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Abstract

High-dose-rate brachytherapy (HDR-BT) is an interstitial technique for the treat-

ment of intermediate and high-risk localized prostate cancer that involves placement

of a radiation source directly inside the prostate using needles. Dose-escalated whole-

gland treatments have led to improvements in survival, and tumour-targeted treatments

may offer future improvements in therapeutic ratio. The efficacy of tumour-targeted

HDR-BT depends on imaging tools to enable accurate dose delivery to prostate sub-

volumes. This thesis is focused on implementing ultrasound tools to improve HDR-BT

needle localization accuracy and efficiency, and evaluating dynamic contrast enhanced

magnetic resonance imaging (DCE-MRI) for tumour localization.

First, we implemented a device enabling sagittally-reconstructed 3D (SR3D) ultra-

sound, which provides sub-millimeter resolution in the needle insertion direction. We

acquired SR3D and routine clinical images in a cohort of 12 consecutive eligible HDR-

BT patients, with a total of 194 needles. The SR3D technique provided needle insertion

depth errors within 5 mm for 93% of needles versus 76% for the clinical imaging tech-

nique, leading to increased precision in dose delivered to the prostate.

Second, we implemented an algorithm to automatically segment multiple HDR-

BT needles in a SR3D image. The algorithm was applied to the SR3D images from

the first patient cohort, demonstrating mean execution times of 11.0 s per patient and

successfully segmenting 82% of needles within 3 mm.

Third, we augmented SR3D imaging with live-2D sagittal ultrasound for needle tip

localization. This combined technique was applied to another cohort of 10 HDR-BT

patients, reducing insertion depth errors compared to routine imaging from a range of

[-8.1 mm, 7.7 mm] to [-6.2 mm, 5.9 mm].

Finally, we acquired DCE-MRI in 16 patients scheduled to undergo prostatectomy,

using either high spatial resolution or high temporal resolution imaging, and compared

the images to whole-mount histology. The high spatial resolution images demonstrated
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improved high-grade cancer classification compared to the high temporal resolution

images, with areas under the receiver operating characteristic curve of 0.79 and 0.70,

respectively.

In conclusion, we have translated and evaluated specialized imaging tools for HDR-

BT which are ready to be tested in a clinical trial investigating tumour-targeted treat-

ment.

Keywords: prostate cancer; high-dose-rate brachytherapy; 3D ultrasound; dynamic
contrast enhanced magnetic resonance imaging; automatic needle segmentation
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Chapter 1

General Introduction

Prostate cancer is the second leading cause of cancer-related death among men in devel-
oped countries [1]. Conventional radiotherapy targeting the whole prostate is limited
by toxicity in surrounding organs [2, 3]. High-dose-rate prostate brachytherapy is a
radiotherapy technique that delivers lower dose to surrounding organs than other tech-
niques [4]. Ultrasound can be used to guide high-dose-rate prostate brachytherapy [5],
and magnetic resonance imaging can be used to localize prostate tumours [6]. Optimiz-
ing these imaging techniques for tumour-targeted high-dose-rate prostate brachytherapy
may lead to improvements in local disease control and cause-specific survival.

1.1 Prostate Cancer

Prostate cancer is the most commonly diagnosed non-cutaneous cancer and the third

leading cause of cancer-related death in Canadian men, with an estimated 26,200 new

cases and 4,000 deaths in 2016 [7]. Accordingly, it is estimated that 1 in 8 Canadian

men will develop prostate cancer in his lifetime, and 1 in 27 Canadian men will die from

the disease [7]. Prostate cancer is also the most commonly diagnosed non-cutaneous

cancer and the second leading cause of cancer-related death among men in developed

countries [1] with an estimated 180,890 new cases and 26,120 deaths in 2016 in the

United States alone [8].

Physiologically, the prostate is an accessory organ of the male reproductive system

surrounding the urethra inferior to the bladder and anterior to the rectum [9]. The

prostate contributes secretions to semen including buffers, enzymes, and nutrients for

1
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sperm metabolism [10]. Prostate tissue is characterized by the presence of 30 to 40

glands lined with epithelial cells which drain into the prostatic urethra through ducts

[9, 10]. The most common prostate cancer, adenocarcinoma, is characterized by the

development of abnormal cells in prostate glands [11]. These abnormal cells grow in

a disorganized and uncontrolled manner and have the potential to metastasize to other

tissues [12].

The prostate is not critical to survival, and mortality from prostate cancer is caused

by metastatic disease [13, 14]. Prostate cancer metastases most commonly manifest in

the lymph nodes, bones, lung, and liver [14]. Aside from the risk of premature mor-

tality, prostate cancer is associated with adverse genitourinary symptoms, pain, and

general malaise with frequency and severity depending on disease stage [15, 16]. Diag-

nostic and therapeutic procedures are also associated with physical side-effects that are

described further in subsequent sections. Prostate cancer treatments lead to improve-

ments in disease control, but evidence of prostate cancer recurrence five years following

treatment remains at 15-66% for high-risk disease [2, 3], and treatment aggressiveness

is limited by treatment toxicities [17–19]. Increasing treatment aggressiveness to re-

duce rates of prostate cancer recurrence while minimizing toxicity is the long-term

clinical objective motivating the work described in this thesis.

1.2 Prostate Cancer Diagnosis

The selection of a prostate cancer treatment is preceded by an initial diagnosis. Patients

are typically screened for signs of prostate cancer using the digital rectal examina-

tion (DRE) and the prostate-specific-antigen (PSA) blood test [20]. The DRE refers

to the clinical procedure in which a physician palpates the prostate using a gloved fin-

ger placed in the rectum. Prostate cancer tends to create lumps which can be detected

through palpation. DRE can be used to detect cancers in the posterior peripheral zone
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of the prostate, but fails to detect 45% of biopsy-confirmed cancers [21]. PSA is a

glycoprotein produced by cells in the prostate that can be detected in a blood sample.

Serum PSA concentrations have been shown to correlate with prostate cancer presence

[22] and prognostic factors such as tumour volume [23]. PSA screening in the general

population is not recommended due to over-diagnosis of very low-risk disease that is

unlikely to become symptomatic in the patient’s lifetime [24]. PSA tests are currently

used to screen men suspected of having prostate cancer based on additional informa-

tion such as symptom presentation or a DRE [20], and to monitor treatment response

[25, 26]. Rising PSA following treatment is referred to as biochemical recurrence and

is considered a precursor to prostate cancer recurrence and/or metastasis and mortality

[27]. Biochemical disease-free survival (bDFS) refers to patient survival with the ab-

sence of a rise in PSA or any other signs of recurrence, and is a common measurement

in clinical trials investigating prostate cancer treatments.

For patients exhibiting signs of prostate cancer, an initial diagnosis is made based

on the results of a trans-rectal biopsy involving the systematic retrieval of small tissue

samples from varying regions within the prostate using needles inserted via the rec-

tum. These small tissue samples, referred to as cores, are then analyzed in a pathology

lab to determine whether cancer is present. If cancer is present, the cores are used

to characterize, or stage, the cancer. An estimate of the spatial cancer distribution is

determined based on the number, distribution, and fraction of biopsy cores containing

cancerous cells [28], and an estimate of the cancer aggressiveness is determined based

on the characteristics of the cancer cells themselves as visible under a microscope. A

standardized numeric scoring system from 6-10, called the Gleason score, is used to

characterize the architecture of prostate cancer cells on tissue samples [11]. Higher

Gleason scores correspond to architectural characteristics tending towards greater dis-

organization, with higher scores also associated with increased risks of prostate cancer

mortality [20].
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A patient's overall risk of prostate cancer mortality is typically estimated using all

available diagnostic information and stratified into one of four broad categories for clin-

ically localized disease: very low risk, low risk, intermediate risk, and high risk [20].

Table 1.1 summarizes risk stratification criteria such as PSA concentration, Gleason

score, and tumour burden recommended by the National Comprehensive Cancer Net-

work (NCCN) [20]. Risk of cancer recurrence following curative-intent treatment is

increased in higher-risk groups, with specific risk of recurrence dependent on the treat-

ment modality selected [29]. There is the potential for exceptions from the guidelines

listed in Table 1.1. Furthermore, diagnostic information may not be entirely accurate.

PSA tests fail to detect 18% of biopsy-confirmed cancers [21] and may be elevated

in patients without clinically significant disease [30]. Systematic trans-rectal biopsies

only sample small portions of prostate tissue leading to cancer under-sampling in 23%

of patients [31]. Investigators have proposed the use of image-guided trans-rectal biop-

sies using magnetic resonance imaging (MRI) or a combination of MRI and ultrasound

to decrease the false negative rate of trans-rectal biopsies [32, 33].

risk PSA conc. Gleason
group (ng/ml) score T-stage

very low <10 ≤ 6 T1c (only detected through elevated PSA)
low <10 ≤ 6 T1-T2a (half a lobe or less)

intermediate 10-20 7 T2b-T2c (more than half a lobe or both lobes)
high >20 ≥ 8 T3a (extra-capsular extension)

Table 1.1: Summary of NCCN risk stratification criteria for mortality from clinically
localized prostate cancer [20]

1.3 Prostate Cancer Imaging

Medical imaging provides a spatial characterization of tissue non-invasively which can

be applied to the diagnosis, treatment planning, treatment delivery guidance, and treat-

ment response assessment of prostate cancer. There are multiple medical imaging tech-
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niques with applications related to prostate cancer. The most common imaging tech-

niques for treatment delivery guidance are x-ray computed tomography (CT) and ul-

trasound, and the most common techniques for prostate cancer localization are nuclear

imaging and MRI.

1.3.1 X-ray Computed Tomography

CT imaging involves the projection of X-rays through tissue at various angles, and

detection of the X-rays that pass through the sample. The detected X-ray fluence at

varying projection angles can be used to reconstruct a map of X-ray attenuation coef-

ficients in tissue. CT scans are critically important for certain radiotherapy planning

techniques. CT scans acquired with a fan-beam geometry provide accurate electron

density information and high spatial resolution required for external beam radiotherapy

(EBRT) dose calculations and treatment planning [34]. An example of a fan-beam CT

image of the prostate is provided in Figure 1.1. CT scans acquired with a cone-beam

geometry (CBCT) can be acquired immediately prior to EBRT delivery using on-board

imaging devices to verify treatment setup geometry [35]. CT scans can also be used to

verify the placement of interstitial needles and seeds in brachytherapy procedures [36,

37].

At diagnostic X-ray energies (∼140 kV for pelvic imaging), X-ray attenuation coef-

ficients do not vary significantly in pelvic soft tissue, so raw CT scans cannot be used for

reliable cancer localization in the prostate [38]. CT demonstrates utility in the identifi-

cation of bone-lesions in high-risk prostate cancer [39]. Furthermore, iodinated contrast

agents can be injected systemically followed by repeated CT imaging of the region of

interest to observe contrast agent dynamics, referred to as dynamic-contrast-enhanced

(DCE)-CT. DCE-CT can be analyzed to estimate variations in vascular parameters as-

sociated with prostate cancer for intra-prostatic tumour localization [40].
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1.3.2 Ultrasound

Brightness-mode, or B-mode ultrasound imaging involves the application and detec-

tion of mechanical waves at frequencies above 20 kHz to produce images at 10-30

frames per second. Resultant image intensities are related to ultrasound scatter, at-

tenuation, and echogenicity (the ability to return an echo from an applied ultrasound

signal). Higher ultrasound frequencies provide higher spatial resolution but also lead to

greater signal attenuation. Ultrasound with frequencies of 5-10 MHz can provide high

soft tissue contrast over a 5-10 cm field of view, and trans-rectal ultrasound (TRUS) is

used routinely for prostate volume measurement [41] and trans-rectal biopsy guidance

[31]. TRUS can also be used for radiotherapy guidance [42, 43]. Like CT, B-mode

TRUS demonstrates limited sensitivity to intra-prostatic cancer, which can appear rel-

atively hypo-intense compared to normal tissue [44]. Conventional TRUS images are

2D, and modern bi-plane probes incorporate two perpendicular transducers for imag-

ing axial and sagittal planes, which are both employed in this thesis. 2D TRUS spatial

resolution varies with distance from the probe and the gain settings, with typical values

of 0.3-0.6 mm in-plane (axial and lateral resolution) [45] and 1.5-4.0 mm out-of-plane

(elevational resolution or “slice thickness”) [46].

Mechanical probe tracking and manipulation enables acquisition and reconstruc-

tion of 3D TRUS images using either the axial transducer or sagittal transducer [47,

48]. A bi-plane TRUS probe and a mechatronic device enabling acquisition and axially-

reconstructed 3D (AR3D) and sagittally-reconstructed 3D (SR3D) TRUS [49] are shown

in Figure 1.2. Schematics of probe manipulation for AR3D and SR3D TRUS recon-

struction are provided in Figure 1.3. The axial transducer is used for AR3D acquisition,

and the probe is mechanically stepped in the superior/inferior direction. The sagittal

transducer is used for SR3D acquisition, and the probe is mechanically rotated. AR3D

and SR3D TRUS have spatial resolution components corresponding to the axial, lateral,

and elevational resolutions of the 2D images used for reconstruction.
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Figure 1.1: Example CT and SR3D trans-rectal ultrasound (TRUS) images from two
separate prostate cancer patients acquired for EBRT and brachytherapy treatment plan-
ning, respectively.

Figure 1.2: A bi-plane 8658 TRUS probe (BK Medical, Boston MA) and mechatronic
device for image-guided trans-perineal needle insertions capable of acquiring AR3D
and SR3D TRUS. This device is investigated in this thesis. The two transducer locations
on the TRUS probe are indicated.
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1.3.3 Nuclear Imaging

Nuclear imaging involves the systemic injection of a radiopharmaceutical, referred to as

a tracer, followed by the detection of the radioactive emissions to produce an image of

the spatial distribution of the tracer in tissue. The most common forms of nuclear imag-

ing techniques are single photon emission computed tomography (SPECT) and positron

emission tomograpy (PET), which are produced by detecting emissions from gamma

and positron emitting tracers respectively. Tracers have been designed to highlight dif-

ferences in rates of cellular metabolism, cellular replication, or amino acid transport

associated with cancer [50]. Recently developed PET tracers [51, 52] have been de-

signed to target a cellular surface protein that is found to be up-regulated in prostate

cancer, referred to as prostate-specific membrane antigen (PSMA) [53]. Preliminary

evidence suggests that PSMA-targeted PET probes may have 100% sensitivity to local-

ized prostate cancer [52], and higher sensitivity than existing PET tracers (e.g. fluoro-

choline) to metastatic disease [54]. While nuclear imaging techniques are sensitive to

cancer, PET and SPECT imaging have limited spatial resolution of 4-10 mm. Advances

in hybrid PET/MRI scanners may enable the combination of MRI with PSMA-PET to

overcome limitations in PET spatial resolution [52, 55]. Figure 1.4a displays an exam-

ple PSMA-PET image overlaid on T2-weighted (T2w)-MRI acquired using a hybrid

PET/MRI scanner. This is promising for the identification of intra-prostatic tumours,

but PSMA-PET is still under investigation in ongoing clinical trials.

1.3.4 Magnetic Resonance Imaging

MRI involves the application of magnetic fields and radio-frequency pulses to tissue to

produce detectable signals from atomic nuclei possessing a magnetic moment, typically

protons. Depending on the characteristics of the pulse sequence chosen, different prop-

erties of the local proton environment can be highlighted. Through these mechanisms,

MRI can provide unparalleled soft-tissue contrast, and modern scanners can provide
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Figure 1.3: Schematic of axially-reconstructed 3D (AR3D) TRUS and sagittally-
reconstructed 3D (SR3D) TRUS from a patient with HDR-BT needles in situ. Simu-
lated images are cutaway in the sagittal plane to indicate differences in spatial resolution
between AR3D and SR3D TRUS in the HDR-BT needle insertion direction.

sub-millimeter spatial resolutions for many pulse sequences [39]. These characteristics

make MRI well-suited for prostate cancer detection and localization for diagnosis and

treatment planning. For prostate cancer imaging, an endo-rectal coil may be employed.

The advantage of an endo-rectal coil is that it leads to improved signal-to-noise ratio

(SNR) in the prostate compared to pelvic coils, leading to improved specificity to intra-

prostatic tumours [56]. Disadvantages of using an endo-rectal coil include the fact that

it is uncomfortable for the patient and deforms the prostate. The following sections de-

scribe specific MRI techniques for prostate cancer detection and localization. MRI can

also be used for biopsy and treatment delivery guidance [57, 58] and treatment response

assessment [59].

T2-weighted MRI

T2-weighted (T2w) image intensities are weighted by the transverse, or T2 relaxation

time of protons in tissue, which varies with tissue type [60]. Prostate cancer has been

shown to appear hypo-intense on T2w imaging relative to normal prostate tissue [6,

61]. T2w images can be acquired with axial in-plane voxel dimensions <0.5 mm and
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slice thickness <1 mm with the use of an endo-rectal coil [62].

Diffusion-weighted MRI

Diffusion-weighted (DW) images have signal intensities weighted by the rate of dif-

fusion (random Brownian motion) of molecules containing protons, primarily water.

DW imaging employs spin-echo pulse sequences augmented with diffusion-sensitizing

gradients to measure diffusion of water molecules. The strength and timing of these

gradients can be adjusted using a parameter called the b-value [units s/mm2] to modify

the sensitivity of the images to diffusion rates [63]. Prostate cancer is characterized

by hyper-intensity relative to normal tissue on high b-value images [e.g. b = 1000

s/mm2][6, 61, 63]. Factors aside from diffusion rates, such as T2 time and proton den-

sity, can influence the raw DW image signal intensities, so a common technique to

mitigate the impact of these factors is to acquire multiple DW images with differing

b-values. These images can be combined to normalize for factors other than diffusion

rates, creating maps of apparent diffusion coefficient (ADC) [63]. Prostate cancer has

been associated with decreased ADC values relative to normal prostate tissue indicat-

ing restricted diffusion in cancerous regions [39]. DW images typically have limited

spatial resolution and can suffer from geometric distortions [64].

Dynamic-Contrast-Enhanced MRI

Dynamic-contrast-enhanced (DCE)-MRI detects vascular properties of tissue through

the acquisition of multiple sequential MR images before and after injecting a bolus

of paramagnetic contrast agent. Prostate cancer has been associated with increased

micro-vessel density and area [65] leading to increased rates of contrast agent wash-in

and wash-out that can be detected using DCE-MRI [66]. The pulse sequences used for

DCE-MRI are weighted by the inverse of the longitudinal proton relaxation time (T1

time), and are associated with increased signal intensity with increased contrast-agent
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concentration [67]. Through analysis of a series of T1-weighted (T1w) images over

time, contrast agent wash-in and wash-out can be tracked.

Application of pharmacokinetic models to the images enables the calculation of

maps of vascular parameters. Specifically, the Tofts two-compartment pharmacokinetic

model describes the rate of contrast agent transfer from the vascular space into the extra-

vascular extra-cellular space (EES) using the parameter Ktrans, and the rate of contrast

agent transfer from the EES back to the vascular space using the parameter kep[68].

Prostate cancer is associated with increased Ktrans values relative to normal tissue [69].

The Tofts model describes the transfer of contrast agent to and from the EES based on

passive diffusion driven by concentration gradients, and may be written as

CT (t) = KtransCA(t) ⊗ e−kept (1.1)

where CT (t) is the contrast agent concentration measured in tissue at time t, CA(t) is the

arterial contrast agent concentration at time t, and ⊗ is a convolution operator. CA(t) is

difficult to measure directly, so the Tofts model is typically applied using a population

averaged estimate of CA(t) [70] or an estimate of CA(t) based on contrast agent uptake

in nearby reference tissue [71].

Since DCE-MRI involves repeated T1w imaging, pulse sequence selection involves

a trade-off between spatial and temporal resolutions. Several T1w pulse sequences

have been proposed for DCE-MRI with a wide range of acquisition times including

1.4 s/image and 90 s/image with corresponding voxel dimensions of 1.1 × 1.1 × 3.0

mm3 and 0.55 × 0.55 × 2.6 mm3 [72–74]. We will compare prostate cancer localiza-

tion performance of Ktrans and kep derived from two pulse sequences with differing

temporal and spatial resolution in this thesis. DCE-MRI results can be confounded by

variation in vascular parameters caused by non-cancerous conditions such as prostatic

intra-epithelial neoplasia (PIN), which has also demonstrated increased levels of vas-

cular growth factors compared to normal tissue, creating the potential for false positive
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cancer findings [65].

Figure 1.4: a) Example PSMA-PET overlaid T2w-MRI from a prostate cancer patient.
b-d) T2w-MRI, ADC derived from DW-MRI, and Ktrans derived from DCE-MRI from
a single prostate cancer patient.

Multi-Parametric MRI

Given the differing mechanisms of contrast generation associated with T2w, DW, and

DCE-MRI techniques, consensus guidelines recommend multi-parametric MRI (mpMRI)

protocols including all three techniques for optimum prostate cancer localization per-

formance [6, 61]. mpMRI combining T2w, DW, and DCE-MRI has been compared

with whole-mount histology [75–78], demonstrating area under the receiver operat-

ing characteristic (ROC) curve of 0.71-0.94 for prostate cancer classification [75, 76].

Area under the ROC curve (AUC) values for mpMRI were found to be statistically

significantly higher than T2w alone (0.67-0.85), DW alone (0.69-0.90), or DCE-MRI

alone (0.59-0.75) when derived from pulse sequences with acquisition times of 10-13
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s/image. [75, 76]. Magnetic resonance spectroscopy (MRS) has also been investigated

as a component in mpMRI, detecting changes in metabolite concentrations associated

with prostate cancer [76]. Due to the low spatial resolution, long scan times, and techni-

cal challenges associated with MRS acquisition, T2w+DW+DCE-MRI is increasingly

being adopted as the standard components of mpMRI for prostate cancer localization

[6]. mpMRI can be used to detect tumours with volumes >0.4 cm3 and <0.4 cm3 with

sensitivities of 80% and 5% respectively [77], indicating its utility for the detection of

clinically-significant tumour volumes >0.5 cm3 [79] but not sub-clinical spread.

1.4 Prostate Cancer Treatment

Cancer cells tend to have common genotypic and phenotypic qualities that differentiate

them from normal tissue cells [12], but selective cancer cell destruction is an ongo-

ing challenge. Treatments can be described qualitatively in terms of therapeutic ratio,

referring to the ratio of improvements in patient survival to the severity of treatment

side-effects due to normal tissue damage. In accordance with this concept of thera-

peutic ratio, there are multiple treatment options available to treat prostate cancer with

varying degrees of treatment aggressiveness and side-effects that can be selected based

on patient-specific risks of mortality, comorbidities, and preferences. The most com-

mon curative-intent treatments for prostate cancer are surgery and radiotherapy [80].

These techniques are summarized in the following sections along with results of rele-

vant clinical trials. It should be noted that the results of clinical trials may be subject

to factors influencing treatment efficacy such as patient selection bias and clinical trial

end-point definitions, such as bDFS.
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1.4.1 Surgery

For localized prostate cancer, the standard surgical treatment is radical prostatectomy

involving complete removal of the gland. The 5-year bDFS following radical prostate-

ctomy are 80-92%, 66-67%, and 34-50% for low, intermediate, and high-risk patients,

respectively [2]. Common toxicities reported 3 years following radical prostatectomy

include genitourinary symptoms including incontinence and erectile dysfunction im-

pacting 9% and 42% of patients respectively [81]. Current 10-year follow-up data

suggests that radical prostatectomy provides superior cause-specific survival to radio-

therapy for intermediate and high-risk patients less than 80 years old [80, 82], but con-

tinued superiority of surgery has been disputed based on improvements in radiotherapy

achieved in the past 10 years [83]. Radical prostatectomy can be performed using open

radical retropubic or robot-assisted laparoscopic techniques with no difference in onco-

logic or functional outcomes found between techniques [84].

1.4.2 Radiotherapy

Radiotherapy involves the application of ionizing radiation to kill cancer cells. Ionizing

radiation is delivered in the form of X-rays produced using x-ray tubes or linear accel-

erators, emissions produced by radioactive isotopes, or ion beams produced by particle

accelerators. Radiation acts to kill cancerous cells through multiple mechanisms de-

pending on the type and amount of radiation delivered, but the primary mechanism for

cell-death caused by conventional radiation therapy is deoxyribonucleic acid (DNA)

damage [85]. DNA can be damaged by ionizing radiation directly, in which energy

is transferred directly from the incident radiation to the DNA itself leading to DNA

double strand breaks, or indirectly in which energy is transferred to other molecules

to produce reactive chemical species that go on to react with DNA to cause damage

[85]. Radiotherapy for prostate cancer can be broadly classified based on whether the

radiation source is distant or close to the region to be treated, referred to as external
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beam radiotherapy (EBRT) and brachytherapy, respectively.

External Beam Radiotherapy

EBRT involves the exposure of a target to ionizing radiation from a source external to

the body. Modern EBRT for prostate cancer typically makes use of X-rays produced

by linear accelerators to deliver a prescribed dose. Linear accelerators enable precise

orientation and shaping of X-ray beams to deliver a prescribed dose to the prostate

while sparing surrounding critical structures. Rotational gantries allow the delivery

of beams from multiple angles to minimize entrance and exit dose, and tungsten jaws

and multi-leaf-collimators (MLCs) enable beams to be shaped to maximize dose to the

target while sparing surrounding tissue. Multiple beams can be combined to create so-

phisticated dose distributions using planning and delivery techniques such as intensity

modulated radiation therapy (IMRT), volumetric modulated arc therapy (VMAT), and

helical tomotherapy [86]. Modern linear accelerators incorporate on-board imaging

systems for patient alignment, including MV portal imaging, kV projection imaging,

CBCT, fan-beam CT, and ultrasound [35]. Furthermore, the ability to create spatially-

varying dose distributions allows the use of EBRT to treat the seminal vesicles and

pelvic lymph nodes in high-risk patients [87]. The 5-year bDFS following modern

EBRT is 85-90%, 70-79%, and 47-55% for low, intermediate, and high-risk patients

respectively [2]. Common toxicities reported 5 years following EBRT include geni-

tourinary (e.g. cystitis, hematuria) and rectal toxicities (e.g. proctitis) [17]. Decline in

sexual function is also reported, but data are confounded by the frequent use of adjuvant

androgen deprivation therapy [17]. Particle accelerators capable of delivering intensity

modulated proton therapy (IMPT) are becoming increasingly available. IMPT has been

used to treat prostate cancer, potentially enabling higher whole-gland doses than cur-

rently possible with photon-based EBRT [4], but is not yet widely available.
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Brachytherapy

Brachytherapy, the focus of this thesis, involves bringing a radioactive source in contact

with the region to be treated. For the treatment of prostate cancer, this involves inserting

one or multiple radioactive seeds into the prostate to deliver a prescribed dose. These

seeds may be inserted permanently or temporarily, as in low-dose-rate brachytherapy

(LDR-BT) and in high-dose-rate brachytherapy (HDR-BT), respectively.

LDR-BT seeds are placed in the prostate permanently using needles inserted through

the perineum, typically containing the radioactive isotope iodine-125 (125I) . 125I primar-

ily undergoes electron capture leading to the release of photons with energy of ∼30 keV

with a half-life of 59.5 days [88]. LDR-BT needles are typically inserted under TRUS

guidance to place seeds into regions of the prostate for whole-gland coverage. A single

insertion may involve >80 individual seeds to deliver a prescription dose of 145 Gy [89,

90]. LDR-BT is typically used as whole-gland monotherapy for low-risk patients [89],

with one study demonstrating 12-year bDFS following LDR-BT of 91% [91]. The 5-

year bDFS following LDR-BT monotherapy is 85-94%, 67-82%, and 52-65% for low,

intermediate, and high-risk patients respectively [2]. Results from the ASCENDE-RT

clinical trial indicated that LDR-BT combined with EBRT improves disease control for

intermediate and high-risk patients combared to EBRT alone [92]. Common toxicities

following LDR-BT include urethral obstruction, incontinence, and decline in sexual

function impacting 10%, 7%, and 26% of patients, respectively [17].

HDR-BT for prostate cancer involves the temporary insertion of a single high-

activity radioactive seed, typically containing iridium-192 (192Ir), into the prostate using

hollow needles inserted through the perineum and guided by a rigid template. 192Ir pri-

marily undergoes β− decay leading to the release of photons with energy of ∼0.3 MeV

with a half-life of 73.8 days [88]. HDR-BT insertions typically involve 15-20 needles

which are all inserted, locked into place, and imaged for final localization relative to

anatomy. The locations of needles, prostate, urethra, bladder, and rectum are digitized
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and used to optimize the amount of time that the single radioactive source will spend at

each position within each needle to deliver a conformal dose. Once these dwell times

are determined, they are transferred to a remote after-loader containing the radioactive

source attached to the end of a cable. The remote after-loader passes the radioactive

source through tubes to positions within each needle for the specified lengths of time

to deliver the treatment in 10-20 minutes. Conventional HDR-BT targeting the whole

prostate is a routine treatment technique when used as a 15 Gy single fraction dose boost

to EBRT primarily for intermediate and high-risk patients [93, 94]. The 5-year bDFS

following whole-gland EBRT+HDR-BT boost is 80-98%, 59-96%, and 34-85% for

low, intermediate, and high-risk patients respectively [3]. Common toxicities reported

with EBRT+HDR-BT boost include genitourinary and rectal toxicities impacting up to

7.7% and 2.8% of patients, respectively [3]. HDR-BT monotherapy has also been pro-

posed, and a recent study indicated that 5-year bDFS following HDR-BT monotherapy

is 93%, and 81% for intermediate and high-risk patients, respectively [95].

treatment low-risk intermediate-risk high-risk ref.
surgery 80-92 66-67 34-50 [2]
EBRT 85-90 70-79 47-55 [2]

LDR-BT monotherapy 85-94 67-82 52-65 [2]
EBRT+HDR-BT boost 80-98 59-96 34-85 [3]

Table 1.2: 5-year biochemical disease-free survival (bDFS) rates (%) associated with
treatments for prostate cancer, stratified by patient risk groups. Ranges in values indi-
cate variations across clinical trials included in the cited review articles.

1.5 Current Challenges in Prostate Cancer Radiother-

apy

Modern radiotherapy techniques for prostate cancer enable image-guidance and so-

phisticated spatially-varying dose distributions; however, the competing objectives of
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decreasing rates of recurrence while minimizing treatment toxicity represent ongoing

challenges.

1.5.1 Rates of Prostate Cancer Recurrence

As outlined in Table 1.2, rates of biochemical recurrence 5 years following treatment

remain 4-34% and 15-66% for intermediate and high-risk patients, respectively. Bio-

chemical recurrence is an accepted precursor to prostate cancer metastasis and mor-

tality [96], and rates of cancer-specific mortality 10 years following surgery versus

radiotherapy are 1.4% versus 3.9% and 6.8% versus 11.5% for intermediate and high-

risk patients, respectively [82]. While there currently appears to be an advantage in

cause-specific survival for patients receiving surgery, advances in dose-escalated con-

formal radiotherapy may lead to benefits over surgery for intermediate and high-risk

patients. Clinical trials have indicated that 5-year bDFS is improved from 60% to 71%

by increasing EBRT dose from 64 Gy to 74 Gy [17], and is improved further from

74% to 82% by increasing dose from 70 Gy to 86 Gy [97]. A randomized clinical trial

demonstrated that augmenting EBRT with a HDR-BT boost led to 5-year bDFS of 75%

compared to 61% for EBRT alone [98].

1.5.2 Limitations of Whole-Gland Dose-Escalation

While increasing dose to the whole prostate has demonstrated benefits in bDFS, whole-

gland EBRT doses of 64 Gy, 74 Gy, and 86 Gy are associated with rates of grade

2 genitourinary toxicity (e.g. frequent urination, pain) [99] of 8%, 11%, and 22%,

respectively [17, 18]. Evidence also suggests that escalating HDR-BT dose reduces

risk of biochemical recurrence [100]; however, whole-gland HDR-BT monotherapy

dose is limited by grade 3 genitourinary toxicities (e.g. hematuria, severe pain), which

increase in frequency at doses of 20 Gy in one fraction [19].
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1.6 Motivation for Tumour-Targeted HDR Brachyther-

apy

Radiotherapy techniques enabling targeted dose-escalation to the site of the largest

highest-grade pre-treatment lesion, referred to as the dominant index lesion (DIL), may

lead to decreased rates of recurrence in intermediate and high-risk prostate cancer pa-

tients while preserving acceptable rates of treatment toxicity, and HDR-BT may be the

ideal modality to deliver these tumour-targeted treatments. This clinical hypothesis is

justified as follows.

1.6.1 Sites of Prostate Cancer Recurrence

The site of prostate cancer recurrence following radiotherapy tends to be the site of the

pre-treatment DIL [101, 102]. Pucar et al. demonstrated that the site of local recurrence

following EBRT was the site of the pre-treatment DIL in 9 out of 9 patients who under-

went pre-EBRT MRI and salvage prostatectomy [101]. Arrayeh et al. demonstrated the

same findings in 8 out of 9 patients who underwent pre-EBRT MRI and follow-up MRI

after experiencing biochemical recurrence [102]. This pattern of recurrence suggests

that escalating dose to the site of the DIL may lead to decreased risk of recurrence.

1.6.2 Previous Work Escalating Dose to Prostate Tumours

The clinical hypothesis that prostate tumour-targeted dose-escalation improves survival

has been investigated in multiple clinical trials making use of varying target volume

definition and treatment delivery techniques. The review articles by Bauman et al. and

von Eyben et al. provide summaries of clinical trials investigating prostate tumour

targeted dose-escalation [103, 104]. Of the 16 studies identified in the reviews, 13

used MRI, two used SPECT, and one used PET for prostate tumour localization and

target volume delineation. Two studies used mpMRI incorporating T2w+DW+DCE-
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MRI [105, 106]. In terms of treatment modality, 10 studies used EBRT, three studies

used EBRT+HDR-BT boost, one study used EBRT+LDR-BT boost, and two stud-

ies used LDR-BT monotherapy. Two additional recently reported trials investigated

EBRT+HDR-BT boost with mpMRI for tumour localization [59, 107].

Of the five studies investigating tumour-targeted HDR-BT dose boosts [59, 106–

109], all used MRI for tumour localization, two performed MRI-guided HDR-BT with

open-bore MRI scanners [108, 109], one performed CT-guided HDR-BT [107], one

performed AR3D TRUS-guided HDR-BT [106], and one performed SR3D TRUS-

guided HDR-BT [59]. Both of the 3D TRUS-guided studies made use of rigid registra-

tions between pre-operative mpMRI and intra-operative 3D TRUS for treatment plan-

ning, and did not incorporate planning target volume (PTV) expansions to account for

DIL localization or treatment delivery uncertainties [59, 106]. Both of the 3D TRUS-

guided studies also made use of mpMRI combining T2w+DW+DCE-MRI for tumour

localization. Meta-analysis of the reviewed studies indicated that tumour-targeted treat-

ments incorporating brachytherapy boosts enabled significantly higher dose to the DIL

than the EBRT based approaches [104].

1.6.3 Setup Uncertainties and Intra-Treatment Prostate Motion

External Beam Radiotherapy

Modern image-guidance techniques for EBRT include portal imaging, CBCT, fan-beam

CT, and ultrasound [35]. Markers can be inserted into the prostate to provide additional

tracking information including electromagnetic tracking devices [110] and gold fidu-

cial markers [111]. Despite the use of these image-guidance techniques, setup error

for prostate EBRT due to intra-fraction prostate motion has been measured to be 4 mm

[111]. The ongoing FLAME trial, investigating prostate tumour-targeted EBRT, incor-

porated planning target volume (PTV) expansions of 4 mm to account for these setup

uncertainties [112]. Hybrid linear accelerator/MRI scanners are becoming increasingly
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available, which may reduce EBRT setup uncertainty for prostate treatments through

improved soft-tissue motion tracking [113].

Brachytherapy

By bringing radiation sources in contact with the targets to be treated, brachytherapy

techniques reduce setup uncertainty and intra-treatment prostate motion compared to

EBRT techniques. Uncertainty is reduced by: 1) mitigating motion between the source

and target, and 2) enabling the source and target to be imaged in the same field of view.

LDR Brachytherapy Modern LDR-BT makes use of TRUS to place seeds in the

prostate while the patient is immobilized leading to low setup uncertainty during inser-

tion. CT or MRI are used for post-implant seed localization [114]. Post-implant CT

and MRI provide LDR-BT seed positions with mean inter-observer variability of 1.1

mm and 3.0 mm respectively [37].

HDR Brachytherapy The single HDR-BT radiation source is constrained within

needle trajectories, and CT, MRI, or TRUS imaging is used to localize needles in their

final positions following insertion [36, 43, 57, 115]. For treatment planning and de-

livery, discrete source positions within each needle are placed relative to the needle

tip. Accordingly, the primary component in HDR-BT setup uncertainty is in localizing

needle tip positions relative to anatomy. A major focus of this thesis is to reduce this

source of uncertainty in HDR-BT.

Fractionated HDR Brachytherapy: Reposition Patient Between Imaging and Treat-

ment Typically, fractionated HDR-BT involves implanting needles followed by treat-

ment fractions over multiple days during which time the needles remain in situ. Frac-

tionated HDR-BT requires relocating the patient between treatment fractions, and po-

tentially between imaging and treatment within fractions [116]. Comparison between
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needle tip positions and gold fiducial marker seeds in fractionated CT-guided HDR-BT

demonstrated mean±SD inferior tip shifts of 6±4 mm and 12±6 mm at the time of the

second and third fractions, respectively [117]. Edema leading to changes in prostate

volume between treatment fractions can introduce additional uncertainty [116].

Single Fraction HDR Brachytherapy: Reposition Patient Between Imaging and

Treatment Single fraction CT and MRI-guided HDR-BT requires patient reposition-

ing between imaging and treatment in instances when the imaging suite is not suffi-

ciently shielded for the energy and activity of the HDR-BT radiation source [93, 108].

Holly et al. investigated the shifts in needle tip position between CT imaging and treat-

ment for single fraction HDR-BT using repeated CBCT, and found mean needle tip

shifts of 11 mm, and shifts >20 mm in 10% of needles [115]. It is reasonable to expect

similar needle shifts for MRI-guided procedures requiring patient relocation.

Single Fraction HDR Brachytherapy: Stationary Patient Single fraction HDR-BT

that does not involve patient repositioning between imaging and treatment eliminates a

major component of setup uncertainty. In-bore CT-guided HDR-BT may be performed,

with needle tip localization uncertainty limited by CT slice thickness, typically 1-3 mm

[93, 118]. In-bore MRI-guided HDR-BT has also been implemented [57, 119], but

requires extensive imaging suite modification to facilitate both the MRI scanner and

HDR-BT radiation source [120]. In-bore CT and MRI-guided treatments constrain

patient position, potentially limiting access to the perineum and increasing pubic arch

interference [121].

TRUS-guided HDR-BT has also been implemented, involving the localization of

needles using 3D TRUS images [5, 43, 122]. TRUS-guidance allows the HDR-BT in-

sertion, imaging, treatment planning, and delivery to be completed in existing brachyther-

apy bunkers, and enables unrestricted patient positioning to access the perineum and to

mitigate pubic arch interference [43]. Treatment plan comparisons indicate TRUS-
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guided HDR-BT can provide equivalent dosimetric characteristics to high-resolution

CT-guided HDR-BT [123], suggesting that TRUS-guidance may be an optimal modal-

ity for HDR-BT image-guidance due to improved patient positioning and the ability

to deliver treatments in existing brachytherapy bunkers. TRUS-guided HDR-BT also

allows the use of pre-operative mpMRI for treatment planning through intra-operative

image registration [124].

1.6.4 Dosimetric Characteristics

Through treatment planning simulations, it was shown that HDR-BT can deliver a

whole-gland prescription dose with decreased dose to surrounding organs when com-

pared to IMRT, intensity modulated proton therapy (IMPT), intensity modulated carbon-

ion therapy (IMCT), and LDR-BT [4]. In terms of dosimetric accuracy, whole-gland

LDR-BT and HDR-BT can provide uncertainties in dose to the prostate of 11% and

5% , respectively [114]. Lower uncertainty in HDR-BT is primarily attributed to de-

creased source position uncertainty in optimized single-fraction workflows assuming

needle-tip localization uncertainty of 0.7 mm [114], which has been demonstrated in

phantoms with TRUS-guidance augmented with calibrated needle end-length measure-

ments [125]. Finally, hypo-fractionated treatments delivered using HDR-BT have been

well-tolerated in intermediate and high-risk prostate cancer patients, with multiple cen-

ters reporting acceptable acute toxicities at 3-month follow-up when delivering 19 Gy

in one fraction [19, 126].

1.6.5 Summary of Motivation for Tumour-Targeted HDR-BT

Prostate cancer tends to recur at the site of the pre-treatment DIL following radio-

therapy [101, 102]. Prostate tumour-targeted dose escalation is under active investiga-

tion, with evidence suggesting that brachytherapy boosts provide higher DIL dose than

EBRT techniques [4, 104]. Single-fraction TRUS-guided HDR-BT mitigates setup un-
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certainty leading to decreased dosimetric uncertainty relative to LDR-BT [114], and

preliminary evidence suggests the feasibility of dose-escalated single-fraction HDR-

BT up to 19 Gy for whole-gland treatments [19, 126]. Two trials have investigated 3D

TRUS-guided tumour-targeted HDR-BT with co-registered mpMRI for tumour local-

ization [59, 106]. The objective of the work in this thesis is to translate and evaluate

imaging tools for implementation in analogous clinical trials with improved accuracy

in prostat tumour localization [78] and needle tip localization [5].

1.7 Challenges for Tumour-Targeted HDR Brachyther-

apy

1.7.1 Imaging for Needle Tip Localization

Tumour-targeted HDR-BT dosimetry is critically sensitive to uncertainty in needle tip

positions relative to anatomy [45]. For whole-gland treatments, Tiong et al. recommend

needle tip localization uncertainty within 3 mm for relative tumour control probability

of 95% [127], and Kirisits et al. recommend needle tip localization accuracy within

0.7 mm for overall dosimetric uncertainty of 5% [114]. This sensitivity to uncertainty

increases for tumour-targeted treatments. Mason et al. demonstrated that a systematic

shift of HDR-BT needle tips by 2 mm leads to mean decreases in the dose delivered

to 90% of the target volume (D90%) of 0.7% and 8.3% in whole-gland and tumour-

targeted treatment plans, respectively [128]. Decrease in target coverage may degrade

tumour-targeted treatment efficacy, as decreased prostate D90% has been found to be

a predictor of biochemical relapse in patients receiving whole-gland EBRT+HDR-BT

boost [129].

For single-fraction HDR-BT involving a stationary patient for imaging and treat-

ment, HDR-BT needle tip localization accuracy depends on the modality used for
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image-guidance. AR3D TRUS for HDR-BT is commercially available; however, the

spatial resolution of AR3D images in the needle insertion (superior/inferior) direction

is limited by the axial transducer's elevational resolution, measured to be up to 4 mm at

a distance of 78 mm from the transducer [46]. Therefore, AR3D TRUS is typically aug-

mented with live-2D sagittal TRUS acquired at the time of needle insertion. 2D sagittal

TRUS has sub-millimeter spatial resolution in the needle insertion direction leading

to tip localization uncertainty <1 mm [45]. Probe motion required for AR3D acquisi-

tion, as indicated in Figure 1.3a, has the potential to introduce anatomical motion that

could lead to systematic shifts in needle tip positions. Finally, the TRUS probe also

must be moved to combine live-2D sagittal imaging for needle tip identification with

AR3D images, introducing another potential source of prostate motion. Despite these

limitations, AR3D TRUS has been used in a recently reported tumour-targeted HDR-

BT study [106]. Implementing and characterizing 3D TRUS techniques for improved

HDR-BT needle tip localization accuracy is the first focus of this thesis.

1.7.2 Image Processing To Reduce HDR-BT Treatment Time

Patients are often placed under general anesthesia for the duration of single-fraction

HDR-BT procedures including needle insertion, imaging, treatment planning, and de-

livery. Increasing the complexity of HDR-BT workflows for tumour-targeted treatment

planning may add time to the procedure, and tools that reduce the time required for

manual image analysis may be required to mitigate the risks of anesthesia [130]. Au-

tomating the localization of needles following insertion may be an effective approach

to reduce the time required for TRUS-guided HDR-BT, increasing the feasibility of

tumour-targeted HDR-BT.

Existing automatic needle segmentation algorithms have not been designed to han-

dle images containing multiple needles with inter-needle spacing ∼5 mm as required

for HDR-BT [131–144]. Typical HDR-BT insertion templates have holes spaced 5 mm
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apart, and needle deflection beyond the template can lead to adjacent needle spacing

<5 mm within the patient [145]. The application of existing algorithms designed pri-

marily for prostate biopsy to images containing multiple needles would require manual

cropping of regions containing a single needle each, which is not feasible for HDR-BT

insertions containing 15-20 needles. Needle deflection between the insertion template

and prostate also makes template-based image cropping infeasible [145]. An algorithm

is required to overcome these limitations, enabling the segmentation of all needles in

an HDR-BT insertion using a single SR3D image. Implementing and validating such

an algorithm is the second focus of this thesis.

1.7.3 Imaging for Tumour Localization

Tumour-targeted HDR-BT depends critically on accurate DIL localization in the intra-

operative image space for treatment planning. Currently, the recommended imaging

technique for DIL detection and localization is mpMRI [6, 61], which is used in the

majority of ongoing tumour-targeted dose-escalation studies [103, 104]. In the case

of MRI-guided HDR-BT, it is possible to acquire mpMRI during treatment for tumour

localization, but this requires an MR compatible operating room. In the case of CT

or TRUS-guided HDR-BT, mpMRI must be acquired prior to treatment and registered

to the intra-operative image-set. Deformable registration of MRI of the prostate with

CT and SR3D TRUS has been investigated and assessed in vivo, demonstrating target-

registration-errors of 1.9 and 2.0 mm respectively when using advanced registration

techniques [124, 146]. mpMRI can be used to define clinical target volumes (CTVs)

reliably encompassing 95% of high-grade cancer by adding a 6 mm isotropic margin

to the gross tumour volume (GTV) visible on mpMRI [78]. As previously noted, two

recent trials investigating tumour-targeted HDR-BT made use of mpMRI incorporating

T2w+DW+DCE-MRI for tumour localization [59, 106].

MRI involves an inherent trade-off between the amount of time required to acquire
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each image and the resultant spatial resolution and SNR. This trade-off is critical to

DCE-MRI, since identification of heterogeneous tumour vasculature may require high-

spatial resolution [147], but current mpMRI guidelines recommend DCE-MRI acqui-

sition times of ≤7 s/image for differentiation between contrast agent uptake rates in

cancerous and normal tissues [6]. Recent simulation studies have demonstrated insen-

sitivity of prostate cancer localization performance using DCE-MRI to image acquisi-

tion times from 1.4-15 s/image [72], creating the potential for improved prostate cancer

localization performance through improved spatial resolution achievable at longer ac-

quisition times [73]. Direct comparisons of DCE-MRI pulse sequences emphasizing

high spatial and temporal resolutions are required to determine optimal parameters for

prostate cancer localization. Comparing DCE-MRI parameters derived from two pulse

sequences to whole-mount histology to assess relative cancer localization performance

is the final focus of this thesis.

1.8 Previous Work Addressing Challenges for Tumour-

Targeted HDR Brachytherapy

1.8.1 Techniques for HDR-BT Needle Tip Localization

CT provides high needle-to-tissue contrast and high spatial accuracy, but limited soft

tissue contrast for prostate and urethra localization [38]. MRI provides high spatial-

resolution and high soft tissue contrast, but is susceptible to geometric distortion caused

by interventional devices [148]. As mentioned previously, in-bore treatments may de-

crease access to the perineum and increase pubic arch interference.

Comparisons between HDR-BT needle tip positions identified using commercially

available AR3D TRUS and CBCT images for single-fraction treatments have indicated

needle tip position differences within 3 mm for 97% of needles in vivo; however, this
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validation required a registration between the TRUS and CBCT images by aligning a

reference needle tip visible in both images [5]. This registration eliminates the abil-

ity to measure absolute needle tip positions and assess uncertainty relative to anatomy.

Mean needle tip localization accuracy of 0.7 mm has been demonstrated in phantoms

using AR3D TRUS-guidance augmented with measurements of needle end-lengths pro-

truding from the insertion template and related back to the image coordinates using a

pre-treatment calibration, but has not been demonstrated in vivo [125]. All TRUS tech-

niques can suffer from shadow artifacts caused by complete attenuation of signal by air

bubbles, calcifications, or the HDR-BT needles themselves. Even et al. have proposed

augmenting AR3D TRUS-guidance with CBCT to overcome current limitations, lead-

ing to a potentially optimal trade-off between the needle-to-tissue contrast provided by

CT and the soft tissue contrast provided by TRUS [122].

SR3D TRUS preserves sub-millimeter spatial resolution in the needle insertion di-

rection, and eliminates the need to step the probe in the superior/inferior direction, mit-

igating the potential for anatomical motion as indicated in Figure 1.3b [47]. A custom

mechatronic device has been developed by our group enabling SR3D image acquisi-

tion for transperineal-guided procedures shown in Figure 1.2 [49], and was previously

validated in phantoms for LDR-BT guidance involving the insertion of a single needle

at a time [149]. Major vendors including Varian Medical Systems (Palo Alto, CA) and

Elekta (Stockholm, SE) offer devices and software with similar SR3D reconstruction

capabilities. SR3D imaging has the potential to significantly reduce the uncertainty in

HDR-BT needle tip localization, but has not been fully validated for this purpose in

vivo. Despite uncertainty in true HDR-BT needle tip localization accuracy of SR3D

TRUS, it has been employed in a recent tumour-targeted HDR-BT study [59]. SR3D

TRUS for HDR-BT needle tip localization is implemented and characterized in this

thesis.

Electromagnetic (EM) tracking techniques have also been proposed for HDR-BT
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needle tip localization, demonstrating tip localization error of <1 mm [150, 151]. EM

tracking systems for needle tip localization still require intra-operative imaging to local-

ize anatomy, and EM tracking coordinate systems must be registered to in vivo image

coordinate systems for treatment planning.

1.8.2 Automatic Needle Segmentation using 3D TRUS

Investigators have proposed line-detection algorithms to segment single needles in 3D

ultrasound images. Ding et al. proposed constructing orthogonal 2D projections of

the image followed by two 2D line-fitting steps for the identification of straight nee-

dles [134], which was extended to the identification of curved needles [131]. Barva et

al. employed a parallel integral projection (PIP) to project feature points onto oriented

2D planes using a hierarchical mesh-grid algorithm until a peak corresponding to the

most likely trajectory was identified [132]. The 3D Hough transform (3DHT) describes

transformations from 3D image coordinates to line parameters. By exploring ranges of

3DHT parameter values either systematically [137, 138] or randomly [139, 144, 152]

and calculating the number of feature point inliers corresponding to each set of parame-

ters, the most likely line in 3D space is given by the parameters with the largest number

of feature point inliers. Novotny et al. [137] describe this class of line detection meth-

ods using the generalized Radon transform [135], enabling extension to more complex

line parameterizations such as Bezier curves for the identification of curved needles

[136].

All of these methods depend on classification of voxels as needle feature points

or background based on either filtered intensity [132, 138], local morphology metrics

such as gradient magnitude or phase [139, 140, 143], or temporal information caused

by needle manipulation [133]. Random sample consensus (RANSAC) algorithms are

similar to the generalized Radon transform techniques, but iteratively update a line

trajectory location and corresponding set of feature points by modeling voxel intensities
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as a function of both intensity and distance from the line using analytical probability

distributions [141] or supervised machine learning algorithms [142]. While these line

detection algorithms have shown promise for specific image-guidance tasks, they have

not been been validated using SR3D TRUS images containing multiple needles like

those acquired for HDR-BT treatment planning. The 3DHT may be augmented with

additional regularization steps enabling adjacent needles to be distinguished from one

another. This approach is implemented and characterized in this thesis.

1.8.3 Spatial versus Temporal Resolution of DCE-MRI

Aerts et al. performed temporal frequency analysis of the two-compartment pharma-

cokinetic model used for DCE-MRI analysis, and demonstrated that image acquisi-

tion times >10 s/image led to aliasing of high temporal frequency components in the

contrast-agent versus time curves leading to increased noise in the resultant Ktrans and

kep values [153]. Alternatively, Ream et al. temporally down-sampled DCE-MRI ac-

quired at 1.4 s/image to 15 s/image and did not observed a change in prostate cancer

localization performance over this range of simulated acquisition times [72]. Investi-

gators have also proposed the use of non-parametric models such as washout gradient

(WG) [154] and the three time point (3TP) method [155] involving the analysis of only

three images acquired minutes apart. DCE-MRI analysis methods applicable to images

with longer acquisition times may enable improvements in prostate cancer localization

performance through improved DCE-MRI spatial resolution; however, this potential

benefit can only be assessed fully through MR imaging with longer acquisition times.

T1w pulse sequences for DCE-MRI with acquisition times of 6.4 s/image and 92.5

s/image are implemented and compared in this thesis.



Chapter 1. 31

1.9 Summary

Prostate cancer remains the second leading cause of cancer-related death in developed

countries [1]. Radiotherapy for prostate cancer improves local control, but evidence of

recurrence recurrence 5 years following treatment remains 4-41% for patients with lo-

calized disease[2, 3], and whole-gland treatment aggressiveness is currently limited by

toxicities. HDR-BT is an image-guided radiotherapy technique for prostate cancer with

lower setup uncertainty and lower dose to surrounding organs relative to other radio-

therapy techniques [4, 114], and is well-tolerated when delivering single fraction doses

up to 19 Gy to the whole prostate [19, 126]. TRUS-guided single-fraction HDR-BT

enables unparalleled access to the perineum without requiring relocation of the patient

for imaging, and shows promise for enabling time-efficient and accurate HDR-BT in

existing brachytherapy bunkers [43]. mpMRI makes use of multiple mechanisms of

image contrast to localize prostate tumours [6, 61]. mpMRI may be combined with

TRUS-guided HDR-BT using existing deformable image registration techniques [124],

enabling tumour-targeted HDR-BT. Tumour-targeted HDR-BT has the potential to im-

prove the therapeutic ratio of prostate cancer radiotherapy by improving local control

without increasing treatment toxicities, but the efficacy of these treatments depends on

the ability to: 1) accurately localize HDR-BT needles using 3D TRUS to minimize

dosimetric uncertainty for treating prostate sub-volumes, 2) efficiently localize HDR-

BT needles using 3D TRUS for intra-operative implementation, and 3) accurately lo-

calize prostate tumours using mpMRI.
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1.10 Specific Objectives

The work in this thesis is motivated by the long-term clinical goal of decreasing rates of

prostate cancer recurrence through tumour-targeted HDR-BT. Tumour-targeted HDR-

BT accuracy and efficiency may be improved through increased needle localization ac-

curacy using SR3D TRUS, increased needle localization efficiency using an automatic

segmentation algorithm, and selection of optimal DCE-MRI pulse sequence parame-

ters in terms of temporal and spatial resolution. To this end, the specific objectives of

Chapters 2-5 are:

Chapter 2 To implement and characterize manual HDR-BT needle segmentation us-

ing SR3D TRUS, and to compare accuracy with clinically standard AR3D TRUS.

Chapter 3 To implement and validate an automatic needle segmentation algorithm en-

abling the localization of multiple needle trajectories and tips in an HDR-BT

insertion.

Chapter 4 To overcome limitations in needle tip localization accuracy using SR3D

TRUS identified in Chapters 2 and 3 that would inhibit clinical implementation

of SR3D-guided HDR-BT.

Chapter 5 To compare prostate tumour localization accuracy using parameters derived

from DCE-MRI acquired using two pulse sequences designed to highlight the

inherent trade-off in MRI temporal and spatial resolution.
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141. Uherčı́k, M., Kybic, J., Liebgott, H. & Cachard, C. Model fitting using ransac
for surgical tool localization in 3D ultrasound images. IEEE Transactions on
Biomedical Engineering 57, 1907–1916 (2010).
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Chapter 2

Three-dimensional transrectal
ultrasound guided high-dose-rate
prostate brachytherapy: a comparison
of needle segmentation accuracy with
two-dimensional image-guidance

HDR-BT treatment plans are critically sensitive to uncertainty in needle tip positions,
and SR3D TRUS may decrease this uncertainty. The purpose of Chapter 2 is to mea-
sure HDR-BT needle insertion depth errors provided by SR3D TRUS, to compare these
errors with those provided by conventional imaging which uses AR3D TRUS, and to
determine the impact of insertion depth errors of each imaging technique on whole-
gland treatment dosimetry.

The contents of this chapter have previously been published in Brachytherapy: WT
Hrinivich, DA Hoover, K Surry, C Edirisinghe, J Montreuil, D D'Souza, A Fenster, E
Wong. Brachytherapy 2016; 15(2):231-239. Permission to reproduce this article was
granted by Elsevier and is provided in Appendix E.

2.1 Introduction

High-dose-rate brachytherapy (HDR-BT) has been shown to be an effective method of

dose escalation when used in combination with external beam radiation therapy (EBRT)

for the treatment of intermediate to high-risk prostate cancer [1–4]. Clinical trials have

shown an improvement in biochemical disease free survival (bDFS) using HDR-BT

45
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dose-escalated EBRT versus EBRT alone [5, 6]. Furthermore, with the recent report

of positive results from the ASCENDE-RT randomized trial [7], there will likely be an

increase in the number of intermediate and high-risk prostate cancer patients who will

undergo brachytherapy.

While it is well-known that HDR-BT techniques offer improved conformity and

normal tissue sparing [8, 9], this presupposes that the needles used to guide the high-

activity gamma source have been segmented accurately on imaging, with one study

finding that the source must be localized to within 3 mm for acceptable dosimetric

uncertainty [10]. Because of the high spatial resolution and high needle-to-tissue con-

trast in CT imaging, image-guided HDR-BT was originally performed using CT scans

acquired following TRUS-guided needle insertion [11]. Unfortunately, patient reposi-

tioning and swelling that occurs during patient setup for CT imaging has been found to

cause shifts in needle positions as evidenced by studies reporting mean (range) shifts of

11.5 (0-42) mm [12], 10 (5-23) mm [13], and 5.4 (-4-18) mm [14] between treatment

fractions. For patients undergoing single fraction CT-guided HDR-BT, mean shifts of

11 mm have been found between the planning CT and time of treatment delivery, with

10% of needles shifting inferiorly by more than 20 mm [15].

In an effort to eliminate the need to reposition patients during treatment, intra-

operative TRUS imaging has been proposed for needle and organ segmentation. Using

a tracked probe stepper and compatible segmentation software, TRUS images may be

used for needle insertion guidance and segmentation while the patient remains in the

operating room. The prostate and nearby organs may be localized by stepping the probe

in the superior/inferior direction to create a stack of axial images for segmentation;

however, limited image sampling in the needle insertion direction (typically 1-5 mm)

introduces uncertainty in needle tip positions [16–18]. Siebert et al. investigated the

ability to identify needle tips in water phantoms and found that sub-millimeter accuracy

was achievable when using the sagittal crystal of a bi-plane TRUS probe [16].
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With these imaging characteristics in mind, HDR-BT workflows have been pro-

posed that involve segmenting the prostate and nearby organs using an image volume

reconstructed from axial images, segmenting needle tips using live 2D sagittal images,

and combining the views by manually aligning the axial organ segmentations on a mid-

gland sagittal image, using anatomical landmarks such as the bladder as indicated in

Figure 2.1. Schmid et al. investigated the accuracy of this 2D sagittally-assisted axially-

reconstructed (SAAR) approach in phantoms by comparing TRUS and CT-based seg-

mentations, and demonstrated that tip localization accuracy within 1.9 mm is achievable

in phantoms with up to 18 needles [17]. Batchelar et al. investigated the accuracy of

the TRUS-based approach in vivo by comparing SAAR-guided needle segmentations

with in-room cone-beam CT-based needle segmentations from 37 HDR-BT procedures

[18]. Relative needle segmentation error was measured by selecting a posterior needle

tip on both the SAAR-guided segmentation and the cone-beam CT-based segmentation

and aligning the remaining needle segmentations using this corresponding point. Re-

sults indicated relative tip localization error was less than 3 mm in 97% of all needles

when using the SAAR technique. While the relative needle tip localization accuracy

for TRUS-guided HDR-BT is promising, potential systematic shifts in tip positions in-

troduced during the axial-to-sagittal image registration step have not been fully inves-

tigated and may contribute to absolute needle tip localization uncertainty. Alternative

needle tip localization workflows have also been proposed by vendors such as Elekta

(Stolkholm, SE), making use of measurements of needle ends protruding from the in-

sertion template combined with encoder calibrations and the physical needle length to

calculate the needle insertion depth within the axially-reconstructed 3D image. This

technique mitigates registration uncertainty between axial and sagittal views using the

probe tracking information provided by the encoders, but stepping the probe in the in-

ferior direction for axial image acquisition may still introduce shifts in anatomy relative

to the needle tip positions calculated using the end-length measurements.
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Our lab has previously developed TRUS imaging techniques that allow the recon-

struction of a 3D image using the sagittal crystal of a bi-plane probe by rotating the

probe using a motor while simultaneously capturing images [19]. This method of ac-

quiring sagittally-reconstructed 3D (SR3D) images maintains high spatial resolution

in the needle insertion direction while providing a complete 3D image for prostate

and organ segmentation, thereby eliminating the need to move the probe in the supe-

rior/inferior direction for sagittal and axial imaging and eliminating the axial-to-sagittal

segmentation alignment step [20]. Variants of this SR3D image reconstruction tech-

nique also have been made commercially available, including the TwisterTM image ac-

quisition feature available in VariseedTM 8.0 (Varian Medical Systems Inc., Palo Alto

CA, USA) and OncentraTM Brachy (Elekta, Stolkholm, SE). Our lab has also developed

a compact mechatronic device designed for SR3D image-guided transperineal needle

insertions that enables superior/inferior probe position tracking relative to an external

frame of reference [21]. Through calibration, the position of each image relative to

the insertion template is determined. Tracking this position enables the use of needle

end-length measurements [22] to estimate absolute insertion depth errors in each image

as indicated in Figure 2.2. The purpose of this study is to compare needle tip localiza-

tion accuracy between SAAR and SR3D-guided approaches using calibrated end length

measurements as the gold standard, and to estimate the dosimetric impact of measured

needle insertion depth errors on clinical treatment plans.

2.2 Materials and Methods

2.2.1 Image Acquisition and Segmentation

Twelve intermediate-risk prostate cancer patients underwent HDR-BT using the con-

ventional SAAR-guided technique. The brachytherapy prescription dose of 15 Gy was

delivered in a single fraction and after a two-week break, all patients went on to re-
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Figure 2.1: Screenshots taken from Vitesse treatment planning software during SAAR-
guided HDR-BT needle insertion. The prostate, urethra, rectum, and bladder, are in-
dicated in red, green, blue, and yellow, respectively. Major steps of the imaging and
segmentation procedure are highlighted. Among the differences between the SAAR
and SR3D-guided segmentation techniques described in this study, the SR3D-guided
technique would eliminate the need for the axial-to-sagittal segmentation alignment
indicated in step 2).

ceive 37.5 Gy of EBRT delivered in 15 daily fractions (5 week total treatment duration)

[23]. A BK Medical ProFocus 2202 ultrasound system and 8848 bi-plane transducer

(BK Medical, Boston MA, USA) were used for imaging at 9 MHz and 6.3 cm field of

view. Vitesse software (Varian Medical Systems Inc., Palo Alto CA, USA) was used

for intra-operative SAAR-guided organ and needle segmentation. The probe and HDR-

BT template were supported using the compact mechatronic device, which was affixed

to the operating table using an RTP 6000 Precision stabilizer (Brachytherapy Services

Inc. Fullerton VA, USA). Before and after needle insertion, sets of contiguous 2D axial

images were acquired in 5 mm steps beginning at the bladder and moving towards the
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prostate apex for SAAR-guided organ segmentations, immediately followed by SR3D

images spanning 140◦ reconstructed from sagittal images acquired at 0.5◦ angular in-

tervals. Major steps of the intra-operative SAAR workflow are indicated in Figure 2.1,

and details are included in Appendix A.1. All SR3D needle segmentations were per-

formed post-operatively in this study for comparison with the standard clinical SAAR

method, and were not used for intra-operative treatment planning or delivery. The Uni-

versity of Western Ontario Health Sciences Research Ethics Board approved the use of

the device with patients for comparison with conventional image-guided brachytherapy

needle insertions.

2.2.2 3D TRUS Guided Mechatronic Device

The compact mechatronic device for SR3D-guided transperineal needle insertions pre-

viously developed in our lab [21] was modified to include a manual probe stepper re-

quired in the conventional SAAR-guided HDR-BT procedure. An HDR-BT template

mounting point and haptic feedback at 5 mm increments were incorporated in the de-

sign, similar to the manual stepper regularly used in our clinic (Classic stepper, CIVCO

Medical, Coralville IA, USA). These modifications permitted the acquisition of co-

registered axial and SR3D images with minimal disruption to the conventional HDR-

BT workflow. An encoder was employed to track the superior/inferior probe position,

and a string phantom calibration was performed allowing the use of these encoder val-

ues to calculate the position of all axial and SR3D images relative to the HDR-BT

template face. This calibration procedure is discussed in the Appendix A.2, along with

estimates of mechanical uncertainty.

2.2.3 Post-Operative Image Segmentation and Registration

Following the HDR-BT procedure, the SR3D images were imported into BrachyVision

(Varian Medical Systems Inc., Palo Alto CA, USA) for retrospective analysis. To en-
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able comparison of needle segmentations produced using the two imaging techniques,

post-needle insertion SR3D images were rigidly registered to the post-needle insertion

SAAR axial image sets for each patient as follows. Longitudinal encoder positions

recorded for each image along with the sagittal-to-axial crystal distance were used to

align the SAAR axial image set and SR3D images in the superior/inferior direction.

Measurements of these calibrated encoder values are discussed in the Appendix. En-

coder values corresponding to the axial image set for one patient were not recorded,

so anatomical landmarks were used to register the axial image set with the SR3D im-

age. The imaged probe cover was used to align the images in the anterior/posterior and

left/right directions. Ultrasound machine image-lag has previously been found to cause

small angular shifts in SR3D images about the probes axis of rotation [21]. These an-

gular rotations were found to be on the order of 2.5◦ in this study and were manually

corrected based on anatomical landmarks.

All needles were manually segmented in BrachyVision as they appeared on the post-

insertion SR3D images by a medical physicist (DH). A single mid-gland axial image

from the intra-operative treatment plan was cross-referenced during this retrospective

needle segmentation for the sole purpose of assigning identical needle labels between

SAAR and SR3D image sets. All data were anonymized and exported from Eclipse as

DICOM files for geometric analysis using MATLAB 2015a (Mathworks, Natick MA,

USA). All statistical tests were performed using SPSS 21 (IBM, Armonk NY, USA).
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2.2.4 Experimental Methods: Comparing SAAR and SR3D-Guided

Segmentations

Needle Tip Position Comparison Between SAAR and SR3D-Guided Segmenta-

tions

Needle tip positions were compared between imaging techniques by bringing both sets

of segmentations to a common coordinate system using the transformation matrix pro-

duced by the rigid registration. Box plots of tip position differences were produced for

each patient individually to determine whether tip differences were distributed evenly

amongst all patients, or whether patient-specific differences existed.

Insertion Depth Comparison Between Segmentations and Physical Measurements

Needle insertion depths determined using the two imaging techniques were compared

to physical end length measurements in order to estimate the insertion depth error as

shown schematically in Figure 2.2. The length of each segmented needle within the

SR3D image was determined from the needle tip to where the needle exited the SR3D

image at the inferior edge (dimage). The distance between the inferior edge of the SR3D

image and the inferior face of the insertion template on the mechatronic device (dencoder)

was calculated based on the encoder positions recorded intra-operatively. The encoder

position values were calibrated to give dencoder using the string phantom as discussed in

the Appendix. From the string phantom measurements, we estimated the uncertainty

of dencoder to be ±0.5 mm. The needle free-end lengths (dend) were physically measured

intra-operatively using a graduated ruler during the procedure with estimated ±0.5 mm

uncertainty. By comparing this needle length to the physical length of the needle (dphys),

an insertion depth error (IDE) could be estimated, as indicated in Eq. 2.1.

IDE = (dend + dencoder + dimage) − dphysical (2.1)
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This process was performed for all needles using both the intra-operative SAAR-

guided segmentations and post-operative SR3D-guided segmentations enabling com-

parison of insertion depth errors between imaging methods. Insertion depth accuracy

was assessed by comparing patient-specific median insertion depth errors, and inser-

tion depth precision was assessed by comparing patient specific inter-quartile ranges

and full-ranges. Patient-specific metrics were compared using Wilcoxon signed-rank

tests.

Figure 2.2: Schematic of measurements used to calculate needle insertion depth error
(IDE). IDE was determined using the physical needle length (dphysical), needle free-end
length measurements (dend), distance from the template face to the inferior edge of the
image volume determined by calibrated encoder positions (dencoder), and the length of
the image-defined needle (dimage). IDE was then calculated as IDE = (dend + dencoder +

dimage) − dphysical.

Effect of Image Artifacts on Insertion Depth Errors

Needles present in TRUS images strongly reflect ultrasound signal, creating shadow

artifacts that may obstruct the view of some of the more anterior needle tips. Since the

SR3D needle segmentations were performed using an image acquired after all needles

are inserted, we determine the prevalence of needles obstructed by shadow artifacts and

their impact on tip localization accuracy. The medical physicist performing the SR3D

segmentations qualitatively classified needle tips as unobstructed, partially obstructed,
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or obstructed based on needle tip signal intensity relative to background signal inten-

sity. Unobstructed needles were classified as having high apparent needle tip contrast,

whereas obstructed needles were those where the needle appeared to enter a signal void,

beyond which the trajectory and tip could no longer be identified. Partially obstructed

needles were those that could not be clearly categorized as obstructed or unobstructed;

typically having low needle tip contrast but without an obvious signal void at the needle

tip. Example needle tip appearances are provided in the Appendix Figure A.3. A one-

way ANOVA and Tukeys post hoc tests were used to compare insertion depth errors

between needle tip appearance groups for the SR3D-guided segmentations.

Dosimetric Impact of Insertion Depth Errors

The dosimetric impact of insertion depth errors was determined as follows: starting

with the clinical treatment plan, two new plans were generated per patient in Brachyvi-

sion based on the SAAR and SR3D insertion depth errors. The clinical intra-operatively

planned dwell positions were shifted in the superior/inferior direction by each needle's

insertion depth errors measured for SAAR-guidance and for SR3D-guidance. The vol-

ume of the prostate receiving 100% of the prostate prescription dose (V100%) and

volume of the urethra receiving 120% of the prostate prescription dose (V120%) were

compared between the clinical and simulated treatment plans for each patient. The

mean changes in dosimetric parameters attributed to the SAAR and SR3D-guided in-

sertion depth errors were compared using two-sided paired t-tests.
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2.3 Results

2.3.1 Needle Tip Position Comparison Between SAAR and SR3D-

Guided Segmentations

In total, 194 needles were inserted among all 12 patients. Eleven needles were excluded

from analysis including three steel needles used during one HDR-BT procedure, two

needles that were moved following SR3D image acquisition, five anterior needles that

could not be detected in SR3D images from 4 patients, and one needle that appeared to

extend beyond the edge of the SR3D image. The 5 needles that could not be visualized

are addressed further in the Discussion. This resulted in 183 needles included in the

segmentation analysis. Figure 2.3 displays 3D renderings of the co-registered needle

segmentations of two patients intersecting an axial slice of the post-insertion SR3D

image. Figure 2.4a-c displays boxplots of the tip distance components individually for

each patient, and for all patients combined. In terms of Euclidean distance, the position

of the needle tips identified using the two imaging methods differed by less than 3 mm

in 33% of the cases, and by less than 5 mm in 64% of the cases. The largest difference

components were noted to be in the superior/inferior direction.

2.3.2 Insertion Depth Comparison Between Segmentations and Phys-

ical Measurements

Figures 2.4d-e shows boxplots of the insertion depth errors determined by the SAAR

and SR3D-guided approaches individually for each patient, and summarized over all

patients. Mean standard deviation (SD) values of insertion depth errors over all 183

needles were found to be 2.8±3.2 mm and -0.6±3.2 mm for the SAAR and SR3D-

guided approaches respectively. This difference was found to be statistically significant

(p <.001). The box plots indicate statistically significantly larger systematic errors in
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Figure 2.3: 3D renderings of the co-registered needle segmentations produced using
SAAR and SR3D-guided needle segmentation approaches of two patients as an indica-
tion of needle density in the region of interest. Needle renderings are shown intersecting
axial views of the SR3D images for each patient.

the SAAR versus SR3D-guided approach, with patient-specific median value ranges

of [-1.1 mm, 6.4 mm] versus [-2.1 mm, 3.7 mm] respectively (p <.01). The box plots

also indicate statistically significantly larger patient-specific inter-quartile ranges de-

termined using the SAAR-guided approach with inter-patient ranges of [1.3 mm, 5.9

mm] versus [0.8 mm, 2.2 mm] determined with the SR3D-guided approach (p <.01).

Examining the maximum insertion depth errors by looking at the full range of patient-

specific needle insertion depth errors (indicated by the maximum and minimum dots

for each patient), there was no statistical difference between the SR3D-guided and the

SAAR-guided approach, with median values of 9.8 mm and 8.3 mm respectively (p

>0.05),

Unobstructed Partially
Obstructed

Obstructed All

# (%) of Needles 143 (78) 22 (12) 18 (10) 183 (100)
Mean (SD)
IDE (mm) -0.47 (1.84) -0.22 (5.98) -2.23 (5.92) -0.63 (3.22)

Table 2.1: Needle tip appearance and insertion depth errors (IDEs) determined using
SR3D-guided segmentation
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Figure 2.4: a-c) Plots of components of the differences between needle tips identified
using the SAAR and SR3D-guided needle segmentation approaches. In a-c), horizontal
lines indicate difference thresholds of ±4.2 mm, which are obtained by adding the ±3
mm error threshold for each segmentation method [10] in quadrature. This difference
threshold was indicated for each difference component for visual comparison. d-e)
Plots of insertion depth errors estimated from needle free-end length measurements for
needles tips identified using SAAR and SR3D-guided needle segmentation approaches.
The data is plotted separately for each patient as well as for all 12 patients combined.
In a-e), boxes indicate inter-quartile range and centre lines indicate median value.
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2.3.3 Effect of Image Artifacts on Insertion Depth Errors

Figure 2.5 shows a box plot of insertion depth errors from all 183 needles segmented

using the SR3D-guided approaches, and grouped based on the tip appearance on the

SR3D-image. Table 2.1 summarizes mean insertion depth errors for each group dis-

played in Figure 2.5. 78% percent of needles were considered unobstructed, 12% were

considered partially obstructed, and 10% were considered obstructed. Over all 183 nee-

dles analyzed, the SR3D-guided approaches provided insertion depth errors of ±3 mm

for 83% of needles and ±5 mm for 92% of needles. Within the unobstructed group,

the SR3D-guided approach provided insertion depth errors within ±3 mm for 91% of

needles and ±5 mm for 98% of needles; however, needle tip appearance on the SR3D

image was not found to have a statistically significant effect on mean insertion depth

error based on a one-way ANOVA (p >.05).

Figure 2.5: Plot of insertion depth errors estimated from needle free-end length mea-
surements for needles from all 12 patients using SR3D-guided needle segmentation.
Needles were qualitatively classified as unobstructed, partially obstructed, or obstructed
based on needle tip intensity relative to background intensity on the SR3D images to
determine the prevalence and impact of the ultrasound shadow artifacts on insertion
depth error. 78% of needle tips appeared unobstructed, 12% appeared partially ob-
structed, and 10% appeared obstructed. Boxes indicate inter-quartile range and centre
lines indicate median value.
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2.3.4 Dosimetric Impact of Insertion Depth Errors

Dosimetric parameters corresponding to the intra-operatively produced treatment plans

are listed in Table 2.2, along with the changes in parameters associated with the inser-

tion depth errors from the SAAR and SR3D-guided needle segmentation approaches,

indicated by ∆SAAR and ∆SR3D respectively. In terms of target coverage, the SAAR-

guided insertion depth errors tended to produce greater decreases in prostate V100%

than the SR3D-guided insertion depth errors with mean±SD of -6.5±6.7% and -1.2±1.3%

respectively. This difference was found to be statistically significant (p <.01). In the

SR3D-guided case, prostate V100% decreases of less than 3% were found in 11 out of

12 patients, and decreases of less than 5% were found in all patients. Loss of target

coverage in the SAAR-guided case tended to occur at the prostate base attributed to

systematic superior shifts in SAAR-imaging identified needle tips. Changes in urethral

dose due to both the SAAR and SR3D-guided insertion depth errors depended on pa-

tient anatomy. Mean±SD changes in urethra V120% were found to be -2.1±6.6% and

-0.2±3.8% for the SAAR and SR3D-guided insertion depth errors respectively, but this

difference was not found to be statistically significant.

2.4 Discussion

The focus of this study was to compare needle tip localization accuracy of SAAR and

SR3D-guided HDR-BT. Our results indicate that the SR3D-guided approach provides

more accurate and precise insertion depths than the SAAR-guided approach for the ma-

jority of needles, leading to improvements in prostate V100%. Both techniques rely on

the sagittal transducer for tip identification. The observed decrease in systematic errors

in the SR3D-guided segmentations is attributed to eliminating the need to move the

probe in the superior/inferior direction for axial image acquisition following needle tip

identification with the sagittal ultrasound crystal, thereby mitigating organ motion and
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Prostate V100% Urethra V120%
Patient Intra-op % ∆SAAR ∆SR3D Intra-op % ∆SAAR ∆SR3D

A 97.1 0.6 0.6 1.8 -0.6 0.3
B 97.0 -2.8 -1.1 2.3 -1.3 1.9
C 91.5 -1.5 -4.0 19.1 -6.9 7.0
D 95.9 -9.6 -2.7 8.3 -7.2 -7.2
E 92.2 -13.5 -0.8 29.5 -19.3 -6.7
F 96.1 -3.0 0.5 9.2 7.0 -2.1
G 95.3 -6.7 -1.5 0.0 0.0 0.0
H 95.6 -21.8 -1.6 0.0 0.0 0.0
I 96.2 -11.0 -1.1 0.0 0.0 1.4
J 93.9 -0.3 -2.2 1.8 -0.2 -0.7
K 96.6 -8.3 -0.7 0.0 1.3 2.5
L 96.6 -0.7 0.1 0.1 2.3 0.8

Mean 95.3 -6.5 -1.2 6.0 -2.1 -0.2
SD 1.8 6.7 1.3 9.4 6.6 3.8

Table 2.2: Dosimetric impact of needle insertion depth errors

eliminating the axial-to-sagittal alignment step necessary in the SAAR procedure. By

eliminating the dependence on axial image stacks for organ segmentation, the SR3D-

guided procedure could replace the clinical SAAR-guided procedure by making use of

the pre- and post-needle insertion SR3D images for organ segmentation. After the pre-

insertion SR3D image acquisition, the live 2D axial view may be used to monitor initial

needle insertions to ensure mid-gland coverage, but would not be necessary otherwise.

SR3D image acquisition takes less than 15 seconds, and the images have been shown

to enable prostate segmentations with intra-operator variability on the order of 1 mm.

[24] This procedure may improve overall segmentation accuracy while improving effi-

ciency over conventional methods. Furthermore, the increased superior/inferior spatial

resolution of the SR3D images may ease needle segmentation quality assurance, which

currently must be performed using an axial image stack.

While this study did find advantages in SR3D over SAAR in terms of decreases in

systematic insertion depth error, we identified a limitation of the method: a single post-

needle insertion SR3D image volume is prone to shadow artifacts created by posterior
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needles. The impact of these artifacts is evidenced by the 5 needles (3%) that needed

to be excluded from analysis due to the inability to be detected, and the 10% of needles

appearing obstructed in the SR3D images. We have shown that a user may manually

detect a subset of unobstructed needles with insertion depth errors within 3 mm for 91%

of needles. Our center is currently evaluating needle tip segmentation on live 2D sagittal

images, which may be automatically transferred to the SR3D image coordinate system

based on the current probe angle. This tool would provide the benefits of the live sagittal

needle tip identification step, including the ability to identify tips working anteriorly-

to-posteriorly and incorporating the dynamic information of the live 2D-view, while

still eliminating the need to move the probe in the superior/inferior direction for final

image acquisition. This method will also eliminate the possibility of needles being

undetectable or extending beyond the edge of the SR3D image as observed in this

study, since needles may be re-positioned at the time of tip identification to avoid these

errors.

The mean±(standard error of the mean) insertion depth error of 2.8±0.2 mm cor-

responding to the SAAR-guided needle segmentation approach indicates a systematic

shift of needle segmentations superior to the actual needle tip location within the axial

image set. All needle tips are positioned relative to the final axial image set based on

the axial-to-sagittal alignment step, which is performed using anatomical landmarks.

It is possible that systematic errors in the axial-to-sagittal alignment are introduced by

anatomical shifts caused by the insertion of HDR-BT needles. To assess the direction

and degree of anatomical shifts created during the procedure, encoder positions of the

pre-and post-insertion axial image sets were recorded for the last eight patients in the

study. The post-insertion images were acquired to capture the same anatomical features

as the pre-insertion images, so the difference in encoder values approximated anatom-

ical shifts introduced between the imaging time points. Encoder values indicated a

superior anatomical shift for all eight patients, with mean±SD of 12.6±5.4 mm. A su-
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perior anatomical shift occurring between axial-to-sagittal alignment step and needle

tip identification step may create a superior needle tip shift consistent with the observa-

tions in this study; however, further investigation into this effect is required.

In addition to superior/inferior anatomical motion observed in this study, the retrac-

tion of the TRUS probe required for the SAAR technique leads to the prostate shifting

posteriorly (i.e. “drooping”) over the tip of the probe as it is pulled from the rec-

tum. This posterior shift could be partially observed in the co-registered axially- and

sagitally-reconstructed 3D images in this study because the probe cover is thinner over

the axial transducer than the sagittal transducer, leading to a small posterior shift in the

axially-reconstructed images. Once the probe is fully retracted, this shift could be on

the order of 2 cm (the probe diameter) and may lead to further needle tip localization

uncertainty in the anterior/posterior direction for the SAAR technique, which was not

measured in this study. The SR3D technique also eliminates this source of uncertainty

in anterior/posterior needle tip positions.

A limitation of this study was the dependence on an external frame of reference

(the insertion template) for comparison of needle insertion depth errors, when in actu-

ality the needle tip position relative to the superior prostate border is the most critical

distance for treatment planning accuracy. We did not investigate this distance in the

current study due to a lack of consistent prostate segmentations produced using each

imaging method. The external frame of reference allowed the use of the mechatronic

device encoders for image and segmentation registration, and allowed the use of needle

end-length measurements as a gold standard for insertion depths. Prior to final image

acquisition, the needles were locked into place using a set screw on the template to

prevent any further movement. The final axial image stack and SR3D volume were

acquired consecutively for all patients; however it is possible that organ motion may

have been introduced by moving the probe in the superior/inferior direction to acquire

the final axial image stack.
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A limitation of the dosimetric simulation conducted in this study is related to the

lack of ground truth for needle tip positions and treatment dosimetry for both SAAR

and SR3D techniques. We perturbed the SAAR-based needle tip positions and asso-

ciated optimized dwell positions by the measured IDEs to illustrate the sensitivity of

dosimetric covereage parameters on both SAAR and SR3D-based needle tip position

uncertainty. In reality, dwell times and positions would need to be re-optimized based

on the needle tip positions identified using SR3D imaging, which would lead to dif-

ferences in the dosimetric parameters reported. However, this simulation does provide

an estimate of the relative dosimetric impact of the IDEs measured using each imaging

technique in this study.

Fianlly, another limitation of this study was the 5 mm sampling used to acquire the

axial image sets for the SAAR-guided segmentations. Previous studies have investi-

gated manual steppers that provide superior/inferior indexing in 1 mm steps in an effort

to improve resolution in the sagittal plane [17, 18]. Resolution in this plane is funda-

mentally limited by the elevational resolution of the axial transducer. The transverse

aperture of the BK 8848 transducer, which is related to this minimum resolution, is

specified as 5.5 mm. Mechanical focusing may create a focal zone with finer eleva-

tional resolution; however, Peikari et al. showed that this thickness is highly sensitive

to distance from the transducer, signal gain, and the presence of side-lobe artifacts pro-

duced by the transducer aperture [25]. While the elevational resolution of the sagittal

transducer also limits the axial resolution of the SR3D reconstruction investigated in

this study [19], the improved spatial resolution in the sagittal plane while maintaining

acceptable resolution in the axial plane enables segmentation of the needles and organs

respectively.
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2.5 Conclusions

This study compared HDR-BT needle tip location, insertion depth errors, and the dosi-

metric impact of insertion depth errors on clinical treatment plans between SAAR and

SR3D-guidance. The mechatronic device used for image acquisition enables the recon-

struction of a 3D image by rotating the sagittal crystal, thereby eliminating the need

to move the probe in the superior/inferior direction following needle tip identification.

With current SAAR approaches, this probe movement must be compensated by per-

forming an axial-to-sagittal registration introducing systematic uncertainty in needle

tip location. Through comparison with calibrated needle end-length measurements, we

have found that SR3D-guidance provides improved needle tip localization accuracy for

the majority of needles relative to SAAR-guidance, leading to statistically significant

improvements in dosimetric uncertainty. Ultrasound artifacts present in post-needle in-

sertion SR3D images may limit segmentation accuracy for a subset of needles, and we

have proposed a method to overcome this limitation for clinical implementation. These

TRUS-based segmentation techniques also eliminate the need to adjust patient position

for CT imaging, thereby decreasing patient discomfort and eliminating the probability

of needle shifts occurring prior to treatment delivery.
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Chapter 3

Simultaneous automatic segmentation
of multiple needles using 3D
ultrasound for high-dose-rate prostate
brachytherapy

Automatic needle segmentation may decrease HDR-BT treatment times, thereby in-
creasing the clinical feasibility of tumour-targeted treatments. The purpose of Chapter
3 is to present and characterize an algorithm designed to automatically segment all nee-
dles in an HDR-BT insertion using SR3D TRUS.

The contents of this chapter have been accepted for publication in Medical Physics:
WT Hrinivich, DA Hoover, K Surry, C Edirisinghe, J Montreuil, D D'Souza, A Fenster,
E Wong. Medical Physics 2017; Epub ahead of print. Permission to reproduce this
article was granted by John Wiley and Sons and is provided in Appendix E.

3.1 Introduction

High-dose-rate prostate brachytherapy (HDR-BT) dose distributions are critically sen-

sitive to uncertainty in radiation source positions relative to the prostate and surround-

ing organs, which in turn depend on uncertainty in needle positioning [1–3]. For this

reason, modern intra-operatively planned HDR-BT involves imaging needles in their

final positions to localize trajectories and tips relative to anatomy [4]. Intra-operative

imaging was originally performed using CT [5], but patient repositioning required for

67
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CT acquisition was found to cause mean needle shifts of 11 mm between imaging

and treatment delivery, and shifts of >20 mm in 10% of needles [6]. MRI-guided

HDR-BT insertions have been proposed, but require patient repositioning for treatment

[7, 8] or modified MRI suites for in-bore treatment [9, 10]. Trans-rectal ultrasound

(TRUS)-guided HDR-BT techniques have been developed, enabling the segmentation

of needles using multiple live 2D sagittal images and volumetric segmentation of or-

gans using contiguous sets of axial images [11] thereby eliminating the need for patient

repositioning between imaging and treatment [12, 13]. We recently completed a study

investigating 3D TRUS-guided HDR-BT based on robotic sagittally-reconstructed 3D

(SR3D) images [14], which are acquired by rotating the probe using a motor while si-

multaneously tracking probe position and acquiring sagittal images in a fan geometry

[15, 16]. This method of image reconstruction mitigates tip localization uncertainty

by eliminating the need to switch between sagittal and axial transducers or move the

probe in the superior/inferior direction [14]. Increasing needle and organ segmenta-

tion accuracy remains a primary objective in HDR-BT imaging, but all imaging and

segmentation must be performed intra-operatively, typically while the patient is under

general anesthesia, adding a time constraint to the procedure. Since we have demon-

strated that HDR-BT needles may be manually segmented accurately on a static SR3D

image [14], an automatic HDR-BT needle segmentation algorithm may further decrease

overall treatment time.

A number of investigators have proposed line detection algorithms for the segmen-

tation of single needles in 3D ultrasound images in vivo showing promising perfor-

mance for specific needle-guidance tasks [17–30]. Techniques have been proposed

based on orthogonal projections [17, 20], geometric transformations such as parallel

integral projections (PIP) [18], the 3D Hough transform (3DHT) [19, 24, 29, 30] and

the generalized Radon transform [21–23], and iterative methods such as random sample

consensus (RANSAC) [27, 28]. These techniques have all been validated using image
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regions containing single needles; however, the algorithm requirements for HDR-BT

needle segmentation, as discussed by Buzurovic et al. [31], have not been fully investi-

gated. HDR-BT procedures involve multiple needles inserted through a rigid template

placed on the perineum. Typical spacing between adjacent template holes is 5 mm,

and needle and probe deflection between the template and imaged region can lead to

uncertainty in needle placement greater than this spacing [32]. This uncertainty makes

extrapolation from calibrated template hole positions infeasible for trajectory identifi-

cation or sub-volume cropping to isolate regions containing individual needles, making

existing algorithms unsuitable for HDR-BT needle segmentation.

The purpose of this study is to expand upon previous work by describing a needle

segmentation algorithm designed for SR3D images containing multiple needles based

on a version of the randomized 3DHT with additional regularization steps. The segmen-

tation algorithm is validated using SR3D images from twelve prostate cancer patients

that underwent HDR-BT including 190 needles. Algorithm-based segmentation results

are compared geometrically to manual segmentation results, and the impact of SR3D

image artifacts on algorithm performance is investigated.

3.2 Methods

3.2.1 Image Acquisition and Segmentation

Twelve intermediate-risk prostate cancer patients underwent conventional sagittally-

assisted axially reconstructed (SAAR) ultrasound-guided HDR-BT using a compact

mechatronic device to support the ultrasound probe and insertion template [15], en-

abling the acquisition of SR3D images of the prostate with all needles inserted. The

imaging study was approved by the University of Western Ontario Health Sciences re-

search ethics board. A Profocus 2202 ultrasound machine and 8848 bi-planar TRUS

probe (BK Medical, Peabody MA, USA) operating at 9 MHz and 6.3 cm imaging depth
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were used for image acquisition. Sagittal images were acquired over 140◦ at 0.5◦ an-

gular intervals, resulting in images with size 870 × 441 × 408 and 0.16 × 0.16 × 0.16

mm3 reconstructed voxel dimensions. SR3D image spatial resolution varies with dis-

tance from the probe, with the highest spatial resolution component in the direction

radial from the transducer (r), and the lowest spatial resolution component in the re-

constructed direction tangential to the direction of probe rotation (t). The device cal-

ibration and HDR-BT workflow have been described previously [14]. Following the

procedure, a medical physicist manually segmented and labelled all needles present

in the SR3D images using Brachyvision treatment planning software (Varian Medical

Systems, Palo Alto CA, USA). The needle segmentations produced intra-operatively

using SAAR-guidance were used for treatment planning and delivery, and were refer-

enced during the manual SR3D segmentation procedure to ensure that each needle was

labelled correctly. We limited our consideration to straight needle detection; however,

in cases where needles appeared to bend, only the needle tip and most inferior observ-

able point along the trajectory were selected to approximate a linear best-fit. These

manual linear SR3D segmentations were then used as the gold-standard for validation

of the segmentation algorithm.

The algorithm was used to segment all needles present in the SR3D images. The

algorithm was implemented in MATLAB 2015a (MathWorks, Natick MA, USA) on a

desktop PC running Windows 10 (Microsoft, Redmond WA, USA) with a 3.4 GHz Core

i7-3770 CPU (Intel, Santa Clara CA, USA), 16 GB of RAM, and a GeForce GTX 660

graphics card (NVIDIA, Santa Clara CA, USA) with 2 GB of memory. As input, the

algorithm required the post-insertion SR3D image and the number of needles inserted.

Needle labelling also required manually identified axial needle intersection points to

create correspondences between template hole labels and automatically identified tra-

jectories. The execution times of each major algorithm component were recorded for

each patient.
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3.2.2 Segmentation Algorithm

Major steps of the algorithm are outlined in Figure 3.1. The 5 major assumptions of the

algorithm are 1) needles appear brighter in the image than the local background, 2) all

needles enter the image from the inferior edge, 3) needle trajectories are within 10◦ of

being normal to the axial plane, 4) needle trajectories are separated from one another

by ≥3 mm in the axial plane and therefore do not cross, and 5) for a given patient, all

needles will have insertion depths within the range [-12 mm, 10 mm] relative to the me-

dian insertion depth for that patient. It should be noted that clinical practice may vary,

leading to violations of assumptions 3-5); however, these parameter limits reflected our

institutional practice and experience. Specific parameter limits were selected based on

geometric analysis of the manual segmentations, provided in Appendix B.1. Major

algorithm components are described in further detail in the following sections.

Figure 3.1: Flowchart indicating the major steps of the segmentation algorithm.

Image Filtering

A convolution filter was applied to the SR3D images based on the method proposed by

Perona and Malik [33] designed to enhance edges with the same width as the needle

cross section. The image is convolved with the second partial derivative of a Gaus-
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sian distribution with the same width as the expected edge width. The primary needle

insertion component is in the superior direction, so needles appear as edges in direc-

tions along the axial plane. The two primary spatial resolution components in the axial

plane of the SR3D image are radial (r) and tangential (t) to the axis of probe rotation,

corresponding to the axial and elevational resolution components of the sagittal trans-

ducer. The elevational spatial resolution is lower than the axial spatial resolution [34],

resulting in the needles appearing smeared along the t direction as shown in Figure

3.2a. To account for this smearing, SR3D images were transformed to r, t coordinates

as shown in Figure 3.2c, and two 3D convolution kernels were applied corresponding

to second partial derivatives in the r and t directions respectively. The z component of

both kernels was a uniform distribution, and the r and t directions were second partial

derivatives of a 2D Gaussian distribution (Θ(r, t)) with standard deviations of 0.4 mm

and 1.2 mm, matching the typical r and t components of an axial needle cross section

as shown in Figure 3.2d-e. The kernels had (r, t, z) dimensions of 1.2× 2.4× 10.0 mm3,

and were applied in 0.16 mm steps in the r and t directions and 2 mm steps in the z

direction. The results of the two convolutions were combined in quadrature to produce

the final filtered signal intensities. The filter can be expressed as

I f iltered(r, t, z) =

√√∑
i=1,2

(
∂2

∂x2
i

Θ(r, t, z) ⊗ Iraw(r, t, z)
)2

(3.1)

where Iraw and I f iltered are the unfiltered and filtered signal intensities, x1 and x2 are r and

t directions, Θ is the convolution kernel, and ⊗ represents the convolution. Although

SR3D image spatial resolution varies with distance from the probe (r), the convolution

kernel dimensions were kept constant throughout the entire image.

Feature Point Classification

In order to isolate the centers of intensity peaks as needle feature points while minimiz-

ing the inclusion of additional surrounding points, local intensity peaks were identified
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Figure 3.2: a-b) Example axial slice from an SR3D image before and after filtering. c)
The unfiltered axial slice from a) transformed to the radial-tangential (r, t) coordinate
system. Dotted grid-lines in a-c) indicate the t-direction in the image. d) Magnified
view of the needle intersection point indicated by the white box in c). e) 2D Gaussian
distribution with standard deviations in the r- and t-directions of 0.4 mm and 1.2 mm. f-
g) Second partial derivatives of the 2D Gaussian distributions in the r- and t-directions.
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in each axial slice while enforcing a minimum distance in the axial plane of 3 mm be-

tween adjacent peaks. First, an intensity threshold was selected as the 98th percentile

of the filtered image intensity values, and was applied to generate a set of candidate

feature points. Next, pairs of candidate feature points with separation distance in the

axial plane <3 mm were compared, and the voxel with the lowest signal intensity was

eliminated. This regularization step was parallelized and executed using a GPU.

Trajectory Identification

Needle trajectories were identified using the randomized 3DHT, similar to the method

described by Qiu et al. [35] extended to distinguish feature points corresponding to

multiple needles. The method involves randomly selecting pairs of feature points, cal-

culating the parameters of the line in 3D space that those feature points define, and

indexing an accumulator using those parameters. For our application, we chose the

point-orientation representation, which defines the line's orientation using the azimuthal

and elevational angles (φ, θ), and the line's position using a point along the line, specif-

ically the coordinates of the lines intersection point with a 2D axial plane (xint, yint) at

the inferior image face defined as z = 0. This parameterization is sufficient to charac-

terize all possible lines which intersect the inferior plane of the image volume using the

ordered 4-tuple (φ, θ, xint, yint).

Given a randomly selected pair of feature points p1[x1, y1, z1] and p2[x2, y2, z2], a

unit vector in the direction of the line defined by these points was calculated as b̂ =

(p2 − p1)/|p2 − p1|. A minimum distance threshold of 10 mm in the z direction was

applied to point pairs to exclude highly oblique orientations, and b̂ was multiplied by

the sign of the b̂z component to ensure that b̂ was oriented in the positive z direction.

The ordered 4-tuple (φ, θ, xint, yint) describing the line can be calculated according to

Eqs. 3.2-3.5.
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φ = tan−1
(
bx

by

)
(3.2)

θ = tan−1

 bz√
b2

x + b2
y

 (3.3)

xint = x1 − bxz1 (3.4)

yint = y1 − byz1 (3.5)

The azimuthal angle φ could take any value from [180◦, 180◦], but the elevational

angle was limited to the range [0◦, 10◦] from the z-axis. The xint and yint parameter

values were limited to ranges of [-40 mm, 40 mm] and [10 mm, 60 mm], encompassing

the area occupied by the template hole range used for all 12 patients plus lateral and

anterior margins of 15 mm. Any lines with parameters outside of these limits were

not entered in the accumulator. To index the accumulator, φ and θ were binned at 1◦

angular intervals and xint and yint were binned at 1 mm intervals. At these intervals,

the 4D accumulator had a size of 360 × 11 × 81 × 51. Random point pair selection

and accumulator indexing were parallelized and executed using the GPU, employing a

constant 108 point pairs for each patient.

All feature points representing all lines in the 3D image were used as input in the

3DHT, leading to multiple accumulator peaks corresponding to multiple lines. The

point-orientation line representation enabled the direct interpretation of the parame-

ters xint and yint in terms of the image coordinate system, which could then be used to

enforce a minimum distance in the axial plane between lines when identifying these

peaks. This was accomplished by first only considering the xint and yint accumulator

components, and identifying any local peaks with index values that were greater than

an empirically selected threshold of 0.02% of the total number of random point pairs

chosen. Next, local peaks were refined by comparing pairs of peak values with separa-
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tion distance in the axial plane <3 mm and only retaining peaks with the greater index

value; identical to the method used for axial feature point regularization. For each of

the peaks identified using the xint and yint accumulator components, the corresponding

φ and θ values were extracted as a secondary 2D accumulator, and the φ and θ values

with the highest index were selected to define the line's orientation.

Trajectory Refinement

Trajectory orientations were refined using the method described by Qiu et al. [24],

outlined in Figure 3.3. Feature points within 2 mm of each trajectory were identified,

and the line that minimized the sum of the squared residuals with that set of feature

points was determined by solving a set of derivative equations [24]. The trajectory

identification step tended to identify a greater number of needle-like features than the

true number of needles present in the image. To refine the set of candidate trajectories,

the trajectories were sorted in descending order based on the number of feature points

within 2 mm. Only the 1.5n trajectories with the greatest number of feature points were

retained, where n was the number of needles physically inserted for that patient.

Manual Trajectory Labelling

Since the needle labelling step of the HDR-BT procedure is critical for treatment de-

livery, needles are inserted individually while monitoring a live 2D axial view of the

prostate mid-gland. The dynamic view of each needle entering the image allows a user

to reliably label each needle at the point of intersection with this axial slice. These

intra-operatively identified intersection points were used to label the final set of nee-

dle trajectories identified by the algorithm as outlined in Figure 3.3. For this study,

the manual label points were extracted from the SAAR needle segmentations produced

intra-operatively, which were labelled using the live 2D axial view as described. 2D

points were taken from a mid-gland axial slice of the SAAR segmentations, and these
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manual label points were transferred to the SR3D image based on a rigid registration

calculated using mechatronic device encoder positions. The intersection points of the

candidate needle trajectories with the same axial slice were found, and the distances

between each manual label point and candidate trajectory were calculated. Each can-

didate trajectory was labelled according to the nearest manual label point only if the

manual label point was within 5 mm of the trajectory, ensuring that each label was only

assigned to a single trajectory. Trajectories that were not labelled were discarded, and

labels without a trajectory identified within 5 mm were reported as segmentation fail-

ures. This labelling procedure resulted in a final set of ≤ n trajectories, where n was the

number of needles physically inserted for that patient.

Needle Tip Localization

Needle tip positions were determined using a two-step procedure based on the signal

intensity profile along each needle trajectory and the practice of inserting needles to

the prostate-bladder interface, limiting the range of insertion depths expected for each

patient. First, drops in signal intensity corresponding to the needle tip were identified

based on peaks in the derivative of the signal intensity profile as indicated in Figure 3.4.

This involved cropping and filtering a small sub-volume oriented along each trajectory,

then averaging intensity values normal to the trajectory to create a 1D intensity profile.

The derivative of this profile was calculated and normalized by the maximum value.

Peaks in the normalized derivative profile with values greater than a threshold of 0.7

were identified, and the needle tip was selected as the most superior of these peaks.

The insertion depth of each needle was calculated as the distance along the trajectory

from the inferior image edge to the identified tip. Details of the oriented sub-volume

cropping, sub-volume filtering, and signal intensity profile analysis are provided in

Appendix section B.2.

Next, the median value of these insertion depths was calculated, and a valid in-
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Figure 3.3: Process diagram of the trajectory refinement and manual label assignment
steps. The input candidate trajectories were identified using the randomized 3DHT.

sertion depth search space was limited to the range [-12 mm, 10 mm] relative to this

median value. The tip identification procedure was repeated for all needles over this

limited search space to identify the final tip positions. The selection of these asym-

metric search space limits was based on the observed insertion depth ranges of manual

segmentations, as provided in Appendix section B.1.
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Figure 3.4: a-b) Example cropped needle cross section expressed in local line coordi-
nates before and after filtering. The horizontal white dotted lines in a-b) indicate the y
cropping limits used to create the 1D signal intensity profile. c) Normalized 1D signal
intensity profile. d) Normalized signal intensity derivative profile. The horizontal dot-
ted line indicates the derivative threshold used for selecting the tip location, which is
indicated by the vertical grey line.
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3.2.3 Segmentation Accuracy

Trajectory Localization Accuracy

Needle trajectories identified by the algorithm were compared with manual segmenta-

tions in terms of location and orientation. Let pm[pm,x, pm,y] and pa[pa,x, pa,y] be the

2D intersection points of the manual and algorithm-based segmentations with the in-

ferior SR3D image face respectively. The trajectory location errors were characterized

in terms of the 2D Euclidean distance in the axial plane |~dtra j|, where dtra j = pa − pm.

This definition was chosen since ~dtra j is independent of needle insertion depth, and is

the farthest point along the needle from the tip while remaining within the SR3D im-

age. ~dtra j components were expressed in terms of r and t components at the point pm.

The rotation matrix used to calculate these components is described in Appendix B.3.

Principal component analysis was used to determine the primary directions of trajec-

tory error variance and 95% prediction interval ellipses (ellipse containing 95% of the

points) [36, 37].

Let b̂m and b̂a be unit vectors pointing in the directions of the manual and algorithm-

based segmentations respectively. Angular trajectory errors were defined as the angle

α between b̂m and b̂a, calculated using

α = cos−1(b̂m · b̂a) (3.6)

Tip Localization Accuracy

Let tm[tm,x, tm,y, tm,z] and ta[ta,x, ta,y, ta,z] be the needle tip positions of the manual and

algorithm-based segmentations respectively. Needle tip errors were defined as the 3D

Euclidean distance |~dtip|, where ~dtip = ta − tm. The x and y components of ~dtip were also

rotated to be expressed in terms of r and t components at point tm. Principal component

analysis was used to determine the primary directions of tip error variance and 95%
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prediction interval ellipsoids [36, 37].

Impact of Image Artifacts on Segmentation Accuracy

The medical physicist performing the manual segmentations subjectively classified

each needle tip as obstructed, partially-obstructed, or unobstructed by shadow arti-

facts based on needle tip appearance. Unobstructed needles had a high needle tip-

to-background contrast, and did not appear to enter any signal voids. Obstructed nee-

dles had low needle tip-to-background contrast in the vicinity of obvious signal voids.

Partially-obstructed needles did not fit clearly into the other two categories, and typi-

cally had low tip-to-background contrast but did not enter any obvious signal voids. 3D

tip errors of the automatic segmentations were stratified based on needle tip appearance,

and median values were compared between groups. Statistical tests were performed in

SPSS 23 (IBM, Armonk NY, USA).

Figure 3.5: Example segmentations from two patients intersecting an axial slice of the
SR3D image. The algorithm did not identify a trajectory for the most anterior needle
from patient B indicated by the absence of a 3D tip error vector.

3.3 Results

Between 14 and 20 needles were inserted in each of the 12 patients for a total of 194.

191 of these needles were plastic FlexiGuide needles (Eckert and Ziegler Group, Berlin,
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DE) with 2.00 mm diameter, and three were metal interstitial needles with 1.65 mm

diameter. All 194 needles were used as input in the segmentation algorithm, but four

needles were excluded from geometric analysis including the three non-plastic needles,

and one needle that extended beyond the edge of the SR3D image due to incorrect

probe placement prior to image acquisition. All 194 needle tips were detectable intra-

operatively using 2D ultrasound imaging incorporated in the clinical SAAR procedure,

so were included in the treatment plans. Execution times of the algorithm are listed in

Table 3.1. The mean execution time was 11.0 s per patient, or 0.7 s per needle. Figure

3.5 shows example segmentations produced for two patients, indicating the 3D needle

tip distances between manual and automatic segmentations. Treatment planning studies

recommend needle tip localization accuracy within 3 mm [3] and previous HDR-BT

imaging studies described tip errors in terms of 3 mm and 5 mm thresholds [12, 14] The

geometric performance of the algorithm is summarized in terms of these thresholds in

Table 3.2.

Algorithm component Mean (SD) execution time per patient (s)
Image filtering 3.44 (0.08)
Image binarization 1.13 (0.07)
Trajectory identification 3.23 (0.14)
Trajectory refinement 0.013 (0.001)
Needle tip localization 3.23 (0.28)
Manual trajectory labeling* 0.003 (0.001)
Total 11.04 (0.22)

Table 3.1: Algorithm execution times. *Only includes computational time required
to label candidate trajectories using manually identified points; does not include user
interaction time required to identify points.

3.3.1 Trajectory Localization Accuracy

Figure 3.6a displays a histogram of the angular trajectory errors of the automatic seg-

mentations. Of the 190 needle trajectories, 83%were identified by the algorithm within
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3◦ of the corresponding manual segmentation. Figure 3.6b displays a histogram of 2D

axial trajectory errors of the automatic segmentations. 91% of needle trajectories were

segmented within 3 mm error. Figure 3.6c displays a 2D plot of r and t trajectory error

components along with the 95% prediction interval ellipse. The mean [95% prediction

intervals] of the distribution in (t, r) were 0.28 [-1.74, 2.30] mm and -0.08 [-0.89, 0.73]

mm respectively. Two image artifacts incorrectly identified as needles had 2D trajectory

errors >5 mm and were excluded from all 95% prediction interval calculations.

Error metric % (#) of Needles
2D Axial trajectory error ≤ 3 mm 91 (173)
Trajectory angular error ≤ 3◦ 83 (157)
2D Axial tip error ≤ 3 mm 91 (172)
3D Tip error ≤ 3 mm 82 (155)
3D Tip error ≤ 5 mm 85 (161)
Reported failed segmentations* 6 (12)

Table 3.2: Algorithm performance for 190 needles. *Reported when no candidate nee-
dle trajectory is identified within 5 mm of the manually selected label point.

Figure 3.6: a)-b) Histograms of angular trajectory error and 2D axial trajectory error of
automatically segmented needles relative to the corresponding manual segmentations.
c) Plot of 2D axial trajectory error components expressed in terms of radial (r) and
tangential (t) directions along with 95% prediction intervals. Two artifacts incorrectly
identified as needles resulted in 2D axial trajectory errors >5 mm, so were excluded
from c) and excluded from the 95% prediction interval calculation.
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3.3.2 Tip Localization Accuracy

Figure 3.7a displays a histogram of 3D tip errors for the automatic segmentations. 82%

of needle tips were segmented within 3 mm error and 85% were segmented within 5

mm error. Figure 3.7b displays a 3D plot of t, r, and z tip error components along

with the 95% prediction interval ellipsoid. The mean [95% prediction intervals] of the

distribution in (t, r, z) were 0.05 [-1.58, 1.67] mm, -0.07 [-0.65, 0.51] mm, and 0.35

[-6.23, 6.93] mm respectively. Figure 3.7c displays a highlighted view of the 2D tip

error components in the r and t directions. 91% of needle tips were identified with 2D

errors in the axial plane within 3 mm.

3.3.3 Impact of Image Artifacts on Segmentation Accuracy

Of the 178 automatically segmented needles, 143 (80%) needles were classified as un-

obstructed, 20 (11%) as partially obstructed, and 15 (8%) as obstructed. Of the 12 nee-

dles reported as automatic segmentation failures, 1 (8%) was classified as unobstructed,

3 (25%) as partially obstructed, and 3 (25%) as obstructed. The remaining 5 (42%)

were completely obstructed so could not be identified manually. Figure 3.8 displays

histograms of 3D tip errors stratified by tip appearance for the automatic segmenta-

tions. Shapiro-Wilk tests indicated that the 3D tip errors were not normally distributed,

with p <.001 for all groups. Medians (inter-quartile ranges) of the unobstructed, par-

tially obstructed, and obstructed groups were 0.87 (1.03) mm, 1.49 (2.87) mm, and

1.54 (4.68) mm respectively. A non-parametric independent-samples Kruskal-Wallis

test indicated a significant effect of tip appearance on median 3D tip error (p = .013),

and post hoc Mann-Whitney U tests indicated a significant pairwise difference between

the unobstructed and partially obstructed groups (p = .013) but not between the unob-

structed and obstructed groups (p = .068), or obstructed and partially obstructed groups

(p = .77). The percentage of needles segmented within 3 mm error in the unobstructed,

partially obstructed, and obstructed groups was 92%, 65%, and 67% respectively.
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Figure 3.7: a) Histogram of 3D needle tip errors of automatically segmented needles
relative to the corresponding manual segmentations. b) Plot of 3D needle tip error com-
ponents expressed in terms of radial (r), tangential (t), and superior/inferior (z) direc-
tions along with 2D error projections and 95% prediction interval ellipsoid projections.
c) Highlight of 2D axial needle tip error components along with 95% prediction inter-
val ellipse. Two artifacts incorrectly identified as needles resulted 2D axial trajectory
errors >5 mm, so are indicated by x-marks and were excluded from the 95% prediction
interval calculations in b) and c).
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Figure 3.8: Histograms of 3D tip errors stratified by needle tip appearance manually
classified by a medical physicist. The number of needles included in each histogram
(n) is indicated.

3.4 Discussion

We have presented an algorithm designed to segment multiple needles present in a 3D

ultrasound image simultaneously without requiring the user to crop regions of inter-

est containing one needle each. The segmentation algorithm identified 82% and 85%

of needle tips with 3D tip error ≤3 mm and ≤5 mm respectively, and results may be

considered in the context of manual tip localization, which was found to lead to 1D in-

sertion depth errors ≤3 mm and ≤5 mm in 83% and 92% of needles respectively when

compared to needle end-length measurements [14]. The average algorithm execution

time of 11.0 s per patient is sufficient for implementation in clinical HDR-BT work-

flows which typically take 1.5-3 hours. This algorithm was validated using sagittally-

recontructed 3D ultrasound images, which have sub-millimeter resolution in the needle

insertion direction. It would be possible to apply the trajectory localization portion of

the algorithm to axially-reconstructed 3D ultrasound images; however, the accuracy

of needle tip localization would likely decrease using these images due to decreased

spatial resolution in the superior/inferior direction [34].

The 95% prediction intervals for the 3D tip errors were significantly larger in the
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z-direction than the r or t directions, corresponding to the primary direction of needle

insertion. This result suggests that tip localization remains a weakness of the algorithm.

The z direction is also the primary error component for manual needle segmentation

[14], suggesting that image quality may also limit current tip localization performance.

The 95% prediction intervals for both the 2D axial tip errors and 2D axial trajectory er-

rors were also larger in the t direction than the r direction. This result corresponds to the

differences in spatial resolution in these two directions, which are limited by the axial

and elevational spatial resolutions of the sagittal transducer, and suggests that segmen-

tation performance could be improved in the t-direction by improving the transducers

elevational resolution.

A limitation of the current algorithm is the potential for large segmentation errors in

the presence of nearby hyper-echoic features and image artifacts such as reflections and

shadows. For instance, three needles considered unobstructed had 3D tip errors >9 mm

as shown in Figure 3.8a. Examination of these cases revealed that incorrect tip positions

were identified due to calcifications superior to the tip in two cases, and the presence

of a reflection artifact near the tip in one case. These segmentations errors indicate the

need for manual quality assurance, which would add time intra-operatively. However, it

would be possible to automatically display image cross-sections containing each needle

trajectory using the algorithm results to expedite the manual quality assurance proce-

dure. More advanced image-filtering techniques such as artificial neural networks may

enable the distrinction between needles and calcifications by incorporating additional

image features beyond those identified using the two convolution kernels employed in

this study. [38]

The algorithm failed to identify 12 needles, representing an overall false negative

rate of 6.3% of the 190 needles analyzed. Five of these needles (2.6%) also could not

be detected manually due to the presence of shadow artifacts. The algorithm also in-

correctly identified two image artifacts as needles representing a false positive rate of
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1.0%. Altogether, the segmentation failure rate is 7.3%. Previous studies investigat-

ing automatic needle segmentation only evaluated single needles. One study employed

filtered intensity based feature point classification and trajectory localization using the

3DHT, and reported segmentation failures for 30% of in vivo images containing single

needles [24]. More recently, studies investigating phase grouping-based segmentation

have reported failure rates as low as 4% for in vivo images containing single needles

with optimized gain settings [26]. In the future, improvements in SR3D image-quality

will likely be required to mitigate the potential for manual and automatic segmenta-

tion failures as observed for 2.6% and 7.3% of needles respectively in this study. The

ability to segment all needles using 2D ultrasound during the clinical SAAR procedure

suggests that incorporating these dynamic 2D images into the segmentation workflow

may provide improvements in robustness. Previous investigators have proposed the use

of 2D ultrasound for automatic segmentation of HDR-BT needles, but did not report

results for images containing multiple needles [31] Based on observed limitations in

SR3D image quality, a useful comparator of automatic segmentation variability would

also be inter-observer variability, and manual segmentations averaged among observers

would represent a superior gold standard to the segmentations from a single observer

used in this study.

Another limitation of the algorithm is the set of physical constraints on the shape,

orientation, and distribution of needles that can be segmented. In terms of shape, the

current algorithm only models straight needles. Brachytherapy needles can deflect

when inserted in tissue [32], and extensions of this algorithm may be required to model

curvilinear needles to improve robustness. In terms of needle orientation, trajectories

were limited to ≤10◦ from the axis of probe rotation (z-axis). This constraint reflected

the needle trajectories we observed across patients, but may be violated when using an

insertion template that allows larger insertion angles. In terms of needle distribution,

a minimum 3 mm distance in the axial plane was enforced between adjacent needles,
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which also may be violated depending on the insertion template used. Finally, the

tip localization procedure constrained insertion depths to the range [-12 mm, 10 mm]

relative to the median insertion depth for that patient. Insertion depths may vary sig-

nificantly depending on practice; for instance, needles may be inserted into the seminal

vesicles and extend superiorly beyond the prostate base. In these instances, insertion

depth limits may need to be relaxed, creating the potential for larger insertion depth

errors than observed in this study. It may be possible to accommodate a wider range of

insertion depths using measurements of needle end-lengths protruding from the inser-

tion template to calculate patient-specific insertion depth constraints. A calibration can

also be performed to enable the direct calculation of insertion depths within the image

using needle end-lengths, rather than relying solely on the SR3D image intensities [14,

39]. These measurements would add to the algorithm execution time, but have been

shown to provide tip localization uncertainty of 0.7 mm in tissue mimicking phantoms

[39], and are currently incorporated in commercially available imaging systems such

as Oncentra Brachy (Elekta, Stockholm, SE). Other non-image-based techniques for

brachytherapy needle localization include fiber Bragg gratings for curved trajectory re-

construction [40], and electromagnetic tracking for trajectory and tip localization [41].

Combining data from these techniques with image-based automatic needle segmenta-

tion may result in significant improvements in accuracy and robustness.

This study did not explicitly investigate the sensitivity of algorithm execution time

and segmentation performance to algorithm parameter values. Beyond selecting param-

eter limits based on observed ranges, no further parameter optimization was performed

for this patient cohort, limiting potential parameter over-fitting. The thresholds used

to initialize the local peak identification algorithms used to identify feature points, ac-

cumulator peaks, and needle tips in section 3.2.2 were chosen empirically based on

observed parameter ranges. In our experience, the local peak identification algorithms

demonstrated low sensitivity to the thresholds used for initialization, but in the future
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these specific threshold values should be validated using an independent image set.

3.5 Conclusions

We have presented an automatic needle segmentation algorithm for 3D ultrasound im-

ages containing multiple needles for high-dose-rate prostate brachytherapy treatment

planning, and demonstrated the algorithm's geometric performance with images from

12 patients containing 190 needles. Accurate needle localization is critical for HDR-

BT treatment planning. Automatic segmentation approaches will not replace manual

approaches until equivalence or superiority in geometric accuracy and robustness can

be demonstrated. However, segmentation algorithms that add negligible time to the

procedure may still be of significant use for either manual segmentation initialization

or quality assurance. The speed and geometric accuracy of the presented algorithm in-

dicate that it may provide improvements in clinical workflow efficiency for modern 3D

ultrasound-guided high-dose-rate prostate brachytherapy.
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Chapter 4

Improved high-dose-rate prostate
brachytherapy needle tip localization
using live two-dimensional and
sagittally-reconstructed
three-dimensional ultrasound

Manual and automatic HDR-BT needle tip localization accuracy using SR3D TRUS is
limited by shadow artifacts. The purpose of Chapter 4 is to present and characterize a
needle segmentation technique combining live-2D sagittal and SR3D TRUS to mitigate
the impact of shadow artifacts on needle tip localization.

The contents of this chapter have been submitted for publication in Brachytherapy and
are currently under peer-review. Permission to reproduce this article for the purpose of
this thesis is retained under the Elsevier author copyright agreement.

4.1 Introduction

High-dose-rate prostate brachytherapy (HDR-BT) is used routinely as a boost to ex-

ternal beam radiation therapy (EBRT) [1–4] and increasingly as a monotherapy [5–

7]. Evidence suggests that it is possible to deliver dose distributions using HDR-BT

with decreased dose to normal tissue [8] and decreased dosimetric uncertainty [9] than

low-dose-rate prostate brachytherapy, but achieving these treatment plan characteristics

is critically dependent on accurately localizing HDR-BT needles relative to anatomy

94
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[10–12]. Image-guidance for HDR-BT has been implemented using CT [13], MRI [14,

15], and trans-rectal ultrasound (TRUS) [16, 17]. Patient repositioning for imaging,

as required for conventional CT- and MRI-guided workflows, has been shown to cause

caudal needle shifts prior to treatment [18]. In-bore treatments have been proposed, but

lowering patients legs to fit in the bore may compromise access to the perineum and

increase pubic arch interference [19]. TRUS-guided HDR-BT workflows allow needle

insertion, imaging, and treatment to be completed in existing brachytherapy bunkers

without the need to reposition the patient [16, 17]. TRUS-guidance has demonstrated

comparable needle tip localization accuracy [16] and treatment plan dosimetry to CT-

guidance [20]; however, conventional multi-step TRUS-guided procedures create the

potential for needle tip localization errors for some patients.

Conventional TRUS-guided HDR-BT makes use of live-2D sagittal images to lo-

calize needle tips at the time of insertion [10]. Accurate organ dose calculation requires

reconstruction of a 3D image, which is typically performed by acquiring multiple axial

images while stepping the probe in the superior/inferior direction [16]. Information

from the two imaging planes is then combined through an alignment of the axial or-

gan segmentations with a live-2D sagittal view, introducing a source of uncertainty

in the final needle tip positions relative to anatomy. This sagittally-assisted axially-

reconstructed (SAAR) workflow is outlined in Figure 4.1a. An alternative TRUS-

guided approach was proposed making use of sagittally-reconstructed 3D ultrasound

(SR3D), which is produced by rotating the probe using a motor while simultaneously

capturing a fan of sagittal images that are reconstructed into a 3D image with sub-

millimeter resolution in the needle insertion direction [21, 22], eliminating the need to

combine axial and sagittal views. Custom hardware and software solutions have been

presented for SR3D reconstruction [22], and vendors including Varian Medical Systems

(Palo Alto CA) and Elekta (Stolkholm SE) have introduced technologies with similar

SR3D reconstruction capabilities. It was demonstrated that HDR-BT needles could be
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segmented using SR3D images with insertion depth errors ≤5 mm for 93% of needles,

versus 76% when using the conventional SAAR-technique [23]. Unfortunately, shadow

artifacts were found to introduce uncertainty in needle tip locations when using a single

post-insertion SR3D image, leading to insertion depth errors >10 mm in 3% of needles

and completely obstructing the view of an additional 3% of needles, impacting 4 out of

12 patients in the study [23]. Although these artifacts impacted a relatively small num-

ber of needles, the potential for large errors limited the utility of single post-insertion

SR3D images for localizing all HDR-BT needles.

The clinical SAAR approach is not as susceptible to these image artifacts due to

the incorporation of live-2D sagittal imaging to localize needle tips at the time of in-

sertion. The live-2D technique enables the identification of needle tips as the needles

are inserted from the prostate anterior-to-posterior, effectively eliminating the impact

of shadow artifacts caused by posterior needles on tip localization [16]. The SAAR-

guided technique incorporating live-2D tip identification was found to lead to larger

insertion depth errors than the SR3D approach for most needles; however, we found

that these errors were attributed to superior/inferior probe motion required for axially-

reconstructed 3D (AR3D) ultrasound introducing uncertainty in tip positions relative to

organs [23].

Based on the characteristics of SR3D images and live-2D sagittal images, we have

investigated a sagittally assisted sagittally reconstructed (SASR) needle segmentation

workflow outlined in Figure 4.1b. The SASR workflow is designed specifically to elimi-

nate uncertainty created by probe movement when switching between axial and sagittal

transducers required for the conventional SAAR technique, and to mitigate the im-

pact of shadow artifacts created by posterior needles in SR3D images. The purpose of

this study is to validate the SASR needle segmentation method, and compare it to the

conventional SAAR-guided approach geometrically using calibrated needle end-length

measurements [23, 24] as the gold-standard.
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4.2 Materials and Methods

4.2.1 Needle Segmentation Techniques

Conventional Technique: Sagittally-Assisted Axially-Reconstructed (SAAR)

The steps of the SAAR technique are outlined in Figure 4.1a, and have been described

previously [16, 23]. Briefly, the technique begins by acquiring an axially-reconstructed

3D image (AR3D) prior to needle insertion by stepping the probe in the inferior direc-

tion from the bladder to prostate apex in 1-5 mm intervals. This initial AR3D image is

used to segment the prostate, urethra, rectum, and bladder. Needles are then inserted

to the prostate mid-gland using a live-2D axial view to verify coverage in the left/right

and anterior/posterior directions. The probe is then manipulated to acquire a live-2D

sagittal view of the prostate, including the base and apex. To maintain a geometric rela-

tionship between the AR3D and live-2D sagittal images, the axial organ contours must

be aligned in the superior/inferior direction with this live 2D sagittal view. Following

organ alignment, each needle is identified using the live 2D sagittal view by rotating the

probe, then advanced to the superior edge of the prostate. Needle tip positions are lo-

calized at the time of insertion using live 2D sagittal images. Needle advancement and

tip localization are performed from prostate anterior-to-posterior to mitigate the impact

of shadow artifacts. Once all needles have been advanced, a second AR3D image is ac-

quired attempting to match the anatomical landmarks present in the original image and

compensating for superior prostate movement caused by the insertion, which tends to

be ∼1.3 cm [23]. Needle trajectories are edited using the final AR3D image to account

for out-of-plane trajectories not captured by the live 2D sagittal images, but needle in-

sertion depths are not modified due to limited spatial resolution in the superior/inferior

direction.
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Proposed Technique: Sagittally-Assisted Sagittally-Reconstructed (SASR)

The steps of this technique are outlined in Figure 4.1b, and are similar to the steps of the

SAAR technique but make use of SR3D images in place of AR3D images. Specifically,

an SR3D image is acquired prior to needle insertion to aid prostate, urethra, rectum, and

bladder segmentation. Needles are inserted to prostate mid-gland using a live-2D axial

view identical to the SAAR technique, and each needle is localized and advanced to the

prostate-bladder interface using live-2D sagittal images. This localization is performed

from prostate anterior-to-posterior, and needle tip positions are recorded at the time

of insertion using custom software, making use of the probe angle to calculate the

anterior/posterior and left/right position of each needle. Following advancement of all

needles, a final SR3D image is acquired with sub-millimeter spatial resolution in the

superior/inferior direction. This image is then used for final organ segmentation, and

needle tips and trajectories are adjusted to account for potential out-of-plane trajectories

and additional tip motion relative to anatomy introduced by the insertion of adjacent

needles.

4.2.2 Image Acquisition and Segmentation

Intra-Operative Imaging and Segmentation Workflow

Ten prostate cancer patients underwent TRUS-guided HDR-BT using a Profocus 2202

ultrasound machine and 8848 bi-planar probe (BK Medical, Boston MA) operating at

9 MHz. The probe was supported by a custom compact mechatronic device enabling

SR3D image acquisition [22], and the ultrasound machine video output was captured

by two systems simultaneously: 1) a computer running Vitesse 2.5 (Varian Medial Sys-

tems, Palo Alto CA) for conventional SAAR-guided segmentation by one user, and

2) a computer running custom software for parallel SASR-guided segmentation by an

additional user. Both the SAAR and SASR techniques involve identifying needle tips
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Figure 4.1: Flow chart outlining the SAAR and proposed SASR needle segmentation
workflows. The steps common to both procedures involving the insertion and advance-
ment of needles are placed in the middle of the flow chart.

using the live-2D sagittal view as they are inserted from prostate anterior-to-posterior,

so this step was completed simultaneously by both users as needles were being inserted.

Following insertion, an SR3D image was acquired spanning 140◦ at 0.5◦ angular inter-

vals, followed by an AR3D image acquired at 5 mm intervals. The superior/inferior

position of the probe was recorded during all image acquisitions. The SAAR-guided

segmentations were used for intra-operative treatment planning and delivery. Follow-

ing insertion, the lengths of needle ends protruding from the template were measured

to calculate insertion depth errors (IDEs) for each technique. All segmentations were

anonymized and exported to MATLAB 2015b (Mathworks, Natick MA) for analysis.

This study was approved by the University of Western Ontario Health Sciences research
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ethics board.

Figure 4.2: Example co-registered axially-reconstructed 3D (AR3D) and sagittally-
reconstructed 3D (SR3D) images from a single patient following needle insertion.

Multi-User Tip and Trajectory Adjustment Using SR3D Images

Following HDR-BT procedures, all SR3D images and live-2D based needle segmen-

tations were imported into Brachyvision treatment planning software (Varian Medical

Systems, Palo Alto CA) for needle tip and trajectory adjustments. Beginning with the

intra-operative live-2D based needle segmentations, each needle trajectory and tip was

adjusted using the final SR3D image twice by two separate users, resulting in four

individual SR3D-based segmentations for each needle. At least one week transpired

between the first and second segmentation adjustments for each patient by each user.

At the time of segmentation adjustment each user also subjectively scored each needle

based on its appearance on the SR3D image. These tip scores were assigned to enable

estimation of the impact of image artifacts on intra- and inter-operator variability in

SR3D-based tip localization. Criteria for selecting tip scores was predominantly based
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on the presence or absence of shadow artifacts appearing in the vicinity of the nee-

dle tip, and tip scores of 0-3 were assigned to each needle in order of increasing tip

visibility according to the criteria provided in Table 4.1 and illustrated in Figure 4.3.

Distinguishing between tip scores 1 and 2 was performed using a circular cursor with

3 mm radius that could be placed at each manually selected tip position, allowing the

user to estimate whether uncertainty in tip position was within the cursor area (tip score

2), or exceeded the cursor area due to the presence of artifacts (tip score 1). Tip score

3 was included to allow for the identification of needles that did not appear to enter

any image artifacts for the entire length. We expected the lowest segmentation uncer-

tainty for this group of needles, and associated systematic error would be a potential

indicator of calibration errors in device encoders or analysis software. A unique tip

score was assigned to each needle each time it was segmented, resulting in four scores

per needle. A single score for each needle was found by selecting the minimum of the

four scores, representing the most conservative classification of tip appearance. For

instance, a needle would only receive a final tip score of 3 if it received a score of 3 for

all four individual tip adjustment trials.

Tip score 0 1 2 3

Definition

needle tip
is not

visible on
SR3D
image

needle tip is
visible on

SR3D image,
user is not

confident in
tip position
with ≤3 mm
uncertainty

needle tip is
visible on

SR3D image,
user is

confident in
tip position
with ≤3 mm
uncertainty

needle tip is visible
on SR3D image, user

is confident in tip
position with ≤3 mm

uncertainty, image
artifacts absent for

entire trajectory and
tip

% (#) of
Needles

8.8 (13) 38.8 (57) 42.9 (63) 9.5 (14)

Table 4.1: Needle tip score definitions and detection frequencies.
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Figure 4.3: Examples of needles appearing in an SR3D image from a single patient
with different tip scores based on visibility on the final SR3D image. The needles are
arranged from lowest tip visibility (tip score 0) to highest (tip score 3).

4.2.3 Segmentation Analysis

Difference Between Live-2D and SR3D-based Tip Positions

Since the SASR procedure enables the adjustment of live-2D based tip positions using

the final SR3D image, tip positions were analyzed to characterize the magnitude and

direction of these adjustments. We indicate the live-2D based tip position of each needle

as ~t2D, and indicate individual SR3D-based tip positions of each needle as ~t3D(i, j),

where i = 1, 2 indicates the user, and j = 1, 2 indicates the trial. The mean value of ~t3D

for each needle across users and trials, ~t3Dm, was calculated as

~t3Dm = [~t3D(1, 1) + ~t3D(1, 2) + ~t3D(2, 1) + ~t3D(2, 2)]/4 (4.1)

The mean tip adjustment ~dad j was calculated for each needle as

~dad j = ~t3dm − ~t2D (4.2)

Needles were stratified based on tip scores, and principal component analysis of ~dad j

was performed to calculate the 95% prediction intervals of the mean tip adjustments.

Since the live-2D based needle segmentations were produced using 2D images oriented
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radially from the axis of probe rotation, tip adjustments were expressed in terms of in-

plane directions radial (r) and parallel (z) to the axis of probe rotation, and the out-of-

plane direction tangential (t) to the axis of probe rotation.

Intra- and Inter-Operator Variability in SR3D-based Tip Positions

Intra-operator variability was assessed by calculating the average difference in ~t3D be-

tween trials, within users. Specifically, the distance ~dintra was calculated for each needle

as

~dintra = ([~t3D(1, 2) − ~t3D(1, 1)] + [~t3D(2, 2) − ~t3D(2, 1)])/2 (4.3)

Similarly, inter-operator variability was assessed by calculating the average differ-

ence in ~t3D between users, within trials. The distance ~dinter was calculated for each

needle as

~dinter = ([~t3D(2, 1) − ~t3D(1, 1)] + [~t3D(2, 2) − ~t3D(1, 2)])/2 (4.4)

Needles were stratified based on tip scores, and principal component analysis of

~dintra and ~dinter was performed to calculate the 95% prediction intervals of the compo-

nents of intra- and inter-operator variability. Similar to the mean tip adjustments, ~dintra

and ~dinter were expressed in terms of directions radial (r), tangential (t), and parallel (z)

to the axis of probe rotation.

Impact of SR3D-based Adjustments on Insertion Depth Errors

The method for calculating IDEs has been described previously and requires calibrating

the superior/inferior mechatronic device encoders using a phantom [23]. This calibra-

tion enables the calculation of expected needle tip position based on 1) the probe posi-

tion during image acquisition, 2) the total needle length, and 3) the length of the needle
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end protruding from the template following insertion [23, 24]. IDEs are calculated

as the difference in insertion depths between the image-based needle segmentations

and the expected insertion depths based on calibrated needle end-length measurements.

IDEs were calculated for the live-2D-based needle tip positions ~t2D, and for the mean

SR3D-based tip positions across users and trials, ~t3Dm. Needles were stratified by tip

score, and F-tests were used to compare variance in IDEs before and after SR3D-based

tip adjustments. The F-test results were used to assess the benefit in accuracy provided

by SR3D-based tip adjustments in the presence of varying degrees of SR3D image

artifacts. P-values ¡.05 were considered statistically significant for all tests.

Comparison of Final SASR and SAAR Insertion Depth Errors

Based on the statistical analysis of IDEs before and after SR3D-based tip adjustments,

a final SASR workflow was created as follows. All needles were assigned the live-

2D-based tip position ~t2D. Next, needles with tip scores that demonstrated statistically

significant decreases in IDE variance following SR3D-based tip adjustments were as-

signed the mean SR3D-based tip position ~t3Dm. IDEs were then calculated for this set

of final SASR-guided segmentations. IDEs were also calculated for the clinical SAAR-

guided segmentations, and compared to the SASR-guided segmentations using paired

t-tests and F-tests.

4.3 Results

For each patient, 15-17 needles were inserted for a total of 158 needles. 155 needles

were plastic FlexiGuide needles (Eckert and Ziegler Group, Berlin, DE) and three were

metal interstitial needles. Eleven needles were excluded from analysis because three

needles were metal, three needles extended beyond the superior edge of the final SR3D

volume due to incorrect probe placement, and four needles were not localized in their
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final positions using the custom live-2D segmentation tool during the procedure. One

needle was excluded due to the presence of an abnormal image artifact, which is de-

scribed further in the Discussion. The small number of metal needles were excluded

from analysis to improve consistency of the data, although strong specular reflection

may lead to improved tip appearance of metal needles than plastic needles. Table 4.1

summarizes the frequencies of tip scores assigned to the 147 needles included in the

analysis. Thirteen of the 147 needles were not visible on the final SR3D image (tip

score =0) precluding SR3D-based tip adjustments, so were not included in the SR3D-

based tip analysis.

Figure 4.4: 3D scatter plots of tip position adjustments made using the SR3D images,
and variability in those adjusted tip positions stratified by tip score. a-c) Plots of the
mean tip adjustment made using the final SR3D image relative to the tip identified using
the live-2D view. d-f) Plots of intra-operator differences in adjusted tip positions. g-i)
Plots of inter-operator differences in adjusted tip position.
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tip score = 1 tip score = 2 tip score = 3
Mean r (mm) [-3.5, 2.6] [-2.4, 1.9] [-0.6, 0.9]
Tip t (mm) [-4.0, 4.4] [-3.2, 3.9] [-2.8, 2.4]

Adjustment z (mm) [-7.0, 3.9] [-5.7, 3.5] [-4.0, 2.0]
Intra- r (mm) [-0.5, 0.4] [-0.3, 0.3] [-0.2, 0.2]

operator t (mm) [-1.1, 1.2] [-0.7, 0.7] [-0.6, 0.6]
Variability z (mm) [-2.8, 2.2] [-1.1, 0.7] [-0.5, 0.3]

Inter- r (mm) [-0.6, 0.6] [-0.4, 0.4] [-0.4, 0.5]
operator t (mm) [-1.3, 1.3] [-0.9, 0.7] [-1.0, 1.0]

Variability z (mm) [-2.8, 3.8] [-0.6, 1.5] [-0.5, 1.2]

Table 4.2: 95% prediction intervals of needle tip adjustments and variability using
SR3D images.

4.3.1 Difference Between Live-2D and SR3D Based Tip Positions

Figures 4.4a-c display 3D scatter plots of the average distances that each live-2D tip

position was adjusted using the final SR3D image, stratified by tip score. The first three

rows of Table 4.2 display the 95% prediction intervals corresponding to the scatter

plots in Figure 4.4a-c. The largest tip adjustments tended to be in the direction of

needle insertion (z-direction), followed by direction out-of-plane of the live-2D images

(t-direction).

4.3.2 Intra- and Inter-Operator Variability in SR3D Based Tip Po-

sitions

Figure 4.4d-f display 3D scatter plots of ~dintra, and Figure 4.4g-i display 3D scatter plots

of ~dinter stratified by tip score. The final 6 rows of Table 4.2 display the 95% prediction

intervals corresponding to the scatter plots in Figure 4.4d-i. Similar to the mean tip

adjustments, intra- and inter-operator variability tended to be largest in the z-direction,

followed by the t-direction and r-direction, respectively.
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Figure 4.5: Box plots of needle insertion depth errors following intra-operative tip iden-
tification on live-2D images, and after adjustment on the final SR3D image. Needles
are stratified by tip score. Needles with tip score = 0 were not visible on the final SR3D
image.

4.3.3 Impact of SR3D Based Adjustments on Insertion Depth Er-

rors

Figure 4.5 displays boxplots of IDEs corresponding to the live-2D tip positions and

tip positions following SR3D based editing for all needles stratified by tip score, and

relevant geometric parameters are summarized in Table 4.3. Results of F-tests indicated

that the differences in IDE variance between the live-2D and SR3D-based tip-positions

were not statistically significant for needles with a tip score of 1 (p = .54) and 3 (p =

.13), but were statistically significant for needles with a tip score of 2 (p = .0015). Based

on these results, the final SASR technique was implemented as follows. Needles with

tip scores of 0 or 1 were assigned their live-2D based tip positions, and needles with

tip scores of 2 and 3 were assigned their mean SR3D-based tip positions. Needles with

tip scores of 3 were assigned the mean SR3D-based tip positions despite the failure to

find a statistically significant difference (p < .05) between the live-2D and SR3D-based
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IDEs, which was attributed to the relatively small number of needles in this group (n =

14).

Figure 4.6: Boxplots of insertion depth errors determined using the SASR technique
and SAAR technique for each patient individually, and all patients combined. In all
plots center lines indicate median values, and boxes represent inter-quartile ranges.

4.3.4 Comparison of Final SASR and SAAR Insertion Depth Er-

rors

Figure 4.6 displays boxplots of IDEs determined using the SASR and SAAR segmenta-

tion techniques for each patient individually, and for all patients combined. The SASR

and SAAR techniques resulted in IDEs with mean±standard deviation of 0.2±2.1 mm

and 0.2±3.3 mm respectively. Results of the F-tests and paired t-tests indicated statisti-

cally significant differences between techniques in terms of variance (p <.001) but not

in terms of mean value (p =.99). The SASR technique identified needle tips with IDEs

within ±3 mm and ±5 mm for 84% and 96% of needles respectively, and provided an

IDE range of [-6.2 mm, 5.9 mm]. The SAAR technique provided IDEs within ±3 mm

and ±5 mm for 57% and 87% of needles respectively, and an IDE range of [-8.1 mm,

7.7 mm].



Chapter 4. 109

tip score =1 tip score =2 tip score =3
live-2D SR3D live-2D SR3D live-2D SR3D

Mean±SD (mm) 0.8±2.5 -0.7±2.3 0.7±2.5 -0.4±1.6 0.8±1.7 -0.1±1.1
Range (mm) [-6.0 5.7] [-7.7 5.4] [-6.1 7.2] [-6.2 5.3] [-2.5 4.3] [-1.9 2.0]
%(#) Needles

with IDE ≤3 mm
70 (40) 84 (48) 78 (49) 95 (60) 93 (13) 100 (14)

%(#) Needles
with IDE ≤5 mm

95 (54) 93 (53) 94 (59) 97 (61) 100 (14) 100 (14)

Table 4.3: Insertion depth errors (IDEs) of needles identified on live-2D and SR3D
images

4.4 Discussion

We have presented a TRUS-based SASR technique for HDR-BT needle segmentation

combining intra-operative live-2D sagittal images and post-insertion SR3D images, and

demonstrated improvements in tip localization accuracy compared to the conventional

SAAR technique. The range of IDEs corresponding to the SASR technique observed

in this study of [-6.2 mm, 5.9 mm] is less than half of the range reported previously of

[-15.6 mm, 13.6 mm] when using static SR3D images alone for needle segmentation

[23], and did not require the exclusion of any needles due to image artifacts on the

final SR3D image, despite the presence of these artifacts obstructing the view of 8.8%

of needles analyzed. These SASR segmentation characteristics were enabled by incor-

porating the live-2D segmentation step in the procedure, providing the tip location for

needles with SR3D-based tip scores of 0 and 1, representing 47.6% of needles. The tip

scores used for stratification were assigned to provide a subjective characterization of

needle appearances for the purposes of this study, recognizing that needle appearances

on SR3D images vary, which we expected to influence tip localization accuracy. The

scores from two trials from two users were combined to create the set of tip scores for

this study, which would not be practical during an intra-operative SASR-guided HDR-

BT procedure; however, the observed frequency, variability, and IDE characteristics

associated with each tip score are intended to provide information to aid clinical deci-
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sion making when relying upon a combination of live-2D and SR3D images to select

needle tip positions in the presence of image artifacts. The stratification of needles

based on appearance by a single user should not add additional time to brachytherapy

workflows that currently incorporate a manual verification of needle appearances on

the final 3D TRUS image as a quality assurance step. Needle tips that appear clearly

within a 3 mm circular cursor may be updated during this existing quality assurance

procedure.

The decision to use the live-2D based tip locations for the 38.8% of needles with a

tip score of 1 was made in this study for multiple reasons. First, the SR3D-based tip

adjustments performed for this group of needles did not have a statistically significant

impact on the measured IDE variance. Second, we found that the 95% prediction

intervals corresponding to inter-operator variability of SR3D-based tip positions for

needles with a tip score of 1 were [-3.8 mm, 2.8 mm] in the z-direction, exceeding our

accuracy target of ±3 mm as recommended by Tiong et al. [11]. Third, the SR3D-

based tip adjustments for needles with a tip score of 1 increased the measured overall

IDE range relative to the live-2D results, from [-6.0 mm, 5.7 mm] to [-7.7 mm, 5.4

mm]. It should be noted that SR3D-based tip adjustments of needles with a tip score

of 1 increased the number of needles with IDEs within ±3 mm from 70.2% to 84.2%,

indicating a benefit in accuracy when using SR3D-based tip positions for the majority

of needles, despite increased errors for some needles. It may be pragmatic to adopt

a workflow where needle insertion depths with SR3D-based uncertainty >3 mm are

not adjusted; however, if some of these needles are chosen to be adjusted, our results

suggest that it is possible, but unlikely to increase error.

A major limitation of this study was the use of 5 mm sampling intervals for AR3D

image reconstruction during the SAAR-guided procedure, which was used as the clin-

ical reference for tip localization accuracy. Updated SAAR-guided workflows based

on commercially available steppers and acquisition software enable the acquisition of
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AR3D images with 1 mm sampling intervals, and enable tracking of superior/inferior

probe motion using encoders, similar to the custom device used for the SASR procedure

in this study. These features may enable SAAR-guided tip localization with decreased

error compared to the results presented in this study. However, even with 1 mm sam-

pling intervals, AR3D spatial resolution in the needle insertion direction is inherently

limited by the elevational resolution of the axial transducer, which has been measured

to be 1.5-4.0 mm depending on distance from the probe [25]. On the other hand, the

superior/inferior spatial resolution of the SR3D image is limited by the in-plane spa-

tial resolution of the sagittal transducer [21], specified as 0.9 mm by the manufacturer

[10]. More importantly, the SASR approach does not require moving the probe in the

superior/inferior direction, limiting the potential for organ motion between live-2D tip

localization and final image acquisition.

As indicated in Figure 4.2, the superior/inferior spatial resolution of the SR3D im-

age is higher than the AR3D image. Conversely, in the axial plane, the spatial resolution

tangential to the TRUS probe is lower in the SR3D image than the AR3D image. In the

SR3D image, the spatial resolution in this direction is limited by the elevational resolu-

tion of the sagittal transducer, estimated to be 1.2 mm at the focal zone (9 MHz central

frequency, 40 mm focal length, 5.5 mm aperture), but wider at locations nearer and

more distant from the probe. In the AR3D image, the spatial resolution in this direction

is limited by the lateral resolution of the axial transducer, specified by the manufac-

turer as 1.5 mm, which will be more uniform with distance from the probe than the

elevational resolution due to dynamic receive focusing in the in-plane direction. The

decrease in axial spatial resolution outside of the focal zone associated with SR3D com-

pared to AR3D imaging may be a limitation for certain brachytherapy workflows, such

as those incorporating end-length measurements for insertion depth calculation and re-

lying upon TRUS only to localize the needle position in the axial plane. The impact

due to the difference in axial resolution outside of the focal zone between SR3D and
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AR3D in such workflows needs to be quantified with further investigations.

As mentioned, 11 needles were excluded from analysis including four needles that

were not segmented intra-operatively using our custom software due to technical issues,

and one needle that was excluded due to the presence of an abnormal SR3D image

artifact. The technical issues leading to the exclusion of four needles were related to

the user interface of our custom software, and have since been resolved. The image

artifact leading to the exclusion of one needle was a reflection artifact from a posterior

needle in the vicinity of the true needle. This reflection artifact was selected as the true

needle by one user, who noted at the time of segmentation that he was uncertain which

image feature was the true needle. During an intra-operative SASR-guided workflow,

live-2D tip identification and SR3D imaging could be repeated to efficiently distinguish

between the artifact and needle, so the needle in question was excluded from our post-

operative analysis.

While this study showed a benefit in accuracy of the SASR technique over the

SAAR technique, commercially available imaging software currently enables alternate

needle tip localization workflows that were not evaluated in this study. Specifically,

Oncentra Brachy (Elekta, Stockholm, SE) enables the incorporation of calibrated nee-

dle end-length measurements into the intra-operative estimation of needle tip positions.

This method effectively replaces the live-2D based needle tip localization technique

with the gold standard insertion depth calculation technique employed in this validation

study. The agreement between end-length measurements and image-based tip positions

for needles with tip score = 3 within 2 mm as found in the present study suggests

that the combination of end-length measurements with SR3D image acquisition may

represent an optimal intra-operative needle tip and trajectory localization technique.

The dosimetric impact of the IDEs observed in this study was not determined;

however, previous studies have indicated that needle segmentation using a single static

SR3D image resulted in uncertainty in prostate V100% within 4% for all patients, and
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within 3% for 11 out of 12 patients in the study [23]. Based on the geometric results of

this study, we expect dosimetric uncertainty attributed to SASR-guided needle segmen-

tation to be smaller, but a more representative dosimetric simulation would incorporate

prostate and organ segmentation uncertainty. Future work will involve assessment of

prostate and organ segmentation uncertainty using SR3D image-guidance, and the im-

pact of all measured uncertainties on final HDR-BT treatment plan dosimetry.

4.5 Conclusions

The SASR technique provided decreased IDE variance than the conventional SAAR

technique, indicating increased needle tip localization precision. The SASR technique

could be performed in the same amount of time as the SAAR technique, adding neg-

ligible time for SR3D image acquisition and eliminating the need for axial-to-sagittal

alignment. The SASR technique also mitigated the effects of shadow artifacts previ-

ously observed when using a single SR3D image for needle segmentation [23], demon-

strated by the fact that every needle could be identified and segmented with IDEs within

[-6.2 mm, 5.9 mm]. The SASR technique provides improved HDR-BT needle segmen-

tation accuracy over the SAAR technique by: 1) eliminating the need to move the probe

in the superior/inferior direction, 2) transferring needle segmentations from live-2D im-

ages to the SR3D image to mitigate the impact of shadow artifacts without the poten-

tially error-prone registration step required by SAAR, and 3) providing higher spatial

resolution than the AR3D image for segmentation editing and quality assurance. In

our center, SR3D images are routinely acquired to aid in needle visualization, but are

used in combination with the commercially available SAAR-guidance tools for treat-

ment planning. Based on the results of this study, our center is currently working to

commission our SASR-guidance system for routine clinical use within our HDR-BT

procedure.
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Chapter 5

Spatial versus temporal resolution of
dynamic contrast enhanced MRI for
prostate cancer localization:
Comparing images from two pulse
sequences with histology

Tumour-targeted HDR-BT efficacy depends on the ability to localize prostate tumours,
and mpMRI incorporating DCE-MRI is currently recommended for this purpose. Con-
sensus guidelines recommend DCE-MRI acquisition times of ≤7 s/image [1], but in-
creased spatial resolution achievable at longer acquisition times may improve cancer
localization performance. The purpose of Chapter 5 is to compare prostate cancer
localization performance of DCE-MRI parameters derived from two pulse sequences
demonstrating the inherent trade-off in MRI spatial and temporal resolution.

5.1 Introduction

Dynamic contrast enhanced (DCE)-MRI is a recommended component of multi-parametric

MR imaging (mpMRI) protocols including T2-weighted (T2w) and diffusion-weighted

(DW) imaging for the detection and localization of prostate cancer [1, 2]. Studies have

demonstrated that incorporating DCE-MRI for prostate cancer localization increases

the area under the receiver operating characteristic curve (AUC) from 0.92 to 0.94 [3],

and reduces the contour expansion necessary to encompass 95% of high-grade cancer

116



Chapter 5. 117

from 9 mm to 6 mm when compared to mpMRI incorporating T2w and DW imaging

alone [4]. Pharmacokinetic models can be applied to DCE-MRI to calculate parameters

such as the transfer constant Ktrans, corresponding to the rate of contrast agent trans-

fer from the vascular space to the extracellular extra-vascular (EES) space [5]. Ktrans

demonstrates statistically significantly higher values in cancer relative to normal pe-

ripheral zone tissue [6] and can be used to classify ≤Gleason 3+4 and ≥Gleason 4+3

cancer with AUC of 0.69 [7]. The rate constant kep, corresponding to Ktrans divided

by the EES fractional volume, is correlated with bio-markers of prostate cancer on his-

tology including mean vessel density [8, 9]. Model-free parameters such as washout

gradient (WG), corresponding to the slope of a straight line fit to the late phase of the

signal enhancement curve, demonstrated AUC of 0.88 for the distinction of ≤Gleason

3+3 from ≥Gleason 3+4 cancer [10].

While DCE-MRI parameter maps demonstrate utility for prostate cancer localiza-

tion and staging, parameter values are sensitive to the time required to acquire each

individual T1-weighted (T1w) image in the DCE-MRI time series [11, 12]. Recent

prostate cancer imaging guidelines from the American College of Radiology recom-

mend optimal DCE-MRI acquisition times of ≤7 s/image, and at most 15 s/image

[1]. Pharmacokinetic modeling for Ktrans and kep calculation requires an estimate of

the arterial contrast agent concentration versus time, or arterial input function (AIF)

[5]. Patient-specific AIF measurements require high temporal sampling and are sus-

ceptible to inflow artifacts in magnitude T1w images [13]. Population-averaged AIFs

have been proposed [14], enabling pharmacokinetic modeling at acquisition times >5

s/image [15], but eliminate patient-specific contrast agent delivery normalization. Al-

ternatively, reference region models (RRM) have been proposed enabling the estimation

of patient-specific AIFs by measuring the contrast agent concentration versus time of

a nearby reference tissue with known pharmacokinetic parameters [16, 17]. Since the

AIF is not measured directly, these RRM techniques show promise for patient-specific
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AIF estimation with acquisition times up to 32.8 s/image [18–20]. While these tech-

niques are promising for overcoming limitations in AIF sampling, evidence suggests

that temporal sampling in the tissue-of-interest is also subject to constraints. Simu-

lations demonstrate that DCE-MRI acquisition times >10 s/image leads to aliasing of

high temporal frequency components, manifesting as noise in resultant Ktrans and kep

values [11]. Alternatively, simulations demonstrated that decreasing image acquisition

time from 14.9 s/image to 1.4 s/image does not lead to statistically significant improve-

ments in prostate cancer localization performance using Ktrans [7], suggesting that 10

s/image may represent an optimum trade-off between temporal resolution and image

quality.

Simulation studies suggesting optimal DCE-MRI acquisition times of 10-15 s/image

do not fully account for benefits of increased spatial resolution achievable with longer

acquisition times. Rosenkrantz et al. provide a summary of pulse sequences used in

17 studies investigating DCE-MRI of prostate cancer, including acquisition times and

voxel dimensions [21]. The smallest in-plane voxel dimensions among studies with

acquisition times <15 s/image and ≥15 s/image were 0.8 × 0.9 mm2 and 0.5 × 0.5

mm2 respectively [22, 23]. Recent developments in DCE-MRI acquisition techniques

using compressed sensing, parallel imaging [21, 24], and 32-coil receiver arrays [25]

have demonstrated acquisition times of 2.3-6.6 s/image with higher signal-to-noise ra-

tios (SNR) than previously achievable, but have not demonstrated the in-plane voxel

dimensions achievable with acquisition times ≥15 s/image [23].

DCE-MRI detects changes in vascular properties associated with cancer presence

[8], and increasing spatial resolution may improve the ability to detect these changes.

Vascular properties may be heterogeneous within prostate tumours [8], and partial vol-

ume effects may decrease the ability to detect small regions of high vascular perme-

ability that contribute contrast between cancer and normal tissue. Spatial resolution

higher than 0.5 mm may improve the detection of high-grade tumour sub-volumes for
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improved detection of clinically-significant disease [26] or targeting in mpMRI-guided

biopsy systems [27]. To detect vascular heterogeneity, Degani et al. proposed the three-

time-point (3TP) method, involving the analysis of only three images acquired minutes

apart [28]. The 3TP method has shown utility in the detection and characterization

of cancer in the prostate and breast using pulse sequences with acquisition times of 90

s/image [29] and 123 s/image [30, 31] respectively. Additionally, WG has demonstrated

stable values at acquisition times up to 30 s/image [15]. Analysis methods suitable for

acquisition times ≥30 s/image may lead to improved prostate cancer localization ac-

curacy through improved spatial resolution, potentially providing higher accuracy than

currently possible with recommended acquisition times ≤15 s/image.

The purpose of this study is to investigate the trade-off in spatial and temporal

resolution of DCE-MRI for prostate cancer localization experimentally by comparing

pharmacokinetic, WG, and 3TP parameter maps derived from DCE-MRI acquired us-

ing two pulse sequences with deformably registered whole-mount histology. The two

pulse sequences demonstrate this trade-off with mean acquisition times of 6.4 s/image

and 92.5 s/image and corresponding voxel dimensions of 0.55 × 0.55 × 3.00 mm3 and

0.27 × 0.27 × 2.80 mm3.

5.2 Materials and Methods

Sixteen prostate cancer patients scheduled to undergo radical prostatectomy underwent

MR imaging at 3T with a Discovery MR750 imaging unit (GE Healthcare, Waukesha,

WI) using a Prostate eCoil 8-channel endorectal receive coil (Medrad, Warrendale, PA)

and 32-channel phased-array abdominal coil (Neocoil, Pewaukee, WI) using one of two

sets of pulse sequence parameters. Patients were divided into cohorts A and B based

on the pulse sequence parameters used, with 5 patients in cohort A and 11 patients

in cohort B. All patients included in analysis had components of Gleason 3+3 and
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≥Gleason 3+4 cancer identified on histology. We are currently analyzing data from

an additional 8 patients in cohort A (for a total of 13), but report the results from the

first 5 patients in this manuscript. The imaging study was approved by the Western

University Health Sciences research ethics board, and written consent was obtained for

each patient upon enrollment.

5.2.1 Image Acquisition

DCE-MRI datasets were acquired using 3D T1w fast-spoiled gradient echo (FSPGR)

pulse sequences with mean acquisition times and voxel dimensions of 6.4 s/image and

0.55 × 0.55 × 3.00 mm3 for cohort A, and 92.5 s/image and 0.27 × 0.27 × 2.80 mm3

for cohort B. Additional pulse sequence parameters are summarized in Table 5.1. For

all patients 20 mL of gadolinium based contrast agent (Magnevist, Bayer Healthcare

Pharmaceuticals, West Haven CT) was injected as a bolus at 4 ml/s using a power-

injector for all patients followed by a 20 ml saline flush. At least one baseline image was

acquired prior to contrast agent injection for each patient. T2-weighted (T2w) images

were acquired for each patient in the same imaging session for prostate segmentation

and registration with whole-mount histology. All T2w images were acquired using a

3D spin echo pulse sequence with 90◦ flip angle, 155.5 ms echo time (TE), 2000 ms

repetition time (TR), 0.27×0.27×1.40 mm3 voxel dimensions, 14.0×14.0 mm2 in-plane

field-of-view (FOV), and 80-148 slices with 0.70 mm spacing.

5.2.2 Image Analysis

Image analysis was performed using 3D Slicer 4.4 [32] and custom software written

in C++ using the Insight Segmentation and Registration Toolkit (ITK) 4.0 (Kitware

Inc. Clifton Park, NY). To account for motion between the T2w and DCE-MRI ac-

quisitions, baseline T1w images were rigidly registered to the T2w images manually.

To account for motion occurring during DCE-MRI acquisition, all T1w images in each
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cohort A cohort B
median (range) time/image (s) 6.4 (6.1-7.0) 92.5 (90.2-93.3)
median (range) # time points 8 (7-11) 40 (40-50)

median (range) TR (ms) 3.31 (3.09-3.48) 5.73 (5.58 - 5.78)
median (range) TE (ms) 1.59 (1.54-1.64) 2.10 (2.10-2.12)

flip angle (◦) 12 15
voxel dimensions (mm3) 0.55 × 0.55 × 3.00 0.27 × 0.27 × 2.80

in-plane field of view (mm2) 9.8 × 14.0 14.0 × 14.0
slice spacing 3.00 1.40

median (range) # slices 26 (24-28) 76 (76-76)

Table 5.1: MRI pulse sequence parameters for 2 cohorts.

dataset were rigidly registered to the baseline T1w image automatically using Mattes

mutual information (MMI) image similarity metric [33] optimized using the limited-

memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm [34]. Each prostate

was manually segmented using the T2w image.

Signal-to-Gadolinium Concentration Conversion

Voxel-wise gadolinium (Gd) concentrations were estimated using the increases in T1w

signal intensity over time relative to the baseline image. First, T1 relaxation rates were

estimated using the non-linear FSPGR signal equation [35], assuming a baseline T1

value of 1597 ms in the prostate [36]. Second, Gd concentrations were calculated

assuming a linear relationship between T1 relaxation rate and concentration, assuming

Gd relaxivity of 3.87 × 10−3 mmol-1 ms-1 [37].

Pharmacokinetic Modeling

The Tofts two-compartment pharmacokinetic model was applied to the Gd concentra-

tion versus time curves to determine maps of Ktrans and kep [5]. These parameter maps

were calculated for each patient twice, using two arterial input function (AIF) models.

First, the population-averaged AIF measured by Parker et al. was applied to deter-

mine Ktrans-AIF and kep-AIF [14]. Second, a patient-specific AIF derived from nearby
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reference tissue using the method proposed by Kovar et al. was applied to determine

Ktrans-RRM and kep-RRM [16]. The RRM method involves the measurement of Gd

concentration versus time for a nearby tissue with characterized pharmacokinetic pa-

rameters. By assuming constant pharmacokinetic parameters for the reference tissue, a

patient-specific AIF can be estimated and applied to the tissue of interest. In this study,

obturator internus muscle (OIM) located lateral to the prostate within the DCE-MRI

field of view were segmented for each patient and used as reference tissue. Gd concen-

trations in the OIM were calculated using the same method as the prostate, assuming a

baseline T1 value of 898 ms [36]. The RRM was applied assuming population-averaged

OIM Ktrans and kep values of 0.022 min-1 and 0.25 min-1 [13]. Non-linear versions of

the population-averaged AIF [5] and RRM [38] were fit to the Gd concentration versus

time curves of each voxel by minimizing the sum of the squared residuals using the

bounded L-BFGS optimization algorithm [34], constraining Ktrans and kep within 0 and

5 min-1.

Washout-Gradient

Washout-gradients (WG) were calculated as the slope of a straight line fit to the late

phase of the Gd versus time curves [10]. The late phase was set as 2 min post-contrast

agent onset to the end of the acquisition for all patients.

Three-Time-Point Method

The three-time-point (3TP) method for low temporal resolution DCE-MRI was applied

as proposed by Degani et al. [28]. Briefly, the 3TP method involves the analysis of three

images, assigning intensities based on the rate of contrast wash-in, and colors based on

the rate of contrast agent wash-out. For all patients in this study, the three imaging

time points were selected as the baseline pre-contrast image, and two images 1.5 min

and 4.5 min post-contrast onset. Comparison of the first and second image was used to
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assign intensity values from 0-255, and comparison of the second and third image was

used to assign a color, where a change >5% was colored blue, a change within 5% and

-15% was assigned green, and a change <-15% was assigned red. Details regarding the

3TP calibration used in this study are provided in Appendix C. Statistical analysis of

the 3TP voxel values required conversion from vector RGB voxel values to scalar voxel

values. This was performed by scaling intensity values from 0-1 for blue voxels, 1-2

for green voxels, and 2-3 for red voxels. We refer to the resultant dimensionless value

between 0 and 3 for each voxel as the 3TP score.

5.2.3 Histological Analysis

Slide Preparation

All patients in this study underwent radical prostatectomy within 6 weeks of MR imag-

ing. Post-prostatectomy specimens were marked with strand-shaped fiducials and im-

aged ex vivo with MRI to support 3D reconstruction and then processed for whole-

mount histology. Histology sections (3-5 per patient) were stained with hematoxylin

and eosin, and digitized on a ScanScope brightfield scanner (Aperio Technologies,

Vista, CA). Contouring and grading of cancer on histology images was performed by

an MD and approved by a genitourinary pathologist. Contoured pathologies included

in the analysis were prostatic intra-epithelial neoplasia (PIN), Gleason 3+3 cancer, and

≥Gleason 3+4 cancer, which included any component of Gleason 4 or 5 cancer.

Slide Registration

Histology was reconstructed into the 3D ex vivo image space using a semi-automated

reconstruction algorithm that minimized the fiducial registration error between fiducials

on histology and the ex vivo images [39]. The reconstructed histology was registered

to the in vivo T2w images using an interactively defined 3D thin-plate-spline transfor-
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mation from ex vivo image coordinates to in vivo image coordinates. For comparison

with in vivo images, transformed histology was projected onto the best-fit oblique plane

through the in vivo images.

Transferring Pathologist Contours to DCE-MRI Parameter Maps

Pathologist contours were transferred from the T2w image space to the baseline T1w

image space using the manual rigid registration between the T1w and T2w images.

To label T1w voxels for analysis, slide contours were re-sampled using the following

scheme. For each voxel intersected by a slide, the fractional cross sectional area of

each T1w voxel contoured as normal tissue, PIN, Gleason 3+3, and ≥Gleason 3+4 was

determined. Voxels containing any fraction of diseased tissue (PIN, Gleason 3+3, or

≥Gleason 3+4) were labelled as the diseased tissue type comprising the largest cross

sectional area. Voxels were labeled as normal tissue if they were intersected by a slide,

contained zero diseased tissue component, were within the T2w prostate contour, and

were at least 2 mm away from any diseased tissue voxels.

cohort tissue median(range) # median(range) % total # total area
(#patients) type voxels/patient voxels/patient voxels (mm2)

normal 4.5 (1.5-6.6)×103 54.6 (19.4-87.6) 2.1×104 6.2×103

A PIN 20.0 (5.2-30.3)×102 24.3 (10.0-40.4) 9.1×103 2.7×103

(5) G3+3 2.1 (0.9-32.7)×102 2.1 (1.7-41.7) 4.0×103 1.2×103

≥G3+4 16.1 (1.3-22.1)×101 3.3 (0.2-21.9) 3.1×103 9.4×102

normal 28.7 (9.0-66.3)×103 85.4 (52.5-95.2) 3.7×105 2.7×104

B PIN 33.5 (7.6-110.6)×102 9.9 (2.6-31.4) 5.1×104 3.7×103

(11) G3+3 7.0 (2.6-49.5)×102 2.3 (0.5-16.3) 1.5×104 1.1×103

≥G3+4 51.3 (5.8-20.6)×101 1.2 (0.2-7.0) 7.3×103 5.5×102

Table 5.2: Histology label map characteristics.
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5.2.4 Experimental Methods

Parameter Mean Values in Diseased and Normal Tissue

The mean value of each parameter across voxels labeled as each tissue type was deter-

mined for each patient. Patient-specific parameter mean values were analyzed to de-

termine whether statistically significant differences existed: 1) between cohorts within

tissue types and 2) between normal and diseased tissue types within each cohort.

A two-way mixed multivariate ANOVA was applied to the patient-specific mean

values, with cohort as the between-subjects factor and tissue type as the within-subjects

factor. For parameters with a significant main effect of cohort on mean values, a one-

way multivariate ANOVA with cohort as the between-subjects factor was applied to

each tissue type individually. For parameters with a significant main effect of tissue

type, a one-way repeated-measures multivariate ANOVA with tissue type as the within-

subjects factor was applied to each cohort individually, and post-hoc paired t-tests with

Bonferroni corrections were used to assess pairwise differences between normal and

diseased tissue types. All statistical analyses were performed using R (version 3.4, the

R Foundation).

Parameter Contrast Between Diseased and Normal Tissue

Patient-specific contrasts between diseased and normal tissue for each tissue type and

parameter were calculated using Eq 5.1,

contrast =
(µdis − µnorm)

µnorm
(5.1)

where µnorm is the mean parameter value in normal tissue, and µdis is the mean value in

the diseased tissue. In the case of WG, mean values straddle zero precluding normal-

ization of contrast by µnorm, so a value of 0.5 µmol s-1 was uniformly subtracted from

µnorm and µdis to make mean WG values purely negative, enabling application of Eq.
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5.1. Patient-specific mean contrasts were analyzed to determine whether statistically

significant differences existed: 1) between cohorts within each diseased tissue type and

2) between parameters within each cohort.

A three-way mixed ANOVA was applied to the patient-specific mean contrasts, with

cohort as a between-subjects factors, and parameter and tissue type as within-subjects

factors. A two-way repeated-measures ANOVAs with parameter and tissue type as

within-subjects factors was applied to the data within each cohort independently. For

cohorts with a statistically significant main effect of parameter, a one-way repeated

measures ANOVA with parameter as the within-subjects factor was performed for each

tissue type individually, and post-hoc paired t-tests with Bonferroni correction to as-

sess pairwise differences between parameters. Post-hoc unpaired t-tests were used to

determine pairwise differences between cohorts for each parameter and tissue type.

Classification of Diseased and Normal Tissue Voxels

Receiver operating characteristic (ROC) curve analysis was used to assess the perfor-

mance of each parameter in voxel-wise classification of diseased and normal tissue.

Voxel values for each tissue type were combined across patients in each cohort. To

normalize for differences in tissue volumes across patients, voxel values were randomly

sampled with replacement so that each patient contributed 7.0×104 voxels from normal

tissue and 1.2 × 104 voxels from each of PIN, Gleason 3+3, and ≥Gleason 3+4 tissue.

These labeled voxel-arrays were then used as input in the ROC analysis to assess the

performance of each parameter in classifying PIN versus normal tissue, Gleason 3+3

cancer versus normal tissue, and ≥Gleason 3+4 cancer versus normal tissue for each

cohort. Area under the curve (AUC) was calculated for each ROC curve. All ROC

analysis was performed in R using the pROC package [40].
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Figure 5.1: Example co-registered histology slides, label maps, and parameter maps
from two patients from each cohort. Parameter maps are displayed over the baseline
T1w image for the prostate plus a 2 mm expansion.
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Figure 5.2: Boxplots of patient-specific mean parameter values in normal and diseased
prostate tissue. Center-lines indicate median values and whiskers indicate the range
across patients. Superscript symbols indicate the presence of a statistically significantly
higher mean value than the same tissue in the alternate cohort (*), or normal tissue
within the same cohort (†).

5.3 Results

The number of voxels and cross-sectional areas of each tissue type in the histology-

derived label maps are summarized in Table 5.2. Figure 5.1 displays example co-

registered histology slides, label maps, and parameter maps from two patients from

each cohort.

5.3.1 Parameter Mean Values in Diseased and Normal Tissue

Boxplots of patient-specific mean parameter values for each tissue type are displayed

in Figures 5.2 and 5.3. Statistically significant main effects of cohort were found for

Ktrans-RRM (p = .029), kep-AIF (p = .001), WG (p = .001), and 3TP score (p = .007).

Statistically significant main effects of tissue type were found for all parameters (p

<.001). Within cohort A, statistically significant effects of tissue type were found for
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kep-RRM (p = .041) and 3TP score (p = .043). Within cohort B, statistically significant

effects of tissue type were found for all parameters (p <.01). Statistically significant

pairwise differences between cohorts for each tissue type are indicated in Figures 5.2

and 5.3 by asterisks (*). Statistically significant pairwise differences between diseased

and normal tissue types within cohorts are indicated in Figures 5.2 and 5.3 by daggers

(†).

Figure 5.3: Boxplots of patient-specific mean parameter values in normal and diseased
prostate tissue. Center-lines indicate median values and whiskers indicate the range
across patients. Superscript symbols indicate the presence of a statistically significantly
higher mean value than the same tissue in the alternate cohort (*), or normal tissue
within the same cohort (†) (Plot 5.3a displays negative WG values to make relative
values between diseased and normal tissue consistent with other parameters.)

5.3.2 Parameter Contrast Between Diseased and Normal Tissue

Boxplots of patient-specific mean contrast for each parameter and tissue type are dis-

played in Figure 5.4, and summarized in Table 5.3. Statistically significant main effects

were found for parameter type (p <.001) and tissue type (p = .003) but not cohort (p

= .30). A statistically significant interaction was found between parameter type and

cohort (p = .024) and a statistically significant pairwise difference between cohorts was

found for kep-AIF in ≥Gleason 3+4 cancer. Statistically significant interactions were

not found between parameter type and tissue type (p = .10) or between cohort and tissue

type (p = .23).
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When analyzing differences between parameters within each cohort, statistically

significant main effects of parameter type were found for both cohort A and B (p <.001).

Within cohort A, kep-RRM provided the highest mean contrast for all tissue types; how-

ever, no statistically significant pair-wise differences were found between parameters.

Within cohort B, kep-AIF provided the highest mean contrast for all tissue types. Sta-

tistically significant pairwise differences between kep-AIF and other parameters were

found for Ktrans-AIF (p = .032) in PIN, and for Ktrans-AIF (p = .042) and WG (p =

.048) in ≥Gleason 3+4 cancer.

Based on the statistically significant main effect of tissue type on contrast, and an

absence of statistically significant interactions between tissue type and cohort or param-

eter type, paired t-tests with Bonferroni correction were performed to assess pairwise

differences in contrast between tissue types across cohorts and parameters. Mean±SD

contrast across cohorts and parameters for PIN, Gleason 3+3, and ≥Gleason 3+4 can-

cer was 0.37±0.33, 0.26±0.41, and 0.60±0.52 respectively, and pairwise differences

between PIN and Gleason 3+3 (p = .003), PIN and ≥Gleason 3+4 (p <.001), and Glea-

son 3+3 and ≥Gleason 3+4 (p <.001) were all statistically significant.

5.3.3 Classification of Diseased and Normal Tissue Voxels

ROC curves for the classification of diseased and normal tissue voxels for each param-

eter and cohort are displayed in Figure 5.5 with corresponding AUC values in Table

5.4. Between tissue types, ≥Gleason 3+4 cancer was associated with the highest AUC

values across cohorts and parameters, followed by PIN. Between parameters, kep-RRM

and kep-AIF provided the highest AUC values for cohort A nd B respectively. Between

cohorts, relative AUC values depended on tissue and parameter type. Cohort B demon-

strated higher classification performance for ≥Gleason 3+4 cancer than cohort A for all

parameters.
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Figure 5.4: Boxplots of patient-specific mean contrast between diseased regions and
normal tissue. Center-lines indicate median values and whiskers represent range across
patients. The superscript asterisk (*) indicates contrast in kep-AIF between ≥Gleason
3+4 cancer and normal tissue was statistically significantly higher in cohort B than
cohort A.

5.4 Discussion

This preliminary hypothesis generating study compared mean values, contrast between

diseased and normal prostate tissue, and voxel-wise classification performance of DCE-

MRI parameter maps in two cohorts of prostate cancer patients imaged using two pulse

sequences. These pulse sequences represent the trade-off between spatial and temporal

resolution inherent to MR imaging with acquisition time and voxel dimensions of 6.4

s/image and 0.55×0.55×3.00 mm3 for cohort A and 92.5 s/image and 0.27×0.27×2.80

mm3 for cohort B.

The comparison of patient-specific mean parameter values between cohorts demon-

strated varying effects depending on the parameter. Statistically significant main effects

of cohort were found for Ktrans-RRM, kep-AIF, WG, and 3TP score. Differences in pa-

rameter values between cohorts could be attributed to multiple factors including differ-

ences in acquisition time per image, spatial resolution, SNR, total number of imaging

timepoints, and pulse-sequence specific uncertainties in parameters such as flip angle.
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parameter map tissue type cohort A cohort B
PIN 0.34 (0.29) 0.15 (0.24)

Ktrans-AIF G3+3 0.01 (0.39) 0.12 (0.33)
≥G+4 0.31 (0.37) 0.41 (0.40)
PIN 0.31 (0.25) 0.35 (0.33)

Ktrans-RRM G3+3 0.00 (0.38) 0.29 (0.48)
≥G3+4 0.28 (0.37) 0.78 (0.58)

PIN 0.43 (0.42) 0.64 (0.47)
kep-AIF G3+3 0.33 (0.32) 0.57 (0.65)

≥G3+4 0.45 (0.35) 1.21 (0.84)
PIN 0.52 (0.48) 0.51 (0.28)

kep-RRM G3+3 0.39 (0.38) 0.37 (0.32)
≥G3+4 0.54 (0.41) 0.82 (0.41)

PIN 0.27 (0.27) 0.23 (0.17)
WG G3+3 0.14 (0.19) 0.18 (0.28)

≥G3+4 0.23 (0.18) 0.44 (0.30)
PIN 0.30 (0.25) 0.34 (0.25)

3TP G3+3 0.21 (0.33) 0.27 (0.38)
≥G3+4 0.38 (0.11) 0.61 (0.37)

Table 5.3: Mean (standard deviation) contrast between diseased and normal prostate
tissue.

These factors are expanded upon as follows.

Ktrans-RRM was found to have statistically significant differences between cohorts

A and B for all tissue types, with median values higher in cohort B than cohort A.

This was partially attributed to differences in Gd concentrations measured in the OIM

between cohorts A and B, which lay on the lateral edges of the T1w image field of

view. OIM Gd concentrations were found to be systematically higher in cohort A with

mean±SD plateau values of 0.20±0.06 mMol versus 0.14±0.03 mMol in cohort B, po-

tentially attributed to flip angle uncertainties [41] or biases in signal intensities due to

differing SNR between pulse sequences [42]. Conversely, kep-AIF has demonstrated

insensitivity to Gd concentration re-scaling [43], so differences between cohorts A and

B may be attributed to differences in acquisition time per image. Model-free param-

eters WG and 3TP scores may have been impacted by multiple factors including Gd

concentration uncertainty, acquisition times, and total number of imaging time points.
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Across parameters, kep-RRM demonstrated the smallest differences between cohorts

for all tissue types.

Figure 5.5: ROC curves corresponding to the classification of diseased and normal
tissue voxels using parameter maps across patients in cohorts A and B.

parameter PIN Gleason 3+3 ≥Gleason 3+4
map cohort A cohort B cohort A cohort B cohort A cohort B
Ktrans-AIF 0.64 0.58 0.50 0.55 0.64 0.68
Ktrans-RRM 0.63 0.62 0.52 0.57 0.61 0.70
kep-AIF 0.66 0.69 0.63 0.63 0.70 0.79
kep-RRM 0.67 0.68 0.64 0.62 0.71 0.77
WG 0.65 0.61 0.60 0.58 0.64 0.71
3TP 0.61 0.61 0.51 0.58 0.63 0.71

Table 5.4: AUC values for voxel-wise classification of diseased and normal tissue.

The comparison of patient specific mean parameter values between diseased and

normal tissue demonstrated varying effects depending on the parameter, cohort, and

tissue type. Statistically significant effects of tissue type were found in both cohorts

for kep-RRM, but were only found in cohort B for the other parameters. In cohort

A, statistically-significant pairwise differences in kep-RRM were only found between
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≥Gleason 3+4 cancer and normal tissue, whereas in cohort B pairwise differences were

found between PIN, Gleason 3+3, and ≥Gleason 3+4 cancer. This difference in sta-

tistical significance between cohorts may be partially attributable to differing numbers

of patients in each cohort; however, mean values between diseased and normal tissue

tended to be larger in cohort B than cohort A. Vascular changes have been shown to

increase from PIN, to low-grade cancer, to high-grade cancer [9].

The comparison of patient-specific contrasts between cohorts also demonstrated

varying effects depending on the parameter and tissue type. Statistically significant

pairwise differences between cohorts were only found in ≥Gleason 3+4 cancer for kep-

AIF, with cohort B providing higher mean contrast. Across parameters, kep-RRM and

kep-AIF provided the highest mean contrast for all tissue types within cohort A and B,

respectively. Within both cohort A and B, there were no statistically significant pair-

wise differences in mean contrast between kep-AIF and kep-RRM for any tissue type,

suggesting that the small differences observed within cohorts between kep calculation

methods may be due to random variations. Interestingly, Ktrans tended to provide sig-

nificantly lower contrast between cancer and normal tissue than kep within both cohorts

when calculated using either a population averaged AIF or RRM. Ktrans has demon-

strated high sensitivity to Gd rescaling [43], which may be a significant source of error

in the analysis methods employed in this study [41]; however, our calculation of patient-

specific contrast involved normalization with normal tissue to account for inter-patient

variation in absolute parameter values. van Niekerk et al. demonstrated that a statisti-

cally significant correlation with microvascular parameters on whole-mount histology

did not exist for Ktrans, but did exist for kep [8]. The results of the present study also

suggest that kep may be a superior bio-marker for prostate cancer compared to Ktrans.

The comparison of voxel-wise classification performance followed similar trends to

the patient-specific contrast between diseased and normal tissue. Within each parameter

and tissue type, cohort B provided a higher AUC value than cohort A, with kep-AIF
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providing the highest AUC values within cohort B for each tissue type. Within cohort

A, kep-AIF and kep-RRM provided identical AUC values for all tissue types, which were

higher than all other parameters.

The results indicating that pharmacokinetic parameters derived from DCE-MRI

with acquisition times of 92.5 s/image provide superior contrast between cancer and

normal tissue contradict the results of simulation studies recommending acquisition

times <10 s/image [11]. It is likely that the methods employed in previous simulation

studies did not fully account for the potential benefits in prostate cancer localization

performance through improved spatial resolution, which can only be fully accounted

for by acquiring DCE-MRI with longer acquisition times per image. The benefits in

performance observed in cohort B may be attributed to decreases in partial volume ef-

fects, leading to improved detection of small high-grade cancer components or regions

of high vascular permeability [30]. Improved spatial resolution, SNR, and a larger

imaging field of view may also have improved the registration accuracy of the motion

compensation technique employed. The median (range) of patient-specific maximum

translational motion observed in cohort A and B during the DCE-MRI acquisition was

0.7 (0.5-2.4) mm and 1.0 (0.2-3.9) mm respectively, and incomplete correction of this

motion may introduce artifacts in Gd concentration versus time curves [44] leading to

decreased contrast between cancer and normal tissue. A simulation study involving

spatial down-sampling of the T1w images in cohort B may provide additional evidence

that spatial resolution is the reason for the improvement in cancer localization observed

in cohort B in this study.

The results of this study indicated increased contrast and voxel-wise classification

performance for both ≥Gleason 3+4 cancer and PIN compared to Gleason 3+3 cancer.

While previous studies have indicated that DCE-MRI parameters correlate with cancer

aggressiveness [7], the result indicating that DCE-MRI parameters associated with PIN

are increased compared to Gleason 3+3 cancer is unexpected. This increase associated
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with PIN was found to be consistent across cohorts and parameter maps. We verified

that the PIN and Gleason 3+3 labels were not reversed in the software by viewing

the DCE-MRI label maps overlaid the original histology contours, then importing the

label map into the statistical analysis software as a parameter map to verify that the

labels were preseved through all steps of the analysis. PIN is a precursor to invasive

prostate adenocarcinoma [45], and has been associated with an increase in vascular

growth factors compared to normal tissue, but decreased relative to adenocarcinoma

[9]. Increased contrast agent wash-in and wash-out rates in PIN, as observed in this

study, may contribute to the low-specificity to cancer associated with DCE-MRI, as

many studies assessing cancer localization performance do not indicate whether PIN

is identified or included as normal tissue. This result should be validated in a larger

patient cohort.

This study was subject to several limitations. The number of patients included in

each cohort was limited, and patient-specific variations may have contributed to the

presence or absence of differences observed between pulse sequences, which are based

entirely on between-subjects comparisons. Table 5.2 shows that patients in cohort A

tended to have larger tumour volumes than patients in cohort B, which may have influ-

enced results, although evidence suggests that the larger tumour volumes in cohort A

would lead to improved cancer localization performance [46], which was not observed

in this study. Furthermore, there were an unequal number of patients analyzed from

each cohort, with 5 and 11 patients in cohort A and B respectively. The difference

in cohort sizes likely contributed to the differences in statistical significance observed

between cohorts in the within-subjects tests, such as the pairwise differences between

parameter values in diseased and normal tissue. Our group is currently working to

co-register whole-mount histology from an additional 8 patients in cohort A, and will

report updated results once those patients have been included in the analysis. A major

limitation of the pharmacokinetic modeling employed in this study was the calculation
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of Gd concentrations based on relative T1w signal enhancement without quantitative

voxel-wise or patient specific estimation of baseline T1 values, which were not mea-

sured for any patients in this study. Gd concentrations and resultant pharmacokinetic

parameter values are sensitive to this source of error [41], which likely contributed to

the differences observed in parameter mean values between cohorts.

The estimated 2 mm registration uncertainty between the whole-mount histology

slides and in vivo MR images may have contributed to the poor contrast and voxel-

wise classification performance measured for Gleason 3+3 cancer in the present study,

particularly for small cancer components as indicated in Table 5.2. An alternative val-

idation approach would be the comparison of DCE-MRI parameter maps with tissue

cores obtained through MR-guided biopsies. However, a previous study estimated that

the error in positioning biopsy cores using MR-guided approaches to be 3.5 mm [27],

so would be unlikely to decrease the registration errors associated with the validation

approach employed in this study.

5.5 Conclusions

The results of this hypothesis generating study suggest that increasing acquisition time

per image to improve DCE-MRI spatial resolution may lead to an improvement in phar-

macokinetic parameter contrast between high-grade cancer and normal prostate tissue,

leading to an improvement in voxel-wise cancer classification performance. The pa-

rameter kep demonstrated advantages over Ktrans for the pulse sequences investigated in

this study. kep-RRM and kep-AIF provided the highest contrast between ≥Gleason 3+4

cancer and normal tissue for pulse sequences with acquisition times of 92.5 s/image

and 6.4 s/image respectively, and kep-RRM demonstrated the smallest differences in

patient-specific mean values between pulse sequences. Parameters derived from both

pulse sequences demonstrated increased contrast and voxel-wise classification perfor-
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mance of ≥Gleason 3+4 cancer compared to Gleason 3+3 cancer. mpMRI and post-

prostatectomy specimens have been acquired from additional patients in cohort A and

B, and we are currently working to analyze the data to include in the present study.
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Chapter 6

Conclusions, Limitations, and Future
Work

Tumour-targeted HDR-BT may lead to improvements in therapeutic ratio for prostate
cancer, but HDR-BT treatment plans are critically sensitive to uncertainty in needle
tip positions relative to anatomy. Imaging and treatment planning must be performed
efficiently while the patient is anesthetized. The efficacy of tumour-targeted treatments
also depends on the ability to localize prostate tumours using mpMRI incorporating
DCE-MRI. The purpose of Chapter 6 is to summarize the contributions, conclusions,
and limitations of Chapters 2-5 in improving and evaluating TRUS and DCE-MRI for
tumour-targeted HDR-BT, and to discuss areas for future work.

6.1 Contributions and Conclusions

Chapter 2: SR3D TRUS for Needle Tip Localization

Conventional sagitally-assisted axially-reconstructed (SAAR)-guided HDR-BT uses

AR3D images for organ segmentation and live-2D sagittal images for needle tip seg-

mentation [1]. SAAR-guidance requires movement of the probe in the superior/inferior

direction between imaging organs and needle tips, introducing a source of uncertainty

in the final set of segmentations used for treatment planning. Chapter 2 addressed this

source of uncertainty by implementing SR3D TRUS for needle tip localization, which

eliminates the need to move the probe in the superior/inferior direction for 3D im-

age reconstruction. A comparison of SAAR and SR3D-based needle tip positions to

143
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needle end-length measurements in 12 patients demonstrated statistically significantly

smaller insertion depth errors (IDEs) associated with SR3D than SAAR-guidance, with

mean±SD of -0.6±3.2 mm and 2.8±3.2 mm, respectively (p <.001). Dosimetric sim-

ulations demonstrated that SR3D led to decreased error in the volume of the prostate

recieving the prescribed dose than SAAR, with mean±SD decreases of -1.2±1.3% and

-6.5±6.7%, respectively (p <.05). SR3D-guided HDR-BT eliminates a source of sys-

tematic uncertainty from the conventional approach, providing decreased IDEs for the

majority of needles and leading to a significant decrease in dosimetric uncertainty.

However, using a single SR3D image with all needles inserted for tip localization was

found to be limited by shadow artifacts. These artifacts were found to obstruct the view

of a portion of needle tips in SR3D-images either partially (12% of needles) or fully

(10% of needles). This finding led to work using live-2D sagittal TRUS in Chapter 4.

Chapter 3: Automatic Segmentation of Multiple Needles using SR3D

TRUS

Automatic needle segmentation has the potential to decrease the time required for intra-

operative HDR-BT treatment planning, but existing automatic needle segmentation al-

gorithms have not been designed to handle 3D TRUS images containing multiple nee-

dles. Chapter 3 presented and characterized an automatic needle segmentation algo-

rithm designed for HDR-BT, specifically capable of simultaneously segmenting multi-

ple needles in an HDR-BT implant using a single SR3D image with ∼5 mm inter-needle

spacing. This algorithm was used to automatically segment needles in the SR3D im-

ages from 12 patients acquired in Chapter 2, demonstrating mean execution times of

11.0 s per patient, or 0.7 s per needle. The algorithm identified 82% and 85% of needle

tips with 3D errors ≤3 mm and ≤5 mm, respectively, and 83% of needle trajectories

with angular errors ≤3◦. The largest tip error component was in the needle insertion

direction. The automatic segmentation results should be considered in the context of
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the results of Chapter 2, which demonstrated that HDR-BT needles may be manu-

ally segmented using SR3D images with IDEs ≤3 mm and ≤5 mm for 83% and 92%

of needles, respectively. This algorithm shows promise to reduce the time required

for HDR-BT treatment planning by initializing needle segmentations, which may then

be verified manually. Similar to manual needle segmentation, shadow artifacts in the

SR3D images were found to limit geometric performance of the algorithm, leading to

the work in Chapter 4.

Chapter 4: Improved Needle Tip Localization using Live-2D and

SR3D TRUS

The results of Chapters 2 and 3 provided evidence that shadow artifacts in SR3D im-

ages limit both manual and automatic needle tip localization accuracy, limiting the

potential for clinical implementation of SR3D-guided brachytherapy using the mecha-

tronic device investigated. Chapter 4 addressed this limitation by proposing a needle

tip localization method that augmented the SR3D images with live-2D sagittal images

acquired at the time of needle insertion. The live-2D images did not add time to the

HDR-BT procedure, and could be related to a final SR3D image geometrically using the

mechatronic device encoders. The proposed sagittally-assisted sagittally-reconstructed

(SASR) technique enabled the localization of all needles from another cohort of 10 pa-

tients with IDEs within ±3 mm for 84% of needles and IDE range of [-6.2 mm, 5.9

mm], compared to 57% and [-8.1 mm, 7.7 mm] when using the clinical SAAR tech-

nique. Segmentation results from two users indicated that inter-operator variability in

SASR-based tip positions was largest in the insertion direction, with 95% prediction

intervals within [-0.6 mm, 1.5 mm]. The proposed SASR technique overcomes a major

limitations in SR3D-guided needle segmentation by incorporating mechanically regis-

tered live-2D sagittal images, mitigating the impact of image artifacts. The ability to

segment all needle tips in the cohort of 10 patients indicates that the SASR technique
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is sufficiently robust for clinical implementation. At out center we are currently transi-

tioning from SAAR-guidance to SASR-guidance for routine whole-gland HDR-BT.

Chapter 5: Spatial versus Temporal Resolution of DCE-MRI

Consensus guidelines recommend DCE-MRI for prostate cancer localization with ac-

quisition times ≤7 s/image [2]. Conversely, recent simulation studies indicated that

prostate cancer localization performance is robust up to acquisition times of at least 15

s/image [3], suggesting that it may be possible to improve prostate cancer boundary

localization performance by increasing DCE-MRI spatial resolution at the expense of

temporal resolution. Chapter 5 investigated this trade-off by comparing DCE-MRI ac-

quired using one of two pulse sequences with mean acquisition times of 6.4 s/image

(5 patients) and 92.5 s/image (11 patients) to deformably registered whole-mount his-

tology. Data from 16 patients indicated that the pharmacokinetic rate constant (kep)

derived from the 92.5 s/image sequence provided the highest contrast between high-

grade cancer (≥Gleason 3+4) and normal tissue, with mean±SD contrast of 1.21±0.84

versus 0.45±0.35 for the 6.4 s/image sequence (p = .023) when calculated using a pop-

ulation averaged arterial input function (AIF). kep from the 92.5 s/image sequence also

provided area under the ROC curve of 0.79 for voxel-wise classification of high-grade

cancer versus 0.70 for the 6.4 s/image sequence. These preliminary results suggest

parameters derived from DCE-MRI acquired at 92.5 s/image with 0.27 × 0.27 mm2

in-plane voxel dimensions provide improved contrast between high-grade cancer and

normal prostate tissue compared to DCE-MRI acquired at 6.4 s/image with 0.55× 0.55

mm2 in-plane voxel dimensions, leading to an improvement in voxel-wise cancer clas-

sification performance.
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6.2 Limitations

6.2.1 Study Specific Limitations

Chapter 2: SR3D TRUS for Needle Tip Localization

HDR-BT needle tip localization accuracy relative to anatomy is critical for treatment

planning accuracy. In Chapter 2, this accuracy was estimated in the needle insertion

direction (superior/inferior) by comparing image-based tip positions to calibrated nee-

dle end-length measurements. The interpretation of the resultant insertion depth errors

assumes that the prostate and surrounding anatomy remains stationary relative to the

insertion template between imaging and treatment delivery. We reduced the possibil-

ity of such motion by locking all needles into place following insertion and prior to

imaging, and minimizing probe movement following imaging and prior to treatment

delivery. However, we did not directly measure tip locations relative to anatomy, and

any anatomical motion (such as prostate swelling) could introduce additional error in

the results [4]. Furthermore, the sampling intervals used for AR3D acquisition in this

study were limited to 5 mm by the commercial system available at our center. Other

commercially available systems enable AR3D sampling intervals of 1 mm, but increas-

ing AR3D spatial resolution through increased sampling is limited by the elevational

resolution of the axial transducer, measured to be 1.5 - 4.0 mm depending on distance

from the probe [5].

Chapter 3: Automatic Segmentation of Multiple Needles Using SR3D TRUS

The primary limitation of the algorithm proposed in this study is that all HDR-BT nee-

dles were modeled as straight lines. Needles may bend when inserted in tissue [6],

so an updated algorithm modeling curved trajectories may be required for widespread

implementation. Furthermore, the algorithm currently requires manual needle labeling

for treatment planning, involving the selection of needle label points on a live-2D axial
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view. The algorithm also led to segmentation failures in 7.3% of needles, and 3D tip

errors >9 mm in 2.1% of unobstructed needles, indicating the need for manual quality

assurance. The need for manual labeling and quality assurance indicates that this al-

gorithm can enhance segmentation efficiency, but is not yet ready as a fully automatic

solution for HDR-BT needle segmentation.

Chapter 4: Improved Needle Tip Localization Using Live-2D and SR3D TRUS

The limitations of this study are due to the limitations identified in Chapter 2; namely,

indirect measurement of needle tip locations relative to anatomy and the limited 5 mm

sampling intervals of the AR3D TRUS images used for comparison. Furthermore, we

did not directly assess the dosimetric impact of the needle IDEs measured using this

updated needle tip localization technique. Based on the dosimetric simulations per-

formed in Chapter 2, we expect the uncertainty in prostate V100% associated with

needle tip localization in this study to be <4%. It is possible that prostate and urethra

segmentation may now contain greater dosimetric uncertainties than those associated

with the needle tip localization errors measured in this study [7], and a more represen-

tative dosimetric simulation of the SASR workflow for whole-gland treatment would

incorporate a model of uncertainty in organ segmentations.

Chapter 5: Spatial vs. Temporal Resolution of DCE-MRI

The primary limitation of this study is the number of patients included in the analysis

(n=16), particularly in cohort A (n=5). The comparison of pulse sequences in this study

depended entirely on between-subjects comparisons, and the heterogeneity of prostate

cancer may have impacted the differences between pulse sequences observed. As men-

tioned, we are in the process of analyzing an additional 8 patients to be included in

cohort A, and will report updated results once those patients have been included in the

analysis. An additional limitation of this study was the inability to identify the spe-
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cific pulse sequence characteristic leading to improved high-grade cancer localization

observed in cohort B. Potential characteristics include increased spatial resolution, or

increased SNR associated with the 92.5 s/image pulse sequence compared to the 6.4

s/image pulse sequence. We intend to perform a simulation study in which the images

from cohort B are spatially down-sampled to directly investigate the hypothesis that im-

proved spatial resolution is the reason for the improved high-grade cancer localization

observed in cohort B.

6.2.2 General Limitations

A general limitation of Chapters 2-4 was the lack of comparison between the SR3D

images produced using our custom mechatronic device [8] and the SR3D images pro-

duced by commercially available systems. For instance, Gomez-Iturriaga et al. used

Elekta’s SR3D TRUS imaging system for tumour targeted HDR-BT [9] with identical

0.5◦ angular sampling intervals as those used for SR3D acquisition and reconstruction

in Chapters 2-5. While the property of sub-millimeter spatial resolution in the needle

insertion direction should be consistent across SR3D reconstruction methods, it would

be ideal to compare performance and workflows directly for direct application of the

results in these studies to commercial systems currently used at other centers.

Finally, the tumour-targeted HDR-BT workflow motivating the work in this thesis

requires image registration between the mpMRI and SR3D TRUS for treatment plan-

ning. Deformable image registration between MRI and SR3D TRUS has been inves-

tigated in the past, demonstrating 2 mm target registration error when using surface-

based techniques developed by our group [10], but this has not been demonstrated in

SR3D TRUS images containing ∼15-20 needles that would be used for HDR-BT treat-

ment planning. This component of error in the treatment planning workflow was not

addressed in this thesis, and should be characterized and included in the overall uncer-

tainty model when developing planning target volume (PTV) expansions (i.e. contour
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expansions intended to encompass treatment delivery uncertainty) for tumour-targeted

HDR-BT.

6.3 Future Work

Planning Target Volume Expansions for Tumour-Targeted HDR-BT

Chapter 4 characterized a needle tip localization technique that can be implemented for

clinical whole-gland HDR-BT treatment planning. As previously mentioned, tumour-

targeted HDR-BT treatment plans are more sensitive to needle tip localization errors

than whole-gland treatment plans [11]. The distributions of needle insertion depth er-

rors and inter-operator variability in needle tip positions measured in Chapter 4 may be

used as a model of uncertainty in a tumour-targeted HDR-BT treatment planning study.

By incorporating models of uncertainty in tumour localization using mpMRI (such as

the contouring uncertainty measured by Gibson et al. [12]) and a model of uncertainty

in deformable mpMRI-to-SR3D registration [10], it will be possible to conduct a thor-

ough evaluation of impact of the uncertainty components on tumour-targeted HDR-BT

dosimetry to derive PTV expansions that provide a known probability of DIL coverage

(e.g. 95%).

Specifically, tumour-targeted treatment plans could be simulated, and DIL contours

and radiation source positions could be randomly perturbed according to the error dis-

tributions measured for each component of the treatment planning process, followed by

re-calculation of dosimetric parameters. PTV expansions of increasing size could be

added to the DIL clinical target volume (CTV) until the volume of the CTV receiving

the prescription dose was at least 95% for 95% of perturbations (for example). Dose

to critical structures such as the urethra and rectum could be assessed through these

simulations to determine dose-limiting factors to tumour-targeted treatments, such as

DIL volume or DIL location within the prostate.
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Implementing New Imaging Tools in a Clinical Trial

Tumour-targeted TRUS-guided HDR-BT has been investigated in multiple clinical tri-

als [9, 13]; however, these trials did not include PTV expansions to account for uncer-

tainties in needle tip localization or prostate tumour localization. The technical devel-

opments in this thesis may be directly applied to similar clinical trials with: 1) reduced

needle tip localization uncertainty, 2) reduced time required for intra-operative nee-

dle segmentation, and 3) improved tumour localization performance through increased

DCE-MRI spatial resolution. By increasing imaging accuracy and deriving PTV ex-

pansions from the uncertainties associated with these imaging tools, it will be possible

to improve the probability of delivering the intended prescription dose to the DIL. Since

bDFS following whole-gland HDR-BT is impacted by target coverage [14], improved

probability of DIL coverage with tumour-targeted HDR-BT may lead to improvements

in bDFS associated with these treatments. To this end, we are in the process of complet-

ing a Health Sciences Research Ethics Board submission for a clinical trial investigating

tumour-targeted HDR-BT using the imaging tools described in this thesis.

Radiobiology of High Single Fraction Doses

With the potential for single fraction doses >19 Gy delivered to DIL with tumour-

targeted HDR-BT, the radiobiological mechanisms leading to cell death may be dif-

ferent than the clonogenic or “replicative” cell death associated with the DNA damage

caused by conventional fractionated radiotherapy [15]. Radiotherapy initiates a cascade

of cellular processes, and combinations of radiotherapy and drugs designed to enhance

immune response (immune checkpoint inhibitors) have demonstrated synergistic ef-

fects, suggesting that radiotherapy may be used to modulate an immune response to

cancer [15]. However, these experiments have also demonstrated that the synergistic

effects of combination treatments are sensitive to the dose and scheduling of the ra-

diotherapy and immune therapies [16]. Precise control of prostate tumour doses using
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HDR-BT may facilitate clinical trials investigating these treatments in humans. Combi-

nation therapies leading to an immune response to cancer are promising for the creation

of curative treatments for high-risk prostate cancer due to the potential for “out-of-field”

effects, where cancer cells both inside and outside of the treatment field are controlled

[15].

A unique feature of the mechatronic device investigated in this thesis is the abil-

ity to perform oblique needle insertions using interactive tracked needle guides [8].

This feature may enable accurate trans-perineal biopsy either during or following dose-

escalated tumour-targeted HDR-BT, with biopsy cores oriented to maximize tumour

sampling. Histological analysis of biopsy samples pre and post-dose-escalated treat-

ment using stains for DNA double strand breaks [17] combined with measurements of

circulating T-cells [18] may provide some insight into radiobiological processes taking

place at very high doses in prostate cancer patients.
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Appendix to Chapter 2

A.1 Intra-Operative Image Acquisition and SAAR Work-

flow

Under general anesthesia, patients were placed in the dorsal lithotomy position and a

Foley catheter was inserted into the bladder. The mechatronic device was positioned

with the HDR-BT template against the perineum. As mentioned in the methods section,

contiguous axial image sets and SR3D images were acquired before and after needle

insertion. Superior/inferior encoder values were recorded for all axial and SR3D image

acquisitions. Initial prostate, urethra, rectum, and bladder contours were created with

Vitesse on the pre-insertion 2D axial images as indicated in Figure 2.1. To deliver

the 15 Gy brachytherapy dose, a median (range) of 15 (14-20) FlexiGuide HDR-BT

needles was implanted. Needles were positioned to cover the prostate periphery and

interior based on the mid-gland axial cross-section. Rigid steel pathfinder needles were

inserted prior to each FlexiGuide needle to create paths for the needles to follow. Once

all needles were inserted, the TRUS view was switched from axial to sagittal view and

the organ segmentations previously created with Vitesse on the axial image set were

manually aligned in the superior/inferior direction with the live mid-gland sagittal view.

This enabled the alignment of the needle and organ segmentations as indicated in Figure

155
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2.1. Working anteriorly-to-posteriorly, needles were advanced to the desired insertion

depth under sagittal 2D guidance and the needle tips were identified and segmented on

the live ultrasound view using Vitesse. One of three operators segmented needle tips

on Vitesse for each patient.

Once all needles were inserted to the required depth, they were locked in place and

the stylets were removed before a final set of contiguous 2D axial images was acquired

at 5 mm intervals. These images were acquired starting at a point that matched as

closely as possible the anatomical positions of the pre-insertion axial image set. A

second SR3D image was acquired immediately following the axial image set. Based

on the final axial image set, needle positions were verified and any apparent curved

trajectories were accounted for using the Vitesse software tools. If necessary, prostate

and organ contours were adjusted to account for post-implant deformation and organ

motion. The organ contours, needle segmentations, and 2D images were then imported

into BrachyVision for treatment planning. The completed plan was delivered with the

patient under general anesthesia with the transrectal probe in situ.

A.2 String Phantom Calibration

The mechatronic device incorporates encoders that track both the probe tilt angle for

SR3D image reconstruction with nominal 0.08◦ angular resolution, and the longitudinal

(superior/inferior) probe position within ±0.1 mm. Since the template holder rigidly af-

fixes the insertion template to the mechatronic device and the device remains stationary

during the HDR-BT procedure, the longitudinal encoder position can be used to de-

termine the distance between each image and the template face (dencoder) allowing the

use of needle free-end lengths (dend) to verify insertion depths as indicated in Figure

2.2. The relationship between the longitudinal encoder position and the template face

depends on the probe geometry, transducer position, and template thickness. The tem-



Chapter A. 157

plate thickness was accounted for by physically measuring the template. To account

for the probe geometry and transducer position, a phantom was constructed that rigidly

attached to the mechatronic device template mounting point shown in Figure A.1a. The

phantom frame was constructed out of thermoplastic and polycarbonate for structural

rigidity and incorporated 0.1 mm diameter strings at specified positions relative to the

mounting point. The frame and string mounting holes were machined to 0.05 mm toler-

ances. Strings were positioned in the transverse direction to estimate superior/inferior

image position using the sagittal transducer. Strings were also positioned to create two

z-frames along sagittal planes to enable the estimation of superior/inferior axial crystal

position, as highlighted in Figure A.1b.

The phantom was scanned in a bath of water and 7% glycerol per weight for a

speed of sound matching soft tissue [1] using this study's BK ProFocus ultrasound

machine and 8848 bi-plane transducer scanning at 9 MHz and 6.3 cm field of view.

An SR3D image was acquired at 0.5◦ angular intervals and the raw superior/inferior

encoder position was recorded. Next, a set of contiguous 2D axial images were acquired

in 5 mm steps and captured using Vitesse segmentation software, again recording the

raw encoder value of each image. All phantom images were imported into 3D Slicer

4.4 [2] for analysis. Example phantom images are provided in Figure A.2. The distance

between the transverse strings in the SR3D image to the inferior edge of the image were

measured. Based on the raw encoder value and known position of the strings relative to

the template holder, a superior/inferior calibration value was calculated for the sagittal

crystal. Next, the 2D axial image set was rigidly registered to the SR3D image based

on the z-frames present in each image. The z-frame registration technique allows the

estimation of superior/inferior image position using axial views based on the relative

distances of the strings from one another within each z-frame. Using the resultant

rigid registration transformation matrix and raw encoder positions of the images, the

distance between the superior edge of a 2D sagittal image and the center of an axial
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Figure A.1: a) Photo of the string phantom used for encoder calibration and measure-
ment of the distance between the axial and sagittal transducers of the BK 8848 bi-plane
TRUS probe. b) 3D rendering of the string phantom with the z-frames and transverse
wire positions highlighted in cyan and magenta. c) Schematic of the transrectal probe
geometry showing the crystal positions and the resulting 2D image for both sagittal and
axial transducers. Note that the crystal thickness, t, is in general not the same as the ax-
ial slice thickness, z. The transducer-offset ∆, which is required for image registration,
was measured to be 4.6 mm using the string phantom.
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image (∆) was measured to be 4.6 mm, as shown in Figure A.1. By combining the

measured template thickness, sagittal crystal transducer calibration value, and distance

between sagittally- and axially-acquired images, the raw encoder values could be used

to calculate image position relative to the template face (dencoder).

Figure A.2: Example co-registered axial and sagittal views of the string phantom dis-
playing the z-frames and transverse wires used for superior/inferior encoder calibration.
The top row corresponds to an image-set acquired using the axial crystal and the bottom
row corresponds to a SR3D image.

The estimated upper bound of uncertainty in the encoder calibration was on the

order of ±0.5 mm based on the width of the phantom strings as appearing in TRUS

images, and the encoder indicating superior/inferior image position had a spatial reso-

lution of 0.1 mm. An upper bound on uncertainty in the free-end length measurements

acquired intra-operatively was also on the order of ±0.5 mm due to limitations in the

ability to physically measure FlexiGuide needle lengths using a graduated ruler. Nee-
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dle obliquity was also not accounted for in the hidden space between the template face

and SR3D image (dencoder); however, given that needle deflection was not expected to

be more than 5◦ and this intervening space has a typical length of 100 mm, an upper

bound for this error was estimated at ±0.4 mm.

Figure A.3: Examples of unobstructed, partially obstructed, and obstructed needle tips
provided as a supplementary file to the manuscript.
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Appendix to Chapter 3

B.1 Manual Segmentation Analysis

Figure B.1a shows a histogram of needle trajectory angles relative to the z-axis for all

185 plastic needles that could be manually segmented, demonstrating that the largest

angle was <10◦. The elevational angle (θ) search space of randomized 3DHT was

then limited to the range [0◦, 10◦] as described in section 3.2.2. Figure B.1b shows

a histogram of the shortest distance in the axial plane to the nearest adjacent needle

within the SR3D image for the manually segmented needles. Three pairs of needles

had distances between one another <3mm (2.9 mm, 2.7 mm, and 2.1 mm). Five out

of six of these needles were considered partially obstructed or obstructed by shadow

artifacts at the time of manual segmentation, and the diameter of the plastic needles

used in this study was 2 mm. A minimum separation distance of 3 mm in the axial

plane was enforced between feature points as described in section 3.2.2. Figure B.2a

shows a boxplot of the length of each needle within the SR3D image, referred to as

insertion depths, for each individual patient and all patients combined. Figure B.2b

then shows a boxplot of insertion depths after subtracting the median insertion depth

for each patient. Limits of -12 mm and 10 mm are indicated, which encompass 98%

of all needles. These limits were used to bound the insertion depth search space in the

second step of the tip localization algorithm, as described in section 3.2.2.
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Figure B.1: a) Histogram of needle trajectory angles relative to the superior/inferior (z)-
axis and b) histogram of the shortest distance in the axial plane to the nearest adjacent
needle within the SR3D image for 185 manually segmented needles.

B.2 Signal Intensity Profile Analysis for Tip Localiza-

tion

B.2.1 Oriented Sub-Volume Cropping

Intensity profiles were obtained by cropping regions of interest surrounding each tra-

jectory, then filtering and averaging the signal intensity in directions normal to the

trajectory. The cropping region was 1.6 mm in the radial direction, and 4.7 mm in the

tangential direction, corresponding to the intervals expected to contain 95% of the sig-

nal intensity distribution based on the standard deviations used by the filtering kernel.

These cropping limits were applied by defining a local coordinate system (x′, y′, z′),

with the z′-axis aligned along the needle trajectory, the x′-axis aligned along the tan-

gential (t) image direction, and the y′-axis aligned along the radial (r) image direction

at each point along the needle trajectory. Sub-volume cropping was performed with

0.16 × 0.16 × 0.16 mm3 voxel dimensions.
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Figure B.2: a) Boxplots of insertion depths (length of the needle within the SR3D im-
age) of the 185 manually segmented needles for each individual patient, and all patients
combined. b) Boxplots of insertion depths after subtracting the median insertion depth
for each patient. Horizontal lines at -12 mm and 10 mm indicate the insertion depth
limits used by the tip localization algorithm. In all plots the center-lines indicate me-
dian value, boxes indicate inter-quartile range, and points indicate values outside of the
inter-quartile range.

B.2.2 Sub-Volume Filtering

Following cropping, the cropped signal intensity values were filtered in the y′ direction

using the intensity-curvature based filter as described in section 3.2.2, but to preserve

spatial resolution in the insertion direction the signal intensity was not convolved with

a uniform distribution in the z′ direction. Following filtering, signal intensities were

averaged in the x′ and y′ directions to produce 1D intensity profiles as a function of z′

as shown in Figure 3.4.

B.2.3 Signal Intensity Profile Analysis

The needle tip corresponds to a signal intensity drop at the most superior point along the

needle trajectory. Intensity breaks along a needle trajectory caused by imaging artifacts

can cause intensity drops preceding the needle tip; however, the drop associated with

the visible needle tip will be the most superior when inserted trans-perineally. Figure

3.4a-c displays cross sections and intensity profiles of a needle with a signal intensity
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break inferior to the tip location. The first derivative of the 1D signal intensity profile

was calculated by finding the intensity slope within 2.5 mm of each point using linear

least-squares, as shown in Figure 3.4d. This derivative profile was normalized by the

maximum value, and all local peaks with values greater than 0.7 were identified using

MATLABs findpeaks function, and the tip was selected as the most superior of these

peaks.

B.3 Radial-Tangential Error Components

Let pm[pm,x, pm,y] and pa[pa,x, pa,y] be the 2D axial coordinates of corresponding manual

and algorithm-based segmentations. The 2D axial distance between these points is |~d|,

where ~d = pa − pm. To express ~d in terms of the r and t components at point pm, a

rotation matrix A was defined that effectively rotates the y-coordinate into r and the

x-coordinate into t at point pm, expressed as

A =


1

√
1+u2

u
√

1+u2

−u
√

1+u2
1

√
1+u2

 (B.1)

u =
pm,x

pm,y
(B.2)

This rotation matrix was applied to ~d to obtain the r and t components while pre-

serving the length |~d| in the rotated coordinate system. This method was used to find the

r and t trajectory error components in section 3.2.3, and the r and t tip error components

in section 3.2.3.
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Appendix to Chapter 5

C.1 Three-Time-Point Method Calibration

The calibration parameters of the 3TP method are the three time points used for image

analysis, the thresholds on wash-out rate for color assignment, and the conversion factor

from normalized wash-in rate to 8-bit intensity values. Calibration is performed by

simulating signal enhancement curves for a variety of Ktrans and EES fractional volumes

(ve), applying the 3TP method to the curves, and displaying the resultant color and

intensity matrix. Parameters are iteratively updated until approximately equal portions

of the matrix are red, green, and blue, and the full 8-bit intensity spectrum is displayed

[1]. This calibration was performed in MATLAB 2015a (Mathworks, Natick MA USA)

using the Tofts two-compartment pharmacokinetic model [2], the population averaged

AIF measured by Parker et al. [3], and the non-linear FSPGR signal equation [4] using

the pulse sequence parameters from cohort A and B. For both cohorts, the three time

points were selected as the pre-contrast image and images 1.5 min and 4.5 min post

contrast onset, the intensity thresholds for washout-rate were >5% for blue, <5% and

>-15% for green, and <-15% for red, and the intensity conversion factor was 150. The

resultant color matrices for cohorts A and B are provided in Figure C.1.
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Figure C.1: Color intensity matrices used for 3TP method calibration.
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