43 research outputs found

    Enabling technologies for MRI guided interventional procedures

    Get PDF
    This dissertation addresses topics related to developing interventional assistant devices for Magnetic Resonance Imaging (MRI). MRI can provide high-quality 3D visualization of target anatomy and surrounding tissue, but the benefits can not be readily harnessed for interventional procedures due to difficulties associated with the use of high-field (1.5T or greater) MRI. Discussed are potential solutions to the inability to use conventional mecha- tronics and the confined physical space in the scanner bore. This work describes the development of two apparently dissimilar systems that repre- sent different approaches to the same surgical problem - coupling information and action to perform percutaneous (through the skin) needle placement with MR imaging. The first system addressed takes MR images and projects them along with a surgical plan directly on the interventional site, thus providing in-situ imaging. With anatomical images and a corresponding plan visible in the appropriate pose, the clinician can use this information to perform the surgical action. My primary research effort has focused on a robotic assistant system that overcomes the difficulties inherent to MR-guided procedures, and promises safe and reliable intra-prostatic needle placement inside closed high-field MRI scanners. The robot is a servo pneumatically operated automatic needle guide, and effectively guides needles under real- time MR imaging. This thesis describes development of the robotic system including requirements, workspace analysis, mechanism design and optimization, and evaluation of MR compatibility. Further, a generally applicable MR-compatible robot controller is de- veloped, the pneumatic control system is implemented and evaluated, and the system is deployed in pre-clinical trials. The dissertation concludes with future work and lessons learned from this endeavor

    下腹部を対象とした極細針によるCTガイド下高正確度穿刺プランニング

    Get PDF
    早大学位記番号:新8149早稲田大

    Tools for improving high-dose-rate prostate cancer brachytherapy using three-dimensional ultrasound and magnetic resonance imaging

    Get PDF
    High-dose-rate brachytherapy (HDR-BT) is an interstitial technique for the treatment of intermediate and high-risk localized prostate cancer that involves placement of a radiation source directly inside the prostate using needles. Dose-escalated whole-gland treatments have led to improvements in survival, and tumour-targeted treatments may offer future improvements in therapeutic ratio. The efficacy of tumour-targeted HDR-BT depends on imaging tools to enable accurate dose delivery to prostate sub-volumes. This thesis is focused on implementing ultrasound tools to improve HDR-BT needle localization accuracy and efficiency, and evaluating dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) for tumour localization. First, we implemented a device enabling sagittally-reconstructed 3D (SR3D) ultrasound, which provides sub-millimeter resolution in the needle insertion direction. We acquired SR3D and routine clinical images in a cohort of 12 consecutive eligible HDR-BT patients, with a total of 194 needles. The SR3D technique provided needle insertion depth errors within 5 mm for 93\% of needles versus 76\% for the clinical imaging technique, leading to increased precision in dose delivered to the prostate. Second, we implemented an algorithm to automatically segment multiple HDR-BT needles in a SR3D image. The algorithm was applied to the SR3D images from the first patient cohort, demonstrating mean execution times of 11.0 s per patient and successfully segmenting 82\% of needles within 3 mm. Third, we augmented SR3D imaging with live-2D sagittal ultrasound for needle tip localization. This combined technique was applied to another cohort of 10 HDR-BT patients, reducing insertion depth errors compared to routine imaging from a range of [-8.1 mm, 7.7 mm] to [-6.2 mm, 5.9 mm]. Finally, we acquired DCE-MRI in 16 patients scheduled to undergo prostatectomy, using either high spatial resolution or high temporal resolution imaging, and compared the images to whole-mount histology. The high spatial resolution images demonstrated improved high-grade cancer classification compared to the high temporal resolution images, with areas under the receiver operating characteristic curve of 0.79 and 0.70, respectively. In conclusion, we have translated and evaluated specialized imaging tools for HDR-BT which are ready to be tested in a clinical trial investigating tumour-targeted treatment

    Needle and Biopsy Robots: a Review

    Get PDF
    Purpose of the review Robotics is a rapidly advancing field, and its introduction in healthcare can have a multitude of benefits for clinical practice. Especially, applications depending on the radiologist\u2019s accuracy and precision, such as percutaneous interventions, may profit. This paper provides an overview of recent robot-assisted percutaneous solutions. Recent findings Percutaneous interventions are relatively simple and the quality of the procedure increases a lot by introducing robotics due to the improved accuracy and precision. The success of the procedure is heavily dependent on the ability to merge pre- and intraoperative images, as an accurate estimation of the current target location allows to exploit the robot\u2019s capabilities. Summary Despite much research, the application of robotics in some branches of healthcare is not commonplace yet. Recent advances in percutaneous robotic solutions and imaging are highlighted, as they will pave the way to more widespread implementation of robotics in clinical practic

    Design, Development, and Evaluation of a Teleoperated Master-Slave Surgical System for Breast Biopsy under Continuous MRI Guidance

    Get PDF
    The goal of this project is to design and develop a teleoperated master-slave surgical system that can potentially assist the physician in performing breast biopsy with a magnetic resonance imaging (MRI) compatible robotic system. MRI provides superior soft-tissue contrast compared to other imaging modalities such as computed tomography or ultrasound and is used for both diagnostic and therapeutic procedures. The strong magnetic field and the limited space inside the MRI bore, however, restrict direct means of breast biopsy while performing real-time imaging. Therefore, current breast biopsy procedures employ a blind targeting approach based on magnetic resonance (MR) images obtained a priori. Due to possible patient involuntary motion or inaccurate insertion through the registration grid, such approach could lead to tool tip positioning errors thereby affecting diagnostic accuracy and leading to a long and painful process, if repeated procedures are required. Hence, it is desired to develop the aforementioned teleoperation system to take advantages of real-time MR imaging and avoid multiple biopsy needle insertions, improving the procedure accuracy as well as reducing the sampling errors. The design, implementation, and evaluation of the teleoperation system is presented in this dissertation. A MRI-compatible slave robot is implemented, which consists of a 1 degree of freedom (DOF) needle driver, a 3-DOF parallel mechanism, and a 2-DOF X-Y stage. This slave robot is actuated with pneumatic cylinders through long transmission lines except the 1-DOF needle driver is actuated with a piezo motor. Pneumatic actuation through long transmission lines is then investigated using proportional pressure valves and controllers based on sliding mode control are presented. A dedicated master robot is also developed, and the kinematic map between the master and the slave robot is established. The two robots are integrated into a teleoperation system and a graphical user interface is developed to provide visual feedback to the physician. MRI experiment shows that the slave robot is MRI-compatible, and the ex vivo test shows over 85%success rate in targeting with the MRI-compatible robotic system. The success in performing in vivo animal experiments further confirm the potential of further developing the proposed robotic system for clinical applications

    The Use of Biomaterials in Internal Radiation Therapy

    Get PDF
    Radiotherapy has become one of the most prominent and effective modalities for cancer treatment and care. Ionising radiation, delivered either from external or internal sources, can be targeted to cancerous cells causing damage to DNA that can induce apoptosis. External beam radiotherapy delivers either photon radiation (x-rays or gamma rays) or particle radiation (neutrons or protons) in a targeted manner to specific tumour locations. Internal radiotherapy involves placing radioactive sources within the body to deliver localised doses of therapeutic radiation to tumours using short range radionuclides. Biomaterials have been developed to allow more precise targeting of radiotherapy in order to reduce toxicity to surrounding healthy tissues and increase treatment efficacy. These unique biomaterials have been developed from polymers, glasses and ceramics. Polymeric materials have been used to both displace healthy tissue from tumours receiving radiation, and to deliver radioactive sources into the body. These polymers can respond to various stimuli, such as radiation or reactive oxygen species, to deliver therapeutic payloads to target tissue during or post radiotherapy. Glass-based biomaterials doped with radionuclides have also been developed to provide in situ radiotherapy. Novel biomaterials that can enhance the synergistic effect of other treatment modalities, such as chemotherapy and immunotherapy, continue to be developed. Theranostic materials that are capable of providing diagnostic information whilst simultaneously delivering a therapeutic effect to enhance radiotherapy are also briefly reviewed

    Image-guided robots for dot-matrix tumor ablation

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 203-208).Advances in medical imaging now provides detailed images of solid tumors inside the body and miniaturized energy delivery systems enable tumor destruction through local heating powered by a thin electrode. However, the use of thermal ablation as a first line of treatment is limited due to the difficulty in accurately matching a desired treatment and a limited region of active heating around an electrode. The purpose of this research is to identify and quantify the current limitations of image-guided interventional procedures and subsequently develop a procedure and devices to enable accurate and efficient execution of image-based interventional plans and thus ablation of a tumor of any shape with minimal damage to surrounding tissue. Current limitations of probe placement for ablation therapy were determined by a detailed retrospective study of 50 representative CT-guided procedures. On average, 21 CT scans were performed for a given procedure (range 11-38), with the majority devoted to needle orientation and insertion (mean number of scans was 54%) and trajectory planning (mean number of scans was 19%). A regression analysis yielded that smaller and deeper lesions were associated with a higher number of CT scans for needle orientation and insertion; highlighting the difficulty in targeting. Another challenge identified was repositioning the instrument distal tip within tissue. The first robot is a patient-mounted device that aligns an instrument along a desired trajectory via two motor-actuated concentric, crossed, and partially nested hoops. A carriage rides in the hoops and grips and inserts an instrument via a two degree-of-freedom friction drive. An imagebased point-and-click user interface relates appropriate clicks on the medical images to robot commands. Mounting directly on the patient provides a sufficiently stable and safe platform for actuation and eliminates the need to compensate for chest motion; thereby reducing the cost and complexity compared to other devices. Phantom experiments in a realistic clinical setting demonstrated a mean targeting accuracy of 3.5 mm with an average of five CT scans. The second robot is for repositioning the distal tip of a medical instrument to adjacent points within tissue. The steering mechanism is based on the concept of substantially straightening a pre-curved Nitinol stylet by retracting it into a concentric outer cannula, and re-deploying it at different axial and rotational cannula positions. The proximal end of the cannula is attached to the distal end of a screw-spline that enables it to be translated and rotated with respect to the casing. Translation of the stylet relative to the cannula is achieved with a second concentric, nested smaller diameter screw that is constrained to rotate with the cannula. The robot mechanism is compatible with the CT images, light enough to be supported on a patient's chest or attached to standard stereotactic frames. Targeting experiments in a gelatin phantom demonstrated a mean targeting error of 1.8 mm between the stylet tip and that predicted with a kinematic model. Ultimately, these types of systems are envisioned being used together as part of a highly dexterous patient-mounted positioning platform that can accurately perform ablation of large and irregularly shaped tumors inside medical imaging machines - offering the potential to replace expensive and traumatic surgeries with minimally invasive out-patient procedures.by Conor James Walsh.Ph.D

    Multi-probe robotic positioner for cryoablation in MRI

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 116-118).This thesis describes the design of a guidance device for faster and more accurate targeting of multiple probes during cryoablation and other percutaneous interventions performed in closed bore magnetic resonance (MR) imaging systems. The device is intended to be mounted onto a Siemens 110 mm MR loop coil that rests on the patient and contains a cable driven two-degree-of- freedom spherical mechanism that orientates the intervention probes about a remote center of motion located 15 mm above the skin entry point. A carriage, pulled by strong and low stretch cables, can position up to three intervention probes as it travels on a rotating hoop. Its motion is constrained by a custom designed roller bearing to minimize friction. A thumbscrew fastened latch allows a probe to be engaged in a guide that constrains the probe along a specific trajectory. The probe can also be disengaged from its track, freeing it to move with respiration and enabling the guide to be repositioned for another probe to be inserted. Compact MR compatible piezoelectric motors are used to actuate the system. A prototype was built from 3D printed ABS plastic as a proof of concept. Bench level evaluation demonstrated that each component of the device performs according to the design specifications. The device performance was characterized by analyzing still images taken before and after movement, which yielded sub-degree accuracy, sub-degree repeatability near vertical position, and an incremental step resolution of at least 0.5 degree. Upon further developments of the registration and calibration modules in 3D slicer to interface the robot with image data, evaluation of the device in MRI will be performed.by Faye Y. Wu.S.M
    corecore