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Electrical and chemical synapses shape the dynamics of neural networks, and their

functional roles in information processing have been a longstanding question in

neurobiology. In this paper, we investigate the role of synapses on the optimization of the

phenomenon of self-induced stochastic resonance in a delayed multiplex neural network

by using analytical and numerical methods. We consider a two-layer multiplex network

in which, at the intra-layer level, neurons are coupled either by electrical synapses or

by inhibitory chemical synapses. For each isolated layer, computations indicate that

weaker electrical and chemical synaptic couplings are better optimizers of self-induced

stochastic resonance. In addition, regardless of the synaptic strengths, shorter electrical

synaptic delays are found to be better optimizers of the phenomenon than shorter

chemical synaptic delays, while longer chemical synaptic delays are better optimizers

than longer electrical synaptic delays; in both cases, the poorer optimizers are, in fact,

worst. It is found that electrical, inhibitory, or excitatory chemical multiplexing of the

two layers having only electrical synapses at the intra-layer levels can each optimize

the phenomenon. Additionally, only excitatory chemical multiplexing of the two layers

having only inhibitory chemical synapses at the intra-layer levels can optimize the

phenomenon. These results may guide experiments aimed at establishing or confirming

to the mechanism of self-induced stochastic resonance in networks of artificial neural

circuits as well as in real biological neural networks.

Keywords: optimization, self-induced stochastic resonance, synapses, multiplex neural network, community

structure

1. INTRODUCTION

Noise is an inherent part of neuronal dynamics, and its effects can be observed experimentally
in neuronal activity at different spatiotemporal scales, e.g., at the level of ion channels,
neuronal membrane potentials, local field potentials, and electroencephalographic or
magnetoencephalographic measurements (Guo et al., 2018). While noise is mostly undesirable in
many systems, it is now widely accepted that its presence is crucial to the proper functioning of
neurons in terms of their information processing capabilities.
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Some mechanisms for optimal information processing are
provided via the well-known and extensively studied phenomena
of stochastic resonance (SR) (Benzi et al., 1981; Longtin, 1993;
Gammaitoni et al., 1998; Lindner et al., 2004; Zhang et al.,
2015) and coherence resonance (CR) (Hu and MacDonald, 1993;
Neiman et al., 1997; Pikovsky and Kurths, 1997; Lindner and
Schimansky-Geier, 1999; Lindner et al., 2004; Beato et al., 2007;
Hizanidis and Schöll, 2008; Liu et al., 2010; Bing et al., 2011;
Gu et al., 2011) or via the lesser-known phenomenon of self-
induced stochastic resonance (SISR) (Freidlin, 2001; Muratov
et al., 2005; DeVille and Vanden-Eijnden, 2007; DeVille et al.,
2007; Yamakou and Jost, 2017, 2018) whose mechanism remains
to be confirmed experimentally in real neural systems. Although
these noise-induced phenomena may exhibit similar dynamical
behaviors, each of them has different dynamical preconditions
and emergent mechanisms and may therefore play different
functional roles in information processing. For further details
behind the mechanisms of SR and CR, we refer the reader to
references given above. We also note that the control of SR
and CR in neural networks has attracted a lot of attention.
In particular, it has been shown that hybrid synapses and
autapses (i.e., those characterized by both electrical and chemical
coupling) could be effectively used to control SR and CR (Yilmaz
et al., 2013, 2016).

In this paper, we focus on self-induced stochastic resonance
(SISR). SISR can occur when a multiple timescale excitable
dynamical system is driven by vanishingly small noise. During
SISR, the escape time of trajectories from one attracting region
in phase space to another is distributed exponentially, and the
associated transition frequency is governed by an activation
energy. Suppose the system describing the neuron is placed out of
equilibrium, and its activation energy decreases monotonically as
the neuron relaxes slowly to a stable quiescent state (fixed point);
then, at a specific instant during the relaxation, the timescale
of escape events and the timescale of relaxation match, and the
neuron almost surely fires at this point. If this activation brings
the neuron back out-of-equilibrium, the relaxation stage can start
over again, and the scenario repeats itself indefinitely, leading
to a cyclic coherent spiking of the neuron which cannot occur
without noise. SISR essentially depends on (i) strong timescale
separation between the dynamical variables; (ii) vanishingly small
noise amplitude; (iii) a monotonic activation energy barrier;
(iv) and, most importantly, the periodic matching of the slow
timescale of neuron’s dynamics to the timescale characteristic
to the noise. Thus, compared to CR and SR, the conditions to
be met for observing SISR are more subtle: Like CR, SISR does
not require an external periodic signal as in SR. Remarkably,
unlike CR, SISR does not require the neuron’s parameters be
close to the bifurcation thresholds, making it more robust to
parameter tuning than CR. Moreover, unlike both SR and CR,
SISR requires a strong timescale separation between the neuron’s
dynamical variables.

The mechanism behind SISR suggests that, in an excitable
neuron, the level of noise embedded in the neuron’s synaptic
input may be decoded into a (quasi-) deterministic and coherent
signal. To exemplify, in a network of neurons in a quiescent
state (without any activity), the action of a sufficiently weak

synaptic noise amplitude could occasionally generate a spike in
each neuron. These spikes will have random phases so that their
total input on each individual neuron may average to a stationary
random signal of low intensity. If the noise amplitude suddenly
increases due to a change in the synaptic input, the neurons may
switch to the noise-assisted oscillatory mode. This can further
increase the effective noise amplitude so that the oscillatory
mode may persist even after the disturbance is removed and the
entire neural network in a dormant state may wake up from the
outside rattle. The phenomenon of SISR in neural networks could
therefore play important functional roles in the regulation of the
Sleep-wake transition (Patriarca et al., 2012; Booth and Behn,
2014; Pereda, 2014).

Communication between neurons occurs through
synaptic interactions. Two main types of synapses may be
identified in neural networks, electrical synapses and chemical
synapses (Pereda, 2014). The corresponding functional form
of the bidirectional interaction mediated by the electrical
synapses is defined as the difference between the membrane
potentials of two adjacent neurons, thereby making the coupling
mediated by electrical synapses to be local. Meanwhile, chemical
synaptic interaction always takes place unidirectionally, with
the signal conveyed chemically via neurotransmitter molecules
through the synapses, thereby making chemical synaptic
couplings nonlocal. The functional form of the chemical synaptic
interaction is considered as a nonlinear sigmoidal input-output
function (Greengard, 2001). Moreover, chemical synapses can be
inhibitory or excitatory.When an inhibitory pre-synaptic neuron
spikes, the post-synapses neuron connected to it is prevented
from spiking. When an excitatory neuron spikes, it induces the
post-synaptic neuron to spike. In real biological neurons, the
distance between pre- and post-synaptic ends is approximately
3.5 nm in electrical synapses, and it is comparatively large,
nearly 20–40 nm (Hormuzdi et al., 2004), in chemical synapses.
Distances between pre- and post-synaptic ends induce time
delays in neural networks with the time delays of electrical
synapses being generally shorter than those of chemical synapses.

It is well-known from magnetic resonance imaging that
neural networks may exhibit several types of coupling schemes:
neurons coupled via electrical synapses only; neurons coupled via
chemical synapses only; and neurons coupled by both electrical
and chemical synapses—so-called hybrid synapses (Galarreta
and Hestrin, 1999, 2001; Gibson et al., 1999; Connors and
Long, 2004; Hestrin and Galarreta, 2005; Yilmaz et al., 2013;
Bera et al., 2019; Majhi et al., 2019). Moreover, multiplex
networks of neurons can be formed from different network
layers depending on their connectivity through a chemical link
or by an ionic channel. In brain networks, different regions
can be seen connected by functional and structural neural
networks (Pisarchik et al., 2014; De Domenico, 2017; Andreev
et al., 2018). In a multiplex network, each type of interaction
between the nodes is described by a single layer network and
the different layers of networks describe the different modes of
interaction. Multilayer networks (Pisarchik et al., 2014) open
up new possibilities of optimization, allowing to regulate neural
information processing by means of the interplay between the
neurons’ dynamics andmultiplexing (Crofts et al., 2016; Battiston
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et al., 2017). Optimization based on multiplexing could have
many advantages. In particular, the coherent spiking activity of
one layer (induced for example by SISR) can be optimized by
adjusting the parameters of another layer. This is important from
the point of view of engineering and brain surgery since it is not
always possible to directly access the desired layer, though the
network with which this layer is multiplexed may be accessible
and adaptable.

Several studies have shown that multiplex networks can
generate patterns with significant differences from those
observed in single-layer networks (Kouvaris et al., 2015; Majhi
et al., 2016, 2017; Berner et al., 2020). Their use in the
optimization and control of dynamical behaviors have therefore
attracted much attention recently. The multiplexing of networks
has been shown to control many dynamical behaviors in neural
networks, including synchronization (Gambuzza et al., 2015;
Singh et al., 2015; Andrzejak et al., 2017; Leyva et al., 2017; Zhang
et al., 2017), pattern formation (Kouvaris et al., 2015; Ghosh and
Jalan, 2016; Ghosh et al., 2016, 2018; Maksimenko et al., 2016;
Bera et al., 2017; Bukh et al., 2017), solitary waves (Mikhaylenko
et al., 2019), and chimera states (Panaggio and Abrams, 2015;
Schöll, 2016; Ghosh et al., 2018, 2019; Omelchenko et al., 2018;
Sawicki et al., 2019). Chimera states are synchronization patterns
occurring in symmetric networks (on average), characterized by
the coexistence of varying synchronization levels side-by-side.
They have been shown to exist in mechanical and chemical
experiments (Tinsley et al., 2012; Martens et al., 2013; Totz
et al., 2017) and are thought play an important role in neural
systems (Andrzejak et al., 2016; Bera et al., 2019; Majhi et al.,
2019). In particular, synchronization patterns such as chimera
states occur in networks with community structure where
connections are all-to-all, but coupling strengths are modulated
so that the inter-coupling between communities (layers) are
weak/sparse compared to their intra-coupling (Abrams et al.,
2008; Martens et al., 2016a,b; Bick et al., 2020)—a configuration
that bears strong similarity with the multilayer structure.
Chimera states in such networks are of interest as they
are multistable (Martens, 2010) and thus configurable; they
can in principle be employed to solve functional tasks such
as computations (Bick and Martens, 2015) and routing of
information (Deschle et al., 2019) in the brain. Moreover,
community networks of QIF neurons exhibit synchronization
patterns that have been demonstrated viable for memory storage
and recall (Schmidt et al., 2018). However, the optimization of
noise-induced resonance mechanisms in neural networks based
on the multiplexing approach have only very recently attracted
attention. The few research works investigating the optimization
of CR in neural networks are those of Semenova and Zakharova
(2018) and Yamakou and Jost (2019).

In Semenova and Zakharova (2018), it is shown that
connecting a one-layer network exhibiting CR in a multiplex
way to another one-layer network, i.e., multiplexing, allows
us to control CR in the latter layer network. In particular,
it is found that multiplexing induces CR in networks that
do not demonstrate this phenomenon in isolation. Moreover,
it has been shown that CR can be achieved even for weak
multiplexing between the layers. Surprisingly, it has also been

shown that the multiplex-induced CR in the layer which is
deterministic in isolation can manifest itself even more strongly
than the CR in the noisy layer. However, the work in Semenova
and Zakharova (2018) considers only instantaneous synaptic
connections, while it is well known that synaptic time delays (not
negligible in neural networks) exhibit crucial effects in neural
information processing.

Yamakou and Jost (2019) considered synaptic time delays
and their role in optimizing CR in a layer affected by another
layer via multiplexing, which already exhibits optimal CR or
SISR. In an isolated layer, it was shown that shorter synaptic
time delays combined with weaker synaptic strengths optimize
CR. Meanwhile, in the multiplex network configurations,
stronger synaptic strengths combined with shorter synaptic time
delays between layers induce and optimize CR in the layer
where this phenomenon is non-existent in isolation. Moreover,
their numerical simulations indicate that, even at very long
multiplexing time delays, weak (but not too weak) multiplexing
strengths between the layers can induce and optimize CR in the
layer where it is non-existent in isolation. Interestingly, it was
further shown that, with the occurrence of a different resonance
phenomenon (i.e., SISR) in one layer, weak multiplexing, even
at very short synaptic time delays, completely fails to optimize
CR in the other layer where latter phenomenon does not
exist in isolation. This behavior further confirms the fact that,
even though SISR and CR lead to the occurrence of the same
dynamical behavior (i.e., coherent noise-induced spiking activity)
in neurons in the excitable regime, they are fundamentally
different in their dynamical and emergent nature (DeVille et al.,
2005); in particular, SISR and CR also lead to different behaviors
in multiplex networks, and they possibly therefore play different
functional roles in neural information processing.

The optimization of CR in neural networks based on the
multiplexing approach have so far been studied only in Semenova
and Zakharova (2018) and Yamakou and Jost (2019). A study
on the optimization of SISR in neural networks based on the
multiplexing approach is still lacking. Moreover, in Semenova
and Zakharova (2018) and Yamakou and Jost (2019), the
coupling between the neurons are mediated only by electrical
synapses. The role of chemical synapses in the optimization
of noise-induced resonance mechanisms should be equally
important. Therefore, the aim of this paper is to study the
optimization of SISR based on the multiplex approach of
neural networks connected through time-delayed electrical and
chemical synapses. In particular, we wish to address the following
main questions:

(i) Can SISR occurring in one layer of a multiplex network
be used to optimize SISR in another layer where the
phenomenon non-existent in isolation?

(ii) What combinations of intra- and inter-layer synaptic
strengths and time delays best optimize SISR?

(iii) Which type (electrical, inhibitory, or excitatory) of synapse
is best optimizer SISR within an isolated layer and in the
multiplex configuration?

The rest of the paper is organized as follows: in section 2, we
present the mathematical model equations, and we explain and
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motivate the different configurations considered. In section 3,
we briefly describe the numerical methods used in simulations
and analysis. In section 4, we consider an isolated single
layer of neurons, coupled either by electrical synapses or
chemical synapses. For both types of coupling, we analytically
establish the necessary conditions in terms of noise amplitudes
and timescale separation parameter that allow us to observe
SISR. In section 5, we systematically investigate synaptic
parameterizations that best optimize SISR in an isolated layer
in which the neurons are coupled either by electrical synapses
or by inhibitory chemical synapses. We will then compare
the optimization of SISR by electrical and inhibitory chemical
synapses. In section 6, we consider multiplexed layer networks
using numerical simulations. Having identified which synaptic
configurations deteriorate SISR the most in isolated layers,
we use the multiplexing between a first layer, where SISR
is optimal and a second layer where SISR is non-optimal
(very poor or even non-existent), with the goal of optimizing
SISR in the second layer. For multiplex networks, we will
consider the optimization of SISR in six case scenarios: electrical,
inhibitory, and excitatory multiplexing of two layers with
electrical synaptic intra-connections and electrical, inhibitory,
and excitatory multiplexing of two layers with inhibitory synaptic
intra-connections. Finally, we summarize and conclude our
findings in section 7.

2. MATHEMATICAL MODEL

We consider a two-layer multiplex neuronal network in the
excitable regime in the presence of synaptic noise, as illustrated
in Figure 1. In our study, we consider one of the simplest
network topologies—a ring network topology within layers and
a multiplex network between these layers such that they contain
the same number of neurons and the interaction between the
layers are allowed only for replica neurons. Each layer consists
of N identical FitzHugh-Nagumo (FHN) neurons (Hodgkin and
Huxley, 1952; FitzHugh, 1961), connected in a ring by either
only electrical synapses or inhibitory chemical synapses, while
the inter-connections between layers can be either via electrical,
inhibitory chemical synapses, or excitatory chemical synapses. It
is important to point out that excitatory chemical synapses are
found to induce, via time-delayed coupling bifurcations, a self-
sustained spiking activity in the network of FHN neurons (each
in the excitable regime) even in the complete absence of noise.
We want to avoid such regimes—those in which the deterministic
network can oscillate due to some time-delayed coupling induced
bifurcations—as the coherent oscillations induced by SISR
should be due only to the presence of noise and not because
of the occurrence of bifurcations. For this reason, the excitatory
chemical synapses are used in the optimization of SISR only when
they do not induce oscillatory behaviors in the deterministic
network, i.e., only in the multiplexing connections with carefully
chosen synaptic strengths and time delays.

Real electrical synapses mediate bidirectional interactions
and transfer signals only between neighboring neurons; in
contrast, chemical synapses convey information unidirectionally

FIGURE 1 | Neurons are connected in a multiplex network with two layers

l = 1, 2. Neurons within a layer are coupled in a ring, while neurons in adjacent

layers are connected only to their adjacent neurons. (A) Neurons within each

layer are coupled in a ring and interact only with their nearest neighbors via

electrical synapses (κ
1,e
, τ

1,e
, κ

2,e
, τ

2,e
); multiplexing between these layers,

represented by the black vertical dashed lines, may occur via electrical

(κm,e , τm,e ) or (inhibitory or excitatory) chemical synapses (κm,c , τm,c ). (B) Neurons

within each layer are coupled in a ring and interact with nl,c nearest neighbors

via inhibitory chemical synapses (κ
1,c
, τ

1,c
, κ

2,c
, τ

2,c
); multiplexing between these

layers, represented by the black vertical dashed lines, may occur via electrical

(κm,e , τm,e ) or (inhibitory or excitatory) chemical (κm,c , τm,c ) synapses. In both

scenarios, an enhanced SISR in layer l = 1 is used to optimize a poor or

non-existent SISR in layer l = 2 by variation of the time-delay coupling

parameters within a population (κ
1,e
, τ

1,e
, κ

2,e
, τ

2,e
, κ

1,c
, τ

1,c
, κ

2,c
, τ

2,c
) and

between populations (κm,e , τm,e , κm,c , τm,c ).

between distantly situated neurons. To account for this,
the model implements layers with bidirectional electrical
coupling with nearest neighbor interactions (Figure 1A), while
unidirectional chemical coupling is implemented with nonlocal
interactions, i.e., also including connections other than nearest
neighbor interactions (Figure 1B). These coupling topologies
and interaction modes are biologically relevant and will also
allow us to compare the functional role played by chemical
and electrical synaptic interactions in processing information
generated during SISR.

The stochastic differential equations resulting from this two-
layer FHN neural network are given by



























dv
l,i

=

(

v
l,i
−

v3
l,i

3
− w

l,i
+ E

l,i
+Me

l,i
− C

l,i
−Mc

l,i

)

dt

+ σl dWl,i
,

dw
l,i
= ε(v

l,i
+ α − βw

l,i
) dt,

(1)
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where each neuron is represented by a node i = 1, . . . ,N in
the multiplex network with layers l = 1, 2, and the functional
dependencies are given by,



































































































E
l,i

=
κ
l,e

2n
l,e

i+n
l,e

∑

j=i−n
l,e

(

v
l,j
(t − τ

l,e
)− v

l,i
(t)
)

,

C
l,i

=
κ
l,c

2n
l,c

(v
l,i
(t)− Vsyn )

i+n
l,c

∑

j=i−n
l,c

{

1+ exp
[

−λ

(

v
l,j
(t − τ

l,c
)− 2syn

)]}−1
,

Me
1,i

= κm,e

(

v2,i (t − τm,e )− v1,i (t)
)

,

Me
2,i

= κm,e

(

v1,i (t − τm,e )− v2,i (t)
)

,

Mc
1,i

= κm,c

(

v1,i (t)− Vsyn

)

{

1+ exp
[

−λ
(

v2,i (t − τm,c )− 2syn

)]}−1
,

Mc
2,i

= κm,c

(

v2,i (t)− Vsyn

)

{

1+ exp
[

−λ
(

v1,i (t − τm,c )− 2syn

)]}−1
.

(2)

We fixed the number of neurons per layer to N = 25 throughout
this study. The membrane potential and the recovery current
variables of neuron i in layer l are given by v

l,i
∈ R and w

l,i
∈

R, respectively, and 0 < ε ≪ 1 sets the timescale separation
between the fast membrane potential and the slow recovery
current variables. The excitability threshold β > 0 of the neurons
is a codimension-one Hopf bifurcation parameter. α ∈ (0, 1) is
a constant parameter. The additive noise term dW

l,i
represents

mean-centered Gaussian noise with 〈dW
l,i
(t) dW

l,i
(t′)〉t = δ(t −

t′) and variance (strength) σ
l
, and it models the synaptic

fluctuations observed in neural networks.
E
l,i

represent the electrical synaptic interactions between
neurons coupled within a ring layer network with strength κ

l,e

and time delay τ
le
, respectively, and an interaction range set

to n
l,e

= 1 since electrical synapses interact only locally. The
coupling mediated by electrical synapses is of diffusive type, i.e.,
the electrical coupling term (intra- or inter-layer) vanishes if v1,i
and v1,j (resp. v2,i and v2,j ) or v1,i and v2,i are equal.

Me
1,i

and Me
2,i

represent the coupling between layers via
electrical synapses (i.e., electrical multiplexing of layers) with
strength κm,e and delay τm,e , respectively.

C
l,i
represent chemical synaptic interactions between neurons

coupled within a layer with ring topology, with strength κ
l,c
and

time delay τ
l,c

and where 1 < n
l,c

< (N − 1)/2 represents
interaction range on the ring network layer; we fix n

l,e
= 8 all

through this paper. The chemical synaptic function is modeled

by a sigmoidal input-output function, Ŵ(vi) =
1

1+ e−λ(vi−2syn )

(see Equation 2 in Greengard, 2001), where parameter λ = 10.0
determines the slope of the function and 2syn = −0.25 the
synaptic firing threshold.

Mc
1,i
and Mc

2,i
represent the coupling between layers mediated

by chemical synapses (i.e., chemical multiplexing of layers)

with κm,c and τm,c representing the strength and time delay,
respectively. Vsyn represents the synaptic reversal potential. For
Vsyn < v

l,i
(t), the chemical synaptic interaction has a depolarizing

effect that makes the synapse inhibitory; for Vsyn > v
l,i
(t), the

synaptic interaction has a hyper-polarizing effect, making the
synapse excitatory. For the version of the FHN neuron model
used in this study, the membrane potentials |v

l,i
(t)| ≤ 2.0

(l = 1, 2; i = 1, 2, . . . ,N) for all time t. For the choice of
fixed Vsyn = −3.0 (maintained throughout our computations),
the term (v

l,i
(t) − Vsyn) in Equation (2) is always positive. So,

the inhibitory and excitatory natures of chemical synapses will
depend only on the sign in front of the synaptic coupling
strengths κ

l,c
and κm,c . To make the chemical synapse inhibitory,

we chose a negative sign i.e., when the pre-synaptic neuron
spikes, it prevents the post-synaptic neuron from spiking and,
conversely, a positive sign for excitatory chemical synapses.

3. NUMERICAL METHODS

In our numerical simulations, we used the fourth-order Runge-
Kutta algorithm for stochastic processes (Kasdin, 1995) to
integrate over a very long time interval (T = 600, 000 time units)
to average time series over time with seven realizations for each
noise amplitude. In the numerical simulations, this long time
interval permitted us to collect with a small noise amplitude at
least 125 interspike intervals with ε = 0.0005≪ 1. Each network
layer had N = 25 neurons.

To measure how pronounced SISR is, we used the coefficient
of variation (RT ), which is an important statistical measure
based on the time intervals between spikes. It measures the
regularity of noise induced spiking and therefore a measure of
how pronounced SISR can be at a particular noise amplitude. RT

exploits the inter-spike interval (ISI) where the mth interval is
defined as the difference between two consecutive spike times tmi
and tm+1

i of neuron i in a network, namely ISIi = tm+1
i − tmi > 0.

For the ith neuron, the ratio between the standard deviation and
themean defines the coefficient of variation of the ISIs over a time
interval [0,T] as (Pikovsky and Kurths, 1997):

RTi
=

√

〈ISI2i 〉 − 〈ISIi〉2

〈ISIi〉
, (3)

where 〈ISIi〉 and 〈ISI
2
i 〉 represent the mean and the mean squared

inter-spike intervals of the ith neuron, respectively. The above
definition of RT is limited to characterizing SISR in an isolated
neuron. For a network of coupled neurons, SISR can bemeasured
by redefining RT as follows (Masoliver et al., 2017):

RT =

√

〈ISI2〉 − 〈ISI〉2

〈ISI〉
, (4)

with



























〈ISI〉 =
1

N

N
∑

i=1

〈ISIi〉,

〈ISI2〉 =
1

N

N
∑

i=1

〈ISI2i 〉,

(5)
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where the extra bar indicates the additional average over the total
number of neurons N in the layer.

Of course, other statistical measures exist such as the
correlation time, the power spectral density, and the signal-to-
noise ratio which are commonly used measures to quantify the
coherence of noise induced spiking activity. However, from a
neurobiological point of view, RT is more important than the
other measures because it is related to the timing precision of
the information processing in neural systems (Pei et al., 1996).
Because of RT ’s importance in neural information processing, we
shall use it to characterize the regularity of the noise-induced
oscillations generated by SISR in our neural network. For a
Poissonian spike train (rare and incoherent spiking), RT = 1. If
RT < 1, the sequence becomes more coherent, and RT vanishes
for a periodic deterministic spike train. RT values greater than 1
correspond to a point process that is more variable than a Poisson
process (Kurrer and Schulten, 1995; Yamakou and Jost, 2018).

4. CONDITIONS FOR SISR IN ISOLATED
LAYERS IN THE EXCITABLE REGIME

We first consider the case of isolated layers of the multiplex
networks in Figures 1A,B. Thus, neurons in such an isolated
layer are connected either only via electrical synapses or via
chemical synapses. In particular, here we will establish the
analytic conditions necessary for the emergence of the SISR in
these isolated network layers of FHN neurons in the excitable
regime. From these conditions, we will furthermore obtain the
minimum and maximum noise amplitudes required for SISR to
occur in an isolated layer.

For SISR to occur, it is necessary to be in the excitable
parameter regime. The isolated FHN neuron has a unique and
stable fixed point in this regime. Choosing an initial condition in
the basin of attraction of this fixed point will result in at most one
large non-monotonic excursion into the phase space after which
the trajectory asymptotically approaches the fixed point and stays
there until initial conditions are changed again (Izhikevich, 2000;
Yamakou and Jost, 2018).

Considering the multiplex networks in Figure 1 with
disconnected layers (κm,e = κm,c = 0), we may place an isolated
neuron (κ

l,e
= 0 or κ

l,c
= 0) into an excitable regime by fixing

parameter α = 0.5. The bifurcation parameter β is chosen such
that β > β

h
(ε), where β

h
(ε) is defined as the Hopf bifurcation

value of an isolated neuron. Fixing the timescale separation
parameter value to ε = 0.0005, we calculate the Hopf bifurcation
value to be β

h
(ε) = 0.7497. It is important to note That, for

β ≤ β
h
(ε), an isolated neuron is in the oscillatory regime—

a regime that we want to avoid since the coherent oscillations
generated by SISR are due only to the presence of noise rather
than to the occurrence of a Hopf bifurcation (Yamakou and Jost,
2018).

Moreover, we have to ensure that the network of coupled
neurons as a whole stays in the excitable regime rather than
just single neurons in isolation. Indeed, certain time-delayed
couplings may induce self-sustained oscillations in a network
layer even though the isolated neurons remain inside the

excitable regime. In layers with excitatory chemical synapses, a
saddle-node bifurcation onto a limit cycle may generate self-
sustained oscillations induced via time-delayed couplings (Schöll
et al., 2009). On the other hand, when used for the multiplexing
of layers, some values of time delays and coupling strengths of the
excitatory chemical synapses cannot provoke this saddle-node
bifurcation. Therefore, we did not consider excitatory chemical
synapses for the coupling of neurons within layers but rather only
for the coupling between layers. We therefore need to make sure
that neurons connected in each network layer stay outside the
parameter regime where oscillations are induced by time-delayed
coupling. First, we need to determine if such a regime exists and
identify it.

Taking the limit ε → 0 in the isolated layer l = 1, 2 (κm,e =

κm,c = 0) for either electrical (κ
l,c

= 0) or chemical synapses
(κ

l,e
= 0) only, the equations for each neuron in this layer reduces

to coupled Langevin equations of the form,

dv
l,i
= −

∂Ue,c
i (v

l,i
,w

l,i
)

∂v
l,i

dt + σl dWl,i, (6)

where the electrical Ue
i (vl,i ,wl,i

) and chemical Uc
i (vl,i ,wl,i

)
interaction potentials (i = 1, . . . ,N) are double-well potentials
given by Equation (7) and may be viewed as functions of v

l,i

where w
l,i
is nearly constant. Figures 2, 3, respectively show the

modulation of landscapes of electrical and chemical interaction
potentials with changing synaptic strength.







































































Ue
i (vl,i ,wl,i

) =
1

12
v4
l,i
−

1

2
v2
l,i
+ v

l,i
w

l,i
−

κ
l,e

2n
l,e

i+n
l,e

∑

j=i−n
l,e

(

v
l,i
(t)v

l,j
(t − τ

l,e
)−

1

2
v
l,i
(t)2

)

,

Uc
i (vl,i ,wl,i

) =
1

12
v4
l,i
−

1

2
v2
l,i
+ v

l,i
w

l,i

+
κ
l,c

2n
l,c

i+n
l,c

∑

j=i−n
l,c

1

2
v
l,i
(t)
(

v
l,i
(t)− 2Vsyn

)

{

1+ exp
[

− λ
(

v
l,j
(t − τ

l,c
)− 2syn

)

]}−1
,

(7)

We observe three different behaviors for the electrical potential
interaction Ue

i (vl,i ,wl,i
). (i) When wl,i < 0, we find that

Ue
i (vl,i ,wl,i

) is asymmetric with the shallower well on the left.
The neuron is close to the stable homogeneous fixed point at
(v∗

l,i
,w∗

l,i
) = (−1.003975,−0.666651), and a spike consists of

jumping over the left energy barrier△U le(w
l,i
) into the right well

(see Figure 2A). (ii)Whenw
l,i
= 0, thenUe

i (vl,i ,wl,i
) is symmetric

with △U le(w
l,i
) = △Ure(w

l,i
), and the neuron is half way

between the quiescent state and the spike state (see Figure 2B).
(iii) When w

l,i
> 0, then Ue

i (vl,i ,wl,i
) is also asymmetric. The

neuron has spiked and a return to the quiescent state (the
homogeneous fixed point) consists of jumping over the right
energy barrier △Ure(w

l,i
) into the left well (see Figure 2C). The

intra-layer electrical synapse κ
l,e
does not change the symmetry

(or asymmetry) of the interaction potential Ue
i (vl,i ,wl,i

). It only
changes the depth of the energy barriers. The stronger κ

l,e
is,
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FIGURE 2 | The electrical interaction potential Ue
i (vl,i ,wl,i

) in Equation (7) is shown for a locally coupled ring network topology (n
l,e
= 1) with the energy barriers for the

asymmetric cases (wl,i 6= 0) (A,C) and symmetric (wl,i = 0) case (B). The stronger the intra-layer synaptic strength κ
l,e
is, the deeper the energy barrier functions

△Ule
i (wl,i ) and △Ure

i (wl,i
) are. The saddle point and the left and right minima of the interaction potential are located at v

l,i
= v∗m(wl,i

), v
l,i
= v∗l (wl,i

), and v
l,i
= v∗r (wl,i

),

respectively.

the deeper the energy barrier functions△U le(w
l,i
) and△Ure(w

l,i
)

defined in Equation (9) are.
The chemical potential interaction Uc

i (vl,i ,wl,i
) shows richer

landscape dynamics due to its stronger nonlinearity. We first
notice that, just like with intra-layer electrical synaptic strength
κ
l,e
, intra-layer inhibitory chemical synaptic strength κ

l,c
changes

the depth of the energy barriers △U lc
i (wl,i) and △Urc

i (wl,i). That

is, the stronger κ
l,c
is, the deeper the energy barriers △U lc

i (wl,i)
and △Urc

i (wl,i) are. In contrast to the electrical synaptic strength
κ
l,e
, the inhibitory chemical synaptic strength κ

l,c
is capable of

changing the symmetry or (asymmetry) of the chemical potential
Uc
i (vl,i ,wl,i

), where we distinguish the following cases: (i) When
wl,i < 0, then Uc

i (vl,i ,wl,i
) can be symmetric or asymmetric

depending on the value of the inhibitory chemical synaptic
strength κ

l,c
. If wl,i < 0 and κ

l,c
= 0.16, we see from Figure 3A

that Uc
i (vl,i ,wl,i

) is symmetric and becomes asymmetric as κ
l,c

changes. (ii) When wl,i = 0.0, we do not have any symmetric
chemical potential landscape as shown in Figure 3B, contrasting
our observations for the electrical potential. (iii) For wl,i > 0
(see Figure 3C), the chemical potential landscape is symmetric
for κ

l,c
= 0.2 and becomes asymmetric as κ

l,c
changes. Moreover,

we notice that, for values of the chemical synaptic strength κl,c for
which the chemical interaction potential is symmetric, the energy
barriers functions are shallower than in the symmetric case of
the electrical potential. The important common feature of the
electrical and inhibitory chemical potential is the deepening of

the energy barriers △U le,c
i (wl,i) and △Ure,c

i (wl,i) with increase in
the intra-layer electrical κ

l,e
, and inhibitory chemical κ

l,c
synaptic

strengths shall explain why SISR is deteriorated by stronger
intra-layer synaptic connections.

We choose parameters of the coupled neurons in Equation (6)
such that they satisfy the conditions necessary for the occurrence
of SISR. These conditions are adapted from those valid for an
isolated FHN neuron (DeVille et al., 2005; Yamakou and Jost,
2018) so that they include (one at a time) the time-delayed
electrical and inhibitory chemical synaptic connections between
the FHN neurons coupled in a ring network. The resulting
conditions are























































lim
(ε,σl)→(0,0)

σ 2
l

2
ln(ε−1) ∈

(

△U le
i (w

∗
l,i
), Fe(κl,e

, τ
l,e
, n

l,e
)
)

,

lim
(ε,σl)→(0,0)

σ 2
l

2
ln(ε−1) ∈

(

△U lc
i (w

∗
l,i
), Fc(κl,c

, τ
l,c
, n

l,c
)
)

,

lim
(ε,σl)→(0,0)

σ 2
l

2
ln(ε−1) = O(1),

β − βh(ε) > 0,

(8)

where















































Fe(κl,e
, τ

l,e
, n

l,e
) : =

{

(κ
l,e
, τ

l,e
, n

l,e
) :△U le

i (wl,i
) = △Ure

i (wl,i
)
}

,

Fc(κl,c
, τ

l,c
, n

l,c
) : =

{

(κ
l,c
, τ

l,c
, n

l,c
) :△U lc

i (wl,i
) or △Urc

i (wl,i
)

is maximum
}

,

△U le,c
i (w

l,i
) : = Ue,c

i

(

v∗m(wl,i),w
l,i

)

− Ue,c
i

(

v∗
l
(w

l,i
),w

l,i

)

,

△Ure,c
i (w

l,i
) : = Ue,c

i

(

v∗m(wl,i),w
l,i

)

− Ue,c
i

(

v∗r (wl,i
),w

l,i

)

,

(9)

with

v∗l,m,r(wl,i
) : =

{

v
l,i
: v

l,i
−

v3
l,i

3
− w

l,i
+

κ
l,e

2n
l,e

i+n
l,e

∑

j=i−n
l,e

(

v
l,j
(t − τ

l,e
)− v

l,i
(t)
)

= 0
}

,

(10)

for electrical synapses and

v∗l,m,r(wl,i
) : =

{

v
l,i
: v

l,i
−

v3
l,i

3
− w

l,i
−

κ
l,c

2n
l,c

i+n
l,c

∑

j=i−n
l,c

(v
l,i
− Vsyn )

{

1+ exp
[

− λ

(

v
l,j
(t − τm,c )− 2syn

)]}−1
= 0

}

,

(11)
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FIGURE 3 | Landscapes of the inhibitory chemical interaction potential Uc
i (vl,i ,wl,i

) in Eq. (7) for a non-locally (nl,c = 8) coupled ring network topology. The symmetry of

the potential is governed not by the slow variable w
l,i
as in the case of the electrical interaction potential, but by the chemical synaptic strength κ

l,c
. In (A) with wl,i < 0,

the asymmetric potential can become symmetric when the synaptic strength is κl,c = 0.16. In (B) with wl,i = 0, the potential remains asymmetric for all values of the

synaptic strength κl,c. In (C) with wl,i > 0, the asymmetric potential can again become symmetric when the synaptic strength is κl,c = 0.20. Similarly to the electrical

synaptic strength, the stronger the intra-layer chemical synaptic strength κl,c is, the deeper the energy barrier functions △Ulc
i (wl,i

) and △Urc
i (wl,i

) are.

for chemical synapses. Furthermore, the solution sets of
Equations (10) and (11) are such that v∗

l
(w

l,i
) < v∗m(wl,i

) <

v∗r (wl,i
) define the left stable, middle unstable, and right stable

branches of the cubic nullcline of each FHN neuron.
The energy barrier functions △U le,c

i (w
l,i
) and △Ure,c

i (w
l,i
)

can be obtained from the electrical interaction potential
Ue
i (vl,i ,wl,i

) and the inhibitory chemical interaction potential
Uc
i (vl,i ,wl,i

) by taking the difference between the potential
function value at the saddle point v∗m(wl,i

) and at the local
minima v∗

l,r
(w

l,i
) of these interaction potentials (Yamakou and

Jost, 2018). The energy barriers △U le
i

(

w∗
l,i

)

or △U lc
i

(

w∗
l,i

)

(which

has to be crossed to induce a spike) is the value of the left
energy barrier function at the w

l,i
-coordinate of the stable

homogeneous steady state
[

v∗
l,i
(κ

l,e
, τ

l,e
, n

l,e
),w∗

l,i
(κ

l,e
, τ

l,e
, n

l,e
)
]

or
[

v∗
l,i
(κ

l,c
, τ

l,c
, n

l,c
),w∗

l,i
(κ

l,c
, τ

l,c
, n

l,c
)
]

, respectively. This is

where the electrical △U le
i

[

w∗
l,i
(κ

l,e
, τ

l,e
, n

l,e
)
]

and chemical

△U lc
i

[

w∗
l,i
(κ

l,c
, τ

l,c
, n

l,c
)
]

energy barrier functions get their κ
l,e
, τ

l,e
,

n
l,e
and κ

l,c
, τ

l,c
, n

l,c
dependence from.

Now from the first two conditions of Equation (8), we
obtain the noise amplitude range [σmin

l
, σmax

l
] within which SISR

occurs in the layer network of electrically (chemically) coupled
FHN neurons:



































































σmine

l =

√

2△U le
i

(

w∗
l,i
(κ

l,e
, τ

l,e
, n

l,e
)
)

ln(ε−1)
,

σmaxe

l =

√

2Fe(κl,e
, τ

l,e
, n

l,e
)

ln(ε−1)
.

σminc

l =

√

2△U lc
i

(

w∗
l,i
(κ

l,c
, τ

l,c
, n

l,c
)
)

ln(ε−1)
,

σmaxc

l =

√

2Fc
(

κ
l,c
, τ

l,c
, n

l,c

)

ln(ε−1)
.

(12)

We observe that σmine

l
and σminc

l
depend on the fixed point

coordinatew∗
l,i
(κ

l,e
, τ

l,e
, n

l,e
) andw∗

l,i
(κ

l,c
, τ

l,c
, n

l,c
) which in turn also

depends on the synaptic parameters κ
l,e
, τ

l,e
, n

l,e
and κ

l,c
, τ

l,c
, n

l,c
,

respectively. Therefore, changing (κ
l,e
, τ

l,e
, n

l,e
) or (κ

l,c
, τ

l,c
, n

l,c
) will

change the value of w∗
l,i
(κ

l,e
, τ

l,e
, n

l,e
) or w∗

l,i
(κ

l,c
, τ

l,c
, n

l,c
), which will

in turn change the value of σmine

l
or σminc

l
via the energy barrier

function△U le
i (w

∗
l,i
) or△U lc

i (w
∗
l,i
), respectively. However, because

of the local nature electrical synapses and non-locality of the
chemical synapses, we fixed n

l,e
= 1 and n

l,c
= 8 throughout our

numerical computations. Hence, the two control parameters used
are the synaptic time-delayed couplings (τ

l,e
, κ

l,e
) and (τ

l,c
, κ

l,c
).

On the other boundary, σmaxe

l
and σmaxc

l
do not depend on

the coordinates of the stable homogeneous fixed point but on
the complicated functions Fe(κl,e

, τ
l,e
, n

l,e
) and Fc(κl,c

, τ
l,c
, n

l,c
),

completely defined in Equations (9), (10), and (11). Knowing the
minimum and maximum range of the noise amplitude within
which SISR occurs will be very useful in discussing the numerical
results in the following sections.

5. SISR IN ISOLATED LAYERS

5.1. SISR in Isolated Layers With Electrical
Synapses Only
We begin our numerical study with the dynamics of layer
l in isolation, where neurons are connected only via local
electrical synapses in a ring network topology, i.e., we consider
Equation (1) with n

l,e
= 1, κ

l,e
6= 0 and κm,e = κm,c = κ

l,c
= 0.

Figure 4 shows the variation of RT against the noise amplitude
σl for this layer. In the numerical computations, we choose ε =

0.0005≪1 because SISR can only occur in the singular limit, ε →

0, and the weak noise limit, σl → 0, imposed by Equation (8).
In Figure 4A, a weak electrical synaptic strength is considered

fixed, κ
l,e

= 0.1. All the flat-bottom RT -curves obtained with

different time delays (τ
l,e

= 0.0, τ
l,e

= 5.0, τ
l,e

= 10.0, τ
l,e

=

15.0, τ
l,e

= 20.0) show a deep and broad minimum, indicating

that the spike train has a high degree of coherence due to SISR

for a wide range of the noise amplitude. We notice that even
though the minimum (and low) values of RT stays constant for
various time delays, the left branch of the RT -curve is significantly
being shifted to the right as the time delay increases. This means
that with weak electrical synapses, the coherence of the spiking

Frontiers in Computational Neuroscience | www.frontiersin.org 8 August 2020 | Volume 14 | Article 62

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Yamakou et al. Optimal Self-Induced Stochastic Resonance

FIGURE 4 | Coefficient of variation R
T
against noise amplitude σ

l
of layer l in isolation. In (A) and (B), we have the R

T
curves of weak and strong electrical synaptic

strengths κ
l,e
, respectively, for short, intermediate and long synaptic time delays τ

l,e
. In (C) and (D), we have the R

T
curves of short and relatively long synaptic time

delays τ
l,e
, respectively, for weak, intermediate and strong synaptic strengths κ

l,e
. Increasing (decreasing) the electrical synaptic strength κ

l,e
or the length of its time

delay τ
l,e
, deteriorates (enhances) SISR by increasing (decreasing) the values of R

T
and by shrinking (extending) the interval of the noise amplitude in which R

T
can

achieve very low values. For example, in (D), for κ
l,e
= 1.0 and τ

l,e
= 10.0, the red R

T
-curve lies entirely above the line R

T
= 1.0 with a lowest value of R

Tmin
= 1.24

occurring at just one point σ
l
= 4.6× 10−4, indicating the non-existence of SISR. Parameters of layer l: N = 25, n

l,e
= 1, β = 0.75, ε = 0.0005, α = 0.5.

activity due to SISR is not affected as the time delay becomes
longer, but the coherence is achieved only at relatively larger
noise amplitudes σ

l
. Thus, we can obtain the same degree of

SISR with longer time delays provided we increase the noise
amplitude (within the interval given in Equation 12) as the time
delay increases. In Figure 4A, we have approximately the same
minimum value of RTmin

≈ 0.015 for: τ
l,e
= 0.0 with σ

l
∈
(

3.7 ×

10−7, 1.9 × 10−2
)

; τ
l,e
= 5.0 with σ

l
∈
(

2.8 × 10−6, 1.9 × 10−2
)

;

τ
l,e

= 10.0 with σ
l
∈
(

5.5 × 10−6, 1.0 × 10−2
)

; τ
l,e

= 15.0

with σ
l

∈
(

1.9 × 10−5, 1.0 × 10−2
)

; and τ
l,e

= 20.0 with

σ
l
∈
(

2.8 × 10−5, 1.0 × 10−2
)

. We note that the lower bound
of the noise intervals increases as the time delay increases while
the upper bounds are almost fixed.

In Figure 4B, we consider a strong electrical synapse (κ
l,e

=

1.0). We observe that, in contrast to Figure 4A with a weak
electrical synapse, increasing the time delay squeezes the left and
right branches of the RT -curves into a smaller noise interval,
while shifting the curves to higher values, thus deteriorating
SISR. In Figure 4B, we have different noise intervals for
different minima of RT : RTmin

= 0.015 at τ
l,e

= 0.0 for σ
l
∈

(

2.8 × 10−7, 2.9 × 10−2
)

; RTmin
= 0.029 at τ

l,e
= 2.0 for

σ
l
∈
(

2.8 × 10−5, 2.8 × 10−3
)

; RTmin
= 0.078 at τ

l,e
= 4.0

for σ
l
∈
(

1.9 × 10−4, 6.4 × 10−4
)

. In the last two cases, the
noise intervals, in which we have the most deteriorated SISR,
have shrunk to points with RTmin

= 0.51 at σ
l
= 1.9 × 10−4

for τ
l,e
= 7.0; and RTmin

= 1.24 at σ
l
= 4.6× 10−4 for τ

l,e
= 10.0.

We thus see that, with strong electrical synapses, the effect of the
time delay on SISR becomes significant, unlike when the electrical
synapse is weak as in Figure 4A. In Figure 4B, we observe that
even though the RT -curves for τ

l,e
= 7.0 and τ

l,e
= 10.0 are non-

monotonic (characteristic of the existence of an optimal noise
value for coherence), the minimum values of these curves are
high (0.51 and 1.24, respectively). Here, at only τ

l,e
= 10.0, RTmin

is already above 1.0 (indicating a stochastic spiking activity that
is more variable than the Poisson process), whereas with weak
electrical synapses in Figure 4A, even at τ

l,e
= 20.0, we still have

RTmin
≈ 0.015.

In Figures 4C,D, we vary the electrical synaptic strength

while the synaptic time is fixed at a short (τ
l,e

= 1.0) and

a long (τ
l,e

= 10.0) delay, respectively. A similar behavior as

in Figures 4A,B is observed, with weak and strong electrical

synaptic strengths, respectively. That is, at short synaptic time
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delays (see Figure 4C), the RT -curves show a deep and broad
minimum, indicating a high degree of coherence due to SISR for
a wide range of the noise amplitude when the electrical synaptic
strength κ

l,e
is varied. Here, as κ

l,e
increases, and only the left

branches of the RT -curves are shifted to the right, while the
right branch of the RT -curves are fixed, thereby fixing the upper
bound of the noise amplitude σ

l
below which SISR is optimal.

This means that at short electrical time delays, the coherence of
the spiking activity due to SISR is not affected as the electrical
synaptic strength becomes stronger, but the coherence is achieved
only at relatively larger noise amplitudes σ

l
. In Figure 4D, where

electrical synaptic time delays are longer, increasing the electrical
synaptic strength not only increases the minimum value of the
RT -curves (thereby deteriorating SISR), but also shrinks the size
of the noise interval in which SISR is optimized on both ends.

The response of SISR to changes in the synaptic strength κ
l,e

and time delay τ
l,e
in Figure 4 can be explained in terms of the

electrical interaction potential Ue
i (vl,i ,wl,i

) given in Equation (7)
and represented in Figure 2. We observe in Figure 2 that, for
a fixed (n

l,e
= 1) ring network topology and time delay τ

l,e
, as

the synaptic strength κ
l,e
increases, the energy barriers △U le

i (wl,i
)

and △Ure
i (wl,i

) become deeper. In particular, when w
l,i

< 0, the
trajectory is in the left potential well and as κ

l,e
becomes stronger

(0.25, 0.5, 0.75, 1.0), the left energy barrier △U le
i (wl,i

) becomes
deeper (hence the trajectory at the bottom of the well get closer
to the homogeneous stable fixed point at w∗

l,i
= −0.666651).

The deeper the left energy barrier △U le
i (wl,i

) is (in other words,
the stronger the electrical synaptic strength κ

l,e
is), therefore,

the closer the trajectory to the stable fixed point is and the
further away the neural system from the oscillatory regime is.
For the trajectory to jump over a high energy barrier △U le

i (wl,i
),

a stronger noise amplitude σ
l
is of course needed. This is why

in Figure 4 as κ
l,e

increases, the left branch of the RT -curve is
shifted to the right, meaning that stronger noise amplitudes are
required to induce frequent spiking (i.e., frequent escaping from
the deep left energy barrier). But, as the noise amplitude becomes
bigger, the condition in Equation (8) requiring σ

l
→ 0 for

the occurrence of SISR is violated. Hence, SISR disappears with
increasing synaptic strength.

We can also see from Figure 4D that at longer time delay
τ
l,e
, this effect (the shifting of the left branch of the RT -curve

to the right) is more pronounced than in Figure 4C with a
shorter time delay. This is because, in Equation (7), the longer
the time delay is (τ

l,e
≫ 0), the further away is the quantity

[

v
l,i
(t)v

l,j
(t−τ

l,e
)−v

l,i
(t)2

]

from zero (since neurons are identical);
hence, the stronger is the effect of the synaptic strength κ

l,e
on

the electrical interaction potential, the energy barrier functions,
and, consequently, on the RT -curves. Otherwise, if τl,e → 0, then

because the neurons are identical,
[

v
l,i
(t)v

l,j
(t−τ

l,e
)−v

l,i
(t)2

]

→ 0,
and κ

l,e
will have little effect on the electrical interaction potential,

the energy barriers functions, and consequently on theRT -curves.
This is why the synaptic strength κ

l,e
has a stronger effect on

SISR only when τ
l,e
gets longer, and vice versa. This theoretical

explanation will also support the behavior of the time-delayed
chemical synapses in the optimization of SISR as we shall see
further below.

Secondly, at weak electrical synaptic strengths and short time
delays (Figures 4A,C), the upper bound of the noise interval for
which the RT -curves achieve their minima is almost constant.
Here, only the lower bound of the noise intervals is shifted to the
right. Whereas, at strong electrical synaptic strengths and long
time delays (Figures 4B,D), both the lower and upper bounds
of the noise intervals are shifted to the right and to t4he left as
τ
l,e

and κ
l,e

increase, respectively. This has the overall effect of
shrinking the noise interval in which the RT -curves achieve their
minima to a single value of σ

l
. This behavior can be explained in

terms of the minimum and maximum noise amplitudes between
which SISR occurs obtained in Equation (12).

We observe from Equation (12) that σmine

l
depends on

the fixed point coordinate w∗
l,i
(κ

l,e
, τ

l,e
, n

l,e
), which, in turn, also

depends on κ
l,e
, τ

l,e
, and n

l,e
= 1. Therefore, changing κ

l,e

and τ
l,e

will change the value of w∗
l,i
(κ

l,e
, τ

l,e
, n

l,e
), which will,

in turn, change the value of σmine

l
via the energy barrier

function△U le
i (w

∗
l,i
). Numerical computations indicate that σmine

l

increases as κ
l,e

and τ
l,e

increase (see Figure 4). On the other

boundary, σmaxe

l
does not depend on the coordinates of the

homogeneous stable fixed point, but on the complicated function
Fe(κl,e

, τ
l,e
, n2,e ), fully determined by Equations (9) and (10). In

Figures 4A,C (i.e., in the regimes of weak electrical synaptic
strength and short time delays, respectively), we notice that
σmaxe

l
≈ 10−2 is nearly constant for all values of the time delay

and electrical synaptic strength used. In Yamakou and Jost (2018),
where a single isolate FHN neuron is considered, such fixation of
the upper bound of the noise interval in which SISR occurs was
already observed. In the case of a single isolated FHN neuron,
the function Fe in Equation (9) takes a simple constant value

Fe =
3

4
. This implies (for a fixed ε = 0.0005) a fixed value for

σmaxe

l
=
[

3/2 · loge(ε
−1)
]1/2

.
In the case where a network of coupled FHN neurons is

considered, the fixation of the upper bound of the noise interval
for which SISR occurs can only be observed if Fe(κl,e

, τ
l,e
, n2,e ) →

C, where C is a constant. In particular, in a weak electrical
synaptic regime (κ

l,e
→ 0) and short time delay (τ

l,e
→ 0) regime

(or more precisely, [v
l,i
v
l,j
(t − τ

l,e
) − v2

l,i
(t)] → 0 as τ

l,e
→ 0,

because all the neurons are identical), F(κ
l,e
, τ

l,e
, n

l,e
) →

3

4
. In

these regimes (see Figures 4A,C), we observe that σmaxe

l
≈ 10−2,

corresponding to the value obtained in Yamakou and Jost (2018)
for the case of a single isolated FHN neuron (κ

l,e
= 0). In the

regimes of strong coupling (κ
l,e
≫ 0) and of long time delays

(τ
l,e
≫ 0 ⇒ [v

l,i
v
l,j
(t− τ

l,e
)− v2

l,i
(t)] 6= 0) shown in Figures 4B,D,

the function Fe in Equation (9) is now strongly modified by the
large values of κ

l,e
and τ

l,e
. This is why in these regimes, the upper

bound σmaxe

l
of the noise interval, for which SISR occurs, is not

fixed any longer but shifted to the left as τ
l,e

and κ
l,e

take on

larger values. In the case of chemical synapses, as we shall see

later, the same theoretical explanation holds for the shrinking, on

both ends, of the interval of the noise amplitude in which SISR is

optimized. Later, we shall focus on layer l = 2 with a non-existent
SISR when it is in isolation (κ2,e = 1.0 and τ2,e = 10.0; see the red
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FIGURE 5 | Coefficient of variation R
T
vs noise amplitude σ

l
of layer l in isolation. In (A) and (B), we have the R

T
curves of weak and strong chemical synaptic

strengths κ
l,c
, respectively, for short, intermediate and long synaptic time delays τ

l,c
. In (C) and (D), we have the R

T
curves of short and relatively long synaptic time

delays τ
l,c
, respectively, for weak, intermediate and strong synaptic strengths κ

l,c
. Increasing (decreasing) the inhibitory chemical synaptic strength κ

l,c
deteriorates

(enhances) SISR by increasing (decreasing) the values of R
T
and by shrinking (extending) the interval of the noise amplitude in which R

T
can achieve very low values.

Thus, inhibitory chemical synaptic strength qualitatively behaves as the electrical synaptic strength in optimizing SISR. However, electrical synaptic and inhibitory

chemical synaptic time delays show opposite behaviors in the enhancement of SISR. Decreasing (increasing) the length of inhibitory chemical time delays τ
l,c
,

deteriorates (enhances) SISR by increasing (decreasing) the values of R
T
and by shrinking (extending) the interval of the noise amplitude in which R

T
can achieve very

low values. This effect is particularly pronounced when the chemical synaptic strength is strong. For example, in (C), for κ
l,c
= 1.0 and τ

l,e
= 1.0, the red R

T
-curve

achieves relatively high minimum value R
Tmin

= 0.71 occurring at a relatively large noise amplitude σ
l
= 4.6× 10−4, indicating a very poor SISR. Parameters for layer l

are: N = 25, n
l,c
= 8, β = 0.75, ε = 0.0005, α = 0.5.

curve in Figure 4D with RTmin
> 1) and then investigate which

multiplexing configuration can best optimize SISR in this layer
when it is multiplexed with layer l = 1 when it already exhibits
pronounced SISR.

5.2. SISR in Isolated Layers With Inhibitory
Chemical Synapses Only
We investigated the dynamics of layer l in isolation, where
neurons are connected only via (non-local) inhibitory chemical
synapses in a ring network topology. Specifically, we consider
Equation (1) with n

l,e
= 8, κ

l,c
6= 0 and κm,e = κm,c =

κ
l,e

= 0. Figure 5 shows the variation of RT against the noise
amplitude σl for this layer. We also fixed ε = 0.0005 ≪ 1 so
that Equation (8) can be satisfied in a weak noise limit σl →

0, leading to the occurrence of SISR. We shall now mainly
compare the enhancement of SISR in layer l for two situations,

i.e., when the neurons are locally connected via time-delayed
electrical synapses (see Figure 4) and when the neurons are non-
locally connected via time-delayed inhibitory chemical synapses
(see Figure 5).

The first observation is that longer inhibitory time delays
enhance SISR, while longer electrical time delays deteriorate
SISR. However, similarly to electric time delays, chemical time
delays (τ

l,c
) have a strong effect on SISR only for stronger

chemical synaptic strength (κ
l,c
). In Figure 4A, the electrical

synaptic strength is weak (κ
l,e

= 0.1). Even though the interval
of the noise amplitude, for which a pronounced SISR occurs
(as indicated by the very low values of RT ), shrinks on the left
bound with increasing time delay, the low values of RT within
that interval remain unchanged (≈ 0.015). Similarly, results
in Figure 5A with the same weak inhibitory synaptic strength
(κ

l,c
= 0.1) show that changing the chemical time delays does also
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not affect the low and constant values of RT ≈ 0.014 (indicating
an optimized SISR). In contrast, however, the lower bound of
the noise interval with optimal SISR remains independent of
varying levels of time delay. Thus, for weak synaptic strength and
for increasing synaptic time delays, inhibitory chemical synapses
outperform electrical synapses in optimizing SISR, in the sense
that the former allow for a wider range of noise amplitudes for
which RT remains low.

In Figure 5B, where a large inhibitory chemical synaptic
strength (κ

l,c
= 1.0) is considered, time delays can have

significant effect on SISR, and this is in contrast to Figure 5A,
where κ

l,c
is weak. In Figure 5B, increasing the chemical time

delay enhances SISR by lowering the minimum value of RT . In
comparison to Figure 5A, the noise interval for which SISR is
optimal has shrunk on both sides. The reason for this shrinking
on both ends of the optimal noise interval is essentially the same
as for the case where the strength of electrical synapses is varied
(see Figures 4B,D). In Figure 5B, we have RTmin

= 0.29 at σ
l
=

3.7 × 10−5 for τ
l,c

= 5.0; RTmin
= 0.21 at σ

l
= 3.7 × 10−5 for

τ
l,c

= 10.0; RTmin
= 0.17 at σ

l
= 4.6 × 10−5 for τ

l,c
= 15.0;

RTmin
= 0.15 at σ

l
= 4.6 × 10−5 for τ

l,c
= 20.0; RTmin

= 0.12 at

σ
l
= 3.7× 10−5 for τ

l,c
= 25.0. However, the deteriorating effects

of electrical time delays on SISR is more pronounced than those
of the chemical time delays at the same synaptic strength (κ

l,e
=

κ
l,c

= 1.0) (see Figures 4B, 5B. This confirms that chemical
synapses are better at optimizing SISR than electrical synapses,
not only because they allow for a wider range of noise amplitude
in which optimal SISR may occur but also for the occurrence of
a more enhanced SISR, as indicated by the relatively lower values
of RT at long time delays.

In Figures 5C,D, we investigate the effects of chemical
synaptic strength in a short and long time delay regime.
Irrespective of the time delay regime, the stronger the chemical
synaptic strength is, the more deteriorated SISR is. The reason
behind this behavior is the same as the one given for the case
of electrical synapses. That is, as the chemical synaptic strength
κ
l,c
becomes larger, the energy barriers △U lc

i (wl,i
) and △Urc

i (wl,i
)

become deeper (see Figure 3). However, now a stronger noise
amplitude is required to jump over the deep energy barriers
and induce spiking, and this strong noise amplitude destroys
the coherence of the spiking (by violating the conditions in
Equation (8) requiring σ

l
→ 0) and hence deteriorates SISR.

The deterioration of SISR by stronger chemical synaptic
strengths is also observed with stronger electrical synaptic
strength. However, for short synaptic time delay regimes (τ

l,e
=

1.0 = τ
l,c
, see Figures 4C, 5C), we notice the following difference

for both synaptic types: When the time delay is relatively short,
electrical synapses optimize SISR compared to chemical synapses
as the synaptic strength is weakened. We see in Figure 5C with
τ
l,c

= 1.0 that SISR is destroyed as the κ
l,c

increases, whereas
in Figure 4C with τ

l,e
= 1.0, SISR remains enhanced as κ

l,e

increases. This means that an electrical synapse is a better means
than a chemical synapse in optimizing SISR at very short time
delays, irrespective of the synaptic strengths, while a chemical
synapse is better than an electrical synapse at very long time
delays, irrespective of the synaptic strengths.

In Figure 5, the reason for the deterioration of SISR with
decreasing time delays could be inferred from the reason given
for the deterioration of SISR with increasing synaptic strength.
That is, shortening the chemical synaptic time delays increases
the depth of the chemical energy barrier functions given in
Equation (9). This will in turn demand larger noise amplitude
to jump over deep energies barriers to induce spiking with no
coherence and hence very poor SISR, as seen, for example, from
the red curve in Figure 5C. Here, we see that rare spiking can
be induced only when the noise σ

l
≥ 10−4 as RT stays high

with increasing noise amplitude σ
l
. However, from conditions in

Equation (8), SISR requires σ
l
→ 0, which implies that increasing

the noise would not improve SISR. We can see from the red
curve in Figure 5C that a minimum value of RTmin

≈ 0.71,
already indicating a very poor SISR, occurs at a relatively large
noise amplitude of σ

l
= 0.18. Below, we shall focus on the

enhancement of this very poor SISR in layer l = 2 (for κ2,c =

τ2,c = 1.0; see also red curve in Figure 5C) by using various
multiplexing configurations, where layer l = 1 already exhibits
enhanced SISR in isolation.

6. MULTIPLEXING AND OPTIMIZATION OF
SISR

We now address the following questions: (1) Is an optimization
of SISR based on the multiplexing of layers possible? (2) Which
synaptic multiplexing configuration is the best optimizer of
SISR? To answer these two questions, we configure the synaptic
strength and time delay of one layer (say layer 1) such that SISR
is optimal in this layer. The corresponding parameters of layer 2
are configured such that SISR is non-existent in this layer. Then,
we connect these two layers in a multiplex fashion (see Figure 1)
in six different multiplexing configurations.

In the first three configurations, the two layers of themultiplex
network each consist of neurons that are intra-connected by
only electrical synapses (κ1,e , τ1,e ) and (κ2,e , τ2,e ), and are inter-
connected (multiplexed) by (i) electrical synapses (κm,e , τm,e ),
(ii) inhibitory chemical synapses (κm,c , τm,c ), and (iii) excitatory
chemical synapses (κm,c , τm,c ).

In the next three configurations, we use the same three
synaptic multiplexing configurations of two layers, each
consisting of neurons that are intra-connected by only inhibitory
chemical synapses. We do not consider excitatory chemical
synapses for intra-connectivity because this type of synapse
induces coherent spiking activities even in the absence of noise,
which is not a requirement for SISR. On the other hand, we
use excitatory chemical synapses in the inter-layer connections
(multiplexing) Because, for some synaptic strengths and time
delays, the multiplex network remains in the excitable regime
in the absence of noise—a requirement for observing SISR.
However, we also have situations in which the multiplexing
excitatory chemical synapses strengthen the excitable regime
of the network by making the homogeneous fixed point more
stable, thereby requiring very large noise amplitudes to have a
chance of inducing a spike. Large noise amplitudes, however,
violate the conditions necessary for the occurrence of SISR.
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FIGURE 6 | Color-coded minimum coefficient of variation (R
Tmin

) of layer 2 as a function of the multiplexing parameters. Both layers 1 and 2 are intra-connected by

electrical synapses. (A) Shows the enhancement performances of the electrical multiplexing (κm,e , τm,e ). For optimized SISR in layer 2, we need either a shorter τm,e and

stronger κm,e ; or a longer τm,e and a weaker κm,e . (B) Shows the enhancement performances of inhibitory chemical multiplexing (κm,c , τm,c ). For optimized SISR in layer

2, we need a stronger κm,c and a very long τm,c . (C) Shows the enhancement performances of excitatory chemical multiplexing (κm,c , τm,c ). For optimized SISR in layer 2

we need very short τm,c and stronger κm,c . Parameters for layer 1, we need N = 25, n
1,e

= 1, β = 0.75, ε = 0.0005, α = 0.5, κ
1,e

= 0.1, and τ
1,e

= 1.0. Parameters for

layer 2, we need N = 25, n
2,e

= 1, β = 0.75, ε = 0.0005, α = 0.5, κ
2,e

= 1.0, and τ
2,e

= 10.0.

We shall therefore also avoid such regimes and stay in the
excitable regimes where vanishingly small noise amplitudes have
a non-zero probability of inducing at least a spike in the large
time interval we considered in our simulations.

In the following numerical simulations, we have ensured that
the multiplex network stays in the excitable regime by checking
that all the synaptic strengths and time delays of the multiplexing
synapses are such that no self-sustained spiking activity occurs
in the absence of noise. It is worth mentioning here that
the optimization of SISR based on the multiplexing approach
appears not to be feasible in a network of mixed layer type, i.e.,
consisting of an electrical layer multiplexed to a chemical layer.
We investigated all the possible configurations of mixed layered
networks, i.e., those with electrical, inhibitory, and excitatory
chemical multiplexing. Extensive numerical simulations (not
shown) clearly indicated that the optimization of SISR, for the
ranges of the multiplexing synaptic strengths and time delays
considered, was not possible in mixed layered networks. For
this reason, we only discuss the layered networks that display
the capability of optimizing SISR and compare the optimization
abilities of various multiplexing connections between two
electrical layers and then between two inhibitory chemical layers.

6.1. Multiplexing of Electrical Layers
We consider layer 1 and layer 2 in which neurons are electrically
coupled only. We choose the synaptic parameters (κ1,e , τ1,e ) of
layer 1 such that SISR is pronounced, i.e., we choose a weak
synaptic strength κ1,e = 0.1 and a short synaptic time delay τ1,e =

1.0 (green RT -curve Figure 4C with RTmin
= 0.015). For layer

2, we set the synaptic parameters such that SISR is non-existent,
i.e., we choose a strong synaptic strength κ1,e = 1.0 and a long
synaptic time delay τ2,e = 10.0 (red RT -curve Figure 4D with
RTmin

= 1.24). These two layers are then coupled in a multiplex
network as shown in Figure 1A. Themultiplexing introduces two
other parameters—themultiplexing synaptic strengths {κm,e , κm,c}

and their corresponding time delays {τm,e , τm,c}. Figure 6 shows

the color-coded minimum values of the coefficient of variation
RTmin

of layer 2 as a function of the multiplexing parameters for
the three multiplexing configurations considered.

In Figure 6A, the multiplexing between the two layers is
mediated by electrical synapses with parameters (κm,e , τm,e ). We
can clearly see that even very weak multiplexing κm,e ≥ 0.1,
particularly at short time delays τm,e ≤ 9.5, can induce a very
pronounced SISR in layer 2 (where SISR was non-existent in
isolation) as indicated by the dark red color corresponding to
very low values of RTmin

. In the region τm,e ≤ 9.5, stronger
multiplexing strengths push RTmin

to even lower values as
indicated by the darker red color, thus optimizing SISR in layer 2.
However, as the multiplexing time delay becomes longer τm,e >

9.5, this time delay starts to dominate the control of SISR. As the
time delay τm,e > 9.5 increases, SISR progressively deteriorates
and the effect of strong multiplexing is reversed, i.e., the stronger
κm,e is, the more SISR deteriorates, as indicated by the change
of color of RTmin

from dark red to light red. While in this same
region, i.e., τm,e > 9.5, weaker multiplexing optimize SISR better
than strong ones, as seen in the region bounded by τm,e ∈

[9.5, 15.0] and κm,e ∈ [0.1, 1.0] with a dark red color.
In Figure 6B, the multiplexing between the two electrical

layers is mediated by inhibitory chemical synapses with
parameters (κm,c , τm,c ). We notice, in contrast to Figure 6A, that
the multiplexing inhibitory chemical synaptic strength takes
a maximum value of κm,c = 0.2, i.e., it stays in the weak
multiplexing regime and the time delay goes up to the very large
value of τm,c = 3, 000. As already pointed out, we always want the
network to stay in the excitable regime such that self-sustained
oscillations do not arise due to bifurcations. In this multiplexing
configuration, values of the inhibitory chemical synaptic strength
greater than 0.2 induces oscillations in the absence of noise—
for SISR, the system should oscillate coherently due only to the
presence of noise and not due to a bifurcation. As we can see
in Figure 6B, weak multiplexing inhibitory chemical synaptic
strength κm,c ∈ [0.0, 0.2] cannot induce SISR in layer 2 as the
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values of RTmin
stay very high above 1.0, except at very long

multiplexing delays τm,c ≥ 2, 750. It can be observed that for
time delays τm,c ≤ 1, 500, stronger multiplexing values, κ2,c & 0.1,
deteriorate SISR (yellow region) to a larger extent than the weaker
values, κ2,e . 0.1 (orange region). But when the multiplexing
time delay becomes very long, e.g., at τm,c = 3, 000, stronger
multiplexing (κ2,c & 0.1) induces an optimized (dark red color
of RTmin

) SISR in layer 2, while weaker multiplexing (κ2,c . 0.1)
cannot optimize SISR, as indicated by the orange color of RTmin

.
This means that multiplexing with inhibitory chemical synapses
has the opposite effect compared to multiplexing with electrical
synapses, in terms of SISR in layer 2. To sum up, stronger κm,c

means poorer SISR at shorter τm,c but better SISR at longer τm,c ;
the opposite is also true, as stronger κm,e means better SISR at
shorter τm,e , but poorer SISR at longer τm,e .

In Figure 6C, the multiplexing between the two electrical
layers is mediated by excitatory chemical synapses with
parameters (κm,c , τm,c ). First, we notice the range of the synaptic
strength and the time delay. For κm,c > 0.4, the excitability of
the network becomes so strong that even large noise amplitudes
(SISR requires vanishingly small noise) are not longer capable
of inducing a spike in the large time interval considered. In
contrast to weak multiplexing electrical synapses in Figure 6A,
weak multiplexing excitatory chemical synapses are incapable of
inducing SISR in layer 2. In Figure 6C, for a weak multiplexing
κm,c ∈ [0.0, 0.28], RTmin

remains high with the lowest value above
0.5 (as indicated by the white, yellow, orange, and light red colors
of RTmin

) for all of the time delays considered. This inability of
weak excitatory chemical multiplexing to optimize SISR in layer
2 is similar to that of weak inhibitory chemical multiplexing
in Figure 6B. However, for an intermediate excitatory chemical
multiplexing, i.e., κm,c ∈]0.28, 0.4], an optimized SISR is induced
in layer 2 (just like with intermediate electrical multiplexing in
Figure 6A), but only at very short time delays τm,c ∈ [0.0, 2.0],
where RTmin

assumes low values corresponding to the dark red
colors of RTmin

. And the main difference between inhibitory
chemical multiplexing and excitatory chemical multiplexing
is in terms of their time delays. While inhibitory chemical
multiplexing requires extremely long time delay (τm,c ≥ 2, 750)
to optimize SISR in layer 2, excitatory chemical multiplexing
requires extremely short time delays (τm,c ∈ [0.0, 2.0]) for
the optimization.

6.2. Multiplexing of Inhibitory Chemical
Layers
Here we consider layers 1 and 2 in which neurons are coupled
only via inhibitory chemical synapses. We set the synaptic
parameters (κ1,c , τ1,c ) of layer 1 such that SISR is pronounced,
i.e., we choose a weak synaptic strength κ1,c = 0.1 and a
long synaptic time delay τ1,c = 25.0, see the green RT -curve
Figure 5D with RTmin

= 0.015. For layer 2, we set the synaptic
parameters such that SISR is very poor, i.e., we choose a strong
synaptic strength κ1,c = 1.0 and a short synaptic time delay
τ2,c = 1.0, see the red RT -curve Figure 5C with RTmin

= 0.71.
These two layers are then coupled in a multiplex network as
shown in Figure 1B. The multiplexing introduces two other
parameters—the multiplexing synaptic strengths {κm,e , κm,c} and
their corresponding time delays {τm,e , τm,c}. Figure 7 shows the

color-coded minimum values of the coefficient of variation RTmin

of layer 2 as a function of the multiplexing parameters for the
three multiplexing configurations considered.

In Figure 7A, the multiplexing between the two inhibitory
chemical layers is mediated by electrical synapses with
parameters (κm,e , τm,e ). It is observed that electrical multiplexing
cannot at all optimize SISR in layer 2 as indicated by the
very high values of RTmin

in the entire κm,e − τm,e parameter
space. Comparing Figure 6A and Figure 7A, we can conclude
that electrical multiplexing become good optimizers of SISR
only when the multiplexed layers are both intra-connected by
electrical synapses. In particular, we observe that, while a strong
multiplexing κm,e with a short delay τm,e of layers intra-connected
by electrical synapses optimizes SISR in layer 2, (see Figure 6A),
a strong multiplexing κm,e with a short delay τm,e of layers
intra-connected by inhibitory chemical synapses makes SISR
rather worse (RTmin

≥ 1.0, see Figure 7A) in layer 2 than when
this layer is in isolation (RTmin

= 0.71).
In Figure 7B, the multiplexing between the two inhibitory

chemical layers is mediated by inhibitory chemical synapses
with parameters (κm,c , τm,c ). In this multiplexing configuration,
an optimization of SISR in layer 2 is impossible as well,
especially at intermediate multiplexing strengths and short time
delays, where the RTmin

assumes an even larger value (RTmin
≈

0.9) than layer 2 in isolation (RTmin
= 0.71). Moreover,

even very long multiplexing time delays, as in the case of
electrical layers multiplexed by inhibitory chemical synapses
(see Figure 6B), cannot optimize SISR in layer 2 irrespective of
the multiplexing strength. Thus, we conclude that multiplexing
inhibitory chemical synapses is generally a bad optimizer of SISR
in layers intra-connected by either chemical synapses or electrical
synapses. However, recall that inhibitory chemical synapses can
be very good optimizers of SISR within a layer (see Figure 5).

In Figure 7C, the multiplexing between the two inhibitory
chemical layers is mediated by excitatory chemical synapses
with parameters (κm,c , τm,c ). Note that the range of multiplexing
time delay we considered is very short, i.e., τm,c ∈ [0.0, 2.0].
For τm,c > 2.0, excitatory chemical multiplexing induces
self-sustained oscillations in the absence of noise—a regime
not required for SISR. In contrast to electrical and inhibitory
chemical multiplexing of layers intra-connected with chemical
synapses (see Figures 7A,B), excitatory chemical multiplexing
of such layers can perform extremely well at optimizing SISR.
However, this capability for very strong optimization is only
possible at strong excitatory chemical multiplexing (κm,c ≥ 0.8)
and very short time delays (τ2,c ∈ [0.0, 1.2]) with RTmin

≈

0.03. This implies that excitatory chemical synapses, as a
multiplexing synapse, could play more important functional
roles (than electrical and inhibitory chemical synapses) in neural
information processing due to SISR in multiplexed layers intra-
connected by inhibitory chemical synapses.

7. CONCLUSION

We have investigated the effects of electrical and chemical
synaptic couplings on the noise-induced phenomenon of SISR
in isolated layers as well as in multiplexed layer networks of the
FHN neuron model in the excitable regime. We have presented
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FIGURE 7 | Color-coded minimum coefficient of variation (R
Tmin

) of layer 2 against multiplexing parameters. Each of layer 1 and layer 2 is intra-connected by inhibitory

chemical synapses. (A) Shows the enhancement performances of the electrical multiplexing (κm,e , τm,e ). Here, we observe that electrical multiplexing cannot optimize

SISR in layer 2, especially at stronger multiplexing. (B) Shows the enhancement performances of the inhibitory chemical multiplexing (κm,c , τm,c ). In this case, the

enhancement of SISR is even worse than in (A), especially at intermediate multiplexing strengths and short time delays. (C) Shows the enhancement performances of

the excitatory chemical multiplexing (κm,c , τm,c ). Here, an enhancement is possible. An optimized SISR (R
Tmin

≈ 0.03) emerging at strong excitatory chemical synapses

(κm,c ≥ 0.8) with short time delays (τm,c ≤ 1.2). Parameters of layer 1: N = 25, n
1,c

= 8, β = 0.75, ε = 0.0005, α = 0.5, κ
1c

= 0.1, τ
1,c

= 25.0. Parameters of layer 2:

N = 25, n
l,c
= 8, β = 0.75, ε = 0.0005, α = 0.5, κ

l,c
= 1.0, τ

l,c
= 1.0.

the analytic conditions necessary for SISR to occur in isolated
layers with neurons connected either via electrical or inhibitory
chemical synapses. From these analytic conditions, we have also
obtained the minimum and maximum synaptic noise amplitude
required for the occurrence of SISR in isolated layers.

Numerical computations indicate that, in an isolated layer,
the weaker the electrical synaptic strength and the shorter the
corresponding synaptic time delay are, the more enhanced SISR
is. However, the deteriorating effect of stronger electrical synaptic
couplings is significant only at longer time delays and vice versa.
On the other hand, in an isolated layer with inhibitory chemical
synapses, weaker inhibitory chemical synaptic couplings just like
their weaker electrical counterparts enhance SISR. Moreover, the
longer the synaptic time delay is, the more enhanced SISR is—in
contrast to isolated layers with electrical synapses. The enhancing
effect of the longer synaptic time delays in isolated layers with
inhibitory chemical synapses becomes significant only at stronger
synaptic strengths. Furthermore, it is also found that at very short
time delays and irrespective of the synaptic strengths, electrical
synapses are better optimizers of SISR than chemical synapses.
Meanwhile, at very long time delays, and irrespective of the
synaptic strengths, chemical synapses are a better optimizers
of SISR than electrical synapses. The expressions of electrical
and chemical interaction potentials together with the minimum
and maximum values of the noise amplitude within which an
optimized SISR can occur are used to provide a theoretical
explanation of the above effects.

After identifying the electrical and chemical synaptic strengths
and time delays that destroy (or optimize) SISR in an isolated
layer, we proceeded with identifying multiplexing configurations
between the two layers that would optimize SISR in the second
layer where SISR would be very poor or non-existent in isolation.
For this identification, the synaptic parameters of one layer is
configured such that SISR is optimal and this layer is multiplexed
with a second layer where synaptic parameters are such that SISR
is very poor or even non-existent. We then investigated which

multiplexing connection (i,e., electrical, inhibitory chemical, or
excitatory chemical synapses) is a better optimizer of SISR in the
second layer.

In the first optimization configuration, we were interested in
optimizing SISR in an electrically coupled layer (i.e., a layer where
neurons are coupled only via electrical synapses) by multiplexing
this layer with another electrically coupled layer. We found
that even weak multiplexing with electrical synaptic connections
may optimize SISR in the layer where SISR was even absent in
isolation. However, the longer themultiplexing electrical synaptic
time delay is, the less efficient this configuration becomes
in optimizing SISR. In a second scenario, the multiplexing
connection was mediated by inhibitory chemical synapses
between these electrical layers. Here, we found that only very long
multiplexing inhibitory chemical synaptic time delays at weak
(but not too weak) synaptic strength may optimize SISR in the
layer where it was non-existent in isolation. And in the third
scenario, themultiplexing connection wasmediated by excitatory
chemical synapses between these electrical layers. It is found that
only very short multiplexing excitatory chemical time delays at
intermediate synaptic strengths can optimize SISR in the layer
where the phenomenon is non-existent in isolation.

In the second optimization configuration, we were interested
in optimizing SISR in an (inhibitory) chemically coupled layer
(i.e., a layer where neurons are coupled only via inhibitory
chemical synapses) by multiplexing this layer with another
(inhibitory) chemically coupled layer. Here it is found that the
optimization of SISR based multiplexing between chemical layers
does work equally well as in the case of the multiplexing between
electrical layers. Multiplexing of the chemical layers by electrical
synapses and inhibitory chemical synapses cannot optimize SISR
at all in the chemical layer, where in isolation SIRS is otherwise
very poor. We found that only multiplexing excitatory chemical
synapses (using a strong synaptic coupling and short time delay
regime) can optimize SISR in the chemical layer, whereas SISR in
isolation is very poor.
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Comparing the first and the second optimization
configurations of SISR, we conclude that the optimization of
SISR is generally better in layers with electrically coupled neurons
rather than with chemically coupled neurons, provided that
multiplexing connections between the layers are either electrical
or inhibitory chemical synapses. Vice versa, optimization of
SISR is generally better in layers with (inhibitory) chemically
coupled neurons than with electrically coupled neurons, when
multiplexing connections between the layers are excitatory
chemical synapses.

The manipulation of chemical and electrical patterns in
the brain has become more accessible, either via drugs that
cross the blood brain barrier, via electrical stimulation delivered
through electrodes implanted in the brain, or via light delivered
through optical fibers selectively exciting genetically manipulated
neurons (Runnova et al., 2016; De Domenico, 2017; Andreev
et al., 2018); however, the manipulation of the functional
connectivity seems to be a more difficult goal to achieve. Our
approach of modeling multi-layer networks in combination with
stochastic dynamics offers a novel perspective on the modeling of
the brain’s structural and functional connectivity. We therefore
expect that our findings could provide promising applications in
controlling synaptic connections to optimize neural information
(generated by noise-induced phenomena like SISR and CR)
processing in experiments, surgery involving brain networks
stimulation, and in designing networks of artificial neural circuits
to optimize information processing via SISR (Eberhardt et al.,
1989; Moopenn et al., 1989, 1990).

Interesting future research directions on the topic would be
to investigate the optimization performances of electrical and
chemical synapses in other intra-layer topologies like small-
world network, scale-free network, and random network; and
other inter-layer topologies like the multiplex topology in which
neurons in one layer are connected (randomly) to more than one
neuron in the other layer.
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