5 research outputs found

    Influence of Sodium Inward Current on Dynamical Behaviour of Modified Morris-Lecar Model

    Full text link
    This paper presents a modified Morris-Lecar model by incorporating the sodium inward current. The dynamical behaviour of the model in response to key parameters is investigated. The model exhibits various excitability properties as the values of parameters are varied. We have examined the effects of changes in maximum ion conductances and external current on the dynamics of the membrane potential. A detailed numerical bifurcation analysis is conducted. The bifurcation structures obtained in this study are not present in existing bifurcation studies of original Morris-Lecar model. The results in this study provides the interpretation of electrical activity in excitable cells and a platform for further study

    Optimal self-induced stochastic resonance in multiplex neural networks: electrical versus chemical synapses

    Get PDF
    Electrical and chemical synapses shape the dynamics of neural networks and their functional roles in information processing have been a longstanding question in neurobiology. In this paper, we investigate the role of synapses on the optimization of the phenomenon of self-induced stochastic resonance in a delayed multiplex neural network by using analytical and numerical methods. We consider a two-layer multiplex network, in which at the intra-layer level neurons are coupled either by electrical synapses or by inhibitory chemical synapses. For each isolated layer, computations indicate that weaker electrical and chemical synaptic couplings are better optimizers of self-induced stochastic resonance. In addition, regardless of the synaptic strengths, shorter electrical synaptic delays are found to be better optimizers of the phenomenon than shorter chemical synaptic delays, while longer chemical synaptic delays are better optimizers than longer electrical synaptic delays -- in both cases, the poorer optimizers are in fact worst. It is found that electrical, inhibitory, or excitatory chemical multiplexing of the two layers having only electrical synapses at the intra-layer levels can each optimize the phenomenon. And only excitatory chemical multiplexing of the two layers having only inhibitory chemical synapses at the intra-layer levels can optimize the phenomenon. These results may guide experiments aimed at establishing or confirming the mechanism of self-induced stochastic resonance in networks of artificial neural circuits, as well as in real biological neural networks.Comment: 24 pages, 7 figure

    Rhythmogenic and Premotor Functions of Dbx1 Interneurons in the Pre-Bötzinger Complex and Reticular Formation: Modeling and Simulation Studies

    Get PDF
    Breathing in mammals depends on rhythms that originate from the preBötzinger complex (preBötC) of the ventral medulla and a network of brainstem and spinal premotor neurons. The rhythm-generating core of the preBötC, as well as some premotor circuits, consists of interneurons derived from Dbx1-expressing precursors but the structure and function of these networks remain incompletely understood. We previously developed a cell-specific detection and laser ablation system to interrogate respiratory network structure and function in a slice model of breathing that retains the preBötC, premotor circuits, and the respiratory related hypoglossal (XII) motor nucleus such that in spontaneously rhythmic slices, cumulative ablation of Dbx1 preBötC neurons decreased XII motor output by half after only a few cell deletions, and then decelerated and terminated rhythmic function altogether as the tally increased. In contrast, cumulatively deleting Dbx1 premotor neurons decreased XII motor output monotonically, but did not affect frequency nor stop functionality regardless of the ablation tally. This dissertation presents several network modeling and cellular modeling studies that would further our understanding of how respiratory rhythm is generated and transmitted to the XII motor nucleus. First, we propose that cumulative deletions of Dbx1 preBötC neurons preclude rhythm by diminishing the amount of excitatory inward current or disturbing the process of recurrent excitation rather than structurally breaking down the topological network. Second, we establish a feasible configuration for neural circuits including an Erdős-Rényi preBötC network and a small-world reticular premotor network with interconnections following an anti-preferential attachment rule, which is the only configuration that produces consistent outcomes with previous experimental benchmarks. Furthermore, since the performance of neuronal network simulations is, to some extent, affected by the nature of the cellular model, we aim to develop a more realistic cellular model based on the one we adopted in previous network studies, which would account for some recent experimental findings on rhythmogenic preBötC neurons

    Effects of intrinsic neuronal properties in neural dynamics

    Full text link
    Tesis doctoral inédita. Universidad Autónoma de Madrid, Escuela Politécnica Superior, septiembre de 201

    29th Annual Computational Neuroscience Meeting: CNS*2020

    Get PDF
    Meeting abstracts This publication was funded by OCNS. The Supplement Editors declare that they have no competing interests. Virtual | 18-22 July 202
    corecore