18 research outputs found

    Testability and redundancy techniques for improved yield and reliability of CMOS VLSI circuits

    Get PDF
    The research presented in this thesis is concerned with the design of fault-tolerant integrated circuits as a contribution to the design of fault-tolerant systems. The economical manufacture of very large area ICs will necessitate the incorporation of fault-tolerance features which are routinely employed in current high density dynamic random access memories. Furthermore, the growing use of ICs in safety-critical applications and/or hostile environments in addition to the prospect of single-chip systems will mandate the use of fault-tolerance for improved reliability. A fault-tolerant IC must be able to detect and correct all possible faults that may affect its operation. The ability of a chip to detect its own faults is not only necessary for fault-tolerance, but it is also regarded as the ultimate solution to the problem of testing. Off-line periodic testing is selected for this research because it achieves better coverage of physical faults and it requires less extra hardware than on-line error detection techniques. Tests for CMOS stuck-open faults are shown to detect all other faults. Simple test sequence generation procedures for the detection of all faults are derived. The test sequences generated by these procedures produce a trivial output, thereby, greatly simplifying the task of test response analysis. A further advantage of the proposed test generation procedures is that they do not require the enumeration of faults. The implementation of built-in self-test is considered and it is shown that the hardware overhead is comparable to that associated with pseudo-random and pseudo-exhaustive techniques while achieving a much higher fault coverage through-the use of the proposed test generation procedures. The consideration of the problem of testing the test circuitry led to the conclusion that complete test coverage may be achieved if separate chips cooperate in testing each other's untested parts. An alternative approach towards complete test coverage would be to design the test circuitry so that it is as distributed as possible and so that it is tested as it performs its function. Fault correction relies on the provision of spare units and a means of reconfiguring the circuit so that the faulty units are discarded. This raises the question of what is the optimum size of a unit? A mathematical model, linking yield and reliability is therefore developed to answer such a question and also to study the effects of such parameters as the amount of redundancy, the size of the additional circuitry required for testing and reconfiguration, and the effect of periodic testing on reliability. The stringent requirement on the size of the reconfiguration logic is illustrated by the application of the model to a typical example. Another important result concerns the effect of periodic testing on reliability. It is shown that periodic off-line testing can achieve approximately the same level of reliability as on-line testing, even when the time between tests is many hundreds of hours

    The Coupling Model for Function and Delay Faults

    Full text link
    We propose a high-level fault model, the coupling fault (CF) model, that aims to cover both functional and timing faults in an integrated way. The basic properties of CFs and the corresponding tests are analyzed, focusing on their relationship with other fault models and their test requirements. A test generation program COTEGE for CFs is presented. Experiments with COTEGE are described which show that (reduced) coupling test sets can efficiently cover standard stuck-at-0/1 faults in a variety of different realizations. The corresponding coupling delay tests detect all robust path delay faults in any realization of a logic function.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43012/1/10836_2005_Article_3476.pd

    Methodology to accelerate diagnostic coverage assessment: MADC

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia Elétrica, Florianópolis, 2016.Os veículos da atualidade vêm integrando um número crescente de eletrônica embarcada, com o objetivo de permitir uma experiência mais segura aos motoristas. Logo, a garantia da segurança física é um requisito que precisa ser observada por completo durante o processo de desenvolvimento. O padrão ISO 26262 provê medidas para garantir que esses requisitos não sejam negligenciados. Injeção de falhas é fortemente recomendada quando da verificação do funcionamento dos mecanismos de segurança implementados, assim como sua capacidade de cobertura associada ao diagnóstico de falhas existentes. A análise exaustiva não é obrigatória, mas evidências de que o máximo esforço foi feito para acurar a cobertura de diagnóstico precisam ser apresentadas, principalmente durante a avalição dos níveis de segurança associados a arquitetura implementada em hardware. Estes níveis dão suporte às alegações de que o projeto obedece às métricas de segurança da integridade física exigida em aplicações automotivas. Os níveis de integridade variam de A à D, sendo este último o mais rigoroso. Essa Tese explora o estado-da-arte em soluções de verificação, e tem por objetivo construir uma metodologia que permita acelerar a verificação da cobertura de diagnóstico alcançado. Diferentemente de outras técnicas voltadas à aceleração de injeção de falhas, a metodologia proposta utiliza uma plataforma de hardware dedicada à verificação, com o intuito de maximizar o desempenho relativo a simulação de falhas. Muitos aspectos relativos a ISO 26262 são observados de forma que a presente contribuição possa ser apreciada no segmento automotivo. Por fim, uma arquitetura OpenRISC é utilizada para confirmar os resultados alcançados com essa solução proposta pertencente ao estado-da-arte.Abstract : Modern vehicles are integrating a growing number of electronics to provide a safer experience for the driver. Therefore, safety is a non-negotiable requirement that must be considered through the vehicle development process. The ISO 26262 standard provides guidance to ensure that such requirements are implemented. Fault injection is highly recommended for the functional verification of safety mechanisms or to evaluate their diagnostic coverage capability. An exhaustive analysis is not required, but evidence of best effort through the diagnostic coverage assessment needs to be provided when performing quantitative evaluation of hardware architectural metrics. These metrics support that the automotive safety integrity level ? ranging from A (lowest) to D (strictest) levels ? was obeyed. This thesis explores the most advanced verification solutions in order to build a methodology to accelerate the diagnostic coverage assessment. Different from similar techniques for fault injection acceleration, the proposed methodology does not require any modification of the design model to enable acceleration. Many functional safety requisites in the ISO 26262 are considered thus allowing the contribution presented to be a suitable solution for the automotive segment. An OpenRISC architecture is used to confirm the results achieved by this state-of-the-art solution

    The 1991 3rd NASA Symposium on VLSI Design

    Get PDF
    Papers from the symposium are presented from the following sessions: (1) featured presentations 1; (2) very large scale integration (VLSI) circuit design; (3) VLSI architecture 1; (4) featured presentations 2; (5) neural networks; (6) VLSI architectures 2; (7) featured presentations 3; (8) verification 1; (9) analog design; (10) verification 2; (11) design innovations 1; (12) asynchronous design; and (13) design innovations 2

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design

    Multi-level simulation of nano-electronic digital circuits on GPUs

    Get PDF
    Simulation of circuits and faults is an essential part in design and test validation tasks of contemporary nano-electronic digital integrated CMOS circuits. Shrinking technology processes with smaller feature sizes and strict performance and reliability requirements demand not only detailed validation of the functional properties of a design, but also accurate validation of non-functional aspects including the timing behavior. However, due to the rising complexity of the circuit behavior and the steady growth of the designs with respect to the transistor count, timing-accurate simulation of current designs requires a lot of computational effort which can only be handled by proper abstraction and a high degree of parallelization. This work presents a simulation model for scalable and accurate timing simulation of digital circuits on data-parallel graphics processing unit (GPU) accelerators. By providing compact modeling and data-structures as well as through exploiting multiple dimensions of parallelism, the simulation model enables not only fast and timing-accurate simulation at logic level, but also massively-parallel simulation with switch level accuracy. The model facilitates extensions for fast and efficient fault simulation of small delay faults at logic level, as well as first-order parametric and parasitic faults at switch level. With the parallelization on GPUs, detailed and scalable simulation is enabled that is applicable even to multi-million gate designs. This way, comprehensive analyses of realistic timing-related faults in presence of process- and parameter variations are enabled for the first time. Additional simulation efficiency is achieved by merging the presented methods in a unified simulation model, that allows to combine the unique advantages of the different levels of abstraction in a mixed-abstraction multi-level simulation flow to reach even higher speedups. Experimental results show that the implemented parallel approach achieves unprecedented simulation throughput as well as high speedup compared to conventional timing simulators. The underlying model scales for multi-million gate designs and gives detailed insights into the timing behavior of digital CMOS circuits, thereby enabling large-scale applications to aid even highly complex design and test validation tasks

    Network-on-Chip

    Get PDF
    Addresses the Challenges Associated with System-on-Chip Integration Network-on-Chip: The Next Generation of System-on-Chip Integration examines the current issues restricting chip-on-chip communication efficiency, and explores Network-on-chip (NoC), a promising alternative that equips designers with the capability to produce a scalable, reusable, and high-performance communication backbone by allowing for the integration of a large number of cores on a single system-on-chip (SoC). This book provides a basic overview of topics associated with NoC-based design: communication infrastructure design, communication methodology, evaluation framework, and mapping of applications onto NoC. It details the design and evaluation of different proposed NoC structures, low-power techniques, signal integrity and reliability issues, application mapping, testing, and future trends. Utilizing examples of chips that have been implemented in industry and academia, this text presents the full architectural design of components verified through implementation in industrial CAD tools. It describes NoC research and developments, incorporates theoretical proofs strengthening the analysis procedures, and includes algorithms used in NoC design and synthesis. In addition, it considers other upcoming NoC issues, such as low-power NoC design, signal integrity issues, NoC testing, reconfiguration, synthesis, and 3-D NoC design. This text comprises 12 chapters and covers: The evolution of NoC from SoC—its research and developmental challenges NoC protocols, elaborating flow control, available network topologies, routing mechanisms, fault tolerance, quality-of-service support, and the design of network interfaces The router design strategies followed in NoCs The evaluation mechanism of NoC architectures The application mapping strategies followed in NoCs Low-power design techniques specifically followed in NoCs The signal integrity and reliability issues of NoC The details of NoC testing strategies reported so far The problem of synthesizing application-specific NoCs Reconfigurable NoC design issues Direction of future research and development in the field of NoC Network-on-Chip: The Next Generation of System-on-Chip Integration covers the basic topics, technology, and future trends relevant to NoC-based design, and can be used by engineers, students, and researchers and other industry professionals interested in computer architecture, embedded systems, and parallel/distributed systems

    Large space structures and systems in the space station era: A bibliography with indexes (supplement 04)

    Get PDF
    Bibliographies and abstracts are listed for 1211 reports, articles, and other documents introduced into the NASA scientific and technical information system between 1 Jul. and 30 Dec. 1991. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems
    corecore