a narrow central variation
and long tails, with the maximum and minimum observed
capacities varying some ±20-25% from the median. Although
the study of more complex power save protocols remains
future work, we expect the general result to hold for the more
restrictive wakeup schedules associated with these protocols.

The value of this result is not just that it provides insight
into the behavior of such protocols, but more importantly, that
it suggests that wakeup schedule adaptation may significantly
improve network performance.

Because asynchronous power save protocols function cor-
rectly for any wakeup pattern, nodes can adapt their wakeup
schedules to obtain more favorable patterns. Unfortunately, the
relative rarity of good patterns suggests that purely randomized
approaches may not be very effective and that more sophisti-
cated techniques will be required. In this regard, we note that
the problem bears some similarities to the difficult problem of
computing assignments for spatial reuse TDMA([12]), albeit
at a much coarser granularity and at a higher network layer.
This topic is the focus of future work.
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