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ABSTRACT 
 

 
Breathing in mammals depends on rhythms that originate from the preBötzinger 
complex (preBötC) of the ventral medulla and a network of brainstem and spinal 
premotor neurons. The rhythm-generating core of the preBötC, as well as some 
premotor circuits, consists of interneurons derived from Dbx1-expressing 
precursors but the structure and function of these networks remain incompletely 
understood. We previously developed a cell-specific detection and laser ablation 
system to interrogate respiratory network structure and function in a slice model 
of breathing that retains the preBötC, premotor circuits, and the respiratory 
related hypoglossal (XII) motor nucleus such that in spontaneously rhythmic 
slices, cumulative ablation of Dbx1 preBötC neurons decreased XII motor output 
by half after only a few cell deletions, and then decelerated and terminated 
rhythmic function altogether as the tally increased. In contrast, cumulatively 
deleting Dbx1 premotor neurons decreased XII motor output monotonically, but 
did not affect frequency nor stop functionality regardless of the ablation tally. This 
dissertation presents several network modeling and cellular modeling studies that 
would further our understanding of how respiratory rhythm is generated and 
transmitted to the XII motor nucleus. First, we propose that cumulative deletions 
of Dbx1 preBötC neurons preclude rhythm by diminishing the amount of 
excitatory inward current or disturbing the process of recurrent excitation rather 
than structurally breaking down the topological network. Second, we establish a 
feasible configuration for neural circuits including an Erdős-Rényi preBötC 
network and a small-world reticular premotor network with interconnections 
following an anti-preferential attachment rule, which is the only configuration that 
produces consistent outcomes with previous experimental benchmarks. Last but 
not least, since the performance of neuronal network simulations is, to some 
extent, affected by the nature of the cellular model, we aim to develop a more 
realistic cellular model based on the one we adopted in previous network studies, 
which would account for recent experimental findings on rhythmogenic preBötC 
neurons.  
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CHAPTER 1. Mechanisms leading to rhythm cessation in the 
respiratory preBötzinger complex due to piecewise cumulative 
neuronal deletions 

1.1 INTRODUCTION 
Inspiratory breathing movements originate within the preBötzinger complex 

(preBötC) of the lower medulla (Smith et al., 1991; Feldman and Del Negro, 2006; 

Feldman et al., 2013; Moore et al., 2013). The underlying mechanisms that 

generate inspiratory rhythm and their susceptibility to failure in conditions of 

deterioration or disease remain incompletely understood. Here we address these 

interrelated issues using modeling and simulation.  

Interneurons whose progenitors express the homeodomain transcription factor 

Dbx1 (i.e., Dbx1 neurons) are glutamatergic and form local and commissural 

excitatory synaptic connections. These neurons may comprise the excitatory 

rhythmogenic core of the preBötC according to the Dbx1 core hypothesis 

(Bouvier et al., 2010; Gray et al., 2010; Picardo et al., 2013), which predicts that 

cumulative destruction of Dbx1 neurons in the preBötC should irreversibly impair 

and then prohibit respiratory rhythm by degrading the core oscillator. This 

prediction was experimentally tested by photonically destroying Dbx1 preBötC 

neurons in rhythmically active slices that retain the preBötC, while monitoring 

breathing-related motor output from the hypoglossal (XII) cranial nerve. 

Inspiratory motor output decreased in amplitude and frequency until the 

spontaneous rhythm irreversibly terminated after ~15% of the Dbx1 preBötC 

population was destroyed (Wang et al., 2014). 
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These data support the Dbx1 core hypothesis but cannot explain the cessation of 

network rhythm, which could have structural or dynamical explanations. First, 

loss of rhythm could coincide with a precipitous drop in network connectivity (i.e., 

structure), which impairs neuronal communication and thus precludes 

coordinated activity. Second, removing constituent neurons could decrease 

excitability or lower baseline membrane potential of the neurons that remain and 

thus impede burst generation. It is also possible that cumulative cellular ablations 

cause structural and dynamical changes whose combined effects halt rhythmic 

activity. 

Inspiratory neural bursts in the preBötC depend on excitatory synaptic 

transmission (Greer et al., 1991; Funk et al., 1993; Ge and Feldman, 1998; 

Rekling et al., 2000; Wallén-Mackenzie et al., 2006). According to the logic of a 

canonical network oscillator (Grillner, 2006) recurrent excitation spreads from 

active presynaptic neurons to quiescent postsynaptic partners, which causes 

temporal summation and recruitment to the active burst phase (Rubin et al., 

2009). Cumulatively ablating ~39 neurons in the model preBötC (330 neurons in 

total) stops spontaneous rhythmic function. Here we show that this loss of 

function is not linked solely to deterioration of network structure as determined by 

a subset of formal network measures, but by the combined effect of loss of 

network structure and neuronal dynamics. Selectively targeting neurons that 

have a large number of incoming synapses decreases the ablation tally 

considerably, emphasizing the importance of these synaptic properties for 

spontaneous rhythmic function. We conclude that rhythm cessation is attributable 
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to the loss of constituent neurons with large numbers of incoming synapses or 

high excitability (or both), which impedes recurrent excitation by diminishing the 

rate at which synaptic transmission among network constituents recruits more 

neurons to join the active phase. Failing to reach a threshold rate of 1 neuron/ms, 

recurrent excitation cannot spread quickly enough to recruit the entire network; 

subsequent spontaneous bursts no longer occur. This study is important for 

understanding basic mechanisms of rhythm generation and potentially for 

restoring functionality to arrhythmic networks in pathological conditions and 

disease.  

1.2 MATERIALS AND METHODS 

1.2.1 Rubin-Hayes preBötC interneuron model 
Each node (i.e., neuron) is populated with a Rubin-Hayes preBötC model (Rubin 

et al., 2009; Dunmyre et al., 2011), which features Hodgkin-Huxley-like spiking 

currents and four additional currents: calcium-activated non-specific cation 

current (ICAN) (Crowder et al., 2007; Pace et al., 2007a; Mironov, 2008, 2013; 

Pace and Del Negro, 2008; Mironov and Skorova, 2011), persistent sodium 

current (INaP) (Del Negro et al., 2002a; Ptak et al., 2005; Koizumi and Smith, 

2008), excitatory synaptic current mediated predominantly by AMPA receptors 

(Isyn) (Funk et al., 1993; Ge and Feldman, 1998; Wallén-Mackenzie et al., 2006), 

and electrogenic Na/K ATPase pump current (Ipump) (Del Negro et al., 2009; Krey 

et al., 2010). The model features material balance equations for intracellular 

calcium and sodium concentrations. The Rubin-Hayes model is in the public 

domain (http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=125649).  
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The current-balance equation takes the form: 

𝐶
d𝑉
d𝑡 =   −𝐼!"#$ 𝑉 − 𝐼!" 𝑉,𝑚, ℎ − 𝐼! 𝑉,𝑛 − 𝐼!"# 𝑉,𝐶𝑎 − 𝐼!"!! 𝑉, ℎ!"!!

− 𝐼!"# 𝑉, 𝑠!… 𝑠! − 𝐼!"#p 𝑁𝑎  

where 

d𝑥
d𝑡 = 𝑥! 𝑉 − 𝑥 𝑇! 𝑉  

d𝑠
d𝑡 = 1− 𝑠 𝑠! 𝑉 − 𝑘!𝑠 𝑇! 

d𝐶𝑎
d𝑡 = ε s!

!

!!!

∙ 𝑘!"#$% − 𝑘!" 𝐶𝑎 − 𝐶𝑎!  

d𝑁𝑎
d𝑡 = α(−𝐼!"# 𝑉,𝐶𝑎 − 𝐼!"#! 𝑁𝑎 ) 

describe the evolution of the state variables, for each 𝑥 ∈ 𝑚, ℎ,𝑛, ℎ!"!! .   

Membrane currents are described with chord-conductance equations, in some 

cases modified for Ca2+ or Na+ gating (ICAN and Ipump) (Li et al., 1996):  

𝐼!"#$ 𝑉 = 𝑔!"#$ 𝑉 − 𝐸!  

𝐼!" 𝑉,𝑚, ℎ = 𝑔!"𝑚!ℎ 𝑉 − 𝐸!"  

𝐼!"!! 𝑉, ℎ!"!! = 𝑔!"!!𝑚!"!!!ℎN!!! 𝑉 − 𝐸!"  

𝐼! 𝑉,𝑛 = 𝑔!𝑛! 𝑉 − 𝐸!  

𝐼!"# 𝑉,𝐶𝑎 = 𝑔!"# (𝑉 − 𝐸!"#) (1+ exp  ((𝐶𝑎 − 𝑘!"#) σ!"#)) 

𝐼!"# 𝑉, 𝑠!… 𝑠! = 𝑔!"# 𝑠!(𝑉 − 𝐸!"#)
!

!!!

 

where N is the number of presynaptic neurons and 𝑠!… 𝑠!  is the set of 

presynaptic gating variables s, and  𝐼!"#! 𝑁𝑎 = 𝑟!"#!(𝜙 𝑁𝑎 − 𝜙 𝑁𝑎! ). 
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The remaining functions in the model, including those representing the voltage-

dependence of channel kinetics, are:  

𝑥! 𝑉 = 1 1+ exp
𝑉 − θ!
σ!

 

𝑇! 𝑉 = 𝑇!!"# cosh
𝑉 − θ!
2σ!

 

𝜙 𝑁𝑎 = 𝑁𝑎! (𝑁𝑎! + 𝑘!"! ) 

Model parameters are set to the following values, unless otherwise specified:  

𝐶 = 45  𝑝𝐹,𝑔!"#$ = 3± 0.78  𝑛𝑆,𝐸! = −61.46  𝑚𝑉,𝑔!" = 150  𝑛𝑆,𝐸!" = 65  𝑚𝑉, 

𝑔!"–! = 1  𝑛𝑆,𝑔! = 30  𝑛𝑆,      𝐸! = −75  𝑚𝑉,𝑔!"# = 4± 0.75  𝑛𝑆,𝐸!"# = 0  𝑚𝑉,     

    𝜃! = −36  𝑚𝑉,𝜎! = −8.5  𝑚𝑉,𝑇!!"# = 1  𝑚𝑠,𝜃! = −30  𝑚𝑉,𝜎! = 5  𝑚𝑉, 

  𝜃! = −30  𝑚𝑉,𝜎! = −5  𝑚𝑉,𝑇!!"# = 30  𝑚𝑠,𝜃! = 15  𝑚𝑉,𝜎! = −3  𝑚𝑉,𝑇! = 15  𝑚𝑠, 

𝜃!!"!! = −40  𝑚𝑉,𝜎!!"!! = −6  𝑚𝑉,𝜃!!"–! = −48  𝑚𝑉,𝜎!!"!! = 6  𝑚𝑉,   

  𝑇!"–! = 1000  𝑚𝑠, 𝑘!" = 22.5  𝑚𝑠!!,𝜃!"# = 0.9  𝜇𝑀,𝜎!"# = −0.05  𝜇𝑀, 𝑘! = 1,   

𝑘!"#$% = 1200  𝜇𝑀 ∙𝑚𝑠!!, 𝑟!"#! = 200  𝑝𝐴, 𝑘!" = 10  𝑚𝑀,𝐶𝑎! = 0.05  𝜇𝑀, 

𝜀 = 0.0007,𝛼 = 6.6×10!!  𝑚𝑀 ∙ 𝑝𝐴!! ∙𝑚𝑠!!,𝑔!"# = 3.25  𝑛𝑆,𝐸!"# = 0  𝑚𝑉, 

𝑇!!"# = 15  𝑚𝑠,𝑁𝑎! = 5  𝑚𝑀. 

Synaptic inputs and Calcium dynamics  

Synaptically triggered increases in cytosolic Ca2+ directly activate ICAN. We 

coupled the synaptic variable s to the Ca2+ equation. The synaptic variable s 

represents both ionotropic and metabotropic glutamatergic receptor (mGluR) 

activation. Cytosolic Ca2+ changes are attributable to influx through voltage-gated 

Ca2+ channels evoked by AMPA receptor-mediated depolarization as well as 

group I mGluRs that evoke intracellular Ca2+ release from stores in the 
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endoplasmic reticulum (Pace et al., 2007a; Pace and Del Negro, 2008). Rather 

than explicitly model the biophysics and intracellular signaling that elevate 

intracellular Ca2+, we abstracted the process such that when a presynaptic 

neuron discharges an action potential, its corresponding synaptic gating variable 

s increments, which then raises intracellular Ca2+ in all the postsynaptic neurons 

to which it projects. The parameter kIP3 governs how much Ca2+ increases per 

unit increment in synaptic gating variable s. Variable s also appears in the chord-

conductance equation for Isyn, where it controls AMPA receptor gating.  

Parameters 

The model maintains rhythmic function over substantial variation in 

𝑔!"#,  𝑔!"!!,  𝑘!"!,  𝑔!"#,  𝑟!"#!, and 𝑘!" from nominal baseline values when 𝐼!"#! 

is present. Initial values for the membrane potential and gating variables were set 

constant. The parameters 𝑔!"# and 𝑔!"#$ were randomly assigned from Gaussian 

distributions given the average and standard deviation listed above. Then, 

𝑔!"#was normalized by the in-degree of each neuron so that the maximum 

synaptic conductance was equal in all constituent neurons.  

1.2.2 Network simulations  
We modeled the preBötC as a directed network because excitatory chemical 

synapses, rather than gap junctions, are central to its rhythmic function (Greer et 

al., 1991; Funk et al., 1993; Rekling et al., 2000; Wallén-Mackenzie et al., 2006). 

Having no empirical information about network topology, we applied a directed 

Erdős-Rényi random graph (Newman et al., 2001) as the underlying model of 

preBötC network structure.  
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Erdős-Rényi random networks were generated via two parameters, the network 

size n and connection probability p. We denote the underlying graphs as G(n,p) 

(Gilbert, 1959). Population size was fixed at n = 330 Dbx1 neurons (Hayes et al., 

2012; Wang et al., 2014). Excitatory chemical synapses were reported in 13% of 

paired whole-cell patch-clamp recordings from putatively rhythm-generating 

preBötC neurons in mouse slices (Rekling et al., 2000), and thus we used p = 

0.125.  

We simulated the network models on a computer cluster that features 193 nodes 

with a total of 943 CPU (central processing unit) cores, 5.9 terabytes of physical 

memory, 220 terabytes of disk capacity, and peak performance of 21.2 teraflops. 

We used a Runge-Kutta fourth-order numerical integration routine with fixed time 

step of 0.25 ms. Network models were subjected to 100 random deletions 

because a tally of less than 100 Dbx1 neuron laser ablations was experimentally 

demonstrated to silence spontaneous respiratory rhythm in an experimental slice 

model of breathing (Wang et al., 2014). For simulations, one neuron was deleted 

every 25 sec (simulated time). Neuron deletions were achieved by setting the 

synaptic state variable and its corresponding differential equation to zero, thereby 

disconnecting the cell from the remaining network.  

A running time spike histogram provided a convenient measure of ensemble 

network activity, akin to the experimental recording of respiratory-related 

hypoglossal nerve (XII) root discharge in vitro (Smith et al., 1991; Funk and 

Greer, 2013). The histogram counted the number of spikes per 10-ms bin, where 
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bins were contiguous for the duration of the simulation. Neurons no longer 

contributed to the running time spike histogram after ablation.  

Transient glutamatergic stimulation of constituent model neurons mimicked a 

holographic glutamate un-caging protocol applied to preBötC neurons (Kam et al., 

2013a). Focal stimulation was achieved by setting the synaptic state variable to 

0.6 for 200 ms, without modifying the differential equation, leading to an 

exponential relaxation of glutamatergic excitation.  

1.2.3 Static network (topological) analysis 
The connectivity of a network is reported by the entries in its adjacency matrix A, 

where Aij = 1 if and only if there is a directed link (synaptic connection) from 

neuron i to neuron j; otherwise, Aij = 0. In discrete simulations that examine only 

the topological structure of the underlying graph G(n,p), without considering the 

dynamics of nodes and links (i.e., neurons and synapses), ablations were 

modeled by removing nodes from the network along with their links. We 

computed three global metrics (K-core, number of strongly connected 

components, as well as the average in/out degree) at the initial state of the 

network and for its corresponding state after each one of a sequence of 100 

random deletions were performed. Also, for each deleted node, we computed 

four local metrics (local cluster coefficient, closeness centrality, betweenness 

centrality, and communicability centrality) to indicate the importance of the node 

that was (in each case) removed from the network.  
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Local cluster coefficient  
Local cluster coefficients measure how close the neighbors of the node are to 

being a complete directed graph, i.e., a graph where each node is connected to 

every other node. For a node vi with ki links, the local cluster coefficient is defined 

as 

𝐶! =
𝐴!": 𝑣! , 𝑣! ∈ 𝑁! ,𝐴!" = 1

𝑘!(𝑘! − 1)
 

where Ni is the neighborhood of vi, (the sub-graph formed by all the nodes vi 

connects to, that is, all the out-neighbors of vi) (Watts and Strogatz, 1998). The 

numerator is the number of actual connections within Ni while the denominator is 

the number of connections if Ni is a complete directed graph.  

Closeness centrality  
The farness of node vi is defined as the sum of the lengths of shortest paths from 

vi to every other node reachable by vi along directed paths in the network. 

Closeness of vi is the reciprocal of the farness and closeness centrality is simply 

the product of closeness and the total number of nodes n (Sabidussi, 1966).  

Betweenness centrality  

It measures the frequency that a node acts as a bridge in the shortest path 

between two other nodes, according to the following formula:  

𝐶! 𝑣 =
𝜎!"(𝑣)
𝜎!"!!!!!

 

where s, v, and t are three different nodes in the graph G(n,p) such that s and t 

are connected, 𝜎!"(𝑣) is the number of shortest paths between s and t through v, 

while 𝜎!" is the total number of shortest paths between s and t (Newman, 2005). 
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Betweenness centrality is usually normalized by dividing by the number of total 

possible node pairs (n–1)(n–2) (excluding v). 

Strongly connected components (SCC)  

The strongly connected components of a directed graph G(n,p) are sub-graphs in 

which there is a path – in both directions – from each node to every other node 

(Diestel, 2010). Therefore the number of SCC can exceed unity or be zero. When 

SCC = 1 the existing network is said to be fully connected, i.e., there are no 

isolated islands and every node can connect to every other node via a finite 

number of directed links. 

K-core  

It refers to the maximum sub-graph whose constituent nodes have at least k links 

(connections), where an incoming synaptic connection and an outgoing synaptic 

projection are equivalent in terms of counting links. Here we use the size of the 

K-core as a network metric. 

Average in and out degree  
Network connectivity of a directed graph G(n,p) is represented by the entries in 

its adjacency matrix A(n x n). The sum of the ith row 𝑑!out = 𝐴!"!
!!!  is the out-

degree of the ith node while the sum of the ith column 𝑑!in = 𝐴!"!
!!!  is the in-

degree for the ith node. Thus, the average in- and out-degree are given by 

!
!

𝑑!in!
!!!  and !

!
𝑑!out!

!!! , respectively. 
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1.2.4 Active sub-network analysis 
In order to explore the interaction between network structure and neuronal 

dynamics, we examine network topology at various time points during 

simulations by taking a snap shot of the network and analyzing the states of the 

neurons and synaptic interconnections (directed links). If a structural connection 

from neuron i to j (i.e., Aij = 1) exists but the excitability of presynaptic neuron is 

below some activity threshold then ostensibly the connection is nullified because 

it has no postsynaptic impact. We define the sub-network that considers only 

active synapses to be the functionally active sub-network, thereby modifying the 

actual network structure according to physiological dynamics.  

Synaptic excitation evokes the inward current ICAN, which influences burst 

generation in the Rubin-Hayes model. The model also includes inward currents 

INaP and Isyn. We examined active sub-networks based on ICAN, INaP, Isyn, and s 

(which gates Isyn and, indirectly, ICAN).  

Each simulation consists of N bursts before rhythm cessation, with peak times (tx) 

of the inspiratory-like bursts (t1, t2, … , tN) and the periods (Tx) between them (T1, 

T2, … , TN-1). We define an analytic window equal to min  (𝑇!!!,𝑇!), where 

𝑥 ∈ 2,𝑁 − 1 , centered at tx. The last time window equals TN-1, centered at tN. 

For each neuron at each time step we compute the average ICAN (in units of pA) 

over the corresponding analytic window for each burst cycle. Although peak ICAN 

transiently reaches 9-15 nA, the average ICAN over the duration of the analytic 

window is much smaller, ranging from 0-10 pA. Then, we identify subsets of 

neurons whose ICAN exceeds a series of arbitrary equidistant thresholds (-2 pA, -

2.25 pA, … , -5.5 pA) within that time window, which we define as the active sub-



 12 

network. At any given level set for ICAN thresholds, we sorted neurons according 

to their appearance (or absence) in the active sub-network. By varying the 

thresholds systematically, we rank-ordered the neurons according to the 

frequency of their appearance in the active sub-network. Then, we selectively 

ablated neurons in the sequence of their active sub-network rank order.  

1.3 RESULTS 
We simulated the preBötC using networks of Rubin-Hayes model neurons whose 

underlying connectivity was described by Erdős-Rényi random graphs G(n,p) 

with network size n = 330 and synaptic connection probability p = 0.125. We 

determined these values after searching (n,p) parameter space for rhythmic 

networks whose behavior matched the respiratory rhythm in slice preparations 

(Rekling et al., 2000; Hayes et al., 2012; Wang et al., 2014). EL and gNaP were 

fixed at -61.46 mV and 1 nS, respectively, because these parameters are 

physiologically realistic and within the operating range of the original Rubin-

Hayes model (Rubin et al., 2009) as well as the modified version that includes 

INaP (Dunmyre et al., 2011). At the start of each simulation (given n, p, EL, and 

gNaP as described above) the networks were spontaneously rhythmic but 

sequentially deleting random constituent neurons slowed and then irreversibly 

stopped the rhythm. The cumulative tally to stop the rhythm was 39.1 ± 13.2 

(mean ± SD), which represents 11.8% of the network (n=15 simulations).  

The above tally underestimates the experimental tally by about half, 85 ± 20. 

Although we proposed that premotor neurons in the preBötC, which the model 

lacks, could explain – at least in part – this model-experiment disparity (Wang et 
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al., 2014), we did not previously investigate whether the excitability parameter EL 

or the conductance gNaP influenced the ablation tally. To do so here, we first 

tested how EL and gNaP influence network behavior. Using the same network 

realization, i.e., the same underlying G(n,p) structure, we simulated networks 

with EL spanning from -60.6 mV to -62.5 mV (EL outside this range is not 

physiologically realistic) and gNaP spanning from1 nS to 1.5 nS (gNaP < 1 nS is not 

physiologically realistic). Simulations ran for 30 s absent neuron deletions to 

quantify network rhythmicity (Figure 1.1, blocks are color-coded for cycle period). 

Lowering either EL or gNaP slows down the rhythm, such that for some (EL, gNaP) 

pairs the rhythm stops (black squares in Figure 1.1) whereas elevating EL or gNaP 

has the opposite effect (it speeds up the rhythm) such that for some (EL, gNaP) 

pairs the cycle period is ~1 s (red squares in Figure 1.1). Networks along the 

orange diagonal reflect (EL, gNaP) sets whose networks produce experimentally 

reasonable cycle periods of 3.5-5 sec. The ablation tally did not vary 

systematically along this diagonal (30.9 ± 6.3, mean ± standard deviation, n=10) 

when the network was subjected to the same neuron deletion sequence. 

However, cumulative ablation experiments performed on networks to the right of 

this diagonal resulted in much faster cycle periods (~1 s) and notably higher 

ablation tallies (red squares with ablation tallies in Figure 1.1).  

These results indicate that the ablation tally depends on the initial cycle period 

such that the initial period could be treated as a proxy for the network robustness. 

Furthermore, these results indicate that (EL, gNaP) combinations that yield 

networks with cycle period in the range 3.5-5 sec are equally sensitive to 
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cumulative cellular ablation. Therefore, we used EL = -61.46 mV and gNaP = 1 nS 

for the remainder of the study. 

 

Figure 1.1. Networks of Dbx1 preBötC neurons with various EL and gNaP. Blocks show 

the mean cycle period according to the colorimetric scale (right) for one 30-sec 

simulation on the same network realization without any neuron deletions of each (EL, 

gNaP) pair. Ablation tallies on representative parameter sets are indicated on 

corresponding blocks. 

1.3.1 Network connectivity analysis 
Previously, we reported canonical local and global measures of topology for the 

underlying graph G(n,p) at the start of a simulation and after piecewise cellular 

deletions stopped the rhythm (see Supplementary file 2 in Wang et al., 2014). 

Here, we provide more detail by tracking the state of network topology as a 

function of cumulative percent of total ablations (Figure 1.2). During progressive 

ablation sequences, there were no major changes in measures of local 
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connectivity, i.e., local metrics, such as local cluster coefficient (LCC), closeness 

centrality (CC), and betweenness centrality (BC). A network is strongly 

connected if a directed path exists between any two constituent nodes, which 

can be quantified by the number of strongly connected components (SCC).  

           



 16 

Figure 1.2. Cumulative cellular ablations in the model preBötC network. Running 

time spike histogram (top, red) and plots of rhythmic burst frequency and six 

discrete network metrics (global and local). The simulated experiment where a total 

of 100 neurons were deleted (one per 25 simulated sec) in sequence was repeated 

15 times. The running time spike histogram is shown for one representative 

simulation. The top trace shows inspiratory-like burst frequency (Hz) for all 15 

simulations. The abscissa (percent of total cellular ablations) is the same for 

frequency and all discrete network metrics. Local cluster coefficient (LCC), 

closeness centrality (CC), and betweenness centrality (BC) are plotted for each 

neuron in the deletion sequence. The number of strongly connected components 

(SCC), K-core and in-degree are plotted for neurons in the remaining network 

during the ablation sequence. Blue symbols show the average metric (for 15 

simulations) during the deletion sequence; these quantities were no longer 

computed after the 100th ablation. Red symbols show the scattered data points for 

all individual 15 simulations.  

Cumulative deletion sequences at no point caused SCC to depart from unity (a 

fully connected graph). Other global connectivity metrics such as the K-core and 

the average in-degree showed linear declines. Whereas network burst frequency 

declined to zero in each simulation, K-core remained above 12 and the average 

in-degree remained above 28. These data indicate that the model networks 

remain fully connected for the entire duration of cumulative cellular ablation 

simulations that invariably stop rhythmic function. The linear drop in average in-

degree and K-core are logical effects due to cumulative neuron deletions from 

the network. However, we are unable to fully identify their dynamical effects 

unless we consider the loss of network structure in tandem with the neuronal 

dynamics. 
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1.3.2 Active sub-network analysis 
Next we addressed how cumulative ablations affect network excitability, which 

encompasses a range of cellular and synaptic factors. Network burst output, 

which was quantified by the running time spike histogram (Figure 1.3, red traces), 

did not decline during the ablation sequence. Figure 1.3 shows three individual 

bursts, including the final one, with faster sweep speed to emphasize their 

similarity. Likewise, there was not systematic drop in baseline membrane 

potential, as quantified by the average voltage trace for all constituent neurons in 

the remaining network, and shown for three representative cells (Figure 1.3, 

black traces).  

Because the topology of the underlying graph G(n,p) remained strongly 

connected (Figure 1.2) and network burst output did not decline (Figure 1.3), we 

sought a more fine-grained analysis to identify how cumulative cellular ablations 

changed the system such that it stopped its autonomous rhythmic function. To 

begin we exploited an obvious property of the nervous system: neurons may 

share a synaptic connection, but unless the presynaptic partner is spiking and 

excitatory postsynaptic potentials (EPSPs) are registered in the postsynaptic 

partner, then their connection is not active. Conversely, an active synaptic 

connection features a presynaptic neuron whose spikes trigger EPSPs in the 

postsynaptic partner. Thus we analyzed active sub-networks consisting of 

synaptically engaged partners as defined above. 
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Figure 1.3. Model network bursts do not diminish during ablations sequences. 

Running time spike histogram (top, red) for one experiment. Time calibration (1 min) is 

displayed. a, The fifth network-wide burst. b, A network-wide burst after 21 deletions. c, 

The last network-wide burst after 31 deletions. The running time spike histogram 

(vertical calibration 10 spikes/ms) and average membrane potential (VM, vertical 

calibration 20 mV) for all remaining neurons in the network for network-wide bursts (a, 

b, and c) are shown at higher sweep speed. Cells 190, 42 and 271 from the model 

system are shown individually. Baseline membrane potential (–60 mV) and time 

calibration (1 sec) apply to all traces.  
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For this analysis, spike generation indicated presynaptic activity, with 

corresponding postsynaptic activity was gauged by four different metrics related 

to ICAN, INaP, Isyn, and state variable s.  

ICAN was formulated as a synaptically triggered inward current based on 

experimental evidence (Crowder et al., 2007; Pace et al., 2007a; Mironov, 2008, 

2013; Pace and Del Negro, 2008; Rubin et al., 2009; Mironov and Skorova, 

2011). Its activation depends proximally on cytosolic Ca2+, which rises due to 

synaptic drive from presynaptic partners. Once activated, ICAN generates 

postsynaptic bursts. Therefore ICAN is a cellular parameter whose magnitude 

depends both on the number of presynaptic partners and their activity (topology 

and dynamics). Taking the average value of ICAN for each neuron over an analytic 

time window centered at the peak of each inspiratory burst (see Methods for full 

definition), we generated a time series of active sub-network snapshots spanning 

the simulation. All the constituent neurons whose average ICAN exceeded some 

threshold value comprised the active sub-network. Figure 1.4A plots the size of 

the ICAN active sub-network for five different thresholds (-2, -3, -3.5, -4, and -5 pA) 

during the course of one representative simulation.  

Note, ICAN may transiently exceed 9 nA, but its average over the entire analytic 

window is much lower; thus threshold is one thousand-fold less than peak ICAN. 

Cumulative cell ablation caused the ICAN active sub-network size to fluctuate and 

progressively diminish until the rhythm stopped. ICAN active sub-network size 

often locked onto a particular value, and remained there despite ongoing cellular 

ablations, then fluctuated between levels, before finally locking onto a new 
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smaller size. Although not illustrated in Figure 1.4, each decrement of the ICAN 

active sub-network size was accompanied by a corresponding decrease in burst 

frequency (further explained below and in Figure 1.5).  

We further analyzed active sub-networks based on INaP, Isyn, and s using the 

same network realization and cell-deletion sequence. A range of threshold values 

for INaP, Isyn, and s were used to compute active sub-network size (Figure 1.4B-D).  

INaP transiently reaches several hundred picoamperes but its average over the 

analysis window is much lower. We used a threshold range from ~0 to -8.0 pA (-2, 

-2.75, -3.5, -4.25, and -4.75 pA are shown in Figure 1.4B). Regardless of 

threshold, the INaP active sub-network size declined linearly without precipitous 

changes during the ablation sequence. These results suggest that INaP is not 

diagnostic for a breakdown in network function.  

Isyn also transiently measures over one hundred picoamperes but its average 

over the analysis window is much lower. We used a threshold range from -0.25 

to -1.2 pA (Figure 1.4C shows -0.25, -0.4, -0.5, -0.6, and -0.8 pA because larger 

thresholds produced active sub-networks of size zero). Isyn active sub-network 

size showed step-wise increases for intermediate thresholds with more noise 

compared to the ICAN active sub-network. These increases occurred at 

approximately the same time points where the ICAN active sub-network decreased 

in size, which suggest that deficits in ICAN (and the ICAN active sub-network) 

caused by cell ablation are partially compensated by ionotropic synaptic current 

Isyn (and the Isyn active sub-network).  
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Figure 1.4. Active sub-network properties for a sequence of inspiratory-like bursts 

given different ICAN thresholds. A, Active sub-network size (number of neurons) for five 

representative ICAN thresholds (indicated above each trace) plotted versus sequential 

burst indices (1-213) for one simulation. Color represents different threshold values. 

Arrows indicate deletions 0, 4, 10, and 20. B, Active sub-network size (number of 

neurons) for five representative INaP thresholds (indicated above each trace) plotted 

versus sequential burst indices (1-213) for one simulation. C, Active sub-network size 

(number of neurons) for five representative Isyn thresholds (indicated above each trace) 

plotted versus sequential burst indices (1-213) for one simulation. D, Active sub-

network size (number of neurons) for five representative s thresholds (indicated above 

each trace) plotted versus sequential burst indices (1-213) for one simulation. 

In the case of the synaptic gating variable s (all thresholds on the unitless interval 

[0,1]), no network degradation was seen for any threshold. Only a slight increase 

was shown when the network-wide rhythm was approaching the rhythm 

termination. These results suggest that s is not diagnostic for a breakdown in 

network function. 

It may seem counterintuitive that the network burst output did not change during 

the ablation sequence (Figure 1.3, red traces) while the ICAN active sub-network 

size decreased stepwise (Figures 1.4A and 1.5, as well as n=6 simulations 

shown in Figure 1.6). Although the average ICAN declined during the sequence, 

network burst output remained stable because ICAN has a biphasic influence on 

the ability to generate action potentials; intra-burst spiking decreases when ICAN 

is too low or too high. ICAN generally ensures that inspiratory bursts remain more 

robust and larger in magnitude than is needed to sustain rhythmogenesis, q.v., 

(Kam et al., 2013b). However, the ability of ICAN to enhance burst magnitude 
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causes depolarization block of spiking when its magnitude is large, which cuts 

down on the number of spikes per burst (Rubin et al., 2009) (also see example 

cells in Figure 1.3). Thus, as the average ICAN decreases during the cumulative 

cell ablation sequence, neurons with low gCAN decrease burst amplitude and 

generate fewer intra-burst spikes, whereas other neurons with larger gCAN 

generate more intra-burst spikes because the ability of ICAN to cause 

depolarization block of spiking is reduced during the course of the ablation 

sequence. As a result, the network burst output – as quantified by the running 

time spike histogram – does not decline.  

To further investigate the properties of the ICAN active sub-network during 

constituent neuron deletions, we repeatedly simulated the exact same network 

realization (same as Figure 1.4, starting from the same initial conditions) but we 

stopped the deletion sequence after 0, 4, 10, and 20 ablations and then 

continued the simulation for 1025 s to observe steady-state behavior. Figure 1.5 

shows Poincaré maps of instantaneous burst frequency (left column) and ICAN 

active sub-network size (right column) with a corresponding time series of 

network activity (insets). Points in the Poincaré maps are color-coded according 

to elapsed time in the series. 

Under the circumstance of no neuron deletions (Figure 1.5A), instantaneous 

frequency and ICAN active sub-network size remain tightly clustered, which shows 

the dynamics of the network fluctuating around a limit cycle. A representative 

sample shows a point at 0.308 Hz burst frequency, where the active sub-network 

size measures 140.  
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Figure 1.5. Poincaré maps of instantaneous burst frequency and active sub-network 

size. Each panel shows the map for frequency or active sub-network size for the cycle 

i+1 plotted versus the prior cycle (i). Frequency maps are at left (black to yellow). 

Active sub-network size maps are at right (cyan to magenta). Each Poincaré map 

features an inset of the time series, where temporal relations are color coded to points 

in the map. Vertical calibrations are given in panel (A). A, Poincaré maps without any 

neuron deletions. B, C, and D show the same information for the same network 

realization as (A) where the ablation tally was frozen after 4, 10, or 20 ablations 

respectively.  

That steady state is impaired after only four deletions. The ICAN active sub-

network then alternates between the former steady state and a new lower state 

with representative instantaneous frequency of 0.247 Hz and active sub-network 

size of 67 (Figure 1.5B). The Poincaré map shows that these two states are 

repeatedly visited throughout the simulation (note the spread of color coding in 

the Poincaré map for the corresponding time series). 

When six more neurons are deleted (for a total of 10), the network completes its 

transition to the (0.247 Hz, 67) low state (Figure 1.5C), and the Poincaré map 

homes in on the lower state that first appeared in the 4-deletion case (note the 

yellow and magenta points are concentrated at the low state).  

This steady state (0.247 Hz, 67) remains the sole periodic attractor for the 

system despite subsequent cellular ablations 11-19. Nevertheless, another 

transition occurs after a total of 20 neurons are deleted, leading to a new steady 

state with representative instantaneous frequency of 0.223 Hz and an active sub-

network of 39 neurons (Figure 1.5D).  
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Figure 1.6. Group data for instantaneous frequency and active sub-network size. 

Instantaneous frequency (Hz) and active sub-network size (number of neurons) at 

threshold θ7 = –3.5 pA are plotted for cumulative neuron deletion simulations on six 

different network realizations. Black traces show instantaneous frequency (Hz); red 

traces show active sub-network size (number of neurons) for each cycle period, 

plotted versus the percentage of total cellular ablations (%).  

These analyses demonstrate that cumulative deletions diminish the ICAN active 

sub-network size in tandem with instantaneous frequency via state-flickering and 

step-like transitions. This dynamical behavior observed when passing through 

critical thresholds is seen in many other systems, from ecosystems to financial 
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markets (Scheffer et al., 2009) but our system shows a more complicated 

pathway with the state-flickering and discrete transitions. Figure 1.6 shows six 

different network realizations to illustrate that step-like decreases in the active 

sub-network size and frequency characterize how the system generally behaves 

in response to cumulative cellular ablation.  

1.3.3 Role of ICAN in model network bursts 
ICAN generates inspiratory bursts in the Rubin-Hayes model. Therefore, it is 

straightforward to predict that neurons with greater ICAN, which appear more 

frequently in the active sub-network, play a more important role in 

rhythmogenesis. We ordered the neurons according to average ICAN, which was 

correlated with in-degree, the number of presynaptic partners (Figure 1.7A). 

Large in-degree did not represent a greater overall synaptic conductance 

because gsyn was scaled according to total number of inputs, i.e., the product of 

in-degree and gsyn was uniform among neurons (see Methods). To test whether 

neurons with larger ICAN were more important for rhythmogenesis, we ablated 

neurons according to ICAN ordering (instead of randomly). Figure 1.7B shows 

eight cumulative-ablation simulations (eight different network realizations, eight 

random deletion sequences, n=8) in which targeting neurons high in the ICAN 

ordering systematically decreased the ablation tally (black triangles, 20±7) 

required to stop the rhythm compared to random deletions (cyan circles, 32±9). 

Conversely, targeting neurons low in the ICAN ordering systematically raised the 

ablation tally (magenta X’s, 46±17) to stop the rhythm. A standard one-way 

ANOVA showed that there was a statistically significant effect (∝  = 0.05)  of 
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targeting condition on mean ablation tally (F = 9.1723, p = 0.0014). Post hoc 

comparisons using the Tukey HSD test indicated that the mean ablation tally for 

the higher ICAN ordering was significantly different than the lower ICAN ordering 

(mean difference = 25.375, SD = 14.9467, p = 0.0009). However, the ablation 

tallies of random deletion sequences did not significantly differ from the higher 

ICAN ordering (mean difference = 11.75, SD = 14.9467, p = 0.1415). We interpret 

these data to indicate that the neurons with higher ICAN tend to play a more 

important role, and that deleting such neurons damages the overall ability to 

spontaneously generate network bursts. Conversely, neurons with lower ICAN play 

a less crucial rhythmogenic role, and their selective ablation causes less 

deleterious network effects.  

 

Figure 1.7. In-degree correlates with normalized ICAN ordering and targeted ablation 

tallies. A, Linear regression between in-degree (unitless) and normalized ICAN ordering 

among neurons in the same network. ICAN order was computed based on the maximum 

number of appearances in the active sub-network given 15 different thresholds. Blue 

symbols show the scattered distribution of in-degrees and normalized ICAN ordering. 



 29 

Linear fit is shown by a dotted line. B, Ablation tallies (number of neurons) for three 

deletion strategies on different network realizations (n=8). X-symbols mark the tally 

from eight different simulations where low ICAN-order neurons were selectively ablated. 

Triangles mark when high ICAN-order neurons were selectively ablated. Circles mark 

the tally for random neuron deletions (control default strategy).  

ICAN active sub-network analyses of targeted cumulative ablation simulations 

(Figure 1.7B, black triangles) were qualitatively identical to the active sub-

network analyses for random deletion simulations except for their lower tally (not 

shown). Furthermore, the global and local metrics for the underlying graph G(n,p) 

were also the same in targeted cumulative ablation simulations and were 

indistinguishable from the results in Figure 1.2 when plotted along the same 

abscissa (percent of total cellular ablations) which normalizes for the lower 

ablation tally in targeted cumulative ablation simulations. 

1.3.4 Recurrent excitation and pre-inspiratory latency 
To investigate recurrent excitation, we tracked each neuron from its quiescent 

post-burst baseline membrane potential until the peak of the subsequent 

inspiratory burst. Many neurons begin spiking prior to the inspiratory burst (e.g., 

Figure 1.3). Early activation during the pre-inspiratory phase (i.e., pre-inspiratory 

latency) has been hypothesized to be a key rhythmogenic property for 25 years 

(Smith et al., 1990; Rekling et al., 1996; Rekling and Feldman, 1998). Pre-

inspiratory latency depends overwhelmingly on input resistance; preBötC 

neurons with low gleak tend to spike early in their pre-inspiratory phases (Del 

Negro et al., 2002a; Koizumi and Smith, 2008).  
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Figure 1.8 shows constituent neurons sorted by pre-inspiratory latency for the 

same network realization as in Figures 1.3-1.5. Latency rank order (earliest 

activating neurons obtain lower rank) is plotted versus activation cycle time, i.e., 

when the first action potential occurs during the interburst interval. Latency for 

constituent neurons 1 to ~210 remains relatively fixed (Figure 1.8a, b-d lower 

panels). Individual network cycles are not identical (Carroll and Ramirez, 2013; 

Carroll et al., 2013; Kam et al., 2013b) but pre-inspiratory latency for a neuron 

generally remains within a few tens of ms from cycle to cycle. An early-spiking 

neuron does not convert to a late-spiking one, and vice versa. Interneurons low 

in the latency rank order (i.e., rank order 1-210) spike spontaneously and 

respond to synaptic input such that by cycle time ~4 s they are ostensibly all 

active (Figure 1.8a, b-d lower panels). However, before the network-wide burst 

occurs, all the remaining neurons (i.e., rank order >210) need to be recruited. 

The recruitment curve inflects upward as excitation spreads to the neurons with 

highest latency rank order. 

The network-wide burst occurs where the recruitment curve is vertical. 

Cumulative neuron deletions shift the inflection point of the recruitment curve to 

higher and higher latency rank order. Sample bursts at three different time points 

have their inflection points at neurons with latency rank order 213, 230, and 251, 

respectively (Figure 1.8a-c, top panels. Note, that the figure legend reports the 

time points and ablation tallies that correspond to Figure 1.8a-d). In the process, 

the time required for the network-wide burst to occur lengthens. This recruitment 
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process can last ~30 s or more for an extensively lesioned network (e.g., Figure 

1.8c top panel).  

Cumulative ablations ultimately preclude this final transition to the network-wide 

burst phase. For the 200 sec of network activity shown in Figure 1.8d 

interneurons whose latency rank order exceeds 251 never activate. 

 

Figure 1.8. Latency rank order of all constituent neurons in the network at four specific 

time points in a simulation. Upper panel (red) shows the running time spike histogram 

for a random neuron deletion simulation. a, b, and c indicate three cycles leading to 

network-wide bursts (at time points 16 s, 557 s, 814 s, respectively). d indicates the 

time after the last burst. The middle panel shows the latency rank order (defined in 
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Results) for cycles a, b, and c and after rhythm termination (d) plotted versus cycle 

time (in units of s). The dotted line indicates latency rank order (unitless) of the neuron 

after which the curve inflects upward, leading to a network-wide burst. The lower panel 

shows the same data as the middle panel but where cycle time is limited to 0-4 s, 

emphasizing the similarity of b, c, and d. 

1.3.5 Rate of recurrent excitation 
Cumulative neuron ablation impairs recurrent excitation. To measure this deficit 

we defined the rate of recurrent excitation during the interburst interval to be the 

number of neurons that emerge from quiescence and spike per ms. Note that a 

constituent neuron may spike during the interburst interval but then fall quiescent 

again, and in that case would not be double counted in our analysis (only the first 

spike matters). This definition enabled us to measure the speed of propagation of 

activity throughout the network. We computed the rate of recurrent excitation 

while the network was still functional, as well as after rhythm cessation by 

applying a transient stimulus. Whenever the rate of recurrent excitation exceeded 

1 neuron/ms a network-wide burst occurred, even when the interburst interval 

was long. However, if the rate of recurrent excitation did not reach 1 neuron/ms, 

then no network-wide burst could be spontaneously generated (Figure 1.9a-d, 

which correspond to Figure 1.8a-d). 

An experimental study showed that glutamate un-caging onto 4-9 preBötC 

neurons evokes inspiratory bursts when the network is quiescent (Kam et al., 

2013a), which we later replicated in network models (Wang et al., 2014). To test 

the hypothesis that a rate of recurrent excitation exceeding 1 neuron/ms evokes 

network-wide bursts, we computed the pre-inspiratory latency and rate of 
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recurrent excitation for a simulated un-caging experiment, using the network 

realization from Figure 1.8.  

 

Figure 1.9. Rate of recurrent excitation (neurons/ms) plotted at four specific time 

points in a simulation (same time points as in Figure 1.8). Dotted line in each panel 

indicates the threshold rate (1 neuron/ms); see text for details. 

The rhythm terminated after 32 ablations in that particular network realization. At 

975 s the ablated network was no longer spontaneously active (Figure 1.10A), 

yet simultaneously and transiently stimulating four neurons (the synaptic gating 

variable was raised to s = 0.6 for 200 ms) evoked a network-wide burst (Figure 
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1.10B), showing that the network was capable of generating an inspiratory burst, 

but not autonomously and without sustainable rhythmicity. 

 

Figure 1.10. Stimulation of four individual constituent neurons (which remain in the 

network after cumulative ablation stops rhythmicity) evokes a network-wide burst and 

accelerates the rate of recurrent excitation. Panel (B) differs from (A) only in that four 

neurons are transiently stimulated three simulated minutes after rhythm cessation (see 

Materials and Methods for details of stimulation). For the same network realization and 

random neuron deletion sequence as in Figures 1.8 and 1.9, A and B, Running time 

spike histogram (10 spks/ms) versus cycle time. Time calibration applies to both traces. 

At right, the rate of recurrent excitation (right,) is plotted versus cycle time (s), where 

the cycle time is re-initialized to zero immediately following the final network-wide burst. 

The dotted line indicates the threshold rate of 1 neuron/ms (also see Figure 1.9).  

1.4 DISCUSSION 
To understand the composition of the core inspiratory central pattern generator, 

studies performed in vivo selectively targeted neurokinin-1 receptor-expressing 
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rhythmogenic preBötC neurons for saporin poisoning, which resulted in a 

progressive cumulative lesion (Gray et al., 2001; McKay et al., 2005). The 

animals developed pathological and in some cases fatal breathing phenotypes 

over the course of several days, during which time saporin killed off a significant 

fraction of the rhythmogenic preBötC core. It is not possible to know how much of 

the preBötC was destroyed since neither the network size at the start of those 

studies, nor the total number of cells killed, was known.  

Subsequently, we developed a cell-specific detection and laser ablation 

methodology to interrogate preBötC network structure and function, as well as 

establish quantitative cellular parameters that govern its operation (Hayes et al., 

2012; Wang et al., 2013, 2014). We reported that cumulative destruction of 

85±20 (mean ± SD) interneurons derived from Dbx1-expressing precursors, 

corresponding to ~15% of the preBötC core population, slowed and then 

irreversibly stopped the respiratory rhythm. However, the experiments could not 

explain why it slowed down and stopped, so we sought an explanation via 

modeling. The model is experimentally well-founded. The Rubin-Hayes model 

(Rubin et al., 2009) as formulated subsequently by Dunmyre and colleagues 

(Dunmyre et al., 2011) serves as our preBötC interneuron. Network size (n) and 

connection probability (p) were determined empirically (Hayes et al., 2012; Wang 

et al., 2014). Parameters gNaP and EL were selected from a physiologically 

realistic range of values that yielded networks whose cycle period matched 

typical slice rhythms; varying these parameters to maintain the cycle period had 

no undue influence on ablation tally (see Figure 1.1). The Erdős-Rényi 
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configuration was chosen as a starting point. No existing data suggest that 

preBötC network structure conforms to either scale-free or small-world 

configurations, which are reasonable alternative paradigms (Watts and Strogatz, 

1998; Barabási and Albert, 1999; Newman, 2010). 

The model preBötC remains topologically strongly connected in response to 

cumulative ablation of its constituent neurons, as we determined by a suite of 

global and local metrics. To more deeply assess the effects of cumulative 

ablation we had to screen the network for measures of activity: if a presynaptic 

neuron is spiking and the postsynaptic neuron registers synaptic potentials 

(which can be monitored via ICAN, INaP, Isyn, or s) then these partners are 

ostensibly part of the active sub-network.  

These criteria enabled us to quantify how cumulative ablations degrade the size 

and rhythmic frequency of the system. Active sub-networks based on INaP, Isyn, or 

s did not reveal degradation of the core oscillator network during ablation 

sequences. The ICAN active sub-network, however, did degenerate progressively. 

Curiously, the ICAN active sub-network did not degrade smoothly but rather 

decreased in stepwise transitions. These step-like changes in frequency and size 

were novel and completely non-intuitive results in a respiratory network modeling 

study. Although each network realization is unique, step-like degradation of the 

ICAN active sub-network was a characteristic pattern that occurred in every 

simulated experiment. The steps occurred at unpredictable intervals such that 

stable periodic regimes could be maintained during several consecutive cellular 

ablations before another transition. These transitions often (but not always) 



 37 

exhibited bistability where the ICAN active sub-network alternated between two 

states, each having a characteristic active sub-network size and network-wide 

burst frequency. These results indicate that the core oscillator defends stable 

periodic regimes, and can do so over the course of sequential deletions (e.g., 

ablations 11-19, see Figure 1.4A). Nevertheless, as constituent cells are lost to 

ablation, the ICAN active sub-network gets progressively smaller and the rhythm 

slows down in tandem until spontaneous functionality is unsustainable.  

Based on previously published modeling results (Wang et al., 2014), this study 

provides a more complete explanation for rhythm cessation in the preBötC in 

response to cumulative neuron deletions. Additionally, we define and then 

analyze active sub-networks to discover that ICAN coupled with in-degree is an 

important factor to explain burst initiation and the sustainability of spontaneous 

rhythms. Finally, we discovered that the rate of recurrent excitation is the key 

factor for maintaining spontaneous rhythmogenic function in the network model. 

By rank ordering the neurons by pre-inspiratory latency, we found that cumulative 

neuron deletions would decelerate the process of recurrent excitation such that 

when the rate of recurrent excitation fails to achieve a threshold of 1 neuron/ms, 

then spontaneous rhythm and burst generation is precluded (further discussed 

below).  

1.4.1 Cellular factors for rhythmogenesis 
As a synaptically triggered inward current, ICAN manifests postsynaptic burst-

generating capacity. We ordered constituent neurons based on average ICAN 

magnitude, which positively correlated with in-degree. Constituent large in-
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degree neurons have a greater probability of synaptic inputs arriving 

synchronously, compared to lower in-degree neurons, which maximizes ICAN 

activation. In selective targeting experiments that preferentially ablated cells 

according to ICAN rank-order, rhythm cessation occurred at lower tallies, which 

verifies the importance of ICAN for rhythmogenesis in this model system.  

Inspiratory burst generation relies on ICAN in the Rubin-Hayes model (Rubin et al., 

2009), as well as in other contemporary models (Toporikova and Butera, 2011; 

Jasinski et al., 2013)  Experimental evidence shows that ICAN is expressed in 

preBötC neurons and contributes substantially to bursts (Crowder et al., 2007; 

Pace et al., 2007a; Mironov, 2008, 2013; Pace and Del Negro, 2008; Rubin et al., 

2009; Mironov and Skorova, 2011). Nevertheless, the importance of ICAN and 

burst generation has recently been challenged by an alternative mechanism 

based on less intense ‘burstlets’ that may reflect recurrent excitation at the 

network level in the absence of robust bursts and motor output (Kam et al., 

2013b). Our modeling framework could be correct – or correct in part – about 

recurrent excitation and network dynamics, while wrongly asserting the central 

importance of ICAN, but that remains to be evaluated. 

The other major cellular property that promotes network rhythmogenesis was 

gleaned from pre-inspiratory latency analysis. Constituent neurons with high 

input resistance (low gleak) are more sensitive to incoming synaptic inputs, which 

enhance graded potentials postsynaptically and lead to early spiking in the pre-

inspiratory phase. Therefore, these high input resistance neurons play a more 

important role than those with low input resistance in the process of recurrent 
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excitation. This conclusion has considerable experimental credibility (Del Negro 

et al., 2002a; Koizumi and Smith, 2008).  

We rank-ordered the constituent neurons according to pre-inspiratory latency and 

plotted latency rank order versus cycle time (Figure 1.8). The slope of this curve 

(its derivative) quantifies constituent neurons recruited per unit time, a measure 

of the rate of recurrent excitation (Figure 1.9). Whether spontaneously active, or 

evoked to burst via a transient stimulus, if the rate of recurrent excitation does 

not achieve 1 neuron/ms, then a network-wide burst cannot occur. Therefore, 

rhythm cessation reflects not destruction of network topology or diminution of 

excitability, but rather impediments in the ability of excitation to spread through 

network constituents and achieve a threshold recruitment rate, which here 

measured 1 neuron/ms.  

This threshold rate pertains to the model network assembled from Rubin-Hayes 

neurons according to parameters listed above (Materials and methods). The real 

system – or other models – may exhibit a slightly different threshold rate, but our 

analyses suggest that a particular threshold rate of recurrent excitation most 

likely exists and governs when spontaneous rhythms are sustainable in the 

preBötC whether studied in vivo, in vitro, or in silico. 

INaP is widely expressed in preBötC neurons. Here we set gNaP to 1 nS, which 

facilitates the richest set of dynamical behaviors in the Rubin-Hayes model 

(Dunmyre et al., 2011). INaP is a predominantly somatic current that facilitates 

high frequency intra-burst spiking which also underlies voltage-dependent 

bursting in preBötC neurons after synaptic isolation (Del Negro et al., 2002a, 
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2002b, 2005; Peña et al., 2004; Ptak et al., 2005). However, inspiratory synaptic 

drive appears to be largely mediated by convolved synaptic intrinsic currents and 

expressed on dendrites (Pace et al., 2007a; Mironov, 2008; Pace and Del Negro, 

2008; Del Negro et al., 2011). Synaptic integration does not appear to be 

boosted by INaP (Pace et al., 2007b; Koizumi and Smith, 2008). Elevating gNaP, 

while balancing EL to maintain slice-like cycle period in the network, did not 

systematically influence the ablation tally needed to cause rhythm cessation. 

Furthermore, INaP active sub-networks did not degrade in response to cumulative 

ablations (see Figure 1.4B). Therefore, in Erdős-Rényi-structured preBötC-like 

networks assembled from Rubin-Hayes interneuron models, we conclude that 

INaP does not play a specialized rhythmogenic role. Nevertheless, the role of INaP 

continues to be investigated at different stages of development, in different 

physiological states (e.g., hypoxia and hypercapnia), and in different model 

organisms (e.g., rats, mice, and hamsters, among others). 

1.4.2 Disparities between experiments and simulations 
In experiments we observed an exponential relaxation of the respiratory motor 

output amplitude in response to 10-15 cumulative Dbx1 neuron deletions (Wang 

et al., 2014). However, no such precipitous decrement in output amplitude 

occurred in simulations.  

Experimentally the amplitude of respiratory motor output is monitored via 

hypoglossal (XII) nerve discharge (Funk and Greer, 2013). Dbx1 preBötC 

neurons in some cases project to the XII nucleus and thus serve in a premotor 

capacity (Wang et al., 2014). Deleting such neurons experimentally would 
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presumably impair burst output amplitude without obligatory effects on burst 

frequency. In contrast, the amplitude in simulations is computed from the 

running-time spike histogram, which is based on the raster plot of preBötC 

rhythmogenic neurons. As explained earlier, ICAN has a biphasic influence on 

action potential generation. Intra-burst spiking decreases when ICAN is too low or 

too high. Therefore, as constituent neurons are deleted from the network and the 

overall ICAN decreases, spike output capability is enhanced in some neurons, 

while in others that capability is diminished; the net result is that network-wide 

intra-burst spiking is maintained in the model system despite cumulative cellular 

ablations. This model does not account for the premotor population. Here, each 

model neuron contributes equally to the rhythmic amplitude. We contend that a 

more complete simulation of the respiratory brainstem network, which accounts 

for an intercalated premotor population of Dbx1 neurons, will be necessary to 

fully replicate the experimental results, particularly the drop in amplitude in 

response to cumulative ablation (Wang et al., 2014).  

Experimentally, 85±20 constituent neuron deletions irreversibly terminated the 

respiratory rhythm (Wang et al., 2014), whereas the tally measured 39.1 ± 13.2 

(mean ± SD) in simulations. What can explain this disparity? 

We detected 705 Dbx1 neurons in the preBötC experimentally. Putative 

rhythmogenic neurons were identified by fluorescent protein expression despite 

the fact that Dbx1 derived neurons are not limited to the preBötC and that not all 

valid Dbx1 targets are respiratory (Bouvier et al., 2010; Gray et al., 2010; Picardo 

et al., 2013). In addition, a subset of Dbx1 preBötC neurons projects directly to 
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the XII motor nucleus and thus may consist of premotor rather than rhythm-

generating interneurons. Deleting these neurons is superfluous with regard to the 

tally of cellular ablations required to impair network functionality (Wang et al., 

2014). By contrast, our simulations assume that all constituent neurons in the 

model network are rhythmogenic; therefore, removing any one of them can 

diminish network functionality. The biphasic effect of ICAN on intra-burst spiking 

(see ‘Active sub-network analysis’ in Results) explains why the amplitude of 

inspiratory burst-related spiking does not decrease despite progressive 

decreases in the average magnitude of ICAN. 

Another possible reason for the disparity in the ablation tallies may pertain to 

discrepancies in network complexity. The actual topology of the Dbx1 interneuron 

network in the preBötC remains unknown. Our model is reasonably well 

configured based on empirical data but it may lack clustering effects among 

constituent neurons that, in the real system, would endow greater robustness 

and increase the ablation tally needed stop the rhythm. We used Erdős-Rényi 

graphs for network structure because it is the most generalized random network 

model without any additional assumptions on the intrinsic positional differences 

among neurons such as hubs or small-world properties. Thus, special network 

structures (e.g., hubs or small worlds) cannot explain rhythm cessation following 

cumulative cellular ablation.  

Even though the experimental and simulation tallies are different, we contend 

that the model may provide insights into why the real preBötC core oscillator 

ceases spontaneous function when subjected to piecewise disassembly in vivo 
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or in vitro. Cellular ablations do not destroy the structure of the underlying 

network (its constituent cells remain connected formally even after 30% of the 

network is removed), but rather hinder the rate at which neurons can recruit one 

another to start spiking in the interburst interval, i.e., the rate of recurrent 

excitation. For arrhythmic conditions, such as the in vitro model in its lesioned 

state, or the preBötC under pathological conditions in vivo (including saporin 

lesions or disease states leading to respiratory failure) our analyses suggest that 

restoration of network functionality may be possible if simultaneous activation of 

several units can be accomplished via exogenous stimulation or the strength of 

excitatory transmission among constituent neurons can be augmented. 
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CHAPTER 2. Functional interactions between mammalian 
respiratory rhythmogenic and premotor circuitry 

2.1 INTRODUCTION 
Inspiratory breathing movements emanate from neural activity in the 

preBötzinger complex (preBötC) (Smith et al., 1991; Feldman and Del Negro, 

2006; Feldman et al., 2013; Moore et al., 2013) as well as a network of premotor 

neurons that transforms inspiratory rhythm into a coordinated set of motor 

commands serving ventilation. Because our knowledge of the preBötC presently 

exceeds that of the premotor circuits, we employed experiments and modeling to 

advance understanding of how brainstem premotor neurons interconnect with the 

preBötC and influence inspiratory-related motor patterns. 

Interneurons whose progenitors express the homeodomain transcription factor 

Dbx1 (hereafter referred to as Dbx1 neurons) may comprise the rhythmogenic 

core of the preBötC (Bouvier et al., 2010; Gray et al., 2010; Picardo et al., 2013). 

Rhythms that originate in the preBötC drive a complement of respiratory muscles 

including the tongue protractor (genioglossus) that helps maintain airway patency 

during breathing behavior. Hypoglossal (XII) motoneurons in the dorsomedial 

medulla innervate these protractor muscles. XII premotor neurons, which convey 

inspiratory-related drive to XII motoneurons, have been identified in the 

intermediate reticular formation intercalated between the preBötC and the XII 

motor nucleus (Ono et al., 1994; Woch et al., 2000; Peever et al., 2002; Koizumi 

et al., 2008; Fregosi et al., 2011). Interestingly, Dbx1 neurons also situated in the 

intermediate reticular formation adjacent to preBötC constitute a significant set of 

XII premotor neurons (Wang et al., 2014; Revill et al., 2015). 
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Positing that Dbx1 preBötC neurons largely contribute to rhythmogenesis and 

Dbx1 reticular neurons primarily contribute to premotor drive transmission, we 

tested those roles experimentally in a rhythmically active slice model of breathing 

(Funk and Greer, 2013). We employed photonics to cumulatively destroy Dbx1 

preBötC neurons while monitoring rhythmic motor output in real time. After ~15 

ablations the magnitude of inspiratory motor output measured from the XII nerve 

root decreased by half; further ablations slowed spontaneous rhythmic frequency, 

which ceased after an ablation tally of 85 ± 20 (Wang et al., 2014). Later we 

adapted the technique to destroy Dbx1 neurons from the intermediate reticular 

formation, which decreased the magnitude of XII motor output linearly without 

affecting the frequency of the respiratory rhythm (Revill et al., 2015).  

The observations that ablations in the preBötC exerted an immediate and 

profound amplitude effect on XII motor output, whereas cumulative ablations in 

the reticular formation attenuated XII motor output in a graded manner, were 

non-intuitive and unexpected results. Therefore, we aimed to construct a model 

XII premotor network (i.e., a simulated intermediate reticular formation) to 

connect to an established model preBötC (Song et al., 2015) such that when 

cumulatively deleting neurons from either population, the frequency and 

amplitude of the fictive nerve output would match the experimental results in the 

targeted laser ablation experiments summarized above. 

This study provides a feasible blueprint for the assembly of a rudimentary rhythm 

and pattern-generating neural circuit that improves our understanding of how 
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Dbx1-derived interneurons of the lower medulla generate and regulate breathing 

behavior.  

2.2 MATERIALS AND METHODS 

2.2.1 Rubin-Hayes preBötC interneuron model 
Each preBötC neuron is a Rubin-Hayes model (Rubin et al., 2009; Dunmyre et 

al., 2011), featuring Hodgkin-Huxley-like spiking currents with four additional 

currents: calcium-activated non-specific cation current (ICAN) (Crowder et al., 

2007; Pace et al., 2007a; Mironov, 2008, 2013; Pace and Del Negro, 2008; 

Mironov and Skorova, 2011), excitatory synaptic current mediated by AMPA 

receptors (Isyn) (Funk et al., 1993; Ge and Feldman, 1998), persistent sodium 

current (INa–P) (Del Negro et al., 2002a; Ptak et al., 2005; Koizumi and Smith, 

2008) and Na/K ATPase pump current (Ipump) (Del Negro et al., 2009; Krey et al., 

2010). The Rubin-Hayes model is in the public domain 

(http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=125649).  

The current-balance equation takes the form: 

𝐶 !"
!"
=   −𝐼!"#$ 𝑉 − 𝐼!" 𝑉,𝑚, ℎ − 𝐼! 𝑉,𝑛 − 𝐼!"# 𝑉,𝐶𝑎 − 𝐼!"# 𝑉, ℎ!"!! −

𝐼!"# 𝑉, 𝑠!… 𝑠! − 𝐼!"#! 𝑁𝑎   

where 

!"
!"
= 𝑥! 𝑉 − 𝑥 𝑇! 𝑉   

!"
!"
= 1− 𝑠 𝑠! 𝑉 − 𝑘!𝑠 𝑇!  

!"#
!"

= 𝜀 𝑠!!
!!! ∙ 𝑘!"#$% − 𝑘!" 𝐶𝑎 − 𝐶𝑎!  , and 

!"#
!"

= 𝛼(−𝐼!"# 𝑉,𝐶𝑎 − 𝐼!"#! 𝑁𝑎 )  
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describe the evolution of the state variables, for each 𝑥 in 𝑚, ℎ,𝑛, ℎ!"!! .   

Whole-cell currents are described with chord-conductance equations, in some 

cases modified for Ca2+ or Na+ gating (Li and Rinzel, 1994):  

𝐼!"#$ 𝑉 = 𝑔!"#$ 𝑉 − 𝐸!  

𝐼!" 𝑉,𝑚, ℎ = 𝑔!"𝑚!ℎ 𝑉 − 𝐸!"  

𝐼!"!! 𝑉, ℎ!"!! = 𝑔!"!!𝑚!"!!!ℎ!"!! 𝑉 − 𝐸!"  

𝐼! 𝑉,𝑛 = 𝑔!𝑛! 𝑉 − 𝐸!  

𝐼!"# 𝑉,𝐶𝑎 = 𝑔!"# (𝑉 − 𝐸!"#) (1+ exp  ((𝐶𝑎 − 𝑘!"#) 𝜎!"#)) 

𝐼!"# 𝑉, 𝑠!… 𝑠! = 𝑔!"# 𝑠!(𝑉 − 𝐸!"#)
!

!!!
 

where N is the number of presynaptic neurons, 𝑠!… 𝑠!  reflects presynaptic s 

variables, and  

𝐼!"#! 𝑁𝑎 = 𝑟!"#!(𝜙 𝑁𝑎 − 𝜙 𝑁𝑎! ). 

The remaining functions, including those for voltage-dependent channel gating, 

are:  

𝑥! 𝑉 = 1 1+ exp
𝑉 − 𝜃!
𝜎!

 

𝑇! 𝑉 = 𝑇!!"# cosh
𝑉 − 𝜃!
2𝜎!

 

𝜙 𝑁𝑎 = 𝑁𝑎! (𝑁𝑎! + 𝑘!"! ). 

Model parameters are set to the following values for preBötC neurons:  

𝐶 = 45  𝑝𝐹,𝑔!"#$ = 3± 0.78  𝑛𝑆,𝐸! = −61.46  𝑚𝑉,𝑔!" = 150  𝑛𝑆,𝐸!" = 65  𝑚𝑉, 

𝑔!"–! = 1  𝑛𝑆,𝑔! = 30  𝑛𝑆,      𝐸! = −75  𝑚𝑉,𝑔!"# = 4± 0.75  𝑛𝑆,𝐸!"# = 0  𝑚𝑉,     

    𝜃! = −36  𝑚𝑉,𝜎! = −8.5  𝑚𝑉,𝑇!!"# = 1  𝑚𝑠,𝜃! = −30  𝑚𝑉,𝜎! = 5  𝑚𝑉, 
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𝑇!!"# = 15  𝑚𝑠,𝜃! = −30  𝑚𝑉,𝜎! = −5  𝑚𝑉,𝑇!!"# = 30  𝑚𝑠,𝑁𝑎! = 5  𝑚𝑀,   

    𝜃! = 15  𝑚𝑉,𝜎! = −3  𝑚𝑉,𝑇! = 15  𝑚𝑠,𝜃!!"!! = −40  𝑚𝑉,𝜎!!"!! = −6  𝑚𝑉, 

  𝜃!!"–! = −48  𝑚𝑉,𝜎!!"!! = 6  𝑚𝑉,𝑇!"–! = 1000  𝑚𝑠, 𝑘!" = 22.5  𝑚𝑠!!,     

  𝜃!"# = 0.9  𝜇𝑀,𝜎!"# = −0.05  𝜇𝑀, 𝑘! = 1, 𝑘!"#$% = 1200  𝜇𝑀 ∙𝑚𝑠!!,   

𝑟!"#! = 200  𝑝𝐴, 𝑘!" = 10  𝑚𝑀,𝐶𝑎! = 0.05  𝜇𝑀,𝑔!"# = 3.25  𝑛𝑆, 

𝜀 = 0.0007,𝛼 = 6.6×10!!  𝑚𝑀 ∙ 𝑝𝐴!! ∙𝑚𝑠!!,𝐸!"# = 0  𝑚𝑉 

We modeled XII premotor neurons using the Rubin-Hayes formulation with a few 

parameters adjusted to fit measurements of respiratory premotor neurons 

(Koizumi et al., 2008): 

𝐸! = −65± 1.8  𝑚𝑉,𝑔!"#$ = 1.23× 3± 0.78   𝑛𝑆,𝑔!"–! = 0.45  𝑛𝑆. 

The synaptic gating variable s, which was coupled to the ordinary differential 

equation for Ca2+, represents both ionotropic and metabotropic glutamatergic 

receptor activation. 

2.2.2 Network model of preBötC and reticular formation 
We previously modeled the preBötC as a directed Erdős-Rényi random graph 

(Newman et al., 2001). The model preBötC with n = 250 interneurons and 

interconnection probability p = 0.1625 produces a rhythm with a realistic mean 

cycle period (Wang et al., 2014).  

Premotor interneurons that project to inspiratory-related XII motoneurons have 

been identified in the intermediate reticular formation, which is intercalated 

between the preBötC and the XII nucleus (Dobbins and Feldman, 1994; Ono et 

al., 1994; Peever et al., 2002; Chamberlin et al., 2007; Koizumi et al., 2008; 

Volgin et al., 2008; Stanek et al., 2014). Since the intermediate reticular 
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formation contains oral-motor as well as respiratory interneurons, the total 

number of XII premotor neurons dedicated to respiration is unknown. Koizumi 

and colleagues (Koizumi et al., 2008) functionally identified 146 XII premotor 

neurons in rhythmically active slices preparations from neonatal rodents in vitro: 

136 located in the intermediate reticular formation and 10 within the dorsal part of 

the preBötC. These functionally identified premotor interneurons expressed a 

variety of transmitter phenotypes.  

Our model network selectively incorporates glutamatergic Dbx1-derived premotor 

neurons in the intermediate reticular formation and the dorsal preBötC (Wang et 

al., 2014; Revill et al., 2015). We fixed the Dbx1 reticular premotor population 

size at n = 100, which is based on Koizumi’s (2008) estimate but slightly reduced 

to account for functionally identified inspiratory XII premotor neurons that are not 

glutamatergic. Reticular premotor neurons receive synaptic input from the 

preBötC, but do not project back to it (Koshiya and Smith, 1999; Koizumi et al., 

2008). This coupling arrangement reflects the orthodromic mode of transmission 

from preBötC to premotor neurons to genioglossus XII motoneurons. All synaptic 

connections in this study are excitatory. 

To represent the fraction of Dbx1 XII premotor neurons within the preBötC (Wang 

et al., 2014), we randomly selected 50 constituent neurons that interconnect 

locally in the preBötC but furthermore contribute directly to network output (thus 

modeling a projection to the XII nucleus). Fictive nerve output was quantified as a 

running-time spike histogram from the raster plot of spike activity in all 100 

reticular premotor neurons and 50 preBötC neurons (i.e., 20% of the preBötC 
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population) that project directly to the XII nucleus (Wang et al., 2014). The 

amplitude of this ensemble network rhythm represents fictive XII nerve output, 

i.e., it mimics experimental recordings of XII motor nerve roots in vitro (Smith et 

al., 1991; Funk and Greer, 2013) and thus is depicted as distinct sites of 

projection in Figure 2.1A. 
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Figure 2.1. Diagram of the preBötC, intermediate reticular formation, and XII nucleus, 

which generate inspiratory related rhythm and motor output, respectively. A, The 

preBötC network (bottom lozenge) consists of 250 neurons. Some preBötC neurons 

(set B) are allowed to connect to the reticular formation premotor system (middle 

lozenge), 50 preBötC neurons (set A) directly connect to model XII nucleus to 

influence fictive nerve output. The rest of the preBötC neurons only connect within the 

preBötC (set C). All preBötC neurons (sets A, B, C) are allowed to connect to each 

other with a fixed connection probability. The reticular premotor system consists of 100 

neurons (set D) that all project to the model XII nucleus. Circles represent neuron 

populations and lines with round terminations signify directed synaptic projections. 

Synaptic projections among neurons within the same population are indicated by a 

recurrent connection (e.g., the line projecting from A back into A.) Interconnection 

between the preBötC and the reticular premotor system is either Erdős-Rényi (random) 

or obeys an anti-preferential attachment rule (see text for details). The synaptic 

interconnection for constituent neurons of the reticular premotor system is either 

Erdős-Rényi, scale-free or small-world (B-C, see text for details). Specific connection 

topologies are not accurately represented in this schematic, which rather shows a 

basic schematic of the whole system. We also show three cartoon diagrams 

representing respectively three characteristic networks: Erdős-Rényi (A, right top), 

scale-free (A, right middle) and small-world network (A, right bottom). B, 

interconnection between model preBötC and reticular premotor networks as a function 

of the allowable fraction, i.e., the fixed proportion of preBötC neurons that may connect 

to reticular premotor neurons, and probability that they do so. Blocks show the number 

of synchronized premotor neurons according to the colorimetric scale (top) for one 30-

s simulation. No simulated deletions were performed. The asterisk indicates the 

parameter pair (0.36, 0.25) that ensures full synchronization of constituent premotor 

neurons. 
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Figure 2.1A provides a diagram of the model system. Black elements, including 

the population size of the preBötC and reticular premotor population, remain 

fixed, whereas magenta elements were adjusted, such as 1) the specific number 

of preBötC neurons that project to the reticular formation, 2) the connectivity from 

preBötC to reticular premotor neurons, as well as 3) the connectivity among 

reticular premotor interneurons. 

The fraction of preBötC neurons that were candidates for projection to the 

reticular premotor neurons (i.e., allowable fraction) was varied from 0.2 to 0.45 

with a step size of 0.025. Whether a preBötC neuron in this reticular-projecting 

subset actually synapsed onto each individual XII premotor neuron was further 

governed by a connection probability that varied from 0.15 to 0.4 with a step size 

of 0.025. For each parameter pair we performed 10 simulations (i.e., 10 unique 

network realizations). Qualitative network behavior appears to depend inversely 

on the allowable fraction of projected preBötC neurons and the connection 

probability. If the allowable fraction equals or exceeds 0.35 and the connection 

probability exceeds 0.2, then the XII premotor population fully synchronizes with 

the preBötC rhythm (Fig. 2.1B).  

Connectivity among XII premotor neurons is unknown, so we examined three 

canonical network structures: Erdős-Rényi (random), scale-free, and small world 

(Watts and Strogatz, 1998; Barabási and Albert, 1999; Newman et al., 2001). 

Each constituent neuron is a vertex in the network, and its connections are 

dubbed edges (or links). Figure 2.1A provides a schematic of connectivity but 

does not accurately depict the topology of vertices and edges. 
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Erdős-Rényi 

Each vertex is connected with equal probability p to any of the other n–1 vertices 

in the network (Newman et al., 2001). Figure 2.1A (right, top) shows a cartoon 

diagram of an example of an undirected Erdős-Rényi network. However in our 

case the synaptic connection among neurons are directed; hence p is also the 

directed connection probability. 

Scale free  

The degree (number of connections a vertex possesses, in or out) distribution for 

all vertices follows a power law. Scale-free networks feature hubs, i.e., vertices 

that are very highly connected compared to the rest. We generated scale-free 

networks using the Barabási-Albert preferential attachment model (Barabási and 

Albert, 1999). Figure 2.1A (right, middle) shows a cartoon diagram of an 

undirected scale-free network. 

Small world 

The characteristic path length L (i.e., the smallest number of edges separating 

any two vertices in the network, averaged over all such pairs) grows 

proportionally with the logarithm of the size of the network n, i.e., 𝐿 ∝ log  (𝑛). This 

characteristic path length in small-world networks is significantly shorter 

compared to lattice networks (non-random regular networks where each node 

connects to all of its nearest neighbors) with the same level of clustering. We 

generated small-world networks using a random rewiring procedure from the 

initial lattice network where each neuron connects to exactly 20 other neurons 
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within the network (Watts and Strogatz, 1998). Figure 2.1A (right, bottom) shows 

a cartoon diagram of a small-world network. 

The connectivity from Dbx1 preBötC interneurons to reticular premotor neurons 

is also unknown. In the situations where the reticular network is modeled as 

scale-free or small-world, the preBötC is connected to the reticular network via 

an anti-preferential attachment model in order to balance the synaptic level for 

premotor neurons. We computed a weighted connection probability 𝑝!"   between 

preBötC neuron i and reticular premotor neuron j given by 

𝑝!" =   𝑝!"#$%&'$ ∗
!"#$!%#  !"!!"#$""  !"  !""  !"#$%&%"  !"#$%!&

!"!!"#$""  !"  !"#$%&%"  !"#$%!  !
 , 

where 𝑝!!"#$%&# is 0.175.  

2.2.3 Numerical methods  
We simulated network models on the SciClone computing cluster at the College 

of William and Mary. We employed a 4th-order Runge-Kutta numerical integration 

routine with a fixed time step of 0.25 ms using NeuronetExperimenter software 

(http://neuronetexp.sourceforge.net/) to simulate large populations of neurons 

with arbitrary connectivity. Network models were subjected to 100 random 

neuron deletions from either preBötC or reticular formation in order to measure 

the amplitude and frequency of respiratory-related network output, and then 

compare it to experimental results (Wang et al., 2014; Revill et al., 2015). One 

neuron was deleted every 20 s (simulated time) by setting the synaptic gating 

variable and its corresponding differential equation to zero, which disconnects 

the neuron from the rest of the network. Deleted neurons then no longer 

contributed to the fictive nerve output.  
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2.3 RESULTS 

2.3.1 Ablating preBötC and reticular interneurons cause disparate effects 
on respiratory rhythm and motor output 
Cumulative photonic destruction of Dbx1 preBötC neurons impairs and then 

irreversibly precludes inspiratory rhythm generation (Wang et al., 2014). The 

amplitude of motor output (monitored from the XII cranial nerve root in vitro) 

decreased precipitously after ablating 10-15 Dbx1 neurons; further ablations 

decelerated spontaneous rhythm and then stopped it altogether after destruction 

of ~85 Dbx1 preBötC neurons. Figure 2.2A shows a previously unpublished 

representative experiment from (Wang et al., 2014). Numerical simulations 

replicated perturbation and cessation of spontaneous rhythm when the model 

preBötC was subjected to cumulative random deletions (Song et al., 2015), but 

lacked the precipitous decrease in network output, which we postulate is 

because the model incorporated only the preBötC but not premotor or motor 

circuits.  

Surmising that a more realistic model should feature reticular XII premotor 

circuits to properly replicate network output, we performed cell-selective photonic 

ablation experiments in rhythmically active slices to interrogate the role(s) of 

Dbx1 reticular neurons (Revill et al., 2015). The preBötC, reticular formation, and 

XII nuclei are bilaterally distributed in the brainstem, and that bilateral symmetry 

is retained in rhythmically active slices used for laser ablation experiments in vitro 

(see Funk and Greer, 2013; Wang et al., 2014; Revill et al., 2015 for details). 

Deleting Dbx1 reticular neurons from one side of the medullary slice preparation 

decreased the amplitude of the ipsilateral XII motor output linearly without 
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affecting frequency. Figure 2.2B shows a previously unpublished representative 

experiment from (Revill et al., 2015). The contralateral XII output was unaffected. 

In general, selective laser ablation of 97 ± 20 (mean ± SD) Dbx1 reticular 

neurons caused a 36 ± 4 % and 54 ± 3 % (mean ± SD) decrease in ipsilateral XII 

amplitude and area, respectively (Revill et al., 2015). 
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Figure 2.2. A, In vitro experiment showing sequential, cumulative laser ablation of 

Dbx1 preBötC neurons induced precipitous decline in the inspiratory related XII motor 

output, with concomitant rhythm deceleration followed by its cessation. Cell-selective 

detection and laser ablation experiments in the preBötC are thoroughly documented in 

the original publications (Hayes et al., 2012; Wang et al., 2013, 2014). In brief, slices 

that retain the preBötC, the intermediate reticular formation, as well as the XII motor 

nucleus and motor nerve root were perfused with 27 °C artificial cerebrospinal fluid at 

4 ml/min and the external K+ concentration was maintained at 9 mM. Top: normalized 

amplitude of the XII motor nerve discharge (motor output) measured via suction 

electrode and then amplified, full wave-rectified, and smoothed for display. The grey 

bar indicates the cumulative laser-ablation phase with the total ablation tally. Bottom: a 

time-series plot of respiratory cycle period measured in real time during the laser 

ablation experiment. The ordinate scale is continuous, but the tick scale changes at 25 

s (5-s ticks are utilized from 0 to 25 s; 50-s ticks are utilized from 26 to 400 s). Cycle 

period exceeding 250 s indicates irreversible rhythm termination. B, In vitro experiment 

showing sequential, cumulative Dbx1 reticular neuron laser ablations from the right 

side of the slice preparation in vitro, which caused a linear decline in the ipsilateral 

(right) XII amplitude with no concomitant perturbation of respiratory cycle period. 

Methodological details can be found in the original publication (Revill et al., 2015). Top: 

normalized amplitude of the right XII motor nerve rootlet. The grey bar indicates 

cumulative laser-ablation phase with the total ablation tally. Middle: normalized 

amplitude measured from left XII nerve rootlet. Bottom: a time-series plot of respiratory 

cycle period measured in real time during the laser ablation experiment. To match Fig. 

2.2A, the ordinate scale is continuous, but the tick scale changes at 25 s (5-s ticks are 

utilized from 0 to 25 s; 50-s ticks are utilized from 26 to 400 s).  
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2.3.2 Erdős-Rényi network for the premotor population   
To attempt to replicate these in vitro experiments in silico, we first set up a 

network such that 36% of the preBötC neurons (i.e., 90 of the 250 model Dbx1 

preBötC neurons) were allowed to connect to an Erdős-Rényi reticular network 

(e.g., Fig. 2.1A) with a fixed probability of 0.25. Then we performed sequential 

random ablations from the model preBötC (Fig. 2.3). 

The first model Dbx1 preBötC neuron deletion was performed at 30 s (simulated 

time); a large portion of the XII premotor population started spiking tonically, 

which elevated the baseline of the running-time spike histogram. This running-

time spike histogram encodes the firing patterns of all premotor neurons 

projecting to XII motoneurons, and thus it represents the model analog of XII 

nerve output recordings, which we dubbed ‘fictive nerve output’ (Figs. 2.3-2.5). 

The running-time spike histogram incorporates 50 preBötC neurons projecting to 

XII motoneurons (population A in Fig. 2.1A) and the 100 reticular premotor 

neurons (population D in Fig. 2.1A) and implicitly assumes that the XII 

motoneuron output is a linear readout of its constituent inputs. The tonic-spiking 

pattern in fictive nerve output (Fig. 2.3) was maintained throughout the simulation 

regardless of the ablation tally. Therefore, showing only the first four ablations 

suffices to demonstrate the outcome of the experiment. Here, the connectivity of 

the preBötC and reticular formation, as well as the connectivity within the 

reticular population itself, are independent. Reticular XII premotor neurons 

cannot generate rhythmic activity alone, but rather entrain to rhythmic input from 

the preBötC. Therefore, as preBötC neurons are deleted, the reticular premotor 

neurons to which they project lose rhythmic synaptic drive but connectivity 
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among reticular neurons remains unchanged. These premotor neurons, which 

have lost preBötC drive, cease to burst in sync with the preBötC but may engage 

in recurrent excitation with other reticular neurons and spike tonically.  

Nine other simulations of the same network configuration showed qualitatively 

similar results (not shown). These data suggest that an Erdős-Rényi network is 

not a realistic model for the reticular premotor circuit because the outcome of in 

silico experiments (Fig. 2.3) did not match the corresponding in vitro experiments 

(Fig. 2.2A as well as Wang et al., 2014) particularly with respect to the amplitude 

of motor output.  

 

Figure 2.3. Simulated random deletion of preBötC neurons wherein the reticular 

premotor system is modeled as an Erdős-Rényi network. Top: raster plot of 50 

preBötC neurons (index 1-50) and 100 premotor neurons that project to the XII 

nucleus (index 51-150). Simulation lasts 100 s in total. The grey bar indicates the 

cumulative laser-ablation phase with the total ablation tally. Each dot on the raster plot 
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corresponds to a spike in a single neuron. Bottom: running-time spike histogram 

(spks/ms) computed from the raster plot.  

2.3.3 Scale-free network for the XII premotor population 
Configuring the XII premotor population as a scale-free network (e.g., Fig. 2.1A) 

results in a large standard deviation of the in-degree distribution (in-degree 

ranged from 22.9 to 77.0, with SD of 14.2, N = 50 networks) compared to that of 

the Erdős-Rényi premotor population (in-degree ranged from 22.4 to 45.9, with 

SD of 4.7, N = 50 networks). Nevertheless, high-in-degree vertices are sparse, 

so the overall network connectivity remained commensurate with the parameter 

sets identified in Fig. 2.1B. Each premotor neuron in a scale-free reticular 

network received approximately the same number of synapses as in the Erdős-

Rényi configuration (median in-degree measured 33.2 for the scale-free 

configuration and 33.5 for the Erdős-Rényi configuration).  

We implemented an anti-preferential attachment rule (see “Network model 

consisting of the preBötC and intermediate reticular formation” in Materials and 

Methods) when connecting preBötC neurons to the reticular premotor network; 

i.e., more interconnections with other reticular premotor neurons reduce the 

likelihood of input from the preBötC, and vice versa. Then, preBötC neurons 

were randomly and cumulatively ablated from the model system (Fig. 2.4A). 

Approximately half of the reticular premotor network stopped discharging bursts 

after the ninth deletion, which is qualitatively similar to the experimental results 

(see Fig. 2.2A). Forty-one out of 100 simulations of different realizations of the 

same network configuration showed qualitatively similar results (not shown), in 

which 7.3 ± 6.3 (mean ± SD) neuron deletions would induce the precipitous 
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amplitude decline while 34.2 ± 7.8 (mean ± SD) neuron deletions led to rhythm 

termination. The other 59 simulations showed no qualitative change in the fictive 

nerve output as the growing ablation tally slowed and stopped the rhythm.  
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Figure 2.4. A, Simulated random deletion of preBötC neurons wherein the reticular 

premotor system is modeled as a scale-free network. B, Simulated random deletion of 

reticular premotor neurons from a scale-free network configuration. Top: raster plot of 

50 preBötC neurons (index 1-50) and 100 premotor neurons that directly project to the 

XII nucleus (index 51-150). Simulation lasts 800 s in total. The grey bar indicates the 

cumulative laser-ablation phase with the total ablation tally. Each dot on the raster plot 

corresponds to a spike in a single neuron. Bottom: running-time spike histogram 

(spks/ms) computed from the raster plot.  

To further test the scale-free reticular network configuration, we randomly and 

cumulatively deleted XII premotor neurons matching the experiment in Fig. 2.2B 

(N = 50). Fictive nerve output dropped initially and then stabilized (Fig. 2.4B) 

instead of decreasing linearly throughout the ablation sequence, which differed 

from the experimental result (see Fig. 2.2B). These data suggest that a scale-

free network captures some, but not all, features of a realistic model for the 

reticular premotor circuit.  

2.3.4 Small-world network for the XII premotor population 
We sought to remodel the reticular premotor system while preserving 

connectivity commensurate with the Erdős-Rényi-like premotor network (to 

ensure synchronized activity in XII premotor neurons, see Fig. 2.1B) as well as 

the anti-preferential attachment rule to connect the preBötC neurons with the 

reticular premotor network (which successfully replicated the amplitude drop in 

response to preBötC neuron ablation, see Figs. 2.2A and 2.4A).  

Scale-free networks feature highly connected ‘hub’ vertices whose deletion can 

cause abrupt changes in function such as catastrophic system failure (Barabási 

and Albert, 1999; Newman et al., 2001). We reasoned that hubs are unlikely to 
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exist in the Dbx1 reticular premotor network because our cumulative ablation 

experiments in vitro never failed catastrophically (see Fig. 2.2B and Revill et al., 

2015). If hubs exist in the real system, it seems unlikely that we would have failed 

to delete one in the context of hundreds of ablations randomly targeting Dbx1 

reticular neurons performed in vitro. We have also implemented the anti-

preferential attachment interconnection on a Erdős-Rényi-like premotor network 

and performed the preBötC neuron ablations, where almost all reticular premotor 

neurons end up spiking tonically (not shown, n = 10).  

Therefore, we re-assembled the reticular premotor system as a small-world 

network (e.g., Fig. 2.1A). The in-degree ranged from 28.3 to 40.3, with SD of 2.4, 

and the median in-degree measured 34.0, which is similar to the in-degree 

distribution and the median in-degree of the Erdős-Rényi and scale-free network 

configurations. We again connected the preBötC to the reticular premotor 

network via anti-preferential attachment.  

We randomly deleted model Dbx1 preBötC neurons and monitored fictive nerve 

output (Fig. 2.5A). The rhythm decelerated and terminated after a tally of 47 total 

ablations (the simulation reached a final tally of 53 but rhythm cessation occurred 

at 47); fictive nerve output experienced a precipitous drop in amplitude after the 

13th deletion. These results broadly matched the experiments (see Fig. 2.2A and 

Wang et al., 2014). When we randomly deleted model Dbx1 neurons from the 

reticular premotor population instead, output decreased linearly to a steady-state 

level of attenuation without perturbing rhythmic frequency (Fig. 2.5B), which was 
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also consistent with the Dbx1 reticular premotor neuron laser ablation 

experiments (see Fig. 2.2B and Revill et al., 2015).  
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Figure 2.5. A, Simulated random deletion of preBötC neurons wherein the reticular 

premotor system is modeled as a small-world network with fictive nerve outputs for 

three individual network-wide bursts indicated by A, B and C (indicated above the 

raster plot) at different stages of the simulated experiment. B, Simulated random 

deletion of reticular premotor neurons from a small-world network configuration. Top: 

raster plot of 50 preBötC neurons (index 1-50) and 100 premotor neurons that directly 

project to the XII nucleus (index 51-150). Simulation lasts 1000 s in total. The grey bar 

indicates the cumulative laser-ablation phase with the total ablation tally. Each dot on 

the raster plot corresponds to a spike in a single neuron.  

In a total of 150 different realizations of the reticular premotor network in a small-

world configuration, our simulations accurately reproduced the effects of preBötC 

neuron ablations in 38 cases (25.3% of 150 simulations, 95% CI is 18 to 32%), 

which is far from the majority of cases. However, the ability to accurately 

reproduce the reticular ablation experiment was much greater. In a total of 50 

realizations of the reticular premotor network in a small-world configuration, we 

successfully replicated the results of Dbx1 reticular neuron ablations in 42 cases 

(84% of 50 simulations, 95% CI is 74 to 94%). These data suggest the viability of 

a small-world network to model the real reticular premotor system, but 

furthermore suggest that the precipitous drop in output following Dbx1 preBötC 

neuron ablation depends on additional factors that were not accurately captured 

in our simulations. Since the model preBötC neurons follow three qualitatively 

different coupling schemes (see populations A, B, and C in Fig. 2.1A), we 

speculated that a precipitous output-drop, which invariably resulted from ablation 

experiments in vitro (Fig. 2.2A and Wang et al., 2014), might depend on which 

certain subset of Dbx1 preBötC neurons are targeted for ablation.  
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To address this, we conducted three sets of preBötC neuron deletion simulations. 

Each set was repeated 50 times. Each run continued for 1030 simulated sec (50 

neuron deletions, one every 20 sec after a 30 sec initialization phase) and 

employed the same group of 50 network realizations referenced above. Only the 

random deletion sequence that targeted a specific subset of preBötC neurons 

changed in each case.  

In the first case, we randomly deleted 50 neurons from among the 200 of the 

Dbx1 preBötC neurons that had no direct connection to the XII nucleus (sets B 

and C in Fig. 2.1A). For the second case, we specifically targeted the 50 Dbx1 

preBötC neurons that connected to the XII nucleus (set A in Fig. 2.1A). For the 

third simulation, we selectively targeted 50 neurons from among the 90 Dbx1 

preBötC neurons (set B in Fig. 2.1A, 36% of 250 preBötC neurons) that 

connected to the reticular premotor population (set D in Fig. 2.1A). The fictive 

nerve output showed four characteristic patterns (Fig. 2.6): 1) lack of function, i.e., 

no network-wide bursts; 2) stable amplitude for the duration of the simulation; 3) 

tonic spiking in the premotor network after a certain number of ablations, causing 

a shift in the baseline amplitude (e.g., see Fig. 2.3 for a simulation with that type 

of output); and 4) precipitous amplitude drops after a number of neuron deletions 

(see Figs. 2.2A, 2.4A, and 2.5A, as well as Wang et al., 2014 for illustrations of 

this behavior).  
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Figure 2.6. Deletion sequence analysis performed on 50 separate trials of cumulative 

ablation of model preBötC neurons. For three deletion strategies (horizontal axis), 50 

simulations were conducted on the same group of 50 realizations of the same 

configuration for both the preBötC and a small-world reticular premotor network. Each 

simulation result falls into one of four possible outcomes, represented in different 

colors. Black: non-functional, i.e., the network never achieves a network-wide burst. 

Gray: stable amplitude, i.e., no precipitous decline in the output amplitude before 

rhythm termination. Red: tonic behavior, i.e., a large portion of premotor neurons 

spikes tonically after several preBötC neuron deletions. Cyan: precipitous amplitude 

drop, i.e., the rhythmic amplitude precipitously declined after a few neuron deletions.  

Of the four patterns described above, only the fourth matches the in vitro 

targeted Dbx1 preBötC neuron laser-ablation experiments (see Fig. 2.2A and 

Wang et al., 2014). We categorized output patterns 1, 2, and 3 collectively as 

unsuccessful and output pattern 4 as successful. Five out of 50 simulations (10%) 

were successful in the first set of simulations, 16 simulations (32%) were 

successful in the second group, and 42 simulations (84%) were successful in the 
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third group. These results indicate that the third strategy, which targeted Dbx1 

preBötC neurons that project to reticular premotor neurons (set B, Fig. 2.1A), 

caused a precipitous drop in the fictive nerve output amplitude more often than 

the other two strategies. Assuming the null hypothesis that all strategies would 

be equally effective, we performed a Chi-Square test to analyze the results 

(𝒳! = 59.28,𝑝 < 0.00001). If targeting strategy has no impact on how the fictive 

nerve output responds to cumulative ablation, then a result such as this would be 

extremely unlikely to occur by chance, which bolsters our confidence that 

targeting strategy is an important factor that influences the precipitous drop in 

network output characteristic of the in vitro laser ablation experiments. 

2.4 DISCUSSION 
We developed laser ablation methodology with real-time physiological monitoring 

to quantify the cellular parameters of respiratory rhythm- and pattern-generating 

circuits (Hayes et al., 2012; Wang et al., 2013). Cumulative deletion of Dbx1 

preBötC interneurons slowed and then stopped respiratory rhythm. Surprisingly, 

the magnitude of inspiratory motor output declined precipitously before the 15th 

neuron deletion. By contrast, laser ablation of Dbx1 reticular neurons decreased 

motor output linearly without affecting frequency. Here we present a plausible 

model that replicates these experiments and thus provides testable predictions 

regarding the configuration of rhythmogenic and XII premotor circuits.  

The performance of this network system depends on the choice of the Rubin-

Hayes model for preBötC and reticular premotor neurons. This model 

incorporates the two major burst-generating inward charge carriers, INa-P and 
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ICAN, as well as excitatory synaptic connections. However, synaptically triggered 

intracellular Ca2+ dynamics coupled to ICAN activation, which motivated the 

development of the Rubin-Hayes model, have been challenged by studies that 

perturbed metabotropic receptors and intracellular Ca2+ release without stopping 

rhythmogenesis (Beltran-Parrazal et al., 2012; Ben-Mabrouk et al., 2012). These 

results do not invalidate the model because Rubin-Hayes recapitulates recurrent 

excitation dynamics that all respiratory neurobiologists agree is essential for 

rhythmogesis (Funk et al., 1993; Wallén-Mackenzie et al., 2006; Carroll and 

Ramirez, 2013; Carroll et al., 2013); recurrent excitation also underlies another 

influential and contemporary model of respiratory rhythmogenesis (Guerrier et al., 

2015). Furthermore, excitatory synapses evoke subthreshold Ca2+ accumulation 

in the Rubin-Hayes model via an agnostic mechanism not explicitly wedded to 

metabotropic receptors or intracellular Ca2+ release. Two-photon Ca2+ imaging in 

preBötC neurons dialyzed intracellularly with QX-314 demonstrate postsynaptic 

Ca2+ accumulation during inspiratory phases that does not depend on Na+ 

spiking (Del Negro et al., 2011). Therefore, synaptically triggered subthreshold 

Ca2+ increases occur via an unknown mechanism whose dynamics are codified 

in the Rubin-Hayes model. 

We have modeled the preBötC rhythmogenic core as an Erdős-Rényi network 

(Wang et al., 2014; Song et al., 2015). Several preBötC modeling studies 

employed all-to-all connectivity (Butera et al., 1999; Purvis et al., 2007; Jasinski 

et al., 2013), which is not realistic: paired recordings in the preBötC showed that 

the excitatory synapses between putative rhythm generators are sparse 
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(approximately 13%, Rekling et al., 2000). In contrast, Guerrier et al. (2015) 

constructed a random geometric network in which a synaptic connection from 

one neuron to another is exponentially proportional to the distance between them. 

The Guerrier model creates a far too robust preBötC whose rhythmic function 

stops after 44% of constituent neurons are deleted, whereas inspiratory rhythms 

in vitro and in our Erdős-Rényi model of the preBötC cease after ~15% of the 

constituent neurons are ablated (Hayes et al., 2012; Wang et al., 2014; Song et 

al., 2015).   

We created 100 reticular premotor neurons, initially coupled in Erdős-Rényi 

configuration, which showed that network-wide synchronization depends on 

approximately 90 out of 250 preBötC neurons projecting to premotor neurons 

with a connection probability of p = 0.175. This last parameter served as a 

baseline connection probability when we reconfigured the reticular premotor 

system as scale-free or small-world networks. Comparing laser ablation 

simulations to their corresponding experimental benchmarks provided testable 

insights into the structure and function of the real system.  

2.4.1 Reticular premotor network configurations 
We compared three network configurations for the XII premotor population. The 

Erdős-Rényi premotor network synchronized well, but did not replicate Dbx1 

preBötC neuron ablation experiments. Deleting a model preBötC neuron 

diminishes rhythmic drive to the Erdős-Rényi premotor network, but its local 

connectivity has no relationship to preBötC input. So the premotor circuit may still 
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undergo recurrent excitation, which leads to tonic spiking instead of rhythmic 

bursts in sync with the preBötC.  

We surmised that connectivity between the preBötC and the reticular premotor 

system – and connectivity within the reticular population – cannot be independent. 

Alternative connectivity schemes should counterbalance synaptic input from 

reticular premotor neurons with synaptic drive from preBötC neurons. 

We then modeled the XII premotor population as a scale-free network. The anti-

preferential attachment rule ensures that each XII premotor neuron receives 

proportional synaptic drive from both preBötC and premotor populations. It self-

adjusts to maintain a fixed (total) level of synaptic input and is an important 

testable prediction for future studies.  

Subsequently deleting model preBötC neurons predominantly affects XII 

premotor partners that receive fewer inputs from within the reticular network. 

Accordingly, XII premotor neurons that receive input from the preBötC are not 

connected richly enough within the reticular formation to promote recurrent 

excitation, which might otherwise lead to tonic spiking and induce the rest of the 

XII premotor population to spike tonically as well. By virtue of their relatively 

sparse connectivity within the reticular formation, these XII premotor neurons 

likely receive input from other remaining preBötC neurons and thus may continue 

to burst in sync with the preBötC, albeit with lower burst magnitude. Therefore, 

cumulatively deleting model preBötC neurons causes reticular premotor neurons 

to either burst with lower amplitude or go silent. 
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The scale-free premotor network configuration accurately replicated the Dbx1 

preBötC neuron ablation experiments, but its output did not decline linearly in 

response to reticular neuron ablations, which occurred in every Dbx1 reticular 

neuron laser-ablation experiment.  

We re-modeled the XII premotor population as a small-world network, rich in 

local connections yet short in average path length, with anti-preferential 

attachment connectivity from the preBötC. This configuration generated a 

precipitous decline in the fictive nerve output in the case of cumulative preBötC 

neuron deletions. Because each reticular premotor neuron in the small-world 

network contributes commensurately to the network output, cumulatively deleting 

reticular neurons diminishes the fictive nerve output linearly as the ablation tally 

increases, consistent with the experiments (Revill et al., 2015). Our XII premotor 

population model comports with neuroanatomical evidence that some reticular 

formation networks are small-world (Achard et al., 2006; Bassett and Bullmore, 

2006; Humphries et al., 2006).  

Guerrier et al. (2015) demonstrated that synaptic dynamics (including facilitation 

and depression) can influence network behavior in ways that may override 

topological features. Could a disparity in synaptic dynamics, rather than network 

topology, explain the differential effects of laser ablation of Dbx1 preBötC versus 

Dbx1 reticular premotor neurons? Dbx1 preBötC neurons express synaptic 

properties predicted by Guerrier (Kottick and Del Negro, 2015), but similar 

information about excitatory synapses among Dbx1 reticular premotor neurons is 

not yet available. Nonetheless, Dbx1 reticular premotor neurons have a lower 
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level of excitability compared to Dbx1 preBötC neurons (Revill et al., 2015) and 

thus we modeled them as such. Without knowledge regarding synaptic disparity 

between preBötC and reticular premotor neurons, we favor a topological 

explanation for the differential effects of laser ablation.  

2.4.2 Implications for respiratory rhythmogenic circuitry 
With a small-world reticular premotor network and anti-preferential attachment 

from the preBötC, preBötC-neuron deletions caused a precipitous decline in the 

fictive nerve output in ~25% of simulations (which occurred in 100% of the 

experiments). However, if we selectively targeted preBötC neurons directly 

connected to premotor neurons, then a precipitous decline in fictive nerve output 

occurred 84% of the time. Furthermore, when we examined all the simulations 

we found that a precipitous decline in the fictive nerve output occurred by random 

chance whenever the deletion sequence contained a substantial fraction of 

preBötC neurons with direct connections to the reticular premotor system. 

This analysis suggests we preferentially photo-ablated Dbx1 preBötC neurons 

directly connected to the XII premotor network. The most parsimonious 

explanation would be that Dbx1 preBötC neurons that connect to reticular 

premotor neurons are concentrated at the rostral face of the preBötC, which is 

exposed by transverse slice preparations (Hayes et al., 2012; Wang et al., 2013, 

2014). Laser ablation experiments would be predisposed to ablate these 

reticular-projecting neurons rather than other Dbx1 preBötC interneurons with 

only local connections. We cannot be sure that Dbx1 local-only preBötC 

interneurons are more prevalent at depth in the preBötC, but the evidence for XII 
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premotor neurons at the rostral edge of the preBötC is strong. For example, 

premotor neurons for tongue protruder muscles are located in the area 

immediately rostral to and within the preBötC (Dobbins and Feldman, 1994). 

Dbx1 neurons at the rostral-dorsal border of the preBötC project to the reticular 

formation (Picardo et al., 2013; Revill et al., 2015), and physiological transection 

and pharmacological studies attribute premotor function to the rostral edge of 

preBötC (Funk et al., 1993; Ruangkittisakul et al., 2014).  

This study provides a framework for analysis of the respiratory rhythm- and 

pattern-generating circuits underlying breathing. An important prediction is the 

anti-preferential connections from the preBötC to the small-world reticular 

formation. This could arise due to activity-dependent synaptic elimination (Flavell, 

2006; Yogev and Shen, 2014) because an overabundance of synapses and 

neurons is commonplace during development (Cowan et al., 1984; O’Donovan, 

1999). Analogous to our model assembly, the embryonic reticular formation may 

form a small-world network. Then, as preBötC synapses connect to reticular 

neurons, synapses are pruned to balance the excitation among reticular neurons 

and preBötC inputs during ‘fetal breathing’ (Kobayashi et al., 2001). This 

effectively may account for how an anti-preferential attachment rule emerges in 

the real system. 
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CHAPTER 3. “Next generation” cellular model of rhythmogenic 
preBötC neurons 

3.1 INTRODUCTION 
Inspiratory breathing movements, which are a fundamental aspect of respiration, 

originate due to neural rhythms from the preBötzinger complex (preBötC) in the 

ventral medulla. Efforts to understand the neural origins of breathing have 

employed in vivo and in vitro experimental studies, but in silico modeling studies 

have also provided an important contribution during the last few decades. The 

last two chapters of research focused on network modeling to understand the 

structure and function of the preBötC as well as interactions between the 

preBötC and the adjacent population of respiratory-related hypoglossal premotor 

neurons. In constructing the network models, we adopted the well-established 

Rubin-Hayes model (Rubin et al., 2009). This model has provided a framework 

for analyzing respiratory rhythm and motor pattern. However, it is not without its 

limitations. The Rubin-Hayes model was formulated such that biophysical 

mechanisms were abstract rather than explicitly modeled by physiologically 

realistic equations, which has been problematic in terms of evaluating and testing 

the cellular and ionic mechanisms of rhythm generation experimentally. 

Furthermore, the Rubin-Hayes model was designed to simulate typical breathing 

(i.e., eupnea) but respiratory behaviors also include sighs (augmented breaths 

that occur periodically and can be triggered by emotional stimuli) as well as 

gasping under pathological and hypoxic conditions, which Rubin-Hayes does not 

accommodate. For these reasons, we sought to consolidate some of the 

successes of Rubin-Hayes, then adopt successful aspects of other contemporary 
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models, and thus synthesize and develop a new canonical model of a 

rhythmogenic preBötC interneuron at a more realistic and informative level. 

Hence in this study, by reviewing the history of respiratory neurobiological 

modeling and comparing the advantages of a few symbolic models, we aim to 

construct a cellular model, which, with the original Rubin-Hayes model as 

foundation, is more biophysically realistic and makes testable predictions to 

guide experimental protocols. This iterative process, we contend, will lead to 

refinement of the model and ultimately advance understanding of respiratory 

rhythm generation in mammals.  

3.1.1 Chain-of-inhibition model and birth of the pacemaker hypothesis 
Some of the first modeling studies of mammalian respiration date back to 1970s 

and ‘80s. Von Euler and colleagues proposed a central pattern generator (CPG) 

model for breathing that consisted of inhibitory and excitatory interneurons in a 

recurrent loop (von Euler, 1983). However, experimental limitations at the time 

precluded an unambiguous test of the model. All cell-recording experiments were 

performed on heavily barbiturate-anesthetized animals (generally cats), which 

drastically enhanced chloride-mediated synaptic inhibition and thus 

overemphasized the role of synaptic inhibition. In addition, it was impossible to 

systematically manipulate or perturb rhythm-generating circuits in the whole-

animal context.    

The ability to interrogate respiratory rhythmogenic circuits was greatly advanced 

by the advent of in vitro preparations, which retained respiratory active circuits ex 

vivo and thus exposed the brainstem and spinal cord for electrophysiological 
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recordings as well as ionic and pharmacological manipulations (Suzue, 1984; 

Smith et al., 1990). Using isolated brainstem-spinal cords, so-called en bloc 

preparations, Feldman and Smith (Feldman and Smith, 1989) tested the von 

Euler model by substituting large impermeant anions for chloride ions in the 

bathing solution. This manipulation abolished chloride-mediated synaptic 

inhibition, which the model necessitated, and yet respiratory rhythm generation in 

vitro continued with no change in frequency (Feldman and Smith, 1989). Having 

falsified the von Euler scheme (at least in vitro), these results gave credence to 

the idea that specialized pacemaker neurons could be the basis for respiratory 

rhythmogenesis (Feldman and Cleland, 1982). However, this idea of pacemaker-

driven respiratory rhythm was highly speculative at first because there was no 

existing data regarding autorhythmic respiratory-related neurons and, 

furthermore, the site of rhythm-generation was still not known. 

3.1.2 preBötzinger complex and voltage-dependent pacemaker neurons  
The next major watershed study reported the discovery of the preBötC in 1991. 

This anatomically and functionally specialized site was first identified by serial 

transection experiments in en bloc preparations, which demonstrated that the 

preBötC was necessary and sufficient for rhythmogenesis in vitro (Smith et al., 

1991). Furthermore, that study established that en bloc preparations could be 

further reduced such that ~500-µm-thick transverse medullary slices containing 

the preBötC, as well as premotor and respiratory-related hypoglossal (XII) 

motoneurons, could generate robust respiratory-related oscillations and motor 

output in vitro. These rhythmically active slices were experimentally 
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advantageous because they exposed the preBötC and thus enabled intracellular 

recordings from putatively rhythmogenic preBötC interneurons in the context of 

breathing-related rhythms and motor output in vitro.  

Interneurons with voltage-dependent pacemaker-like properties were recorded 

and characterized within preBötC. These putative respiratory pacemakers could 

generate alternating cycles consisting of bursts of action potentials followed by 

periods of quiescence if their baseline membrane potential was within -60 to -50 

mV. Smith et al. proposed that these interneurons could be specialized for 

respiratory rhythm generation, a theory that was dubbed the pacemaker 

hypothesis of rhythmogenesis, or simply the pacemaker hypothesis.  

Henceforth, the pacemaker hypothesis became a viable explanation for 

respiratory rhythm generation. The modeling of the pacemaker hypothesis 

advanced greatly in 1999, when Butera et al. proposed a cellular model in which 

voltage-dependent bursting-pacemaker behavior in preBötC neurons arises due 

to the fast activation and slow inactivation of persistent Na+ current (INa-P) (Butera 

et al., 1999). The Butera model, based on a Hodgkin-Huxley equations for the 

major charge carriers, provided two key experimentally testable predictions: first, 

that respiratory frequency should depend on the voltage-dependence of 

activation for INaP, and second that inspiratory burst duration (i.e., burst 

termination) should be linked to voltage-dependent slow inactivation of INa-P. 

Although INa-P was the central ionic mechanism underlying the Butera model, it 

had not been measured or quantified. The existence of INa-P was inferred from 

extracellular recordings of pacemaker-like activity in medullary neurons (including, 
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but not limited to, those in the preBötC) in a bathing solution with lowered Ca2+, 

which precludes pacemaker-like activity due to voltage-gated Ca2+ currents 

(Johnson et al., 1994).  

Later in 2002, INa-P was measured via a series of ramp depolarization voltage-

clamp experiments (Del Negro et al., 2002a), making it possible to begin 

quantitatively modeling the current. To further characterize the biophysics of Na+ 

currents by quantifying the amplitude as well as the activation and inactivation, 

Ptak et al. (2005) applied a train of high-frequency (25 Hz) voltage pulses to 

preBötC neurons and then found that both INa-F and INa-P were reduced in 

amplitude by the equivalent amount, hence deducing that both types of whole-

cell Na+ current were generated by the same population of Na+ channels (Ptak et 

al., 2005). Their analyses provided a unified Na+ channel model that could 

account for both transient (fast) Na+ current (INa-F) and INa-P.   

The underlying idea that INa-F and INa-P are not separate channels per se was also 

indicated by Taddese and Bean (Taddese and Bean, 2002) who showed that INa-

P was likely to originate from incomplete inactivation (0.5 – 4% at steady-state) of 

the total Na+ conductance as well as modal gating schemes in conventional Na+ 

channels (Alzheimer et al., 1993; Bennett et al., 1995).  

Nevertheless, INa-P was not the sole ionic mechanism that could give rise to 

bursting-pacemaker activity in the preBötC. Ca2+-activated non-specific cation 

current (ICAN) was discovered as an excitatory inward current that could also 

contribute to pacemaker-like bursting in a subset of preBötC neurons (Thoby-

Brisson and Ramirez, 2001). At first this report appeared to bolster the 
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pacemaker hypothesis because it showed that more than one ionic mechanism 

could drive authorhythmic cellular behaviors in the preBötC. However, the 

pacemaker hypothesis gradually fell out of favor because pharmacological 

antagonists such as riluzole that targets INa-P (Doble, 1996; Urbani and Belluzzi, 

2000) and flufenamic acid that targets ICAN (Guinamard et al., 2013) could be 

applied to block ICAN and INa-P and yet neither blocker would abolish 

rhythmogenesis except when co-applied at extreme concentrations that induce 

with multiple side effects of the drugs (Del Negro et al., 2002b, 2005; Peña et al., 

2004). The pharmacological experiments were generally inconsistent with an 

obligatory role for pacemaker-like preBötC neurons in rhythmogenesis, and 

emphasized the viability of rhythmogenesis due to network properties (Grillner, 

2006; Grillner and Jessell, 2009).  

3.1.3 Group pacemaker hypothesis and recurrent excitation 
Even though pacemaker-like preBötC neurons are highly unlikely to be 

rhythmogenic, the two inward currents ICAN and INa-P are ubiquitously expressed 

in preBötC neurons, regardless of whether those neurons exhibit pacemaker-like 

activity (Crowder et al., 2007; Pace et al., 2007a, 2007b). Building on a 

speculative notion first proposed by Rekling, and then articulated by an influential 

review by Rekling and Feldman (Rekling and Feldman, 1998), our laboratory 

formulated the idea that ICAN might augment burst generation in a network 

consisting of excitatory neurons with synaptic connections among them. 

Consistent with that mechanism, excitatory synaptic transmission has been 
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acknowledged as an essential property for rhythmogenesis (Funk et al., 1993; 

Wallén-Mackenzie et al., 2006).   

As alluded to above, the group pacemaker hypothesis proposed that recurrent 

excitation was essential, such that respiratory rhythm generation is a network 

property that emerged from the recurrent interactions among these neurons 

instead of an individual cellular property (Rekling and Feldman, 1998). An explicit 

mathematical model of the group pacemaker was established in 2009; rhythmic 

inspiratory bursts were only possible in that model when synaptic transmission 

was coupled to activation of ICAN (Rubin et al., 2009). The Rubin-Hayes model 

illustrated rhythm generation that did not rely on a voltage-dependent ‘pacemaker’ 

current such as INa-P, but rather the recurrent synaptic excitation among neurons 

coupled to burst-generating post-synaptic currents like ICAN.  

Nonetheless, INa-P is ubiquitously expressed in the preBötC, so the Rubin-Hayes 

model was modified later to include both INa-P and ICAN (Dunmyre et al., 2011). 

The group-pacemaker model was widely applied in a series of network studies 

including not only the rhythmogenic populations within the preBötC but also the 

premotor neurons located in the intermediate reticular formation (Wang et al., 

2014; Song et al., 2015, 2016) but its veracity as a model of rhythm generation 

per se has still not been fully evaluated. 

3.1.4 Pacemaker-like models with more biophysical realism 
In parallel with models of the group-pacemaker mechanism (Rubin et al., 2009; 

Dunmyre et al., 2011) an alternative pacemaker-like model of preBötC neurons in 

2011, inspired by Thoby-Brisson and Ramirez (2001) and their identification of 
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INa-P and ICAN-mediated bursting neurons, introduced two types of independent 

bursting modules incorporated into one cell (Toporikova and Butera, 2011). In 

this two-compartment model of a preBötC neuron, the voltage-dependent 

activation and inactivation of INa-P acted as the mechanism for bursting in the 

somatic compartment while the dendritic compartment formed rhythmic bursts as 

a result of Ca2+-related oscillations and ICAN. This Toporikova-Butera model 

featured electrotonic coupling between somatic and dendritic compartments so 

that their oscillations could be synchronized. Jasinski and colleagues (2013) then 

modified Toporikova-Butera by combining these compartments into a single-

compartment. The cellular pacemaker-like activity of the Jasinski model does not 

solely depend on INa-P or Ca2+ related oscillations and ICAN. Blocking either ionic 

mechanism does not fully abolish the bursting rhythm of the cell (Jasinski et al., 

2013). The Jasinski model also featured a detailed Ca2+ material-balance system 

including a Calcium-induced-Calcium-release (CICR) subsystem modeling the 

Ca2+ exchange between cytosol and erdoplasmic reticulum (ER), an inositol 

(1,4,5)-trisphosphate (IP3)-mediated intracellular Ca2+ releasing pathway, and a 

high-voltage activated (HVA) Ca2+ channel (Jasinski et al., 2013). The Jasinski 

model was a significant advance because it introduced biophysical realism into 

preBötC modeling, yet it was at the same time atavistic because by nature it was 

still a pacemaker-like model, the rationale of which is questionable since no 

existing data support the obligatory role of pacemaker neurons in respiratory 

rhythm generation, no putative ‘pacemakers’ have ever been recorded in vivo, 
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and considerable data from in vitro experiments argue against the pacemaker 

hypothesis and strongly favor network mechanisms of rhythm generation.  

While the models by Toporikova, Butera, and Jasinski et al. provide a detailed 

description of intracellular Ca2+ dynamics, the role of the IP3-mediated 

intracellular Ca2+ release was questioned by several contemporary studies that 

attenuated or blocked CICR mechanisms but did not significantly perturb 

respiratory bursts and rhythms (Beltran-Parrazal et al., 2012; Ben-Mabrouk et al., 

2012). We surmise from these studies that intracellular Ca2+ dynamics (CICR 

mainly) and ICAN activation might serve as a ‘safety factor’, which enhances the 

robustness of inspiratory bursts without being obligatory for rhythmogenesis.  

This idea that a large ICAN-mediated burst is not rhythmogenic does not solely 

come from the CICR-related experiments summarized above but is also 

consistent with the burstlet hypothesis proferred by Kam and Feldman (Kam et 

al., 2013b), which proposed that when a preBötC burst occurred, its high 

amplitude inspiratory component was always preceded by a pre-inspiratory 

subthrehold activity that resembled a burstlet. This last particular point was a 

crucial one in our present work, because we included ICAN, akin to Rubin-Hayes, 

but de-emphasized its central role and importance in light of these data from 

2012, as well as our own ongoing experiments (Picardo, Dorst, Guinamard, and 

Del Negro, unpublished 2016). 

3.1.5 Burst termination: the role of pumps and synaptic depression 
The understanding of mechanisms contributing to burst termination has 

developed continuously since the original Rubin-Hayes model was proposed in 
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2009. It was suggested that Na+, as the dominant inward charge carrier for the 

inspiratory bursts mediated by ICAN, would accumulate during the inspiratory burst 

and in turn recruit the electrogenic Na/K ATPase pump to produce the outward 

current, Ipump, aiding in the burst termination. The possible role of Ipump in burst 

termination was experimentally investigated by quantifying its amplitude during 

arbitrary-waveform voltage-clamp experiments. preBötC neurons were clamped 

at EK at the end of a simulated inspiratory burst, which thus precluded K+ currents, 

and enabled the investigators to measure the contribution of Ipump by 

pharmacological subtraction (Del Negro et al., 2009). The authors showed that 

Ipump consisted of a dynamic component exceeding 400 pA, which was present at 

the termination of the burst phase and then significantly decayed within 25-100 

ms, as well as a tonic component measuring approximately 100 pA which might 

only contribute to maintaining the resting membrane potential and thus 

influencing the network excitability by virtue of being relevant in all preBötC 

neurons (Del Negro et al., 2009).  

Aside from the Na/K ATPase pump, modeling and experimental studies have 

identified the role of short-term synaptic depression in inspiratory burst 

termination as well as the inspiratory-expiratory phase transition (Kottick and Del 

Negro, 2015). The synaptic depression was first a theoretical idea embedded in 

Rubin-Hayes, which was modeled abstractly using a synaptic gating variable 

such that synaptic depression was induced by a depolarization block of spiking 

during the burst phase, stopping further Ca2+ influx and diminishing the remaining 

spikes in the burst, therefore contributing to burst termination (Rubin et al., 2009).  
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Aiming to provide a model for synaptic dynamics in rhythmogenesis with more 

biophysical realism, Guerrier et al. later proposed a detailed model to describe 

the interactions of pools of synaptic vesicles (readily releasable and recycling, 

respectively) as well as a recovering state, and their effects on the release of 

neurotransmitters between presynaptic and postsynaptic preBötC neurons. The 

Guerrier et al. model, which was otherwise simple and generic in its modeling of 

somatic electrical properties, could to a great extent, account for synaptic 

facilitation and recurrent excitation as the burst initiation mechanism, and 

synaptic depression due to the limited number of docking sites for synaptic 

vesicles as the burst termination mechanism (Guerrier et al., 2015).  

3.1.6 The ‘next generation’ preBötC neuron model: objectives and 
directions   
By comparing and synthesizing the modeling studies on the rhythmogenic 

neurons within the preBötC, the cellular model this study proposes includes a 

unified Na+ channel that exhibits both fast and persistent Na+ current, an HVA 

voltage-dependent Ca2+ current which influences cellular excitability and ICAN 

activation, a realistic ICAN that is essential for generating augmented sigh-like 

bursts, a Na/K ATPase pump as one of the burst-terminating mechanisms in 

conjunction with and a glutamatergic synapse-driven recurrent excitation model – 

with synaptic facilitation for burst initiation and synaptic depression for burst 

termination – similar to Guerrier et al.’s model. This synthesized cellular model, 

when coupled in a rudimentary network model suitable for bifurcation and other 

analyses related to nonlinear dynamics, can account for most experimental 

results regarding respiratory rhythmogenesis and therefore provides new insights 
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and testable predictions to direct future experimental investigations of respiratory 

rhythm- and pattern-generating circuitry.  

3.2 MATERIALS AND METHODS 

3.2.1 Model description 
The cellular model included in the present study features Hodgkin-Huxley-type 

spiking currents with 6 additional currents: calcium-activated non-specific cation 

current (ICAN) (Crowder et al., 2007; Pace et al., 2007a; Mironov, 2008, 2013; 

Pace and Del Negro, 2008; Rubin et al., 2009; Mironov and Skorova, 2011), 

unified Na+ current combining INa-F and INa-P (INa) (Ptak et al., 2005), excitatory 

synaptic current (Isyn) (Guerrier et al., 2015; Kottick and Del Negro, 2015), Na/K 

ATPase pump current (Ipump) (Del Negro et al., 2009; Rubin et al., 2009; Krey et 

al., 2010), voltage-dependent Ca2+ current (ICa) (Toporikova and Butera, 2011; 

Jasinski et al., 2013), and Na+ and K+ leakage currents.  

The current balance equation takes the form:  

C dV
dt

= −Ileak (V ,Na)− INa (V ,h,Na)− IK (V ,n)− ICAN (V ,Ca)− Isyn (V ,r)  

 −ICa (V ,mCa ,hCa ,Ca)− I pump (Na)  

where  

m(V )=1/ 1+ exp V −θm
σ m
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dNa
dt

=αNa (−ICAN (V ,Ca)− I pump (Na)− rateNa ⋅ INa (v,h,Na))  

dr
dt
=αr ⋅ glut(V, ydock ) ⋅ (1− r)−βr ⋅ r  
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+ kx ⋅ (1− x) ⋅H (V −θV )  

dyfree
dt

=
(1− yfree − ydock )

τ rec
−
1

τ dock
⋅ (ydockmax − ydock ) ⋅ yfree ⋅ 1+

x − XP
XP

⋅H (V −θV )
%

&
'

(

)
*

%

&
'

(

)
*  

dydock
dt

=
ydockmax − ydock

τ dock
⋅ yfree ⋅ 1+

x − XP
XP

⋅H (V −θV )
#

$
%

&

'
(

#

$
%

&

'
(−

1
τ rel

#

$
%

&

'
(⋅ ydock ⋅

x − XP
XP

#

$
%

&

'
(

#

$
%%

&

'
((⋅H (V −θV )  

describe the dynamics of the state variables for each s in {h,n,mCa ,hCa} ; 

intracellular Ca2+ concentration, Ca; the activation of Na+ channel m, Na+  

concentration, Na; AMPA receptor-mediated ionotropic synaptic gating variable, r; 

synaptic facilitation variable x; the fraction of synaptic vesicles in the recycling 

pool (RP), 𝑦!"##; and the fraction of synaptic vesicles in the readily releasable 

pool (RRP), 𝑦!"#$ (Fig. 3.1).  

It is also worth mentioning that the activation of Na+ current is now modeled 

using the steady-state equation instead of an ODE in the Rubin Hayes model for 

the reason that the time constant for the activation of Na+ current was measured 

10% of that for the inactivation (Ptak et al., 2005).  

The synaptic dynamics are slightly modified from that in the Guerrier et al.’s 

study (Guerrier et al., 2015) such that we added a synaptic gating variable r, 

which is modeled for AMPA receptor-mediated synaptic transmission onto a 

postsynaptic neuron. The synaptic facilitation variable x governs all possible 
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mechanisms regarding vesicular release with XP being its equilibrium and τ! its 

facilitation rate. The heavyside function H determines if the membrane potential 

is above the spike threshold 𝜃!. For each presynaptic bouton, synaptic vesicles 

are divided into two pools and one recovering stage: RP, RRP and recovering 

stage, satisfying the conservation equation yfree + ydock + yrec =1 . Synaptic vesicles 

are modeled using mass-action equations, modeling the exchanges among 

different pools. yfree  depends on vesicles in the recovering stage with the time 

constant 𝜏!"#. On the other hand, at rate 𝜏!"#$, the flux of vesicles to the RRP is 

limited by the available sites 𝑦!"#$!"# − 𝑦!"#$ where 𝑦!"#$!"# is the maximal 

number of sites in the RRP. Synaptic vesicles in the RRP are available to be 

released as neurotransmitters at rate 𝜏!"#.  
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Figure 3.1. Schematic diagram of synaptic dynamics. Vesicles are divided into two 

pools: a recycling pool (RP, green) and a readily releasable pool (RRP, red), as well 

as one stage where vesicles are recovering (“rec”, yellow). Vesicles in the RRP, after 

release, recover via mass action kinetics into the RP (yellow arrow). Vesicles in the 

RP proceed to dock in the RRP (cyan arrow). Vesicles in the RRP are available to 

release (red arrow) neurotransmitters (blue circles), which in this model represents 

excitatory transmitter glutamate as is required in the preBötC for respiratory 

rhythmogenesis.  

Whole-cell currents are modeled with chord-conductance equations, in some 

circumstances modified or adopted from previous established rhythmogenic 

neuronal models (Ptak et al., 2005; Rubin et al., 2009; Toporikova and Butera, 

2011; Jasinski et al., 2013; Guerrier et al., 2015): 

Ileak (V ,Na)= gkl ⋅ (V −EK )+ gnal ⋅ (V −ENa (Na))  

INa (v,h,Na)= gna ⋅m
3(V ) ⋅h ⋅ (V −ENa (Na))  

IK (V ,n)= gK ⋅n
4 ⋅ (V −EK )  

Isyn (V ,r)= gsyn ⋅ r ⋅ (V −Esyn )  

ICa (V ,mCa ,hCa ,Ca)= gCa ⋅mCa ⋅hCa ⋅ (V −ECa (Ca))  

ICAN (V ,Ca)= gCAN ⋅ (V −ECAN ) / 1+ exp
Ca− kCAN
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The remaining functions including voltage-dependent channel gating are: 
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Parameters are set to the following values for the model:  

𝐶 = 45  𝑝𝐹,𝑔!" = 2.84  𝑛𝑆,𝑔!"# = −61.46  𝑚𝑉,𝑔!" = 114  𝑛𝑆,𝐸! = −74  𝑚𝑉, 

  𝑔! = 40  𝑛𝑆,𝑔!"# = 1  𝑛𝑆,𝑉!"# = 0  𝑚𝑉, 𝑘!"# = 0.9  𝜇𝑀,𝐸!"# = 0  𝑚𝑉,   

  𝑔!"# = 0.55  𝑛𝑆,𝐸!"# = 0  𝑚𝑉,𝜃! = −36  𝑚𝑉,𝜎! = −8.5  𝑚𝑉,𝑇!!"# = 1  𝑚𝑠, 

  𝜃! = −30  𝑚𝑉,𝜎! = 5  𝑚𝑉,𝑇!!"# = 15  𝑚𝑠,𝜃! = −15  𝑚𝑉,𝜎! = −4.5  𝑚𝑉,   

𝑇!!"# = 40  𝑚𝑠,𝜃!!" = −35  𝑚𝑉,𝜎!!" = 6  𝑚𝑉,𝑇!!" = 0.5  𝑚𝑠,𝜃!!" = −52.4  𝑚𝑉,   

𝜎!!" = −5.2  𝑚𝑉,𝑇!!" = 100  𝑚𝑠, 𝑟𝑎𝑡𝑒!" = 0.1,𝑛𝑎𝑝!! = 0.015, ℎ!"#$ = −0.06, 

  𝛼!" = 0.025  𝜇𝑀 ∙ 𝑝𝐴!! ∙𝑚𝑠!!,𝜃!"# = 0.9  𝜇𝑀,𝜎!"# = −0.05  𝜇𝑀, 𝑘! = 1,   

𝑁𝑎!"#$ = 5  𝑚𝑀, 𝜏!" = 500  𝑚𝑠,𝛼! = 4,𝛽! = 0.05,𝑦!"#$!"# = 0.2,   

𝛼 = 6.6×10!!  𝑚𝑀 ∙ 𝑝𝐴!! ∙𝑚𝑠!!, 𝑟!"#! = 400  𝑝𝐴, 𝑘!" = 10  𝑚𝑀, τ! = 700  𝑚𝑠, 

𝜃! = −20  𝑚𝑉,𝑋𝑃 = 0.3, 𝜏!"# = 47  𝑚𝑠, 𝜏!"# = 3000  𝑚𝑠, 𝜏!"#$ = 1000  ms.   
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3.2.2 Numerical simulation and analysis 
We use XPPaut to conduct self-coupled simulations of our cellular model 

(http://www.math.pitt.edu/~bard/xpp/xpp.html). We employed a 4th-order Runge-

Kutta numerical integration routine with a fixed time step of dt = 0.25 ms using 

NeuronetExperimenter software (http://neuronetexp.sourceforge.net/) to simulate 

two neurons coupled to one another.  

Since a heavyside step function evaluates spike discharge, the system is 

discontinuous. However, analyzing a model using bifurcation theory requires 

continuity. Therefore during the bifurcation study, we use a steep sigmoidal 

function to approximate the heavyside function, with the same threshold value: 

Sigm(V )=1/ (1+ exp(−2 ⋅ (V −θV ))) .   

To further understand the dynamics of this model, we analyzed bifurcations 

associated with burst initiation and termination, using PyDStool 

(http://pydstool.sourceforge.net) to locate the bifurcation points. We adopt the 

fast-slow analysis pioneered by Rinzel and his colleagues as well as trainees 

(Bertram et al., 1995; Rinzel and Ermentrout, 1998a) to analyze the rhythmic 

activity of our model. Different time scales among the variables in a system 

enable us to categorize the variables as either fast or slow (Bertram et al., 1995). 

In the context of the respiratory cycle – which consists of an inspiratory burst (or 

active) phase as well as an interburst interval or (quiescent phase) – the 

oscillation of fast variables would occur rapidly during a single spike whereas the 

oscillation of slow variables would occur over the duration of the entire 

respiratory cycle. During cycles of respiratory activity, the evolution of the slow 

variables causes the fast dynamics to alternate between quiescent and active 
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phases periodically. From the perspective of fast variables, slow variables can be 

treated as parameters so that we could analyze the bursting dynamics by 

studying the solution structure for the fast variables. The topology of solutions of 

the fast variables represents a slow manifold, i.e., the collection of active and 

quiescent states of the fast variables, which is traversed during the respiratory 

cycle by the evolution of the slow variables.  

Specifically, to investigate the dynamics as our cellular model transitions in and 

out of the active (inspiratory burst) and quiescent (interburst interval) phases, it is 

appropriate to study the bifurcation structure of the fast-variable system, using a 

slow variable as a parameter whose value we exploit to explore the solution 

structure of the fast subsystem. In the present study, we select the slow variable 

Na+ concentration as the bifurcation parameter.  

3.3 RESULTS 

3.3.1 Self-coupled simulation and bifurcation analysis 
In the original study of the Rubin-Hayes model, intracellular Ca2+ concentration 

was the critical variable responsible for initiating inspiratory-like bursts (Rubin et 

al., 2009). As a minimal model of a network, which is suitable for geometric 

(phase plane) and bifurcation analyses, the Rubin-Hayes model was coupled to 

itself with an autapse (i.e., a synapse from a neuron onto itself). The basal state 

of the Rubin-Hayes model is tonic spiking, which triggers synaptic transmission, 

and elicits Ca2+ accumulation such that ICAN activates and then generate a burst 

of activity. To recap, ICAN is inexorably associated with inspiratory burst 

generation in the Rubin-Hayes model. However, in the present model, we lessen 
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the role of ICAN so that blocking ICAN altogether would not dramatically affect 

normal rhythmogenesis because recent data (reviewed in 3.1 above) suggests 

that ICAN does not strongly activate during normal eupnea-like inspiratory bursts, 

yet ICAN may contribute greatly during sigh-like burst generation.  

Therefore, without the same dependence on ICAN for eupnea-like rhythmic 

inspiratory bursts in the new model, we reasoned that Ca would not be the most 

relevant slow state variable for assessing the solution structure of the model (i.e., 

acting as a bifurcation parameter in the fast-slow analysis), particularly with 

regard to burst initiation. In order to determine the most relevant slow variable for 

this model that acts as a slowly varying bifurcation parameter transitioning the 

system in (and out) of the burst phase, we conduct self-coupled simulations, 

blocking a few currents individually to investigate the influence of the currents 

and their relevant state variables to the system (Fig. 3.2).  

When blocking the synaptic current, the neuron goes from rhythmic bursting to 

slow (~0.5 Hz) tonic spiking. This shows that synaptic current, when present, 

enables tonic spiking to become bursting. Obviously, gsyn influences the ability to 

burst because it facilitates recurrent excitation. However, because the system 

itself, even in the absence of synaptic current (i.e., gsyn = 0 nS), is already in an 

oscillatory (i.e., tonic spiking) regime, the synaptic related gating variables x, 

𝑦!"## and 𝑦!"#$ cannot be responsible for transitions to the quiescent phase, but 

instead only influence the nature of the active (bursting) phase by governing 

whether it is characterized by single spikes or bursts consisting of multiple spikes 

(bursts). Thus, we conclude that synapse-related state variables cannot be 
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suitable parameters for studying the bifurcations that underlie transitions in the 

respiratory cycle.  

 

Figure 3.2. Self-coupling and individual current-blocking simulations. We couple a 

model neuron to itself via an autapse, and then run the simulation for 10 simulated sec 

(intact model). Then we repeat the simulation for three different conditions: gsyn = 0 nS 

(blocking synaptic current), gCa = 0 nS (blocking voltage-dependent Ca2+ current) and 

gCAN = 0 nS (blocking ICAN). The membrane potential trajectory is shown for each 

scenario. Time and voltage calibrations are shown, along with baseline membrane 

potential (in each trace). 

Next, when we block voltage-dependent Ca2+ current, the neuron remains 

quiescent, which at first seems to satisfy the criterion for a good bifurcation 

parameter (i.e., it could cause the neuron to transition from the active to the 
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quiescent state). However, gCa is still not an ideal bifurcation parameter for the 

following reason. Akin to tonic current in the Jasinski model and leakage current 

in the Rubin-Hayes model, both of which govern excitability so as to induce tonic 

spiking (which seeds recurrent excitation during the pre-inspiratory phase), our 

model relies on voltage-dependent Ca2+ current to influence excitability and 

ensure tonic spiking since its fractional activation at baseline membrane potential 

would give rise to some minimal leakage-like current, and thus serve a similar 

function. Therefore blocking it would naturally put the system in quiescence. The 

role of voltage-dependent Ca2+ current in this model could be substituted by a 

tonic current or a lower K+ leakage conductance (gkl = 2.8 nS) that provides the 

system with the same control of excitability to induce tonic spiking in the absence 

of synaptic transmission. So we conclude that gCa or ICa-associated state 

variables are not ideal bifurcation parameters.  

In addition, when we block ICAN, neuronal bursting is not affected, further 

suggesting that Ca is not the slow variable we are seeking as a bifurcation 

parameter to study the system either.   

From these current blocking simulations, we deduce that Na+ concentration is 

possibly a key variable that influences respiratory cycle dynamics. In particular, it 

directly determines the reversal potential for Na+, which influences both Na+ 

current and Na+ leakage current. Moreover, Na+ concentration affects the Na/K 

ATPase pump current, which along with synaptic depression, acts as a burst 

termination mechanism (Del Negro et al., 2009; Kottick and Del Negro, 2015). Na 

acts as a slow variable that accumulates during the burst phase and its 
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increments activate the pump, which in turn pumps out (i.e., decreases) Na+ and 

due to its inherent electrogenicity hyperpolarizes the neuron. Pump-mediated 

hyperpolarization terminates the burst phase and thus engenders the inter-burst 

interval. From the perspective of those fast variables in the system such as the 

glutamate gating variable r and the activation or inactivation gating variables of 

INa, Na then could be parameterized for us to study the system dynamics during 

the burst phase and burst termination. Accordingly, we used Na as a bifurcation 

parameter and we studied the slow manifold of solutions to the fast-variable 

system during the respiratory cycle (Fig. 3.3) and then delved further to compute 

a two-parameter bifurcation diagram with gsyn as an auxiliary parameter to 

investigate its impact on the solution structure of the fast variables traversed 

during a complete respiratory cycle and examine how that solution structure 

varied with gsyn (Fig. 3.4).  

First we consider gsyn at 0.6 nS, the same synaptic strength as the example 

neuron model shown in Fig. 3.2, and explore the solution structure of the system 

of fast variables as a function of Na+. Figure 3.3 shows the numerically computed 

bifurcation diagram (i.e., the slow manifold) and superimposes a full burst cycle 

in membrane potential-Na+ space (i.e., V-Na space). Next we analyze how the 

inspiratory burst initiates and terminates. Since we are focusing on the 

biophysically realistic Na range of [4.8 mM, 6 mM] in this analysis, we do not 

shown the complete bifurcation diagram, which encompasses a wider range of 

Na, including values that are far beyond what is physiologically realistic. We raise 

this issue because in the range we show [4.8 mM, 6 mM] the bifurcation diagram 
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appears to have disparate branches, but in fact those branches are connected if 

one visualizes the entire diagram. The complete bifurcation diagram consists of a 

branch of stable nodes at the lowest values for membrane potential, which is 

connected to an unstable branch of saddle points at the left-most knee of the 

slow manifold (which coincides with Na ~ 5 mM, see Figs. 3.3 and 3.4). The 

branch of saddles proceeds toward increasing values of Na and then ends at a 

Hopf bifurcation point at Na ~ 30 mM. The branch created at the Hopf bifurcation 

returns toward (lower) realistic ranges of Na. As per a Hopf bifurcation, the 

branch of limit cycles encloses a node. The stability of nodes and limit cycles is 

not uniform throughout the branch. We have to study the stability of the entire 

branch and for now confine our interest to the realistic range of Na [4.8 mM, 6 

mM]. 

We begin analyzing a respiratory cycle in the quiescent phase where the 

membrane potential is approximately -57 mV and Na+ concentration is 

decreasing due to pump activity. In the diagram shown in Fig. 3.3, the state point 

would be on the lowest branch of the slow manifold, moving leftward toward the 

left knee of the slow manifold. When Na reaches approximately 5.05 mM, the 

system crosses a saddle-node (SN) bifurcation at the left knee, wherein the 

quiescent state disappears. The system then approaches an attracting stable 

limit cycle, which is the onset of spiking in the model neuron, and Na starts to 

increase again. In Fig. 3.3, the state point traverses the sawtooth-shape 

oscillations at membrane potentials between (approximately) -55 and +40 mV 

while generally moving rightward. Because spiking in the model generates 
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recurrent synaptic excitation (in this case via the autapse), the spiking 

accelerates during the burst (although it is not possible to visualize that speed-up 

in V-Na space) and the spike amplitude decreases concurrently. 

 

Figure 3.3. Bifurcation diagram for gsyn = 0.6 nS using Na as the bifurcation 

parameter. SN, NS, PD and SNL indicate the bifurcation points or limit points. SN 

refers to saddle-node bifurcation; NS refers to a Neimark-Sacker bifurcation; PD refers 

to a period-doubling bifurcation; and SNL refers to saddle-node-loop bifurcation. Solid 

black line indicates the stable branch of nodes; the dotted line stands for the unstable 
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branch of saddle points. The superimposed red trace shows the trajectory of a 

complete respiratory cycle. The active phase (burst) originates at the SN bifurcation 

point and evolves clockwise. The trace that overlays the stable branch of nodes up to 

the SN bifurcation represents the trajectory during the quiescent (inter-burst interval) 

phase. Purple lines (stable is solid and unstable is dotted) represent the maximum 

and minimum amplitudes of spikes in the active state. 

As the burst continues, a Neimark-Sacker (NS) bifurcation occurs, that is 

oscillations in the state variable Na periodically modulate the spike (voltage) 

oscillation, which creates a torus. At the NS bifurcation, the limit cycle of the 

spike oscillation becomes unstable, and thereafter appears to be drawn to the 

torus, which we surmise to be weakly attracting (but the precise nature of the NS 

bifurcation remains to be demonstrated). Although the precise position and the 

stability of the torus has yet to be numerically determined, it appears to be 

weakly attracting because when we start a simulation using a point close to the 

NS bifurcation on the unstable limit cycle as the initial condition, then a train of 

spiking at ~20 Hz occurs for longer than 16 sec before the system transitions to 

the quiescent phase.  

Meanwhile during the active phase, synaptic depression begins to show its 

effects such that the inward (depolarizing) current due to recurrent synaptic 

excitation is decreasing in strength, and is unable to counteract the 

hyperpolarizing electrogenic outward current of the Na/K ATPase pump. The 

contribution of the pump is most easily visible in Fig. 3.3 when Na passes ~5.4 

mM and the hysteresis loop in V-Na space becomes apparent (at the nadir of 

each spike oscillation Na slightly decreases). This change in the balance of 
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synaptic drive (which acts to further depolarize the neuron) compared to the Na/K 

ATPase pump (which in contrast acts to hyperpolarize the neuron) occurs at a 

period-doubling (PD) bifurcation, where the limit cycle of the spike becomes 

strongly unstable. The net effect of the PD bifurcation is to increase the 

amplitude of the spike oscillation (this is clear in Fig. 3.3 as the sawtooth-like 

spike increases in magnitude), prolong the inter-spike interval, and cause the 

membrane potential to approach the unstable manifold of the saddle point 

(neither the prolongation of the inter-spike interval nor the manifold of the saddle 

are visible in the V-Na space of Fig. 3.3). Eventually Na increments cause the 

membrane potential to cross the unstable manifold of the saddle point, which is a 

separatrix, and the trajectory in the new basin of attraction evolves to the stable 

branch of stable nodes (at approximately -60 mV). The transition to quiescence 

occurs near a saddle-node-loop (SNL) bifurcation in the system (Na ~ 5.58 mM); 

the proximity to the homoclinic orbit formed at the SNL explains why the spike 

rate slows down after passing the PD point (Rinzel and Ermentrout, 1998b; 

Strogatz, 2001). During the quiescent phase (i.e., inter-burst interval) Na slowly 

decreases as the system follows the stable branch of nodes toward the SN 

bifurcation point where the next burst will initiate, restarting another active phase. 

This cycle repeats periodically. 

To determine the effect of synaptic strength on burst initiation and termination, 

we then vary gsyn in a two-parameter bifurcation study (Fig. 3.4). Recalling the 

analyses from Fig. 3.3, with gsyn = 0.6 nS, the burst initiates at the SN and 

terminates just prior to the SNL. Now considering other values for gsyn on two-
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parameter bifurcation graph in Fig. 3.4A, we can see that in the absence of 

synaptic transmission (gsyn = 0 nS), the termination point of the active phase 

(nominally considered to be the SNL) collides with the SN bifurcation.  
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Figure 3.4. A. Two-parameter bifurcation diagram. For a selection of gsyn values, 

bifurcation points are numerically computed using Na as the bifurcation parameter. 

The solid line represents the saddle-node (SN) bifurcation. The finely dotted line 

represents the Neimark-Sacker (NS) bifurcation. The dash-dot line represents the 

period-doubling (PD) bifurcation, and the dashed line represents the saddle-node-loop 

(SNL) bifurcation. Blue horizontal dashed lines indicate four representative gsyn values, 

whose corresponding one-parameter bifurcation diagrams (V-Na space) in panels B, 

C, D and E. B-E. The bifurcation diagrams representing the slow manifold of the 

system for gsyn = 0 (B), 0.1 (C), 0.16875 (D), and 0.3375 (E), all in units of nS. The 

display conventions for panels B-E are in the same manner as Figure 3.3; each is 

superimposed with the red simulation trace of V versus Na. 

Their intersection forms a saddle-node on an invariant circle (SNIC) bifurcation. 

This revised version (gsyn = 0 nS) of the model neuron generates tonic spikes 

instead of bursts. During each spike oscillation, the system traverses the SNIC 

bifurcation, and generates only one spike before the active phase terminates (Fig. 

3.4B). The inter-spike interval takes place on the branch of stable nodes. 

According to the conventions in Fig. 3.3, the system evolves clockwise in Fig. 

3.4B.  

Increasing the gsyn to 0.1 nS exterminates the degenerate SNIC bifurcation but it 

does not destroy the existence of a homoclinic orbit. For gsyn > 0 nS, the 

minimum voltage reached during the limit cycle (indicated by lower purple curves 

in Figs. 3.3 and 3.4B-E) moves up onto the branch of saddle points. Now the 

homoclinic orbit is formed by the intersection of the stable and unstable 

manifolds of the saddle, which is recognized as a saddle-node-loop (SNL) 

bifurcation (Fig. 3.4A and C).  
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As gsyn is increased further, a NS bifurcation appears near gsyn = 0.16875 nS (Fig. 

3.4A and D). Increasing gsyn has the practical effect of enhancing recurrent 

excitation, which causes more spikes in a burst. Synaptic facilitation, we 

hypothesize, comes into effect by accelerating the spikes and elevating the 

baseline membrane potentials such that the system follows the branch of stable 

limit cycles before the NS bifurcation. This hypothesis also agrees with the fact 

that during the early stage of bursting, the synaptic facilitation variable x 

increases significantly (0.35 – 0.8). When Na crosses the NS bifurcation, a torus 

(see Fig. 3.4A) is created, causing the spikes to decrease in amplitude while 

increasing in frequency during the burst.  

Furthermore, when we keep increasing gsyn until it exceeds 0.3375 nS, a PD 

bifurcation is formed (Fig. 3.4A and E). In the context of bursts when gsyn = 

0.3375 nS, when Na passes the PD bifurcation, synaptic depression depletes the 

readily releasable pool of synaptic vesicles, which exhausts the ability to engage 

in recurrent excitation, and the Na/K pump ATPase hyperpolarizes the system. 

Because the synaptic strength is higher for increasing values of gsyn, the SNL 

bifurcation point shifts to higher values of Na, farther away from the SN 

bifurcation (~5.05 mM), and this means that the system generates more spikes 

within a burst before burst termination. In Fig. 3.4A this point is illustrated by the 

V-shape of the diverging SN and SNL points along the ordinate axis. 

As we described for gsyn = 0.6 nS and illustrated in Fig. 3.3, once in the quiescent 

phase, Na is pumped out by the ATPase Na/K pump. Na decrements cause the 
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trajectory to move leftward along the lower branch of stable nodes. Ultimately the 

state point passes once again the SN bifurcation, starting a new active phase.  

3.3.2 Synaptic facilitation and depression both influence neuron 
interactions 
To gain further understanding of how synaptic transmission influences burst-

generating functions in this model, we simulate two neurons with different 

intrinsic properties, with neuron #1 more excitable than neuron #2. We impose a 

synaptic connection from neuron #1 to neuron #2 (but no reciprocal synapse 

from #2 to #1) and inject inward current pulses of 10 ms for two different time 

durations (50 ms and 150 ms) into neuron #1 (Fig. 3.5).  

 

Figure 3.5. Current clamp simulation to two synaptically coupled neurons. Neuron #1 

projects synaptic connection to neuron #2 (schematic shown in upper left). A single 

current pulse is firstly injected to neuron #1 for 50 ms. A 150-ms current pulse with the 

same amplitude is implemented later in the simulation (bottom trace). Membrane 

potentials of both neurons are illustrated (red trace: neuron #1, blue trace: neuron #2). 
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In the presynaptic neuron (#1), a 50-ms depolarizing current pulse induces two 

spikes by depolarizing the membrane potential above spike threshold. The 

postsynaptic neuron, which receives synaptic drive from neuron #1, generates 

excitatory postsynaptic potentials (EPSP) with accumulating amplitudes when 

neuron #1 spikes, although the EPSPs are insufficient to evoke an action 

potential in neuron #2.  

By comparison, when a 150-ms depolarizing current pulse is delivered to neuron 

#1 it evokes five spikes. These spikes drive summating EPSPs in neuron #2. 

However, since the number of docking sites in the RRP is limited by 𝑦!"#$!"#, 

there is less synaptic drive evoked by each successive spike and the amplitude 

of the EPSPs gradually decreases after the peak value; these decreasing EPSPs 

are the manifestation of synaptic depression. These results indicate that synaptic 

excitation will facilitate and (briefly) enhance the drive from the presynaptic to the 

postsynaptic neuron, but the ultimately the synaptic gating variable r and the 

fraction of synaptic vesicles in the RRP 𝑦!"#$ both decrease, indicating that the 

synaptic strength wanes after repetitive activation of the synapse.  

3.3.3 Two neuron group-pacemaker simulation 
Maintaining the intrinsic cellular properties from the current-clamp simulation (Fig. 

3.5), we couple the two neurons to each other and perform numerical simulations 

to study the effect of reciprocal (rather than unidirectional) synaptic coupling.  

A synaptic connection from neuron #1 (which is tonically active [0.4 Hz] when 

isolated) excites neuron #2 (Fig. 3.6B), which in turn excites neuron #1 and the 

ensuing positive feedback cycle results in a burst. During a complete burst cycle, 
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the synaptic facilitation variable x in the presynaptic neuron increases 

exponentially at burst initiation and synaptic vesicles in the RRP begin to release 

neurotransmitter to facilitate the process of synaptic transmission in the 

postsynaptic neuron. However, since the available docking sites in the RRP are 

restricted by 𝑦!"#$!"#, during the burst, only this limited number of docked 

synaptic vesicles can be released, resulting in the decreasing of 𝑦!"#$ during the 

burst. During this process, the peak value of glutamate gating variable r begins to 

decrease concomitantly, hindering further synaptic drive and thus setting the 

stage for burst termination.  
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Figure 3.6. Two-neuron coupling simulation. Schematic diagram shows that synaptic 

connections are implemented between the two neurons. Coupled (A) scenario shows 

membrane potential (V), the fraction of readily releasable synaptic vesicles (𝑦!"#$) and 

glutamate gating variable (r). Uncoupled (B) scenario shows membrane potential (V). 

In parallel, the electrogenic outward current due to the Na/K ATPase pump 

increases as the result of high level of Na+ in the burst phase. During the inter-

burst interval, membrane potentials in both neurons would return to resting state 

and synaptic vesicles also recovered into the RP, making the subsequent burst 

possible.  

3.3.4 Ca2+ subsystem and a possible mechanism for generating ‘sighs’ 
Aside from eupnea and gasping, sighs are also a normal component of 

mammalian respiratory behavior. Sighs are spontaneously generated in the 

respiratory central pattern generator, i.e., the preBötzinger complex (preBötC). A 

sigh is defined as a low-frequency (0.01 - 0.015 Hz) bi-phasic breathing activity, 

in which a burst with a larger amplitude is imposed during a typical eupnea-like 

inspiratory burst (Cherniack et al., 1981; Orem and Trotter, 1993; Takeda and 

Matsumoto, 1997; Lieske et al., 2000; Chapuis et al., 2014). Moreover, sighs 

have been observed in in vitro experiments using slice preparations containing 

the preBötC (Lieske et al., 2000; Ruangkittisakul et al., 2008; Tryba et al., 2008; 

Li et al., 2016). The particularly trenchant recent study by Li et al. indicates that 

the sigh-generating ability may reside in a subset of ~200 preBötC neurons that 

express receptors for bombesin-like peptide transmitters, but it is possible that all 

preBötC neurons would participate during the sigh events triggered by this 

subset of ~200. This suggests that sigh-generating mechanisms may be latent 
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during normal eupnea like breathing and yet become periodically recruited for 

sighs.  

In our modeling study, we also attempt to incorporate sigh generation as a 

feature of the new preBötC interneuron model. As recapped above, a latent sigh-

generating mechanism may reside in each rhythmogenic preBötC neuron such 

that sighs would emerge due to a slow oscillation within the context of the 

already-oscillatory network that generates eupneic inspiratory rhythm.   

Previous studies have shown that Ca2+ activity may contribute to sigh generation 

but not be critical for eupnea-like burst initiation (Lieske et al., 2000; Lieske and 

Ramirez, 2006; Tryba et al., 2008; Beltran-Parrazal et al., 2012). According to 

this hypothesis, we added the following equations of Ca2 dynamics to our model, 

describing in detail the endoplasmic reticulum (ER) activity as well as the Ca2+-

induced-Ca2+-release (CICR) process, as a slow oscillator that only bursts every 

40-60 sec without perturbing the eupnea-like bursts 
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and two ODEs for the IP3 concentration and ER Ca2+ concentration 

dip
dt

=Vplc(Ca)− kdeg ⋅ ip , dCaER
dt

=Vserca (Ca)−VCICR(Ca,ip,CaER )− k f ⋅ (CaER −Ca) . We 

modify the ODE of Ca2+ concentration in the original model to reflect the effects 

from these changes (Lavrentovich and Hemkin, 2008): 

dCa
dt

= −αCa ⋅ ICa (V ,mCa ,hCa ,Ca)+ (VCICR(Ca,ip,CaER )−Vserca (Ca)+ k f ⋅ (CaER −Ca))−Ca /τ Ca  
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Of these equations, 𝑉!"#$%describes the sarco(endo)plasmic Ca2+ ATPase 

(SERCA) pump that mediates Ca2+ entering ER from cytosol with 𝑉!! being the 

maximum flux of Ca2+ from the pump (Schatzmann, 1989; Falcke, 2004). 𝑉!"# 

describes phospholipase C (PLC) activity in the same manner as 𝑉!"#$%. 𝑉!"!# 

describes the IP3 receptor-mediated influx of Ca2+ from the ER to the cytosol with 

𝑉!! being the maximum flux, 𝑘!"# and 𝑘!"# the activiting and inhibiting affinities, 

and N the Hill coefficient (Höfer, 1999; Tu et al., 2005a, 2005b). In the newly 

added ODEs, 𝑘!"# is the degradation rate of IP3 and 𝑘! models the leakage rate 

of Ca2+ within the exchange between ER and cytosol (Houart, 1999; Höfer et al., 

2002). Associated parameters take the following values (Lavrentovich and 

Hemkin, 2008):  

𝑉!! = 15  𝜇𝑀/𝑠,𝑉!! = 40  𝑠!!,𝑉! = 0.05  𝜇𝑀/𝑠, 𝑘! = 0.1  𝜇𝑀, 𝑘!"# = 0.15  𝜇𝑀, 

𝑘!"# = 0.15  𝜇𝑀, 𝑘!"! = 0.1  𝜇𝑀,   𝑘! = 0.3  𝜇𝑀, 𝑘!"# = 0.08  𝑠!!, 𝑘! = 0.5  𝑠!!,   

𝑁 = 2.02,𝑀 = 2.2.  

Then we run a 100-sec simulation on a self-coupled model neuron to test the 

eupnea sigh alternation while monitoring the membrane potential, ICAN and 

cytosol Ca2+ (Fig. 3.7).  

During the 100-sec simulation, two sigh-like bursts occur and the interval 

between is 40 sec. When we prolong the duration of the simulation to 400 sec, 

this period for sigh-like bursts varies little. We find that cytosolic Ca2+ 

accumulates during a total of approximately 10 eupnea-like bursts before 

increasing significantly to activate ICAN to initiate a sigh-like burst. In contrast, 

blocking the voltage dependent ICa or the ER pathway abolishes sigh-like bursts 
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without affecting eupnea-like bursts, suggesting that ER activity and periodic ICAN 

activation is essential in sigh generation.  

 

Figure 3.7. Self-coupled neuron simulation including a Ca2+ subsystem. Membrane 

potential is shown with two sigh-like bursts indicated. The traces of ICAN and Ca2+ are 

also illustrated where the bursts occur simultaneously with the sigh-like bursts in the 

membrane potential trace. A 10-sec part of the membrane potential trace shown at 

higher sweeping speed to illustrate eupnea inspiratory and sigh-like bursts. 

Furthermore, when zooming in on a single sigh-like burst, our model 

performance is consistent with the experimental finding that a sigh, by its nature, 

is a bursting phase with larger amplitude imposed on a typical eupnea-like burst 
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(Lieske et al., 2000; Ruangkittisakul et al., 2008; Chapuis et al., 2014; Li et al., 

2016); therefore the duration for a sigh-like burst (550 ms) is approximately 2.5 

times of a eupnea-like burst (210 ms). Moreover, due to the long duration of sigh-

like bursts, Na+ influx is larger than that during an eupnea-like burst, leading to a 

stronger activation of the ATPase Na/K pump and resulting in a longer inter-burst 

interval after a sigh-like burst.  

3.4 DISCUSSION 
After reviewing the evolution of models of respiratory rhythm generation over the 

past few decades, and assessing their strengths and weakness, we have 

constructed a group-pacemaker model that is generally consistent with all 

existing data about the cellular and ionic mechanisms of rhythm generation. 

When self-coupled, our model can generate robust eupnea-like inspiratory bursts 

via a biophysically realistic synapse-driven recurrent excitation followed by burst 

termination due to synaptic depression and Na/K ATPase pump.  

In the original Rubin-Hayes model, the starting point for our model, the burst 

initiation and termination mechanisms were linked to synapse-driven Ca2+ 

accumulation and consequent ICAN activation. By contrast, in the present study, 

synaptic facilitation governs burst continuation, while synaptic depression begins 

burst termination and ICAN only serves as a “safety factor” that enhances the 

robustness of inspiratory bursts instead of an obligatory burst-generating inward 

current. Moreover, instead of two distinct channels for transient and persistent 

Na+ current, we utilize a unified Na+ channel combining both transient and 

persistent components, which acts as the main charge carrier for the action 
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potentials. We also maintain the Na/K ATPase pump current as a hyperpolarizing 

mechanism that mediates burst termination and influences the inter-burst interval 

by means of its slow deactivation as Na+ is cleared from the cytosol.  

Recognizing Na as a slow variable in the system, which, when fixed at different 

values allowed us to study transitions of the system between an oscillatory and a 

quiescent state, i.e., we treated it as a bifurcation parameter. By varying gsyn to 

manipulate the synaptic strength, we determined the dynamics in our system 

such that burst initiates at a SN bifurcation and ends near a SNL (for gsyn ≠ 0, 

the system crosses the unstable manifold of the saddle point while Na < NaSNL), 

but in the intervening parts of the burst phase passes through a NS and a PD 

bifurcation for increasing values of gsyn. These NS and PD bifurcations have not 

heretofore been associated with oscillatory bursting neuron models and 

represent a novel intellectual contribution of this oeuvre (Bertram et al., 1995; 

Izhikevich and Hoppensteadt, 2004; Guckenheimer et al., 2005). 

We then performed a current clamp simulation to study the EPSPs in the 

postsynaptic neuron. We observed that EPSPs could be facilitated during 

repetitive synaptic activation, but that facilitation was short-lived (~50 ms) and 

rather than growing in amplitude and summation, instead we found that the 

amplitude EPSPs decreased in the process of continuous synaptic transmission 

as a result of synaptic depression.  

By synaptically coupling two neurons to one another, robust and synchronized 

eupnea-like bursts were possible in the minimal network. Furthermore, when we 

inserted the Ca2+ subsystem including the ER activity and CICR process, a slow 
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oscillatory mechanism heavily relying on ICAN activation was achieved in the 

model such that the self-coupled model neuron could generate low-frequency 

biphasic sigh-like bursts without affecting typical eupnea-like bursts.  

In summary, the cellular model proposed in the present study, to a large extent, 

captures the biophysical realism of neurons in the rhythmogenic kernel. This 

synapse-driven group pacemaker model, when coupled, generates robust 

eupnea-like inspiratory bursts. The mechanism underlying sighs has not been 

determined experimentally. Whether a subpopulation of sigh-only neurons exists 

or every rhythmogenic neuron possesses the ability to generate sighs, our Ca2+ 

subsystem would allow us to model either option by including (or not) a slow 

oscillator including an ER and the CICR mechanisms in all consituent preBötC 

interneurons. Due to the abstract nature of mathematical models, ours does not 

fully capture every aspect of rhythmogenic preBötC neurons, but rather 

encapsulates advantages from a number of previously established models, 

including the ICAN and Ipump from the Rubin-Hayes model, the ICa from the Jasinski 

model, the unified INa from the Ptak study and the synaptic dynamic from the 

Guerrier model (Ptak et al., 2005; Rubin et al., 2009; Jasinski et al., 2013; 

Guerrier et al., 2015). 

3.4.1 Further investigations of the nonlinear dynamics of model bursting 
Aside from its performance as a specifically respiratory model of the neurons in 

the preBötC, the cellular model in the present study shows a rich dynamic 

structure from the perspective of general bursting mechanisms.  
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In the context of the burst classification scheme introduced by Rinzel (Rinzel, 

1987) and further articulated by Bertram et al. (1995), our system does not 

exactly fit the description of any of the three canonical types of bursting 

oscillators, although there are some similarities that we discuss below.  

Type I bursting, often called square-wave bursting, has a SN burst initiation and 

a homoclinic SNL-like burst termination with a hysteresis loop of bi-stability, 

which have also been found in our system. However, type I bursting requires that 

the frequency of spiking decrease monotonically through the burst whereas in 

our system the spike rate and amplitude are modulated at burst onset and then 

further affected by the NS and PD bifurcations, resulting in the spiking frequency 

accelerating momentarily before slowing down. Our system has more state 

variables than the lower dimensional Chay-Cook model used in Bertram’s 

classification scheme (Bertram et al., 1995), so the dynamics in our model have 

the potential to be more complex than the canonical type I system Bertram et al. 

analyzed.  

For type II bursting system, two slow variables are required for the occurrence of 

oscillation regardless of spiking in the fast subsystem, and the bursting phase 

begins and ends at SNIC, causing a “parabolic bursting” in which the spiking 

frequency increases and then decreases during the bursting phase. However, 

our system could not oscillate without spikes. Even though the bursting in our 

system appears to also show a qualitatively similar bursting in terms of spike 

frequency, when synaptic transmission is strong enough to evoke a burst, the 

bursting phase starts off a SN bifurcation and terminates near a SNL instead of 
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SNIC. The only time our model exihibits a SNIC is during the gsyn = 0 nS regime, 

and that gives rise to tonic spiking, not bursting.  

Our system is certainly not a type III bursting system since the branch of stable 

nodes traversed during the quiescent phase is the same branch of nodes born at 

the Hopf bifurcation, and in type III system this means that the quiescent state 

has a voltage value well depolarized to rest and in fact close to, or slightly 

exceeding, the spike threshold. In our system, in contrast, the lower bound of the 

limit cycle resides at voltages that exceed the branch of stable nodes by 10 - 15 

mV. Furthermore, bursts terminate during type III bursting via a saddle-node of 

limit cycles bifurcation (also known as a saddle-node of periodics [SNP]) instead 

of near a homoclinic SNL bifurcation. Finally, type III bursting systems are 

typically characterized by intra-burst spike frequencies that remain unchanged 

during a burst and depend on the imaginary eigenvalues of the Hopf bifurcation, 

regardless of the existence of homoclinic orbits; whereas our system shows clear 

modulation of spike frequency during the burst due to the presence of a 

homoclinic orbit at burst termination.  

In short, our system resembles type I bursting such that the burst in both systems 

begins via a SN bifurcation and terminates near a SNL but the dynamics of our 

system is more complicated that the spiking frequency is modulated during the 

burst and a NS as well as a PD bifurcation occur in the process.  

In the absence of synaptic transmission, our system could only generate tonic 

spikes, which begin at a degenerate SNIC bifurcation and end when the 

trajectory is at its minimum in voltage, crosses the unstable manifold, which is 
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separatrix associated with a saddle point. But when taking gsyn into consideration, 

the synaptic current is responsible for the number of spikes in a burst. As gsyn 

increases, more intra-burst spikes occur per burst cycle. 

The explanation for the NS bifurcation and the occurrence of PD bifurcation when 

further increasing gsyn are not fully understood. The NS bifurcation, also known in 

general as the secondary Hopf bifurcation or Hopf bifurcation for maps, is the 

birth of a torus from a limit cycle, i.e., a second limit cycle periodically modulates 

the pre-existing limit cycle, which changes its stability (Kuznetsov and Sacker, 

2008). This bifurcation structure has been reported in discrete systems such as 

predator-prey and population of genetics models (Dénes, 2007; Hone et al., 

2010). Also the occurrence of torus bifurcation was reported in neuronal bursting 

models such that torus bifurcation with a rapid amplitude increase was 

responsible for the transition from spiking to bursting (Burke et al., 2012). 

However our present identification of an NS bifurcation in a realistic biophysical 

cellular model is a novel discovery. Using Na as the bifurcation parameter, we 

only located an oscillatory regime within a realistic parameter range of [4.8 mM, 6 

mM], which only allowed us to determine the terminating points for the oscillation 

without numerically identifying the location underlying the birth of the stable limit 

cycle (Figs. 3.3 and 3.4). However, when continuing our computations beyond 

this parameter range, i.e., to Na concentrations far outside physiologically 

realistic values, we located a subcritical Hopf bifurcation occurring at Na = 30 mM, 

and the NS bifurcation appears to originate from a saddle-node of limit cycles (or 

SNP) formed from an unstable branch of limit cycles originating from this Hopf 
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bifurcation at high Na. Due to the numerical restriction of our simulations, we 

were unable to further analyze the influence of this Hopf bifurcation and the 

saddle-node of limit cycles to the dynamical structures that govern the bursting 

mechanism.  

From a purely dynamical point of view, there are many distinct bifurcation 

structures underlying bursting models (Izhikevich, 2000). But it is difficult to 

assign each bifurcation to a specific biophysical feature of a cellular model. In our 

case, the synaptic dynamics is modeled in detail using equations representing 

synaptic vesicles in different pools. Synaptic facilitation and depression are also 

shown in numerical simulations. However, we have yet to numerically identify the 

roles of such properties in terms of how they affect the dynamical structures, for 

example, the relationship between the maximum number of docking cites in RRP 

𝑦!"#$!"# and the onset of PD bifurcation, or the influence of the time constant for 

𝑦!"#$ to the occurrence of the NS bifurcation. Moreover, the birth of the NS 

bifurcation has not been numerically identified. During the bifurcation analysis in 

this study, we provide a qualitative description of the origin and effect of the NS 

bifurcation that since the system continues to spike after the NS bifurcation with 

lower amplitude and higher frequency, a weakly stable torus is created, hinting a 

supercritical NS bifurcation (Kuznetsov, 1998; Izhikevich, 2000). But we could not 

numerically specify the torus generated by the NS bifurcation to categorize it as 

supercritical or subcritical.  

In our future efforts, we aim to non-dimensionalize our system using a fast time 

scale to simplify the equations and adopt the singular perturbation method to 
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conduct the fast-slow system analysis (Matkowsky and Reiss, 1977; Fenichel, 

1979; Vo et al., 2010). Hence we could achieve a singularly perturbed system 

containing slow variables of our choice (i.e., Na), fast variable (V) and a 

perturbation parameter that evolves with a slow dimensionless timescale. In this 

approximated system, we could save a large amount of computational expense 

in exchange for a detailed bifurcation diagram with smaller time step. Meanwhile, 

we plan to adopt the software VFGEN (Vector Field File Generator, 

http://www.warrenweckesser.net/vfgen/index.html) to import our bifurcation 

analysis files onto other simulation platforms such as MATCONT 

(http://www.matcont.ugent.be/) or AUTO (http://indy.cs.concordia.ca/auto) with 

the purpose of illustrating the bifurcation structures with better resolution and 

identifying the location and stability of the torus created by the NS bifurcation. We 

believe that further exploration of the dynamical structure of our model would 

deepen our understanding of how ionic mechanisms interact with synaptic 

dynamics in the model in order to determine the proper parameter regime for 

bursting and how the various bifurcation structure and quiescence/spiking 

transitions correspond to the functionality of the different components in the 

model. 

3.4.2 Improving the rhythmogenic preBötC network model 
The cellular model in the present study includes a biophysically realistic synaptic 

current, which includes synaptic facilitation and depression as well as a 

glutamate gating variable. Therefore, a model preBötC network (with a realistic 

number of constituent neurons, not simply self-coupled or reciprocally coupled 
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pairs) using this model would allow us to simulate real experiments, whose 

purpose would be to study the initiation and termination of bursts, as well as 

other properties of the real preBötC.  

In determining the boundary condition of how many neurons have to be activated 

to evoke a network-wide burst, simultaneously stimulating 4-9 preBötC neurons, 

endogenous-like bursts would be induced with a delay of 255 ms on average 

(Kam et al., 2013b). In the model network consisting of 330 Rubin-Hayes type 

neurons, we achieved the effect of stimulation by elevating the synaptic gating 

variable, which is an abstraction of synaptic dynamics (Song et al., 2015). 

However, for the new cellular model, we could stimulate the cell in a more 

realistic way by directly elevating the glutamate gating variable. The results of 

these simulations would provide a boundary condition of the number of neurons 

that have to be activated before the occurrence of a network-wide burst in our 

model network. Our estimate, divided by the experimental number (i.e., 4-9, 

described above), would provide us with a ratio, which would assist us in 

predicting the actual size of the rhythmogenic network. These criteria obtained 

from the holographic photostimulation experiments (Kam et al., 2013a) may also 

help us set a realistic value for synaptic coupling probability as well as gsyn. 

In another study, short-term synaptic depression was studied. A refractory period 

was defined as the minimum duration after an endogenous inspiratory burst 

necessary to evoke a subsequent inspiratory burst. It was discovered that a 

refractory period ~2 sec existed by applying laser pulses to the preBötC neurons 

expressing channelrhodopsin at increasing intervals after endogenous inspiratory 
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bursts (Kottick and Del Negro, 2015). A network model using the new cellular 

model would allow us to numerically simulate the experiment. By systematically 

manipulating the duration of the stimulation or the maximum number of docking 

sites within the RRP as an indicator of the strength of synaptic depression, we 

could numerically compute the relationship between the refractory period and the 

bursting duration. This exploration would allow us to determine a more 

biophysically realistic parameter regime underlying the dynamics of the major 

synaptic state variables in our system including x, 𝑦!"## and 𝑦!"#$.   

On the other hand, even though we are interested in studying the rhythmogenic 

preBötC as a neuronal network, to study the intrinsic mechanisms and 

interactions among neurons requires a thorough examination of the constituent 

neuron regarding its cellular and synaptic properties. Therefore in the present 

study, we construct a cellular model and only study the minimal network 

configuration for this model by either autapse or reciprocal coupling. We have not 

implemented the model on a network scale where hundreds of neurons, with 

intrinsic heterogeneity and specific topologies for connectivity, are simulated.  

In the past, we adopted the Rubin-Hayes model to establish a model preBötC 

with a random network of a fixed connection rate and connected it with a model 

premotor population to study the robustness of network functionality (Wang et al., 

2014; Song et al., 2015, 2016). Those simulations were done to compare to 

experimental benchmarks in which we used an ultra-fast pulsed laser to 

cumulatively kill neurons within the preBötC while monitoring breathing-related 

motor output from an in vitro slice model of breathing (Wang et al., 2014). Our 
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model rhythmogenic circuitry could qualitatively replicate the laser ablation 

experiments in which the rhythmic amplitude declined precipitously after less 

than 15 neuron deletions and the respiratory rhythm terminated after an average 

of 39 neuron deletions. In the meantime, there have also been some disparities 

between numerical simulation and experiments. In the circumstance of preBötC 

neuronal deletions, the numerical simulation suggested that cumulative removal 

of 12% of the rhythmogenic neurons would cease further rhythm generation, the 

number of which was approximately 6% lower than that in the experiments 

(Wang et al., 2014), suggesting the realistic rhythmogenic preBötC network is 

more robust than our model network. Hence, for the next stage of network 

modeling, we plan to adopt the next generation cellular model proposed in this 

study and construct a more realistic model preBötC network with detailed 

connectivity schemes instead of random connections with a fixed probability. For 

instance, we could rewire the synaptic connections among the neurons based on 

a randomly connected network according to their different intrinsic properties 

such as leakage conductance and initial conditions in a way to make the network 

more robust and efficient in synaptic transmission in order to achieve 

synchronization in the event of network-wide bursting. For a model network as 

such, its functionality would be more robust in terms of clustering or synaptic 

transmission. The network, then, would endure a larger number of neuron 

deletions before the rhythm termination. Therefore, to construct a network model 

using this new cellular model and an improved topological connection strategy 

would strengthen our understanding of the laser ablation experiments and 
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provide a computational insight of how rhythmogenic neurons are interconnected 

within preBötC.  
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