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Summary

Irreversible electroporation is a non-thermal ablation technique that uses an
electric field to destroy tumor cells. Compared to thermal ablation methods,
irreversible electroporation causes cell death mainly through apoptosis, pre-
serves surrounding tissue, and is not affected by local blood flow. However,
because of the varying properties of target tissues, the optimal parameters for
irreversible electroporation treatment are still under investigation. To address
this challenge, various studies have developed computational models for find-
ing optimal irreversible electroporation protocols that cover the entire tumor
region while avoiding unwanted thermal injury.

Electrode placement during irreversible electroporation treatment is a signif-
icant challenge for clinicians, with the number of electrodes utilized ranging
from two to six, and the distance between each of the electrode pair prefer-
ably between 10 and 25 mm. To aid with this task, robotic applications are
becoming increasingly popular in assisting clinicians with electrode place-
ment in irreversible electroporation treatment. Studies have shown that robots
can reduce intervention time, minimize radiation exposure, and achieve equal
or even higher accuracy compared to manual placement.

This thesis presents computational models to investigate the optimal irre-
versible electroporation protocol by examining the effects of pulse parameters
and electrode configurations on the ablation area and thermal damage to the
target tissue. Model validation has been conducted on animal and vegetable
tissue, with in-depth discussions offered in Chapters 2 and 3. To improve the
accuracy of the model, the actual shape of the tissue should be considered
during the simulation process. Therefore, an automatic segmentation method
using deep learning was proposed to segment liver and tumors from CT im-
ages, offering high accuracy and faster processing times compared to manual
segmentation, as elaborated in Chapter 4.
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Summary

Robotic systems have been developed to assist clinicians with the placement
of multiple electrodes in target tissues. Two robot designs were proposed and
fabricated using 3D printing with plastic material. They were actuated using
a pneumatic system, making them suitable for use within an MRI scanner.
The initial robot design had four degrees of freedom, and multiple electrode
insertions were carried out sequentially while taking into account the orienta-
tion of previous electrodes to maintain parallelism between them. The second
robot design is an improvement on the first robot, with a grid system em-
ployed to accommodate the insertion of multiple electrodes simultaneously
while maintaining the distance and parallelism between electrodes. This de-
sign has two degrees of freedom, which simplifies robot control and installa-
tion by requiring fewer pneumatic tubes. Chapters 5 and 6 present the designs
and evaluations of the robot performances. Both designs have demonstrated
limited deviation within the acceptable range for irreversible electroporation
procedures. The robotic systems have great potential to assist clinicians in ac-
curately placing multiple electrodes into target tissues, ultimately improving
treatment outcomes.

In conclusion, the tools proposed in this thesis, including computational mod-
els and robotic systems, contribute to the improvement of treatment efficacy
using irreversible electroporation. These tools can aid clinicians in devel-
oping more patient-specific models, improving treatment planning outcomes,
and assisting in electrode placement accuracy.
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Samenvatting

Irreversibele elektroporatie (IRE) is een niet-thermische ablatietechniek
die een elektrisch veld gebruikt om tumorcellen te vernietigen. In
vergelijking met thermische ablatiemethoden veroorzaakt IRE voornamelijk
celdood door apoptose, geen schade aan het omliggende weefsel en
wordt het niet beı̈nvloed door de lokale bloedstroom. Vanwege de
verschillende eigenschappen van weefsels zijn de optimale parameters
voor IRE-behandeling echter nog onderzocht. Om deze uitdaging aan te
gaan zijn in diverse studies computermodellen ontwikkeld om optimale
IRE-protocollen te vinden die het gehele tumorgebied bestrijken en
tegelijkertijd ongewenste thermische schade voorkomen.

De plaatsing van elektroden tijdens IRE-behandelingen is een grote uitdag-
ing voor clinici, waarbij het aantal gebruikte elektroden varieert van twee
tot zes naalden en de afstand tussen elk elektrode paar bij voorkeur tussen
10 en 25 mm ligt. Om deze taak te ondersteunen worden robottoepassingen
steeds populairder om clinici te helpen bij het plaatsen van elektroden tijdens
IRE-behandelingen. Studies hebben aangetoond dat robots de interventietijd
kunnen verkorten, de blootstelling aan straling kunnen minimaliseren en een
gelijke of zelfs hogere nauwkeurigheid kunnen bereiken in vergelijking met
handmatige plaatsing.

Deze thesis presenteert computermodellen om het optimale IRE-protocol te
onderzoeken door de effecten van puls parameters en elektrodeconfiguraties
op het ablatiegebied en thermische schade aan het doelweefsel te
onderzoeken. Modelvalidatie is uitgevoerd op dierlijk en plantaardig weefsel,
met diepgaande besprekingen in hoofdstuk 2 en 3. Om de nauwkeurigheid
van het model te verbeteren, moet tijdens het simulatieproces rekening
worden gehouden met de werkelijke vorm van het weefsel. Daarom werd een
automatische segmentatiemethode met behulp van deep learning voorgesteld
om zowel de lever als de lever tumoren op CT-beelden te segmenteren, met
hoge nauwkeurigheid en snellere verwerkingstijden dan bij handmatige
segmentatie, zoals beschreven in Hoofdstuk 4.
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Samenvatting

Robotsystemen zijn ontwikkeld om clinici te helpen bij het plaatsen
van meerdere elektroden in doelweefsels. Twee robotontwerpen werden
voorgesteld en vervaardigd door middel van 3D-printen met plastic
materiaal. De robots werden aangedreven door een pneumatisch systeem,
waardoor ze geschikt waren voor gebruik binnen een MRI-scanner. Het
eerste robotontwerp had vier vrijheidsgraden en meerdere elektrode-inserties
werden achtereenvolgens uitgevoerd, waarbij rekening werd gehouden met de
oriëntatie van de vorige elektroden om onderling parallelisme te behouden.
Het tweede robotontwerp is een verbetering ten opzichte van de eerste robot,
waarbij een rastersysteem wordt gebruikt om meerdere elektroden tegelijk
in te brengen, met behoud van de afstand en het parallellisme tussen de
elektroden. Dit ontwerp heeft twee vrijheidsgraden, wat de robotbediening en
installatie vereenvoudigt doordat er minder pneumatische buizen nodig zijn.
In hoofdstuk 5 en 6 worden de ontwerpen en evaluaties van de robotprestaties
gepresenteerd. Beide ontwerpen hebben een beperkte afwijking aangetoond
binnen het aanvaardbare bereik voor IRE-procedures. De robotsystemen
hebben een groot potentieel om clinici te helpen bij het nauwkeurig plaatsen
van meerdere elektroden in de doelweefsels, wat uiteindelijk tot betere
behandelingsresultaten zal leiden.

Concluderend dragen de tools die in dit proefschrift worden voorgesteld,
waaronder computermodellen en robotsystemen, bijdragen aan de
verbetering van de doeltreffendheid van de behandeling met irreversibele
elektroporatie. Deze tools kunnen clinici helpen bij het ontwikkelen
van meer patiënt specifieke modellen, het verbeteren van de resultaten
van de behandelplanning en het helpen bij het nauwkeurig plaatsen van
elektroden.
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1Irreversible Electroporation (IRE) is one of the available minimally invasive
procedures that is used in tumor treatment. It is a non-thermal ablation tech-
nique that uses an electric field instead of heat to destroy tumor cells. This
is achieved by delivering a series of high-voltage pulses using electrode pairs
that are inserted into the surrounding tissue of the target tissue. The process
of exposing tumor cells to an electric field is called electroporation, which
increases the permeability of the cell membrane. When a specific threshold
is exceeded, the electric field irreversibly alters the structure of the cell mem-
brane, resulting in cell death. The phenomenon of inducing tumor cell death
using an electric field is referred to as irreversible electroporation.

1.1 Introduction
Electroporation has been a topic of research for many years, particularly due
to its impact on the permeability of cell membranes. When an intense electric
field is applied to the cell membrane, it increases its permeability. The effect
of electroporation on the cell membrane differs depending on the intensity of
the electric field and the duration of the pulse. It can range from having no
effect at all, to reversibly opening the cell membrane while keeping cell via-
bility, or irreversibly opening the cell membrane, resulting in cell death [1].

At the end of the 20th century, electroporation was increasingly used in differ-
ent applications, particularly in the medical and food industry. In the fields of
medical and biological science, electroporation has been employed for diverse
applications, including drug delivery (electrochemotherapy) [2, 3], cell fusion
(electrofusion) [4], and DNA transfer (electrotransfer) [5]. Meanwhile, the
food industry has adopted electroporation in many aspects of food process-
ing, such as drying, nutrient extraction, and food preservation [6, 7].

In 2005, a study introduced the application of irreversible electroporation as
a non-thermal ablation method for tumor ablation [8]. Through a computa-
tional model, the researchers demonstrated the effectiveness of IRE, showing
results comparable to those of other thermal ablation techniques. The abla-
tion method with IRE involves exposing cells to an intense electric field, gen-
erating permeable nanopores in the cell membrane. When the electric field
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reaches a certain threshold, the membrane undergoes an irreversible process,
permanently opening the pores. This disrupts the cell’s homeostasis state,
leading to cell death via apoptosis [9].

IRE can theoretically be considered a non-thermal ablation method as it uti-
lizes electrical energy to destroy cells. However, it is important to note that
temperature may increase during the procedure, particularly in areas near the
electrodes. In addition, if electrodes are not placed in parallel, there is a risk
of overcurrent occurring in the area where electrodes are positioned near each
other, leading to an increase in temperature [10]. This may result in undesired
thermal damage to the tissue if the temperature exceeds a certain threshold.
Thermal damage can occur at temperatures above 42°C, particularly if the
cells are exposed for an extended period, ranging from seconds to hours [8].
At temperatures between 50-60°C, the rate of thermal damage significantly
increases [11]. Therefore, careful planning of IRE treatment is essential to
minimize the risk of thermal damage to exposed tissue.

Figure 1.1: Degree of electroporation, including reversible, irreversible, and thermal
damage, as a factor of electric field and exposure duration.
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1Before the implementation of IRE in clinical practice, common modalities for
tumor ablation were based on thermal energy. Focused ultrasound uses high-
intensity ultrasound beams to introduce high temperature to the undesirable
tissue, causing coagulation of the tumor cell. Other techniques use an active
electrode inserted into the tissue to heat and destroy cancer cells. The thermal
energy source comes from either microwave energy in the microwave ablation
method or high-frequency alternating current in radio-frequency ablation. Tu-
mors can also be treated by cooling the tissue to less than -40°C, as in the
cryoablation technique. The cooling gas is distributed using a hollow probe
that is inserted into the tissue, causing the tissue to freeze and necrosis.

All of these treatment techniques utilize thermal, either extremely hot or cold,
to kill tumor cells through necrosis. These techniques are easy to apply, where
generally only one needle is required, and the affected area can be easily mon-
itored. However, incomplete ablation may occur, especially in the area close
to larger vascular structures due to heat dissipation caused by blood flow (heat
sink effect) [12]. Additionally, thermal ablation may cause damage to adja-
cent structures, which makes it difficult to apply if the tumor is located near
vital structures such as veins, arteries, or bile ducts [13].

In contrast to thermal ablation, IRE is independent of thermal energy, where
cell death mainly occurs through apoptosis, rather than necrosis. Its effec-
tiveness is not affected by the local blood flow, making it a preferable choice
when treating tumors located near blood vessels. Additionally, the ablation
area in IRE is determined by the distribution of the electric field to tissue with
an electroporation threshold below the applied electric field. This makes IRE
a safer choice for preserving connective tissue, nerves, and vessels close to
the tumor [14].

1.2 IRE Protocols
Many studies have investigated the optimal parameters for IRE to maximize
non-thermal damage and avoid thermal damage [15, 16, 17, 18]. Two main
factors that affect the electric field distribution during IRE treatment are con-
sidered in IRE protocols: pulse parameters and electrode configuration. Pulse
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parameters include pulse strength, pulse shape, pulse duration, and the num-
ber of pulses. Other studies have also investigated the effect of pulse delay on
treatment efficacy [19, 20]. For electrode configuration, most studies have in-
vestigated the electric field distribution in relation to the placement and num-
ber of electrodes [21, 22, 23]. In the case of a large tumor, more than two
needles are required to completely ablate the tumor. Furthermore, the design
of the electrode has been discussed to ensure that the electric field can cover
the entire targeted tissue [24].

During IRE therapy, the voltage delivered typically ranges from 1400 to 2000
V, but it can go up to 3000 V depending on the distance between the electrodes.
Square waves have been shown to be more effective for electroporation com-
pared to sine waves or other waveforms. The application of square waves
can take various forms, including unipolar, bipolar, and asymmetric pulses
[25]. The pulse duration is normally around 50-100 µs with 80-100 pulses per
treatment cycle. Although IRE has been studied for over a decade, a standard
protocol is yet to be established, given that different target tissues where IRE
is applied have different properties [26]. In clinical practice, most studies have
reported using 90 pulses per treatment cycle, with a pulse duration of 70-90
µs and a voltage ratio of 1500-1700 V/cm [27, 28].

In terms of electrode placement, the number of electrodes used in IRE treat-
ment varies from two to six electrodes. All electrodes should preferably be
positioned in parallel, while the distance between the needle should be within
10-25 mm. If the electrode is angulated, there is a high risk of overcurrent
in the area where the electrodes are close to each other. It can cause a rise in
temperature and thermal damage to the tissue. On the other hand, if the elec-
trodes are too far apart, there is a risk of incomplete ablation in some regions
where the electric field does not cover. It is important to note that during nee-
dle placement, there should be a 2 mm distance from large vessels to avoid
high temperatures in the surrounding area of the electrode, which can cause
damage and risk of burn [29].

Electrode design is an important aspect to consider during IRE treatment. In
general, four major types of electrodes are used in IRE, including plate, clamp,
needle, and catheter [30].

6



1The plate model uses two parallel plates inserted into the targeted tissue. It
allows for the maintenance of a homogeneous distribution of the electric field
generated. However, it is not commonly used in practice due to the difficulty
of placement. It is considered invasive and is typically only implemented
during open surgery treatment. The clamp model has similar characteristics to
the plate model, with the cathode and anode located inside the clamp surface.
This model can hold the target tissue and provide secure contact compared
to the plate model. However, it is still considered an invasive type and is
normally only used in open surgery on specific target tissue such as arteries or
intestines.

The needle model is the most common type of electrode used in IRE treat-
ment. With a needle-shaped electrode, it can be easily manipulated and be-
comes less invasive. However, the electric field is not homogeneously dis-
tributed and requires proper planning software to calculate the coverage area
of the treatment. Additionally, multiple electrodes are required when the treat-
ment area becomes larger. The catheter model is a type of electrode that is
inserted into the targeted tissue via a catheter. It is considered the least inva-
sive compared to other models, but it requires more skill to manipulate and
navigate the electrode to the target location.

Proper treatment planning is necessary for the use of the needle-shaped elec-
trode to determine the distribution of the electric field. Unlike thermal-based
methods, the coverage area in IRE does not create a spherical shape and multi-
ple needles need to be positioned near the tumor to cover the cancerous tissue
with an electric field. Depending on the size and shape of the tumor, the num-
ber of inserted needles may increase from 2 to 6 needles. This is the primary
technical complexity compared to other thermal ablation techniques.

Numerous studies have been conducted to develop computational models that
optimize pulse parameters to find the right combination that covers the specific
tumor region while avoiding unwanted thermal injury. This model is also
useful for planning the effective configuration of the electrode placement. The
use of computational models in IRE planning is found in various treatments,
including kidney [31], liver [32], pancreas [33], and brain [34].
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1.3 Robotic approach of IRE treatment

Although IRE has several advantages over other ablation techniques, it is not
the preferred choice for most tumor treatments. It is only selected in cases
where other methods are not applicable due to the anatomical position of the
tumor, tumor type (pancreas), or when the results of other treatments are not
showing improvement. The main challenge of IRE is the positioning of mul-
tiple electrodes in parallel. With only one pair of electrodes, IRE is only able
to destroy tumors smaller than < 1 cm3 without repositioning [30]. To treat
larger volumes, increasing the electric field coverage by raising the voltage or
the pulse number and duration may cause thermal damage to other structures
due to joule heating. The remaining options are to repeat the treatment by
repositioning the needles, which may increase the treatment duration, or to
add more needles, which increases the complexity and difficulty of the pro-
cedure. The placement of multiple needles needs to be planned carefully to
maintain the generated electric field above the IRE threshold and cover the
entire tissue region [35].

Apart from planning the treatment parameters and needle placement layout,
inserting multiple needles is a challenging process in IRE. It is crucial to en-
sure that the electrodes are inserted parallel to each other and at a distance of
10-20 mm to prevent thermal damage or incomplete ablation of the tumor. In
cases of larger tumors, multiple electrodes need to be precisely placed in the
area surrounding or inside the tumor to cover the entire tumor volume. The
depth of the needles also needs to be uniform. When the tumor is located in a
sensitive structure that makes uniform needle depth difficult, there is a risk of
overestimating the ablation area due to the difference in electrode spacing.

Accurate manual insertion requires an experienced physician to perform. In
addition, the patient needs to be under total anesthesia and well-fixed to pre-
vent any spontaneous movement due to respiratory motion. Most of the time,
manual insertion requires multiple adjustment processes to get the needle into
the correct position. This leads to an increase in the radiation dose received by
the patient, longer anesthesia times, and an increased chance of surgical com-
plications.
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1Considering the difficulty of placing the needle in IRE treatment, robotic ap-
plications are gaining popularity in assisting clinicians with needle placement.
Several studies have shown that a robot can decrease intervention time, lower
radiation exposure, and achieve equal or higher needle accuracy. This helps
the patient recover faster and reduces the risk of infection, while also provid-
ing easier access to hard-to-reach places [36, 37].

Several robots have been reported in the application of IRE, such as Maxio
Perfint [38, 36, 39], DaVinci Platform [40], robotic arm [41] and iSYS or
Micromate [42]. Some robotic systems, such as Maxio, support the IRE treat-
ment with a software system that can expedite the planning process. This in-
cludes identifying tumors, blood vessels, normal tissue, and organs, as well as
restricted zones such as blood vessels or vital tissue. In cases where multiple
needles are required, the placement of the needles is performed simultane-
ously, with the parallel insertion being maintained based on the position of
the first probe.

Most of the robotic applications mentioned earlier were performed under CT
guidance, which is used to verify the location of the needle. With robotic as-
sistance, the number of times the needle needs to be repositioned or readjusted
is significantly reduced, thereby reducing the radiation received by the patient
[39]. However, the application of robots is still limited due to the high cost,
which includes the main robot cost and the cost of disposable items needed
for each treatment. Ultimately, the choice of the ablation procedure, whether
manual or robot-assisted, depends on the financial capacity of the hospital and
the preparation of the medical team.

There is a need for a low-cost robot that is highly versatile and can be used
in various types of treatments. Additionally, combining the proposed robotics
with other imaging modalities can be advantageous. For example, many stud-
ies have developed MRI-compatible robots [43, 44, 45] that can take advan-
tage of the high tissue contrast from MRI images without the use of radiation
during the procedure.
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1.4 Aim and outline of the thesis

The previous section explained the technical complexities involved in IRE
treatment. These include a complex process to obtain optimized IRE param-
eters and difficulties in placing multiple needles while meeting IRE require-
ments. We have identified two main research directions related to IRE:

1. The use of a computational model is important in determining the treat-
ment plan for IRE. The main aspects include the configuration of pulse
and electrode parameters and the relationship between these parame-
ters, which affect the distribution of the electric field and the risk of
thermal damage that may occur when the temperature rises.

2. The development of a robotic device that can assist with multiple needle
insertions for IRE treatment. The main requirements for the device are
to preserve the parallel positioning of needles and to maintain a specific
distance between electrodes within a certain range.

The following research results are presented in the various chapters:

Chapter 2 discusses the relationship between pulse and electrode parameters
that are typically used in the IRE procedure. The main objective is to develop
a 2D computational model and validate it on animal tissue. Later, the optimal
parameters are calculated to obtain the maximum ablation coverage while also
keeping the temperature below the thermal damage threshold.

Chapter 3 presents a 3D computational model that was validated in vegetable
tissue to predict the ablation volume achieved in IRE. The aim of this study is
to observe the effect of non-parallel placements of electrodes on the electric
field distribution. While it has been discussed that parallel placement is the
preferable position for the electrode, it may not always be the better choice in
situations where the tumor is located next to sensitive structures. We investi-
gated the alignment of the electrodes by introducing tilting in the forward and
sideward needle orientations, as well as when either one or both needles are
tilted. To validate the computational model, we performed IRE treatment on
the vegetable tissue with various needle configurations.
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1Chapter 4 introduces a deep learning network that automatically segments
the liver and tumor from CT images. In the previous computational model,
the liver and tumor were modeled with simplified shapes, such as boxes and
spheres. To improve the accuracy of the computational model, the actual
shape of the tissue can be used. Therefore, this study aims to provide a tech-
nique for obtaining a realistic shape of the liver and tumor. The deep learning
network was tested on the liver tumor segmentation dataset, which consisted
of 131 datasets for training and 70 datasets for testing [46]. Later, the model’s
performance was evaluated by comparing the segmentation result to manual
segmentation.

Chapter 5 presents the design of an MRI-safe robot for multiple needle
insertion. The robot’s body and actuator are made from non-metallic,
non-magnetic, and non-conductive materials using 3D printing, making it
lightweight and safe to operate inside the MRI bore. The robot has four
degrees of freedom and a large robot workspace, which enables it to handle
the largest tumor that can be treated using IRE. Multiple needle placement is
achieved by simultaneously inserting needles, and the parallel placement is
calculated based on the previous needle position. The evaluation of the robot
system is performed by conducting several tests, including a needle accuracy
test in free air and inside the MRI bore. An MRI compatibility test is also
performed by evaluating the image SNR in various robot positions.

Chapter 6 presents the second design of the robot which utilizes a grid sys-
tem to perform parallel needle insertion. The robot comprises six subgrids
that can rotate in two directions, enabling the needle to reach various loca-
tions under the robot’s body. With this subgrid design, needle insertion can
be performed simultaneously while maintaining parallelism during insertion.
Two main evaluations were conducted to assess the robot’s ability: the accu-
racy test and the alignment test to keep the needle parallel.

Chapter 7 presents a general discussion regarding the key findings in the
developed computational models and robotic devices. In addition, suggestions
for future research are included, regarding the further improvement of the
robot design and other aspects that need to be tested and evaluated in order to
bring the robot towards application in clinical practice.
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Development of a Thermal Model for

Optimizing IRE Protocols

Adapted from: Girindra Wardhana et al. “Development of a thermal model
for irreversible electroporation: an approach to estimate and optimize the
IRE protocols”. In: International journal of computer assisted radiology and
surgery 16.8 (2021), pp. 1325–1334.
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Chapter 2. Development of a Thermal Model for Optimizing IRE Protocols

Abstract
Purpose Irreversible electroporation (IRE) is an emerging technique that has
drawn attention in the field of cancer treatment. IRE uses non-thermal elec-
tric pulses to induce cell death. However, there have been concerns about
the potential tissue heating associated with this technique. This study aims
to improve the efficiency of IRE and establish better treatment protocols by
investigating optimal IRE protocols that minimize thermal damage during the
treatment.

Methods The study focuses on analyzing electrode and pulse parameters.
Finite element models are developed to evaluate the ablation area and the
temperature changes in the tissue. The model is validated experimentally in
bovine liver tissue, while the parameters were optimized using the response
surface method (RSM)

Results Analysis of variance reveals that the electrode distance and input volt-
age significantly influence the temperature rise in the IRE treatment of bovine
liver (P = 0.020 and P = 0.003, respectively). Additionally, only the in-
put voltage significantly affects the ablation area (P < 0.001). The optimal
results determined by RSM showed that, for achieving a maximum ablation
area of 250.82 mm2 without causing thermal damage, the IRE protocol con-
sisted of an active electrode length of 10 mm, a distance of 10 mm between
the electrodes, and the delivery of 50 pulses with a pulse width of 41.21 µs
and an amplitude of 3000 V.

Conclusions This study demonstrates the feasibility of optimizing IRE proto-
cols using the proposed approach. An optimal IRE protocol that maximizes
the ablation area was successfully calculated while ensuring no risk of thermal
damage to the tissue.
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2.1 Introduction

Pancreatic adenocarcinoma is the most common type of pancreatic cancer and
ranks as the fourth leading cause of cancer-related deaths in both men and
women [48, 49]. This cancer often spreads to other organs, particularly the
liver [50]. Over half of the pancreatic cancer patients already have liver metas-
tases at the time of diagnosis [51]. Treatment options for liver metastases are
limited, with surgical resection being the primary curative method [52]. How-
ever, not all patients are suitable candidates for this type of treatment [53].
Furthermore, due to late diagnosis, most patients present with advanced-stage
tumors where resection is no longer feasible [52].

Irreversible Electroporation (IRE) is a minimally invasive surgical procedure
that has gained interest in the field of cancer ablation over the last decade.
The electroporation technique involves exposing cells to strong electric fields
delivered by electrodes inserted into the surrounding soft tissue. If the applied
electric field is sufficiently strong, electroporation can become irreversible.
This process is characterized by the formation of nanopores in the plasma
membrane, which leads to cell death [52, 54].

Theoretically, the process of tissue ablation through IRE can be assumed as
non-thermal since it relies on electrical energy to disrupt the cell membrane
[52]. However, if the alignment of the electrodes is not maintained during
the treatment, there may be an increase in temperature, as described by Van
Den Bos et al. [10]. Recent studies have also shown that this technique may
result in tissue heating [55, 56]. During IRE, some of the electrical energy
delivered to the cells is converted into thermal energy, causing an increase
in temperature. If the temperature surpasses a certain threshold, there is a
risk of immediate thermal damage to healthy tissue [57]. The rate of damage
significantly increases around 50 °C - 60 °C [11], and the amount of thermal
damage is typically measured using the Arrhenius equation [58].

Several parameters can influence the outcomes of an IRE treatment. These
parameters establish the IRE treatment protocols and are primarily associated
with the pulses delivered to the cells (pulse parameters) and the configuration
of the inserted electrodes (electrode parameters). The electric field generated
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in the tissue and the resulting temperature changed depending on the applied
configuration. By adjusting these parameters, it is possible to reduce the ther-
mal effect caused by heating without compromising the ablation process.

Optimizing the IRE protocols is crucial to prevent thermal damage to vital
structures near the liver, such as the vasculature, gall bladder, or bile duct [59].
However, the optimal combination of parameters remains unknown, leaving
room for improving the efficiency of the IRE method. Consequently, the ques-
tion arises: What can we do to optimize the outcomes of an IRE procedure?

To the best of our knowledge, there are still no defined guidelines regarding
the ideal IRE protocols for specific treatments, especially concerning the com-
bination of pulse and electrode parameters. This chapter proposes an approach
for calculating optimal IRE protocols by developing an IRE model with ex-
perimental validation. The final goal is to present IRE protocols that can max-
imize the ablation area while minimizing thermal damage during treatment.

2.2 Related Work

This section presents published studies that examine the relationship between
IRE parameters, such as electric distribution and thermal development during
IRE treatment. Additionally, the proposed approach in this study is described
at the end of this section.

During the planning of IRE treatment, multiple parameters are taken into con-
sideration to determine the ablation zone, including electrode and pulse pa-
rameters. Various studies have investigated the impact of electrode parameters
on IRE treatment. Davalos et al. [8] demonstrated that the electrode diameter
affects the maximum voltage that can be applied to the tissue before reaching
a temperature of 50 °C. They also observed that electrode shape influences the
electric field distribution, with spherical electrodes reaching 50 °C faster than
cylindrical electrodes [60]. Yang et al. conducted a study on the influence of
four electrode properties (diameter, length, distance between electrode, and
electrode number) on the volume of ablated tissue and the maximum tem-
perature generated in liver tissue. The result indicated that only the distance
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between the electrodes and the number of electrodes significantly affected the
maximum temperature, while only the electrode length significantly impacted
the ablation volume [61].

In terms of pulse parameters, Garcia et al. [57] investigated the effect of pulse
number on the probability of cell death due to IRE and thermal damage in a 2D
liver model using a bipolar electrode. Simulation results showed that thermal
damage begins to occur around the electrodes after 30 pulses, and significant
tissue damage is observed after 90 pulses. Wandel et al. [16] characterized the
effects of pulse number and pulse width in a porcine model, finding that higher
pulse numbers and greater pulse widths can increase the ablation zones.

Despite numerous investigations on electrode and pulse parameters in IRE,
most studies have considered them separately. However, it is essential to plan
both parameters together to achieve the optimal configuration that maximizes
the ablation area while minimizing thermal damage. The optimal combination
of electrode and pulse parameters is currently unknown.

The present research contributes to the development of an experimentally vali-
dated model for adjusting IRE protocols related to electrode and pulse parame-
ters, providing guidance to operators regarding the optimal configuration. An
experimental apparatus was developed to validate finite element models for
IRE simulation. A series of experiments were designed and conducted using
ex vivo bovine liver tissue to validate the models. Temperature measurements
were taken and compared to simulation results. If the experimentally mea-
sured temperature values align with the values calculated from the models,
they can be considered a reliable representation of the real phenomena. Once
validated, the models will be utilized to determine the optimal configuration
of IRE parameters using Response Surface Methodology (RSM).

2.3 Methods

This section presents the developed models for simulating IRE and the exper-
imental setup and procedure used to validate the models.
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2.3.1 Experimental Setup

The experimental setup (Figure 2.1a) includes a transparent cylindrical con-
tainer (40 × 150 mm) made of Polymethyl Methacrylate. Fresh bovine liver
tissue was purchased from a local butcher store within 24-48 hours after the
animal was slaughtered. The liver tissue was not frozen, and therefore, we ex-
pect that the conductivity would not be significantly affected. The tissue was
used in the experiment after being cut into smaller samples. These samples
were placed inside the container, which was then placed in a thermostatic bath
to maintain a controlled temperature of 37 °C, mimicking body temperature.
The pulse generator system Gemini X2 (BTX, Holliston, MA) was connected
to two stainless-steel cylindrical electrodes that were inserted in parallel into
the bovine liver tissue sample. The pulse generator delivered a series of square
pulses, while a high-voltage probe (BTX Enhancer 3000) measured the am-
plitude of these pulses. The output of the measurements was displayed on a
digital oscilloscope RTB2004 (Rohde & Schwarz, Munich, Germany).

Fiber-optic temperature measurement probes, “T1 Fiber Optic Temperature
Probe“ (Neoptix, Québec, Canada), were inserted into the liver tissue to mea-
sure the temperature between the two electrodes. Another fiber-optic probe
was inserted 3 mm away from the right electrode, at the same depth as the
tip of the electrodes, to monitor the temperature outside the electrodes. Fiber-
optic probes were chosen for temperature measurement due to their invulner-
ability to electromagnetic interference that may occur around the electrode.
The actual experimental setup is presented in Figure 2.1b.

2.3.2 Design of the Experiment

Five IRE parameters were tested at different levels. Two cylindrical electrodes
were inserted into biological tissue. The distance between electrodes, the ap-
plied voltage, the number of pulse repetitions, and the pulse width were evalu-
ated at three levels: low, medium, and high. Additionally, the active length of
the electrodes was tested at two different levels: low and high. The different
parameter levels in this study are presented in Table 2.1 and Figure 2.1c. The
frequency of pulse delivery was set at 1 Hz.
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Figure 2.1: (a) The schematic representation of the experimental setup for model
validation. Temperatures from three different locations were measured: (1) between
the electrodes and (2) outside the electrodes using fiber-optic probes, and (3) water
temperature using a thermometer. (b) The actual experimental setup. (c) Electrode
and pulse parameters that were tested in the experiment.

2.3.3 Finite Element Models

Finite element models were created to analyze the impact of the IRE parame-
ters on the electric field and temperature responses. The finite element models
were computed using COMSOL Multiphysics v.5.4 (Burlington, MA, USA).
The geometry consisted of a 2D longitudinal section perpendicular to the two
electrodes inserted into bovine liver tissue. The Finite Element Method (FEM)
was employed to solve the mathematical models. The mesh was automatically
generated by COMSOL with custom sizes for each domain. For the liver and
electrodes domains, the maximum element size was set to 3.3 mm and 1 mm
respectively, while the minimum element size was set to 3.1 mm and 0.8 mm,
respectively. The elements had a triangular shape. The number of elements
for each electrode configuration is presented in Table 2.2.

The electric field (EF) distribution in the liver was determined using the
Laplace equation:

∇2 · V = 0 (2.1)
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Table 2.1: Various IRE parameters with different configuration levels

Level Active
length
(mm)

Distance
between
electrodes
(mm)

Input
voltage
(V)

Pulse
repetitions

Pulse
width
(µs)

1 10 10 1000 30 40
2 15 15 2000 60 70
3 - 20 3000 90 100

Table 2.2: The number of elements for each electrode configuration

Distance between
electrodes (mm)

Active length (mm) Number of
elements

10 10 16,974
10 15 17,160
15 10 18,481
15 15 18,579
20 10 19,440
20 15 19,600

To model heat transfer within the biological tissue, the Bioheat Transfer Equa-
tion was considered:

ρ cp
∂T

∂t
+ ρ cp u · ∇T +∇ · q = Qs +Qbio (2.2)

being ρ, cp and T the density, heat capacity, and temperature of the tissue,
respectively, and q the heat flux by conduction in the tissue. Qs is the energy
source term, sometimes mentioned as Specific Absorption Rate (SAR) in the
literature [62]. Qbio is the bioheat term that contains the perfusion source term
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Qbl and the metabolic heat generation term Qmet:

Qbio = Qbl +Qmet (2.3)

Qbl = ρ cp,b ωb(Tb − T ) (2.4)

where ρb the blood density, cp,b the specific heat of blood, ωb the blood perfu-
sion rate, Tb the arterial blood temperature, and T the tissue temperature.

To fully define the model, several boundary conditions were established. The
electrodes were electrically and thermally insulated, ensuring no electrical or
thermal conductivity between the electrodes and the external environment.
The initial temperature of the tissue was set to 37 °C. Table 2.3 provides
an overview of the terms used to represent blood perfusion and metabolism,
which are crucial for modeling heat transfer in biological tissue.

The electrical and thermophysical properties of the bovine liver tissue are
summarized in Table 2.4. The relative permittivity ϵr,bov and thermal con-
ductivity kbov were adjusted to account for their temperature-dependent vari-
ations, while the electrical conductivity σbov was considered as a function of
the electric field.

2.4 Results
This section presents the experiment results for model validation. Following
the validation of the models, the process of optimization to determine the
optimal configuration of IRE parameters for the bovine liver is described.

2.4.1 Validation of the Models

The finite element models were validated empirically by comparing the model
results with the temperature measured in the bovine liver tissue during the IRE
experiments. Three trials of experiments were performed for each combina-
tion, where active length and distance between electrodes were set to constant
at 10 mm. The experimental results are presented in Figure 2.3.
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Table 2.3: Properties of blood perfusion and metabolism for heat transfer model

Parameter Symbol Unit Value References

Blood density ρb Kg/m3 1000 [62]
Blood temperature Tb °C 37 -
Blood specific heat capacity cp,b J/(Kg °C) 3640 [62]
Blood perfusion rate ωb 1/s 5e-4 [62]
Metabolic heat source Qmet W/m3 0 [63]

Table 2.4: Electrical and thermophysical properties of bovine liver tissue

Parameter Symbol Unit Value References

Density ρbov Kg/m3 1050 [64]
Heat capacity cp,bov J/(Kg °C) 3400 [65]
Relative permittivity εr,bov - (See Figure 2.2a) [64]
Thermal conductivity kbov W/(m °C) (See Figure 2.2b) [66]
Electrical conductivity σbov S/m (See Figure 2.2c) [67]

Figure 2.2: (a) Relative permittivity and (b) thermal conductivity in the function of
temperature, and (c) electrical conductivity in the function of electric field for bovine
liver tissue
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Figure 2.3: Maximum temperature in the IRE experiment and models simulation in
bovine liver tissue with varying (a) pulse number and (b) pulse width

Figure 2.3a presents the temperature achieved by varying the pulse number
and voltage in each experiment. The pulse width was kept constant at 100 µs,
while the pulse number varied between 30, 60, and 90, and the input volt-
age varied between 1000 V, 2000 V, and 3000 V. The errors in the tempera-
ture measurement at the center of the electrode were relatively low, averag-
ing around 3.9%±4.2%, except for the last experiment with 3000 V and 90
pulses, which had an error of up to 13.2%. In terms of thermal damage, the
bovine liver tissue reached temperatures above 50 °C when the voltage was
set to 3000 V and the pulse numbers were 60 and 90. Interestingly, the figure
also revealed that as the pulse number and voltage increased, the maximum
temperature in the bovine liver also increased.

The results from the experiment with varying pulse width are shown in Fig-
ure 2.3b. In this experiment, the pulse number was set to 90 pulses, while the
pulse width and voltage were varied. The error percentage for temperature
measurement in all the experiments was around 2.9%±4.2%, except for the
last experiment with 3000 V and 100 µs combination.

Overall, the temperature profiles obtained from the FEM simulation and the
ex vivo experiments were quite similar. It can be concluded that the models
were successfully validated and can be used to calculate the response of the
IRE parameters in the optimization study.
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2.4.2 IRE Optimization for the Treatment on Liver Tissue

According to Table 2.1, there are 162 possible combinations of parameters
for the experiments. To reduce the number of experiments while maintaining
significant information, the Taguchi method, described by Berger et al. was
used [68]. An L18(21 34) Taguchi design was implemented using Minitab 18
(Minitab Inc., USA), resulting in 18 parameter combinations.

After validating the models, the IRE experiments were conducted using the
18 selected parameter combinations on simulation. The response of these IRE
parameters was evaluated in terms of the maximum temperature and the cov-
erage area of ablation (where EF > 800 V/cm), as presented in Table 2.5.

To analyze the results in Table 2.5, the RSM in Minitab was employed. This
method allows for the determination of the relationship between the responses
and the variables, which can be visualized through factorial plots, as shown in
Figure 2.4. Additionally, the optimal solution for the IRE parameter config-
uration can be calculated, as illustrated in Figure 2.5. The goal is to achieve
the maximum ablation area between the electrodes while ensuring that the tis-
sue does not experience thermal damage (i.e., the tissue temperature remains
below 50 °C).

Figure 2.4: The response of the maximum temperature and the ablation coverage
area (EF > 800 V/cm) to various IRE parameter configurations, including (a) active
length, (b) electrode distance, (c) voltage, (d) pulse number, and (e) pulse width
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Figure 2.5: Optimization results obtained from RSM. The optimal parameters are
highlighted in red brackets at the top row. The red lines in the graph indicate the
optimal solutions. The blue dashed lines represent the target values of the objective
functions, which in this case are the maximum electric field and a temperature of
50 °C (the threshold for thermal damage)

Based on the results shown in Figure 2.4a and Figure 2.4b, increasing the
active length and the distance between the electrodes is the most effective
approach to reduce the maximum temperature while increasing the ablation
area during the treatment. Adjusting the input voltage can also lead to a larger
ablation area, but it must be carefully chosen as it significantly increases the
temperature, as demonstrated in Figure 2.4c. When considering the pulse
number (Figure 2.4d) and pulse width (Figure 2.4e), using smaller values is
preferable to keep the temperature low. However, increasing the pulse number
and pulse width does not have a significant impact on the ablation area.

The analysis of variance reveals that the electrode distance and input volt-
age parameters have a significant effect on the temperature rise during IRE
treatment of bovine liver (P=0.020 and P=0.003 respectively). On the other
hand, only the input voltage parameter significantly affects the ablation area
(P<0.001).
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According to Figure 2.5 and the optimization study using RSM, the optimal
configuration of IRE parameters for bovine liver is as follows: two electrodes
with an active length of 10 mm and a separation of 10 mm, delivering 52.42
pulse repetitions with a width of 41.21 µs and amplitude of 3000 V. It should
be noted that the number of pulse repetitions was rounded to 50 instead of the
calculated value of 52.42 by RSM.

Table 2.6: Comparison of the optimization and simulation results with the optimal
IRE parameter configuration for liver tissue

Response RSM Models Error (%)

Area (mm2) 268.07 250.82 6.43
Maximum temperature (°C) 49.98 45.36 9.24

The optimal parameters obtained from RSM were utilized in the models to
assess the reliability of the method. The ablation area and the maximum tem-
perature at the center point between the electrodes were measured. The out-
comes of each response were compared with the ones obtained with RSM by
calculating the relative error. The findings are presented in Table 2.6.

The electric field calculated by RSM and the models showed a high level of
agreement. However, RSM produced an overestimated value for the tempera-
ture. The simulation indicated a maximum temperature of 45.46 °C, which is
lower than the threshold for thermal damage (50 °C). The error is not signifi-
cant, as it is unlikely that thermal damage would occur in the tissue.

2.4.3 Electric Field and Temperature Distributions Using
Optimal IRE Parameter Configuration

After verifying the reliability of the optimization process, simulations were
conducted to calculate the electric field and temperature distributions in the
liver tissue. The graphical representations of the simulation results for the
electric field and temperature distribution are displayed in Figure 2.6.
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Figure 2.6: (a) Electric field distribution and (b) temperature distribution in liver tissue
when applying the optimal IRE configuration

The electric field distribution appears to be relatively uniform between the
electrodes. However, in Figure 2.6a, it can be observed that the electric inten-
sity is higher near the tips of the electrodes. As charges tend to spread across
the surface of a conductive material, this phenomenon can be explained due
to higher concentrations of electric charges at the tips of the electrodes.

The temperature increase is more pronounced in the region between the elec-
trodes, following a similar pattern to the electric field distribution as shown in
Figure 2.6b. The temperature reaches its highest values near the vicinity of the
electrodes and gradually decreases with increasing distance. The temperature
rise outside the region between the electrodes is not as significant as within it.
Based on these observations, it is unlikely that thermal damage would occur
when the calculated optimal IRE parameter configuration is applied.

2.5 Discussion
This study presented a statistically based approach (Taguchi, RSM) to cal-
culate the optimal configuration of IRE parameters, considering the risk of
thermal damage that may occur in the tissue. Although IRE is generally con-
sidered a non-thermal treatment, our results showed that the temperature in
bovine liver tissue increased within the range of 37-50 °C and can reach up to
72 °C with high voltage (3000V) parameters. This finding is consistent with
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the results reported by Agnass et al. [69], suggesting that IRE can be consid-
ered as a mild-hyperthermic treatment rather than a non-thermal treatment.

Two-dimensional models were built instead of 3D models for the sake of com-
putational speed and based on the assumption that the electric and tempera-
ture distributions are symmetric. The two-dimensional models simulate the
configuration of two electrodes in a real IRE setup and provide a good ap-
proximation for planning IRE treatments [60]. Furthermore, the experimental
setup was represented by a 2D plane, which corresponds to a cross-section
perpendicular to the electrodes along the z-axis.

The models were validated based on experimental temperature
measurements. Validation was successfully achieved, with a great part of the
experiments showing percentage errors lower than the assumed threshold of
10%. However, some measurements presented relatively high errors. One
possible source of error could be attributed to the incorrect placement of
temperature probes. The bovine liver tissue presents a challenge due to its
lack of transparency, making it difficult to visually confirm the accurate
positioning of the temperature probes.

The potential error in temperature measurement resulting from improper
probe placement can be illustrated using the temperature distribution
depicted in Figure 2.7. In this figure, the y-coordinate of 0 mm corresponds
to the point on the vertical line aligned with the tip of the electrodes. The
y-coordinate values between 0 and 10 mm represent the active region of the
electrodes. The measurement point at the center is situated at the y-coordinate
of 5 mm. The figure demonstrates that the temperature distribution along the
vertical line is not constant. Even a small error in the probe location can lead
to different temperature measurement results. Therefore, it is recommended
to have visual feedback, such as live ultrasound imaging, to ensure accurate
probe insertion and proper positioning. This visual guidance can provide
confirmation that the probes are inserted in the correct locations, reducing
measurement errors caused by inaccurate probe placement.
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Figure 2.7: Temperature distribution at the center point between electrodes

2.6 Conclusion and Future Research

The approach presented in this study allows for the optimization of IRE pa-
rameters using validated models. By maximizing the electric field between
the electrodes and limiting the maximum tissue temperature to 50 °C, an opti-
mized combination of IRE parameters for the bovine liver was obtained. The
application of this IRE configuration is expected to result in no thermal dam-
age to bovine liver tissue, making it suitable for potential clinical use.

Five parameters were investigated in this research, including active length,
distance between electrodes, input voltage, pulse number, and pulse width.
Apart from these parameters, there are other parameters that could be further
investigated. One example is the implementation of breaks between pulses.
Evidence suggests that rest periods between pulse sequences can contribute
to reducing the resultant temperature in the tissue [70, 71]. This parameter
could be important to consider in the optimization of IRE with regard to its
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thermal effects. Another parameter of interest is the waveform of the delivered
pulses. It would be valuable to assess and compare the temperature outcomes
of exponential pulses and square pulses [72].

Using another algorithm, such as Nondominated Sorting Genetic Algorithms
II (NSGA-II), to calculate the optimal IRE protocol would provide additional
valuable insights into the optimization process [73]. By considering both sig-
nal and electrode parameters in IRE treatment planning, the efficacy of the
treatment could be improved. Therefore, it is recommended to consider both
parameters during the optimization process in future research.
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Investigating the Effect of Electrode

Orientation on IRE

Adapted from: Girindra Wardhana et al. “Investigating the effect of elec-
trode orientation on irreversible electroporation with experiment and simula-
tion”. In: International journal of computer assisted radiology and surgery
17.8 (2022), pp. 1399–1407.
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Abstract
Purpose In recent years, Irreversible Electroporation (IRE) has been devel-
oped to specifically destroy undesirable tissues as an alternative to surgical
resection. The placement of multiple electrodes in a parallel configuration is
necessary to achieve a uniform electric field distribution. However, the pro-
cess of maintaining parallel electrode positions can be challenging, and the
quantitative impact of electrode orientation accuracy has not been thoroughly
investigated. This study aims to investigate the effect of electrode orientation,
as well as various electrode and pulse parameters, on IRE outcomes.

Methods The study considered three electrode configurations: parallel, for-
ward, and sideward orientation. A numerical model was developed to study
the effect of electrode orientation on the electric field distribution. The model
was validated experimentally on potato tubers as it has similar properties to
biological tissue. In addition, a test was conducted to determine the conduc-
tivity and electroporation threshold of the potatoes.

Results The numerical model was successfully validated by comparing the
electroporated volumes obtained from the experiment and simulation, result-
ing in a mean dice score of 0.727±0.046. The potato has an electrical con-
ductivity of 0.044-0.454 S/m, with an electroporation threshold of 375 V/cm.
Analysis of variance test showed that the difference in the electroporated re-
gions between the parallel orientation and a 5° forward or sideward orientation
was not significant.

Conclusion This study showed that the developed numerical models were
validated and able to predict the outcome of IRE on potatoes. In addition,
a tolerance of up to 5° in electrode orientation can be defined to achieve a
similar response to the parallel orientation.
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3.1 Introduction

Irreversible electroporation (IRE) is a novel non-thermal tumor ablation tech-
nique that has emerged as a promising ablation technique for solid tumors.
IRE operates by exposing cells to electric pulses, which increases the perme-
abilization of the cell membrane. The impact of the electroporation pulse on
the cell membrane depends on its intensity and duration, resulting in one of
three outcomes: no effect, reversible membrane opening, or irreversible mem-
brane opening leading to cell death via apoptosis [8]. The main advantages
of this treatment method include reduced damage to the surrounding tissues
and vascular complications, ease of application, and reduced risk of heat sink
effect as commonly observed in other thermal-based ablation methods [75].

Despite the advantages of IRE, it is not considered the best choice for tu-
mor treatment. The absence of a systematic approach to obtaining optimal
treatment planning may cause incomplete tumor ablation and consequently
increases the risk of tumor recurrence. The effectiveness of the IRE depends
on the electric field distribution in the tissue. The electric field distribution
is affected by various factors, including electrode parameters (electrode ori-
entation, electrode active length, electrode spacing, etc.), pulse parameters
(number of pulses, pulse width, pulse amplitude, etc.), and tissue properties,
which influence the dose of the treatment.

One of the standard requirements of IRE for achieving a uniform electric field
distribution and maximizing the ablation volume is the parallel placement of
electrodes, along with equal electrode insertion depth [36]. However, main-
taining this configuration can be challenging especially when dealing with
tumors located deep within the body.

Several attempts have been made to study the effect of non-parallel electrode
placement on the IRE outcomes. However, there has been no detailed investi-
gation into the permissible extent of electrode orientation while ensuring treat-
ment safety. As a result, the main aim of this study is to investigate the effect
of electrode orientation on the distribution of the electric field. Furthermore,
this study also investigates the relationship between electrode orientation and
other IRE parameters, including the electrode active length, electrode spacing,
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pulse number, and pulse length. To mimic the IRE experiment, 3D numerical
models were designed and validated. The final goal is to determine the maxi-
mum deviation from parallelism for the electrodes while still yielding similar
electroporation outcomes compared to the configuration with parallel elec-
trodes. This information will assist clinicians in deciding whether to re-insert
electrodes when they are not completely parallel.

3.2 Related Work
One of the main aspects of treatment planning in IRE is the specific treatment
protocol administered to the patient. Several studies have investigated the in-
fluence of treatment protocols on the outcomes of IRE. This section provides a
compilation of literature highlighting the challenges associated with treatment
planning, particularly in relation to electrode placement.

The challenge of numerical modeling for clinical electroporation in liver tu-
mor ablation was addressed in [76]. The study investigated the model sensitiv-
ity to parameters, including the influence of a small translation or inclination
of a needle, and observed a significant impact on the distribution of the elec-
tric field. Translation of 3 mm produced a Hausdorff distance of 3.8 mm and
the difference in volume was 209 mm3. An inclination angle of 5° produced
a Hausdorff distance of 4.4 mm and the difference in volume was 247 mm3.
The results show that a small error in the needle location can lead to large
errors in the prediction of the treatment region.

A unicentric retrospective analysis where the influence of needle positioning
on ablation success of IRE was studied by [77]. The analysis identified fifteen
cases with residual tumors after IRE and compared them to thirty cases with
successful ablations. The results revealed that in patients with residual tu-
mors, there were significantly greater distances between the tumor center and
ablation center, as well as between the tumor and needle. Additionally, the
needle depth was found to be too short (2.1 mm versus 6.8 mm), and the mean
needle divergence was significantly higher (7° versus 3.7°). As the study was
retrospective in nature, the parameters of the needle could not be adjusted to
further investigate incomplete tumor ablation.
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The study by [78] analyzed the electric field distribution for non-parallel elec-
trodes. The effect of electrode position was evaluated for inclinations at 5° and
30° in numerical models and experiments. The experiments were conducted
using potatoes, while the numerical study was performed for linear and non-
linear conductivity scenarios. The results indicated that changes in conductiv-
ity and electrode orientation influenced the electric field distribution. Notably,
the maximum electric field was higher in cases involving nonlinear conductiv-
ity and non-parallel electrode configurations. However, it remains unknown
whether there is a safety threshold for needle orientation or not.

Achieving non-parallel electrode placement can also be accomplished by
varying the insertion depth. The effect of this parameter has been studied by
employing a 3D numerical model aimed at optimizing electrode configuration
parameters, such as electrode distance, insertion depth, and the number of
electrodes [21]. The results showed that V-IRE (the voltage required to
electroporate 95% of the tumor) increased as the electrode distance increased.
Furthermore, V-IRE values were the lowest for two electrodes and highest
for three electrodes. The study concluded that electrode distance had a more
significant impact on the IRE outcome compared to insertion depth.

3.3 Methods
Three types of electrode placements were investigated in this study: parallel,
sideward, and forward orientations (Figure 3.1). For forward and sideward
orientations, the electrode was rotated around the center of its active length
within a range of 5°-15°. It is important to note that this study focused on
configurations involving only two electrodes, where the orientation could oc-
cur on one electrode or on both electrodes simultaneously.

Finite element models (FEM) were developed to analyze the effect of elec-
trode orientation on the outcomes of IRE. A set of experiments were con-
ducted to validate the models. The first experiment involved measuring tissue
conductivity. Then, electroporation was applied to the tissue with various
electrode placements. The volumes of electroporated tissue were measured
and compared to the results obtained from numerical simulations, with the
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Figure 3.1: Electrode placement used in the experiments and finite element model,
(a) parallel, (b) sideward, and (c) forward orientation.

Dice score used as an evaluation metric for model validation. Once the mod-
els were validated, the FEM was extended to investigate the relation between
the electrode orientation and various electrode and pulse parameters in IRE.
Finally, a two-way analysis of variance (ANOVA) test was performed to un-
derstand the interaction between the parameters.

In this study, IRE experiments were conducted using potato tissue as the test
medium. Potatoes were chosen due to their distinct properties, which can aid
in evaluating the IRE outcomes. In potatoes, it has been observed that the
electroporated region becomes darker approximately 12 hours after electro-
poration [79]. This occurs through oxidation due to the release of polyphenol
oxidase that causes membrane rupture. Furthermore, potato tissue exhibits a
significant increase in conductivity after electroporation, mimicking the re-
sponse seen in vivo.

3.3.1 Finite Element Models

Three-dimensional models were designed using COMSOL Multiphysics v5.5
(Comsol AB, Stockholm, Sweden). This software supports fully dynamic
analysis and multi-physics modeling with defined boundary conditions. Pre-
vious studies [80, 81, 82] have used it as a finite element solver to compute
the electric field distribution for simulating the IRE process.
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In the 3D model, the geometry shape was simplified to reduce the number
of mesh elements for faster computation. The potato tuber was represented
as an ellipsoid, and the two electrodes were represented as cylinders with a
diameter of 1 mm and inserted into the center of the potato. BTX Gemini
X2 (Harvard Apparatus, USA) was used as a pulse generator in this study to
produce a series of square wave pulses with a pulse frequency of 1 Hz. How-
ever, the generated pulses were different than the ideal square wave, as the
pulse amplitude required some time to rise and fall. To mimic the real pulse
from the pulse generator, the electric pulses in the simulation were modeled
as square wave pulses with smoothing in the transition zone.

The values for potato conductivity and electric field threshold were derived
from conductivity tests, while other potato properties were obtained from rel-
evant literature. The electrode material was defined as structural steel, and its
properties were predefined within the COMSOL software. A summary of the
potato and electrode properties can be found in Table 3.1.

In COMSOL, the electrode orientation and various IRE parameters were con-
figured by adjusting their values within the model. The distribution of the
electric field within the potato was computed using Laplace’s equation:

∇ · (σ(E)∇φ) = 0 (3.1)

where σ is the electrical conductivity of the potato as a function of the elec-
tric field and φ is the applied electric potential. To complete the definition
of the model, appropriate boundaries were established, including electrically
insulating the potato tissue from the external environment.

3.3.2 Conductivity Test

The electrical conductivity of the potato tissue can be defined as a sigmoid
function of the electric field intensity σ(E) ([86]), as indicated by the follow-
ing Equation 3.2.

σ(E) = σ0 +
(σ1 − σ0)

2
(1 + tanh (kv(E − Eth))) (3.2)
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Table 3.1: Electrical properties of potato and electrode for numerical model

Parameter Value Reference

Potato
Heat capacity (cp) 3780 J/kg K [83]
Tissue density (ρ) 1100 kg/m3 [84]
Thermal conductivity (k) 0.562 W/mK [83]
Metabolic heat generation (qm) 2161 W/m3 [85]
Electrodes
Heat capacity cp 840 J/kg K
Thermal conductivity (k) 18 W/mK
Electrical conductivity (σ) 1e8 S/m
Relative permittivity (ϵ) 1
Density (ρ) 6450 kg/m3

Where σ0 and σ1 are the conductivity of the non-electroporated and electro-
porated tissue, respectively. kv is a fitting coefficient for the sigmoid function.
The coefficient is an arbitrary value that modifies the smoothness of the tran-
sition between σ0 and σ1. Eth is the electric field threshold for electroporation
and E is the applied electric field intensity.

The electric field threshold is the minimum value of the electric field required
to electroporate the entire potato cube. These parameter values, σ0, σ1, kv,
and Eth, were evaluated by finding the best fit of the pairs (E, σ(E)) using
the non-linear least squares method with the Curve Fitting Toolbox in Matlab
R2020b (The Mathworks, Inc., Natick, MA, USA).

Figure 3.2a shows the setup for the conductivity test. Potatoes were cut into
small cubes of 10 mm × 10 mm × 10 mm and were placed in a well casing
which was printed using a 3D printer. The dimensions of the casing were 11
mm × 11 mm × 11 mm (Figure 3.2b). Parallel plate stainless steel electrodes
were placed on the sides of the potato cube inside the casing. The dimensions
of the electrodes were 10 mm × 20 mm × 1 mm (thickness). The distance
between the plate electrodes was 10 mm (Figure 3.2c).
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Figure 3.2: (a) Experiment setup for conductivity test (b) Well casing printed using the
3D printer for placing the potato cubes (c) Parallel plate stainless steel as electrodes

A series of 50 square wave electric pulses, ranging in voltage from 100 V to
800 V, was applied to the potato cubes via a pulse generator. To determine
the resistance of the potato cube, a voltage divider circuit was employed. This
involved connecting a 1 kΩ resistor across the electrodes. The potato resis-
tance was derived from the voltage readings obtained using a high-voltage
probe connected to a digital oscilloscope. Three trials of measurement were
performed for each applied voltage. The resistance values were recorded, and
the conductivity of the potato was calculated using the formula presented in
Equation 3.3.

σ(E) =
1

R
× L

A
(3.3)

Where R is the resistance of the potato tuber, L is the width of the potato, and
A is the area section of the potato that was connected to the electrode.

To evaluate the effect of the IRE after the experiment, the potato cubes were
stored at room temperature. The oxidation of the potatoes became apparent
24 hours after electroporation. The intensity of the discoloration in the potato
cubes increased as the electric field strength increased. When the electric field
value exceeded the electric field threshold, the potato cubes exhibited a darker
appearance. The visualization of the potato oxidation can assist in confirming
the threshold obtained from the curve fit process.
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3.3.3 Validation Experiment

Potato tubers were treated with electroporation using different pulse parame-
ters and electrode orientations. The resulting volume of electroporated tissue
was used to validate the finite element model. The parameters tested in these
experiments included pulse strength and pulse number in parallel configura-
tions, as well as variations in the tilt of 5°and 10°in the sideward and forward
directions. The electrode orientation was adjusted by tilting the electrode from
the center of its active length. The electric field distribution is expected to be
different for single and dual electrode tilts since the electroporation outcome
is calculated based on the original position of the electrode.

A total of thirteen potatoes were used in this experiment, with the pulse pa-
rameters and electrode orientations for each potato listed in Table 3.2.

Table 3.2: Pulse and electrode parameter for validation experiment with pulse width
100 µs

Parallel orientation
Sideward orientation Forward orientation
(500 V, 50 pulses) (500 V, 50 pulses)

(1) 500 V, 30 pulses (6) Single electrode (5°) (10) Single electrode (5°)
(2) 500 V, 50 pulses (7) Single electrode (10°) (11) Single electrode (10°)
(3) 500 V, 90 pulses (8) Dual electrode (5°) (12) Dual electrode (5°)
(4) 800 V, 50 pulses (9) Dual electrode (10°) (13) Dual electrode (10°)
(5) 1000 V, 50 pulses

The electroporated volumes (darkened regions) of potatoes were measured by
taking MRI images of the potatoes 24 hours after electroporation, using the
MRI scanner located at the TechMed center at the University of Twente. T2-
weighted FLAIR sequence (Table 3.3) was chosen for the MRI scan based
on the study reported [79]. A picture of the experimental setup used for the
IRE experiments is shown in Figure 3.3a. The active length of the electrodes
was 18 mm and the distance between the electrodes was 10 mm as seen in
Figure 3.3b.
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Figure 3.3: (a) Validation experiment setup used for the electroporation of the potato
(b) Electrode and pulse parameter for the validation experiment.

The electroporation volumes obtained from the combination of pulse and elec-
trode parameters listed in Table 3.2 were also determined through numerical
simulation. These electroporated volumes, obtained from both experiment
and simulation, were used for model validation by measuring the volume of
electroporated tissue and calculating the Dice score. To ensure accurate com-
parison in Dice score calculation, it was important to align the position and
orientation of the electroporated regions obtained from the experiment and
simulation. For this purpose, the electrode position was taken as a reference
point, facilitating the alignment process. The aligned results were then ex-
ported to MATLAB for calculating the Dice score.

Table 3.3: MRI scan parameters used for the acquisition of MRI images of electropo-
rated potato tubers (T2-weighted FLAIR sequence).

Parameter Value

MR acquisition type 3D
Slice thickness 1.1 mm
Inversion time (T1) 1800 ms
Echo time (TE) 168 ms
Repetition time (TR) 7000 ms
Acquisition matrix 200
Echo train length 153
Flip angle 120°
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3.4 Results
This section describes the experimental results for validating the finite element
model and the statistical results from the parametric study.

3.4.1 Potato Characterization

The potato conductivity was determined using Equation 3.3 and the unknown
parameters (σ0, σ1, kv and Eth) were derived by fitting the experimental data.
Each conductivity value represents the average of three potato samples.

Figure 3.4a shows the oxidation of the potato cubes treated with various elec-
tric field intensities observed 24 hours after electroporation. The dark or
the oxidized region represented the electroporated region in the potato and
showed an increasing trend with the increase in the electric field intensity.
From the curve fit in Figure 3.4b, the following parameters were obtained:
Eth = 375 V/cm and kv = 0.0045. The values of σ0 and σ1 were determined
as 0.044 S/m and 0.454 S/m, respectively.

3.4.2 Model Validation

The mesh for the finite element model was built using the physics-controlled
mesh option in COMSOL. The mesh resolution was set to normal with a tetra-
hedral shape element. A convergence test was performed to determine the ap-
propriate element size for both the potato and electrode domains. In this test,
a sequence of 50 square wave pulses with a voltage of 800 V, pulse width 100
µs, and frequency of 1 Hz, were employed. By configuring the parameters
in the mesh option, the mesh was refined until the change in ablation volume
was within a 0.1% difference between two consecutive meshes.

From the result presented in Figure 3.5, the ablation volume change remained
below 0.1% when the number of elements exceeded 6987 elements. There-
fore, the number of elements in the mesh model was set to 6987 elements. The
element sizes (average edge length of elements) for the potato and electrode
domains were set to a maximum of 12.0 mm and 0.55 mm, and a minimum of
2.16 mm and 0.37 mm, respectively.
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Figure 3.4: (a) Oxidation of potato cubes observed 24 hours after electroporation (b)
Curve-fit obtained from the conductivity test. Each point is an average from n=3
potato cubes and the error bar represents the standard deviations.

Figure 3.5: Ablation zone volume vs. the number of elements for convergence test

Figure 3.6: (a) MRI image of one electroporated potato tuber (b) 3D reconstruction in
Slicer for potato, electrodes, and electroporated area from the MRI image (c) Electric
field distribution (V/cm) on the potato from finite element model simulation
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Figure 3.6a shows one of the MRI images capturing the potato after electro-
poration. The MRI images were loaded on 3D Slicer v4.11 to obtain the seg-
mentation of the entire potato, electroporated volumes, and electrodes. In 3D
Slicer, MRI images were manually segmented by selecting the pixel threshold
for each respective region. The electrodes were represented by the dark line
over the potato region, while the electroporated volumes had a brighter inten-
sity surrounding the electrodes. The painting tool was further used to refine
these segmented regions.

Figure 3.6b presents the 3D reconstruction of the segmentation for one of the
potatoes. The reconstructed electrode and potato models were imported into
COMSOL to calculate the electroporated volume using the simulation model.
The conductivity values σ0 and σ1, derived from the conductivity test, were
used in the simulations. The electric field distributions corresponding to the
pulse protocol used in the validation experiments were computed for each
potato. Figure 3.6c shows the electric field distribution acquired in one of the
slices from one of the potatoes.

The Dice score for all thirteen tested potatoes in this experiment is shown in
Figure 3.7. According to the findings reported in [87], the error in the electro-
porated area calculation for potatoes with a ∆V of 500 V was approximately
25%, and this error increased with higher applied voltage. Therefore, it is rea-
sonable to consider a Dice score of 0.7 as a threshold for a satisfactory match
in model validation for this experiment.

By averaging the Dice scores of all thirteen potatoes, the model achieved a
good result with a mean Dice score of 0.727±0.046. Therefore, we can con-
clude that the models have been successfully validated and can be utilized in
the parametric study.

3.4.3 Parametric Study

The numerical model was further extended to investigate the electric field dis-
tribution for different electrode placements (parallel, sideward, and forward
orientation) at various electrode and pulse parameter levels. Each test involved
the application of two pulse strengths: 1000 V and 3000 V.
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Figure 3.7: (a) The dice score obtained from thirteen potatoes in validation experi-
ment (b) Reconstruction of electroporated volume from one of the potatoes with the
result from MRI (red), simulation (green), and the overlapped between them.

The electrode parameters included the active length (AL) at levels of 10 mm,
20 mm, and 30 mm, and the electrode distance (ED) at levels of 10 mm,
15 mm, and 20 mm. In the AL test (Figure 3.8a), the electroporated volume
increased to 57% for sideward orientation with a dual-electrode setup tilted at
15° and AL of 30 mm. In the ED test (Figure 3.8b), the maximum increase
of 39% in electroporated volume was observed in a dual-electrode setup with
10° sideward orientation and ED of 10 mm.
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For pulse parameters, the pulse number (PN) was tested at levels of 50, 70, and
90 (see Figure 3.8c), and the pulse width (PW) was tested at levels of 50 µs,
70 µs, and 100 µs (see Figure 3.8d). The increase in electroporated volume
obtained with the variation of PN was less than 1% for both orientations. A
similar result was obtained when the PW was varied. Therefore, it can be
concluded that the changes in PN and PW were not significant in changing
the electroporated volume results.

To gain further insight into the obtained results, an analysis of variance
(ANOVA) was performed using IBM SPSS Statistics for Windows, version
27 (IBM Corp., Armonk, N.Y., USA). The ANOVA results showed that
the electrode distance (p<0.001), active length (p<0.001), and electrode
orientation (p<0.001) had a significant influence on the electroporated
volume. The interaction between electrode distance and electrode orientation
had a significant effect on the electroporated volume only in the single
electrode sideward orientation setup (p=0.023). Similarly, the interaction
between active length and electrode orientation had a significant influence on
the electroporated volume in all electrode orientations (p<0.001).

It was also observed that there was no significant difference in the electropo-
rated volume when comparing a parallel orientation to a single electrode with
5° orientation in sideward (p=0.134), forward (p=0.276) and dual electrode
with 5° orientation in frontal orientation (p=0.997) when varying the electrode
distance. Similarly, when considering the active length and electrode orienta-
tion, there was no significant difference in the electroporated volume between
parallel orientation and a 5° orientation in all electrode orientations.

3.5 Discussion

Based on the results of the parametric study, it is evident that the electrode
distance, electrode active length, and electrode orientation have a significant
impact on the increase of the electroporated volume. Among various electrode
orientations, the sideward orientation resulted in the highest increase in the
electroporated volume.
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The statistical analysis revealed that orientations up to 5° in both sideward and
forward directions can produce similar electroporated volumes compared to a
parallel orientation. Orienting both electrodes shows a significant increase in
the electroporated volume. This electrode arrangement may be considered for
treating deep-seated tumors where a parallel electrode orientation is not feasi-
ble. However, aligning the electrodes toward each other must be avoided due
to the high risk of overcurrent, which can potentially cause thermal damage
to the tissue. For tumors where a parallel electrode orientation is possible,
it can be considered safe to allow a tolerance level of up to 5° in electrode
orientation.

Three-dimensional numerical models were designed to simulate two electrode
placements on potato tissue. The accuracy of the numerical model was vali-
dated by comparing the electroporated regions obtained from the experiment
with those generated by the simulation. From thirteen potatoes, a mean dice
score of 0.727±0.046 was successfully achieved. However, some samples
presented lower Dice scores, ranging from 0.65 to 0.70.

One of the main factors contributing to the lower Dice scores is the challenge
of accurately measuring the electroporated region in potatoes. In this study,
the electroporated regions in potato images were manually segmented based
on the discoloration observed in the MRI images. Due to the lack of clear
boundaries, there is a possibility that the electroporated areas were not seg-
mented precisely. Furthermore, shrinkage of the potato tissue was observed
after the treatment, which could result in a reduction of the segmented re-
gion.

Another factor that can impact the accuracy of the model is the variability in
the conductivity values and the electric field thresholds of potatoes.

The results obtained from the conductivity test in this study are similar to
those reported in [88]. However, potato conductivity has been found to vary
in different studies, as reported in [87] and [89]. Moreover, the electric field
thresholds for potatoes mentioned in the literature range from 184 V/cm [89]
to 478 V/cm [88]. This wide range of conductivity values and electric field
thresholds poses a challenge in designing accurate numerical models for pre-
dicting the volume of electroporated tissue.
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Figure 3.8: Electroporated volume with various IRE parameters: (a) Active length,
(b) Electrode distance, (c) Pulse number, and (d) Pulse width.
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3.6 Conclusions and Future Work
IRE is a relatively new non-thermal tumor ablation technique. Despite its ad-
vantages, it is not considered as an immediate choice of treatment. One of
the reasons for this is the lack of a systematic approach to optimize treatment
planning. The investigation of the electrode orientation’s effect on IRE out-
comes is a step toward improving treatment planning. Maintaining a parallel
electrode configuration can be challenging, particularly when treating tumors
located deep within the body.

Our study aimed to examine the effect of electrode orientation along with sev-
eral IRE parameters on the IRE outcome using a 3D numerical model. The
findings showed that parameters such as the active length of the electrodes,
electrode distance, and electrode orientation significantly influenced the elec-
tric field distribution. Statistical analysis indicated that, for most orientations,
there was no significant difference in the electroporated volumes between a
parallel orientation and a 5° electrode orientation. Therefore, it can be con-
cluded that introducing orientations to an electrode up to 5° can result in a
similar outcome compared to an electrode in a parallel position.

To improve the accuracy of the current model, validation using hydrogels that
better mimic soft tissue properties can be conducted. Hydrogel offers the
advantage of transparency, making it easier to monitor and ensure precise
electrode placement and orientation [80]. In addition, validation on differ-
ent heterogeneous tissues with varying IRE configurations is necessary, as
potato tubers are relatively homogeneous compared to human or animal tis-
sue. The numerical models can also be further extended to implement more
electrodes. Finally, few studies have investigated the optimal dose of IRE pa-
rameters for parallel electrode orientations. Optimizing IRE parameters for
different electrode orientations can offer valuable insights to enhance the ac-
curacy of treatment planning by effectively targeting and covering the entire
tumor region.
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Liver and Tumor Segmentation Using

Deep Learning

Adapted from: Girindra Wardhana et al. “Toward reliable automatic liver
and tumor segmentation using convolutional neural network based on 2.5D
models”. In: International Journal of Computer Assisted Radiology and
Surgery 16 (2021), pp. 41–51.
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Abstract
Purpose We investigated the parameter configuration for automatic liver and
tumor segmentation using a convolutional neural network based on the 2.5D
model. The 2.5D model has shown promising results since it allows the net-
work to have a deeper and wider network architecture while still accommo-
dating the 3D information. However, there has been no detailed investigation
of the parameter configurations for this specific network model.

Methods In our study, we focused on several parameters, including the num-
ber of stacked layers, image contrast, and the number of network layers, and
implemented them in neural networks based on the 2.5D model. We trained
and tested these networks using the dataset from the liver and tumor segmen-
tation challenge. The network performance was further evaluated by compar-
ing the network segmentation with manual segmentation from nine technical
physicians and an experienced radiologist.

Results The results from the slice arrangement test demonstrate that networks
with multiple stacked layers outperform single-layer networks. However, the
Dice scores begin to decrease when the number of stacked layers exceeds
three layers. This suggests that adding too many layers can lead to overfitting.
In the contrast enhancement test, implementing contrast enhancement meth-
ods did not show statistically significant differences in network performance.
Additionally, in the network layer test, adding more layers to the network ar-
chitecture did not consistently result in higher Dice scores for the network.

Conclusions This chapter presents a comparison of network performance
based on the 2.5D model using different parameter configurations. Our find-
ings highlight the effect of each parameter, providing insights for the selection
of optimal configurations to improve the network performance in automatic
liver and tumor segmentation applications.
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4.1 Introduction

Liver cancer is among the leading causes of cancer death globally
(2015:810.000) with increasing diagnosed cases (2015:854.000) [91].
Prevention and treatment of liver disease are urgent since early action can
significantly reduce the progression of the disease. Clinicians utilize medical
imaging to provide an early diagnosis by providing a clear picture of the
possible lesion inside the patient’s body. Segmentation, the process of
separating the lesion from surrounding organs or tissues, plays a vital role in
extracting critical information such as size, shape, and precise location of the
lesions. Image segmentation facilitates diagnostic analysis and aids clinicians
in making informed decisions [92].

One of the segmentation strategies, manual segmentation, is still used regu-
larly by radiologists. Even though this method can provide precise liver shape
and volume, the method is time-consuming, laborious, and subjective, as it re-
lies on the skills and expertise of the clinician performing the segmentation.

The need for efficient liver segmentation techniques has led to the develop-
ment of more automated methods, for instance, contour optimization, semi-
automated, and fully automated approaches [93]. Contour optimization and
semi-automated methods provide clinicians with greater flexibility, as they
only need to identify the initial reference point, leaving the remaining seg-
mentation process to be completed by computer algorithms. However, these
methods are still prone to subjectivity due to the need for user input. By in-
corporating more automated steps into the segmentation process, both time
efficiency and segmentation precision can be improved [94]. With reduced
reliance on manual interaction, automated approaches offer the potential for
time savings and more consistent and accurate liver segmentation results.

Despite the advantages of automatic segmentation methods, there is still room
for improvement in their performance [95]. Segmenting the liver from Com-
puted Tomography (CT) images is a challenging task due to various contrast
agents and acquisition protocols, resulting in a wide range of liver intensity.
Additionally, the low contrast between the liver and adjacent organs makes it
difficult to detect the liver boundaries accurately. Automatic methods that rely
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on intensity information, such as threshold and region growing [96, 97], are
prone to detect other organs as liver areas due to the lack of shape control. On
the other hand, techniques that utilize descriptive shape information, such as
level set-based methods [98, 99] and statistical shape models [100, 101, 102],
face complexity in separating the liver from other organs due to the highly
varied shapes and sizes of livers among individuals.

Tumor segmentation poses an even greater challenge compare to liver seg-
mentation. While the liver has variations in size and shape, its location is
predictable. However, liver tumors have not only various sizes and shapes,
but also the location and numbers can vary considerably within a patient pop-
ulation. In addition, some tumors do not have clear boundaries, further limit-
ing the performance of automatic segmentation methods that rely on intensity
information for tumor identification.

In recent years, deep learning applications, especially convolutional neural
networks (CNNs), have shown great success in addressing the segmentation
problem. Unlike other methods, CNNs perform all processes automatically,
including feature extraction, without the need for handcrafted features.

In a recent segmentation competition, participants were challenged to develop
an automatic segmentation algorithm for the liver and tumors in contrast-
enhanced abdominal CT scans. Most of the participants employed deep neural
networks to segment the liver and tumors. Chlebus [103] presented a convolu-
tional neural network based on the 2D U-Net architecture. Two models were
proposed to segment the liver and tumors, and a random forest classifier was
employed to reduce false positives among the tumor candidates. Bi [104] pro-
posed cascaded ResNet to overcome the layer limitation in order to extract
more discriminative features. Other studies have shown that incorporating
3D information can improve segmentation results. Li [105] proposed hybrid
dense units that consist of 2D dense units to extract intraslice features and 3D
dense units to exploit interslice context from a volumetric image.

Including 3D information is reasonable, considering CT images are typically
volumetric medical images. However, implementing 3D convolutions encoun-
ters several issues, such as high computational cost and memory usage. An
alternative approach to accommodate 3D information into the network is by
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using a 2.5D model. Han [106] proposed a deep convolutional neural network
architecture that combines the long-range connections of U-Net and the short-
range residual connections of ResNet. Two models were developed: the first
model was used to segment the liver region as an input, and the second model
was used to detect and segment tumors. Both models worked in 2.5D, where
five adjacent slices were used as input, producing the segmentation of the cen-
ter slice. The main purpose was to maintain computational efficiency by using
2D slices while still providing 3D context information to the network.

The implementation of the 2.5D model has shown promising results as it al-
lows for a deeper and wider network architecture while still incorporating the
benefits of 3D information. In this study, our goal is to evaluate how dif-
ferent configurations of input parameters affect the accuracy of segmentation
outcomes, with the aim of optimizing the performance of the neural network
based on the 2.5D model. We will investigate three main parameters. The first
parameter is the number of stacked layers in the input image, which is a defin-
ing characteristic of the neural network based on the 2.5D model. The second
parameter is the effect of image contrast, which will be tested by applying
various contrast enhancement techniques to the dataset. The third parameter
is the number of layers in the network architecture.

4.2 Materials and Methods
4.2.1 Datasets

The dataset used in this study was obtained from the Liver and Tumor
Segmentation (LiTS) challenge [107], which was organized in conjunction
with Medical Image Computing and Computer Assisted Intervention
(MICCAI) 2017 and IEEE International Symposium on Biomedical Imaging
(ISBI) 2017. The dataset contains contrast-enhanced abdominal CT
scans from various clinical sites, utilizing different scanners and scanning
protocols. As a result, the dataset has a wide range of variations in resolution
and image quality [108]. It consists of 131 training images and 70 test
images. Clinical experts manually performed segmentations for each training
image, which serve as the ground truth.
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To investigate the effects of slice arrangement and contrast enhancement on
input images, we used the training images for both training and evaluation.
Specifically, the training images were separated into 111 images for training
and 20 images for evaluation. On the other hand, the study exploring the effect
of layer numbers in the network architecture will utilize the entire dataset,
including both the training and test images. The test result will be validated
through submission to the LiTS website.

4.2.2 Network Training

The network training process is divided into four steps, as illustrated in Fig-
ure 4.1. In the first step, several actions were performed on the dataset to
standardize the input images. This involved calibrating the pixel values of the
images and limiting the image intensity range. In the second step, the net-
work architecture was defined. Additionally, the pre-processing tasks were
carried out, such as the investigation on the number of image slices and im-
age contrast. In the third step, training options were configured. Once the
configuration was complete, the network training process started, enabling
the network to learn and optimize its performance. Upon completion of the
training process, the network became capable to segment the liver and tumors
from CT scan images. Finally, in the fourth step, the post-processing stage
was applied to refine the segmentation result, leading to the final outcome.

STEP 1: Image Normalization

The image intensity in the CT scan dataset is measured using the Hounsfield
unit. Due to variations in machines and imaging protocols used during image
acquisition in the dataset, intensity calibration is required. The calibration
process involves applying a linear calibration function, which is expressed by
Equation 4.1:

HU = a ·HUo + b (4.1)

where a represents the multiplication factor and b represents the addition fac-
tor. These factors can be obtained from the header information of the CT
image. The initial pixel value from the image is denoted as HUo, and the
calibrated image intensity is denoted as HU .
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4Figure 4.1: Network training workflow: image preparation, network architecture, net-
work training option, and post-processing

To enhance the visual contrast and simplify the image analysis, the image
intensity is windowed to a specific range. In this study, the image intensity is
truncated to the range of [-250, 250] to focus on the fat tissue and soft tissue
areas. Subsequently, the intensity values are normalized to a grayscale unit
range of [0, 255]. All processes in step 1 are illustrated in Figure 4.2.

STEP 2: Neural Network Architecture

The network architecture employed in this study was based on SegNet net-
work structure [109], which consists of an encoder and decoder part. How-
ever, two main modifications were introduced to improve the network’s per-
formance. The first modification utilized the long-range connection from U-
Net [110], which connects the output of the encoder to the decoder directly.
The second modification was the implementation of the short/skip connections
that are commonly found in the ResNet [111]. By incorporating these connec-
tions, the information from the input of the previous layer is preserved in the
stacking layers. This approach helps reduce the risk of gradient vanishing in
the deeper network and facilitates easier optimization during the training.
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Figure 4.2: Normalization steps for images in the dataset: (a) Raw image with inten-
sity (0,2056), (b) calibrated image with intensity (-1024, 1032), and (c) normalized
image with intensity (0,255)

STEP 3: Training

Network models were developed using Deep Learning Toolbox in MATLAB
2018a (The MathWorks, Natick, USA). The training was performed on a sin-
gle NVIDIA GeForce GTX 1070 GPU with 8GB memory. The initial learning
rate was set to 0.001 and Stochastic Gradient Descent with momentum of 0.9
was used as the optimizer. During training, the learning rate was reduced by
a factor of 0.1 every five epochs, and each model completed training after 20
epochs. To increase the amount of training data, data augmentation techniques
such as reflection, rotation, scaling, and transition were randomly applied.

To address the issue of class imbalance and mitigate the effect of dominant
classes on the segmentation result, balanced data across all class labels were
preferred. Several methods have been discussed by López et al. [112] to
overcome the issue of unbalanced data. In this study, two methods of class
balancing were implemented during the training process.

The first method involved data resampling, where the training data was modi-
fied to produce a more balanced dataset. This approach was similar to the one
applied by Chlebus et al. [103], where only image patches containing tumors
and background were used, and Bi et al. [104], who considered slices con-
taining both the liver and tumors for training their network. In this study, the
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undersampling technique was applied to the training set, where slices from the
CT image volume were filtered based on the segmentation labels. Slices con-
taining background, liver, and tumor were selected for training the network,
while slices containing only the liver without a tumor or just the background
were discarded. The second method involved applying class weight to adjust
the cost of class errors. The lower the presentation of the class, the higher the
class weight it has. The class weight was calculated using Equation 4.2.

classWeight =
N

n
(4.2)

where N represents the total pixel number in the dataset and n which repre-
sents the total pixel in a specific class.

STEP 4: Post-processing

The segmentation of CT images was performed in a slice-by-slice manner,
where each individual slice from the CT image was segmented separately.
The segmentation results from each slice were then combined to form a 3D
segmentation volume.

In this study, post-processing steps were applied to reduce noise in the liver
segmentation volume. In the beginning, a liver mask was created by select-
ing the largest 3D-connected component from the segmentation volume. This
mask was applied as a filter to remove the false positive liver and tumor seg-
mentation outside the liver area. Afterward, morphological operations, such
as erosion and dilation, were employed to smooth the surface of the liver vol-
ume. These operations helped refine the boundaries and enhance the overall
quality of the liver segmentation.

4.2.3 Study Design

Slice arrangement test
Two types of networks were trained: a single-layer network and a multiple-
layer network. The difference between these networks lies in the variation of
the slice number in the input image. The multiple-layer networks, which rep-
resent the networks using the 2.5D model, use a stacked input layer to provide
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Figure 4.3: Experiment setup for parameter study on neural network based on 2.5D
model. (a) Slice arrangement test with five networks using a different number of
stacked layers, and (b) contrast enhancement test with four networks applying dif-
ferent contrast enhancement techniques, where (1) basic contrast enhancement, (2)
histogram equalization filter, (3) gamma correction filter, and (4) bilateral filtering

3D information to the network. The stacked layer is constructed by combining
the center layer with additional layers from the top and bottom. The segmen-
tation map for this stacked layer corresponds to the center slice. The networks
were trained with various configurations, including one slice, three slices, five
slices, seven slices, and nine slices. More detailed information about these
configurations can be found in Figure 4.3a.

Contrast enhancement test
In the image normalization step, we implemented a technique called basic
contrast enhancement, which involves windowing and normalizing the CT
image to increase its contrast within a specific intensity range. We can further
enhance the CT image contrast using different methods such as histogram
equalization, gamma correction, and bilateral filtering. The contrast difference
in the final image from each method is illustrated in Figure 4.3b.
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4Figure 4.4: Overview of convolutional neural network model architecture that in-
spired by the encoder and decoder structure. (a) Net01 combines the SegNet model
with long-range connections from U-Net and short-range connections in ResNet. (b)
Net02 is an expanded version of Net01, where the dense connection of the encoder
and decoder is applied in the structure to improve the number of layers in the network.
(c) Description of layer type in Net01 and Net02. Convolution layers and adaptive
layers use a kernel size of 3×3 and 1×1, respectively. Meanwhile, Pooling and un-
pooling layers are used to half and double the pixel resolution.

Four networks were trained to evaluate the impact of contrast enhancement
on network performance, One network utilized only basic contrast enhance-
ment, while the other three networks utilized additional contrast enhancement
methods in their input images alongside the basic contrast enhancement. The
objective was to determine the most suitable method of contrast enhancement
that can effectively improve network performance.

Network layer test
In this experiment, two network architectures were designed, as illustrated in
Figure 4.4. The first architecture, referred to as Net01, was based on the Seg-
Net structure. The Net01 structure was employed during the slice arrangement
and contrast enhancement test. Meanwhile, the second structure, referred to
as Net02, was an upgraded version of Net01, where the network architecture
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was expanded from one to two encoder and decoder components. This expan-
sion was inspired by the approach proposed by Fu et al. [113] to increase the
number of layers in the encoder-decoder structure. Instead of simply adding
more convolutional layers to the same encoder-decoder structure to increase
the network parameters, it was found to be more effective and efficient to stack
additional encoder and decoder components.

Segmentation comparison test
To gain further insights into the performance of the proposed networks, a seg-
mentation comparison experiment was conducted involving ten subjects with
a clinical background, including an experienced radiologist and nine technical
physicians. In this experiment, the participants manually performed segmen-
tations of the liver and tumors on 15 image slices, with each slice being ob-
tained from 15 different patients in the evaluation dataset. At the same time,
the segmentations of these image slices were obtained automatically using the
proposed networks (Net01 and Net02).

4.3 Result and Discussion

4.3.1 Slice Arrangement Test

The Dice scores of liver and tumors were used to evaluate the performance of
neural networks. Statistical analysis revealed significant differences in the
mean Dice scores for liver (F(1.752, 31.533) = 8.278, P = 0.002) and tu-
mor (F(2.278, 41.009) = 9.322, P < 0.0005) among the different stacked
slice numbers. Based on the result presented in Table 4.1, the network using
a single slice obtained a lower Dice score compared to the other networks
that adopted multiple slices in their input image. The network with one slice
achieved a Dice score of87.7±5.4% for the liver and 33.5±26.3% for the tu-
mor. In contrast, the network with three slices achieved the highest Dice score,
with values of 90.5± 4.7% for the liver and 41.1± 28.0% for the tumor.

Increasing the number of stacked slices in the input image provides the neural
network with more 3D context. However, adding more layers may decrease
performance due to the risk of overfitting the training set. This complexity is
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Figure 4.5: Selected segmentation result of liver and tumor from slice arrangement
test. Liver and tumor boundaries are represented by the green and yellow dashed lines
in the segmentation result and the red and blue solid lines in the ground truth.

particularly relevant for networks utilizing 2D convolution layers, where each
slice is processed individually. It is important to maintain similar information
across all stacked slices to ensure consistent performance.

Using Hausdorff distance as an additional evaluation metric, it is clear that
multiple-layer networks have a better segmentation compared to single-layer
networks, as indicated by smaller Hausdorff distance. For liver segmentation,
there is no correlation between the number of stacked slices and the Hausdorff
distance. This is because the liver volume consists of a number of slices, and
the liver shape remains relatively consistent throughout the stacked layers.
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In tumor segmentation, the Hausdorff distance increases as the number of net-
work layers increases. With a small number of stacked layers, the tumor shape
in the center slice closely resembles the tumor shapes in the top and bottom
layers. However, as the number of slices increases, the tumor shapes in the
top and bottom layers may differ significantly or not appear at all. This incon-
sistency distorts the tumor shape information in the network, thereby reducing
the network’s ability to accurately recognize tumors. This can be observed in
Figure 4.5, where the input image has more than three layers, resulting in a
higher number of false positive tumors detected in the segmentation result.

4.3.2 Contrast Enhancement Test

Four networks were trained using different contrast enhancement techniques
with three stacked slices in the input image. The results in Table 4.2 indicate
that employing histogram equalization to increase image contrast contributes
to a lower Dice score compared to other techniques. Histogram equaliza-
tion enhances contrast by equalizing the distribution of pixel intensities based
on the image histogram. However, this method relies on the histogram data,
which varies across different image datasets. As a result, each image is treated
differently, leading to variations in intensity distribution for the same organ in
different image datasets. This variability makes it challenging for a network
to identify specific features representing the volume of an object in the image.
Therefore, the network with the histogram equalization method has the worst
segmentation result among other contrast enhancement techniques, with an
average liver Dice score of 85.1±16.9% tumor Dice score of 36.4±26.6%.

The network employing bilateral filtering achieves the highest mean Dice
score, showing a slight improvement over the network with basic contrast
enhancement. However, the implementation of bilateral filtering can be risky,
particularly for tumor segmentation. This technique increases the image con-
trast by applying a Gaussian filter for reducing the noise in the image, but it
may also remove small lesions from the image.
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Figure 4.6: Segmentation comparison between ground truth and (a) Net01 segmen-
tation and (b) Net02 segmentation. Three main differences are identified. (Case
1-White box) A tumor that missing from Net01 can be identified by Net02; (Case
2-Yellow Box) Some false positive tumors are identified by Net02; (Case 3-Red Box)
Net02 tends to overestimate the tumor segmentation size. Liver and tumor boundaries
are represented by the green and yellow dashed lines in the segmentation result and
the red and blue solid lines in the ground truth.

Although variations in the mean Dice scores were observed in this test, the
differences were not statistically significant (Pliver = .117 and Ptumor = .094).
The test results do not provide a clear explanation of the effect of additional
contrast enhancement on network performance. Therefore, we decided to pro-
ceed with only the basic contrast enhancement technique in the next phase.

4.3.3 Network Layer Test

Based on the result of the slice arrangement and contrast enhancement test,
two networks, Net01 and Net02, were trained with a different number of lay-
ers. The performance of both networks was evaluated by segmenting the test
dataset, which consisted of 70 patients from the LiTS dataset. The evaluation
scores are presented in Table 4.3.
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Table 4.3: Comparison of various liver and tumor segmentation methods in LiTS test
dataset (70 patients)

Team
Lesion Liver

Dice
per
case

Dice
global

Recall
at 50%
overlap

Dice
per
case

Dice
global

Net01 -
Encoder and
Decoder Net

56.2% 67.2% 0.348 91.4% 92.8%

Net02 -
Densely
Encoder and
Decoder Net

50.1% 65.3% 0.465 91.1% 92.2%

Hans.meine[103] 67.6% 79.6% 0.397 96.0% 96.5%
H-DenseUnet[105] 72.2% 82.4% 0.393 96.1% 96.5%

Figure 4.7: Average Dice and recall score of liver and tumor segmentation on 15 im-
age slices. The segmentation were obtained from the manual method (ID1 to ID10)
and the automatic method (Net01 and Net02)
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This table shows that the liver Dice scores for Net01 and Net02 are quite
similar. However, Net01 has higher tumor Dice scores compared to Net02.
This can be explained by the segmentation results shown in Figure 4.6.

Net02, with its increased number of layers, has higher sensitivity to tumors
compared to Net01. This is because the additional layers provide more fea-
tures and improve tumor recognition in Net02. For instance, in case 1, a tumor
that was missed by Net01 is successfully identified and segmented by Net02.
However, higher sensitivity also means that some tumors are misidentified by
the network, as observed in case 2. In addition, Net02 tends to exaggerate
the tumor area, as shown in case 3. As a result, the false positive tumor rate
increases, contributing to the lower Dice score of Net02 compared to Net01.

Although our network’s segmentation scores are lower compared to other
methods mentioned in Table 4.3, it is worth noting that those methods im-
plement additional techniques to improve their performance. For instance, the
hans meine team [103] applies extensive post-processing, such as conditional
random field and random forest classifier, to remove falsely detected tumors.
On the other hand, H-DenseUNet [105] combines image features using both
2D DenseUNet and 3D DenseUNet to achieve better recognition of the liver
and tumor areas.

4.3.4 Segmentation Comparison Test

The test for comparing the performance of manual and automatic segmen-
tation was conducted using 15 image slices from 15 different patients. Two
evaluation metrics, Dice score and recall, were used, and the results are shown
in Figure 4.7.

For liver segmentation, the automatic segmentation labeled with Net01 and
Net02 achieved average liver Dice scores of 95.3±1.8% and 94.6±2.0%, re-
spectively. It surpassed the result from manual segmentation, which had a
maximum score of 91.9±3.5%. However, in terms of recall metric, the man-
ual segmentation slightly outperformed the automatic segmentation, with a
score of 96.7±2.9% compared to 96.6±4.1% for Net02. These results indicate
that both methods are capable to identify the liver area properly.
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Figure 4.8: Selected segmentation results from the manual and automatic segmenta-
tion in comparison tests reveal two main differences. (Case 1-white box) A tumor
was not identified by the segmenter. (Case 2-white box) A group of small tumors was
identified separately instead of treated as a big tumor. Liver and tumor boundaries are
represented by the green and yellow dashed lines in the segmentation result and the
red and blue solid lines in the ground truth.

In tumor segmentation, the automatic method outperformed manual
segmentation in both the Dice score (78.4±16.7% for Net01) and recall
(recall 83.6±24.7% for Net02). The highest scores achieved by manual
segmentation were 67.6±24.4% for the Dice score and 73.1±27.4% for recall.
The main differences between automatic and manual segmentation can be
seen in Figure 4.8. Most participants struggled to detect tumors with similar
intensity to the image background, as indicated by the white box in Figure 4.8
Case 1. In addition, participants tended to identify nearby tumors as separate
entities, while the network grouped them together as a single tumor, similar
to the ground truth segmentation (Figure 4.8 Case 2). Furthermore, when
comparing the manual segmentation performed by our participants in this
study to the ground truth manual segmentation (LiTS), the lower Dice score
obtained could indicate different levels of clinical expertise.
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4.4 Conclusion
This chapter presents a comparison of network performance in automatic liver
and tumor segmentation using a 2.5D model with different parameter configu-
rations. Our results demonstrate that networks utilizing multiple stacked slices
achieve higher Dice scores compared to networks using a single slice. Further-
more, it was observed that the network with three slices achieved the highest
score while adding more slices decreased the score. The application of con-
trast enhancement methods to the input image did not show statistically sig-
nificant results in liver and tumor segmentation. Further studies with a larger
sample size are needed to verify the effect of image contrast on network per-
formance. When it comes to network layers, increasing the number of layers
improved tumor sensitivity. However, without additional post-processing to
filter out false positives, this increase also led to a reduction in the tumor Dice
score.

Based on the findings of this study, a clear correlation between parameter
configuration and network performance was observed. Therefore, it is recom-
mended to explore different configurations of network parameters to further
improve the segmentation result.

The development of an automatic method for liver and tumor segmentation of-
fers benefits to clinicians by providing faster segmentation with high accuracy.
However, further improvements are required. Implementing liver detection
can help reduce the processing time by focusing only on slices containing the
liver. Additionally, incorporating a combination of 2D and 3D convolutions in
the network structure to provide 3D context information may contribute to im-
proved segmentation outcomes [114]. Advanced post-processing techniques
for tumor segmentation are also necessary to enhance accuracy. Additionally,
the application of neural networks for image segmentation is not limited to
CT images. With suitable modifications to the network and dataset, it can also
be adapted for use with MR images, which are being increasingly utilized in
medical practice due to their lower associated risks.
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Design and Characterization of an

MRI-Guided Robot for IRE

Adapted from: Girindra Wardhana et al. “Design and Characterization of a
Multiple Needle Insertion MRI-guided Robot for Irreversible Electroporation
(IRE) Treatment”. In: 2022 9th IEEE RAS/EMBS International Conference
for Biomedical Robotics and Biomechatronics (BioRob). 2022, pp. 1–6.
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Abstract
Irreversible electroporation (IRE) is a promising tumor treatment that uses
an electric field to kill tumor cells. During treatments, 2-6 needles are in-
serted around the tumor, preferably placed in parallel and located at the same
depth. This allows the electric field to be effectively distributed across the
cell to destroy tumors. In this chapter, we present a body-mounted robot with
four degrees of freedom (140 mm× 147 mm× 113 mm) designed to assist in
multiple needle placements under Magnetic Resonance Imaging (MRI) guid-
ance. The robot and the actuators can be classified as an MR-safe system,
where the material composition consists of non-metallic, non-magnetic, and
non-conductive materials to allow safe operation inside the MRI scanner. The
accuracy of the robot was evaluated, and the maximum translation error was
0.72 ± 0.26 mm on the horizontal axis and 1.60 ± 0.75 mm on the vertical
axis. The compatibility of the robot with MRI was evaluated and no artifacts
or changes to the signal-to-noise ratio were observed in the MRI images. The
proposed robot was able to cover the target tumor area and support the place-
ment of multiple needles for IRE treatment.
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5.1 Introduction
Various modalities have been developed as minimally invasive treatments for
liver tumors. Cryoablation, microwave ablation, and radiofrequency ablation
are commonly used alternatives to surgical resection for larger tumors [116].
However, these techniques have drawbacks, such as the potential damage to
vital structures near the liver [117], and the possibility of incomplete ablation
due to heat dissipation in larger vessels caused by local blood flow [118].

Irreversible electroporation (IRE) is a non-thermal ablation technique that has
shown promising results in treating liver tumors. IRE applies sufficiently high
electric fields to tumor cells, which induces a permanent opening to the cell
membrane and leads to cell death. [119]. IRE has several advantages over
other tumor treatments, including the preservation of vital structures from
thermal injury and the avoidance of the heat sink effect [30].

Accurate positioning and placement of needles into tumors are essential in
IRE to ensure complete tumor removal [120, 121]. Multiple needles are re-
quired and need to be placed in parallel and at equal depth for effective tumor
ablation [122]. In small tumors (<�3 cm), two needles are typically suffi-
cient, while larger tumors (>�3 cm) may require up to six needles [123].

There has been a growing interest in using robots together with magnetic res-
onance imaging (MRI) to accurately place needles [43]. An advantage of this
technique is that the robot can be adjusted inside the MRI bore to achieve
accurate needle placement. This may reduce the number of times the patient
needs to be in and out of the MRI bore for needle adjustment which is ex-
pected to significantly reduce the procedure duration. In addition, specific
MRI sequences can be used to measure the electric field radius during tumor
treatment, which may help predict the tissue ablation coverage in IRE [124].

The MRI safety of the robot should be identified clearly before it can be
used in the Magnetic Resonance (MR) environment. According to the ASTM
F2503 standard, the safety of medical devices can be labeled into three cate-
gories: MR safe, MR conditional, and MR unsafe. Based on this classifica-
tion, the robot material should be carefully selected in the design process in
order to build an MR-safe robotic system.
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How the robot is fixed and mounted should also be considered. The robot
can be fixed to a table, floor, or scanner bed. This provides a rigid platform
and allows the robot to be directly registered to the scanner workspace, which
improves the accuracy of needle positioning. A commercial computed tomog-
raphy (CT)-guided robotic system (Maxio, Perfint Healthcare, USA) offers a
solution for needle insertion, increasing needle placement accuracy compared
to the manual placement of IRE probes [37]. However, movements that may
occur during insertion due to organ motion or tissue deformation may need to
be corrected manually, increasing the procedure time.

Another option is to mount the robot to the patient’s body, where the robot is
fixed directly to the patient’s skin or MRI coil. In this way, the robot moves
together with the patient, which is less vulnerable to misregistration of the
guidance image due to organ motion. Several patient-mounted robots have
been developed for percutaneous intervention. A shoulder-mounted robot
with four degrees of freedom (DOF) [125], had two identical stages that im-
plemented a scissor mechanism to achieve a large workspace within a compact
model. Hungr et al. developed a light puncture patient-mounted robot with a
workspace of 135 mm×120 mm [126]. This five-DOF robot inserted needles
into thoracic and abdominopelvic regions under CT and MRI guidance. Li et
al. developed a fully actuated six-DOF robot with needle alignment and a nee-
dle driver module that assisted injection into the lower back with a workspace
of (�80 mm) [127].

Although various patient-mounted robots with a large workspace have been
developed, most of these systems do not support multiple needle insertion.
Wu et al. developed a compact patient-mounted robot that supported the in-
sertion of multiple needles [128], but only through a single entry point. Using
this system for the case of multiple needle entry points would require an ad-
justment step for each insertion. He et al. developed small patient-mounted
robots that could treat multiple tumors in different locations [43]. However,
this system was not suitable for treating larger tumors where multiple needles
have to be inserted close together. The minimum distance between the needles
is limited by the robot dimension since the insertion of multiple needles was
accomplished by using several robots.
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In our study, a patient-mounted robot has been developed that can support
multiple needle insertion for IRE treatment of tumors in the liver, pancreas,
and abdomen area. The proposed system can position multiple needles using
a single device with a large workspace (�119 mm), and offers a solution to
the multiple entry points and the electrode minimum distance problem seen
in previous robot designs. The robot and actuators were made using MRI-
compatible materials, enabling the robot to operate under the MRI scanner.
We validated the performance of the proposed robot and the compatibility of
the robot material with MRI.

5.2 Methodology

5.2.1 Robot Design Requirements

The main goal of the proposed robot is to help clinicians position electrodes
under MRI guidance. To achieve this goal, the following points were consid-
ered when designing the robot:

1. Robot components made using nonmetallic, non-magnetic, and non-
conductive materials

2. Actuators can operate safely inside the MRI

3. The robot is not too heavy, especially for the patient-mounted model

4. The robot fits within the dimensions of the MRI bore.

5. The robot has enough space to accommodate multiple needles

The robot was designed to operate within a Magnetom Aera 1.5T MRI scanner
(Siemens AG, Munich, Germany) with an open-bore design and a 700 mm
diameter. The robot was secured directly to the patient’s body using belts that
were connected to the table and the strap slots in the base of the robot. The
robot was mounted on the abdominal area, so needed to be less than 350 mm
high. A robot width of less than 200 mm was chosen based on the median
abdominal diameter of men and women [129].
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Figure 5.1: (a) CAD model of body-mounted robot prototype showing the multiple
needle holder, robot degree of freedom and dimensions (given in mm). (b) Robot
prototype detail in top and side view
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Moir et al. [130] showed that IRE can treat a tumor size of 1-7 cm. To cover
the minimum tumor size, the robot must be able to position the needle with an
error of less than ±5mm. To achieve complete tumor ablation, a safety mar-
gin of 5-10 mm should be considered during IRE treatment [131]. Therefore,
the robot workspace should cover the maximum tumor size as well as an addi-
tional safety margin (> �90 mm). The electrodes should be placed parallel to
each other, although small deviations may be required to place all electrodes
in the desired position. IRE protocol allowed for a maximum angulation of
10◦ to ensure a homogeneous distribution of the electric field [132].

5.2.2 Overview of Robot Structure

The robot components were 3D printed with Makerpoint Ultimaker Tough
PLA material (Makerpoint Holding, Wageningen, The Netherlands) and were
fixed together using nylon screws and bolts. These materials were chosen
because they are lightweight and MRI-compatible. After all components were
assembled, the robot had a total weight of 240 g and dimensions of 140 mm×
147 mm × 113 mm. The DOFs and dimensions of the robot prototype are
shown in Figure 5.1.

The robot was designed to guide the simultaneous insertion of two electrodes
at a fixed distance of 10-25 mm. A multiple needle holder in the robot ensures
parallel placement of the electrodes (Figure 5.1). The distance between the
electrodes must be at least 10 mm and not exceed 20-25 mm for optimal treat-
ment [133, 26]. If more than two electrodes are required, they can be inserted
in sequence, following a planned path to avoid collision of the electrodes with
the robot frame.

The robot had four pneumatic motors, each of which provides actuation to
four separate joint states q1, q2, q3, and q4, as shown in Figure 5.2. Mo-
tor q1 provides translation along the x axis (1st DOF). Motor q2 and q3 are
mounted in parallel to provide translation along the y axis when moved to-
gether (2nd DOF) and rotation around the x axis when moved differentially
(3rd DOF). Finally, motor q4 provides rotation around the z axis (4th DOF).
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Figure 5.2: Joint motion of the robot, with (a1) robot top view showing (a2) transla-
tion motion in x axis by motor q1 and (a3) rotation motion in z axis by motor q4; (b1)
Robot side view showing two translation motion in y axis for (b2) motor q2 and (b3)
motor q3, combined translation for pitch motion in the robot.

Joint movement in the robot was actuated using pneumatic stepper motors
[134] that were produced at the University of Twente. The motor was 3D
printed with Stratasys Objet Eden260 (Stratasys Ltd., Eden Prairie, MN, USA)
using FullCure720 material. Two types of motors were used: a linear motor
and a rotational stepper motor. The resolution of the motor depends on the size
of the stepper teeth/rack. The smallest step size for the linear motor was 0.625
mm, and the minimum angle for the rotational motor was 0.5°. The motor
position and joint motion of the robot prototype are shown in Figure 5.2.

5.2.3 Forward Kinematics

Two intermediary variables θ and dtarget, (Figure 5.3), were used to derive the
forward kinematics. θ represents the change in orientation around the x axis
due to q2 and q3, while dtarget is the needle translation along the y axis at z = 0.
Other variables, such as the horizontal distance between the center of the top
motor and the needle position (dneedle = 26 mm), the vertical distance of q2 and
q3 (lmotor = 40 mm), and the vertical distance between the target at z = 0 and
q3 (ltarget = 51.9 mm), were derived from the robot prototype dimensions.
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Figure 5.3: Diagram showing the robot geometry in the y-z plane. The initial refer-
ence configuration of the robot is shown in the left image, where the needle is located
at the center of the workspace pointing straight downwards, using actuator configu-
ration q = [q1, q2, q3, q4]

⊺ = [0, 0, 0, 0]⊺. The needle orientation around the x axis is
adjusted by the motion of motor q2 and q3 in the y axis as shown in the right image.

The orientation change θ can be written in terms of q2 and q3 by:

θ = atan2
q3 − q2
lmotor

. (5.1)

Furthermore, dtarget can be calculated by extrapolating the line made by two
points (•, q2, lmotor + ltarget) and (•, q3, ltarget) to the reference target plane at
z = 0.

dtarget =
ltarget

lmotor
(q3 − q2) + q3. (5.2)

Finally, the mapping from the actuator space to the end effector space is given
by the transformation matrix Tee. It is obtained by compounding the transfor-
mation for each degree of freedom, including the insertion motion:

T ee = T q4 T dtarget T θ T q1 T qinsert , (5.3)
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T ee =

[
Rq4 03×1

01×3 1

]I3×3

 0
dtarget
0


01×3 1

[
Rθ 03×1

01×3 1

]
I3×3

q10
0


01×3 1


I3×3

 0
0

qinsert


01×3 1

 ,

where I is a 3 × 3 identity matrix, qinsert is the needle insertion degree of
freedom (manually performed), and the rotation matrices are given by:

Rq4 =

cos q4 − sin q4 0
sin q4 cos q4 0
0 0 1

 ,Rθ =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 .

5.2.4 Workspace Analysis

The robot workspace is limited by the motion of the pneumatic stepper motor
and the collision of the needle with the robot frame at the target plane (z = 0).
Using forward kinematics, the boundary of the workspace can be calculated
by substituting q1, q2, q3 and q4, which gives a cone-shaped boundary.

The cone-shaped robot workspace has a top diameter of 119.18 mm for elec-
trode insertion on the skin and becomes larger depending on the depth of the
electrode. The robot can also support a large insertion angle normal to the skin
surface, with a maximum tilt of 32.3◦. With proper placement on the patient’s
body, the robot workspace is large enough to cover the maximum tumor size,
including the safety margin for IRE treatment (> �90 mm), and the maxi-
mum angulation for the electrode (> 10◦) as discussed in subsection 5.2.1.
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5.3 Experiments and Results
The robot was controlled using Robot Operating System (ROS) Melodic in
Ubuntu 18.04 operating system. The needle trajectory was calculated using
the ROS MoveIT package. By providing the position of the target, MoveIT
calculated the inverse kinematics of the robot while preventing collision of
the joint position. After obtaining the joint position, Arduino Mega 2560 was
used to activate the pneumatic valve and actuate the pneumatic motor into the
desired position. Open-loop control was used to move the pneumatic motor
based on the motor step.

5.3.1 Needle Accuracy Test

The accuracy of the robot in free air was tested by inserting a needle into the
target points as depicted in Figure 5.4. We opted to use only a single nee-
dle in this accuracy test, as the additional needles will move together due to
the rigid connection to the needle holder. The positioning error of one needle
should not differ compared to multiple needles, since the motion between the
needles are relative to each other. The error is mainly introduced by the fab-
rication accuracy of the 3D-printed needle holder, which has sub-millimeter
accuracy.

Table 5.1: Robot positioning accuracy (in mm)

Needle angle
0 degree 5 degrees 10 degrees
Tx Ty Tx Ty Tx Ty

Mean error [mm] 0.21 0.70 0.62 0.81 0.72 1.10

Std. deviation [mm] 0.14 0.50 0.18 0.53 0.26 0.66

Needle angle
15 degrees 20 degrees 25 degrees
Tx Ty Tx Ty Tx Ty

Mean error [mm] 0.32 1.18 0.32 1.42 0.37 1.60

Std. deviation [mm] 0.21 0.73 0.23 0.61 0.29 0.75
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Figure 5.4: Overview of eight target positions (blue circles) that were located under
the robot based on accuracy test

The robot was set to start at position T4 (the center of the robot coordinate) be-
fore moving to the other target points, from T1 to T8. The needle was inserted
15 times for each target and a variety of needle insertion orientations were
also evaluated. In the first experiment, the needle was inserted parallel to the
z axis. In the next experiment, the needle angle was increased incrementally
by 5◦ until a maximum angle of 25◦ in the x direction.

The accuracy values of the robot are presented in Table 5.1. In a parallel
position, the robot accuracies were 0.21± 0.14 mm for the x axis and 0.70±
0.50 mm for the y axis. We also found that the error increased in the direction
of needle orientation. For instance, the position error in the y axis increased
as the needle angle increased. This can be explained by the number of motors
that were used to achieve the target position. On the axis where the orientation
is given, two stepper motors were needed to control the needle tip, while on
the other axis, only one motor was needed.
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The accuracy in the z direction was not reported because the needle was in-
serted manually. This was intended to mimic the clinical procedure. Robot
actuation is used to guide the needle to the desired position, and the clinician
should be the one who has full responsibility and control over the insertion
process due to regulation and safety concerns.

5.3.2 MRI Accuracy Test

We tested the ability of the robot to target several tumors in a triple modality
3D abdominal phantom (Model 057A; CIRS Inc., Norfolk, VA, USA) un-
der MRI guidance. The robot was placed on top of the phantom, which left
enough space inside the MRI bore. Fish oil capsules were used as fiducial
markers on the phantom (four capsules) and robot (three capsules). The T2
sequence was used to obtain MRI images. The initial scan was performed
with an image dimension of 768 × 768 × 192 pixels and image spacing of
0.49 mm × 0.49 mm × 1 mm. From this scan, several important objects were
segmented from the phantom, including phantom shell, liver, tumors, and fish
oil markers, using 3D Slicer software [135].

In Slicer, these objects were manually segmented using pixel intensity infor-
mation as guidance for object region and boundaries. Segmentation quality
was improved using the painting tool to refine the object selection. These seg-
mentations were exported to STL files and used for robot registration. Fiducial
registration wizards from the SlicerIGT module [136] were used to register the
segmentation files from MRI images to the robot coordinates.

Four tumors were selected as targets from the phantom. The accuracy of nee-
dle insertion in the axial and coronal planes was assessed. Robot inverse kine-
matics was used to calculate the required joint positions, using the center of
the tumor as the target point. The needles were manually inserted, and the
MRI images of the phantom were taken to evaluate the result.

Insertion results are shown in Figure 5.5. The distance between the needle tip
and the tumor center was measured using 3D Slicer. In the coronal plane, the
insertion error was 2.53±2.56 mm. In the axial plane, the accuracy was lower
with an error of 8.73± 1.95 mm.
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Figure 5.5: MR images of the abdominal phantom during MRI accuracy test

The observed error in registering the robot and MRI images may have con-
tributed to the higher error observed in this experiment compared to the previ-
ous accuracy test result. Our finding, which indicates that deeper tumors have
a higher error compared to tumors located closer to the skin surface, suggests
that needle orientation error increases as the target depth increases. Needle
deviation may also occur due to tissue compression deformation, which can
also contribute to the error.

5.3.3 Image Quality Testing

The image quality test evaluated the effect of the robot on the quality of the
MRI images. In this test, the robot was operated inside a Magnetom Aera 1.5T
MRI scanner. A standard Siemens 1900 ml phantom plastic bottle (model#
8624186; 3.75 g NiSO4 × 6H2O + 5g NaCl) next to the robot was used to
check the homogeneity of the MRI images. Scans were performed in three
ways: (1) with a phantom only as a control image, (2) with a phantom and
robot in the OFF state, and (3) with a phantom and robot in the ON state.
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Figure 5.6: MR images of the phantom plastic bottle in three operating conditions
with T1 and T2 image sequences. The ROI for signal and noise is represented by
blue circles and red squares respectively.

Two image sequences, T1 and T2, were used during the test. The images for
both sequences had a field of view of 320 × 320 × 20 with a voxel size of
0.625 mm × 0.625 mm and a slice thickness of 3.5 mm. The image quality
was evaluated by measuring the signal-to-noise ratio (SNR) of the phantom
MR images using the NEMA standard [137]:

SNR =
Ssignal

σnoise
(5.4)

where Ssignal is the mean pixel value in the region of interest (ROI) of the sig-
nal and σnoise is the standard deviation of all pixels in the ROI of the noise.

Figure 5.6 shows the ROI for both signal and noise, including the normalized
SNR results. A maximum of 10% SNR loss is acceptable when demonstrating
the MRI compatibility of the robot [138]. The maximum SNR decrease due
to the robot presence was 1.08% for the T1 sequence and 1.03% for the T2 se-
quence. No significant differences were observed in the SNR between the ON
and OFF states of the robot, and no artifacts were observed in the MRI images.
Thus, our robot prototype can be safely used in an MRI scanner bore.
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5.4 Conclusion
We have presented the design, fabrication, and validation of the four-DOF
robotic system that supports multiple needle insertion using MRI guidance.

The robot and actuator were fabricated using non-metallic, non-magnetic, and
non-conductive materials (PLA and FullCure720) so that the robot could be
operated safely inside the MRI scanner. The robotic system can be classified
as MR safe robot based on the material composition. Robot performance was
evaluated with a needle accuracy test in free air and needle insertion to target
tumors on a phantom inside the MRI scanner. Additionally, an image quality
test was performed to assess the effect of the robot’s presence on the quality
of MRI images.

The main limitation of this system is the absence of sensor feedback to deter-
mine the real-time position of the motor. Although the accuracy of the stepper
motor in this robot prototype is quite high, untracked motor errors can accu-
mulate over time, which can affect robot performance. In the future, we plan
to embed sensors into the robot to track the position of the motor in real-time.
We also plan to reduce the rack size on the motor to fine-tune the position and
the orientation of the needle [139]. Finally, an interface needs to be developed
to help clinicians insert needles using the robotic system.
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Abstract
Accurate placement of needles in Irreversible Electroporation (IRE) treatment
is crucial in ensuring the success of the tumor ablation. Depending on the size
and shape of the tumor, 2-6 needles are inserted in the region surrounding
the tumor. Optimally, these needles are placed in parallel to obtain a homo-
geneous distribution of the electric field and to prevent thermal damage to
the other vital tissue. In this chapter, a robot with two degrees of freedom is
presented to assist in the insertion of multiple needles. The robot utilizes a
grid system that enables multiple needles to be inserted simultaneously while
maintaining the parallelism between the needles. The robot design allows
for the adjustment of the grid angulation to accommodate targeting the lesion
in various positions. The robot has a dimension of �134 mm and a height
of 46 mm, with a total weight of 295 grams. The performance of the robot
was evaluated by testing its accuracy and the robot’s ability to maintain par-
allelism. On the skin surface, the robot shows a maximum deviation on the
needle orientation of less than 1°. This robot showed promising results and
making it suitable for IRE procedures, where multiple parallel needle inser-
tions are required.
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6.1 Introduction

Irreversible Electroporation (IRE) is an emerging soft tissue tumor treatment
technique. Unlike other heat-based ablation techniques, IRE applies short
high-voltage electric pulses to destroy the tumor cell [8]. Multiple needles are
inserted around the tumor and an electric field is applied between each pair of
needles. The number of needles typically varies from 2-6 depending on the
size and shape of the tumor.

Precise needle positioning is a crucial factor in determining the efficacy of
tumor ablation procedures. In IRE, needles should be placed parallel to each
other to obtain homogeneous electric field distribution [122, 140]. Converge
placement of the needle will increase the risk of over-current which will lead
to temperature rise and may cause thermal damage to surrounding tissue.
Meanwhile, diverging needle position will cause insufficient coverage of the
electric field which increases the risk of incomplete ablation.

In current medical practice, needle placement procedures are typically per-
formed manually by clinicians. However, the utilization of robotic devices to
aid in these procedures has been gaining popularity, as they have the potential
to not only enhance accuracy but also reduce the duration of the procedure.
The integration of robotic devices with image guidance has been explored in
several studies, such as in the case of cryoablation [141], shoulder arthrogra-
phy procedures [142], and low back pain injections [127].

With regards to IRE, various solutions have been proposed, ranging from sim-
ple devices such as needle spacers to maintain the distance and orientation
between needles, to more advanced approaches like navigation systems and
robotic devices. Commercially available systems such as Stereotactic Com-
puted Tomography (CT)-guidance (CAS-ONE, CAScination AG, Switzer-
land) [9] and CT-Guided Robotic system (Maxio, Perfint Healthcare, USA)
[37] have also been reported to provide accurate needle placement. These
studies showed that robotic assistance results in a shorter procedure time,
fewer punctures, and lower radiation dose compared to the manual placement
of IRE probes.
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Figure 6.1: (a) Robotic grid system CAD model showing the degrees of freedom and
the robot dimensions. (b) The subgrid element has 3 main groups of 5 × 5 array of
holes with a diameter of 1.5 mm.

Despite the recent advancement in needle placement technology, there is lim-
ited literature available on devices that support multiple needle insertions. For
instance, small patient-mounted robots developed by He et al. [43] were used
to perform multiple needle insertions for tumor treatment. They used several
robots to insert multiple needles in various locations. This approach is not
applicable for IRE due to the limitation of the distance between the needle
pair, which range needs to be 10-25 mm. For the application of commercial
systems in IRE, they performed needle placement by inserting needles one by
one. This approach requires proper adjustment to each needle, especially to
maintain parallelism, in addition to accurate placement of the needle tip.

To address this gap, we propose a novel robotic grid system for multiple par-
allel needle insertion in IRE treatments. The proposed system has two degrees
of freedom (DOF) implemented in the grid system to support the angulation
of the needle path to accommodate insertion in complex multi-angle situa-
tions. This system represents an improvement over the previous robot that our
research group has developed [115]. Two types of tests were performed to
evaluate the accuracy of the system and the capability of the robot in main-
taining parallelism for multiple needle insertion.
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6.2 Methodology

6.2.1 Mechanical Design and Fabrication

The robot design was inspired by the precision grid used in breast biopsy.
Figure 6.1 shows the design of the robot grid system. The precision grid pro-
vides a visual guide for the needle’s path, helping to ensure that the needle is
placed in the correct location. Localized needle entry help to obtain a repro-
ducible and consistent placement with the needle. In addition, the precision
grid can be easily incorporated into the standard medical procedure and does
not require specialized training. Furthermore, the main advantage of utilizing
a precision grid in IRE is the ability to simultaneously insert multiple needles
with the same orientation, eliminating the need for individual needle adjust-
ment and reducing procedure time. These factors were the reason for selecting
this concept to be implemented in our robot design.

In conventional precision grids, the needle must follow the pre-determined
path outlined by the grid. It limits the maneuverability of the needle, es-
pecially when deviation occurred which reduces the accuracy of the needle
placement. Moriera et al. [143] introduce an angulated needle-guide template
for answering this problem, where the needle orientation can be adjusted by
angulated grid template system instead of adjusted manually by the clinician.
Although that approach can reduce the deviation of the needle, it supports
only a single needle insertion since the application is for prostate biopsy. We
adopt the idea and improved the robot design in order to manage the multiple
needle insertions required in the IRE procedure.

In our robot design, we incorporated pneumatic stepper motors to enable ori-
enting the needle grid. These motors are using double-acting cylinder mech-
anism, as presented in the work of Groenhuis et al.[134]. Each motor is con-
trolled by four pneumatic tubes made of polyurethane. The robot system has
two degrees of freedom (DOF), which consist of rotation around the z-axis
(1st DOF) and x-axis (2nd DOF) as shown in Figure 6.1a. The resolution of
the motors is affected by the size of the stepper teeth or rack. In this design,
the resolution for both stepper motors is 0.5°, with a motor range of up to 360°
for rotation in the z-axis and 20° for rotation in the x-axis.
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The robot incorporates a grid system that comprises six subgrids that are as-
sembled together on the main robot frame. The subgrids have a diameter of
112 mm and a thickness of 9.5 mm. They are attached to the robot frame using
a snap-fit mechanism, which allows for the easy removal of unused subgrids
to increase the available space in the robot’s workspace. It also allows for the
subgrid to be sterilized independently without the need to include the whole
system. Additionally, this design facilitates individual modification to the size
of the grid hole. Each subgrid is composed of three main groups of 5 × 5
arrays of equally spaced holes with a distance of 2.5 mm. The current grid
system has a hole diameter of 1.5 mm, to accommodate the common size of
electrode diameter used in IRE (18G). A naming convention is used to iden-
tify the location of each hole within the subgrid, making it easy to locate and
select the desired hole. For instance, a hole with an ID of ’5-iii-B4’ means the
hole is located at subgrid 5, group iii, column B, and row 4.

The robot body, including the grid system and frame, was fabricated using
a 3D printer with Makerpoint Ultimaker Tough PLA material (Makerpoint
Holding, Wageningen, The Netherlands). The pneumatic motors and the
racks were printed using Stratasys Objet Eden 260 with FullCure720 mate-
rial (Stratasys Ltd, Eden Prairie, MN, USA). The components were assem-
bled using nylon screws and bolts, resulting in a robot with a dimension of
134 mm in diameter and 46 mm in height, with a total weight of 295 grams.
This lightweight and plastic-based design allows for the safe operation of the
robotic grid system inside an MRI bore and enables direct mounting of the
system on the patient’s body.

6.2.2 Kinematic Analysis

A transformation matrix can be derived to calculate the position of the needle
tip with respect to the robot’s coordinate system. Two variables, qz and qx
represent the orientation of the robot frame in the z and x-axis, respectively.
Other variables, such as haxis and hy are obtained from the physical dimen-
sions of the robot body and are equal to 37.8 mm and 61.5 mm, respectively.
haxis is the height of the x-axis rotation from the robot body, and hy is the
shifting distance of the x-rotation from the center of the robot. By combining
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the transformation for each degree of freedom with the location of the selected
grid hole and the length of the insertion, the following transformation matrix
for the end effector can be obtained.

T ee = T qz T haxis T qx T qinsert , (6.1)

T ee =

[
Rqz 03×1

01×3 1

]I3×3

 0
0

haxis


01×3 1


Rqx (

 0
hy
0

−Rqx

 0
hy
0

)
01×3 1


I3×3

xgrid
ygrid
qinsert


01×3 1

 ,

where I is a 3× 3 identity matrix, xgrid and ygrid are the coordinate of the grid
hole, and qinsert is the length of needle insertion.

Rotation matrices are given by:

Rqz =

cos qz − sin qz 0
sin qz cos qz 0
0 0 1

 ,Rqx =

1 0 0
0 cos qx − sin qx
0 sin qx cos qx

 .

6.2.3 Reachability analysis

The arrangement of the grid hole imposes limitations on the reachable regions
under the robot body. However, this reachable region can be modified by ad-
justing the position of the grid system. By utilizing the derived transformation
matrix for the end effector, it is possible to estimate this region in relation to
the orientation of the grid.

The reachable region is determined through the mapping of distances between
the needle tip and the surrounding area. This mapping method allows for the
classification of specific locations as reachable or not reachable.
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Figure 6.2: Reachable region of the robot grid in various robot orientations, including
(a) rotating only in the z-axis, (b) rotating only in the x-axis, and (c) combination of
rotation in the z and x-axis. A group of red dots represents the position of the subgrids
when there is no orientation given to the robot.

In this study, three schemes were used to observe the reachable region with a
particular emphasis on the area located beneath the robot frame (z=0). These
schemes included rotating the robot grid:

1. only in the z-axis, from 0◦ to 60◦ with a 15◦ increment

2. only in the x-axis, from 0◦ to 18◦ with a 4.5◦ increment

3. combination of the z and x-axes using the values from (1) and (2)

The reachable region from the robot grid varies with different grid orienta-
tions, as shown in Figure 6.2. In Figure 6.2a, the reachable region remains
consistent every 60°, when rotation is applied only in the z-direction. The
reachable region from qz = 60° yielding the same results as qz = 0°, due
to the grid design’s symmetry. In Figure 6.2b, applying rotation only in the

96



6

x-axis shifts the reachable region away from the x-axis, with the distance in-
creasing with higher rotation. For difficult positions, such as areas located
farther from the center of the grid, combining rotations in both the z and x-
axes can provide an effective solution, as demonstrated in Figure 6.2c.

From this result, it is worth mentioning that the rotation in the x-axis has an
important role in reaching the region that is located further away from the
robot center. Also, the result is mainly correlated with the depth of the target.
The results of the second and third schemes will be significantly different
when the target is located in a deeper location. Furthermore, it is important to
know that reaching a position in the corner by adjusting the orientation of the
grid in x and z, will give a unique pose to the needle position and orientation.
If the target required a specific path to be followed, it will be easier to readjust
the robot system and redo the planning.

6.3 Experiments
Two tests were performed to evaluate the robot grid: the system accuracy test
and the needle alignment test. The former analyzed the capability of the robot
to precisely target designated points with varying robot configurations and
target depths. The latter examined the ability of the robot to maintain needle
parallelism, a vital aspect for the successful completion of IRE treatment.

6.3.1 Experimental Setup

Figure 6.3 shows the experimental setup for robot grid evaluation. The robot
grid is operated through the Robot Operating System (ROS) Melodic. Users
input the desired angle target along the z-axis and x-axis for the robot grid,
and the required number of steps is calculated based on the motor resolution.
No feedback is implemented in the system, thus the relative angle from the
previous grid position is employed to monitor the current orientation of the
grid system. To ensure proper operation, the robot position must be calibrated
initially by positioning it at the home position, a configuration in which no
rotation occurs around the x and z axes.
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Figure 6.3: Experiment setup for evaluating the robot grid system, including robotic
system, Aurora electromagnetic tracker system, and control board for pneumatic mo-
tors.

During the experiment, the pneumatic motor was actuated with an air pressure
of 3 bar. The activation of the pneumatic valve was controlled by an Arduino
Mega 2560, which was connected to ROS. The position and orientation of the
needle tip were tracked using the Aurora 5-DOF needle. The robot body was
located on the Tabletop Field Generator, which is an electromagnetic tracking
system as part of Northern Digital’s Aurora (NDI, Waterloo, Canada).

6.3.2 System Accuracy Test

The accuracy of needle placement was evaluated using a series of experiments
in which the target points were located at varying depths under the robot. The
insertion was performed in free space to evaluate the robot’s accuracy without
being affected by other factors, such as the interaction between needle and
tissue. The origin of the robot coordinate system was set at the center of the
robot grid (Figure 6.4a). The reported error is the average Euclidean distance
in the x and y-axis between the target position and the needle tip position.
Since the needle insertion was manually performed during the experiment,
reported in-plane targeting errors do not account for errors in the z-axis.

98



6

Figure 6.4: Experiment setup for accuracy test where (a) the origin of the robot coor-
dinate system, and (b) different frame heights to introduce specific depth to the target
location.

Figure 6.5: (a) Target holes for parallelism check, with red-colored region represent-
ing the holes used for the same subgrid test and blue-colored region for holes used in
all grid tests. (b) Three variations of the robot orientation are introduced to investi-
gate its effect on the needle orientation
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The insertion locations were spread over the grid system. Needles were in-
serted through hole ’x-iii-C5’, where x indicates the subgrid number (1-6).
Various combinations of orientation in the z and x-axes were applied, where
the insertion angle in the z-axis varying from 0-60° with 1.5° increment and
the insertion angle in the x-axis from 0-18° with 0.5° increment. For each
orientation and subgrid position in the grid system, the needle insertion was
repeated five times. After targeting each point, the robot returned to the
home position.

In addition to the previous test, two different frame heights, 20 and 43 mm,
were introduced (Figure 6.4b). These frames were added to introduce depth to
the target location. At each height, the initial step for the test was to perform
registration of the EM sensor with respect to the robot coordinate system.
Then, the insertion with various grid orientations was repeated following the
previous procedure.

6.3.3 Needle Alignment Test

The orientation of the needles was evaluated when they were inserted using
the robot grid in various grid hole locations. Two types of tests were per-
formed as depicted in Figure 6.5a. The first test assessed the orientation of
the needle when inserted through multiple holes within a single subgrid. The
selected holes included ’x-i-A1’, ’x-i-A5’, x-ii-E1, x-ii-E5, and x-iii-C5, with
x indicating the subgrid number. The second test compared needle orienta-
tions among different subgrids inserted through the hole ’x-iii-C5’. This test
ensures that the robot is able to maintain consistent orientation regardless of
the hole selected during insertion.

In addition to the grid location, the impacts of grid rotation on needle align-
ment were also investigated. Three different positions were evaluated dur-
ing the recording of needle orientation. These positions included no rotation,
small rotation, and large rotation applied in the x and z axis as shown in Fig-
ure 6.5b. The orientation of the needles was recorded upon reaching the target
position, with ten repetitions for each hole in each grid orientation.
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6.4 Results
6.4.1 System Accuracy Test

For every combination of orientation, a comprehensive evaluation of the
robot’s accuracy was conducted by performing 30 insertions, which consist
of 5 repetitions for each target hole located in the 6 subgrids. To minimize
the impact of the target hole distribution on the robot’s accuracy, the result
from all subgrids were taken into account during the accuracy assessment.
The final outcome from the accuracy test is presented in Figure 6.6.

When the target plane was located directly under the robot body (H=0 mm),
the minimum error of 1.24 ± 0.13 mm was achieved when the orientation of
the robot grid was 0°for both the x and z-axes. Meanwhile, the maximum error
was recorded at 2.09±0.66 mm when the robot grid was oriented at 60°for the
z-axes and 18°for the x-axes. This outcome highlights the correlation between
the angulation of the robot grid and the accuracy of the needle placement, with
a higher angulation resulting in a greater error in the accuracy test.

A similar pattern of error was also noted when an additional frame was added
to the test. For both frames of H=20 mm and H=43 mm, the minimum and
maximum errors were recorded at 1.79± 0.38 mm and 2.47± 0.82 mm, and
2.31 ± 0.21 mm and 3.55 ± 1.34 mm, respectively. It was evident that an
increase in target depth resulted in a corresponding increase in robot error.

6.4.2 Needle Alignment Test

In the first type of test, a total of 50 insertions were performed for each sub-
grid and each grid orientation. The orientations of the needle were recorded
and the average results were calculated for each subgrid. The results of the
first test are presented in Table 6.1. The deviation of the needle orientation
is generally below 1°, for both Rx and Rz components, across all subgrids
and grid rotations. However, an exception was observed in subgrid 6 when a
large rotation was applied, where the highest deviation of 1.10° ± 0.54° was
recorded.
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Figure 6.6: Needle targeting error versus the needle insertion angle and insertion
depth. Insertion angle is introduced by applying rotation to the robot in the z and
x-axis. Rotation in the z-axis is increased from 0° to 60° in increments of 5°, and
rotation in the x-axis is increased from 0°to 18°in increments of 1.5°.

In the second type of test, a total of 60 insertions were performed across all
subgrids for each grid orientation. The deviation of the needle orientation was
slightly higher in comparison to the first test. Analysis of needle orientation
results across all subgrids showed a maximum deviation of 1.52°±0.34°, with
all results higher than 1° for all grid orientation, as presented in Table 6.2.
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Table 6.1: Deviation of the needle orientation in degree (°) for individual subgrid test

Orientation
Ind. Grid 1 Ind. Grid 2

Rx Rz Rx Rz

None 0.75± 0.33 0.59± 0.25 0.53± 0.24 0.54± 0.25

Small 0.55± 0.24 0.59± 0.26 0.55± 0.30 0.60± 0.22

Large 0.86± 0.11 0.84± 0.35 0.66± 0.35 0.76± 0.34

Orientation
Ind. Grid 3 Ind. Grid 4

Rx Rz Rx Rz

None 0.61± 0.24 0.80± 0.26 0.53± 0.13 0.72± 0.31

Small 0.65± 0.19 0.58± 0.20 0.46± 0.23 0.57± 0.27

Large 0.72± 0.32 0.61± 0.26 0.43± 0.19 0.52± 0.37

Orientation
Ind. Grid 5 Ind. Grid 6

Rx Rz Rx Rz

None 0.57± 0.29 0.65± 0.30 0.46± 0.18 0.58± 0.24

Small 0.57± 0.25 0.48± 0.21 0.57± 0.28 0.55± 0.39

Large 0.41± 0.28 0.75± 0.32 0.66± 0.26 1.10± 0.54

Table 6.2: Deviation of the needle orientation in degree (°) for all subgrid test

Orientation
All Grid

Rx Rz

None 1.21± 0.32 1.39± 0.30

Small 1.52± 0.34 1.20± 0.22

Large 1.25± 0.26 1.37± 0.20
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6.5 Discussion

The study presented the performance of the robot grid system for parallel nee-
dle insertion with support to angulate the needle insertion path to accommo-
date targeting the lesion in various positions. Two sets of tests were conducted
to assess the accuracy of the system and its ability to maintain needle orien-
tation. The results of the system accuracy test indicated that an increase in
orientation leads to a corresponding increase in deviation from the target po-
sition. Moreover, a deeper target location results in a higher error in needle
placement. The result of the needle alignment test demonstrated that the pro-
posed robotic grid system is capable of maintaining parallelism of the needle
insertion with minimal deviation, even when performed on different subgrids.
As previously reported in our study [74], deviation of needle orientation ex-
ceeding 5° can significantly impact the outcome of IRE procedures. In this
case, the robot can manage multiple needle insertion with deviation generally
below 2°, which is within an acceptable range for IRE procedure.

In an ideal case, performing needle insertion in the free space using the robot
grid would give precise needle placement. However, the potential sources of
error in the experimental procedure may come from a variety of factors. It is
including but is not limited to inaccuracies in the manufacturing of the robotic
components, registration errors between the robotic coordinates and the elec-
tromagnetic tracker, and potential bending of the needle after repetitive tests.
Based on our observation during the experiment, it was revealed that another
factor contributing to the error is coming from the design of the grid hole used
in the robot system. To demonstrate this phenomenon, an illustration of the
needle positions within the grid hole is shown in Figure 6.7.

Ideally, a needle will follow a straight trajectory when inserted through a hole
(Figure 6.7a). However, due to limitations encountered during the manufac-
turing of the grid components, a certain degree of space may be present within
the hole grid, which may cause the needle to deviate from its intended trajec-
tory, as demonstrated in Figure 6.7b. In such a scenario, the maximum devi-
ation of the needle can be quantified by calculating the values of x1, x2, x3,
and x4.
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Figure 6.7: Illustration of needle position inside the hole grid, where (a) needle with
a straight trajectory and (b) needle deviation due to the space present in the hole grid.

Assuming θ is small enough, where cos θ ≈ 1, and knowing the dimension of
dneedle and dgrid as the diameter of the needle and the grid, the value of x1, x2
and x3 are:

x1 ≈ dneedle (6.2)

x2 ≈
dneedle

2
(6.3)

x3 = dgrid − x1 (6.4)

Furthermore, with hgrid as the thickness of the grid and htarget as the depth of
the target, x4 can be calculated using the extrapolation made by the needle:

x4 =
htarget

hgrid
(dgrid − dneedle)−

dgrid

2
(6.5)

Finally, needle deviation (eneedle) can be calculated by substituting the value
of x2 and x4:

eneedle = x2 + x4

= (
htarget

hgrid
− 1

2
)(dgrid − dneedle) (6.6)
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In the design of our robot, the grid dimensions, dgrid and hgrid, are equal to
1.5 mm and 9.5 mm, respectively. An offset of 43.3 mm, which represents
the distance from the top surface of the grid to the reference point on the
robot’s base, must be taken into account when determining the target depth,
htarget. Meanwhile, for the needle dimension, the Aurora 5-DOF needle has a
diameter of 1.05 mm. By utilizing these values, we can predict the maximum
deviation that may occur to the needle when targeting specific positions at
different depths. In our accuracy testing, where targets were located at depths
of 0 mm, 20 mm, and 43 mm under the robot’s base, the maximum deviations
for the needle’s position which are predicted using Equation 6.6, are equal to
1.83 mm, 2.77 mm, and 3.86 mm. These results are in accordance with the
results obtained from the accuracy testing, which demonstrated that the errors
for these specific depths were within the predicted ranges.

The impact of needle deviation caused by clearance in the grid hole is clearly
visible in the result of the needle alignment test. When no rotation is applied
to the robot, the deviation across all subgrids is relatively similar. However,
when a large orientation is applied, the insertion depth varies between subgrids
located near the axis of rotation in the x-axis and those located further away.
As a result, subgrids 1 and 6, which are located at the farthest distance from
the axis of rotation, have a longer distance to reach the target position, leading
to higher deviation in the needle’s orientation compared to other subgrids.

The results of the experiments have indicated a clear need for improvement
in the design of the grid system, particularly regarding the clearance of the
grid holes. Further studies should concentrate on exploring fabrication tech-
niques that can produce a tighter grid for the robot system, which has been
demonstrated to improve accuracy, as reported by McGill et al.[144]. It is
also crucial to minimize the distance between the device and the skin surface
to decrease deviation error. This is supported by the Equation 6.6 that shows
that htarget contributes to needle deviation.

Another crucial aspect that needs attention is the absence of testing for tar-
geting points within phantom or soft tissue. Conducting these tests with the
robot is essential to determine the impact of the interaction between the nee-
dle and tissue on the accuracy of the robot. Based on these tests, a tailored
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model can be established to predict needle deviation and minimize its effect,
as demonstrated by Abolhassani et al.[145]. This will help to achieve more
precise results for needle placement.

Given that the robot was fabricated using non-metallic, non-magnetic, and
non-conductive materials, it is necessary to assess its compatibility within the
MRI environment. This can be done by evaluating the robot’s performance
under MRI guidance and determining the effect of the robot’s presence on
MR image quality. Additionally, incorporating MR-visible markers into the
robot’s design is crucial for facilitating the alignment of the device’s coordi-
nate system with the MRI’s coordinate system, thereby improving the accu-
racy of the registration process.

Finally, research into the positioning of the grid holes should be conducted.
The configuration of the grid affects the areas that can be targeted using this
robot system, particularly in the case of IRE treatment where a specific dis-
tance is required for effective ablation. This study can be combined with path
planning software that provides automatic suggestions regarding the number
of needles, position of needles, and insertion angle, taking into account both
the patient’s anatomy and the location of the tumor.

6.6 Conclusion
In this study, we presented the design and validation of a robotic grid system,
capable of preserving needle parallelism during multiple needle insertions.
The robot has 2 DOFs that allow for the adjustment of the grid angulation in
the x and z axes through the use of pneumatic stepper motors. We performed
a series of tests, including the system accuracy and needle alignment test, to
evaluate the performance of the robot. The results showed that the robotic
grid system has limited needle deviation and can be used to place multiple
needles in parallel. This robot is suitable for IRE procedures and can be used
for wider application of needle insertion procedures, such as microwave and
radiofrequency ablation.
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Irreversible electroporation (IRE) is a non-thermal ablation technique that uti-
lizes an electric field to induce apoptosis in tumor cells. The electric field
distribution within the targeted tissue is a crucial determinant of treatment
success. To achieve irreversible electroporation, the intensity of the electric
field must exceed a threshold that depends on tissue properties. Moreover,
complete ablation requires complete coverage of the tumor area by the electric
field, which relies on the appropriate configuration of treatment parameters.

This thesis aims to improve and enhance the efficacy of IRE treatment by in-
vestigating the effects of various treatment parameters. Computational mod-
els, including 2D and 3D models, have been developed to examine the influ-
ence of IRE parameters on the ablation area. Model validation has been con-
ducted on animal and vegetable tissue, respectively, with detailed discussions
presented in Chapters 2 and 3. To achieve a more accurate prediction of the
ablation area, patient-specific models are required, for example by the incor-
poration of the tumor’s actual shape. One approach to obtaining tumor shapes
involves implementing a segmentation algorithm based on a deep learning net-
work, which offers superior accuracy and faster processing times compared to
manual segmentation, as elaborated in Chapter 4.

Needle placement significantly impacts the electric field distribution. To en-
sure electric field homogeneity and prevent thermal damage to adjacent tis-
sues, several criteria must be met, including the parallel positioning of elec-
trodes, consistent depth placement, and maintaining a specific distance be-
tween electrodes within a defined range. To accomplish these requirements,
MRI-safe robotic devices have been developed to aid clinicians in inserting
multiple electrodes during IRE treatment. Robot components were fabri-
cated using 3D printing with plastic material, which is non-metallic, non-
magnetic, and non-conductive. Various design approaches and assessments
of the robot’s performance are discussed in Chapters 5 and 6.

The following chapter discusses the design and evaluation of the computa-
tional model and robotic devices, highlighting the primary contributions, lim-
itations, and future recommendations within this research field. Additionally,
the steps toward clinical practice are explored, specifically focusing on the
integration of robot-assisted intervention in IRE procedures.
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7.1 Computational Model
7.1.1 Summary of the key results

Chapter 2 discussed the development of a 2D computational model, which
was validated based on thermal monitoring on bovine liver tissue, to inves-
tigate the effects and relationships between parameters involved in IRE. The
study examines several parameters, including pulse properties (pulse strength,
pulse number, and pulse duration) and electrode configuration (electrode dis-
tance and active length), in terms of their impact on ablation coverage and
the optimal parameter settings to maintain the temperature below the thermal
damage threshold during treatment. Analysis of variance revealed that not all
parameters had an equal effect on the ablation area and the temperature rise.
The ablation area was significantly influenced by pulse strength (P < 0.001),
while electrode distance (P = 0.020) and pulse strength (P = 0.003) signifi-
cantly affected temperature rise. This experiment facilitated the calculation of
the optimal IRE protocol to achieve maximum coverage area while preventing
thermal damage to tissue.

Chapter 3 investigates the effect of needle orientation on electric field dis-
tribution by designing a 3D computational model, validated using potato tis-
sue. Several variations in electrode position and orientation were tested, rang-
ing from parallel placement to angulated placement in sideward and forward
orientations, involving single and both electrodes. The needle was oriented
around the center of the active length part, ranging from 0° to 15° with 5° in-
crements. Measurements of potato conductivity and electroporation threshold
yielded a result of 0.044-0.454 S/m and 375 V/cm, respectively. Model vali-
dations were conducted by comparing the electroporated area results between
the simulation and experiment, achieving a mean Dice score of 0.727±0.046.
Using the validated model, all needle orientations were tested to determine
which orientation produced similar results compared to the parallel position.
The ANOVA test revealed that as long as the orientation remained below 5°,
the difference between the ablated areas in parallel and the electrodes in both
sideward and forward-oriented positions was not significantly different.

112



7

Chapter 4 introduces a method for automatic segmentation of liver and tu-
mor from CT images using a neural network based on a 2.5D model. This
approach addresses the limitations of 2D models, which provide limited in-
formation for volume segmentation, while 3D models demand more memory
and higher system requirements. Various factors were examined in this study,
including the number of stacked layers in the input image, image contrast, and
the number of network layers in building the network architecture. Results in-
dicate that utilizing multiple stacked layers improves network performance
compared to single-layer models. However, segmentation accuracy declines
when the total number of stacked layers surpasses a certain number of lay-
ers. Contrast enhancement enhances object visualization, but does not signif-
icantly impact network performance. In general, adding layers to a network
structure improves its ability to detect tumors but also increases the percentage
of false-positive results, leading to a decrease in the overall Dice score.

7.1.2 Limitations and future challenges

The efficacy of IRE treatment depends on the electric field intensity applied to
the tumor tissue. If the electric field intensity is lower than the tissue-specific
electroporation threshold, irreversible electroporation will not occur. Con-
versely, if the intensity is much higher, tumor cells will undergo coagulation
due to thermal damage rather than apoptosis. Ensuring complete coverage
of the entire tumor region by the electric field is another crucial factor. The
electric field distribution is influenced by the pulse parameter and electrode
configuration employed during the treatment. Accounting for these three crit-
ical factors, tissue properties, pulse parameters, and electrode configuration in
the computational model helps facilitate precise treatment planning.

Designing computational models for IRE presents the challenge of accurately
modeling biological tissue. Numerous studies have calculated various tissue
properties, including those of the brain [146], kidney [18], liver [147], pan-
creas [147], and prostate [148]. These studies have employed different models
to describe the effect of electroporation on tissue electrical conductivity, such
as static models [149, 150] or dynamic models that depend on the applied elec-
tric field σ(E) [151, 152], tissue temperature σ(T ) [153], or a combination of
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both σ(E, T ) [154, 71, 58]. Dynamic behavior is commonly implemented in
electrical conductivity modeling, as it better correlates numerical model out-
comes with experimental data, reducing errors in the electroporated area from
30% to 3% [87]. Furthermore, incorporating dynamic changes helps decrease
variability in determining the electric field threshold for IRE, as demonstrated
in canine kidneys [18] and prostate cancer [148] studies. Since IRE is theoreti-
cally considered as a non-thermal ablation technique, we decided to model the
tissue electrical conductivity as a function of an electric field, as demonstrated
in Chapters 1 and 2. However, some studies reported temperature increases
during IRE treatment [155, 156, 10], so incorporating temperature effects on
electrical conductivity may lead to a more accurate model.

Model validation is essential for ensuring that simulation results accurately
represent actual ablation outcomes under similar protocols. In this thesis,
chapter 2 validates the numerical model on ex vivo animal tissue by moni-
toring temperature changes during treatment. Animal tissue is often used in
studies due to its heterogeneous nature and similar electrical characteristics to
human tissue during electroporation [55, 157]. However, performing a broad
range of parametric analyses on animal tissue is challenging due to the need
for rapid tissue preparation and ablation before organ cells die and the ablation
area becomes difficult to observe [158]. Potatoes are another common choice
for validation, as their rapid changes in electrical conductivity are similar to
animal tissue [87]. They allow for a larger number of experiments on living
cells and a wider range of parameters to be tested [159]. Electroporated ar-
eas in potatoes are easily visualized as dark areas representing cell membrane
rupture, simplifying the evaluation of IRE protocols, as seen in Chapter 3.
However, the main limitation is that potatoes’ electrical properties differ sig-
nificantly from human tissue, and their lower IRE threshold means that results
from potatoes cannot be used for clinical treatment planning.

Accurate electrode placement is crucial for obtaining electric field distribu-
tions that align with simulation calculations. In our experiments using either
potato or animal tissue, accurate electrode placement is challenging due to
the flimsiness and instability of commonly used 19G IRE electrodes during
insertion [160, 161]. Even with specialized tools like needle holders or spacer
devices, major differences were still observed after insertion due to needle
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bending or tissue deformation. To address these issues, recent studies have
turned to model validation based on retrospective studies. These studies fo-
cus on determining electric field thresholds for specific tissues based on IRE
ablation results [162] or evaluating the effect of electrode configuration on
treatment success [77]. This method validates the model results on human
tissue models and can be extended to other settings for treatment planning,
provided the tissue types are similar. Regarding accurate electrode placement,
some studies propose the use of bipolar probes [24, 16] to reduce the number
of probes and simplify treatment processes, thereby saving time and increas-
ing accuracy.

Computational models enable researchers and clinicians to gain a deeper un-
derstanding of the complex biological processes that occur during IRE. These
models allow for a detailed examination of tissue responses to various IRE
parameters through simulation. To reduce computational costs while design-
ing these models, simplified shapes like spheres, ellipsoids, and cylinders are
commonly used as organ representations, even though sacrificing accuracy
[18, 163]. In clinical practice, this approach is also found in designing pre-
operative models for treatment planning, where tumor shapes are often ap-
proximated as ellipsoids. As a result, the ablated area sometimes turns out
smaller than the predicted area, despite adherence to the treatment protocol
and manufacturer-recommended parameters [164]. Therefore, adding a safety
margin for ablation, as commonly seen in other thermal ablation techniques,
is essential. Safety margins help ensure the removal of tumor sprouting sur-
rounding the tumor, preventing tumor recurrence [27] and reducing uncertain-
ties during treatment, such as changes in tissue electrical properties or IRE
electroporation thresholds [163]. Although there is no consensus on the opti-
mal safety margin for IRE ablation [165], it typically ranges from 5-10 mm.

To improve model accuracy, actual organ shapes can be incorporated into the
computational model, enabling precise electrode positioning. However, using
real-shape models may lead to higher computational costs and longer planning
times. In addition, segmenting tumor tissue is time-consuming and prone to
inter-observer variability. One solution is to use deep learning for automatic
tumor segmentation, as proposed in Chapter 4. This approach can improve
computational model accuracy and ensure complete tumor ablation.
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Deep learning approaches have become popular due to their simplicity, fast
processing, and high accuracy. However, their performance relies heavily on
large labeled datasets, with larger training sets generally yielding improved
results. Obtaining sufficient labeled data remains challenging. Data augmen-
tation can help generate new labeled data for training, but not all techniques
are suitable or helpful for medical applications [166]. Some methods that
can assist in training networks with limited datasets include semi-supervised
learning [167], transfer learning [168], and synthetic data generation [169].
Additionally, as MRI gains popularity as imaging guidance for tumor treat-
ment, there is a need to develop networks that can segment MR images.

A significant challenge in working with MR images is the variability in image
intensity for structures at the same location due to differing MR sequences.
For example, various networks for liver segmentation have been developed,
such as diffusion-weighted [170], T1-weighted [171], and T2-weighted [172].
Most existing networks have been trained using CT images, which means a
potential solution for MR data is to implement an image-to-image translation
method that is able to translate images from MR to CT, as demonstrated in
previous studies [173, 174].

Moreover, during treatment planning for electrode positioning, information
from nearby vital structures is required, including major bile ducts, blood ves-
sels, and nerves. To develop accurate treatment planning based on patient-
specific models [175], further investigation into developing a general network
that can segment these structures is necessary.

7.2 Robotic device

7.2.1 Summary of the key result

Chapter 5 discusses the design and evaluation of an MRI-safe,
patient-mounted robot for assisting multiple needle insertion in IRE
treatment. The robot has four degrees of freedom actuated by pneumatic
motors, which can be used to position and orient the electrode toward the
target tumor. Multiple electrodes are inserted sequentially, with parallelism
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between the electrodes maintained by considering the orientation of previous
electrodes. The robot’s accuracy in free air was 0.72 ± 0.26 mm on the
horizontal axis and 1.60 ± 0.75 mm on the vertical axis. Further evaluation
assessed the robot’s compatibility with an MRI scanner, resulting in no
artifact and no change in the signal-to-noise ratio of the image scans.

Chapter 6 presents an updated design of the robot from the previous chap-
ter. This study employs a grid system to maintain distance and parallelism
between electrodes. The robot is designed with two degrees of freedom, fo-
cusing on adjusting grid angulation and accommodating lesion targeting in
various positions. The reduced number of actuators simplifies robot control
and installation by requiring fewer pneumatic tubes. The robot’s accuracy
and ability to maintain electrode parallelism were tested in evaluations. The
robot’s accuracy depends on the relative position of the target to the near-
est grid hole, as well as the depth of the target point and the insertion angle.
As for parallelism, the robot demonstrated a maximum deviation of less than
1°, making it suitable for IRE procedures that require limited deviation when
placing multiple needles.

7.2.2 Limitations and future challenges

With the advantages that IRE offers compared to other thermal ablation meth-
ods, it remains a less preferable option for tumor treatment due to its technical
complexity. Multiple electrodes need to be inserted during treatment, depend-
ing on the tumor size. Electrode placement accuracy plays a crucial role in
ensuring complete coverage of the ablation area. Using a robot during elec-
trode placement improves accuracy and reduces procedure time.

One factor affecting the accuracy of our proposed robot is the quality of its
components. Currently, robot components are fabricated using 3D printing,
making production faster and more suitable for prototyping when designs are
prone to change. However, the final product should be produced using a bet-
ter process that offers higher resolution. For example, the limitations of the
current printer affect the dimensions of the electrode hole from the robot grid,
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significantly impacting the robot’s accuracy. We believe that with more accu-
rate machines and better material quality, the robot components will be more
precise, and robot performance will be improved.

Another improvement for the robot is the implementation of sensor feedback
to accurately inform the current state of the robot’s position. Currently, the
robot uses the information of relative step position to indicate its position.
However, this is prone to error, especially considering the long distance be-
tween the control room and the MRI room which introduces a decrease in
the pressure and eventually produces slips to the motor movement. Although
various position sensors are available, the requirement for MRI-compatible
sensors limits the types that can be used. The use of MR-safe sensors as po-
sition [176] or force sensor [177] can be explored to provide feedback and
status during robot movement.

Robot accuracy may also be affected by tissue or organ deformation during the
insertion process, causing the actual electrode path to deviate from the planned
path. Additionally, patient movement may introduce errors caused by organ
motion, especially during respiration or muscle contractions during electro-
poration. The current solution for addressing errors from tissue deformation
is by carefully comparing planning images with images taken after needle
insertion. If deviations occur, the electrode will be adjusted, and the compar-
ison process repeated. We suggest using MRI to simplify this process, as it
allows for real-time monitoring of electrode insertion while keeping both pa-
tients and clinicians safe from radiation. Moreover, tissue deformation can be
modeled and integrated into the planning process [178, 179], so the final plan
can be adapted, and placement can be more accurate. As for patient motion,
current practice involves placing patients under total anesthesia and securing
them well during electrode insertion. Another approach is using mechanical
ventilation with total muscle relaxation to minimize respiratory movement or
spontaneous patient movement. Implementing a patient-mounted robot in the
robot design can be an alternative to compensate for patient-induced move-
ment. Specific patient respiration models can be created to help determine the
safest moment to begin electrode insertion.
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In terms of robot design, each design presented in this thesis has unique ad-
vantages. The first robot design allows for controllable electrode orientation
and position, as long as the target is within the robot’s workspace. Equipped
with a needle holder, this robot is best suited for treatments requiring only
two electrodes. However, when more electrodes are needed, insertion may
take longer and be less accurate due to individual electrode adjustments. The
second robot design incorporates a grid system for electrode insertion, en-
abling multiple electrodes to be inserted while maintaining parallelism and
distance between them. However, errors may occur if the needle position is
not located in a grid hole, leading to over or underestimation of ablation. For
future designs, it is crucial to consider treatment patterns, particularly when
more than two electrodes are required. The current model utilizes replaceable
grids, making it a flexible option for adapting to different treatment patterns
or grid sizes that match electrode diameters. Consequently, the robot can be
used not only for specific needle sizes and treatments but also for other appli-
cations, enhancing the robot’s versatility.

Future robot designs should address the registration and mounting mecha-
nisms to enhance efficiency and safety. In the current design, markers for
registration are manually placed on the robot body. Integrating marker posi-
tions and shapes into the robot’s main design would enable the development
of an algorithm to automatically recognize these markers, speeding up the reg-
istration process. Regarding robot mounting, the current strap belt approach
could be improved. By incorporating a softer material for the bottom part of
the robot, it can better adapt to the patient’s body contours. Additionally, us-
ing a suction mechanism to fix the robot in place could provide a more stable
and secure attachment [180], minimizing movement during the procedure and
maintaining registration and accuracy.

Lastly, an emergency stop mechanism must be integrated into the robot
navigation system to allow for immediate intervention in case of changes in
plans or unexpected failures. This mechanism could entail an immediate
halt to robot movement or a return to the starting/home position. This
critical function is essential to safeguard both the user and the patient from
potential harm.
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7.3 Future recommendation toward clinical practice

Before introducing the robot into clinical practice, several tests must be con-
ducted, including ex vivo, in vivo, and patient trials. A clinical workflow
should be designed, encompassing the installation, utilization, and cleaning
of the robot components. Installation in the MRI room requires special con-
sideration, particularly regarding the robot’s pneumatic power source. Some
hospitals may have pressurized gas available in the room, while others might
need an external pump, taking into account the output required for the robot’s
operation. Additionally, the length of the pneumatic tube connecting the MRI
room to the control room should be considered, as pressure drops may oc-
cur. For cleaning, some components can be sterilized, while others may be
designated as disposable items.

Although most studies recommend parallel needle placement during treatment
to ensure homogeneous electric field distribution and prevent thermal damage,
non-parallel placement might be more suitable for certain situations, such as
irregular tumor shapes or tumors near vital organs. Developing a computation
model that considers non-parallel placement, realistic tumor shapes, and mul-
tiple needle placement would provide clinicians with a more versatile tool for
effective tumor treatment while minimizing damage to healthy tissue.

Lastly, the robot control system should offer a user-friendly interface, enabling
users with less experience to operate it effectively. Treatment planning should
also be integrated with the software used for robot navigation. The treatment
planning software should include features such as organ segmentation during
planning, simulation of ablation area prediction based on IRE parameters, and
determination of optimal needle placement considering tumor shape, nearby
organs, and robot limitations. By integrating this system with the robot, elec-
trodes can be guided along the planned path, and placement accuracy can be
monitored using the same software.
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7.4 Conclusion
In this thesis, we presented and validated 2D and 3D computational models
to investigate the optimal IRE protocol. The optimization process focuses on
examining the effects of pulse parameters and electrode configurations on the
ablation area and thermal damage to the target tissue. To improve the model’s
accuracy, we suggested incorporating the actual tissue shape into the tissue
models in the simulation. Therefore, we proposed an automatic segmenta-
tion method using deep learning for segmenting liver and tumors from CT
images. This tool can assist clinicians in developing more patient-specific
models, thereby improving treatment planning outcomes.

IRE has various advantages over other ablation methods. However, the com-
plexity of positioning multiple electrodes during IRE treatment makes it a less
popular choice for most tumor treatments. Maintaining parallel insertion be-
tween electrodes is essential for achieving complete ablation and preventing
thermal damage to surrounding tissue. We developed robotic systems to as-
sist clinicians in placing multiple electrodes into the target tissue. The robots
were fabricated using plastic material and actuated with a pneumatic system,
allowing them to be used within an MRI scanner. This enables visualization
of the tumor location, monitoring of electrode placement, and safer treatment
for both patients and clinicians from radiation. The two designs of the robotic
system have distinct mechanisms for guiding the parallel insertion of multiple
electrodes. The results demonstrated that both robots had limited deviation,
but remained within the acceptable range for IRE procedures.

We hope that the tools proposed in this thesis, including computational models
and robotic systems, will contribute to the improvement of treatment efficacy
using irreversible electroporation.
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[112] Victoria López et al. “An insight into classification with imbalanced
data: Empirical results and current trends on using data intrinsic char-
acteristics”. In: Information sciences 250 (2013), pp. 113–141.

[113] Jun Fu et al. “Densely connected deconvolutional network for seman-
tic segmentation”. In: 2017 IEEE international conference on image
processing (ICIP). IEEE. 2017, pp. 3085–3089.

[114] Stanislav Nikolov et al. “Deep learning to achieve clinically appli-
cable segmentation of head and neck anatomy for radiotherapy”. In:
arXiv preprint arXiv:1809.04430 (2018).

[115] Girindra Wardhana et al. “Design and Characterization of a Multi-
ple Needle Insertion MRI-guided Robot for Irreversible Electropora-
tion (IRE) Treatment”. In: 2022 9th IEEE RAS/EMBS International
Conference for Biomedical Robotics and Biomechatronics (BioRob).
2022, pp. 1–6.

[116] L.G.P.H. Vroomen et al. “Irreversible electroporation and thermal ab-
lation of tumors in the liver, lung, kidney and bone: What are the
differences?” In: Diagnostic and Interventional Imaging 98.9 (2017),
pp. 609–617. DOI: https://doi.org/10.1016/j.diii.
2017.07.007.

[117] Yingtian Wei, Yueyong Xiao, and Zhongmin Wang. “Chapter 14 - The
interventional therapeutics of irreversible electroporation for pancre-
atic cancer”. In: Integrative Pancreatic Intervention Therapy. Ed. by
Maoquan Li et al. Elsevier, 2021, pp. 355–362. DOI: https://
doi.org/10.1016/B978-0-12-819402-7.00014-0.

[118] David SK Lu et al. “Effect of vessel size on creation of hepatic ra-
diofrequency lesions in pigs: assessment of the “heat sink” effect”. In:
American Journal of Roentgenology 178.1 (2002), pp. 47–51.

135

https://doi.org/https://doi.org/10.1016/j.diii.2017.07.007
https://doi.org/https://doi.org/10.1016/j.diii.2017.07.007
https://doi.org/https://doi.org/10.1016/B978-0-12-819402-7.00014-0
https://doi.org/https://doi.org/10.1016/B978-0-12-819402-7.00014-0


Bibliography

[119] Edward W Lee et al. “Advanced hepatic ablation technique for cre-
ating complete cell death: irreversible electroporation”. In: Radiology
255.2 (2010), pp. 426–433.

[120] Edward W Lee, Susan Thai, and Stephen T Kee. “Irreversible elec-
troporation: a novel image-guided cancer therapy”. In: Gut and liver
4.Suppl 1 (2010), S99.

[121] Russell C Langan et al. “Recurrence patterns following irreversible
electroporation for hepatic malignancies”. In: Journal of surgical on-
cology 115.6 (2017), pp. 704–710.

[122] Mikhail Silk et al. “The state of irreversible electroporation in
interventional oncology”. In: Seminars in interventional radiology.
Vol. 31. 02. Thieme Medical Publishers. 2014, pp. 111–117.

[123] Govindarajan Narayanan. “Irreversible electroporation”. In: Seminars
in interventional radiology. Vol. 32. 04. Thieme Medical Publishers.
2015, pp. 349–355.

[124] Matej Kranjc et al. “Predicting irreversible electroporation-induced
tissue damage by means of magnetic resonance electrical impedance
tomography”. In: Scientific reports 7.1 (2017), pp. 1–10.

[125] Niravkumar A Patel et al. “Body-mounted robot for image-guided per-
cutaneous interventions: mechanical design and preliminary accuracy
evaluation”. In: 2018 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS). IEEE. 2018, pp. 1443–1448.

[126] Nikolai Hungr et al. “Design and validation of a CT-and MRI-guided
robot for percutaneous needle procedures”. In: IEEE transactions on
robotics 32.4 (2016), pp. 973–987.

[127] Gang Li et al. “Fully actuated body-mounted robotic system for MRI-
guided lower back pain injections: Initial phantom and cadaver stud-
ies”. In: IEEE Robotics and Automation Letters 5.4 (2020), pp. 5245–
5251.

136



[128] Faye Y Wu et al. “An MRI coil-mounted multi-probe robotic posi-
tioner for cryoablation”. In: International Design Engineering Tech-
nical Conferences and Computers and Information in Engineering
Conference. Vol. 55935. American Society of Mechanical Engineers.
2013, V06AT07A012.

[129] HS Kahn et al. “The population distribution of the sagittal abdomi-
nal diameter (SAD) and SAD/height ratio among Finnish adults”. In:
Clinical obesity 4.6 (2014), pp. 333–341.

[130] John Moir et al. “Systematic review of irreversible electroporation in
the treatment of advanced pancreatic cancer”. In: European Journal
of Surgical Oncology (EJSO) 40.12 (2014), pp. 1598–1604.

[131] Martina Distelmaier et al. “Midterm Safety and Efficacy of
Irreversible Electroporation of Malignant Liver Tumors Located
Close to Major Portal or Hepatic Veins”. In: Radiology 285.3 (2017),
pp. 1023–1031. DOI: 10.1148/radiol.2017161561.

[132] Florentine EF Timmer et al. “Irreversible electroporation for locally
advanced pancreatic cancer”. In: Techniques in vascular and inter-
ventional radiology 23.2 (2020), p. 100675.

[133] Alexander DJ Baur et al. “MRI-TRUS fusion for electrode positioning
during irreversible electroporation for treatment of prostate cancer”.
In: Diagnostic and Interventional Radiology 23.4 (2017), p. 321.

[134] Vincent Groenhuis and Stefano Stramigioli. “Rapid prototyping high-
performance MR safe pneumatic stepper motors”. In: IEEE/ASME
transactions on mechatronics 23.4 (2018), pp. 1843–1853.

[135] Andriy Fedorov et al. “3D Slicer as an image computing platform for
the Quantitative Imaging Network”. In: Magnetic resonance imaging
30.9 (2012), pp. 1323–1341.

[136] Tamas Ungi, Andras Lasso, and Gabor Fichtinger. “Open-source plat-
forms for navigated image-guided interventions”. In: Medical Image
Analysis 33 (2016), pp. 181–186.

137

https://doi.org/10.1148/radiol.2017161561


Bibliography

[137] National Electrical Manufactures Association and others. “NEMA
standards publication MS 1–2008 (R2014): Determination of
Signal-to-Noise Ratio (SNR) in Diagnostic Magnetic Resonance
Imaging”. In: NEMA (2014).

[138] Kiyoyuki Chinzei, Karol Miller, et al. “Towards MRI guided surgical
manipulator”. In: Medical science monitor 7.1 (2001), pp. 153–163.

[139] Vincent Groenhuis, Françoise J Siepel, and Stefano Stramigioli.
“Miniaturization of MR Safe Pneumatic Rotational Stepper Motors”.
In: 2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE. 2019, pp. 7150–7156.

[140] Hanbal Arif et al. “Concept for parallel placement of flexible needles
for Irreversible Electroporation”. In: Current Directions in Biomedical
Engineering 7.2 (2021), pp. 219–222.

[141] Sang-Eun Song et al. “Design evaluation of a double ring RCM mech-
anism for robotic needle guidance in MRI-guided liver interventions”.
In: 2013 IEEE/RSJ International Conference on Intelligent Robots
and Systems. 2013, pp. 4078–4083. DOI: 10.1109/IROS.2013.
6696940.

[142] Niravkumar Patel et al. “Body-Mounted Robotic System for MRI-
Guided Shoulder Arthrography: Cadaver and Clinical Workflow Stud-
ies”. In: Frontiers in Robotics and AI 8 (2021).

[143] Pedro Moreira et al. “In vivo evaluation of angulated needle-guide
template for MRI-guided transperineal prostate biopsy”. In: Medical
physics 48.5 (2021), pp. 2553–2565.

[144] Carl S McGill et al. “Precision grid and hand motion for accurate
needle insertion in brachytherapy”. In: Medical physics 38.8 (2011),
pp. 4749–4759.

[145] Niki Abolhassani and RajniV Patel. “Deflection of a flexible needle
during insertion into soft tissue”. In: 2006 International Conference of
the IEEE Engineering in Medicine and Biology Society. IEEE. 2006,
pp. 3858–3861.

138

https://doi.org/10.1109/IROS.2013.6696940
https://doi.org/10.1109/IROS.2013.6696940


[146] Paulo A Garcia, John H Rossmeisl, and Rafael V Davalos. “Electrical
conductivity changes during irreversible electroporation treatment of
brain cancer”. In: 2011 Annual International Conference of the IEEE
Engineering in Medicine and Biology Society. IEEE. 2011, pp. 739–
742.

[147] Natalie Beitel-White et al. “Electrical characterization of human bi-
ological tissue for irreversible electroporation treatments”. In: 2018
40th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC). IEEE. 2018, pp. 4170–4173.

[148] Sabrina Campelo et al. “An evaluation of irreversible electropora-
tion thresholds in human prostate cancer and potential correlations
to physiological measurements”. In: APL bioengineering 1.1 (2017),
p. 016101.

[149] Julie Gehl et al. “In vivo electroporation of skeletal muscle: threshold,
efficacy and relation to electric field distribution”. In: Biochimica et
Biophysica Acta (BBA)-General Subjects 1428.2-3 (1999), pp. 233–
240.
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