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RESUMO 

 

Os veículos da atualidade vêm integrando um número crescente de 

eletrônica embarcada, com o objetivo de permitir uma experiência mais 

segura aos motoristas. Logo, a garantia da segurança física é um requisito 

que precisa ser observada por completo durante o processo de 

desenvolvimento. O padrão ISO 26262 provê medidas para garantir que 

esses requisitos não sejam negligenciados. Injeção de falhas é fortemente 

recomendada quando da verificação do funcionamento dos mecanismos 

de segurança implementados, assim como sua capacidade de cobertura 

associada ao diagnóstico de falhas existentes. A análise exaustiva não é 

obrigatória, mas evidências de que o máximo esforço foi feito para acurar 

a cobertura de diagnóstico precisam ser apresentadas, principalmente 

durante a avalição dos níveis de segurança associados a arquitetura 

implementada em hardware. Estes níveis dão suporte às alegações de que 

o projeto obedece às métricas de segurança da integridade física exigida 

em aplicações automotivas. Os níveis de integridade variam de A à D, 

sendo este último o mais rigoroso. Essa Tese explora o estado-da-arte em 

soluções de verificação, e tem por objetivo construir uma metodologia 

que permita acelerar a verificação da cobertura de diagnóstico alcançado. 

Diferentemente de outras técnicas voltadas à aceleração de injeção de 

falhas, a metodologia proposta utiliza uma plataforma de hardware 

dedicada à verificação, com o intuito de maximizar o desempenho 

relativo a simulação de falhas. Muitos aspectos relativos a ISO 26262 são 

observados de forma que a presente contribuição possa ser apreciada no 

segmento automotivo. Por fim, uma arquitetura OpenRISC é utilizada 

para confirmar os resultados alcançados com essa solução proposta 

pertencente ao estado-da-arte. 

 

Palavras-chave: Injeção de Falhas. ISO 26262. Integridade Funcional. 

Cobertura de Diagnóstico. Plataforma de Hardware dedicada à 

Verificação. Mecanismos de Segurança.  



 



ABSTRACT 

 

Modern vehicles are integrating a growing number of electronics 

to provide a safer experience for the driver. Therefore, safety is a non-

negotiable requirement that must be considered through the vehicle 

development process. The ISO 26262 standard provides guidance to 

ensure that such requirements are implemented. Fault injection is highly 

recommended for the functional verification of safety mechanisms or to 

evaluate their diagnostic coverage capability. An exhaustive analysis is 

not required, but evidence of best effort through the diagnostic coverage 

assessment needs to be provided when performing quantitative evaluation 

of hardware architectural metrics. These metrics support that the 

automotive safety integrity level – ranging from A (lowest) to D (strictest) 

levels – was obeyed. This thesis explores the most advanced verification 

solutions in order to build a methodology to accelerate the diagnostic 

coverage assessment. Different from similar techniques for fault injection 

acceleration, the proposed methodology does not require any 

modification of the design model to enable acceleration. Many functional 

safety requisites in the ISO 26262 are considered thus allowing the 

contribution presented to be a suitable solution for the automotive 

segment. An OpenRISC architecture is used to confirm the results 

achieved by this state-of-the-art solution. 

 

 

Keywords: Fault Injection. ISO 26262. Functional Safety. Diagnostic 

Coverage. Hardware-assisted Verification Platform. Safety Mechanism.  



 



RESUMO EXPANDIDO 

 

INTRODUÇÃO 

 

Os veículos da atualidade vêm integrando um número crescente de 

eletrônica embarcada, com o objetivo de permitir uma experiência mais 

segura aos motoristas. Logo, a garantia da segurança física é um requisito 

que não pode ser negligenciado e o padrão ISO 26262 provê medidas para 

garantir que este seja observado durante o processo de desenvolvimento 

de sistemas embarcados para automóveis de produção em série.  

Entre essas medidas, a injeção de falhas é fortemente recomendada 

pelo ISO 26262 para verificar o correto funcionamento de mecanismos 

de segurança implementados no circuito e de sua capacidade de cobertura 

referente ao diagnóstico de falhas existentes. A análise exaustiva não é 

obrigatória, mas evidências de que o máximo esforço foi praticado para 

acurar a cobertura de diagnóstico precisam ser fornecidas. Isso se aplica, 

especialmente, durante a avalição dos níveis de segurança associados a 

arquitetura implementada em hardware. Estes níveis, denominados ASIL 

(do inglês, Automotive Safety Integrity Level), dão suporte às alegações 

de que o projeto obedece as métricas de segurança da integridade física 

especificada de acordo com a aplicação automotiva alvo. Os ASILs são 

definidos no ISO 26262 e vão de A à D, ou seja, do mais brando até o 

mais rigoroso, respectivamente.  

Essa pesquisa explora o estado-da-arte em soluções de verificação 

visando construir uma metodologia baseada na injeção de falhas que 

permita acelerar a verificação da cobertura de diagnóstico alcançada. 

Diferentemente de outras técnicas voltadas à aceleração de injeção de 

falhas, a metodologia proposta MADC (Methodology To Accelerate 

Diagnostic Coverage Assessment) utiliza uma plataforma de hardware 

dedicada à verificação para maximizar o desempenho da inserção de 

falhas. Muitos aspectos do ISO 26262 são observados de forma que a 

original contribuição deste trabalho possa ser apreciada no segmento 

automotivo. Por fim, resultados obtidos da aplicação da MADC sobre 

uma arquitetura OpenRISC são apresentada. 

 

OBJETIVOS 

 

As evidências utilizadas para dar suporte ao se aclamar que um 

produto é functional safety precisam ser coletadas sobre o efetivo projeto 

do circuito integrado em desenvolvimento. Quando isso não é feito, então 



um conjunto de argumentos robustos que são necessários para justificar a 

utilização de um modelo abstrato como representante do real projeto do 

circuito em desenvolvimento. A geração desse tipo de argumentação pode 

exigir significante esforço para comprovar que há suficiente correlação 

entre o modelo efetivo do circuito e o modelo abstrato usado para análise. 

Visando reduzir esse oneroso esforço adicional, esse trabalho propõe 

MADC para acelerar a campanha de injeção de falhas sem que seja 

necessário qualquer modificação no modelo do circuito ou no nível de 

abstração utilizado. Antes de entrar em mais detalhes referentes a MADC 

proposta, o escopo dessa pesquisa precisa ser definido. Portanto, injeção 

de falhas nesse trabalho significa a imitação do efeito de falhas em 

circuitos integrados descritos a nível de portas lógicas.  

O principal objetivo dessa pesquisa é propor uma metodologia 

que explora ao máximo as vantagens encontradas nas mais avançadas 

soluções de verificação funcional para acelerar a injeção de falhas 

visando verificar os mecanismos de segurança implementados assim 

como sua capacidade de diagnosticar falhas respeitando os preceitos do 

ISO 26262. Para alcançar esses objetivos, os seguintes caminhos foram 

identificados: 

 Investigar soluções de verificação funcional modernas que 

possam ser empregadas na aceleração de injeção de falhas; 

 Familiarizar-se com os padrões mais atuais sobre functional 

safety de modo que suas recomendações fossem observadas 

pela metodologia de injeção de falhas desenvolvida; 

 Construir um modelo prático visando conferir o desempenho 

da metodologia implementada diante de diferentes soluções; 

 Explorar vantagens das mais avançadas ferramentas de 

verificação para minimizar a intrusão da solução proposta. 

O uso de uma plataforma dedicada à verificação funcional para 

acelerar a injeção de falhas acarretou nas seguintes questões: 

 Será viável a utilização de emuladores dedicados a 

verificação funcional para aceleração de injeção de falhas? 

 A metodologia proposta apresenta alguma vantagem cuja não 

seria viável se fosse baseada em outra forma de aceleração? 

 Há limitações na metodologia proposta e como mitigá-las? 

Essa pesquisa exibe resultados referentes à injeção de falhas 

permanentes e o caso de teste é um microprocessador descrito ao nível de 

portas lógicas. Dado que o grau de detalhamento do modelo do circuito 

utilizado influencia no desempenho, então se acredita que o caso de teste 

escolhido consegue destacar as vantagens da solução proposta. Com isso, 



a contribuição original dessa pesquisa pode ser identificada pelo ganho 

em desempenho com a metodologia proposta baseada na aceleração de 

injeção de falhas permanentes sem a necessidade de alterar o modelo do 

circuito sendo verificado. É importante ressaltar que MADC, por não ser 

intrusiva, reduz o esforço referente a geração de justificativas exigidas 

pelo ISO 26262 quando modelos abstratos do circuito são utilizados na 

análise de segurança funcional. Até este momento, o autor desconhece 

trabalho semelhante considerando o escopo definido acima. 

 

METODOLOGIA 

 

Parte do esforço intrínseco em garantir níveis adequados de 

segurança está na necessidade de se gerar evidências que corroborem a 

capacidade dos eletrônicos utilizados em automóveis de reagir 

previsivelmente quando da ocorrência de falhas. Safety mechanisms (SM) 

são adicionados ao sistema embarcado visando maximizar a cobertura de 

falhas passíveis de serem diagnosticadas (do inglês, diagnostic coverage 

– DC) e minimizar possiblidade delas resultarem acidentes. Em outras 

palavras, DC representa a porcentagem da probabilidade falhas que são 

anteparada pelos SMs implementados. Dessa forma, os SMs precisam ter 

sua funcionalidade verificada e se sua participação no nível DC do 

sistema permite atender os requisito do ASIL especificado para aplicação. 

Há diversas técnicas de verificação e validação que vem sendo 

investigadas visando atender desafios inerentes à functional safety. Em 

meio a essas técnicas está simulação de falhas cuja é tradicionalmente 

empregada na geração de testes de manufatura de circuitos integrados. 

Essa pesquisa explora soluções de verificação funcional avançados para 

acelerar injeção de falhas quando comparado com técnicas baseadas em 

simulação, além de sempre observar os preceitos descritos no ISO 26262. 

Logo, MADC permite reduzir o tempo gasto com a análise de DC dos 

SMs implementados, especialmente quando o circuito está descrito ao 

nível de portas lógicas e o desempenho do simulador acaba sendo 

impactada devido à complexidade do modelo executado. A investigação 

do DC não se limita ao nível de portas lógicas uma vez que os valores 

precisam ser constantemente estimados de modo que medidas necessárias 

possam ser tomadas oportunamente. Com isso, soluções integráveis ao 

fluxo de verificação do circuito sendo desenvolvido é essencial. 

Simuladores de falhas avançados foram recentemente anunciadas 

por fornecedores de ferramentas de projeto de circuito integrado 

atendendo requisitos do ISO 26262. Por outro lado, injeção de falhas 

baseada em simulação pode ser proibitivamente longa. Dessa forma, o 



emprego de plataformas de emulação baseadas em hardware dedicados 

para acelerar a campanha de injeção de falhas foi investigado. A MADC 

foi construída sobre uma dessas plataformas comerciais disponíveis cuja 

combina aceleração de simulação e emulação para otimizar a verificação 

funcional. Como injeção de falhas não é nativamente habilitada nessa 

plataforma, então algumas adaptações foram feitas para permitir que esse 

meio fosse empregado nesse estudo. Essa plataforma pode ser empregada 

independentemente do nível de abstração da descrição do circuito, logo, 

a MADC pode ser estendida para além do nível de portas lógicas.  

Diferentes abordagens de aceleração de injeção de falhas foram 

proposta nas últimas décadas. Emuladores de falhas baseados em disposi-

tivos reconfiguráveis como Field-Programable Gate Arrays são tradicio-

nalmente usados para superar o desempenho limitado de simuladores de 

falhas. Metodologias baseadas em emulação apresentam desvantagens 

considerando os requisito do ISO 26262. Uma delas é o fato da análise 

ser realizada sobre um modelo do circuito que não é aquele efetivamente 

enviado para fabricação. Isso porque métodos baseados em intrusão ou 

em emuladores cuja tecnologia fim difere da aplicação final são usados. 

A MADC observa esses aspectos de modo que a injeção de falhas ocorre 

no mesmo modelo utilizado no fluxo de fabricação do circuito integrado. 

Os trabalhos relacionados foram divididos entre os que visam a 

aceleração da injeção de falhas daqueles que mostram o uso da injeção de 

falhas no contexto de validação da integridade funcional. O conhecimento 

adquirido com o segundo grupo ajudou a esclarecer os requisitos no ISO 

26262 que precisam ser observados quanto ao uso de injeção de falhas. 

Desse modo, foi possível identificar quais os pontos das técnicas de 

aceleração apresentados no primeiro grupo que poderiam ser explorados 

no contexto em que esse trabalho foi desenvolvido.  

 

RESULTADOS 

 

Os primeiros experimentos realizados com a MADC ajudaram a 

validar os resultados obtidos se comparado com soluções comerciais. 

Experimentos mais complexos mostram o potencial da solução proposta 

nessa pesquisa, em especial no que se refere a desempenho. Vale lembrar 

que a MADC oferece um melhor desempenho na análise de cobertura de 

falhas observando os requisitos do ISO 26262. Dessa forma, MADC pode 

servir ao segmento automobilístico com uma solução no estado da arte 

não intrusiva para acelerar injeção de falhas. Enfim, diversos avanços 

possíveis para a MADC desenvolvida são discutidos ao mesmo tempo em 

que trabalhos futuros são apresentados.  
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1. INTRODUCTION 

 

Car manufacturers are integrating gradually more electronics in the 

vehicles in order to provide a safer experience for their customers – the 

drivers. The existing integrated circuit (IC) technology provides the 

computation power required to develop applications that can process the 

complex data provided by multiple sensors, transforming physical 

readings into electronic signals [1]. Capturing the surrounding 

information allows creating systems capable of deciding whether there 

are traffic hazards around and which actions should be taken to prevent 

or at least to minimize the risk of harming those involved. The data 

processing power available in the car permits to implement safety 

applications among many others like infotainment and car-to-car 

communication.  

The automotive OEMs (Original Equipment Manufacturers) and 

their suppliers - Tier 1, Tier 2, and so forth – are investing on innovative 

car utilities in order to explore the new market opportunities made 

possible by the current technology. Nowadays, there are many valued 

features to consider when selecting a new car, which go far beyond the 

traditional characteristics, such as engine, internal space, design or fuel 

consumption. Ninety percent of the car novelties are based on electronics 

[2] and some are already available in most modern cars, such as: autopilot 

system, self- parking, no blind spots camera system, collision avoidance 

by auto emergency braking assist, gesture control of the infotainment 

system, cloud-based dashboard access, car keys with parking remote 

control among  many other interesting features [3]. With so many new car 

features being launched on each automotive tradeshow, it seems that this 

is a lucrative market for the OEMs and suppliers that will continue to 

expand – the money spent on the vehicle electronics is expected to grow 

about ten percent by 2022 [2].  

 

1.1. MOTIVATION AND CHALLENGES 

 

With various sensors in the car – some directly exposed to the 

outside world to proper read the physical measures – there is a need for 

specific packaging, circuit board protection and extra wiring to connect 

the sensors to the Electronic Control Units (ECU) [1]. Approximately, up 

to 100 Kg of cabling weight can be found in a car nowadays [4]. The 

additional weight cannot be neglected since it can be linked to the fuel 

consumption increase: 50 kg weight ~ 0.1 liter/100 Km [5]. Moreover, 
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OEMs need to meet new environment regulation hence reducing the CO2 

emission of the next vehicle generations. As a result, innovative 

automotive communication has become a research topic of broad and 

current interest that aims to find solutions for the cabling weight while 

still considering security and the required bandwidth challenges [2]. 

Independently of taking an innovative cabled networking connection or 

even a wireless solution for the communication, safety must always be 

taken into account. 

At the end of the day, safety is a non-negotiable requirement that 

must be considered throughout the vehicle development process. The ISO 

26262 standard provides guidance to ensure that such requirements are 

implemented [6]. Part of the additional effort required to increase safety 

is to provide evidence that the electronics integrated into the car are not 

just functionally correct but also they can handle random faults that may 

occur in the system due to aging or radiation sources, for example. To 

cope with possible fault scenarios, mechanisms are integrated into the 

design in order to add diagnose capability and to make the driver aware 

of any existing problem. In the case of a critical real-time feature, which 

correction may not be possible, then the system must guarantee minimal 

controllability to the driver that should then be able to avoid an accident 

of bigger proportions.  

The safety mechanisms (SM) added to the design are used to 

improve the diagnostic coverage (DC) – i.e., the percentage of existing 

failure probability that is prevented by the SM – for different failure 

modes. The SMs must be functionally verified as well as the DCs 

achieved with them must be assessed. Fault injection is highly 

recommended for the functional verification of SMs and to evaluate their 

DC contribution. Although an exhaustive analysis is not required, 

evidence of best effort through the DC assessment must be provided when 

performing a quantitative evaluation of hardware architectural metrics. 

These metrics are used to identify whether the required automotive safety 

integrity level (ASIL) – ranging from A (lowest) to D (strictest) levels – 

was obeyed. Best effort, in this case, is pushed by the governmental 

regulations, and it can only be justified by using state-of-the-art 

techniques together while performing an assessment as thoroughly as 

possible. 

There are many advanced verification technologies that are being 

explored or tailored to cope with different functional safety challenges. 

The selection of which SMs to be implemented starts at the conceptual 

phase of the design, much sooner than any implementation is made 

available. The DCs at this stage are estimated based on previous data, 
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expert judgment, or guided by reference information from standards like 

the ISO 26262. Along the project development, the requirements initially 

defined must be continuously tracked while more detailed analysis is 

executed in order to provide evidence that these requirements are 

achieved. With progressive design refinement and implementation, a 

rationale approach is used to map the requirements to the corresponding 

parts of the design, thus allowing an analysis considering only safety-

related (S-R) parts. Even after this “divide and conquer” approach is 

performed, the number of faults that are covered by an SM can still be 

unfeasible to verify through fault injection due to the design complexity. 

Therefore, sampling and other statistics methods are used to obtain 

confident assessment results. 

This research explores the most advanced functional verification 

solutions in order to enable fault injection acceleration for SM verification 

and DC assessment. The research work developed aims to enable a more 

thorough safety analyses hence permitting to achieve higher accuracy of 

the metrics used to provide evidence that the design reached the required 

ASIL level. For instance, software based SMs – e.g., software based self-

test (SBST) – typically requires long runs until the diagnostic routine 

completes, and the fault detection can be confirmed. For such kind of SM, 

concurrent fault simulators – commonly used in the Design-for-

Testability (DfT) flow – are not suitable since they do not support 

complex testbenches (TB), which can reproduce the interaction with the 

software. Concurrent simulators normally only support designs at gate-

level (GL), thus benefiting from the structured and modular description 

to optimize the fault simulation. On the other hand, it requires extracting 

static test vectors during normal simulation due to the lack of support of 

advanced TB, which is a time-consuming task. As a result, this kind of 

tool is not suitable for verifying the SMs during the development process. 

This forces the safety assessment to be executed once and only when the 

final GL netlist is available, what is risky since the cost of a design change 

at this stage is unacceptable. Therefore, the design is overprotected with 

extra SMs hence consuming unnecessary area and power to guarantee it 

will pass the safety certification process. Another consideration is that 

transient – fault models required by the ISO 26262 – are not typically 

supported by concurrent fault simulators.  

Fault injection solutions to be used during the development phase 

are being announced by Electronic Design Automation (EDA) vendors, 

such as Incisive Functional Safety Simulator® (IFSS) [7], Certitude® [8], 

Z01X® [9], among others. However, fault injection campaigns using 

simulation can be prohibitively long, especially if the assessment is 
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performed at the system level or if the SM being verified corrects the fault 

hence requiring most of the runs to be executed completely in order to 

classify the fault.  

Targeting the fault injection campaign speed-up, the utilization of 

hardware emulator platforms, such as Veloce® [10], Zebu® [11], and 

Palladium® [12], provided by the biggest EDA vendors has been 

investigated. The thesis research used the former one that is provided by 

Cadence Design Systems, Inc., which combines simulation acceleration 

and emulation capabilities to boost verification throughput and 

productivity. Since this kind of platform is intended for typical functional 

verification, some investigation was necessary to permit leveraging 

Palladium for fault injection acceleration. The most important advantages 

of Palladium are the seamless acceleration despite the design description 

level: register-transfer-level (RTL) or GL. This allowed creating a non-

intrusive acceleration approach for DC assessment of SMs. The proposed 

solution is based on technology edge tools, and the methodology has been 

conceived aiming to become a recommended approach to be used by 

future functional safety standard releases.   

Different fault injection approaches have been proposed through 

the last decades. Many of them aiming to optimize the assessment of 

dependability attributes – e.g., availability, reliability, and safety – of fault 

tolerant designs [13] – especially against soft errors. The techniques can 

be grouped according to the technology/method that underlies the fault 

injection, which can be: hardware or physical injection, simulation and 

emulation. Software-based fault injection can be another group when 

distinguishing hardware design that process software [14]. Each approach 

has specific characteristics that define its application suitability. For 

example, simulation-based approaches are likely to provide more 

controllability and observability, while there is a compromise between 

accuracy and performance that must be considered. Field-programmable 

gate arrays (FPGA) are the most common technology used to emulate 

fault injection by providing the performance that lacks in the simulation 

based solutions. Minimal design modifications – also called 

instrumentation – are required to enable similar controllability and 

observability tough. Despite the facilities costs and the setup complexity, 

hardware or physical fault injection requires a prototype only available 

too late in the design flow and hence not considered here. 

The FPGA-based approach is the most similar to the solution 

explored in this research. However, no design model alteration neither the 

FPGA bitstream generation are required by using Palladium as the 

underlying technology to accelerate fault injection. Only the static 
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analysis algorithm implemented must be executed to collect all faults that 

can be accelerated hence keeping the same design model for simulation, 

emulation, and even sign-off. Since Palladium is a powerful machine 

specially created to accelerate the simulation, it has most features of a 

simulation tool thus providing similar controllability and observability, 

which are leveraged in the implemented solution. When considering 

functional safety, then the latest representation of the design must be used 

for the analysis. Therefore, the acceleration platform used has another 

significant characteristic, and that is: RTL or GL of design description has 

minimal influence on the possible performance gain. Consequently, the 

DC assessment can be performed over the design model most close to the 

sign-off thus satisfying an ISO 26262 certification auditor. Therefore, the 

static analysis implemented together with a platform like Palladium 

enabled the invention of the methodology presented, which permits 

accelerating the DC assessment.  

 

1.2. OBJECTIVES AND ORIGINAL CONTRIBUTION 

 

In the functional safety context, the evidence utilized to support the 

claim of safety compliance must be collected based on the design model 

being developed. Otherwise, a set of strong arguments needs to be 

prepared in order to justify the utilization of an abstract model used for 

the safety assessment. The development of such argumentation can 

require an overwhelming effort dedicated to the generation of evidence 

that the design model used accurately represent the actual design model. 

The work developed in the context of this thesis seeks the provision of a 

fault injection acceleration solution that does not rely on changing the 

design representation, in order to enable the acceleration. Given the 

distinct possibilities of employing fault injection, it is important to define 

the research scope clearly. From this moment on, fault injection means 

the imitation of fault effects at the semiconductor level, using the design 

model prior production – i.e. HDL description, either RTL or GL. 

The main objective of this thesis is to propose a methodology to 

leverage the most advanced functional verification solutions in order 
to accelerate fault injection for SM verification and DC assessment. 

To meet this thesis objective, a few means were identified: 

 To investigate the available technology edge solutions for 

function verification, which can be explored to accelerate the 

fault injection campaigns;  
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 To become functional safety literate in order to tailor the 

conception of a methodology taking into account the state-of-

the-art recommendations presented in the standards;  

 To build a proof-of-concept flow based on the developed 

scripts that enable seamless utilization of different tools to 

compare the results and validate the correctness of the 

proposed methodology; 

 To implement a solution leveraging the tools available to 

analyze the design in order to minimize the intrusiveness of 

the proposed acceleration approach. 

As already mentioned, the utilization of hardware-assisted 

verification platforms towards the acceleration of fault injection is 

investigated. Therefore, the following research questions are considered: 

 Is the fault injection using a hardware-assisted platform 

feasible? 

 Does the proposed methodology provide any advantage 

towards functional safety which would not be achieved with 

other acceleration solutions? 

 Are there limitations and what can be done do minimize their 

impact? 

This research focuses on the injection of permanent faults. A 

microprocessor architecture, described at gate-level, has been chosen as 

a case study. The detail level of the design model used can significantly 

impact the simulation performance. Hence it is believed that a test case 

described at gate-level can better highlight the advantages of the proposed 

solution. Within this scope, the Thesis original contribution can be 

defined as the performance gain achieved with the proposed methodology 

via the fault injection acceleration of permanent faults without requiring 

modification or a different design model while reusing the existing 

verification environment – e.g., not requiring TB transformation to allow 

using traditional DfT fault simulators. To the best of this author's 

knowledge, there is no published work considering this specific scope.  

The proposed methodology utilization is not limited to the gate-

level netlist and the automotive scope. In fact, it is a generic fault injection 

acceleration solution that can be leveraged in other industry segments like 

avionics or applied at different abstraction levels. For that reason, fault 

injection techniques relevant to aerospace applications are discussed as 

well as methods pertinent to the automotive area. However, it is important 

to emphasize that this Thesis focuses exclusively on addressing the 

challenges derived from the ISO 26262, which is the functional safety 
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standard tailored for the automotive applications. The results achieved 

with the developed proof-of-concept highlights the potential benefit 

offered by the proposed methodology. 

 

1.3. ORGANIZATION 

 

The thesis is divided in the following manner: Chapter 0 provides 

an ISO 26262 overview, and the functional safety context covered in this 

Thesis. Chapter 3 analyzes related work in the area of fault injection but 

within the safety context and its different applications. Chapter 0 details 

the many fault injection concepts, and it also discusses the state-of-the-

art acceleration approaches targeting the fault injection optimization. A 

literature review covering different fault injection acceleration techniques 

is presented in Chapter 5. The characteristics of each reviewed 

acceleration approaches are discussed in order to identify their suitability 

to the functional safety domain. Therefore, Chapter 5 allows highlighting 

how the Thesis’ original contribution distinguishes from the rest of the 

solutions found in the literature. Chapter 6 goes through the developed 

non-intrusive approach that enables fault injection acceleration by 

leveraging the hardware-assisted platform. Additionally, Chapter 6 

describes the proposed methodology to connect the fault injection 

campaign to the ISO 26262 world through an FMEDA. Chapter 7 reports 

the experiments performed using an OpenRISC architecture, and it 

discusses the results achieved. At the end of Chapter 7, a high-level 

comparison between the proposed methodology and the most similar 

related work is made, which permits emphasizing the potential benefit of 

the proposed methodology. In conclusion, Chapter 0 summarizes the 

thesis research achievements and comments future work. 
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2. FUNCTIONAL SAFETY AND ISO 26262 INTRODUCTION 

 

2.1. ISO 26262 TERMINOLOGY AND SCOPE 

 

In a broad sense, safety is a dependability attribute that represents 

the probability of a system that cannot operate correctly any longer to 

interrupt its functions in a way that nothing catastrophic happens to the 

users and the environment [13]. The “absence of unreasonable risk due to 

hazards caused by malfunctioning behavior of E/E systems” is the 

definition of functional safety according to the ISO 26262 vocabulary 

[15]. A graphical interpretation of this definition is illustrated in Figure 1. 

In a vehicle, hazards can be due to mechanical, electrical or even 

hydraulic problems. ISO 26262 limits its concern to the malfunction 

behavior of Electric/Electronic and Programmable Electronic (E/E/PE) 

systems thus not including electrical shocks or any other source of risk.  

 

 
Figure 1 – Functional safety definition according to the ISO 26262. 

The ISO 26262 has its first nine parts – chapters of the standard – 

published late 2011 followed by the part ten in 2012. The standard on its 

first edition has series production passenger cars with maximum gross 

vehicle mass no greater than 3,500 Kg as intended scope of application 

[15]. The second edition of the ISO 26262 is planned to be released in 

2018 with wider scope by removing the vehicle mass limitation and also 

including a specific chapter for motorcycles [16]. This new edition is 

going to contain the part eleven that will cover the application of the 

standard concepts on semiconductors, which is vaguely considered in the 

“absence of unreasonable risk due to hazards caused
by malfunctioning behaviour of E/E systems”
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current release [17].  Until the official publication, the standard committee 

has periodically meetings to agree on the progressing draft of the ISO 

document, which is accessible for members – including OEMs, EDA 

vendors, safety consultants, and others. 

 

2.2. BRIEF HISTORY OVERVIEW AND LEGAL ASPECTS 

 

Functional safety has not been introduced by the automotive 

standard that drives the topic of this research. Aviation segment has the 

important DO-178 “Software Considerations in Airborne Systems and 

Equipment Certification” published in 1982, which matured to the DO-

178A – released in 1985 – and ten years later became the well-known 

DO-178B. At the same time, it has been developed the “Aerospace 

Recommended Practice” guidelines ARP4754A and ARP4761, which 

were published later in 1996 putting the system and safety assessment 

into place [18]. The hardware counterpart is the DO-254 that provides 

guidance to ensure safe operation of airborne electronic designs that was 

announced in 2000 [19]. In the same year, the remaining four parts of the 

IEC 61508 standard were released after the first three parts became 

available in 1998 [20]. Figure 2 shows some of the most well-known 

safety standards. 

The “functional safety of E/E/PE safety-related system” standard, 

or IEC 61508, is a “generic” standard, which served as the basis for 

drafting the functional safety guidelines tailored to different industry 

segments [21] – some indicated in Figure 2. Therefore, IEC 61508 

supported the creation of safety standards applied medical device 

software (e.g., IEC 62304), nuclear power plant systems (e.g., IEC 

61513), machinery control systems (e.g., IEC 62061), industrial processes 

(e.g., IEC 61511), railway application (e.g., EN 50126), and many others. 

This long list also includes ISO 26262 covering the automobile 

electronics. The draft international standard (DIS) of the ISO 26262, 

which is prepared by the committee before the official release, was 

published in 2009. The same year the “unintended acceleration” case with 

the Toyota Lexus ES 350 killed all four occupants and triggered an 

escalation of investigations, back to 2002, of driver’s complaints 

reporting similar problem [22]. The investigation found 89 deaths 

suspected to be caused by defects on the Electronic Throttle Control 

System (ETCS), but the National Aeronautics and Space Administration 

(NASA) – assigned to inspect the design – could not point to a specific 

design flaw. However, NASA reported many technical questionable 
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procedures and the jury, of the civil lawsuit against Toyota, was 

convinced that ETCS defects caused the deaths. Additional to millions of 

recalls and millionaire civil penalties, the carmaker was fined in more 

than a billion of dollars in 2014 [23]. To prevent such cases that the ISO 

26262 was created, similar to the IEC 61508, which was influenced by 

the lessons learned from tragedies like Bhopal in 1984, Chernobyl in 1986 

and Piper Alpha in 1988 [24].  

 

 
 

Figure 2 - Functional safety standards historic connection. 

Regulation bodies from nine countries – e.g., USA, Germany, 

Japan – engaged for more than eight years until publishing the first 

version of the ISO 26262 containing the state-of-the-art framework for 
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achieving functional safety [25] [26]. Despite the technical focus of the 

recommendations in the standard, there are circumstantial norms or legal 

aspects that cannot be ignored. For instance, according to the European 

Regulation 661/2009, the current state of science and technology must be 

used to design vehicle safety. This makes the ISO 26262 more than just a 

recommendation due to its contemporary functional safety guidelines. 

The Toyota “unintended acceleration” example and the liability risk 

shared across the OEMs and its suppliers together with the growing 

number of electronics integrated into the cars, made the automotive 

industry align and contribute to the ISO 26262. While the standard 

imposes additional effort of complying with a bundle of new 

requirements, it also serves as legal protection from unreasonable 

liability. Such protection can only be achieved if the designer can 

convince it has done its “best-effort” to assure safety [27]. This is 

supported by the Safety Case, which compiles all relevant functional 

safety information derived from the other work products – i.e., 

documentation – required by the ISO 26262. The Safety Case must clear 

state what is being claimed – i.e., scope, context and requirements – about 

the system, the evidence – e.g., work products, test reports – and the safety 

arguments that communicate the relationship between the evidence and 

what is claimed [28]. Additionally, best-effort evidence must be provided 

including the adoption of reasonable economic and technical measures to 

guarantee maximum safety. In other words, the “liability risk” translated 

into the “hazard potential” of the application is what establishes the “best 

effort” extent a supplier has to commit in order to determine the 

appropriate state-of-the-art to be used [29]. 

 

2.3. AUTOMOTIVE SAFETY LIFECYCLE 

 

The automotive safety lifecycle – see Figure 3 – is outlined in the 

ISO 26262. Part 2 of the standard describes requirements – e.g., 

competences, traceability, plans – that must be managed from 

development to decommissioning of the product, as well as pre-requisites 

for safety activities applicable to specific phases [30]. 
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Figure 3 – Automotive safety lifecycle according to the ISO 26262. 

The next five parts of the standard specify distinct stages of the 

ISO 26262. In Figure 4, the clauses that describe the subphases of each 

stage are indicated in the following manner: “part number”-“clause”. Part 

3 start requiring the definition of the item being considered, which 

correspond to features at the vehicle level like: 

 Electronic Throttle Control Systems (ETCS); 

 Electrical Hydraulic Power Steering (EHPS); 

 Advanced Driver Assisted System (ADAS); 

 Tire Pressure Monitoring System (TPMS); 

 Electronic Steering Column Lock (ESCL); 

 Electronic Stability Program (ESP); 

 Emergency Brake Assistant (EBA); 

 Antilock Braking System (ABS); 

 Adaptive Cruise Control (ACC); 

 Traffic Sign Recognition (TSR); 

 Electronic Parking Brake (EPB); 

 Electric Power Steering (EPS); 

 Steer-By-Brake (SBB); 

 X-By-Wire – i.e. X = Drive, Throttle, Brake, Steer, etc.  

After the item definition with regards to its functions, interfaces, 

use cases, the safety cycle is then initiated by identifying if the project 

corresponds to a new design, modification or a reuse of existing product 

in an automotive application. The hazard analysis and risk assessment 

(HARA) subphase comes next and the objectives are: 

 identify and categorize the hazards that malfunctions in the 

item can trigger; 

 determine the ASIL considering the estimate of severity, 

exposure and controllability probability factors of each 

hazardous event based on the provided item’s functional 

behavior; 
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 formulate the safety goals to prevent or mitigate the 

unreasonable risk of each hazardous events with an ASIL 

assigned. 

 

 
 

Figure 4 - Safety lifecycle subphases. (Adapted from ISO 26262) 
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2.4. ISO 26262 – CONCEPT PHASE EXERCISE 

 

A fault tolerant Drive-By-Wire (DBW) example is used here to 

demonstrate a HARA [31]. The example consists of a Steer-By-Wire 

(SBW), a Brake-By-Wire (BBW), and a Throttle-By-Wire (TBW) sub-

systems. The elements of the DBW system are: central control unit 

(CCU); brake, steer and throttle ECUs and actuators; communication bus; 

and the steer wheel, the pedals, and their sensors. The user interface shall 

permit the driver to control the speed and the steering angle of the vehicle 

through the interaction with the pedals and steering wheel, respectively. 

Therefore, the steer and speed control need to be able to turn and to 

regulate acceleration of the vehicle. Figure 5 diagram shows how the 

elements composing the DBW system interact.  

 

 
Figure 5 – The block diagram of the DBW example. (Source: [31]) 

2.4.1. Item Definition 

 

An example of item definition for the DBW system is shown in 

Table 1. The DBW definition contains the description of the intended 

functionality of the item, which is composed of the SBW, BBW, and 

TBW subsystems. 

 
Table 1 – Item definition of the DBW example with the subsystems functionality 

description. (Adapted from [31]) 

System Function Description of intended function 

SBW Steer control Control the steering angle of the vehicle 
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TBW Speed control Increase the speed of the vehicle 

BBW Speed control Decrease the speed of the vehicle 

 

The item definition shall also include operation modes, 

environment conditions, legal requirements (e.g., the drive legislation of 

the interesting regions), already known failure modes and hazards (e.g., 

from known safety-related incidents). Sufficient information must be 

provided in order to permit conducting the subsequent activities, which 

are the HARA and later the “Functional Safety Concept”.  

 

2.4.2. Hazard Analysis and Risk Assessment 
 

The HARA starts by analyzing the operating situations – i.e., 

functional modes and environment constraints – on which an item’s 

malfunction will result in a hazardous event. Brainstorming, field studies, 

“Failure Mode Effects Analysis” (FMEA), among other techniques are 

used to systematically identify the as many as possible hazardous events 

and their consequences. Table 2 is a reduced version of the hazard 

identification done for the DBW system, but with a similar format used 

in the ISO 26262 guidelines.   

 
Table 2 – Hazardous event identification for the DBW example. (Adapted from 

[31]). 

ID 
Failure 

mode 

Hazardous Event Possible 

consequences Hazard Situation 

H01 
Throttle 

omission 

Sudden lack 

of throttle 

Low speed 

at crosslevel 

Rear end or 

train collision 

H02 
Throttle 

omission 

Sudden lack 

of throttle 

High-speed 

at motorway 

Rear end or  

side collision 

H03 
Brake 

commission 

Unexpected  

full brake 

High-speed at 

highway 

Traffic 

Accident 

H04 
Brake stuck  

at value 

Constant  

partial brake 

Avg. speed at 

main roads 

Loss of car 

stability 

H05 
Steer angle 

commission 

Unexpected  

strong veer 

Taking a bend 

at high-speed  

Loss of 

car control 
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All hazardous events identified in the exercise, which results in the 

Table 2 information, must be classified with respect to the severity, 

probability of exposure and controllability. All three classification 

parameters are estimated using a defined rationale. 

The failure mode corresponds to the manner in which an item or 

one of its elements fails. If an item’s failure mode occurs during a 

specified operational condition, then the worst-case scenario is 

considered as the possible consequence. Table 3 can be used to classify 

the severity of such consequences. The severity parameter has four 

classes that are associated with the different potential harm levels of the 

persons at risk, such as, drivers, passengers, cyclists, and pedestrians. 

 
Table 3 – Classes of severity according to the ISO 26262. 

Class Description 

S0 No injuries 

S1 Light and moderate injuries 

S2 Severe and life-threatening injuries (survival probable) 

S3 Life-threatening injuries (survival uncertain), fatal injuries 

 

Also, split into four classes, the controllability parameter relates to 

the probability of the driver or another person potentially at risk to gain 

control of the hazardous situation and avoid the harm. Therefore, the 

operating condition is analyzed, and the controllability classification is 

decided using the Table 4. 

 
Table 4 – Classes of controllability according to the ISO 26262. 

Class Description 

C0 Controllable in general 

C1 Simply controllable 

C2 Normally controllable 

C3 Difficult to control or uncontrollable 

 

The probability of exposure to the operational situation of the 

hazardous event is what defines the remaining parameter needed for the 

hazard classification. Table 5 has the five classes that distinguish the 

different probability levels of exposure.  
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Table 5 – Classes of exposure probability regarding operational situations 

according to the ISO 26262. 

Class Description 

E0 Incredible 

E1 Very low probability 

E2 Low probability 

E3 Medium probability 

E4 High probability 

 

2.4.3. Automotive Safety Integrity Level Determination 

 

Using Table 6 is possible then to determine the ASIL for each 

hazardous event identified.  

 
Table 6 – ASIL determination based on the hazardous classification parameters 

according to the ISO 26262. 

ASIL Classification Controllability 

Severity Exposure C1 C2 C3 

S1 

E1 QM QM QM 

E2 QM QM QM 

E3 QM QM A 

E4 QM A B 

S2 

E1 QM QM QM 

E2 QM QM A 

E3 QM A B 

E4 A B C 

S3 

E1 QM QM A 

E2 QM A B 

E3 A B C 

E4 B C D 

 

The ASIL has four different levels corresponding to the item’s or 

element’s requirements to be fulfilled in order to avoid an unreasonable 

risk. The levels are represented by the first four letters of the Latin 
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alphabet where A and D represent the least and the most stringent levels, 

respectively. Some hazardous event not even get the ASIL A assigned, 

and therefore, no additional requirement must be observed hence the 

Quality Management (QM) process already in place is sufficient. 

The hazardous events of the DBW example in Table 7 are derived 

from the operating situation and the hazard identified in Table 2. For each 

hazardous event, the classification parameters are defined thus permitting 

to assign correspondent ASIL according to Table 6. Notice that no further 

requirements must be observed for the hazardous events H01 and H02 of 

the DBW example, however, the ASILs D, B, and D levels were assigned 

to the Table 7 entries H03, H04, and H05, respectively. 

 
Table 7 – ASIL determination for the hazardous event identified DBW example. 

(Adapted from [31]) 

ID Hazardous Event Parameters ASIL 

H01 
Sudden lack of throttle at low speed 

passing over a rail cross 
S3,C2,E1 QM 

H02 
Sudden lack of throttle at high speed 

driving in a motorway 
S1,C1,E4 QM 

H03 
Unintended full brake applied while 

driving at highway speed limit 
S3,C3,E4 D 

H04 
Constant partial brake pressure suddenly 

applied when driving with main road speed 
S3,C2,E4 B 

H05 
Unintended strong veer off the direction at 

high speed in the highway 
S3,C3,E4 D 

 

2.4.4. Safety Goal Specification 
 

At least one top-level safety requirement, known as Safety Goal 

(SG), must be defined for those hazardous events that had an ASIL 

assigned – i.e., no less than A level. Therefore, SGs had to be defined only 

for the hazardous events H03, H04, and H05. The SG from the DBW 

example is shown in Table 8. Statements like the one highlight in SG01 

presumes highest possible reliability will be targeted [31]. SG01 is also 

used as an example of combining similar SG by keeping the highest ASIL 

level assigned. Additionally, an operating mode without the unreasonable 

level of risk can be specified by the SG, for example, the “safe state” 
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underlined in SG03 that needs to be achieved and maintained to prevent 

the possible harm.    

 
Table 8 – Safety goals defined for the hazardous events 

ID ASIL Safety Goals 

H03 D SG01 The brake functionality shall not fail 

H04 B 
SG01 The brake functionality shall not fail 

SG02 Warn the driver when at degraded function 

H05 D SG03 
The steer system needs to be stuck at value in case 

of failure, enabling SBB functionality 

 

2.4.5. Derivation of the Safety Requirements  
 

At the “functional safety concept” subphase, it is defined the 

Functional Safety Requirements (FSR) for each SG resulted from the 

HARA activity. An FSR specifies behaviors or measures that shall be 

implemented. The FSR specification can include the transitioning to the 

safe state to achieve, the fault tolerance time interval, the warning 

mechanisms (e.g., ABS warning lamp), the functional redundancies (e.g. 

SMs), and so forth. The FSRs must also be mapped to the corresponding 

system elements they apply. Table 9 contain some FSRs and the allocated 

elements from the DBW example. 

 
Table 9 – FSRs from the DBW example. (Adapted from [31]) 

ASIL SG Functional Safety Requirement 

D SG01 
FSR01 Distributed brakes BBW-ECU 

FSR02 CCU redundancy: HW/SW a CCU 

B SG02 FSR03 Interaction with the driver CCU 

D SG03 
FSR04 SSB technology BBW-ECU 

FSR05 Steer stuck at forward position SBW-ECU 
a Hardware and Software redundancy.  

 

The “product development at the system level” phase (see Figure 

4) also has the initialization exercise when it is specified functional safety 
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activities for the further subphases. One of the activities is to derive the 

Technical Safety Requirements (TSR) from the FSRs. The TSR shall 

specify the SM details, such as the detection, alarming and control of 

faults in the system, ways to achieve and maintain, measures to avoid or 

warn degradation. Subsystem elements can have TSRs derived from the 

TSRs allocated at the system level, and this can be iteratively done 

through the design hierarchy. Optionally, TSRs can be further refined into 

hardware (HWR) or software (SWR) safety requirements. 

 

2.4.6. Requirements Allocation through the Supply Chain 
 

Different from the IEC 61508, the ISO 26262 considers the typical 

automotive scenario where a system can be built with the elements 

provided by multiple companies in the supply chain of the OEM. 

Therefore, TSRs must be communicated through the companies. This 

communication is supported by the Development Interface Agreement 

(DIA) where the data to be exchanged between the customer, and the 

supplier is defined. The supply chain illustrated in Figure 6 highlight the 

importance of the DIA also protects the companies involved from 

unreasonable liability.  

 

 
 
Figure 6 – Automotive supply chain illustration. 
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The SGs with the determined ASIL, the FSRs and the derived 

TSRs at the vehicle level are typically defined by the OEM as indicated 

in Figure 7. If this data is not available, then they can be defined based on 

assumptions of usage (AoU) whenever a supplier is going to 

commercialize a generic subsystem as a safety element out of context 

(SEooC). 

An item as defined in the ISO 26262 can be composed of a 

hierarchy of systems, which the subsystem leafs are built by multiple 

components. These components are split into hardware parts (or software-

units) that can be further divided into sub-parts. Higher level TSRs are 

further refined across the system hierarchy throughout the supply chain 

by deriving new detailed TSRs. The leaf requirements are allocated to the 

components, for example, a software application or a microcontroller 

(µC). Such components may have specific requirements – i.e., HWR and 

SWR, respectively – that are derived from the leaf TSRs as illustrated in 

Figure 7. 

 

 
 

Figure 7 - Requirements communication throughout the supply chain. 

This complex multilevel requirements definition must be 

consistent and traceable in order to guarantee that no SG is overlooked. 

Additionally, the strictest ASIL level assigned to the SG must traverse 

together with the requirements, which are allocated to the components. 

Therefore, all FSR, TSR, HWR and SWR illustrated in Figure 7 must 
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have the same ASIL assigned to their parent SG (SG 1.1). This traversal 

assignment ensures that the correct safety measures are implemented in 

the required components. A microcontroller is an example of a complex 

component, which is subdivided into its major parts, for instance, a CPU, 

memory controller, and other peripherals. A part itself can be further split 

into subparts – e.g., arithmetic logic unit (ALU), debug interface, timer, 

and interruption controller. The component dismemberment allows 

achieving a stricter ASIL by evidencing the parts or the subparts – e.g., 

debug module interface – that are not S-R and hence can not contribute 

to the SG violation probability [28]. Moreover, this detailed analysis 

increases the confidence of the safety assessment. 

 

2.5. CHAPTER REMARKS  

 

This Chapter briefly discussed the liability impact on the “best-

effort” practiced by the OEMs and suppliers. The legal aspect pushes the 

companies in the supply chain always to consider state-of-the-art 

solutions like the one proposed in this research. The effort level commit 

by the companies is also based on the ASIL determined according to the 

identified hazardous event of the target application. Therefore, it is shown 

how the ASIL, which is defined for SG at the vehicle level, traverse with 

the safety requirements that are communicated by DIAs throughout the 

supply chain until getting allocated into hardware and software 

components. This standard overview is essential to understand the ASIL 

influence on the next subphases. The V-Model defined in the ISO 26262 

is illustrated in Figure 8, which shows how the activities are distributed 

in the V-Model flow. After starting the development of the hardware and 

software parts, verification is the next subphase, which is discussed in the 

following chapter. 
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Figure 8 – ISO 26262 V-Model illustration. (Adapted from ISO 26262) 
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3. FAULT INJECTION IN THE CONTEXT OF ISO 26262 

 

3.1. SAFETY ASSESSMENT BASIC CONCEPTS 

 

Failure probability imposes a great challenge with the advance of 

the process technology required to develop a complex systems-on-a-chip 

(SoC) with higher performance [14]. Fault avoidance through design 

inspection and testing processes are not enough to prevent failures due to 

aging or radiation effects during the system lifetime. Fault tolerance and 

fault diagnosis mechanisms are used to increase the reliability, thus 

allowing to develop robust circuits that fulfill the needs of critical 

applications. Such mechanisms are commonly implemented by using 

some kind of redundancy like replicated hardware, specific software 

routines, data parity, and others.   

 

3.1.1. Hardware Architectural Metrics 

  

The term “safety mechanism” is used in the ISO 26262 that 

embraces different fault tolerant mechanisms which can be employed in 

the safety device. The collection of SMs selected to integrate the design 

and to increase its reliability must be checked regarding their capability 

to prevent faults from propagating and violating SGs. The standard 

requires a rigorous analysis of the incidence probability of random faults 

in the hardware. The safety analysis uses a set of objective metrics in 

order to enable the audition by an external authority. The hardware 

architectural metrics allows to assessing if the selection of SMs 

implemented is sufficient to detect and or to control the failure rate 

proportion defined according to the ASIL assigned. Therefore, the single 

point faults metric (SPFM) and latent faults metric (LFM) percentages 

must be assessed.  

 

3.1.2. Fault Classification 
 

A single point fault (SPF) has the potential to directly violate an 

SG unlike the multi-point fault (MPF). However, an MPF that remains 

latent (MPFL), in combination to another independent fault, has the 

indirect potential to violate an SG. Naturally, SMs are first considered to 

cover as much SPFs as possible. Whenever an SM is used like this, the 

remaining uncovered SPFs are called residual faults (RF) hence with the 

same SPF characteristics – potential to directly violate an SG. Then, in 
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the presence of an SM, the residual SPFs become RFs, while the covered 

SPFs are called MPFs. Therefore, it is beneficial that SMs added to cope 

with SPFs can also diagnose as much MPFL as possible thus improving 

the LFM by increasing the number of latent faults that are detected 

(MPFD). There are faults which cannot directly violate an SG, but 

independently of the detection of an SM, their presence can be perceived 

by the driver that notices some performance degradation or any other 

problem indication like black smoke leaving the car exhaust. This kind of 

perceived multipoint fault (MPFP) is not considered at microcontroller 

level since it is not possible to judge the detection ability of the driver at 

this level [28].  

Notice that the violation of an SG by an MPF is typically 

associated with the occurrence of a second MPF, but no more than two 

faults – sometimes MPFs are even referred to as dual-point faults [28]. In 

general, a fault with the characteristics of an MPF, yet requiring two or 

more extra faults to be able to cause a violation, can be considered a safe 

fault (SF) – unless evidence during the safety concept shows otherwise. 

Faults considered SF shall not contribute to the violation of an SG.  

 

3.1.3. Failure Modes and Fault Models 
 

To overcome the SPF associated with a short circuit of a resistor, 

for example, three resistors in series can be used instead, thus allowing 

the short circuit of each resistor to be considered SFs [28]. The short 

circuit in this example represents one possible failure mode of a 

component like a resistor. Permanent and transient are common digital 

semiconductors failure modes hence they are considered in this research. 

The permanent failure mode is triggered by the occurrence of stuck-at-

faults (SAT) – i.e., a signal gets stuck-at-0 (SA0) or stuck-at-1 (SA1). On 

the other hand, single-event-transient (SET) and single-event-upset 

(SEU) faults, temporarily disrupt the normal functionality of 

combinatorial and sequential parts of a circuit, respectively. For that 

reason, the faults SET and SEU compose the transient failure mode. 

Notice that only random faults – i.e. during operational lifetime – are 

being considered since the systematic faults are covered by implementing 

and properly managing the safety activates throughout the safety 

lifecycle. 
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3.1.4. Failure Rate 
 

The probability of a component failure mode occurs is called the 

base failure rate (λ), and the unit is FIT (failure in time). One FIT 

corresponds to no more than a single failure within one billion operating 

hours – i.e. 109 h. The FIT budget is defined for the item SGs at the vehicle 

level according to the ASIL determined [32]. FIT rate targets are derived 

from the budget and allocated to the elements through the system 

hierarchy – similar to the derivation of safety requirements from the SGs. 

For example, Figure 9 illustrates the FIT budget for an ASIL D item that 

is communicated across the supply chain until defining the target FIT to 

be observed at the component level. In other words, the accumulative 

failure rate of those elements – i.e., parts and subparts of components – 

that contribute to the violation of an SG shall not surpass the FIT budget. 

This evaluation must be done in order to guarantee the probability to 

violate each SG is not exceeded – i.e., each SG’s FIT budget is observed. 

The assessment of the hardware architecture metrics and the SG violation 

probability due to random hardware failures is required in order to claim 

ISO 26262 compliance.   

 

 
 

Figure 9 – Allocating the target FIT budget to be observed in order to guarantee 

the probability to violate an SG is not exceeded at the vehicle level. 

3.1.4.1. Failure Rate Estimation 

 

The estimated base failure rate for semiconductors can be extracted 

from recognized industry sources like SN29500 and IEC/TR 62380 with 

respect to permanent faults, or from JEDEC standards like the JESD89 

for faults of the transient failure mode. Standards may provide too 

conservative numbers that do not represent the process and technology in 

place. Therefore, expert judgment, field experience, tests, and other inputs 

can also be used provided adequate confidence level on the statistics and 

approach employed to perform the estimations [32]. For complex 

components like microcontrollers, there may be parts which are not safe 

relate or SMs that cover only specific subparts of the design. In this case, 
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it makes senses to divide the design further into parts and subparts thus 

distributing the component base failure rate according to the area 

proportion occupied by microcontroller’s modules for example. The area 

figures are conservatively estimated at earlier stages, then, they are 

updated during the development process – e.g., whenever a GL netlist 

more mature becomes available. After allocating the base failure rate to 

each part and subpart of the component according to the failure modes, 

the hardware architectural metrics – i.e., SPFM and LFM – need to be 

calculated.  

 

3.1.4.2. Base Failure Rate Composition 

 

Figure 10 illustrate how it is composed the component base failure 

rate.   

 

 
 

Figure 10 – Component base failure rate split according to the classification of 

the faults of a certain failure mode. 
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The possible faults of a failure mode, within the area of each part 

or subpart, must be individually classified into SF, SPF, RF, and MPF 

thus corresponding to proportions of the base failure rate – i.e., λSF, λSPF, 
λRF, and λMPF, respectively. The λMPF is split further according to the 

different MPF subcategories symbolized by λDF, λPF, and λLF as shown in 

Figure 10 – the acronyms DF, PF, and LF denote MPFD, MPFP, and MPFL 

and they are one-to-one interchangeable. The faults that can occur in an 

element, which is not S-R, are also considered SFs but are not taken into 

account for the safety analysis. Therefore, the base failure rate for each 

failure mode is calculated using (1).  

 

𝜆 = 𝜆𝑆𝐹 + 𝜆𝑆𝑃𝐹 + 𝜆𝑅𝐹 + 𝜆𝑀𝑃𝐹 (1) 

 

Where the MPF failure rate calculated in (2) is composed of the 

proportions corresponding to the amount of faults classified as perceived, 

latent, and detected. The perceived failure rate is not considered in the 

following equations since it is not applicable to the focus of this research 

– i.e., semiconductor level. 

 

𝜆𝑀𝑃𝐹 = 𝜆𝑃𝐹 + 𝜆𝐿𝐹 + 𝜆𝐷𝐹 (2) 

 

3.2. HARDWARE ARCHITECTURAL METRICS CALCULATION  

 

3.2.1. Failure Rate Proportions Matching the Fault Classification 
 

Each fault despite the failure mode – e.g., permanent or transient – 

can be classified using the flow diagram adapted from the ISO 26262 in 

Figure 11. The faults on an element that is not S-R, even if classified as 

safe faults, are not considered in the calculation. Notice that faults can 

only be tagged as SPF if no SM prevents any other fault from the same 

failure mode from directly violating an SG. In this case, when there is no 

SM to prevent SPFs, yet there can be faults that do not directly violate an 

SG, which shall be automatically tagged as latent faults unless there is an 

SM that only covers MPF faults. The arrow in Figure 11 indicates when 

a fault that does not directly violate an SG becomes an MPF and therefore 

can be either detected or classified as a latent fault.  
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Figure 11 – Fault classification illustration using dropping balls as faults that are 

distributed according to the answer to the question through the path.  

The fault classification analogy shown in Figure 11 utilizes balls 
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tagged, then the percentage of all balls found in each bin corresponds to 

the proportion of the failure rate associated with each classification. 

Figure 12 illustrates base failure rate shares related to the percentage of 

faults in each classification bin.  

 

 
 

Figure 12 – Failure rate shares associated with the proportion of faults classified 

in each group.  
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After finding the component’s parts and subparts not S-R, the 

safety analysis continues with the identification of SFs within S-R 

elements. For each S-R element, the further classification of the 

remaining faults is carried out differently given the presence or not of at 

least one SM. Without any SM, the faults which the effect propagates out 

the element are classified as SPFs and the rest as LF. If there is an SM 

that prevents at least one SPF, then all remaining SPFs are tagged as RFs. 

The percentage of faults prevented by an SM from directly violating an 

SG is called either failure mode coverage (FMC) or diagnostic coverage 

– i.e., DC. In this case, the capability of the SM to cover RFs is 

symbolized by DCRF percentage. Likewise, DCLF is the percentage of 

MPFs that are detected by the SM hence not allowing these faults to 

become LFs.  

 

3.2.2.1. Calculation Steps with Residual and Latent Faults Coverage 

 

Figure 13 illustrate the stepwise calculation of the base failure rate. 

 

 
 

Figure 13 – Calculation steps of the failure rate proportions when there is an SM 

that covers RFs as well as LFs. 
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The DCRF and the DCLF are percentages without a unit, so they can 

be used to either calculate the two corresponding failure rates fraction or 

to find the number of faults associated with each of these two 

classifications. The KRF and the KLF fractions correspond to the DCRF and 

DCLF percentages, respectively. Additionally, there is the failure rate 

fraction associated with the safe faults that are represented by FSF. Figure 

13 illustrates the steps for calculating the failure rate proportions of a 

given failure mode when there is an SM that can cover RFs and detect 

LFs. 

In Figure 13 the SFs failure rate fraction (λSF) has its counterpart 

indicated by λnSF. The λnSF given by (3) and the KRF are used to calculate 

the failure rates λMPF and λRF in (4) and (5), respectively. 

 

𝜆𝑛𝑆𝐹 = 𝜆 × (1 − 𝐹𝑆𝐹) (3) 

 

𝜆𝑀𝑃𝐹 = 𝜆𝑛𝑆𝐹 × 𝐾𝑅𝐹 (4) 

 

𝜆𝑅𝐹 = 𝜆𝑛𝑆𝐹 × (1 − 𝐾𝑅𝐹) (5) 

 

Next, in the calculation steps of Figure 13, the MPF failure rate 

(λMPF) is split into λDF and λLF using the LF DC fraction in the equations 

(6) and (7), respectively.  

 

𝜆𝐷𝐹 = 𝜆𝑀𝑃𝐹 × 𝐾𝐿𝐹 (6) 

 

𝜆𝐿𝐹 = 𝜆𝑀𝑃𝐹 × (1 − 𝐾𝐿𝐹) (7) 

 

3.2.2.2. Calculation Steps with Residual Fault Coverage 

 

Without an SM to prevent a fault from directly violating an SG, the 

λSPF needs to be calculated instead of the λRF. However, the λSPF and λMPF 

derivation from the λnSF can not be done using the KRF since there is no 

SM. Therefore, the standard represents as FPVSG, the failure rate fraction 

associated with the standalone faults with potential to violate the safety 

goal (PVSG) as shown in Figure 14.  
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Figure 14 - Calculation steps of the failure rate proportions associated with SPF 

and MPF when the SM only detects LF. 

In the situation illustrated in Figure 14, the λSPF and λMPF are given 

by (8) and (9), respectively. The λDF and λLF failure rates in Figure 14 are 

calculated in the same way as in the situation from Figure 13 since there 

is an SM responsible for the detection of the MPFs. 

 

𝜆𝑀𝑃𝐹 = 𝜆𝑛𝑆𝐹 × (1 − 𝐹𝑃𝑉𝑆𝐺) (8) 

 

𝜆𝑆𝑃𝐹 = 𝜆𝑛𝑆𝐹 × 𝐹𝑃𝑉𝑆𝐺  (9) 

 

3.2.2.3. Calculation Steps without Residual or Latent Faults Coverage 

 

For the sake of completeness, Figure 15 illustrates the situation 

where there is no SM whatsoever thus making λLF equal to λMPF. It is 

important to notice that in each situation, the failure rates λSPF and λRF are 

not used together. Since the base failure rate given by (1) considers λSPF 

and λRF, then whenever one is applicable the other one must be zero on 

each situation.  
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Figure 15 – Calculation steps of the failure rate proportions associated with SPF 

and MPF for the situation without any SM in place. 

3.2.3. Hardware Architectural Metrics Computation 

 

The calculations steps shall be done for each part or subpart of the 

component being analyzed. After that, the component’s hardware 

architectural metrics SPFM and LFM can be calculated. Therefore, to 

enable the calculation of SPFM and LFM, the following tasks must be 

performed: 

 Split the component into (sub)parts for the safety analysis; 

 Identify the applicable failure modes – e.g., permanent;  

 Distribute the component’s base failure rate to each element 

corresponding to its area occupation proportion; 

 Determine whether each element is S-R or not;  

 Verify the percentage of safe faults if any; 

 Indicate whether there are SMs in place; 

 Collect the DCRF and DCLF of the SMs in place; 

 Derive the λLF and λSPF or λRF from the base failure rate; 

 Calculate the component’s total Σ(λLF) and Σ(λSPF) or Σ(λRF); 

 Compute the SPFM and LFM given by (10) and (11). 

 

𝑆𝑃𝐹𝑀 = 1 −
∑(𝜆𝑆𝑃𝐹 + 𝜆𝑅𝐹)

∑ 𝜆
 (10) 
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Notice that the λSPF and λRF are subtracted from the total failure rate 

in (11) because the faults that directly violate an SG are not latent 

anymore thus cannot contribute to LFM. Additionally, it is important to 

highlight that the greater the FSF, the better provided the base failure rate 

given by (1) hence justifying a more detailed safety analysis for some 

cases. 

 

𝐿𝐹𝑀 = 1 −
∑(𝜆𝐿𝐹)

∑(𝜆 − 𝜆𝑆𝑃𝐹 − 𝜆𝑅𝐹)
 (11) 

 

The SPFM and LFM target values to achieve are established by the 

ASIL determined to the SG, which the probability of violation is being 

analyzed. Table 10 shows the target reference values defined in the ISO 

26262 standard. This qualitative detailed safety analysis is only applicable 

for SG with ASIL higher than A. 

   
Table 10 – SPFM and LFM target values. (Source ISO 26262). 

Metrics ASIL B C D 

𝑆𝑃𝐹𝑀 = 1 −
∑(𝜆𝑆𝑃𝐹 + 𝜆𝑅𝐹)

∑ 𝜆
 ≥ 90 % ≥ 97 % ≥ 99 % 

𝐿𝐹𝑀 = 1 −
∑(𝜆𝐿𝐹)

∑(𝜆 − 𝜆𝑆𝑃𝐹 − 𝜆𝑅𝐹)
 ≥ 60 % ≥ 80 % ≥ 90 % 

 

3.3. FAILURE MODE EFFECTS, AND DIAGNOSTIC ANALYSIS 

 

At initial phases of the safety lifecycle, an FMEA can be performed 

in order to describe the item’s function, identify and classify the 

hazardous events to determine the ASIL, which becomes assigned to the 

SGs defined to avoid unreasonable risk. An FMEA tool is normally based 

on complex spreadsheet or database where all the aforementioned data is 

entered through the FMEA worksheets [33]. This kind of qualitative 

analysis does not consider the failure rate or DC metrics [34]. Therefore, 

the quantitative evaluation of the safety metrics is commonly supported 

by an extended FMEA, named “Failure Mode Effects, and Diagnostic 

Analysis” (FMEDA). 

Table 11 shows a worksheet based on the microcontroller FMEDA 

example given in the ISO 26262 part [28]. The Table 11 FMEDA uses 

informative entry values for the sake of the calculation demonstration. 
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The part and subpart of the microcontroller analyzed are the CPU and its 

ALU instance. The permanent and transient failure modes are considered 

for the ALU subpart. The microcontroller has two SMs in place. The 

mechanism number one (M1) is a monitor of the CPU that can detect 

faults which cause the software to run out of sequence. The M2 is SBST 

executed at key-on – i.e., vehicle startup – to detect latent faults. Any fault 

detected by M1 or M2 activates an output signal of the microcontroller 

and a system level requirement shall be specified to make proper use of 

this signal – e.g., go to a safe state or alarm the driver. M1 can also detect 

transient faults hence the CPU can be reset in order to resume the fault-

free state. If the error persists after reset, then the fault is considered 

permanent. Thus the FMEDA has no LF entry for the transient failure 

mode. No SPF entry appears in the example because there are SMs for all 

failure modes. If a subpart without any SM is added to the FMEDA, then 

its row would have 0% as DCP
RF, and the failure rate associated with the 

SPF could be placed in the λP
RF column. This is possible because λP

SPF and 

λP
RF are complementary with respect to the contribution to the SPFM and 

LFM calculations given by (10) and (11), respectively.  

  
Table 11 – Microcontroller FMEDA examples adapted from the ISO 26262. 
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 Y P 25 20 M1 90 2 M2 60 7.2      

Y T         15 20 M1 90 1.2 

Totals  Σ(λP)  Σ(λP
RF)  Σ(λP

LF)  Σ(λT)  Σ(λT
RF) 

a The Failure Modes (FM) considered are Permanent (P) and Transient (T). The 

initial letters are used to mark the entries associated with each FM.  
b The example has two SMs with the reference names: M1, which can cover 

permanent and transient residual faults; and M2 that detects latent faults. 

 

After the Table 11 is complete with all relevant parts and subparts 

of the microcontroller, then the summations Σ(λP) and Σ(λP
RF) can be used 
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in (10) to calculate the microcontroller’s SPFM associated with the 

permanent failure mode. The same can be done with Σ(λT) and Σ(λT
RF) to 

calculate the SPFM for transient faults. To find the LFM, the summation 

Σ(λP
LF) together with Σ(λP) and Σ(λP

RF) can be used in (11). Notice that 

such detailed analysis provided by FMEDA tools allows identifying 

which parts or subparts that most contribute to the total failure rate or that 

need a higher DC thus allowing to specify new requirements to achieve 

the SPFM and LFM requisites.  

The Appendix D in the ISO 26262 – Part 5 [32] shows the generic 

hardware of an embedded system – e.g., power supply, clock, digital and 

analog I/O, and specific to semiconductors there are: ALU, register bank, 

interrupt handling, etc. For each generic element, the standard provides 

the common SMs and their typical achievable DC for different failure 

modes of the element. This start point information can be used as 

guidance for the selection of the SM and the target DC to achieve in order 

to comply with the SPFM and LFM derived from the ASIL. However, the 

techniques mentioned in Appendix D are not exhaustive, and other SM 

might be used. Additionally, there are constraints that the appendix cannot 

entirely consider when evaluating the DC of a generic SMs – e.g., the 

quality of the self-test executed by SBST, the periodicity that an SM shall 

be triggered to diagnose LF. Therefore, any kind of SM can be used 

provided evidence that corroborates the DC claimed.  

 

3.4. RELATED WORK: FAULT INJECTION APPLICATION 

 

Fault injection is broadly accepted to evaluate the response of a 

circuit in the presence of faults [35]. Thus, it plays a key role as a method 

to verify fault tolerance techniques integrated into the design of resilient 

systems. ISO 26262 strongly recommends fault injection to evaluate the 

completeness and correctness of the SMs for the higher ASILs – i.e., C 

and D. The same level of recommendation, independent of the ASIL, 

applies to the functional verification of the SMs. At SoC level, some SMs 

may only be triggered by the injection of a fault in the system since an 

external TB can not directly control SoC’s internal subparts’ inputs and 

outputs. Additionally, constraints like “Fault Reaction Time” and “Fault 

Tolerant Time Interval” must be verified to assure compliance with the 

requirements. Figure 16 illustrates the mentioned SMs’ time constraints. 
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Figure 16 – SM’s time constraints. (Adapted from ISO 26262). 

Yogitech S.p.A is a member of the technical committee for the ISO 

26262, and it has announced to be the lead of the ISO 26262 Part 11 [36]. 

This company provides state-of-the-art solutions for semiconductor 

safety design including fault injection campaign to verify DC. The 

academic contributions [37] [38] [39] from the Yogitech staff give a 

detailed introduction with regard the usage of fault injection to assess 

safety at semiconductor level. On the other hand, DC verification based 

on fault injection is not well promoted in the ISO 26262 standard. 

Yogitech is a safety consultant company experienced on guiding the 

customers throughout the safety certification process, therefore, its 

published research permits to better understand how fault injection is used 

within the safety context. Meanwhile, it serves as a reference material 

until ISO 26262 – Part 11 is not officially released, which will bring more 

details on fault injection and other particularities of safety application at 

semiconductors level. 

Yogitech indicates how the DC verification is performed using 

fault injection in [37], but the hardware architectural metrics calculated 

based on the IEC 61508 – not equal to the ISO 26262 metrics. The 

certification body TÜV SÜD has approved the so-called 

“fRMethodology” presented. A “sensitive zone” is an identified site of 

the design in which the faults within its input cone converge, henceforth, 

leading to the activation of failure mode – see the sensitive zone 

illustration [38] in Figure 17. The design is partitioned into sensitive 

zones, and their failure rates are calculated and stored in an FMEDA 

database. The base failure rates of the gates within sensitive zone cones 

are defined according to the failure mode – e.g., permanent in glue logic 

during power-up/down or normal operation, transient in registers or logic. 

The number of gates extracted from the IC description and their 

elementary failure rates among other parameters – e.g., frequency of use 

(only for transient) and DC – are stored in the database too. This 
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information is used to calculate the hardware architectural metrics of the 

IEC 61508. Next, fault injection is used to validate the FMEDA database. 

Evidence that the workload – i.e., TB and tests – used is appropriate needs 

to be provided in order to guarantee the sensitive zones are properly 

stimulated while injecting the faults. Coverage collection, the number of 

faults injected, test’s run-time, and other profiling information are used to 

check the confidence of the fault campaign results. 

 

 
 

Figure 17 - Sensitive zone illustration (Source: [38]). 

Prior the ISO 26262 release, Yogitech was already working on DC 

assessment based on fault injection at semiconductor level [38]. In 

collaboration with the Politecnico di Torino, a new tool was proposed 

considering the requirements specified by IEC 61508 for safety-related 

systems [39]. The tool is intended to work with any functional verification 

environment, regardless the EDA tools available. The goal of the 

presented solution is to enable the verification of SMs at different 

abstraction levels by leveraging the functional simulators used in the 

verification environment. For that reason, the fault models had to be 

implemented according to the existing tools on each environment setup 

due to the lack of fault injection support by the standard simulators 

available at that time [40]. In the tool proposal, an example of the SEU 

model is provided using the Functional Verification Language e (IEEE 

1647) for verification flows containing the Incisive® Specman® Elite. 

Figure 18 shows the Fault injection environment proposed in [39]. 
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Figure 18 – Fault injection environment proposed in [39]. 

After the FMEA is available, the SMs are implemented, and the 

sensitive zones are extracted, two other fault campaign elements are 

defined: the observation and the diagnostic points. There are monitors for 

these elements and also for the sensitive zones – in Figure 18, they are 

referred as OBSE, DIAG, and SENS monitors, respectively. The faults 

within the sensitive zone’s cone that do not trigger the SENS monitor are 

irrelevant for the analysis since they do not perturb the functionality. On 

the other hand, the number of faults, which propagate through the SENS 

until the OBSE monitors, contribute to the fraction of dangerous faults. 

Therefore, special registers or primary outputs of the design under test 

(DUT) are commonly selected as observation points. The DIAG monitors 

are typically located at the output of the SMs thus providing the 

information of which faults were covered by the diagnostic functions 

implemented in the DUT. 

The golden – i.e., fault free – instance of the DUT is executed in 

parallel to the faulty instance, and both share the same workload stimulus. 

The workload selected is either device or mission oriented – i.e., for 

generic usage of the device or a specific application, respectively. When 

the former kind of workload is selected, then the number of faults to inject 

can be reduced by not considering parts of the circuit that are not used by 

the application. With the workload defined, the fault-free run is analyzed 

in order to identify the most suitable moments to inject the faults – e.g., 



70 

assure that the transient faults injected in a memory element precede a 

read access hence the effect can propagate before being override by a 

write command. The workload completeness is measured by the amount 

of SENS and OBSE monitors that are excited at least once This is done 

by enabling toggle coverage where the monitors are located [38].  

For each fault, the simulation stops at the injection time, then the 

fault model is executed, and the simulation run continues until the test 

finishes. At the same time, the OBSE and DIAG monitors keep collecting 

data that will be analyzed after all faults are injected in order to calculate 

the DC. However, an exhaustive analysis is typically not feasible, hence 

only a set of all faults can be injected. Therefore, it is important to select 

the optimal fault candidates thus avoiding the injection of faults that have 

no effect. The experiments show that the fault list generation based on the 

workload profile reduced the number of faults to inject by 50%. The test 

case used is a simple router with one input and three possible output 

channels to where the data packets can be routed. Each channel has a 

buffer working as a queue with 16 words of 8 bits. Table 12 shows that 

the router design has 9,648 fault candidates [39]. After analyzing the 

workload, the set of faults to be injected was reduced to only 4,886 faults.  

 
Table 12 – Average fault injection time of the experiments on [39]. 

Design 

description 

Number  

of faults 

Average fault 

injection time 

Router (without optimization)  9,648 4.1s 

Router (50% fault set reduction) 4,886 3.7s 

32-bit RISC Processor 25,000 56.6s 

 

Eleven hours of simulation time were necessary to inject all faults 

while the optimized set of faults took about five hours to complete [39]. 

This overall time corresponds to 4.1 and 3.7 seconds, respectively, to the 

average simulation time for each fault injection – see Table 12. Although 

the overall time is drastically reduced, the optimization does not provide 

a significant improvement on the average fault injection time. Additional 

experiments with the tool presented have been done during the validation 

of real safety critical design based on a 32-bit RISC processor. Table 12 

shows that 25 thousand faults were selected to be injected – the original 

number of fault candidates was not disclosed. In this example, the average 

simulation time required for each fault injection was almost one minute. 

Thus showing that the fault simulation time is independent to the 
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optimization presented. Another relevant consideration is that the tool 

reuses the available functional verification tools in order to minimize the 

flow setup time. 

The Industrial Technology Research Institute (ITRI) in 

collaboration with the National Tsing Hua University has also published 

their experience on DC assessment based on fault injection [41]. While 

discussing the related works, the paper reaches a common understanding 

“that the description of the probabilistic hardware metrics in ISO 26262 

is intrinsically not easy to follow”. Additionally, it highlights that other 

researches in the literature do not disclose how the safety evaluation is 

performed, which support the proof for claimed ASIL achieve. For 

instance, the “safety analysis report” – with the component’s FMEDA –  

of the ISO 26262 certified microprocessors from Texas Instruments Inc. 

(TI) cannot be accessed without a non-disclosure agreement (NDA) [42]. 

More details about the TI’s safety evaluation are only available to 

customers who require tailored safety analysis according to the target 

application.  

Given the lack of references, the ITRI limits its paper contribution 

on reporting their experience on the functional safety assessment of a 

MIPS-like microprocessor. Therefore, no kind of optimization or novel 

methodology is proposed. However, its detailed description provides 

deep insight on how the DC evaluation can be performed when 

considering the permanent failure mode. The TetraMAX ATPG suite is 

used to inject SAT faults in order to validate the initially estimated 

hardware architecture metrics what refers to the permanent failure mode. 

The paper provides a snippet from the SN 29500, which is used to perform 

the base failure rate estimation of the microprocessor subparts. Table 13 

contains the data from the SN 29500 snippet.   

 
Table 13 – SN 29500 hardware failure rate estimation. (Adapted from [41]) 

# Gates ≤ 1K ≤ 10K ≤ 100K ≤ 1M in °C 

CMOS 25    50 

CMOS  30   60 

CMOS   50  70 

CMOS    80 80 

 

Each subpart of the MIPS-like component gets a base failure rate 

derived from Table 13 according to their number of gates. However, the 
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2004 version of the SN 29500 standard provides more conservative 

estimations than the reliability data found in more recent standards [28]. 

Therefore, deriving the failure rate for each subpart from Table 13 can 

result in an overall failure rate too conservative. Alternatively, the SN 

29500 could be used to calculate the overall base failure rate, which then 

is allocated to the subparts according to their percentage of gates relative 

to the whole component. Table 14 was prepared to highlight the 

difference between the two mentioned approaches of estimating the base 

failure rate. Even using the former calculation approach, the numbers are 

still ten times more conservative than the failure rates utilized in a similar 

example found in the ISO 26262 [28]. 

 
Table 14 – Two different approaches for calculating the base failure rate using 

the conservative SN 29500 reliability data. 

Block Gates Base Failure Rate (FIT) 

Source data [41] 
Estimated for 

each subpart 

Derived from the 

overall estimation 

Register File 1,209 30 a 1.066 

Instruction memory 27,192 50 a 23.977 

Decode unit 128 25 a 0.113 

ALU 208 25 a 0.183 

Data memory 27,186 50 a 23.972 

Write-back unit 35 25 a 0.031 

Pipeline register 746 25 a 0.658 

                     Totals 56,704 230 50 a 

a failure rates calculated based on the SN 92500 data. 

 

Another usage of fault injection in the safety context is the 

evaluation of dependent failures [43]. For example, faults on the clock or 

reset signals can result in a “common cause failure” (CCF) of the 

redundant parts of a system. Therefore, the possible CCFs must be 

identified since the associated faults can have a global impact on a large 

area of the component [38]. Fault injection using higher level design 

description can support the identification of CCF [44]. However, this is 

out of the scope here. 
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3.5. CHAPTER REMARKS 

 

This chapter presented how the fault injection appears in the ISO 

26262 context. After the component’s FMEDA is complete, the subparts 

base failure rates are allocated, and the expected SMs’ DC are defined, it 

is possible to calculate the hardware architectural metrics. Fault injection 

is then used to validate the FMEDA results by evaluating the DC 

estimated. However, ISO 26262 does not provide technical details on how 

this evaluation shall be performed. Additionally, this process is typically 

tight to the design application and the verification environment available. 

Therefore, details about the fault injection based on DC evaluations at 

semiconductor level on real designs are not common in the literature since 

it would disclose too much information about the design and the setup 

used. In the next Chapter, the dedicated functional verification machine 

is introduced. The DC evaluation approach proposed leverages this 

dedicated platform to accelerate the fault injections. However, not all 

faults can be accelerated without modifying the design description, so the 

next chapter also describes the algorithm developed to select suitable 

faults to run on the dedicated platform.  
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4. FAULT INJECTION CONCEPTS AND TECHNIQUES 

 

As already mentioned, safety – main focus on this research – is just 

one of the attributes that are encompassed by the dependability concept 

[45]. The attributes together with the threats and means are the three 

elements that compose the tree shown in Figure 19, which is traditionally 

used to summarize the dependability concept even nowadays [46].  

 

 
Figure 19 – Dependability tree. (Sources: [45] [46]). 

In order to avoid unreasonable risk and hence provide functional 

safety, SMs are added to the design as means of mitigating the 

dependability threats, which are: faults, errors, and failures. Figure 20 

illustrates how the threats correlate, and it also contains a synthesis of the 

most common definition for fault, error, and failure found in the literature 

[47] [45] [48] [13] [46].  

 

 
 

Figure 20 – Summarized dependability threats explanation found on [47] [45] 

[48] [13] [46].  

The correlation between fault, error, and failure presented in 

Figure 20 can be replicated for each abstraction level in order to 

exemplify how faults in the component level can lead to vehicle failures, 

as shown in Figure 21. Common practices of systematic faults prevention 
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are coding guidelines, specification review, code/functional verification 

coverage, manufacturer tests, among others means. Memory protection 

and SMs based on some kind of redundancy are examples of techniques 

used to tolerate random faults during the operation lifetime. When there 

is an error that could not be corrected, then it is important that the system 

fails in a safe manner thus reaching a predictable, and safe state – e.g., a 

redundant shut-off of the cruise control system [49]. 

 

 
 

Figure 21 – Dependability threats at different level (adapted from [50]).  

4.1. TRANSIENT FAULTS  

 

At digital semiconductor level, permanent and transient are the two 

failures modes that most appear in the ISO 26262 hence also considered 

here – as pointed out before. The history shows that the technology 

scaling has a significant impact on the circuit vulnerability against single-

event-effects (SEE) caused by radioactive particles even for applications 

operating at sea level [51]. Differently, of a hard error that results in 

permanent damage, a soft-error is a reversible upset of a circuit element, 

which is the consequence of a SEE fault, such as, SEU and SET – hence 

the failure mode name “transient” that encompasses these kinds of faults. 

Figure 22 shows the electron-hole pairs generated by the particle strike at 
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a sensitive node such as the drain of an OFF-transistor in a CMOS circuit 

[52] [53] [54] [55]. Therefore, the charge collected by the particle strike 

can generate a positive or negative voltage pulse depending whether the 

particle hits an OFF-PMOS or an OFF-NMOS, respectively. Figure 22 

illustrates a CMOS inverter with the input connected to the ground, hence 

its output remains high until a SET fault hits the OFF-transistor of the 

combinatorial gate producing a voltage glitch. 

 

 
 

Figure 22 – Voltage glitch at the output of logical gate caused by a SET fault 

(adapted from [52] [53] [54]). 

The glitch duration, for example, can determine whether a SET can 

become a soft-error via the fault effect capture by a storage element – e.g., 

memory cell, flip-flop, latch. Not all particles have the energy to cause 

transient faults and not all SET can result in a soft-error since its 

propagation can be masked due to logical, electrical or timing reasons – 

e.g., SET propagation falls outside the flip-flop latching window [52] 

[56]. On the other hand, an SEU fault corresponds to a particle that hits a 

storage element directly instead and bit-flip (upset) its content. Therefore, 

an SEU fault always results into a soft-error provided its effect deviates 

the correct behavior of a sequential circuit element. For that reason, the 

SEU term is often found in the literature being ambiguously used as a 

synonym for soft-errors [51].   

 

4.2. PERMANENT FAULTS 

 

There are SEEs which may persist until the circuit is reset or even 

cause irreversible damage, thus resulting in a hard-error – e.g., single 

event latchup (SEL). In addition to radiation effects, manufacturing 
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defects and circuit aging are also related to permanent – and intermittent 

– faults that can lead to hard-errors [35]. With the continuous technology 

scaling, new IC designs do not only need to cope with the vulnerability to 

transient faults, but also consider the device lifetime, which tends to wear-

out early, and the residual defects that escape manufacturing tests due to 

the transistor density [57] [58] [59]. Among the permanent faults, the 

most well-known fault model is SAT, which covers many physical 

defects [60] [61]. Safety-related researches and the ISO 26262 standard 

suggest that some techniques for SAT faults – e.g., N-detect and gate-

exhaustive – are used to detect other common permanent fault models like 

bridging or stuck-open at transistor switch level [28] [37]. Therefore, any 

optimization of the SAT fault injection can be beneficial to other SAT 

based techniques. 

SAT faults account for many transistor level faults that can be 

modeled at GL by making an input, or an output of a gate stuck at a 

constant value, either logic 0 (SA0) or logic 1 (SA1) [62]. Figure 23 

illustrates a multiplexer (MUX) at GL in order to highlight the locations 

where the SAT faults shall be considered according to the industry 

compatible fault model [63]. This compatibility mode includes SAT 

faults in the primary inputs (PI) and primary outputs (PO) of the circuit. 

The MUX example presented has 15 fault sites (or nodes) thus 

corresponding 30 SAT faults in total. In Figure 23, the circuit considered 

has a MUX implemented connected directly to the PIs and POs, hence 

eight SAT faults are associated with the primary ports of the circuit.  

 

 
 

Figure 23 – MUX circuit with all possible SA0 and SA1 faults indicated. 
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4.2.1. Fault activation and propagation concepts 
 

Fault coverage corresponds to the number of faults that can be 

detected by the manufacturing test, thus providing the quality of the 

selected test set. However, even after the simplification achieved with 

SAT fault model in comparison to transient faults, the number of faults to 

be detected can be too many for a complex circuit. Collapsing and 

testability analysis are optimizations used to reduce the SAT fault-set. 

Testability analysis statically checks if there are SAT faults which always 

produce the same output as a fault-free circuit – i.e., there is no possible 

test that can detect these faults. For a fault to be testable, it must be 

possible to activate and then propagate its effect to an observation point 

– e.g., a primary output. A fault can be activated when there is a test 

capable of driving the value opposite to the one which the fault node is 

stuck-at. After activation, the fault effect must not be masked in order to 

propagate until a detection point. Figure 24 illustrates the activation and 

propagation concepts.  

 

 
 

Figure 24 – Activation and propagation concepts.  

In Figure 24, an SA0 fault occurs on one input of the AND gate, 

and consequently, the gate’s output gets fixed to ‘0’. The SA0 effect at 

the AND gate output can only be noticed when the inputs are set to ‘1’, 

what would make a fault-free AND gate to output ‘1’, and not zero as 

shown in the example. For this to happen, the fault must be activated by 

driving ‘1’ to the gate’s input where the SA0 is located. Additionally, the 

fault effect shall be able to propagate, which means that the stimuli to the 

other inputs of the gate should not block the SA0 effect. On the other 

hand, there are some cases which the activation or propagation are not 

possible as shown in Figure 25.  
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Figure 25 – Untestable faults (adapted from [63]).  

4.2.2. Fault collapsing and testability 
 

The untestable faults correspond to possible faults in the circuit 

model which no test that can make the fault detected at an observation 

point. The reasons for that can be: SAT with the same value of a tied node, 

hence never activate; a SAT located on an unused logic thus cannot 

propagate to anywhere; and the existence of redundant logic, which can 

block the propagation of the SAT fault. In the end, untestable can be 

deleted from the list of faults to detect [63].  

 

 
 

Figure 26 – Local fault collapsing rules at GL (adapted from [62]).  
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Also looking to reduce the fault set, collapsing techniques group 

faults that produce identical (or equivalent) effect at the output thus being 

indistinguishable from each other. In other words, there is no test that can 

independently detect each fault from the equivalent group. For instance, 

if one fault of the group is detected, then it means that all equivalent faults 

are also detected. Collapsing can reduce the fault set by 50 to 60% [64]. 

Figure 26 illustrates the gate-oriented fault collapsing rules. 

Figure 26 identifies which faults are collapsible – i.e., equivalent 

faults are connected by a dashed line – within the basic element of a 

circuit described at GL. One of the equivalent faults must be selected to 

represent its group after collapsing. Therefore, after reduction of the faults 

due to collapsing, the fault towards the circuit output is selected from the 

equivalent group. The selected fault to represent its equivalent group is 

called the prime fault.   

 

4.2.3. Collapsing exercise and the backward propagation requisite 
 

The rules in Figure 26 applicable to gates, highlight which faults 

are logically equivalent. These rules are different from the “1-1 LINE” 

rule, which collapses “redundant” faults added by the industry compatible 

SAT fault model. For that reason, the gate-oriented collapsing starts with 

the “1-1 LINE” being applied. The result of the “1-1 LINE” rule in the 

MUX example is presented in Figure 27. 

 

 
 

Figure 27 – Applying “1-1 LINE” collapsing rule in the MUX example.  

After removing the “redundant” faults, each line segment in the 

circuit – where “1-N lines” is equal to N+1 segments – has a fault pair 

thus totalizing 18 SAT faults as shown in Figure 28. Next, the logic 

collapsing rules can be applied to the MUX circuit thus further reducing 

the fault set. 
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Figure 28 – Applying the logic collapsing rules in the MUX example.  

Figure 29 shows that after collapsing, the final fault set for the 

MUX example contains only ten faults, representing the 30 faults initially 

considered.  

 

 
 

Figure 29 – Final set of SAT faults after collapsing. 

In Figure 29, it is important to notice also that the SAT fault pair 

located in between the circuit’s PI and the line split, is prevented from 

being collapsed by the “1-N LINE” rule provided in Figure 26. This rule 

assures that the SAT fault model is observed, that is, the effect of the SA1 

fault at g3.A shall not backward propagate and reach the gate g1. In other 

words, the line driving a SAT fault node must be disconnected – or 

isolated – as illustrated in Figure 29 [63]. The magnifier in this figure 

highlights an analogy of an SA1 fault isolation done by disconnecting the 

SAT fault input from the original driver and then connecting to VCC. The 

fault isolation concept is relevant for the methodology presented. 
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4.3. FAULT INJECTION TECHNIQUES 

 

The semiconductor industry has extensively accepted fault 

injection over the years, and its tradition comes either from the DfT field 

or the know-how of robust circuit designs [40] [35]. Fault grading or fault 

simulation is a well-known fault injection application, where the goal is 

to determine the fault coverage of a given test set in order to guarantee 

that most defective devices do not escape the manufacturing tests. 

Another common usage of fault injection is for the verification of fault-

tolerant techniques used for hardening the circuit design. Today, there are 

many fault injection solutions not just targeting this two most common 

application, but different use cases also. For example, testbench (TB) 

qualification (TB-Q) explores fault injection in order to expose bugs in 

the checking – e.g., assertions, coverage bins, transactions – implemented 

in the verification environment [65]. Functional safety is another use case, 

where the ISO 26262 recommends fault injection with different semantics 

across the safety lifecycle. In this former usage of fault injection, the goals 

can be for instance evaluation of the hardware architectural metrics and 

DC assessment as already discussed in this research.  

The different fault injections techniques found in the literature are 

commonly classified by the design representation type that underlies the 

fault injection approach [66] [48] [35] [14] [67]. Therefore, the fault 

injection can be based on: 

 Hardware – it relies on the existence of the product prototype 

where the faults are physically inserted by forcing faulty 

conditions through the device pins or at specialized facilities 

with access to radiation or laser equipment to reproduce 

hostile environments; 

 Software – applicable to data processing designs, where some 

hardware faults can be imitated as software errors like 

incorrect instruction code, wrong transaction sequence, 

invalid message payload, etc.; 

 Simulation – widely used technique, where a simulation tool 

is employed to inject faults in the design model at different 

abstraction levels (e.g., RTL and GL) thus not requiring a 

prototype available; 

 Emulation – commonly based on configurable devices like 

FPGAs, with the objective of delivering performance rates 

that are not feasible on simulation-based techniques; 
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 Hybrid – mixture of two or more techniques trying to 

leverage and combine the best features of each of them. For 

example, fault injection using on-chip debug access available 

on the microprocessor to mimic hardware faults at software 

level.  

 

4.3.1. Fault injection aspects to consider for safety assessment 

 

Different goals require support to different requirements that 

associated with the target use-case. For example, hardware-based fault 

injection is not suitable for TB-Q since it is available far too late for when 

it is needed. Therefore, not all fault injection techniques are applicable in 

the functional safety context. For functional verification of SMs for 

example, different abstraction levels can be used. However, for the 

evaluation of the hardware architectural metrics, the latest design model 

before sign-off shall be used – e.g., GL netlist post-layout. The confidence 

of the results achieved with a fault injection campaign is proportional to 

the completeness of the stimulus used, the total of faults injected, and 

level of detail of the design description [28]. On the other hand, the ISO 

26262 does not require an exhaustive injection neither is entirely rigid 

about the used abstraction level. So, there is some flexibility, but it can be 

leveraged only if there is adequate justification. For example, fault 

injection based on RTL is acceptable, provided sufficient correlation with 

GL. However, this may be adequate for SM verification or initial DC 

assessment only. For the final evaluation of the SPFM and LFM, an 

auditor may not accept results based on RTL without an irrefutable 

argumentation. Such argumentation may not be feasible if there are 

solutions already available that provide more reliable results – e.g., that 

inject more faults on the detailed design model. Therefore, the best-effort 

concept is not just important for convincing a safety certification auditor. 

It can also result in a commercial advantage for a company that invests in 

a new solution, which might force the competition to accommodate the 

state-of-the-art in order to avoid future liability.  

In the functional safety context, the general requisites for fault 

injection targeting SM verification and DC assessment at semiconductor 

level, are: 

 Feature the injection of fault models associated with the 

permanent and transient failure modes including the 

definition of their parameters – e.g., fault injection time and 

fault duration; 
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 Support detailed design models, but also abstract descriptions 

for early assessment – e.g., GL and RTL as mentioned in the 

ISO 26262; 

 Definition of different observation points in order to 

distinguish faults detected by SMs from faults that propagate 

through the functional output without prevention; 

 Provide timing information with respect to fault observation 

thus allowing to check if the fault tolerant time interval is 

respected; 

 Multiple fault injection thus enabling the verification of SM 

that can handle more than one fault – e.g., Error Detection 

and Correction (EDC) mechanisms; 

 Usage of functional tests thus allowing an assessment closer 

to the real application. 

 

4.3.2. Optimizations and available tools 
 

Considering the general requisites, there are optimizations for 

reducing the overall time of fault injection campaigns, such as: 

 Fault collapsing and testability analysis for SAT faults and 

equivalent approaches for other fault models; 

 Reusability of the functional tests and the existing 

verification environment; 

 Ranking of the most suitable test for the fault injection 

campaign;  

 Optimal fault injection time based on the application; 

 Fault injection criteria to stop the injection run when it 

occurs;  

 Campaign threshold to conclude the campaign as soon as the 

goal is reached;  

 Distribution, parallelization, acceleration, and many others; 

Recently, the major EDA vendors have noticed that fault-injection 

solutions featuring these characteristics were missing in the market. 

Tailored extension of existing tools started to be released in the EDA 

business aiming to cope with the challenges of the functional safety 

assessment. Incisive Functional Safety Simulator (IFSS) is a perfect 

example [20] [21]. As an add-on to the vendor’s main HDL simulator, 

IFSS provides specific features reflecting the standard requisites. 

Competing with IFSS, there is Certitude, which was originally created for 
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TB-qualification based on fault mutation-technique, and now also support 

to the ISO 26262 fault models [68] [65] [8].  

IFSS is one of the tools used in this research. Since it is integrated 

to an event-driven simulator, IFSS can benefit from the latest verification 

methodologies and TB languages by reusing the existing functional 

verification environment. It can be employed throughout the design 

development due to the fault injection support at RTL and GL hence 

suitable for a functional safety flow. Even more important is the reduction 

of the fault campaign setup achieved by not requiring the generation of 

test vectors or being restricted to structural GL netlist. These two 

characteristics are common restrictions imposed by the most popular fault 

simulation algorithm in commercial DfT tools, which takes advantage of 

the GL netlist modularity to simulate only the parts affected by each fault, 

concurrently [69] [40] [70]. Additional to concurrent fault simulation, 

there are others DfT-oriented algorithms for performance improvement 

compared to standard event-driven simulation, but still with limitations to 

support behavioral models and transient faults. On the other hand, IFSS 

can leverage the most sophisticated distributed resource management 

(DRM) tools to run many faults simulation at the same time. However, 

despite the simulation-based technique utilized, an exhaustive safety 

assessment is practically impossible given the today’s design complexity 

and the total of faults to consider. Statistical methods like fault sampling 

permit to randomly select a feasible number of faults from the population 

and yet obtain relevant metrics with sufficient accuracy [71].  The ISO 

26262 suggests statistics for many other situations including fault 

sampling, which are out of scope for this study and will not be covered. 

 

4.4. FAULT SIMULATION ACCELERATION 

 

4.4.1. FPGA Techniques 
 

Emulation-based fault injection is typically proposed to overcome 

the long runtime of techniques based on simulation [13] [14]. In order to 

speed-up the fault injection run, FPGA-based techniques are often 

proposed as they can efficiently emulate the circuit. In the FPGA-based 

flow, the design must be synthesized to the specific target device, which 

is later configured with the resulting bitstream – i.e., the “synthesis 

image”. If the reproduction of the design copy containing a fault requires 

modification of the design description, then the synthesis process 

naturally becomes a bottleneck for the FPGA-based fault injection 
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emulation. Different approaches have been proposed over the years in 

order to avoid this bottleneck thus enabling the benefit of emulation-

acceleration [72] [73] [74] [75]. The general ideas of these approaches 

are: 

 Substitution of GL cells by highly controllable blocks that 

allows to enable or disable the error condition by fault 

injection manager running on the platform with minimal 

interaction of the computer host. This approach is suitable 

when intrusion is not a concern;  

 Dynamically partial reconfiguration featured in some FPGAs 

is explored aiming to reduce the intrusiveness of the previous 

approach. The fault injection controller is also implemented 

in the FPGA or the emulation platform thus minimizing the 

interaction with the host. However, these approaches rely on 

the controllability provided by the FPGA configuration 

resource, thus limiting the support to fault models; 

 By manipulating the bitstream, it is possible to reconfigure 

part of the circuit and replace it with its faulty version. In 

order to do that, the design running in the FPGA must be 

correctly stopped at the fault-injection instant and then 

resumed after the bitstream portion has been overwritten. The 

bitstream manipulation and reconfiguration must be executed 

in the platform hence close or even inside of the FPGA due 

to the communication bottleneck with the host. Additionally, 

a full mapping between the synthesis image and the circuit 

implemented in the FPGA must be disclosed by the 

manufacturer to permit proper bitstream manipulation.  

The application of FPGA-based approaches is mentioned in the 

ISO 26262. They are suitable for SM verification for example in order to 

maximize the performance of the fault campaign execution. However, the 

validation of the hardware architectural metrics shall be done using the 

most detailed model viable of the design. It might not be possible to show 

sufficient correlation between the synthesized model running in the 

FPGA and the latest GL netlist targeting another technology. Even if 

feasible, the collection of correlation evidence to convince the auditor is 

not a trivial task. Therefore, intrusive approaches like the replacement of 

GL cells to enable fault injection should be avoided. Less intrusive 

FPGA-based techniques can still be helpful as an additional methodology 

to corroborate the results achieved. 
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4.4.2. Abstract Model Approaches 
 

There are other acceleration approaches that explore the usage of 

higher level description models to enable efficient fault analyses at the 

system level [76] [77] [78]. Such methodology can be used to inject errors 

at earlier stages of the development process to quantitatively assess SMs 

selected to compose the design architecture. However, for more detailed 

analysis, the abstracts models must be further refined in order to keep 

sufficient level of details with respect to the actual design model. 

Consequently, the effort of maintaining a parallel development flow just 

for the high-level model with enough accuracy to the real implementation 

must be considered. Similar as in FPGA-based approaches, yet sufficient 

correlation between the models must be provided.   

 

4.4.3. Hardware-Assisted Platform 
 

4.4.3.1. Characteristics of the Available Platforms 

 

Hardware-assisted platforms are proved by the major EDA 

vendors as an acceleration solution for verification [10] [11] [12]. These 

specialized machines are typically installed in secured and acclimatized 

rooms given its valuable asset to the companies’ verification teams [79]. 

The most powerful model within the latest versions can emulate up to 9.2 

billion gates, which can correspond to 40 billion transistors depending on 

the design [80]. These platforms share some common features including 

multi-users and simulation acceleration among others. It is not surprising 

that these commercialized platforms also have in common the lack of 

fault injection support since they were built targeting functional 

verification speedup.  

This research explores Palladium XP (PXP) from Cadence Design 

Systems, Inc. in order to accelerate fault simulation. This hardware-

assisted verification platform can be employed for different verification 

purposes in order improve the turnaround time [81]. In the following, 

some of these purposes are listed: 

 Virtual prototyping – mixed-accuracy abstract models are 

emulated maybe together with RTL models eventually 

available in order to enable architecture decision making or 

closer software and hardware development and others; 

 Co-simulation – runs thousand times faster than simulation 

can be reached with the DUT mapped in the platform and the 
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TB residing in the host. Hence, it can still leverage the 

capabilities of advanced verification languages. 

 In-circuit emulation (ICE) – the full design is mapped into 

the verification platform with the possibility of real-world 

interaction devices through rate adapters for interfaces like 

Ethernet, USB, and others.    

A variation of the ICE mode exists, which supports the commonly 

called the synthesizable TBs (STB) that runs together with the DUT in 

the platform. The ICE mode with STB permits much higher simulation 

acceleration since there is no communication with the host, which 

naturally reduces the run performance.  

Run-time debugging features available in any commercial 

simulator are standard requirements for any acceleration solution. These 

features can be: waveform generation; run-time control/access to signal 

values; assertions; user customized logging; functional/code coverage 

collection; and so on. Such standard features are not exclusive to one 

hardware-acceleration platform they are supported by all of them. 

However, regarding their utilization in the fault injection context, there 

are specific characteristics that can be leveraged, which are not common 

to all solutions. 

 

4.4.3.2. The Application of the Hardware-Assisted Platform Used 

 

Since PXP is a processor-based platform, it contains a distinctive 

advantage towards the FPGA-based fault injection techniques discussed. 

The same design representation – later referred as snapshot – that is used 

by the simulation tool can also be mapped to run on PXP without 

requiring any synthesis step as in the FPGA flow. The snapshot resulted 

from the compilation of the HDL files is automatically mapped to the 

PXP. Hot-swap between the simulator and accelerator platform enables 

seamless execution of the snapshot on both domains. The processor-based 

architecture of PXP also delivers equivalent performance regardless 

design model being RTL and GL thus providing significant acceleration 

for GL simulation. The development history of the three most important 

hardware-assisted verification platforms indicates that PXP is the only 

solution not based on FPGA, which seems to allow these unique features 

[82] [83] [84]. 

Considering the functional safety context, all these characteristics 

made PXP an appealing candidate for fault injection. However, the actual 

feasibility of emulating faults using the hardware-assisted platform had to 
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be investigated. The potential benefit of using such kind of platforms for 

fault injection has recently been acknowledged as suggested future work 

[77] [85]. However, they either suggest an intrusive modification of the 

design model to enable fault emulation or recommend the definition of 

accurate fault models to be used with high-level abstractions models. 

Actually, it has been found only one research that proposes a solution 

based on the hardware-assisted platforms to accelerate fault simulation 

[86] – continuation of the work presented in [87]. The approach 

substitutes the flip-flop cells by equivalent saboteur cells that are used to 

enable SEU fault injection. Different from other intrusive techniques, the 

fault injection manager resides in the computers host thus resulting in 

more communication with between the host and the platform.  

There is no other similar approach, to the best of the author’s 

knowledge, which leverages from hardware-assisted platforms to 

accelerate the injection of the ISO 26262 models fault injection. 

 

4.5. CHAPTER REMARKS 

 

This chapter presented the main concepts of fault injection 

including various techniques available in the literature. Additionally, the 

hardware-assisted verification platforms were introduced and their 

characteristics discussed. There are unique features available in the PXP 

platform that are valuable for fault injection within the safety domain. 

Related works based on the hardware-assisted platforms are scarce and 

do not leverage the characteristics highlighter. In the next chapter the 

approach developed in this research to accelerate the fault simulation is 

presented. 
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5. LITERATURE REVIEW ON FAULT INJECTION 

ACCELERATION 

  

Fault injection is a widely accepted technique to assess design 

robustness [88]. Moreover, the injection of faults plays a key role in the 

manufacturing test domain [40]. Adding to that, fault injection is also 

employed for functional safety assessment and TB-Qualification. Across 

the use cases, there are many aspects that impact on fault injection 

definition. The abstraction level will define the fault models that can be 

applied and also the applicable optimization. For instance, the duration of 

the campaign, and the level of details in the design description also have 

influence in the number of faults to inject. Therefore, the phase of the 

product lifecycle where the fault injection is considered contributes to the 

decision regarding the applicable injection technique.  

 

5.1. SCOPE OF THE LITERATURE REVIEW 

 

With so many aspects associated with fault injection, innumerous 

researches have been conducted addressing several challenges that are 

intrinsic to each aspect. Therefore, it is important to draw the borderline 

in order to be able to cover one, or a couple of the possible topics properly. 

As already discussed, this Thesis’ goal is to propose a methodology to 

accelerate fault injection considering the functional safety challenges. To 

be more precise, the objective is to provide better performance than fault 

simulation when assessing the hardware architectural metrics before sign-

off. Therefore, the design abstraction level focused here is the gate-level 

netlist. RTL is also applicable, and it is planned to be covered in the 

future. The targeted fault model is Stuck-at (SAT), but SET and SEU 

faults are also discussed since they appear in the ISO 26262.  

The literature review considers fault injection acceleration 

solutions which match the provided scope definition. The functional 

safety requirements drive the related work discussion. Given the broader 

application of the proposed solution, it is possible that the presented 

contribution can be leveraged for other use cases different than functional 

safety. However, functional safety is focused by this Thesis.  

 

5.2. FPGA-BASED ACCELERATION VIA INSTRUMENTATION  

 

FPGA technology is vastly explored to accelerate fault injection 

campaigns. In 2001, Civera et al. [89] [90] presented an instrumentation 
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approach in order to provide the controllability and observability required 

to enable the fault injection emulation. In the next year, the more recent 

published results have shown a slight increase in the area overhead – i.e., 

between 8% and 42% – imposed by the presented solution [91]. Figure 

30 indicates the amount of instrumentation required per flip-flop to enable 

the injection of SEU faults. The reported acceleration was up to 60 times 

faster fault injection when compared to fault simulation. 

 

 
 

Figure 30 – Instrumented flip-flop. (Source [91]). 

Lopez-Ongil et al. [92] in 2007 proposed an approach also based 

on instrumentation to enable the control of the design atomic parts in 

order to inject the faults. However, the presented “time-multiplexed” 

technique seems to be the main difference of this solution, which allows 

having the fault-free and the faulty version of the design running in 

alternate clock cycles. Figure 31 shows the flip-flop instrumentation 

required to implement “time-multiplexed” solution. Another two 

instrumentation techniques are presented with less area overhead, but 

consuming more memory resources of the FPGA. The claimed 

performance is about 106 SEU fault injections per second. However, such 

performance is achieved by quadruplicating the FPGA area consumed by 

the user design.  
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Figure 31 – Flip-flop instrumentation enabling the “time-multiplexed” technique. 

(Source [92]). 

Entrena et al. [72] in 2010 published the work presented by Lopez-

Ongil in 2007. The diagram block with the proposed approach is shown 

in Figure 32  

 

 
 

Figure 32 – Emulation platform diagram. (Source [72]). 
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In this version, SET faults are supported due to the modeling of 

delays inside of the cells at gate-level netlist. A second design module is 

generated with only the FF instrumented. The idea is to inject SET faults 

using in delay-enabled module implemented using shift registers 

resources available in the used FPGA. Whenever, a sequential element 

captures the fault, then the design state – i.e., flip-flop logic values at a 

given moment – is copied to the module version with the instrumented 

flip-flops only. This second module can run faster since it has not 

implemented the delay. Both modules run on the FPGA, and the 

“emulation manager” – shown in Figure 32 – selects the module to 

execute. To enable SET fault injection acceleration, the proposed solution 

requires a massive instrumentation. Additionally, the fault injection 

campaign is executed over two generated models, which are derived from 

the original design description. 

 

5.3. FPGA-BASED ACCELERATION VIA RECONFIGURATION 

 

Kenterlis et al. [93] in 2006 presents a platform, which automates 

the fault injection of SEU faults by using the JBits API to tweak the 

bitstream image used to configure the FPGA. With the API and full 

control of the bitstream generation, only bits actually disturbing 

configurable logic blocks could be selected to inject the faults, thus 

reducing the fault space. Even if the faults were injected on the occupied 

FPGA resources, the proposed methodology still was more verifying the 

device itself than the fault tolerant design configured in the FPGA. Hence, 

the approach was overdoing the vendor’s work, which already provided 

reliability experiments information at that time [94]. Additionally, 

significant interaction with the host is required, and a faster 

communication link had to be used in order to reduce the bottleneck. Up 

to two order of magnitude have been observed between simulation and 

the proposed solution. Kuuhn et al. [95] in 2013 presented a similar 

approach, but instead of using the JBits API, a tool was developed to 

make the link. The developed tool provides the correlation between the 

fault selected at circuit description – e.g., VHDL, Verilog – level, and the 

generated bitstream for the injection of the fault. However, the research 

focus was fault tolerance hence no fault injection performance figures 

were discussed. 

Aguirre et al. [96] [97] presented a non-intrusive FPGA solution, 

where the fault are injected by the manipulating the configuration 

memory of the device. Instead of corrupting the bitstream, FT-



95 

UNSHADES leverages the dynamic partial reconfiguration available in 

some FPGAs to inject the faults. Figure 33 shows the implemented 

approach. The fault-free and faulty version share the same inputs, and 

their outputs compared in order to check if the injected fault has 

propagated out of the design.  

 

 
Figure 33 – FT-UNSHADES Emulation approach presented in  [97]. 

Mogollon et al. [74] in 2011 presented the second version of the 

FT-UNSHADES solution. The new release promises to have eliminated 

the communication bottleneck by processing all data management in the 

developed platform. Experiments showing performance ration about 

100k faults per second are claimed. However, the presented results 

achieve up to 1980 fault injection runs per second.  

 

5.4. SIMULATION-BASED ACCELERATION VIA INSTRUMENTA-

TION 

 

Rohani and Kerkhoff [98] in 2011 presented the experiment results 

achieved with the proposed simulation-based approach. First, the design 

is modified in order to add the saboteurs shown in Figure 34. These 
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saboteurs allow to inject two SET and the SEU transient faults, and it also 

permits to instrument a delay fault model. Each saboteur has an enable 

signal which is controlled through the simulator tool commands. A pre-

analysis is performed utilizing a mathematical tool to configure the fault 

campaign by defining the fault target, injection time, and injection 

duration. The detection is checked as post-process step by comparing the 

logged data generate during the fault-free run after each fault simulation. 

The authors claim between 27% and 67% CPU time reduction against 

other two considered.   

 

 
 

Figure 34 – (a) SET 01. (b) SET 10. (c) Delay fault. (d) SEU. (Adapted from 

[98]) 

5.5. ACCELERATION VIA FAULT CAMPAIGN OPTIMIZATION  

 

Ebrahimi et al. [99] in 2015 presents a fault injection solution 

applicable to the fault campaign pre-analysis in order to avoid wasting 

time by ineffective fault injection. The proposed solution does not 

consider an injection technique per se. Instead, it highlights the potential 

benefit achieved with sampling by using the proposed analytical analysis 

thus providing campaign speedup factor up to thirteen. Such contribution 

can be leveraged by the workload profiling technique mentioned in the 
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functional safety assessment methodology presented in [39]. In general, 

the proposed approach applies to any fault injection technique.   

 

5.6. ACCELERATION VIA COMPLEXITY ABSTRACTION 

 

Bombieri et al. [100] in 2011 utilize Transaction-Level Modeling 

vastly used for functional verification at the system level in order to 

optimize the fault simulation. The proposed approach claims automatic 

extraction of the TLM models from the RTL description. Additionally, an 

ATPG implemented with TLM models is used to generate the stimulus 

for the DUT automatically. Even stating initially that by using TLM, the 

performance gain can get up to a factor of thousand when compared to 

standard RTL simulation, the results show a speedup between 6.3 and 

68.8 times faster runs. Moreover, an interesting contribution corresponds 

to the possibility of reusing the test vectors generated by TLM-ATPG 

back into the RTL simulation.  

 

5.7. ACCELERATION VIA HARDWARE-ASSISTED VERIFICA-

TION PLATFORMS 

 

Daveau et al. [87] in 2009 proposed a fault injection acceleration 

methodology using the hardware-assisted verification platforms. In the 

following year, Bailan et al. [86] seemed to have moved forward with the 

research, and published more experimental results. Similar to other 

approaches, the acceleration is based on the instrumentation of the flip-

flops to enable the controllability required by SEU fault injection. About 

20% of area overhead in addition to the fault injection controller that also 

runs on the platform. Given the massive parallelism implemented, a 

significant fault injection runtime reduction is achieved. The selected 

fault target is a Leon2 IP core which can be replicated 19 times into the 

same hardware-assisted platform domain. Using the 16 domains, 304 

faults could be injected at the same time. Figure 35 shows that to achieve 

such parallelism, one controller per domain is required in addition to the 

master controller running in the host.   

To the best of the author’s knowledge, this research is the only fault 

injection acceleration technique, which is similar to the MADC solution 

that is proposed in this Thesis. Therefore, a discussion comparing the 

results achieved is carried out in the experiments chapter. 

 



98 

 
 

Figure 35 – Fault injection platform architecture highlighting the implemented 

parallelism in [86] [87]. 

5.8. COMMENTS ON THE REVIEWED RELATED WORK 

 

The presented MADC solution is different from any work found in 

the literature review, as it does not require changing the design description 

neither to provide the required controllability/observability nor to 

synthesize for a different technology than the targeted one. Table 15 lists 

some comments on the related work considering their application to 

functional safety. 

 
Table 15 – Related work comments.  

Related work Comments 

Civera et al.  
[89] [90] 

Instrumentation required with significant area overhead; 

performance gain not as high as more modern solutions.  
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Lopez-Ongil  

et al. [92] 

 

Entrena  

et al. [72]  

Massive instrumentation needed in order to provide 

sufficient controllability and testability in order to enable 

fault injection; given the amount of instrumentation, it 

may not be possible to justify a safety assessment done 

using such different model. A SET fault injection 

solution is later presented. However, a massive 

instrumentation is required, and the campaign is 

executed over two modules extracted from the original 

design description. Three thousand SET faults per 

second was the performance achieved in the latest 

version commented.   

 

Kenterlis  

et al. [93] 

 

FPGA-based approach where the faults are emulated by 

external  manipulating the device configuration to mimic 

the fault; it is questionable whether there is any value 

injecting faults in the device instead of the user logic 

configured in the device; Even if not requiring 

modification of the design description, the safety 

assessment is done in the synthesized model targeting a 

device different from the actually aimed application; 

Kuuhn  

et al. [95] 

Aguirre et al. 

[96] [97] 

 

 Mogollon et 

al. [74] 

FT-UNSHADES work is already in the second version 

given its successful application in the aerospace and 

academic domains. However, the external manipulation 

of the FPGA’s configuration memory seems to limit 

fault injection ration. Approaches like in [75] presented 

by the author, which leverage the internal access to the 

FPGA’s configuration memory could be used to improve 

the performance. FT-UNSHADES supports the injection 

of SEU and SET faults.  

Rohani and  

Kerkhoff [98] 

Simulation-based approach combined with 

instrumentation; the pre-analysis for the campaign 

configuration is something applicable to any fault 

injection solution, which can be considered; 

Ebrahimi  

et al. [99] 

In general, it is applicable to any fault injection 

technique; Applicable to the safety domain;  

Bombieri  

et al. [100] 

The safety assessment would be performed based on a 

high-level generated model, and not in the actual design 

description.   
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Daveau  

et al. [87] 

Bailan  

et al. [86] 

Massive parallelism, which can be leveraged by MADC; 

Outstanding fault injection runtime achieved; Based on 

instrumentation, which is not desired from the safety 

point of view; 

 

5.9. CHAPTER REMARKS 

 

In Chapter 3, the related work containing relevant description 

about the fault injection application to the functional safety domain is 

presented. In Chapter 0, some of the state-of-the-art fault injection 

approaches are cited. However, the related work discussion up to Chapter 

5 was not sufficient, given the generic aspect of the proposed acceleration 

solution. Therefore, in this chapter, a more broad literature review is 

performed in order to allow putting the Thesis’ contribution in perspective 

to the state-of-the-art. Next chapters present the proposed methodology 

details and the obtained results.  
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6. PROPOSED FAULT INJECTION ACCELERATION 

STRATEGY 

 

As already mentioned, the proposed approach is based on the PXP 

hardware-assisted platform, which is originally intended for general 

functional verification speedup. The methodology implemented leverages 

this platform to accelerated fault injection campaign execution. In order 

to inject faults, the approach uses the common simulation debugging 

features that are supported by PXP and other hardware-assisted solutions 

thus not being restricted to one vendor. However, PXP has unique 

characteristics and features that are leveraged here in order to achieve 

better turnaround time.  

Typical emulation-based techniques and other intrusive 

approaches can demand a significant effort to convince the auditor by 

showing the correlation between the latest design model and the one used 

for the safety assessment. Therefore, such techniques may not be 

applicable for the hardware architecture metrics evaluation using the pre-

silicon design model. The proposed approach avoid any kind of design 

modification since it can run the simulation and the emulation sharing the 

same snapshot, i.e., the HDL design compilation image.  

MADC is the shortening for Methodology to Accelerated the 

Diagnostic Coverage assessment. MADC is split into three main parts in 

order to explain the proposed methodology. These three parts are: 

 Enablement: the faults that can be accelerated are identified. 

Collapsing is used to extend fault-set of identified faults. 

Testability is used to avoid injection of untestable fault on 

simulation or emulation; 

 Flow: includes the required data input, the used tools, the 

storage and manipulation before and during the fault 

injection, the tools used, and the generated results; 

 Execution: control of the runs and fault detection were 

implemented to enable fault injection using the hardware-

assisted platform; 

 

6.1. MADC ENABLEMENT 

 

Force, deposit, and release are common features found in 

commercial RTL simulation tools. They permit to control internal signal 

values directly from the simulator console. The force command makes a 

design signal remain stuck at the value predefined, while the release can 
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undo this. Similar to the force behavior, the deposit command also sets an 

internal design signal to a certain value. However, the value set by the 

deposit is overridden by the normal operation of the circuit whenever the 

signal is driven again. The same set of commands are possible on PXP, 

and they can be used to insert a fault condition in the design without 

modifying the description. The force command has similar characteristics 

as the SAT faults. On the other hand, the deposit feature is analogous to 

the SEU fault behavior. In the proposed methodology, the force command 

is used in order to replicate the fault injection effect of a SAT fault without 

modifying the design model.  

As already seen, the effect of a SAT fault shall not propagate 

backward. However, the force command is applicable to the whole line 

thus generating an incompatible behavior towards the SAT fault model. 

Figure 36 highlights the backward propagation problem when using the 

force command to inject a SAT fault in the g3.A pin. On the other hand, 

there are many faults in the design, which the back propagation has no 

impact on any other part of the design – e.g., cell outputs. Therefore, a 

structural analysis has been developed in order to identify those nodes 

where the SAT faults can be injected regardless if the fault effect 

backward propagates or not. 

 

 
 

Figure 36 – Backward propagation problem associated with the force command.  

Structural information extraction from the GL netlist is required to 

identify the faults that can be executed in the hardware-assisted platform. 

The extraction was implemented using two different synthesis tools in 

order to compare and validate the information collected [101] [102]. 

Redundant tool flows when considering the tools’ confidence level 

required in the ISO 26262 [103]. Additionally, an ATPG tool was utilized 

to generate the fault list with SAT industry compatible fault model 
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together with the fault equivalent groups and testability information 

[104]. 

Figure 37 shows the MUX once more, but this time, the circuit is 

not directly connected to the PIs and POs. Hence only the SAT faults in 

the gates are considered. Figure 37 is used to explain which faults can 

actually be selected for injection utilizing the force command, and how 

the number of faults suitable for acceleration can be optimized leveraging 

the collapsing and the testability information.    

 
 

Figure 37 – SAT fault selection.  

Naturally, faults located on cell outputs do not have the backward 

propagation issue since the effect of the force command cannot overpass 

the line driver. The remaining faults may be collapsible with the output 

faults thus allowing to maximize the ratio of faults verified by 

acceleration and those that can only be simulated. However, it is 

important to select the appropriate set of prime faults – equivalent group 

representatives – in order to guarantee the correctness of the fault 

injection executed in the emulator. Table 16 contains the equivalent 

groups (EGs) for the example of Figure 37, and the IDs of the prime faults 

are highlighted in bold – i.e., faults 6, 8, 12, 14, 19, 21, and 22.  

The “acceleratable” (ACC) set of faults starts with those eight 

located on cell outputs (OUT). The ratio of ACC faults is then optimized 

by using logical collapsing (COL). Faults on input cells may not appear 

in any equivalent group but still fit for verified through acceleration. Such 

case can occur when the fault resides in an input cell that is connected to 

a 1-1 LINE (1-1L), and there is no fault instrumented in the driver side; 

otherwise, the two faults would have been collapsed. Fault 14 fits this 

situation hence it is the only fault on the 1-1L column that is added to 
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ACC list in Table 16. A similar case happens with faults on unconnected 

pins of registers or other cells, which also are not collapsible but still can 

be accelerated.  

 
Table 16 – Fault list analysis for the MUX example. 

Fault List Equivalent Groups Ratio Optimization 

Id
 

N
o
d
e 

T
y
p
e 

I/
O

 

E
G

1
 

E
G

2
 

E
G

3
 

E
G

4
 

E
G

s 

O
U

T
 

C
O

L
 

1
-1

L
 

A
C

C
 

S
E

L
 

1 g1.A sa0 I     8 8     8 

2 g1.A sa1 I 21    21     21 

3 g1.Y sa0 O 21    21     21 

4 g1.Y sa1 O     8 8     8 

5 g2.A sa0 I 21    21     21 

6 g2.A sa1 I      6      

7 g2.B sa0 I 21    21     21 

8 g2.B sa1 I     8 8     8 

9 g2.Y sa0 O    17  17     17 

10 g2.Y sa1 O 21    21     21 

11 g3.A sa0 I 21    21     21 

12 g3.A sa1 I      12      

13 g3.B sa0 I 21    21     21 

14 g3.B sa1 I      14     14 

15 g3.Y sa0 O   19   19     19 

16 g3.Y sa1 O 21    21     21 

17 g4.A sa0 I    17  17     17 

18 g4.A sa1 I 21    21     21 

19 g4.B sa0 I   19   19     19 

20 g4.B sa1 I 21    21     21 

21 g4.Y sa0 O 21    21      21 

22 g4.Y sa1 O         22      22 

22 faults  11 2 2 3 8 8  11 1 20  6 

Faults: () selected by the optimization; () new to the acceleration set 
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From the 22 SAT faults in the MUX example, 20 can be 

accelerated (ACC) as shown in Table 16. However, the faults that can 

actually be injected must be located on a cell output, 1-1 line, or on a not 

driven pin. Therefore, the representative faults of the equivalent groups 

within the set of ACC faults need to be selected properly in order to avoid 

the backward propagation issue. The faults that are selected (SEL) to be 

injected via the hardware-assisted platform are marked in bold – i.e., 8, 

14, 17, 19, 21 and 22. For that reason, the fault representatives of the EGs 

that are selected for acceleration can be different from the original prime 

faults.  

To summarize the importance of the MADC fault selection, then 

the backward propagation related to the SAT fault injection via force 

command must be clear. Figure 38 shows a hypothetical circuit to explain 

the effect of the force command on the line in order to define when this 

effect can be used to mimic a SAT fault model. Considering this fault 

model, then the forward propagation is the expected behavior hence not 

represented in the circuit illustration. Although the backward propagation 

is not a valid SAT fault behavior, yet there are many circuit locations 

where it has no actual side effect thus allowing to employ the force 

feature.  

 

 
 

Figure 38 – Highlight the importance of the MADC fault selection. 

The force command is used to inject one SAT fault in the input of 

the cell g3 in Figure 38. Given the force semantics [105], then everything 

between the drivers and the sources of the line gets affected. Since the 

fault is injected close to the source (g3 input pin) of the line, then the force 

behavior in the line can be seen as the backward propagation of the fault 

effect. For the fault injected in the g3.A, the force effect goes backward 
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until it gets to the driver (g1.Y output) thus not disturbing any other part 

of the circuit. Therefore, this fault is a suitable candidate for acceleration. 

Notice that backward propagation concern is not applicable to fault 

located at the drivers.   

As already mentioned, there are some situations where the fault 

effect does not only propagates towards the driver, but it also affects other 

cells. For example, the force applied to the g4 input pin in Figure 38 

generates a side effect by disturbing the g3 cell as well. Therefore, 

whenever a line connects one driver to multiple sources, then the force 

command is not suitable for the injection of the SAT faults residing on 

cell inputs. For those cases, MADC checks if there is any equivalent fault 

located in a driver, which then can be selected for acceleration. Table 17 

lists the faults located between the sources and the drivers illustrated in 

Figure 38 and comments whether they can be selected for acceleration or 

not.  

 
Table 17 – Faults suitable for acceleration considering the hypothetical circuit 

example.  

Cell Pin Tie Is the fault suitable for fault acceleration? 

g1 output (Y) driver Yes. Output faults are always suitable 

g2 output (Y) driver Yes. Output faults are always suitable 

g3 input (A) source Yes. Same effect as injecting an output fault 

g3 input (B) source a No, since it would disturb g4 as well 

g4 input (A) source  a No, since it would disturb g3 as well 

g4  input (B) source  Yes, assuming it is unconnected.  
a although this fault itself can not be accelerated, still it may be 

collapsible with another fault located in the cell output. 

 

6.1.1. Enablement Algorithm 
 

The fault selection described using the Table 16 can be seen as a 

three steps procedure. The first-step corresponds to the selection of the 

faults located in the output. The second-step and third-step are related to 

the ratio optimization of faults that can be accelerated. These procedure 

steps are illustrated by the pseudo-algorithm shown in Figure 39. MADC 

relies on the structural circuit analysis developed to explore the SAT fault 

injection in the hardware-assisted platform by discovering the faults that 

do not require isolation – i.e.; its effect does not backward propagate. The 
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“Algorithm 1” in Figure 39 represents this structural analysis, where the 

function c.faults(out,SAT) prints the SAT (SA0 and SA1) faults on the 

output of cell c, while c.faults(in,SA0) prints the SA0 faults on inputs of 

c. The p.faults(SA1) prints the SA1 fault of the corresponding cell pin p. 

The p.connections() returns the number or cell pins interconnected by the 

wire that is also connected to pin p. 

 

 
 

Figure 39 – Pseudo-algorithm for printing the suitable faults to execute in the 

hardware-assisted platform. 

As already mentioned, the pseudo-algorithm shown in Figure 39 

starts with the execution of the first-step to print all SAT faults located at 

cell outputs, which are suitable for acceleration by default. As a second-

step, the procedure prints the faults that are collapsible to the output faults 

thus being indirectly enabled for acceleration. After considering the 

equivalent groups to increase the ratio of classified faults via acceleration, 

then another optimization step is executed.  
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The third-step searches for faults in the same condition as the ones 

located at the g3.A and g4.B pins of the example in Figure 38. Therefore, 

if the function p.connections() returns a value greater than two, then it 

means that a g3.B or g4.A kind of fault has been found. In this case, the 

fault is not selected for acceleration, and the next fault is analyzed. When 

the p.connections() is equal to one, then the fault is located at an 

unconnected input pin – similar to the g4.B example. To not print the 

same fault twice, MADC algorithm checks if the fault has not been 

collapsed or marked as untestable already. Faults located on an input pin 

connected to a 1-1 line can also be selected – the same situation as for the 

g3.A fault in Figure 38. The faults not collapsed before are printed by the 

MADC algorithm.  

The DiscoverFaultsToAccel procedure shown in Figure 39 prints 

all faults to be classified using the hardware-assisted platform. However, 

only the prime faults need to be executed. In order to avoid choosing a 

fault with side effects, MADC selects from the equivalent group, always 

one fault that is located on a cell output pin. The faults printed during the 

third-step are the only faults residing in cell input pin that are executed 

on the verification platform. 

All faults not printed by the MADC algorithm can only be 

simulated, or some kind of design instrumentation is required in order to 

isolate the fault node from the rest of the circuit thus avoiding the 

backward propagation problem. Since the goal is to use the same design 

representation for the fault injection, then instrumentation is not 

considered this Thesis. 

It is important to notice that the information printed by the 

structural analysis procedure illustrated in Figure 39 must permit the 

mapping between the selected faults and the original fault list generated 

by the ATPG tool. This information includes the original fault IDs, the 

EGs indication, the direction (I/O), the fault type, and the fault node. 

Table 18 demonstrates the fault list that should be generated by the 

pseudo-algorithm presented in Figure 39 with the minimum content 

necessary to allow identifying the faults that can have its classified via 

fault injection acceleration and also permitting back annotate the results 

into the original fault list. The shaded rows in Table 18 indicate the faults 

that actually need to be injected to be able classify all 20 faults in the list. 

Each equivalence group (EG) has one bolded fault IDs to indicate the 

selection. Among those six fault IDs selected, five are located in the first 

cell output of the EG. Notice that fault 01 would backward propagate thus 

affecting gate g2 as well. Therefore, it is important to select fault in the 

outputs whenever possible. Only fault 14 resides in a cell input since it is 
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not collapsed with an output port. Fault 14 is selected by the 1-1 LINE 

rule.  

 
Table 18 – Fault list generated by the “Algorithm 1”. 

ID Type I/O EGs Node  3 sa0 O 21 g1.Y 

1 sa0 I 8 g1.A  5 sa0 I 21 g2.A 

4 sa1 O 8 g1.Y  7 sa0 I 21 g2.B 

8 sa1 I 8 g2.B  10 sa1 O 21 g2.Y 

14 sa1 I 14 g3.B  11 sa0 I 21 g3.A 

9 sa0 O 17 g2.Y  13 sa0 I 21 g3.B 

17 sa0 I 17 g4.A  16 sa1 O 21 g3.Y 

15 sa0 O 19 g3.Y  18 sa1 I 21 g4.A 

19 sa0 I 19 g4.B  20 sa1 I 21 g4.B 

2 sa1 I 21 g1.A  21 sa0 O 21 g4.Y 

      22 sa1 O 22 g4.Y 

 

The handling of the PIs, POs, and untestable faults are not shown 

in Figure 39 since they are not part of the MUX example illustrated in 

Figure 37. However, they must be considered for the correct calculation 

of the metrics hence they are covered by the MADC structural analysis. 

 

6.1.2. The Ratio of Faults Suitable for Acceleration. 

 

The number of faults that can be accelerated within a GL netlist is 

given by FACCEL in (12). FACCEL consists of three addends: 𝟐 ∗ |𝑪| and the 

summation of the functions 𝒇(𝒄) in (13) and 𝒈(𝒄, 𝒑) in (14), which are 

associated with the steps in the Algorithm 1 in Figure 39.  

 

𝑭𝑨𝑪𝑪𝑬𝑳 = 𝟐 ∗ |𝑪| + ∑ 𝒇(𝒄)

𝒄 ∈ 𝑪

+ ∑ ∑ 𝒈(𝒄, 𝒑)

𝒑 ∈ 𝑷𝒄 ∈ 𝑪

 (12) 

𝑪 = {𝒄 | 𝒄 is a cell instance}, 𝑷 = {𝒑 | 𝒑 is an input pin of a given cell 𝒄} 
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𝒇 = {

𝟎,   𝒄 ∈ {𝑭𝑭, 𝑿𝑶𝑹, 𝑪𝒐𝒎𝒑𝒍𝒆𝒙}

𝟐,                     𝒄 ∈ {𝑰𝑵𝑽, 𝑩𝑼𝑭}

|𝑷|,          𝒄 ∈ {𝑵/𝑶𝑹, 𝑵/𝑨𝑵𝑫}
 (13) 

 

𝒈 = {

𝟎,   (𝒑. 𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒊𝒐𝒏𝒔() > 𝟐) ⋁ (𝒄 ∈ {𝑰𝑵𝑽, 𝑩𝑼𝑭})

𝟏,                                                  𝒄 ∈ {𝑵/𝑶𝑹, 𝑵/𝑨𝑵𝑫}

𝟐,                                         𝒄 ∈ {𝑭𝑭, 𝑿𝑶𝑹, 𝑪𝒐𝒎𝒑𝒍𝒆𝒙}
 (14) 

 

The 𝟐 ∗ |𝑪| results in two times the number of cells belonging to 𝑪 

– e.g., all cells in the netlist – thus corresponding to the amount of SA0 

and SA1 faults located at the cell outputs. The function 𝒇(𝒄) is equal to 

the number of collapsible input faults for each cell 𝒄 according to the 

logical collapsible rules presented in Figure 26 except the “1-1 LINE” 

rule. For instance, 𝒇(𝒄) equals to the number of inputs |𝑷| of 𝒄 when it is 

an AND, OR, NAND, or a NOR gate. On the other hand, the function 

𝒈(𝒄, 𝒑) is equal to the number of faults on the input pins 𝒑 of a cell 𝒄 that 

are collapsible according to the “1-1 LINE” rule – i.e., the line where the 

fault resides has no more than two connection ends. Therefore, the 

summations ∑𝒇(𝒄) and ∑𝒈(𝒄, 𝒑) provide the total number of faults that 

can also be accelerated due to the collapsing optimization. Table 19 shows 

the results of applying (12) for the MUX example illustrated in Figure 37.  

 
Table 19 – Results of each step of the MADC analysis  

Faults that 

can be: 

Ratio of accelerated faults per step 

No𝑭𝑨𝑪𝑪𝑬𝑳 𝟐 ∗ |𝑪| ∑𝒇(𝒄) ∑𝒈(𝒄, 𝒑) 

Accelerated 0 8 16 20 

Only simulated 22 14 6 2 

Accel.  Ratio 0.00% 36.36% 72.72% 90.91% 

 

The accumulated result of each term in (12) is shown by the 

“Accelerated” row in Table 19.  After each term is calculated, the number 

of faults that can be accelerated increases hence reducing the number of 

faults that can only be simulated. For the MUX example shown in Figure 

37, up to 90.91% of all faults can be accelerated by just selecting the 

appropriate set of prime faults to be used for the injection campaign. In 

other words, less than 10% of the faults require design model adaption to 

provide the isolation essential for the SAT model. To keep MADC as a 
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zero intrusion solution, these two faults are simulated using IFSS – or any 

fault simulator. Meanwhile, the hardware-assisted platform can accelerate 

90.91% of the faults hence enabling the parallel execution of fault 

injection on both engines thus reducing the overall execution time of the 

fault campaign.  

 

6.2. MADC FLOW 

 

 
 

Figure 40 – MADC flow diagram.  

The proposed MADC flow diagram is presented in Figure 40. In 

addition to the design model (Design Source), the flow requires the 

definition for the faults to be injected (Fault target) and also the definition 

for the strobes (Strobes) that are the detection points. The fault definition 

can be the instance path of a subpart of the design model. Currently, 

MADC consider only SAT faults, but it can be extended to support other 

fault models. A time different than zero or a specific condition – e.g., 

100ns after reset sequence – to trigger the injection can be set in order to 

permit the evaluation of faults occurring during normal operation 

conditions – i.e., random faults. The strobe information provided to 
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MADC contains a list of detection points and their location meaning 

towards the fault classification defined by the ISO 26262.  

 

6.2.1. Mapping the campaign results to the standard classification 

 

The inputs for the MADC flow follow similar semantics as for the 

IFSS’s inputs, and they are translated by MADC to the PXP language and 

interface in order to provide transparent integration between the two 

engines. IFSS permits the definition of two strobe groups thus allowing a 

more advanced fault classification than typically supported by standard 

DFT fault simulators, such as detected, undetected or potentially detected. 

The former classification causes an unknown value – i.e., “X value” or 

“don’t care” – at an observation point hence not giving a definitive 

answer about its detection. It must be remembered that the ISO 26262 

compliance demands the assessment of faults that negatively impact the 

SPFM and LFM, which are the SPFs or RFs and the LFs, respectively. 

Whenever the required metrics are not achieved, SMs can be added to 

detect these faults and turn their classification into DFs – or MPFD. Using 

the IFSS terminology, the detection points can be grouped as functional 

or checker strobes to support ISO 26262 fault classification. For instance, 

as many faults as possible should be prevented from getting to a 

functional strobe. In other words, the functional strobes correspond to 

where the failure mode is considered activated. On the other hand, the 

checker strobes are located in the observation points that indicate when a 

fault was diagnosed.  

The fault classification done by IFSS depends on which strobe 

group was triggered by the fault propagation. A fault that only propagates 

to a functional observation point is classified as dangerous undetected 

(DU) according to the IFSS syntax. The faults detected by SMs hence 

triggering the checker strobes can either be classified as safe detected 

(SD) or dangerous detected (DD) whether they also propagate or not 

through a functional strobe. Safe undetected (SU) is the classification of 

faults that either remain latent or are masked by the circuit and hence no 

observation point within the strobes groups is triggered. The mapping 

between IFSS and ISO 26262 fault classifications is shown in Table 20. 

A fault that propagates through functional output can be classified 

as DF if an SM later detects the fault thus triggering a checker strobe 

observing the error detection time specified. IFSS permits to specify this 

time window between triggering of functional strobe until the detection 

at checker strobe. Additionally, the simulation can be configured to stop 
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whenever a checker strobe is activated or the error detection time window 

ends. The stopping feature can reduce the overall execution time of a fault 

campaign by only running the test completely when strictly necessary – 

e.g., safe-undetected (SU) faults are not detected at any observation point 

hence the whole test is executed. However, the optimization achieved 

with this feature varies according to the number of faults injected that can 

quickly propagate to an observation point thus stopping the simulation.  

 
Table 20 – IFSS and ISO 26262 fault classification mapping.  

Fault that 

propagates 

Strobe Groups Fault Classification 

Functional Checker IFSS  ISO 26262 

only to: X  DU    SPF/RF 

to both: X X DD DF a 

only to:  X SD        DF 

to none.   SU        LF 

a assuming the error detection time stipulated is observed. 

 

6.2.2. The MADC interface definition 

 

Additional to the fault list format, the MADC supports the IFSS 

fault classification syntax thus allowing the translation to the ISO 26262 

terminology. This includes the untestable (UT) faults that are classified 

as SFs since they cannot violate an SG. The definition of functional and 

checker strobes are also supported by the MADC flow as well as the set 

of time window between the two groups in order to proper classify the 

faults. The MADC support here means that the proposed methodology 

enables equivalent features already provided in the simulator, on the 

hardware-assisted platform. 

The MADC controls the ATPG tool in order to generate the SAT 

fault list with the collapsing and testability results. The synthesis tools are 

used to collect the number of connections and the direction for each pin 

where the faults are located. All this information is committed to a 

PostgreSQL (PG) database that is used to store, sort, and filter the faults 

in order to generate the lists with those suitable for acceleration according 

to the algorithm shown in Figure 39. Another list is generated for the 

faults that can only be simulated – in this case, the IFSS. Both lists contain 

only the primes hence the minimum set of faults to be injected by each 
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engine. After injecting the selected faults, MADC collects the reports 

generated by IFSS and the results achieved with PXP in order to annotate 

the classification back to all faults stored in the PG database. Finally, the 

resulting fault annotation can be translated into the ISO 26262 

classification using the mapping from Table 20. 

 

6.2.3. Link to the FMEDA 
 

A technical FMEDA contains the relevant information needed for 

the definition of the fault campaign inputs. The targeting area where to 

inject the faults can be specified based on the part/subpart name found in 

the spreadsheet first columns like in the example shown in Table 11. The 

failure mode defines the fault model. Functional strobes can be mapped 

to the part/subpart outputs. The SM references can be used to find the 

observation points to be selected as checker strobes.  

The MADC fault classification results provide the information 

required to calculate the percentages that must be annotated back to the 

FMEDA in order to allow the evaluation of the SPFM and LFM. The 

failure rate fraction associated with the safe faults is entered in the 

FMEDA as the percentage calculated in (15) where the number of 

untestable faults (#𝑈𝑇) is divided by the size of the fault set. The amount 

of dangerous undetected faults (#𝐷𝑈) is used in (16) to find the 

percentage of the RFs failure rate that is covered by an SM. The same 

happens with the total of safe undetected faults (#𝑆𝑈) in (17) that is equal 

to the DCLF, which also corresponds to the LF failure rate percentage.  

 

𝐹𝑆𝐹(%) =  
#𝑈𝑇

(#𝑈𝑇 + #𝐷𝑈 + #𝑆𝑈 + #𝐷𝐷 + #𝑆𝐷)
× 100 (15) 

 

𝐷𝐶𝑅𝐹(%) =  
#𝐷𝑈

(#𝐷𝑈 + #𝑆𝑈 + #𝐷𝐷 + #𝑆𝐷)
× 100 (16) 

 

𝐷𝐶𝐿𝐹(%) =  
#𝑆𝑈

(#𝑆𝑈 + #𝐷𝐷 + #𝑆𝐷)
× 100 (17) 

 

There are innumerous spreadsheet formats as well as requirement 

management tools that provide support to FMEDAs. For that reason, one-

size-fits-all solution for interfacing all kind of FMEDA tools is 

unrealistic. However, the precise definition of the MADC input and 



115 

output allows the development of an interface to any solution available in 

order to automate the link to the FMEDA. 

 

6.3. MADC FAULT INJECTION EXECUTION 

 

As mentioned before, the fault injection is performed by two 

different engines. Therefore, the MADC is split into two sub-flows for 

the fault campaign execution. In the left side of the flow, there are the 

steps perform the fault injection using the hardware-assisted platform 

while on the right side of Figure 40, the three IFSS’s steps are shown. 

Regardless the engine, three common steps are executed, which are: 

 Elaboration: corresponds to the design model compilation 

into a snapshot that is loaded by the tool when starting the 

simulation.  

 Good Run: fault-free execution of the snapshot to collect the 

reference values on the functional and checker strobes 

defined;  

 Fault Run: fault injection execution until the test completes 

or a checker strobe is triggered thus deviating from the 

reference value. 

As already mentioned, the snapshot generated for a standard 

simulation can also be executed in the hardware-assisted platform. 

However, the fault injection feature provided by IFSS is only enabled 

within Incisive simulator flow. Since IFSS feature is not available in the 

PXP flow, then the simulation snapshot can not be recognized by the 

hardware-assisted platform. Therefore, two snapshots are generated from 

the elaboration executed for each sub-flow (Elaboration Acceleration and 

Simulation) as shown in Figure 40. In other words, the snapshot resulted 

from the “Elaboration Acceleration” step can be simulated too, but 

without the IFSS features enabled. However, the inverse is not true for 

the snapshot output of the “Simulation Elaboration”, which cannot be 

loaded in the hardware-assisted platform.  

In the IFSS flow, the faults to be injected must be defined at 

elaboration while the strobes are passed to the tool during the good run. 

The strobe definition includes the instance path of each node selected as 

an observation point, and the strobe type – i.e., function or checker. 

During the fault-free run (Good Run Acceleration in Figure 40), IFSS 

saves the traced data of the selected strobe signals. This trace information 

is constantly compared during fault injection runs (Fault Run Simulation), 

and a detection notification is issued if any discrepancy occurs. A similar 
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approach was implemented using the capability available in the hardware-

assisted platform to store waveform data of selected signals. After each 

accelerated fault injection (Fault Run Acceleration), the waveform data is 

compared with the one generated by the fault free-run (Good Run 

Acceleration) using a simulator utility that informs the timestamp and the 

signals of each existing mismatch. This post-run check procedure has a 

drawback compared to IFSS, which can stop the simulation as soon as the 

fault effect is detected at a checker strobe for example. Figure 41 

highlights the possible impact on the overall campaign execution time by 

the “stop at detection” and the “post-run check”. 

 

 
Figure 41 – The possible negative impact on the MADC performance due to the 

lack of support of “stop at detection” or because of the “post-run check”.   

It is important to notice that the possible negative impact on the 

performance of the MADC varies according to the fault campaign profile. 

The profile encompasses of the stimulus quality, the fault set, and the 

techniques used by the SMs being evaluated. Insufficient stimulus or 

specific SMs may require most of the simulation runs to be executed for 

longer periods thus reducing the performance difference between 

simulation and emulation achieved by the “stop at detection” feature. On 

the other hand, the acceleration provided by the hardware-assisted 

platform often compensates the simulation gain achieved with “stop at 

detection” even when many faults are shortly detected.  

The control of when and which faults are injected is performed by 

the implemented scripts with commands executed during the fault run for 
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executes the good run (Good Run Acceleration in Figure 40) to generate 

reference-data trace, which is stored in the host computer. Next, the 

snapshot is reset, and a fault is injected by using the force command. The 

trace data generated during the fault run (Fault Run Acceleration) is also 

copied to the host where the simulator utility is used to compare the 

waveform databases in order to classify the fault according to its detection 

status. The communication between the hardware-assisted platform and 

the host can become a bottleneck depending on network quality and the 

amount of strobe data generated. Many flow steps executed in the PXP 

fault injection script are not needed in the script created to control IFSS 

since the fault injection and the classification are featured by the 

simulator. The summary of the fault injection commands executed on 

each engine is shown in Figure 42. 

 

 
Figure 42 – The execution flow of the developed scripts for the simulation and 

the emulation platform.  
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An important optimization, applicable to simulation in general thus 

including IFSS, is the possibility to leverage a computer farm available to 

run multiple fault simulations in parallel. Similarly, PXP has many 

“domains” which are resources where snapshots can be loaded thus 

allowing parallel fault injection. The DRM for the distributed fault 

simulation and usage multi PXP domain could not be investigated due to 

the lack of resources available. These techniques can be explored later to 

optimize the MADC execution flow.  

 

6.4. CHAPTER REMARKS 

 

This chapter presented the methodology to accelerate DC 

assessment, which is the Thesis main contribution. The methodology 

consists on leveraging the PXP hardware-assisted verification platform to 

boost the performance of the fault injection campaign execution. To 

enable that, the GL-netlist is analyzed by the algorithm developed, which 

identifies the SAT faults that can be correctly emulated. This algorithm 

enables a non-intrusive approach to emulate most of the faults, and also 

observing the ISO 26262 guidelines. The remaining faults still have to be 

simulated using IFSS. The MUX example is used again to explain the 

proposed approach. In the next chapter, the results achieved using a more 

meaningful design is discussed. 
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7. EXPERIMENTS AND RESULTS 

 

7.1. CASE STUDY OVERVIEW 

 

To confirm the MADC results, faults selected for acceleration – by 

the proposed strategy – were also simulated and the equal fault detection 

status was obtained with both engines. As already mentioned, the safety 

related works available in the literature do not share details about the 

implementations used probably to avoid infringing NDAs since the safety 

analysis is closely related to the design. For instance, “MIPS-like” is the 

term used to refer to the design underlying the safety analysis presented 

in [41]. Another example can be found in [39] where the authors briefly 

discuss the results achieved “during the validation of a real safety critical 

system based on a 32-bit RISC processor” without further information on 

the design. On the other hand, there are safety related works which cover 

the topic at different abstraction levels thus not providing suitable test 

cases to be explored in this Thesis. For example, the authors of the DBW 

example used to introduce functional safety and the ISO 26262, perform 

the safety analysis over an existing prototype [31]. In this research, an 

open source design is used to show the MADC achieved results. The 

design is based on an OpenRISC architecture as illustrated in Figure 43 

[106] [107]. 

 

 
 

Figure 43 – OpenRISC block diagram (source [106]). 
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A leaf block of the OpenRISC design hierarchy was used as the 

fault target due to its small number of faults, thus fitting to the purpose of 

feasibility checking. The leaf block, in this case, is an unsigned carry 

adder (CA) automatically inserted by the synthesis tool. The adder 

composes the ALU (Arithmetic Logic Unit) of the OpenRISC CPU 

shown in Figure 44. 

 

 
 

Figure 44 – OpenRISC CPU. 
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Table 21 – MADC analysis results. 

Faults that 

can be: 

MADC Analysis 

Faults Ratio (%) Prime Ratio (%) 

Accelerated 928 72.5 288 45.0 

Simulated 352 27.5 352 55.0 

Total 1,280  640  

 

To allow the advanced classification available on IFSS, not just the 

detection status had to be reported, but also the strobes that were triggered 

in order to permit identification of the fault propagation through the 

functional, or the checker strobes. Additionally, the detection time had to 

be aligned with the time reported by the simulator. To achieve that, the 

instants when the strobes occur had to match on both engines. Initially, it 

was developed a script based approach to collect the strobe timestamps 

from simulation, and then use them during acceleration. However, the 

comparison overhead was prohibitive due to the amount of data handled 

in ASCII format hence impacting on performance. Although inefficient, 

the experience gained with the hardware-assisted platform was essential 

to further develop the MADC flow especially regarding storage and 

export of the trace data from the acceleration platform. 

Similar to other acceleration solutions, PXP permits to probe 

signals and stores the trace data in many formats. The format can be either 

customized using specific tool language or predefined standard waveform 

formats like value change dump (VCD). Naturally, PXP also supports the 

waveform database format used by the Incisive simulators. An Incisive 

utility named SimCompare permits to compare waveform databases. 

Signals to compare, time difference tolerance, maximum errors and many 

other comparison characteristics can be configured with SimCompare. 

Within the MADC flow, the waveform database generated during Good 

Run contains the same signals that are probed during the Fault Run, and 

they are all compared. In the fault injection context, only the earliest 

signals mismatch is interesting and no time difference tolerance is 

considered. Next, there is an example on how MADC configures 

SimCompare. 

 

1.   maxerrors 1 
2. database g <reference waveform database> 
3. database t <compared waveform database> 
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4. compare . 
5. report -detail errorsonly \ 

       -style comparescan \ 
       -values -output simcompare.rpt 

 

With this configuration, SimCompare stops the comparison at the 

first mismatch and report the details to simcompare.rpt. The details 

include the mismatching signals, their reference and compared values, 

and the timestamp of the earliest discrepancy found. Leveraging the 

SimCompare capability, it was possible to check if each detected fault in 

PXP had the same detection time as reported in IFSS. From the 288 

injected faults, only 46 were not detected as shown in Table 22. All other 

faults presented same detection time on both engines thus achieving the 

objective of validating the MADC for this initial test case. The detection 

information resulted from SimCompare is parsed and annotated back in 

the PG database as illustrated in Figure 40. The execution time required 

for the simulation and by the hardware-assisted platform is shown in 

Table 22 subdivided according to the fault detection status. 

 
Table 22 – MADC performance results. 

Status Faults Acceleration Simulation Ratio 

Detected 242 (84.03%) 6,372.67s 1,285.67s ▼ 4.96 

Undetected 46 (15.97%) 1,211.33s 3,954.33s ▲ 3.46 

Total 288 7,584.00s 5,240.00s ▼ 1.45 

 

The fault runs were executed sequentially on both platforms. The 

overall time results on Table 22 shows that the overall execution time 

achieved with the hardware-assisted platform was 1.45 times slower than 

simulation. This negative performance is mainly related to the time 

overhead for uploading the design to the acceleration platform and for 

dumping the waveform data at the end of each fault injection. 

Additionally, IFSS was configured to stop as soon as a fault is detected, 

but such capability for the acceleration platform is not yet implemented, 

and the post-run comparison based on SimCompare is the solution used 

within MADC flow.  

Considering only the undetected faults, which require the test to be 

fully executed, the acceleration gain has been 3.46 in comparison to 

simulation according to the results in Table 20. The acceleration factor 

per fault achieved by the hardware-assisted platform with the undetected 
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faults portion (i.e., only 15.97% of the faults) is higher than the factor 

reached by simulation considering the detected faults. In other words, if 

the ratio of undetected faults increases, then the overall execution time 

with the acceleration engine is likely to be better than with simulation. 

It is important to notice that the overall performance gain is 

associated with the detection profile of the fault set under consideration. 

Additionally, the strobes were placed on the boundary of the fault target 

instance. So, the location of the selected detection points means they are 

sequentially close to where the faults are injected. Since an SM, external 

to the ALU or even to the CPU, would result in strobes defined 

sequentially more distant, thus requiring a longer run until detection 

hence reducing the simulation performance associated with the group of 

detected faults – that stops the simulation at detection.  

 

7.3. USING MADC IN A SEQUENTIAL CIRCUIT 

 

The unsigned carry adder taken as fault target is purely 

combinatorial thus increasing the chances to rapidly detecting the injected 

faults. The technique used by the SM must also be taken into account. For 

instance, the evaluation of an SBST as an SM – that executes diagnostic 

routines during boot up or periodically for example – would naturally 

require longer simulations. Therefore, in such case, the usage of 

acceleration could be extremely beneficial for the performance of the SM 

evaluation. 

 

7.3.1. Tick Timer - Peripheral 

 

To validate such argument, a block with sequential elements at a 

higher level of the OpenRISC architecture was selected for the evaluation 

of the MADC fault target. The Tick Timer (TT) block illustrated in Figure 

43 was chosen as the fault target of the injection campaign for a sequential 

circuit. The Tick Timer unit provides a programmable counter at the clock 

frequency that can be used to interrupt the CPU once after a counter 

threshold is reached or periodically according to the configured time 

interval. Even if the software application running on OpenRISC does not 

use the Timer, a fault can still propagate out the Tick Timer block and 

cause an unexpected CPU interruption, for example. For this to happen, a 

fault may propagate through many registers until triggering an 

interruption or any other disturbance to the CPU. Therefore, the detection 

profile of the faults injected in the Tick Timer unit is expected to be 
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different from the one presented with the unsigned carry adder 

(combinational circuit).  

Again the structural analysis developed is utilized to select the 

faults that are going to be injected using the hardware-assisted platform. 

By providing the instance path of the Tick Timer unit, the SAT fault list 

is generated using the ATPG tool and the fault node information is 

collected via the synthesis tool. The node information corresponds to the 

details of each cell pin where the faults reported by the ATPG tool are 

located. These details are the number of ports connected to the pin (TIES), 

the pin direction (IO), and the cell name (CELL) back annotated to the 

PG database as illustrated in Figure 45. The prime fault ID (PRID), the 

equivalent grouped ID (EQID), the fault type (TYPE), and the testability 

(UTST) information are extracted from the reports generated by the 

ATPG tool. Notice that the faults which share the same EQID are 

members of the same equivalence group from where one fault, preferably 

located in a cell output, is marked as selected (SEL) for acceleration – see 

example highlighted in Figure 45. Although, faults residing in a cell input 

can be picked for acceleration when the collapsing group contains only 

two faults located in different cells – i.e., due to “1-1 LINE” collapsing 

rule. For instance, from the first two faults sharing the same EQID in 

Figure 45, the fault with PRID equals to five is selected instead to the 

other fault which its IO value indicates output.  

 

 
 

Figure 45 – MADC PG database content illustration.  

Actually, any of the faults with EQID equals to nine in Figure 45 

can be selected for acceleration. These faults are marked in Figure 46. 
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This flexibility can happen when the cell inputs where the faults are 

located have no more than two connections indicated by an empty value 

in the TIES column – i.e., faults with PRID equals to 9, 2052, and 2054. 

However, this is not always the case as highlighted in Figure 47, where 

some of the faults sharing the same EQID are located in cell input pins 

with ties greater than two. If instead of using the fault from the highlighted 

line, the fault with PRID equals to 3954 would have been injected using 

the force command, then 30 other cells would be affected from the 

moment the fault is inserted. At least one input of these 30 cells is tied to 

the same line that the injected cell input is tied as well. The remaining tie 

corresponds to line driver, which is naturally a cell output. 

 

 
 

Figure 46 – Fault equivalence group number nine illustrated in Figure 46.  
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Actually, any of the faults with EQID equals to nine in Figure 45 

can be selected for acceleration. This flexibility can happen when the cell 

inputs where the faults are located have no more than two connections 

indicated by an empty value in the TIES column – i.e., faults with PRID 

equals to 9, 2052, and 2054. However, this is not always the case as 

highlighted in Figure 47, where some of the faults sharing the same EQID 

are located in cell input pins with ties greater than two. Figure 48 shows 

how the faults with EQID equals to 135 are distribute in the TickTimer 

circuit. If instead of using the fault from the highlighted line, the fault 

with PRID equals to 3954 would have been injected using the force 

command, then 30 other cells would be affected from the moment the 

fault is inserted. At least one input of these 30 cells is tied to the same line 

that the injected cell input is tied as well. The remaining tie corresponds 

to line driver, which is naturally a cell output.  

 

 
 

Figure 47 – Importance of the right fault selection from an equivalent group. 

 
 

Figure 48 – Fault equivalence group number 135 illustrated in Figure 47. 

The example highlighted in Figure 47 exposes how important is to 

select the proper fault from each collapsed group in order to guarantee the 

valid fault injection results. Consequently, this emphasizes the value in 
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the contribution of the proposed MADC which automatically generates a 

list of the selected faults. 

The Tick Timer Unit has 4,014 SAT fault candidates according to 

the results from the ATPG tool. Additional 128 faults located in TIEUP 

logic are marked as untestable hence not considered for acceleration. The 

ratio of faults suitable for acceleration is shown in Table 23. The 

percentages of faults that can be accelerated before and after collapsing 

are similar to the numbers found for the unsigned carry adder shown in 

Table 21. 

 
Table 23 – Tick Timer fault candidates that are suitable for acceleration. 

Faults that 

can be: 

MADC Analysis 

Faults Ratio (%) Prime Ratio (%) 

Accelerated 3,031 ~75.51 909 ~48.04 

Simulated 983 ~24.49 983 ~51.95 

Total 4,014  1,892  

 

Table 24 compares the results from the CA and TT test cases 

regarding the average run time required for each fault injection.  

 
Table 24 – Runtime average per fault injection execution.  

Engine 
Run time per fault injection 

CA Time/#Faults TT Time/#Faults 

Acceleration 7,584s ~26.33s 22,025s ~24.23 

Simulation 5,240s ~18.19s 56,042s ~61.65 

#Faults / Ratio 288 ▼ 1.45 909 ▲ 2.54 

 

For the CA test case, the average execution time of each fault run 

was 1.45 times better than the acceleration. However, the experiments 

done with the TT instance, which has less than four times the number of 

faults in CA, already presented acceleration gain over simulation. As 

explained earlier, this alteration in the results was expected due to the 

fault injection profile. The TT block has registers thus making more 

difficult to propagate the fault. This affects the number of faults that are 

undetected, which for the TT test case corresponded to 74% of the 

injected faults. Another factor that impacts the average injection time is 
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the test duration. The test duration for the TT example is four times longer 

than the one used for the CA, in order to run at least up to the point where 

the software running in the OpenRISC can initialize TT block. Given that 

no SM is used, the outputs of the TT were selected as strobe points thus 

not contributing to a longer detection time. 

The acceleration achieved with the TT test case points to an 

opposite direction from the numbers obtained in the first experiment due 

to the profile differences between the two fault campaigns executed. 

Table 24 shows that average execution time for the fault injection on TT 

was 2.54 times faster when comparing with the injection of the same 

faults via simulation. This result corroborates to the idea that the 

campaign profile has a significant impact on the benefit potential of 

MADC. Fault campaigns on complex designs with not so many shortly 

detected faults, running complex TBs, with specific SMs – e.g., SBST – 

are likely to benefit from the proposed MADC approach. The benefit 

potential becomes more evident when separating the amount of time spent 

on each fault injection step executed in the hardware-assisted platform. 

Table 25 shows the average time required for loading the snapshot on 

PXP, injecting the fault while running the test, and comparing the 

waveform databases.   

 
Table 25 – Runtime average of each acceleration step for the TT test case. 

Engine 
Total  

Runtime 

Injection 

Time 

Strobes 

Check Time 

Snapshot 

Load Time 

Acceleration 
24.23s 

 

7.87s 

(32.47%) 

10.76s 

(44.42%) 

5.6s 

(23.11%) 

Simulation 
61.65s 

 

61.65 

(100%) 
– – 

Ratio ▲ 2.54 ▲ 7.83 – – 

 

If equivalent fault injection features supported on IFSS – i.e., stop 

at detection, and runtime comparison between good and fault run – would 

be available on the hardware-assisted platform, then the time spent with 

the strobes comparison could be saved. In the TT fault campaign, the 

waveform databases comparison consumed almost half of the fault 

injection run time as indicated in Table 25. Other approaches are being 

investigated in order to cope with this bottleneck.  

By only considering the actual time spent for a fault injection 

execution on PXP, and comparing with simulation, the difference would 
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be almost eight times (▲ 7.83) faster for the TT test case as shown in 

Table 25. However, even if the comparison time could be neglected, there 

is also the time consumed for loading the snapshot in the acceleration 

platform that must be considered. The loading time seems to be constant 

and mostly associated with the size of the snapshot and the quality of the 

network access to the area where the generated snapshot is located. 

Therefore, additional to the campaign profile, the snapshot size and the 

network quality needs to be counted when considering the trade-off 

between acceleration and simulation. In case DRM is available, the 

number of fault simulations in parallel that can be executed, must be 

examined. The same applies to the possibility of using multiple PXP 

domains for the fault injection – as it is used in [87]. 

 

7.3.2. Exception Handler – CPU Block 
 

The Exception Handler (EH) test case corresponds to one of the 

CPU blocks (Except) shown in Figure 44. The EH block has almost three 

times more gates than the TT unit. The difference in the number of faults 

between the EH and TT has similar ratio. The TT unit has 4,014 faults 

almost a third of the 11,798 faults found in the EH instance. Table 26 

summarizes the number of faults located in the analyzed CPU block.  

 
Table 26 – Exception handler fault candidates that are suitable for acceleration. 

Faults that 

can be: 

MADC Analysis 

Faults Ratio (%) Prime Ratio (%) 

Accelerated 10,030 85.01% 3,472 66.26% 

Simulated 1,768 14.99% 1,768 33.74% 

Total 11,798  5,240  

 

The fault set for the EH test case presented higher collapsed ratio 

if compared to the other two test cases. This fault set reduction due to 

collapsing has a positive impact on the MADC algorithm, which could 

then select more than 85% of all faults for acceleration. When considering 

only the prime faults, then 66.26% of the faults are suitable for 

acceleration. This percentage corresponds to a campaign where 3,742 

faults run on the hardware-assisted platform meanwhile the other 1,768 

are simulated. 
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Table 27 compares the runtime average for each fault injection 

between the TT and the EH test cases. Once again, the size of the of the 

block has influence on the campaign profiles thus highlighting even more 

the performance gain achieved with acceleration in comparison to 

simulation. It is important to notice that the runtime average per fault 

injection using the hardware-assisted platform ranges between 24.23 and 

26.33 considering the three test cases analyzed. With the runtime average 

not increasing, then acceleration shows great advantage over simulation, 

especially when there are many undetected faults among the MADC 

selection thus requiring to execute the whole test.    

 
Table 27 – Runtime average per fault injection execution. 

Engine 
Run time per fault injection 

TT Time/#Faults EH Time/#Faults 

Acceleration 22,025s ~24.23 88,408.4s ~25.46 

Simulation 56,042s ~61.65 357,133.0s ~102.86 

#Faults / Ratio 909 ▲ 2.54 3472 ▲ 4.04 

 

Table 28 shows the runtime average comparison between 

acceleration and simulation in total and the stepwise. The EH test case 

shows almost 60% performance ratio increase (▲ 4.04) than in the TT 

campaign. By analyzing the time spent on each step, and considering only 

the injection runtime, then the acceleration difference goes as high as 

12.54 times faster than simulation.   

 
Table 28 – Runtime average of each acceleration step for the EH test case. 

Engine 
Total  

Runtime 

Injection 

Time 

Strobes 

Check Time 

Snapshot 

Load Time 

Acceleration 
25.46s 

 

8.20s 

(32.21%) 

11.82s 

(46.43%) 

5.44s 

(21.36%) 

Simulation 
102.86s 

 

102.86 

(100%) 
– – 

Ratio ▲ 4.04 ▲ 12.54 – – 

 

Basically the same percentage (60%), related to the performance 

ratio increase, is achieved when comparing the gains resulted from the TT 

(▲ 4.04) and the EH (▲ 12.54) test cases, when considering the fault 
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injection runtime only. The same workload and test duration were utilized 

in both fault injection campaigns. The performance difference is believed 

to be associated to the number of observations points selected for each 

test case – all outputs of the corresponding module. The number of single 

bits selected as strobe points for the EH test case is 271, which 

corresponds to 8.21 times more bits than the 33 output signals found in 

the TT block. By not comparing the strobe data generated during the run, 

but instead at once as post-run process, then the amount of computation 

to check if the fault was detected, done with MADC, is not affected as 

much as for simulation.  

  

7.4. OPENRISC TEST CASE 

 

Together with the OpenRISC CPU, some peripherals, and a 

Wishbone Bus compose the SoC illustrated in Figure 49. A former 

version of the OpenRISC SoC already running on PXP was used to gain 

experience with the hardware-assisted platform. Many peripherals like 

PS2 and Ethernet Interface come along to that OpenRISC SoC version, 

and they were used together with a Linux distribution which can execute 

over the HDL of the design running on PXP and simulation as well. While 

the Linux boot up on PXP takes few minutes, over simulation the same 

procedure takes more than a couple of hours. Since such long test case 

was not suitable for the fault simulation at beginning, then a bare metal 

code application had to be used instead. However, only the source code 

and the image was available without the toolchain to compile a new one. 

Moreover, the toolchain available in the OpenRISC project website [106] 

could not be used since the executable code generated was not aligned to 

the outdated OpenRISC HDL version used. Therefore, all modules of the 

OpenRISC SoC were updated to the latest version available in the 

OpenRISC website repository. Hence the toolchain could be used to 

generate the memory image for each modification in the software code. 

This task was essential to get more familiar with the OpenRISC HDL 

description. 

 



132 

 
 

Figure 49 – OpenRISC SoC.  

The bare metal code executed by the OpenRISC generates image 

data that is copied to the memory address range used by the VGA 

Controller. A pseudo display window (VGA Display) is emulated in the 

host – it could be a physical display connected directly to PXP instead – 

where the VGA controller constantly updates with the image being 

generated. Meanwhile, a pseudo terminal (UART xterm) also running on 

the host shows the output printed by the program being executed in the 

OpenRISC. Notice that Ethernet, PS2, and I2C peripherals are not used 

in this application hence they were commented off from the OpenRISC 

HDL description. A routine interacting with the Tick Timer was added to 

the VGA bare metal code example used. At least two milliseconds of 

simulation is required to initialize and configure the VGA and TT 

modules, and start to execute few iterations of the image generation 

routine. The good simulation for the TT experiment took 331s to execute 

two milliseconds of the VGA test at GL. Given the long runtime, the VGA 

test seemed to be a suitable candidate to explore the MADC potential.  

SM based in software like SBST can be scheduled to execute when 

the vehicle starts, during the operation phase or before turning off [108]. 

Use fault injection to assess the DC of such mechanism is recommended 

by the ISO 26262 as already mention. However, an SM routine scheduled 

to execute at power-off of the vehicle requires the simulation of at least 

the complete start sequence, which may be prohibitive due to the given 

simulation time needed, especially at GL. Therefore, the proposed MADC 
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has significant contribution optimizing such scenarios. The complex 

workload prepared for the safety RISC example cited in [39] resulted in 

an average of 56.6s for each injected fault. Hence it is another candidate 

for acceleration leveraging the presented MADC.  

 

7.5. MADC PERFORMANCE COMPARISON 

 

As already mentioned, a similar approach based on design 

intrusion was proposed in a research developed at STMicroelectronics 

Inc. (ST) [87]. The proposed approach has an area overhead equivalent to 

eight gates per instrumented cell that is selected as fault target plus the 

fault injection controller developed. The controller occupies almost three 

times more resources on PXP than the tested IP itself – a Leon2 processor. 

Only SEU faults are considered, but the authors claim that SAT fault 

model is also supported by using the same instrumentation method. To 

cope with the massive area overhead to instrument both fault models on 

all cells, only few flip-flops are selected for the campaign, and they are 

grouped whenever possible in order to share the instrumentation logic. 

This optimization leads to area overhead minimization around 20% of the 

fault target.  

The results presented in the ST research are extracted from a fault 

injection campaign composed of 65,380,350 SEU faults injected in 2,631 

flip-flops at 24,850 different times. Given the small size of Leon2 IP, 19 

instances could be mapped per PXP domain. Using 16 domains, the 

developed approach could inject 304 fault in parallel. The full campaign     

execution last ten hours, which corresponds to more than 1.8k faults per 

second.  

Table 29 brings the ST’s Leon2 and the EH test case fault injection 

campaigns to a similar perspective in order to allow comparing the 

performance results. The ST’s technique achieves minimized runtime 

average per fault injection due to the substantial parallelism. Even 

considering the same number of runs in parallel, the proposed MADC 

would still result in a performance about 152 times lower than the 

intrusive method from the research developed at ST. Although, there are 

some difference in the campaigns that may explain such performance 

discrepancy. For example, the Leon2 design is approximately four and an 

half times smaller than the OpenRISC, which impacts in the snapshot 

loading time to PXP. The gate count number is no considering the 

OpenRISC memories since it is not clear whether they are accounted in 

ST’s example. Additionally, by injecting many faults in the same node, 
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considerably reduces the amount of instrumentation required by the 

proposed approach developed at ST. To inject faults in more candidate, 

the area overhead would limit the number of possible instances per 

domain, thus reducing the parallelism.   

 
Table 29 – MADC comparison.  

Characteristics 
Campaigns 

Ratio 
ST EH 

Design Leon2 OpenRISC – 

#equ. nand 2 56,565 259,149 ~4.58 

Fault target flip-flops All cells – 

#candidates 2,631 10,030  

#injections 65,380,350 3,471  

#Parallelism 304 1 304a – 

Time / Fault 0.0005506s 24.46s 0.08376s ~152.12 

a assuming the same number of instance ´ domains used for the EH campaign. 

 

The workload used in the research at ST’s executes the boot 

sequence, the program initialization plus 59,283 cycles, which 

corresponds to the fault injection time window. One million cycles are 

executed in the EH test case. Without knowing how many cycles are 

needed to boot up the Leon2 processor and initialize the program, it is not 

possible to perform a fair comparison. However, the test duration must 

also be considered when comparing the performance achieved in the two 

researches.  

The proposed non-intrusive approach presented in this Thesis has 

room for improvement, especially considering the implemented 

comparison technique which consumes up to 46.43% of the fault injection 

runtime. In addition, similar parallelization approach leveraged in [87] 

can boost MADC performance in many times. Another important aspect 

of the MADC approach is that around 50% of the faults can be simulated 

using a computer farm while the rest of the faults is accelerated in the 

hardware-assisted platform thus giving another parallelism factor. Such 

performance potential combined with the non-intrusive characteristic 

makes MADC more suitable for the semiconductor industry when 

targeting safety automotive applications.  
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7.6. CHAPTER REMARKS 

 

This chapter presents the experiments performed to guarantee the 

correctness of the results obtained with MADC regardless the achieved 

optimization. A second experiment was presented in order to demonstrate 

the potential benefit of employing MADC for the safety assessment of 

SMs in complex semiconductor design where long simulation runs are 

required, and hence acceleration can minimize the fault campaign 

execution time. The test cases used are discussed, and the importance of 

being an open-source design is highlighted. 

Different from any other solution found in the literature, MADC 

provides SAT fault injection acceleration without imposing the 

modification of the design model to enable the fault campaign. Therefore, 

the proposed solution fits the requirements specified in the ISO 26262 as 

already discussed. 
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8. CONCLUSION 

 

In this Thesis, we presented the MADC approach that enables the 

acceleration of DC assessment by leveraging the most advanced 

functional verification solutions including the latest fault simulator tools 

that already target functional safety. The verification environment (e.g., 

TB) can be seamlessly reused for the stimulus generation and therefore 

limitations from DfT oriented fault simulators (e.g., lack of TB support) 

do not apply to MADC. Benefiting from the cutting-edge emulators like 

those used in [86], MADC provides a non-intrusive solution, thus not 

requiring any design modification, and hence it is more likely to satisfy 

an ISO 26262 auditor. The intrusion characteristic is what makes MADC 

different from any other fault injection acceleration solution. Especially 

when comparing MADC to approaches based on FPGAs, where the 

design model is synthesized to a different technology, and sometimes also 

modified to enable acceleration. Moreover, the only solution using the 

same technology as MADC – i.e., hardware-assisted platform – to 

accelerate the fault injection campaigns, also relies on design 

instrumentation in order to enable the flow. 

MADC is part of a methodology being developed that extracts data 

from an FMEDA to assess the initially estimated DC numbers. This 

assessment must be done to provide enough confidence in the results. The 

results are annotated back to the FMEDA, and the hardware architecture 

metrics can be recalculated based on the actual design data. The 

conservative estimations and the refined metrics shall match. Moreover, 

to comply with the ISO 26262, it is fundamental considering the state-of-

the-art. Therefore, MADC is in evidence since it leverages the latest 

verification solutions to allow a more thorough safety assessment by 

reusing the functional verification environment and providing significant 

acceleration. 

An OpenRISC architecture has been used as test case for validating 

the developed MADC flow. Negative performance results were observed 

when injecting faults in a small combinatorial block of the OpenRISC 

ALU. However, considerable acceleration gain was observed when 

analyzing a larger block containing sequential cells. The existence of a 

threshold defining whether the MADC can be leveraged is discussed. This 

threshold seems to be influenced by the fault campaign profile. The 

profile includes the ratio of undetected faults, the test length, the 

sequential distance of the strobe points in relation to the fault injection 

locations, the SMs being evaluated, among other aspects. The obtained 

results using the MADC show great potential benefit when considering 
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its application to assess SMs based on software that naturally require long 

runs regardless the proportion of undetected faults.  

The results achieved could confirm the initial hypothesis that by 

selecting higher instances within the OpenRISC design, an actual 

acceleration gain can be obtained by employing MADC. Although, the 

implemented mechanism to enable fault detection on the verification 

platform imposes a significant bottleneck to the MADC performance, yet 

positive results could be observed. Therefore, the proof-of-concept built 

allowed to confirm the aimed contribution of this Thesis. Meanwhile, a 

solution for the bottleneck is being investigated to maximize the potential 

of the proposed MADC solution.   

A comparison between MADC and the most similar research work 

found in the literature was presented. The design model intrusion required 

by the compared approach makes the usage justification of such solution 

much more difficult, thus highlighting the MADC main contribution. 

Despite the intrusion aspect, the fault injection performance was 

compared. The massive parallelism implemented by the intrusive solution 

allowed achieving remarkable performance results. MADC could not get 

the same performance by considering if the same amount of parallelism 

would have been implemented in this Thesis. However, many arguments 

were discussed in order to provide a rational explanation for the 

performance difference. From this discussion, it was possible to identify 

some optimizations including the parallelism strategy, which can be 

leveraged by MADC.  

In this Thesis, the developed research targets the functional safety 

for car applications. Therefore, a thorough introduction to the ISO 26262 

standard, which drives the functional safety requirements in the 

automotive segment, is presented. However, MADC as a generic fault 

injection acceleration solution can be leveraged by other industry 

segments.  For example, in avionics, the functional safety standards make 

MADC a possible solution. Additionally, the scope defined in the first 

edition of the ISO 26262 will expand with the new release. Not just the 

car mass restriction is going to be dropped, but the scope will include 

motorcycles and different series production vehicles as well.  

As future work, the MADC can be extended to be used to support 

SEU faults or to accelerate fault injection at RTL. The deposit command 

– standard simulator feature and also available in the hardware-assisted 

platforms – can be used to mimic the SEU faults. The backward 

propagation is not a problem for SEU injection since the fault model 

applies to sequential elements outputs only. Fault injection at RTL can 

only be done at outputs of processes or assignments since the SAT fault 
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model has no clear meaning at the behavioral level. Therefore, MADC 

can be leveraged also to inject faults at RTL, thus allowing early 

verification of the DC and hardware architectural metrics. 
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