

METHODOLOGY TO ACCELERATE DIAGNOSTIC COVERAGE

ASSESSMENT: MADC

Frederico Ferlini

Tese submetida ao Programa de Pós-

Graduação em Engenharia Elétrica da

Universidade Federal de Santa

Catarina para a obtenção do Grau de

Doutor em Engenharia Elétrica

Orientador: Prof. Dr. Eduardo Augusto

Bezerra

Coorientador: Prof. Dr. Djones

Vinicius Lettnin

Florianópolis

2016

METHODOLOGY TO ACCELERATE DIAGNOSTIC COVERAGE

ASSESSMENT: MADC

Esta Tese foi julgada adequada para obtenção do Título de Doutor

em Engenharia Elétrica, e aprovada em sua forma final pelo Programa em

Programa de Pós-graduação em Engenharia Elétrica da Universidade

Federal de Santa Catarina.

Florianópolis, 23 de Setembro de 2016

Prof. Marcelo Lobo Heldwein, Dr.

Universidade Federal de Santa Catarina
(Coordenador do Curso)

Banca Examinadora:

Prof. Alberto Bosio, Dr.

Université de Montpellier
(Videoconferência)

Prof. Luigi Dillilo, Dr.

Université de Montpellier
(Videoconferência)

Prof. Rui Policarpo Duarte, Dr.

Instituto Superior Técnico
(Videoconferência)

Prof. Fernando Rangel de Sousa, Dr.

Universidade Federal de Santa Catarina

Prof. Hector Pettenghi Roldán, Dr.

Universidade Federal de Santa Catarina

Frederico Ferlini

Prof. Eduardo Augusto Bezerra, Dr.

Universidade Federal de Santa Catarina
(Orientador)

I dedicate this work

to my beloved wife.

ACKNOWLEDGMENTS

I would like to acknowledge the tremendous support of my beloved

wife. I also would like to express my gratitude to my family and friends

that always believed in me. Last but not least, I would like to thank my

advisors which I am highly indebted for their help thus enabling this.

It always seems

impossible until

it’s done.

(Nelson Mandela)

RESUMO

Os veículos da atualidade vêm integrando um número crescente de

eletrônica embarcada, com o objetivo de permitir uma experiência mais

segura aos motoristas. Logo, a garantia da segurança física é um requisito

que precisa ser observada por completo durante o processo de

desenvolvimento. O padrão ISO 26262 provê medidas para garantir que

esses requisitos não sejam negligenciados. Injeção de falhas é fortemente

recomendada quando da verificação do funcionamento dos mecanismos

de segurança implementados, assim como sua capacidade de cobertura

associada ao diagnóstico de falhas existentes. A análise exaustiva não é

obrigatória, mas evidências de que o máximo esforço foi feito para acurar

a cobertura de diagnóstico precisam ser apresentadas, principalmente

durante a avalição dos níveis de segurança associados a arquitetura

implementada em hardware. Estes níveis dão suporte às alegações de que

o projeto obedece às métricas de segurança da integridade física exigida

em aplicações automotivas. Os níveis de integridade variam de A à D,

sendo este último o mais rigoroso. Essa Tese explora o estado-da-arte em

soluções de verificação, e tem por objetivo construir uma metodologia

que permita acelerar a verificação da cobertura de diagnóstico alcançado.

Diferentemente de outras técnicas voltadas à aceleração de injeção de

falhas, a metodologia proposta utiliza uma plataforma de hardware

dedicada à verificação, com o intuito de maximizar o desempenho

relativo a simulação de falhas. Muitos aspectos relativos a ISO 26262 são

observados de forma que a presente contribuição possa ser apreciada no

segmento automotivo. Por fim, uma arquitetura OpenRISC é utilizada

para confirmar os resultados alcançados com essa solução proposta

pertencente ao estado-da-arte.

Palavras-chave: Injeção de Falhas. ISO 26262. Integridade Funcional.

Cobertura de Diagnóstico. Plataforma de Hardware dedicada à

Verificação. Mecanismos de Segurança.

ABSTRACT

Modern vehicles are integrating a growing number of electronics

to provide a safer experience for the driver. Therefore, safety is a non-

negotiable requirement that must be considered through the vehicle

development process. The ISO 26262 standard provides guidance to

ensure that such requirements are implemented. Fault injection is highly

recommended for the functional verification of safety mechanisms or to

evaluate their diagnostic coverage capability. An exhaustive analysis is

not required, but evidence of best effort through the diagnostic coverage

assessment needs to be provided when performing quantitative evaluation

of hardware architectural metrics. These metrics support that the

automotive safety integrity level – ranging from A (lowest) to D (strictest)

levels – was obeyed. This thesis explores the most advanced verification

solutions in order to build a methodology to accelerate the diagnostic

coverage assessment. Different from similar techniques for fault injection

acceleration, the proposed methodology does not require any

modification of the design model to enable acceleration. Many functional

safety requisites in the ISO 26262 are considered thus allowing the

contribution presented to be a suitable solution for the automotive

segment. An OpenRISC architecture is used to confirm the results

achieved by this state-of-the-art solution.

Keywords: Fault Injection. ISO 26262. Functional Safety. Diagnostic

Coverage. Hardware-assisted Verification Platform. Safety Mechanism.

RESUMO EXPANDIDO

INTRODUÇÃO

Os veículos da atualidade vêm integrando um número crescente de

eletrônica embarcada, com o objetivo de permitir uma experiência mais

segura aos motoristas. Logo, a garantia da segurança física é um requisito

que não pode ser negligenciado e o padrão ISO 26262 provê medidas para

garantir que este seja observado durante o processo de desenvolvimento

de sistemas embarcados para automóveis de produção em série.

Entre essas medidas, a injeção de falhas é fortemente recomendada

pelo ISO 26262 para verificar o correto funcionamento de mecanismos

de segurança implementados no circuito e de sua capacidade de cobertura

referente ao diagnóstico de falhas existentes. A análise exaustiva não é

obrigatória, mas evidências de que o máximo esforço foi praticado para

acurar a cobertura de diagnóstico precisam ser fornecidas. Isso se aplica,

especialmente, durante a avalição dos níveis de segurança associados a

arquitetura implementada em hardware. Estes níveis, denominados ASIL

(do inglês, Automotive Safety Integrity Level), dão suporte às alegações

de que o projeto obedece as métricas de segurança da integridade física

especificada de acordo com a aplicação automotiva alvo. Os ASILs são

definidos no ISO 26262 e vão de A à D, ou seja, do mais brando até o

mais rigoroso, respectivamente.

Essa pesquisa explora o estado-da-arte em soluções de verificação

visando construir uma metodologia baseada na injeção de falhas que

permita acelerar a verificação da cobertura de diagnóstico alcançada.

Diferentemente de outras técnicas voltadas à aceleração de injeção de

falhas, a metodologia proposta MADC (Methodology To Accelerate

Diagnostic Coverage Assessment) utiliza uma plataforma de hardware

dedicada à verificação para maximizar o desempenho da inserção de

falhas. Muitos aspectos do ISO 26262 são observados de forma que a

original contribuição deste trabalho possa ser apreciada no segmento

automotivo. Por fim, resultados obtidos da aplicação da MADC sobre

uma arquitetura OpenRISC são apresentada.

OBJETIVOS

As evidências utilizadas para dar suporte ao se aclamar que um

produto é functional safety precisam ser coletadas sobre o efetivo projeto

do circuito integrado em desenvolvimento. Quando isso não é feito, então

um conjunto de argumentos robustos que são necessários para justificar a

utilização de um modelo abstrato como representante do real projeto do

circuito em desenvolvimento. A geração desse tipo de argumentação pode

exigir significante esforço para comprovar que há suficiente correlação

entre o modelo efetivo do circuito e o modelo abstrato usado para análise.

Visando reduzir esse oneroso esforço adicional, esse trabalho propõe

MADC para acelerar a campanha de injeção de falhas sem que seja

necessário qualquer modificação no modelo do circuito ou no nível de

abstração utilizado. Antes de entrar em mais detalhes referentes a MADC

proposta, o escopo dessa pesquisa precisa ser definido. Portanto, injeção

de falhas nesse trabalho significa a imitação do efeito de falhas em

circuitos integrados descritos a nível de portas lógicas.

O principal objetivo dessa pesquisa é propor uma metodologia

que explora ao máximo as vantagens encontradas nas mais avançadas

soluções de verificação funcional para acelerar a injeção de falhas

visando verificar os mecanismos de segurança implementados assim

como sua capacidade de diagnosticar falhas respeitando os preceitos do

ISO 26262. Para alcançar esses objetivos, os seguintes caminhos foram

identificados:

 Investigar soluções de verificação funcional modernas que

possam ser empregadas na aceleração de injeção de falhas;

 Familiarizar-se com os padrões mais atuais sobre functional

safety de modo que suas recomendações fossem observadas

pela metodologia de injeção de falhas desenvolvida;

 Construir um modelo prático visando conferir o desempenho

da metodologia implementada diante de diferentes soluções;

 Explorar vantagens das mais avançadas ferramentas de

verificação para minimizar a intrusão da solução proposta.

O uso de uma plataforma dedicada à verificação funcional para

acelerar a injeção de falhas acarretou nas seguintes questões:

 Será viável a utilização de emuladores dedicados a

verificação funcional para aceleração de injeção de falhas?

 A metodologia proposta apresenta alguma vantagem cuja não

seria viável se fosse baseada em outra forma de aceleração?

 Há limitações na metodologia proposta e como mitigá-las?

Essa pesquisa exibe resultados referentes à injeção de falhas

permanentes e o caso de teste é um microprocessador descrito ao nível de

portas lógicas. Dado que o grau de detalhamento do modelo do circuito

utilizado influencia no desempenho, então se acredita que o caso de teste

escolhido consegue destacar as vantagens da solução proposta. Com isso,

a contribuição original dessa pesquisa pode ser identificada pelo ganho

em desempenho com a metodologia proposta baseada na aceleração de

injeção de falhas permanentes sem a necessidade de alterar o modelo do

circuito sendo verificado. É importante ressaltar que MADC, por não ser

intrusiva, reduz o esforço referente a geração de justificativas exigidas

pelo ISO 26262 quando modelos abstratos do circuito são utilizados na

análise de segurança funcional. Até este momento, o autor desconhece

trabalho semelhante considerando o escopo definido acima.

METODOLOGIA

Parte do esforço intrínseco em garantir níveis adequados de

segurança está na necessidade de se gerar evidências que corroborem a

capacidade dos eletrônicos utilizados em automóveis de reagir

previsivelmente quando da ocorrência de falhas. Safety mechanisms (SM)

são adicionados ao sistema embarcado visando maximizar a cobertura de

falhas passíveis de serem diagnosticadas (do inglês, diagnostic coverage

– DC) e minimizar possiblidade delas resultarem acidentes. Em outras

palavras, DC representa a porcentagem da probabilidade falhas que são

anteparada pelos SMs implementados. Dessa forma, os SMs precisam ter

sua funcionalidade verificada e se sua participação no nível DC do

sistema permite atender os requisito do ASIL especificado para aplicação.

Há diversas técnicas de verificação e validação que vem sendo

investigadas visando atender desafios inerentes à functional safety. Em

meio a essas técnicas está simulação de falhas cuja é tradicionalmente

empregada na geração de testes de manufatura de circuitos integrados.

Essa pesquisa explora soluções de verificação funcional avançados para

acelerar injeção de falhas quando comparado com técnicas baseadas em

simulação, além de sempre observar os preceitos descritos no ISO 26262.

Logo, MADC permite reduzir o tempo gasto com a análise de DC dos

SMs implementados, especialmente quando o circuito está descrito ao

nível de portas lógicas e o desempenho do simulador acaba sendo

impactada devido à complexidade do modelo executado. A investigação

do DC não se limita ao nível de portas lógicas uma vez que os valores

precisam ser constantemente estimados de modo que medidas necessárias

possam ser tomadas oportunamente. Com isso, soluções integráveis ao

fluxo de verificação do circuito sendo desenvolvido é essencial.

Simuladores de falhas avançados foram recentemente anunciadas

por fornecedores de ferramentas de projeto de circuito integrado

atendendo requisitos do ISO 26262. Por outro lado, injeção de falhas

baseada em simulação pode ser proibitivamente longa. Dessa forma, o

emprego de plataformas de emulação baseadas em hardware dedicados

para acelerar a campanha de injeção de falhas foi investigado. A MADC

foi construída sobre uma dessas plataformas comerciais disponíveis cuja

combina aceleração de simulação e emulação para otimizar a verificação

funcional. Como injeção de falhas não é nativamente habilitada nessa

plataforma, então algumas adaptações foram feitas para permitir que esse

meio fosse empregado nesse estudo. Essa plataforma pode ser empregada

independentemente do nível de abstração da descrição do circuito, logo,

a MADC pode ser estendida para além do nível de portas lógicas.

Diferentes abordagens de aceleração de injeção de falhas foram

proposta nas últimas décadas. Emuladores de falhas baseados em disposi-

tivos reconfiguráveis como Field-Programable Gate Arrays são tradicio-

nalmente usados para superar o desempenho limitado de simuladores de

falhas. Metodologias baseadas em emulação apresentam desvantagens

considerando os requisito do ISO 26262. Uma delas é o fato da análise

ser realizada sobre um modelo do circuito que não é aquele efetivamente

enviado para fabricação. Isso porque métodos baseados em intrusão ou

em emuladores cuja tecnologia fim difere da aplicação final são usados.

A MADC observa esses aspectos de modo que a injeção de falhas ocorre

no mesmo modelo utilizado no fluxo de fabricação do circuito integrado.

Os trabalhos relacionados foram divididos entre os que visam a

aceleração da injeção de falhas daqueles que mostram o uso da injeção de

falhas no contexto de validação da integridade funcional. O conhecimento

adquirido com o segundo grupo ajudou a esclarecer os requisitos no ISO

26262 que precisam ser observados quanto ao uso de injeção de falhas.

Desse modo, foi possível identificar quais os pontos das técnicas de

aceleração apresentados no primeiro grupo que poderiam ser explorados

no contexto em que esse trabalho foi desenvolvido.

RESULTADOS

Os primeiros experimentos realizados com a MADC ajudaram a

validar os resultados obtidos se comparado com soluções comerciais.

Experimentos mais complexos mostram o potencial da solução proposta

nessa pesquisa, em especial no que se refere a desempenho. Vale lembrar

que a MADC oferece um melhor desempenho na análise de cobertura de

falhas observando os requisitos do ISO 26262. Dessa forma, MADC pode

servir ao segmento automobilístico com uma solução no estado da arte

não intrusiva para acelerar injeção de falhas. Enfim, diversos avanços

possíveis para a MADC desenvolvida são discutidos ao mesmo tempo em

que trabalhos futuros são apresentados.

LIST OF FIGURES

Figure 1 – Functional safety definition according to the ISO 26262. ... 37
Figure 2 - Functional safety standards historic connection. 39
Figure 3 – Automotive safety lifecycle according to the ISO 26262. ... 41
Figure 4 - Safety lifecycle subphases. (Adapted from ISO 26262) 42
Figure 5 – The block diagram of the DBW example. (Source: [31]) 43
Figure 6 – Automotive supply chain illustration. 49
Figure 7 - Requirements communication throughout the supply chain. 50
Figure 8 – ISO 26262 V-Model illustration. (Adapted from ISO 26262)

 ... 52
Figure 9 – Allocating the target FIT budget to be observed in order to

guarantee the probability to violate an SG is not exceeded at the vehicle

level. .. 55
Figure 10 – Component base failure rate split according to the

classification of the faults of a certain failure mode. 56
Figure 11 – Fault classification illustration using dropping balls as faults

that are distributed according to the answer to the question through the

path. ... 58
Figure 12 – Failure rate shares associated with the proportion of faults

classified in each group. .. 59
Figure 13 – Calculation steps of the failure rate proportions when there

is an SM that covers RFs as well as LFs. .. 60
Figure 14 - Calculation steps of the failure rate proportions associated

with SPF and MPF when the SM only detects LF. 62
Figure 15 – Calculation steps of the failure rate proportions associated

with SPF and MPF for the situation without any SM in place. 63
Figure 16 – SM’s time constraints. (Adapted from ISO 26262). 67
Figure 17 - Sensitive zone illustration (Source: [38]). 68
Figure 18 – Fault injection environment proposed in [39]. 69
Figure 19 – Dependability tree. (Sources: [45] [46]). 75
Figure 20 – Summarized dependability threats explanation found on

[47] [45] [48] [13] [46]. ... 75
Figure 21 – Dependability threats at different level (adapted from [50]).

 ... 76
Figure 22 – Voltage glitch at the output of logical gate caused by a SET

fault (adapted from [52] [53] [54]). ... 77

Figure 23 – MUX circuit with all possible SA0 and SA1 faults

indicated. ... 78
Figure 24 – Activation and propagation concepts. 79
Figure 25 – Untestable faults (adapted from [63]). 80
Figure 26 – Local fault collapsing rules at GL (adapted from [62]). 80
Figure 27 – Applying “1-1 LINE” collapsing rule in the MUX example.

 .. 81
Figure 28 – Applying the logic collapsing rules in the MUX example. 82
Figure 29 – Final set of SAT faults after collapsing. 82
Figure 30 – Instrumented flip-flop. (Source [91])................................. 92
Figure 31 – Flip-flop instrumentation enabling the “time-multiplexed”

technique. (Source [92]). ... 93
Figure 32 – Emulation platform diagram. (Source [72]). 93
Figure 33 – FT-UNSHADES Emulation approach presented in [97]. . 95
Figure 34 – (a) SET 01. (b) SET 10. (c) Delay fault. (d) SEU.

(Adapted from [98]) .. 96
Figure 35 – Fault injection platform architecture highlighting the

implemented parallelism in [86] [87]. ... 98
Figure 36 – Backward propagation problem associated with the force

command. .. 102
Figure 37 – SAT fault selection. ... 103
Figure 38 – Highlight the importance of the MADC fault selection. .. 105
Figure 39 – Pseudo-algorithm for printing the suitable faults to execute

in the hardware-assisted platform. .. 107
Figure 40 – MADC flow diagram. .. 111
Figure 41 – The possible negative impact on the MADC performance

due to the lack of support of “stop at detection” or because of the “post-

run check”. .. 116
Figure 42 – The execution flow of the developed scripts for the

simulation and the emulation platform. .. 117
Figure 43 – OpenRISC block diagram (source [106]). 119
Figure 44 – OpenRISC CPU. .. 120
Figure 45 – MADC PG database content illustration. 124
Figure 46 – Fault equivalence group number nine illustrated in Figure

46. ... 125
Figure 47 – Importance of the right fault selection from an equivalent

group. .. 126

Figure 48 – Fault equivalence group number 135 illustrated in Figure

47. .. 126
Figure 49 – OpenRISC SoC. ... 132

LIST OF TABLES

Table 1 – Item definition of the DBW example with the subsystems

functionality description. (Adapted from [31]) 43
Table 2 – Hazardous event identification for the DBW example.

(Adapted from [31]). ... 44
Table 3 – Classes of severity according to the ISO 26262. 45
Table 4 – Classes of controllability according to the ISO 26262. 45
Table 5 – Classes of exposure probability regarding operational

situations according to the ISO 26262. ... 46
Table 6 – ASIL determination based on the hazardous classification

parameters according to the ISO 26262. ... 46
Table 7 – ASIL determination for the hazardous event identified DBW

example. (Adapted from [31]) ... 47
Table 8 – Safety goals defined for the hazardous events 48
Table 9 – FSRs from the DBW example. (Adapted from [31]) 48
Table 10 – SPFM and LFM target values. (Source ISO 26262). 64
Table 11 – Microcontroller FMEDA examples adapted from the ISO

26262. .. 65
Table 12 – Average fault injection time of the experiments on [39]. 70
Table 13 – SN 29500 hardware failure rate estimation. (Adapted from

[41]) ... 71
Table 14 – Two different approaches for calculating the base failure rate

using the conservative SN 29500 reliability data. 72
Table 15 – Related work comments. ... 98
Table 16 – Fault list analysis for the MUX example. 104
Table 17 – Faults suitable for acceleration considering the hypothetical

circuit example. ... 106
Table 18 – Fault list generated by the “Algorithm 1”. 109
Table 19 – Results of each step of the MADC analysis 110
Table 20 – IFSS and ISO 26262 fault classification mapping. 113
Table 21 – MADC analysis results. ... 121
Table 22 – MADC performance results. ... 122
Table 23 – Tick Timer fault candidates that are suitable for acceleration.

 ... 127
Table 24 – Runtime average per fault injection execution. 127
Table 25 – Runtime average of each acceleration step for the TT test

case. ... 128

Table 26 – Exception handler fault candidates that are suitable for

acceleration. .. 129
Table 27 – Runtime average per fault injection execution. 130
Table 28 – Runtime average of each acceleration step for the EH test

case. ... 130
Table 29 – MADC comparison. .. 134

LIST OF ABREVIATIONS

µC Microcontroller

ALU Arithmetic Logic Unit

AoU Assumption of Usage

ASIL Automotive Safety Integrity Level

ATPG Automatic Test Pattern Generation

BBW Brake-By-Wire

CCF Common Cause Failure

CCU Central Control Unit

DBW Driver-By-Wire

DC Diagnostic Coverage

DfT Design-for-Testability

DIS Draft International Standard

DUT Design Under Test

E/E/PE Electric/Electronic and Programmable Electronic

ECU Electronic Control Unit

EDA Electronic Design Automation

FIT Failure In Time

FMC Failure Mode Coverage

FMEA Failure Mode Effects Analysis

FMEDA Failure Mode Effects, and Diagnosis Analysis

FPGA Field-Programmable Gate Arrays

FSR Functional Safety Requirement

FTA Fault Tree Analysis

GL Gate-Level

HARA Hazard Analysis and Risk Assessment

HDL Hardware Description Language

HWR Hardware Safety Requirement

IC Integrated Circuit

IFSS Incisive Functional Safety Simulator®

ISO International Organization for Standardization

LF Latent Fault

MADC Methodology to Accelerate DC Assessment

MPF Multi-Point Fault

MUX Multiplexer

NDA Non-Disclosure Agreement

OEM Original Equipment Manufacturer

PF Perceived Fault

PVSG Potential to Violate the Safety Goal

QM Quality Management

RF Residual Fault

RTL Register Transfer Level

SA0 Stuck-At-0

SA1 Stuck-At-1

SAT Stuck-At Faults

SBB Steer-By-Brake

SBST Software Based Self-Test

SBW Steer-By-Wire

SEE Single Event Effect

SEL Single Event Latchup

SET Single Event Transient

SEU Single Event Upset

SF Safe Fault

SG Safety Goal

SM Safety Mechanism

SoC System-on-a-Chip

SOP Start-Of-Production

SPF Single Point Fault

SPFM Single Point Fault Metric

S-R Safety-Related

SWR Software Safety Requirement

TB Testbench

TB-Q Testbench Qualification

TBW Throttle-By-Wire

TSR Technical Safety Requirement

TABLE OF CONTENTS

PART I – INTRODUCTION AND OBJECTIVES
1. INTRODUCTION ... 29
1.1. MOTIVATION AND CHALLENGES 29
1.2. OBJECTIVES AND ORIGINAL CONTRIBUTION 33
1.3. ORGANIZATION .. 35

PART II – BASIC CONCEPTS AND RELATED WORK
2. FUNCTIONAL SAFETY AND ISO 26262 INTRODUCTION .. 37
2.1. ISO 26262 TERMINOLOGY AND SCOPE 37
2.2. BRIEF HISTORY OVERVIEW AND LEGAL ASPECTS . 38
2.3. AUTOMOTIVE SAFETY LIFECYCLE 40
2.4. ISO 26262 – CONCEPT PHASE EXERCISE 43
2.4.1. Item Definition ... 43
2.4.2. Hazard Analysis and Risk Assessment 44
2.4.3. Automotive Safety Integrity Level Determination 46
2.4.4. Safety Goal Specification .. 47
2.4.5. Derivation of the Safety Requirements 48
2.4.6. Requirements Allocation through the Supply Chain 49
2.5. CHAPTER REMARKS .. 51
3. FAULT INJECTION IN THE CONTEXT OF ISO 26262 53
3.1. SAFETY ASSESSMENT BASIC CONCEPTS 53
3.1.1. Hardware Architectural Metrics 53
3.1.2. Fault Classification ... 53
3.1.3. Failure Modes and Fault Models 54
3.1.4. Failure Rate ... 55
3.2. HARDWARE ARCHITECTURAL METRICS

CALCULATION .. 57
3.2.1. Failure Rate Proportions Matching the Fault

Classification.. 57
3.2.2. Diagnostic Coverage and the Failure Rate Calculation ... 59
3.2.3. Hardware Architectural Metrics Computation................ 63
3.3. FAILURE MODE EFFECTS, AND DIAGNOSTIC

ANALYSIS .. 64
3.4. RELATED WORK: FAULT INJECTION APPLICATION 66
3.5. CHAPTER REMARKS .. 73
4. FAULT INJECTION CONCEPTS AND TECHNIQUES 75
4.1. TRANSIENT FAULTS ... 76

4.2. PERMANENT FAULTS ... 77
4.2.1. Fault activation and propagation concepts 79
4.2.2. Fault collapsing and testability ... 80
4.2.3. Collapsing exercise and the backward propagation

requisite .. 81
4.3. FAULT INJECTION TECHNIQUES 83
4.3.1. Fault injection aspects to consider for safety assessment . 84
4.3.2. Optimizations and available tools 85
4.4. FAULT SIMULATION ACCELERATION 86
4.4.1. FPGA Techniques .. 86
4.4.2. Abstract Model Approaches ... 88
4.4.3. Hardware-Assisted Platform .. 88
4.5. CHAPTER REMARKS ... 90
5. LITERATURE REVIEW ON FAULT INJECTION

ACCELERATION ... 91
5.1. SCOPE OF THE LITERATURE REVIEW 91
5.2. FPGA-BASED ACCELERATION VIA

INSTRUMENTATION ... 91
5.3. FPGA-BASED ACCELERATION VIA

RECONFIGURATION ... 94
5.4. SIMULATION-BASED ACCELERATION VIA

INSTRUMENTA-TION ... 95
5.5. ACCELERATION VIA FAULT CAMPAIGN

OPTIMIZATION .. 96
5.6. ACCELERATION VIA COMPLEXITY ABSTRACTION . 97
5.7. ACCELERATION VIA HARDWARE-ASSISTED

VERIFICA-TION PLATFORMS 97
5.8. COMMENTS ON THE REVIEWED RELATED WORK ... 98
5.9. CHAPTER REMARKS ... 100
PART III – PROPOSED SOLUTION AND RESULTS ANALYSIS

6. PROPOSED FAULT INJECTION ACCELERATION

STRATEGY ... 101
6.1. MADC ENABLEMENT .. 101
6.1.1. Enablement Algorithm .. 106
6.1.2. The Ratio of Faults Suitable for Acceleration. 109
6.2. MADC FLOW ... 111
6.2.1. Mapping the campaign results to the standard

classification ... 112

6.2.2. The MADC interface definition 113
6.2.3. Link to the FMEDA .. 114
6.3. MADC FAULT INJECTION EXECUTION 115
6.4. CHAPTER REMARKS .. 118
7. EXPERIMENTS AND RESULTS ... 119
7.1. CASE STUDY OVERVIEW .. 119
7.2. USING MADC IN A COMBINATORIAL CIRCUIT 120
7.3. USING MADC IN A SEQUENTIAL CIRCUIT 123
7.3.1. Tick Timer - Peripheral .. 123
7.3.2. Exception Handler – CPU Block 129
7.4. OPENRISC TEST CASE .. 131
7.5. MADC PERFORMANCE COMPARISON 133
7.6. CHAPTER REMARKS .. 135

PART IV – CONCLUSION AND REFERENCES
8. CONCLUSION .. 137
REFERENCES .. 141

29

1. INTRODUCTION

Car manufacturers are integrating gradually more electronics in the

vehicles in order to provide a safer experience for their customers – the

drivers. The existing integrated circuit (IC) technology provides the

computation power required to develop applications that can process the

complex data provided by multiple sensors, transforming physical

readings into electronic signals [1]. Capturing the surrounding

information allows creating systems capable of deciding whether there

are traffic hazards around and which actions should be taken to prevent

or at least to minimize the risk of harming those involved. The data

processing power available in the car permits to implement safety

applications among many others like infotainment and car-to-car

communication.

The automotive OEMs (Original Equipment Manufacturers) and

their suppliers - Tier 1, Tier 2, and so forth – are investing on innovative

car utilities in order to explore the new market opportunities made

possible by the current technology. Nowadays, there are many valued

features to consider when selecting a new car, which go far beyond the

traditional characteristics, such as engine, internal space, design or fuel

consumption. Ninety percent of the car novelties are based on electronics

[2] and some are already available in most modern cars, such as: autopilot

system, self- parking, no blind spots camera system, collision avoidance

by auto emergency braking assist, gesture control of the infotainment

system, cloud-based dashboard access, car keys with parking remote

control among many other interesting features [3]. With so many new car

features being launched on each automotive tradeshow, it seems that this

is a lucrative market for the OEMs and suppliers that will continue to

expand – the money spent on the vehicle electronics is expected to grow

about ten percent by 2022 [2].

1.1. MOTIVATION AND CHALLENGES

With various sensors in the car – some directly exposed to the

outside world to proper read the physical measures – there is a need for

specific packaging, circuit board protection and extra wiring to connect

the sensors to the Electronic Control Units (ECU) [1]. Approximately, up

to 100 Kg of cabling weight can be found in a car nowadays [4]. The

additional weight cannot be neglected since it can be linked to the fuel

consumption increase: 50 kg weight ~ 0.1 liter/100 Km [5]. Moreover,

30

OEMs need to meet new environment regulation hence reducing the CO2

emission of the next vehicle generations. As a result, innovative

automotive communication has become a research topic of broad and

current interest that aims to find solutions for the cabling weight while

still considering security and the required bandwidth challenges [2].

Independently of taking an innovative cabled networking connection or

even a wireless solution for the communication, safety must always be

taken into account.

At the end of the day, safety is a non-negotiable requirement that

must be considered throughout the vehicle development process. The ISO

26262 standard provides guidance to ensure that such requirements are

implemented [6]. Part of the additional effort required to increase safety

is to provide evidence that the electronics integrated into the car are not

just functionally correct but also they can handle random faults that may

occur in the system due to aging or radiation sources, for example. To

cope with possible fault scenarios, mechanisms are integrated into the

design in order to add diagnose capability and to make the driver aware

of any existing problem. In the case of a critical real-time feature, which

correction may not be possible, then the system must guarantee minimal

controllability to the driver that should then be able to avoid an accident

of bigger proportions.

The safety mechanisms (SM) added to the design are used to

improve the diagnostic coverage (DC) – i.e., the percentage of existing

failure probability that is prevented by the SM – for different failure

modes. The SMs must be functionally verified as well as the DCs

achieved with them must be assessed. Fault injection is highly

recommended for the functional verification of SMs and to evaluate their

DC contribution. Although an exhaustive analysis is not required,

evidence of best effort through the DC assessment must be provided when

performing a quantitative evaluation of hardware architectural metrics.

These metrics are used to identify whether the required automotive safety

integrity level (ASIL) – ranging from A (lowest) to D (strictest) levels –

was obeyed. Best effort, in this case, is pushed by the governmental

regulations, and it can only be justified by using state-of-the-art

techniques together while performing an assessment as thoroughly as

possible.

There are many advanced verification technologies that are being

explored or tailored to cope with different functional safety challenges.

The selection of which SMs to be implemented starts at the conceptual

phase of the design, much sooner than any implementation is made

available. The DCs at this stage are estimated based on previous data,

31

expert judgment, or guided by reference information from standards like

the ISO 26262. Along the project development, the requirements initially

defined must be continuously tracked while more detailed analysis is

executed in order to provide evidence that these requirements are

achieved. With progressive design refinement and implementation, a

rationale approach is used to map the requirements to the corresponding

parts of the design, thus allowing an analysis considering only safety-

related (S-R) parts. Even after this “divide and conquer” approach is

performed, the number of faults that are covered by an SM can still be

unfeasible to verify through fault injection due to the design complexity.

Therefore, sampling and other statistics methods are used to obtain

confident assessment results.

This research explores the most advanced functional verification

solutions in order to enable fault injection acceleration for SM verification

and DC assessment. The research work developed aims to enable a more

thorough safety analyses hence permitting to achieve higher accuracy of

the metrics used to provide evidence that the design reached the required

ASIL level. For instance, software based SMs – e.g., software based self-

test (SBST) – typically requires long runs until the diagnostic routine

completes, and the fault detection can be confirmed. For such kind of SM,

concurrent fault simulators – commonly used in the Design-for-

Testability (DfT) flow – are not suitable since they do not support

complex testbenches (TB), which can reproduce the interaction with the

software. Concurrent simulators normally only support designs at gate-

level (GL), thus benefiting from the structured and modular description

to optimize the fault simulation. On the other hand, it requires extracting

static test vectors during normal simulation due to the lack of support of

advanced TB, which is a time-consuming task. As a result, this kind of

tool is not suitable for verifying the SMs during the development process.

This forces the safety assessment to be executed once and only when the

final GL netlist is available, what is risky since the cost of a design change

at this stage is unacceptable. Therefore, the design is overprotected with

extra SMs hence consuming unnecessary area and power to guarantee it

will pass the safety certification process. Another consideration is that

transient – fault models required by the ISO 26262 – are not typically

supported by concurrent fault simulators.

Fault injection solutions to be used during the development phase

are being announced by Electronic Design Automation (EDA) vendors,

such as Incisive Functional Safety Simulator® (IFSS) [7], Certitude® [8],

Z01X® [9], among others. However, fault injection campaigns using

simulation can be prohibitively long, especially if the assessment is

32

performed at the system level or if the SM being verified corrects the fault

hence requiring most of the runs to be executed completely in order to

classify the fault.

Targeting the fault injection campaign speed-up, the utilization of

hardware emulator platforms, such as Veloce® [10], Zebu® [11], and

Palladium® [12], provided by the biggest EDA vendors has been

investigated. The thesis research used the former one that is provided by

Cadence Design Systems, Inc., which combines simulation acceleration

and emulation capabilities to boost verification throughput and

productivity. Since this kind of platform is intended for typical functional

verification, some investigation was necessary to permit leveraging

Palladium for fault injection acceleration. The most important advantages

of Palladium are the seamless acceleration despite the design description

level: register-transfer-level (RTL) or GL. This allowed creating a non-

intrusive acceleration approach for DC assessment of SMs. The proposed

solution is based on technology edge tools, and the methodology has been

conceived aiming to become a recommended approach to be used by

future functional safety standard releases.

Different fault injection approaches have been proposed through

the last decades. Many of them aiming to optimize the assessment of

dependability attributes – e.g., availability, reliability, and safety – of fault

tolerant designs [13] – especially against soft errors. The techniques can

be grouped according to the technology/method that underlies the fault

injection, which can be: hardware or physical injection, simulation and

emulation. Software-based fault injection can be another group when

distinguishing hardware design that process software [14]. Each approach

has specific characteristics that define its application suitability. For

example, simulation-based approaches are likely to provide more

controllability and observability, while there is a compromise between

accuracy and performance that must be considered. Field-programmable

gate arrays (FPGA) are the most common technology used to emulate

fault injection by providing the performance that lacks in the simulation

based solutions. Minimal design modifications – also called

instrumentation – are required to enable similar controllability and

observability tough. Despite the facilities costs and the setup complexity,

hardware or physical fault injection requires a prototype only available

too late in the design flow and hence not considered here.

The FPGA-based approach is the most similar to the solution

explored in this research. However, no design model alteration neither the

FPGA bitstream generation are required by using Palladium as the

underlying technology to accelerate fault injection. Only the static

33

analysis algorithm implemented must be executed to collect all faults that

can be accelerated hence keeping the same design model for simulation,

emulation, and even sign-off. Since Palladium is a powerful machine

specially created to accelerate the simulation, it has most features of a

simulation tool thus providing similar controllability and observability,

which are leveraged in the implemented solution. When considering

functional safety, then the latest representation of the design must be used

for the analysis. Therefore, the acceleration platform used has another

significant characteristic, and that is: RTL or GL of design description has

minimal influence on the possible performance gain. Consequently, the

DC assessment can be performed over the design model most close to the

sign-off thus satisfying an ISO 26262 certification auditor. Therefore, the

static analysis implemented together with a platform like Palladium

enabled the invention of the methodology presented, which permits

accelerating the DC assessment.

1.2. OBJECTIVES AND ORIGINAL CONTRIBUTION

In the functional safety context, the evidence utilized to support the

claim of safety compliance must be collected based on the design model

being developed. Otherwise, a set of strong arguments needs to be

prepared in order to justify the utilization of an abstract model used for

the safety assessment. The development of such argumentation can

require an overwhelming effort dedicated to the generation of evidence

that the design model used accurately represent the actual design model.

The work developed in the context of this thesis seeks the provision of a

fault injection acceleration solution that does not rely on changing the

design representation, in order to enable the acceleration. Given the

distinct possibilities of employing fault injection, it is important to define

the research scope clearly. From this moment on, fault injection means

the imitation of fault effects at the semiconductor level, using the design

model prior production – i.e. HDL description, either RTL or GL.

The main objective of this thesis is to propose a methodology to

leverage the most advanced functional verification solutions in order
to accelerate fault injection for SM verification and DC assessment.

To meet this thesis objective, a few means were identified:

 To investigate the available technology edge solutions for

function verification, which can be explored to accelerate the

fault injection campaigns;

34

 To become functional safety literate in order to tailor the

conception of a methodology taking into account the state-of-

the-art recommendations presented in the standards;

 To build a proof-of-concept flow based on the developed

scripts that enable seamless utilization of different tools to

compare the results and validate the correctness of the

proposed methodology;

 To implement a solution leveraging the tools available to

analyze the design in order to minimize the intrusiveness of

the proposed acceleration approach.

As already mentioned, the utilization of hardware-assisted

verification platforms towards the acceleration of fault injection is

investigated. Therefore, the following research questions are considered:

 Is the fault injection using a hardware-assisted platform

feasible?

 Does the proposed methodology provide any advantage

towards functional safety which would not be achieved with

other acceleration solutions?

 Are there limitations and what can be done do minimize their

impact?

This research focuses on the injection of permanent faults. A

microprocessor architecture, described at gate-level, has been chosen as

a case study. The detail level of the design model used can significantly

impact the simulation performance. Hence it is believed that a test case

described at gate-level can better highlight the advantages of the proposed

solution. Within this scope, the Thesis original contribution can be

defined as the performance gain achieved with the proposed methodology

via the fault injection acceleration of permanent faults without requiring

modification or a different design model while reusing the existing

verification environment – e.g., not requiring TB transformation to allow

using traditional DfT fault simulators. To the best of this author's

knowledge, there is no published work considering this specific scope.

The proposed methodology utilization is not limited to the gate-

level netlist and the automotive scope. In fact, it is a generic fault injection

acceleration solution that can be leveraged in other industry segments like

avionics or applied at different abstraction levels. For that reason, fault

injection techniques relevant to aerospace applications are discussed as

well as methods pertinent to the automotive area. However, it is important

to emphasize that this Thesis focuses exclusively on addressing the

challenges derived from the ISO 26262, which is the functional safety

35

standard tailored for the automotive applications. The results achieved

with the developed proof-of-concept highlights the potential benefit

offered by the proposed methodology.

1.3. ORGANIZATION

The thesis is divided in the following manner: Chapter 0 provides

an ISO 26262 overview, and the functional safety context covered in this

Thesis. Chapter 3 analyzes related work in the area of fault injection but

within the safety context and its different applications. Chapter 0 details

the many fault injection concepts, and it also discusses the state-of-the-

art acceleration approaches targeting the fault injection optimization. A

literature review covering different fault injection acceleration techniques

is presented in Chapter 5. The characteristics of each reviewed

acceleration approaches are discussed in order to identify their suitability

to the functional safety domain. Therefore, Chapter 5 allows highlighting

how the Thesis’ original contribution distinguishes from the rest of the

solutions found in the literature. Chapter 6 goes through the developed

non-intrusive approach that enables fault injection acceleration by

leveraging the hardware-assisted platform. Additionally, Chapter 6

describes the proposed methodology to connect the fault injection

campaign to the ISO 26262 world through an FMEDA. Chapter 7 reports

the experiments performed using an OpenRISC architecture, and it

discusses the results achieved. At the end of Chapter 7, a high-level

comparison between the proposed methodology and the most similar

related work is made, which permits emphasizing the potential benefit of

the proposed methodology. In conclusion, Chapter 0 summarizes the

thesis research achievements and comments future work.

36

37

2. FUNCTIONAL SAFETY AND ISO 26262 INTRODUCTION

2.1. ISO 26262 TERMINOLOGY AND SCOPE

In a broad sense, safety is a dependability attribute that represents

the probability of a system that cannot operate correctly any longer to

interrupt its functions in a way that nothing catastrophic happens to the

users and the environment [13]. The “absence of unreasonable risk due to

hazards caused by malfunctioning behavior of E/E systems” is the

definition of functional safety according to the ISO 26262 vocabulary

[15]. A graphical interpretation of this definition is illustrated in Figure 1.

In a vehicle, hazards can be due to mechanical, electrical or even

hydraulic problems. ISO 26262 limits its concern to the malfunction

behavior of Electric/Electronic and Programmable Electronic (E/E/PE)

systems thus not including electrical shocks or any other source of risk.

Figure 1 – Functional safety definition according to the ISO 26262.

The ISO 26262 has its first nine parts – chapters of the standard –

published late 2011 followed by the part ten in 2012. The standard on its

first edition has series production passenger cars with maximum gross

vehicle mass no greater than 3,500 Kg as intended scope of application

[15]. The second edition of the ISO 26262 is planned to be released in

2018 with wider scope by removing the vehicle mass limitation and also

including a specific chapter for motorcycles [16]. This new edition is

going to contain the part eleven that will cover the application of the

standard concepts on semiconductors, which is vaguely considered in the

“absence of unreasonable risk due to hazards caused
by malfunctioning behaviour of E/E systems”

unacceptable
or excessive

probability and
extent of damage

potential source of
harm to people

e.g., sudden brake,
unintended throttle

Electrical/Electronic
systems only

Safety

Functional

38

current release [17]. Until the official publication, the standard committee

has periodically meetings to agree on the progressing draft of the ISO

document, which is accessible for members – including OEMs, EDA

vendors, safety consultants, and others.

2.2. BRIEF HISTORY OVERVIEW AND LEGAL ASPECTS

Functional safety has not been introduced by the automotive

standard that drives the topic of this research. Aviation segment has the

important DO-178 “Software Considerations in Airborne Systems and

Equipment Certification” published in 1982, which matured to the DO-

178A – released in 1985 – and ten years later became the well-known

DO-178B. At the same time, it has been developed the “Aerospace

Recommended Practice” guidelines ARP4754A and ARP4761, which

were published later in 1996 putting the system and safety assessment

into place [18]. The hardware counterpart is the DO-254 that provides

guidance to ensure safe operation of airborne electronic designs that was

announced in 2000 [19]. In the same year, the remaining four parts of the

IEC 61508 standard were released after the first three parts became

available in 1998 [20]. Figure 2 shows some of the most well-known

safety standards.

The “functional safety of E/E/PE safety-related system” standard,

or IEC 61508, is a “generic” standard, which served as the basis for

drafting the functional safety guidelines tailored to different industry

segments [21] – some indicated in Figure 2. Therefore, IEC 61508

supported the creation of safety standards applied medical device

software (e.g., IEC 62304), nuclear power plant systems (e.g., IEC

61513), machinery control systems (e.g., IEC 62061), industrial processes

(e.g., IEC 61511), railway application (e.g., EN 50126), and many others.

This long list also includes ISO 26262 covering the automobile

electronics. The draft international standard (DIS) of the ISO 26262,

which is prepared by the committee before the official release, was

published in 2009. The same year the “unintended acceleration” case with

the Toyota Lexus ES 350 killed all four occupants and triggered an

escalation of investigations, back to 2002, of driver’s complaints

reporting similar problem [22]. The investigation found 89 deaths

suspected to be caused by defects on the Electronic Throttle Control

System (ETCS), but the National Aeronautics and Space Administration

(NASA) – assigned to inspect the design – could not point to a specific

design flaw. However, NASA reported many technical questionable

39

procedures and the jury, of the civil lawsuit against Toyota, was

convinced that ETCS defects caused the deaths. Additional to millions of

recalls and millionaire civil penalties, the carmaker was fined in more

than a billion of dollars in 2014 [23]. To prevent such cases that the ISO

26262 was created, similar to the IEC 61508, which was influenced by

the lessons learned from tragedies like Bhopal in 1984, Chernobyl in 1986

and Piper Alpha in 1988 [24].

Figure 2 - Functional safety standards historic connection.

Regulation bodies from nine countries – e.g., USA, Germany,

Japan – engaged for more than eight years until publishing the first

version of the ISO 26262 containing the state-of-the-art framework for

40

achieving functional safety [25] [26]. Despite the technical focus of the

recommendations in the standard, there are circumstantial norms or legal

aspects that cannot be ignored. For instance, according to the European

Regulation 661/2009, the current state of science and technology must be

used to design vehicle safety. This makes the ISO 26262 more than just a

recommendation due to its contemporary functional safety guidelines.

The Toyota “unintended acceleration” example and the liability risk

shared across the OEMs and its suppliers together with the growing

number of electronics integrated into the cars, made the automotive

industry align and contribute to the ISO 26262. While the standard

imposes additional effort of complying with a bundle of new

requirements, it also serves as legal protection from unreasonable

liability. Such protection can only be achieved if the designer can

convince it has done its “best-effort” to assure safety [27]. This is

supported by the Safety Case, which compiles all relevant functional

safety information derived from the other work products – i.e.,

documentation – required by the ISO 26262. The Safety Case must clear

state what is being claimed – i.e., scope, context and requirements – about

the system, the evidence – e.g., work products, test reports – and the safety

arguments that communicate the relationship between the evidence and

what is claimed [28]. Additionally, best-effort evidence must be provided

including the adoption of reasonable economic and technical measures to

guarantee maximum safety. In other words, the “liability risk” translated

into the “hazard potential” of the application is what establishes the “best

effort” extent a supplier has to commit in order to determine the

appropriate state-of-the-art to be used [29].

2.3. AUTOMOTIVE SAFETY LIFECYCLE

The automotive safety lifecycle – see Figure 3 – is outlined in the

ISO 26262. Part 2 of the standard describes requirements – e.g.,

competences, traceability, plans – that must be managed from

development to decommissioning of the product, as well as pre-requisites

for safety activities applicable to specific phases [30].

41

Figure 3 – Automotive safety lifecycle according to the ISO 26262.

The next five parts of the standard specify distinct stages of the

ISO 26262. In Figure 4, the clauses that describe the subphases of each

stage are indicated in the following manner: “part number”-“clause”. Part

3 start requiring the definition of the item being considered, which

correspond to features at the vehicle level like:

 Electronic Throttle Control Systems (ETCS);

 Electrical Hydraulic Power Steering (EHPS);

 Advanced Driver Assisted System (ADAS);

 Tire Pressure Monitoring System (TPMS);

 Electronic Steering Column Lock (ESCL);

 Electronic Stability Program (ESP);

 Emergency Brake Assistant (EBA);

 Antilock Braking System (ABS);

 Adaptive Cruise Control (ACC);

 Traffic Sign Recognition (TSR);

 Electronic Parking Brake (EPB);

 Electric Power Steering (EPS);

 Steer-By-Brake (SBB);

 X-By-Wire – i.e. X = Drive, Throttle, Brake, Steer, etc.

After the item definition with regards to its functions, interfaces,

use cases, the safety cycle is then initiated by identifying if the project

corresponds to a new design, modification or a reuse of existing product

in an automotive application. The hazard analysis and risk assessment

(HARA) subphase comes next and the objectives are:

 identify and categorize the hazards that malfunctions in the

item can trigger;

 determine the ASIL considering the estimate of severity,

exposure and controllability probability factors of each

hazardous event based on the provided item’s functional

behavior;

Management

Development Service

DecommissionProduction

Operation

42

 formulate the safety goals to prevent or mitigate the

unreasonable risk of each hazardous events with an ASIL

assigned.

Figure 4 - Safety lifecycle subphases. (Adapted from ISO 26262)

Item
definition

Initiation
safety lifecycle

 Hazard analysis
 and risk assessment

Functional
safety concept

Product development:
@ System level

@ HW
level

Safety
validation

Functional
 safety assessment

Production

Management of
Functional Safety

2 – 5

5

@ SW
level

6

3 – 7

Release for
production

4

3 – 5

3 – 6

3 – 8

4 – 9

4 – 10

4 – 11

2 – 6 2 – 7

7 – 5

 Operation, service
 and decommissioning
7 – 6

O
p

e
ra

ti
o

n
p

la
n

n
in

g

7 – 6

P
ro

d
u

ct
io

n
p

la
n

n
in

g

7 – 5

A
ft

e
r

SO
P

(S

ta
rt

-o
f-

P
ro

d
u

ct
io

n
)

P
ro

d
u

ct
 d

e
ve

lo
p

m
e

n
t

C
o

n
ce

p
t

P
h

as
e

 E

xt
e

rn
al

 m
e

as
u

re
s

 C

o
n

tr
o

lla
b

ili
ty

 A

llo
ca

te
 t

o
 o

th
e

r
te

ch
n

o
lo

gi
e

s

43

2.4. ISO 26262 – CONCEPT PHASE EXERCISE

A fault tolerant Drive-By-Wire (DBW) example is used here to

demonstrate a HARA [31]. The example consists of a Steer-By-Wire

(SBW), a Brake-By-Wire (BBW), and a Throttle-By-Wire (TBW) sub-

systems. The elements of the DBW system are: central control unit

(CCU); brake, steer and throttle ECUs and actuators; communication bus;

and the steer wheel, the pedals, and their sensors. The user interface shall

permit the driver to control the speed and the steering angle of the vehicle

through the interaction with the pedals and steering wheel, respectively.

Therefore, the steer and speed control need to be able to turn and to

regulate acceleration of the vehicle. Figure 5 diagram shows how the

elements composing the DBW system interact.

Figure 5 – The block diagram of the DBW example. (Source: [31])

2.4.1. Item Definition

An example of item definition for the DBW system is shown in

Table 1. The DBW definition contains the description of the intended

functionality of the item, which is composed of the SBW, BBW, and

TBW subsystems.

Table 1 – Item definition of the DBW example with the subsystems functionality

description. (Adapted from [31])

System Function Description of intended function

SBW Steer control Control the steering angle of the vehicle

44

TBW Speed control Increase the speed of the vehicle

BBW Speed control Decrease the speed of the vehicle

The item definition shall also include operation modes,

environment conditions, legal requirements (e.g., the drive legislation of

the interesting regions), already known failure modes and hazards (e.g.,

from known safety-related incidents). Sufficient information must be

provided in order to permit conducting the subsequent activities, which

are the HARA and later the “Functional Safety Concept”.

2.4.2. Hazard Analysis and Risk Assessment

The HARA starts by analyzing the operating situations – i.e.,

functional modes and environment constraints – on which an item’s

malfunction will result in a hazardous event. Brainstorming, field studies,

“Failure Mode Effects Analysis” (FMEA), among other techniques are

used to systematically identify the as many as possible hazardous events

and their consequences. Table 2 is a reduced version of the hazard

identification done for the DBW system, but with a similar format used

in the ISO 26262 guidelines.

Table 2 – Hazardous event identification for the DBW example. (Adapted from

[31]).

ID
Failure

mode

Hazardous Event Possible

consequences Hazard Situation

H01
Throttle

omission

Sudden lack

of throttle

Low speed

at crosslevel

Rear end or

train collision

H02
Throttle

omission

Sudden lack

of throttle

High-speed

at motorway

Rear end or

side collision

H03
Brake

commission

Unexpected

full brake

High-speed at

highway

Traffic

Accident

H04
Brake stuck

at value

Constant

partial brake

Avg. speed at

main roads

Loss of car

stability

H05
Steer angle

commission

Unexpected

strong veer

Taking a bend

at high-speed

Loss of

car control

45

All hazardous events identified in the exercise, which results in the

Table 2 information, must be classified with respect to the severity,

probability of exposure and controllability. All three classification

parameters are estimated using a defined rationale.

The failure mode corresponds to the manner in which an item or

one of its elements fails. If an item’s failure mode occurs during a

specified operational condition, then the worst-case scenario is

considered as the possible consequence. Table 3 can be used to classify

the severity of such consequences. The severity parameter has four

classes that are associated with the different potential harm levels of the

persons at risk, such as, drivers, passengers, cyclists, and pedestrians.

Table 3 – Classes of severity according to the ISO 26262.

Class Description

S0 No injuries

S1 Light and moderate injuries

S2 Severe and life-threatening injuries (survival probable)

S3 Life-threatening injuries (survival uncertain), fatal injuries

Also, split into four classes, the controllability parameter relates to

the probability of the driver or another person potentially at risk to gain

control of the hazardous situation and avoid the harm. Therefore, the

operating condition is analyzed, and the controllability classification is

decided using the Table 4.

Table 4 – Classes of controllability according to the ISO 26262.

Class Description

C0 Controllable in general

C1 Simply controllable

C2 Normally controllable

C3 Difficult to control or uncontrollable

The probability of exposure to the operational situation of the

hazardous event is what defines the remaining parameter needed for the

hazard classification. Table 5 has the five classes that distinguish the

different probability levels of exposure.

46

Table 5 – Classes of exposure probability regarding operational situations

according to the ISO 26262.

Class Description

E0 Incredible

E1 Very low probability

E2 Low probability

E3 Medium probability

E4 High probability

2.4.3. Automotive Safety Integrity Level Determination

Using Table 6 is possible then to determine the ASIL for each

hazardous event identified.

Table 6 – ASIL determination based on the hazardous classification parameters

according to the ISO 26262.

ASIL Classification Controllability

Severity Exposure C1 C2 C3

S1

E1 QM QM QM

E2 QM QM QM

E3 QM QM A

E4 QM A B

S2

E1 QM QM QM

E2 QM QM A

E3 QM A B

E4 A B C

S3

E1 QM QM A

E2 QM A B

E3 A B C

E4 B C D

The ASIL has four different levels corresponding to the item’s or

element’s requirements to be fulfilled in order to avoid an unreasonable

risk. The levels are represented by the first four letters of the Latin

47

alphabet where A and D represent the least and the most stringent levels,

respectively. Some hazardous event not even get the ASIL A assigned,

and therefore, no additional requirement must be observed hence the

Quality Management (QM) process already in place is sufficient.

The hazardous events of the DBW example in Table 7 are derived

from the operating situation and the hazard identified in Table 2. For each

hazardous event, the classification parameters are defined thus permitting

to assign correspondent ASIL according to Table 6. Notice that no further

requirements must be observed for the hazardous events H01 and H02 of

the DBW example, however, the ASILs D, B, and D levels were assigned

to the Table 7 entries H03, H04, and H05, respectively.

Table 7 – ASIL determination for the hazardous event identified DBW example.

(Adapted from [31])

ID Hazardous Event Parameters ASIL

H01
Sudden lack of throttle at low speed

passing over a rail cross
S3,C2,E1 QM

H02
Sudden lack of throttle at high speed

driving in a motorway
S1,C1,E4 QM

H03
Unintended full brake applied while

driving at highway speed limit
S3,C3,E4 D

H04
Constant partial brake pressure suddenly

applied when driving with main road speed
S3,C2,E4 B

H05
Unintended strong veer off the direction at

high speed in the highway
S3,C3,E4 D

2.4.4. Safety Goal Specification

At least one top-level safety requirement, known as Safety Goal

(SG), must be defined for those hazardous events that had an ASIL

assigned – i.e., no less than A level. Therefore, SGs had to be defined only

for the hazardous events H03, H04, and H05. The SG from the DBW

example is shown in Table 8. Statements like the one highlight in SG01

presumes highest possible reliability will be targeted [31]. SG01 is also

used as an example of combining similar SG by keeping the highest ASIL

level assigned. Additionally, an operating mode without the unreasonable

level of risk can be specified by the SG, for example, the “safe state”

48

underlined in SG03 that needs to be achieved and maintained to prevent

the possible harm.

Table 8 – Safety goals defined for the hazardous events

ID ASIL Safety Goals

H03 D SG01 The brake functionality shall not fail

H04 B
SG01 The brake functionality shall not fail

SG02 Warn the driver when at degraded function

H05 D SG03
The steer system needs to be stuck at value in case

of failure, enabling SBB functionality

2.4.5. Derivation of the Safety Requirements

At the “functional safety concept” subphase, it is defined the

Functional Safety Requirements (FSR) for each SG resulted from the

HARA activity. An FSR specifies behaviors or measures that shall be

implemented. The FSR specification can include the transitioning to the

safe state to achieve, the fault tolerance time interval, the warning

mechanisms (e.g., ABS warning lamp), the functional redundancies (e.g.

SMs), and so forth. The FSRs must also be mapped to the corresponding

system elements they apply. Table 9 contain some FSRs and the allocated

elements from the DBW example.

Table 9 – FSRs from the DBW example. (Adapted from [31])

ASIL SG Functional Safety Requirement

D SG01
FSR01 Distributed brakes BBW-ECU

FSR02 CCU redundancy: HW/SW a CCU

B SG02 FSR03 Interaction with the driver CCU

D SG03
FSR04 SSB technology BBW-ECU

FSR05 Steer stuck at forward position SBW-ECU
a Hardware and Software redundancy.

The “product development at the system level” phase (see Figure

4) also has the initialization exercise when it is specified functional safety

49

activities for the further subphases. One of the activities is to derive the

Technical Safety Requirements (TSR) from the FSRs. The TSR shall

specify the SM details, such as the detection, alarming and control of

faults in the system, ways to achieve and maintain, measures to avoid or

warn degradation. Subsystem elements can have TSRs derived from the

TSRs allocated at the system level, and this can be iteratively done

through the design hierarchy. Optionally, TSRs can be further refined into

hardware (HWR) or software (SWR) safety requirements.

2.4.6. Requirements Allocation through the Supply Chain

Different from the IEC 61508, the ISO 26262 considers the typical

automotive scenario where a system can be built with the elements

provided by multiple companies in the supply chain of the OEM.

Therefore, TSRs must be communicated through the companies. This

communication is supported by the Development Interface Agreement

(DIA) where the data to be exchanged between the customer, and the

supplier is defined. The supply chain illustrated in Figure 6 highlight the

importance of the DIA also protects the companies involved from

unreasonable liability.

Figure 6 – Automotive supply chain illustration.

OEM
(e.g., DBW,HUD)

1st Tier – Supplier
(e.g., TBW, SBW,ABS)

IP Supplier
(DSP, GPU, DDR etc.)

 2nd Tier – Supplier
(e.g., Sensor, ECUs)

IC Supplier
(FPGA, ASIC)

Safe function
(Item)

Safe systems
(equipment box)

Safe parts / subparts
(CPU / registers)

Safe subsystems
(circuit board)

Safe components
(µC)

50

The SGs with the determined ASIL, the FSRs and the derived

TSRs at the vehicle level are typically defined by the OEM as indicated

in Figure 7. If this data is not available, then they can be defined based on

assumptions of usage (AoU) whenever a supplier is going to

commercialize a generic subsystem as a safety element out of context

(SEooC).

An item as defined in the ISO 26262 can be composed of a

hierarchy of systems, which the subsystem leafs are built by multiple

components. These components are split into hardware parts (or software-

units) that can be further divided into sub-parts. Higher level TSRs are

further refined across the system hierarchy throughout the supply chain

by deriving new detailed TSRs. The leaf requirements are allocated to the

components, for example, a software application or a microcontroller

(µC). Such components may have specific requirements – i.e., HWR and

SWR, respectively – that are derived from the leaf TSRs as illustrated in

Figure 7.

Figure 7 - Requirements communication throughout the supply chain.

This complex multilevel requirements definition must be

consistent and traceable in order to guarantee that no SG is overlooked.

Additionally, the strictest ASIL level assigned to the SG must traverse

together with the requirements, which are allocated to the components.

Therefore, all FSR, TSR, HWR and SWR illustrated in Figure 7 must

OEM

1st/2nd Tier

IC/IP Supplier

ITEM 1 ITEM 2 ...

SG 1.1 (ASIL)

ITEM N

SG 1.2 (ASIL) SG 1.N (ASIL)...

TSR 1.1.1.1 (ASIL)

HWR 1.1.1.1.2 (ASIL)

FSR 1.1.1 (ASIL) FSR 1.1.2 (ASIL) ... FSR 1.1.N (ASIL)

TSR 1.1.1.1.1 (ASIL)

TSR 1.1.1.2 (ASIL) ...

HWR 1.1.1.1.1.1 (ASIL) SWR 1.1.1.1.1.2 (ASIL)

 TSR 1.1.

...

...

 SWR.

51

have the same ASIL assigned to their parent SG (SG 1.1). This traversal

assignment ensures that the correct safety measures are implemented in

the required components. A microcontroller is an example of a complex

component, which is subdivided into its major parts, for instance, a CPU,

memory controller, and other peripherals. A part itself can be further split

into subparts – e.g., arithmetic logic unit (ALU), debug interface, timer,

and interruption controller. The component dismemberment allows

achieving a stricter ASIL by evidencing the parts or the subparts – e.g.,

debug module interface – that are not S-R and hence can not contribute

to the SG violation probability [28]. Moreover, this detailed analysis

increases the confidence of the safety assessment.

2.5. CHAPTER REMARKS

This Chapter briefly discussed the liability impact on the “best-

effort” practiced by the OEMs and suppliers. The legal aspect pushes the

companies in the supply chain always to consider state-of-the-art

solutions like the one proposed in this research. The effort level commit

by the companies is also based on the ASIL determined according to the

identified hazardous event of the target application. Therefore, it is shown

how the ASIL, which is defined for SG at the vehicle level, traverse with

the safety requirements that are communicated by DIAs throughout the

supply chain until getting allocated into hardware and software

components. This standard overview is essential to understand the ASIL

influence on the next subphases. The V-Model defined in the ISO 26262

is illustrated in Figure 8, which shows how the activities are distributed

in the V-Model flow. After starting the development of the hardware and

software parts, verification is the next subphase, which is discussed in the

following chapter.

52

Figure 8 – ISO 26262 V-Model illustration. (Adapted from ISO 26262)

Item
definition

HARA

HW
Development

TSRs (ASIL)

HW/SW requirements
allocation

FSRs (ASIL)

DIA

SGs + ASIL

SW
Development

C
o

n
ce

p
t

P
h

as
e

Sy
st

e
m

 D
e

ve
lo

p
m

e
n

t

C
ar

 m
an

u
fa

ct
u

re
rs

 (
O

EM
)

Ti
e

r
1

/2
 –

 S
u

p
p

lie
rs

Decomi-
ssioning

Operating
instructions

HW
Verification

System
integration

HW/SW
integration test

Vehicle
testing

Vehicle
integration

Production
instructions

SW
Debug

P
ro

d
u

ct
io

n
/O

p
e

ra
ti

o
n

Sy
st

e
m

 D
e

ve
lo

p
m

e
n

t

ISO 26262 – 4

ISO
 26262 – 3

ISO
26262

5-6
IS

O
 2

62
62

 –
 7

53

3. FAULT INJECTION IN THE CONTEXT OF ISO 26262

3.1. SAFETY ASSESSMENT BASIC CONCEPTS

Failure probability imposes a great challenge with the advance of

the process technology required to develop a complex systems-on-a-chip

(SoC) with higher performance [14]. Fault avoidance through design

inspection and testing processes are not enough to prevent failures due to

aging or radiation effects during the system lifetime. Fault tolerance and

fault diagnosis mechanisms are used to increase the reliability, thus

allowing to develop robust circuits that fulfill the needs of critical

applications. Such mechanisms are commonly implemented by using

some kind of redundancy like replicated hardware, specific software

routines, data parity, and others.

3.1.1. Hardware Architectural Metrics

The term “safety mechanism” is used in the ISO 26262 that

embraces different fault tolerant mechanisms which can be employed in

the safety device. The collection of SMs selected to integrate the design

and to increase its reliability must be checked regarding their capability

to prevent faults from propagating and violating SGs. The standard

requires a rigorous analysis of the incidence probability of random faults

in the hardware. The safety analysis uses a set of objective metrics in

order to enable the audition by an external authority. The hardware

architectural metrics allows to assessing if the selection of SMs

implemented is sufficient to detect and or to control the failure rate

proportion defined according to the ASIL assigned. Therefore, the single

point faults metric (SPFM) and latent faults metric (LFM) percentages

must be assessed.

3.1.2. Fault Classification

A single point fault (SPF) has the potential to directly violate an

SG unlike the multi-point fault (MPF). However, an MPF that remains

latent (MPFL), in combination to another independent fault, has the

indirect potential to violate an SG. Naturally, SMs are first considered to

cover as much SPFs as possible. Whenever an SM is used like this, the

remaining uncovered SPFs are called residual faults (RF) hence with the

same SPF characteristics – potential to directly violate an SG. Then, in

54

the presence of an SM, the residual SPFs become RFs, while the covered

SPFs are called MPFs. Therefore, it is beneficial that SMs added to cope

with SPFs can also diagnose as much MPFL as possible thus improving

the LFM by increasing the number of latent faults that are detected

(MPFD). There are faults which cannot directly violate an SG, but

independently of the detection of an SM, their presence can be perceived

by the driver that notices some performance degradation or any other

problem indication like black smoke leaving the car exhaust. This kind of

perceived multipoint fault (MPFP) is not considered at microcontroller

level since it is not possible to judge the detection ability of the driver at

this level [28].

Notice that the violation of an SG by an MPF is typically

associated with the occurrence of a second MPF, but no more than two

faults – sometimes MPFs are even referred to as dual-point faults [28]. In

general, a fault with the characteristics of an MPF, yet requiring two or

more extra faults to be able to cause a violation, can be considered a safe

fault (SF) – unless evidence during the safety concept shows otherwise.

Faults considered SF shall not contribute to the violation of an SG.

3.1.3. Failure Modes and Fault Models

To overcome the SPF associated with a short circuit of a resistor,

for example, three resistors in series can be used instead, thus allowing

the short circuit of each resistor to be considered SFs [28]. The short

circuit in this example represents one possible failure mode of a

component like a resistor. Permanent and transient are common digital

semiconductors failure modes hence they are considered in this research.

The permanent failure mode is triggered by the occurrence of stuck-at-

faults (SAT) – i.e., a signal gets stuck-at-0 (SA0) or stuck-at-1 (SA1). On

the other hand, single-event-transient (SET) and single-event-upset

(SEU) faults, temporarily disrupt the normal functionality of

combinatorial and sequential parts of a circuit, respectively. For that

reason, the faults SET and SEU compose the transient failure mode.

Notice that only random faults – i.e. during operational lifetime – are

being considered since the systematic faults are covered by implementing

and properly managing the safety activates throughout the safety

lifecycle.

55

3.1.4. Failure Rate

The probability of a component failure mode occurs is called the

base failure rate (λ), and the unit is FIT (failure in time). One FIT

corresponds to no more than a single failure within one billion operating

hours – i.e. 109 h. The FIT budget is defined for the item SGs at the vehicle

level according to the ASIL determined [32]. FIT rate targets are derived

from the budget and allocated to the elements through the system

hierarchy – similar to the derivation of safety requirements from the SGs.

For example, Figure 9 illustrates the FIT budget for an ASIL D item that

is communicated across the supply chain until defining the target FIT to

be observed at the component level. In other words, the accumulative

failure rate of those elements – i.e., parts and subparts of components –

that contribute to the violation of an SG shall not surpass the FIT budget.

This evaluation must be done in order to guarantee the probability to

violate each SG is not exceeded – i.e., each SG’s FIT budget is observed.

The assessment of the hardware architecture metrics and the SG violation

probability due to random hardware failures is required in order to claim

ISO 26262 compliance.

Figure 9 – Allocating the target FIT budget to be observed in order to guarantee

the probability to violate an SG is not exceeded at the vehicle level.

3.1.4.1. Failure Rate Estimation

The estimated base failure rate for semiconductors can be extracted

from recognized industry sources like SN29500 and IEC/TR 62380 with

respect to permanent faults, or from JEDEC standards like the JESD89

for faults of the transient failure mode. Standards may provide too

conservative numbers that do not represent the process and technology in

place. Therefore, expert judgment, field experience, tests, and other inputs

can also be used provided adequate confidence level on the statistics and

approach employed to perform the estimations [32]. For complex

components like microcontrollers, there may be parts which are not safe

relate or SMs that cover only specific subparts of the design. In this case,

56

it makes senses to divide the design further into parts and subparts thus

distributing the component base failure rate according to the area

proportion occupied by microcontroller’s modules for example. The area

figures are conservatively estimated at earlier stages, then, they are

updated during the development process – e.g., whenever a GL netlist

more mature becomes available. After allocating the base failure rate to

each part and subpart of the component according to the failure modes,

the hardware architectural metrics – i.e., SPFM and LFM – need to be

calculated.

3.1.4.2. Base Failure Rate Composition

Figure 10 illustrate how it is composed the component base failure

rate.

Figure 10 – Component base failure rate split according to the classification of

the faults of a certain failure mode.

Safe Faults (λSF)
 – leads to a safe condition
 – does not contribute to the violation of SG

Multi Point Fault – Detected (λDF)
 – detected multi point fault
 – prevented from violating a SG

Multi Point Fault – Latent (λLF)
 – MPF proportion not detected by the SMs
 – can lead to the safety goal violation

Residual Fault (λRF)
 – directly leads to the safety goal violation

 – SPF proportion not covered by the SM

Single Point Fault (λSPF)
 – directly leads to the safety goal violation
 – no SM implemented

Multi Point Fault – Perceived (λPF)
 – perceive by the driver
 – can be prevented before violating a SG

Base
Failure

Rate
(λ)

Not Safe
Related
(not S-R)

λnSF

Not considered
in the analysis

not applicable

57

The possible faults of a failure mode, within the area of each part

or subpart, must be individually classified into SF, SPF, RF, and MPF

thus corresponding to proportions of the base failure rate – i.e., λSF, λSPF,
λRF, and λMPF, respectively. The λMPF is split further according to the

different MPF subcategories symbolized by λDF, λPF, and λLF as shown in

Figure 10 – the acronyms DF, PF, and LF denote MPFD, MPFP, and MPFL

and they are one-to-one interchangeable. The faults that can occur in an

element, which is not S-R, are also considered SFs but are not taken into

account for the safety analysis. Therefore, the base failure rate for each

failure mode is calculated using (1).

𝜆 = 𝜆𝑆𝐹 + 𝜆𝑆𝑃𝐹 + 𝜆𝑅𝐹 + 𝜆𝑀𝑃𝐹 (1)

Where the MPF failure rate calculated in (2) is composed of the

proportions corresponding to the amount of faults classified as perceived,

latent, and detected. The perceived failure rate is not considered in the

following equations since it is not applicable to the focus of this research

– i.e., semiconductor level.

𝜆𝑀𝑃𝐹 = 𝜆𝑃𝐹 + 𝜆𝐿𝐹 + 𝜆𝐷𝐹 (2)

3.2. HARDWARE ARCHITECTURAL METRICS CALCULATION

3.2.1. Failure Rate Proportions Matching the Fault Classification

Each fault despite the failure mode – e.g., permanent or transient –

can be classified using the flow diagram adapted from the ISO 26262 in

Figure 11. The faults on an element that is not S-R, even if classified as

safe faults, are not considered in the calculation. Notice that faults can

only be tagged as SPF if no SM prevents any other fault from the same

failure mode from directly violating an SG. In this case, when there is no

SM to prevent SPFs, yet there can be faults that do not directly violate an

SG, which shall be automatically tagged as latent faults unless there is an

SM that only covers MPF faults. The arrow in Figure 11 indicates when

a fault that does not directly violate an SG becomes an MPF and therefore

can be either detected or classified as a latent fault.

58

Figure 11 – Fault classification illustration using dropping balls as faults that are

distributed according to the answer to the question through the path.

The fault classification analogy shown in Figure 11 utilizes balls

symbolizing faults that are tagged and split into bins denoting the possible

classifications. Given that all faults of a specific failure mode shall be

Is the fault
detected ?

Does it directly
violate a SG ?

 Is there a SM
to prevent ?

Can it
violate
a SG ?

Is the element
safety related ?

?

?

?

?

SF

?

SPF

RF

MPFL

SF

Yes
No

Yes

No

Yes

No

No

Yes

No

%SF

%SPF
%RF

%LF%DF

Failure Mode

Faults

MPFD

MPF

59

tagged, then the percentage of all balls found in each bin corresponds to

the proportion of the failure rate associated with each classification.

Figure 12 illustrates base failure rate shares related to the percentage of

faults in each classification bin.

Figure 12 – Failure rate shares associated with the proportion of faults classified

in each group.

The interface to the debug module of a microcontroller that is not

used during the safety-related operation can have its failure rate marked

as safe and its contribution to the hardware architecture metrics ignored,

as already mentioned. However, there are faults in the inner logic of the

debug unit that may have the potential to violate an SG hence need to be

further classified into SPF, RF or MPF. Therefore, different from the

interface, the debug inner logic cannot be considered not S-R. At the same

time, faults in the inner logic that do not drive signals to the rest of the

microcontroller shall be marked as safe, but the proportion of SF cannot

be neglected because the element is S-R.

3.2.2. Diagnostic Coverage and the Failure Rate Calculation

λSPF

λLF

λDF

λSF
λRF

λ

M
PFL

SP
F

M
PFD

SF
RF

%SF

%SPF

%RF

%LF

%DF

60

After finding the component’s parts and subparts not S-R, the

safety analysis continues with the identification of SFs within S-R

elements. For each S-R element, the further classification of the

remaining faults is carried out differently given the presence or not of at

least one SM. Without any SM, the faults which the effect propagates out

the element are classified as SPFs and the rest as LF. If there is an SM

that prevents at least one SPF, then all remaining SPFs are tagged as RFs.

The percentage of faults prevented by an SM from directly violating an

SG is called either failure mode coverage (FMC) or diagnostic coverage

– i.e., DC. In this case, the capability of the SM to cover RFs is

symbolized by DCRF percentage. Likewise, DCLF is the percentage of

MPFs that are detected by the SM hence not allowing these faults to

become LFs.

3.2.2.1. Calculation Steps with Residual and Latent Faults Coverage

Figure 13 illustrate the stepwise calculation of the base failure rate.

Figure 13 – Calculation steps of the failure rate proportions when there is an SM

that covers RFs as well as LFs.

Safe
(λSF)

MPFD (λDF) MPFL

(λLF)

RF
(λRF)

Base Failure Rate (λ)

Not Safe Faults (λnSF)

MPF (λMPF)

λnSF = λ ´ (1 - FSF)

λSF = λ ´ FSF

λMPF = λnSF ´ KRF

λRF = λnSF ´ (1 - KRF)

λDF = λMPF ´ KLF

λLF = λMPF ´ (1 - KLF)

% DCRF

% DCLF

C
alcu

latio
n

 Step
s

61

The DCRF and the DCLF are percentages without a unit, so they can

be used to either calculate the two corresponding failure rates fraction or

to find the number of faults associated with each of these two

classifications. The KRF and the KLF fractions correspond to the DCRF and

DCLF percentages, respectively. Additionally, there is the failure rate

fraction associated with the safe faults that are represented by FSF. Figure

13 illustrates the steps for calculating the failure rate proportions of a

given failure mode when there is an SM that can cover RFs and detect

LFs.

In Figure 13 the SFs failure rate fraction (λSF) has its counterpart

indicated by λnSF. The λnSF given by (3) and the KRF are used to calculate

the failure rates λMPF and λRF in (4) and (5), respectively.

𝜆𝑛𝑆𝐹 = 𝜆 × (1 − 𝐹𝑆𝐹) (3)

𝜆𝑀𝑃𝐹 = 𝜆𝑛𝑆𝐹 × 𝐾𝑅𝐹 (4)

𝜆𝑅𝐹 = 𝜆𝑛𝑆𝐹 × (1 − 𝐾𝑅𝐹) (5)

Next, in the calculation steps of Figure 13, the MPF failure rate

(λMPF) is split into λDF and λLF using the LF DC fraction in the equations

(6) and (7), respectively.

𝜆𝐷𝐹 = 𝜆𝑀𝑃𝐹 × 𝐾𝐿𝐹 (6)

𝜆𝐿𝐹 = 𝜆𝑀𝑃𝐹 × (1 − 𝐾𝐿𝐹) (7)

3.2.2.2. Calculation Steps with Residual Fault Coverage

Without an SM to prevent a fault from directly violating an SG, the

λSPF needs to be calculated instead of the λRF. However, the λSPF and λMPF

derivation from the λnSF can not be done using the KRF since there is no

SM. Therefore, the standard represents as FPVSG, the failure rate fraction

associated with the standalone faults with potential to violate the safety

goal (PVSG) as shown in Figure 14.

62

Figure 14 - Calculation steps of the failure rate proportions associated with SPF

and MPF when the SM only detects LF.

In the situation illustrated in Figure 14, the λSPF and λMPF are given

by (8) and (9), respectively. The λDF and λLF failure rates in Figure 14 are

calculated in the same way as in the situation from Figure 13 since there

is an SM responsible for the detection of the MPFs.

𝜆𝑀𝑃𝐹 = 𝜆𝑛𝑆𝐹 × (1 − 𝐹𝑃𝑉𝑆𝐺) (8)

𝜆𝑆𝑃𝐹 = 𝜆𝑛𝑆𝐹 × 𝐹𝑃𝑉𝑆𝐺 (9)

3.2.2.3. Calculation Steps without Residual or Latent Faults Coverage

For the sake of completeness, Figure 15 illustrates the situation

where there is no SM whatsoever thus making λLF equal to λMPF. It is

important to notice that in each situation, the failure rates λSPF and λRF are

not used together. Since the base failure rate given by (1) considers λSPF

and λRF, then whenever one is applicable the other one must be zero on

each situation.

Safe
(λSF)

MPFD (λDF) MPFL

(λLF)

SPF
(λSPF)

Base Failure Rate (λ)

Not Safe Faults (λnSF)

MPF (λMPF)

λnSF = λ ´ (1 - FSF)

λSF = λ ´ FSF

λMPF = λnSF ´ (1 - FPVSG)

λSPF = λnSF ´ FPVSG

λDF = λMPF ´ KLF

λLF = λMPF ´ (1 - KLF)

% DCLF

C
alcu

latio
n

 Step
s

63

Figure 15 – Calculation steps of the failure rate proportions associated with SPF

and MPF for the situation without any SM in place.

3.2.3. Hardware Architectural Metrics Computation

The calculations steps shall be done for each part or subpart of the

component being analyzed. After that, the component’s hardware

architectural metrics SPFM and LFM can be calculated. Therefore, to

enable the calculation of SPFM and LFM, the following tasks must be

performed:

 Split the component into (sub)parts for the safety analysis;

 Identify the applicable failure modes – e.g., permanent;

 Distribute the component’s base failure rate to each element

corresponding to its area occupation proportion;

 Determine whether each element is S-R or not;

 Verify the percentage of safe faults if any;

 Indicate whether there are SMs in place;

 Collect the DCRF and DCLF of the SMs in place;

 Derive the λLF and λSPF or λRF from the base failure rate;

 Calculate the component’s total Σ(λLF) and Σ(λSPF) or Σ(λRF);

 Compute the SPFM and LFM given by (10) and (11).

𝑆𝑃𝐹𝑀 = 1 −
∑(𝜆𝑆𝑃𝐹 + 𝜆𝑅𝐹)

∑ 𝜆
 (10)

Safe
(λSF)

MPFL (λLF)

SPF
(λSPF)

Base Failure Rate (λ)

Not Safe Faults (λnSF)

MPF (λMPF)

λnSF = λ ´ (1 - FSF)

λSF = λ ´ FSF

λMPF = λnSF ´ (1 - FPVSG)

λSPF = λnSF ´ FPVSG

λLF = λMPF

C
alcu

latio
n

 Step
s

64

Notice that the λSPF and λRF are subtracted from the total failure rate

in (11) because the faults that directly violate an SG are not latent

anymore thus cannot contribute to LFM. Additionally, it is important to

highlight that the greater the FSF, the better provided the base failure rate

given by (1) hence justifying a more detailed safety analysis for some

cases.

𝐿𝐹𝑀 = 1 −
∑(𝜆𝐿𝐹)

∑(𝜆 − 𝜆𝑆𝑃𝐹 − 𝜆𝑅𝐹)
 (11)

The SPFM and LFM target values to achieve are established by the

ASIL determined to the SG, which the probability of violation is being

analyzed. Table 10 shows the target reference values defined in the ISO

26262 standard. This qualitative detailed safety analysis is only applicable

for SG with ASIL higher than A.

Table 10 – SPFM and LFM target values. (Source ISO 26262).

Metrics ASIL B C D

𝑆𝑃𝐹𝑀 = 1 −
∑(𝜆𝑆𝑃𝐹 + 𝜆𝑅𝐹)

∑ 𝜆
 ≥ 90 % ≥ 97 % ≥ 99 %

𝐿𝐹𝑀 = 1 −
∑(𝜆𝐿𝐹)

∑(𝜆 − 𝜆𝑆𝑃𝐹 − 𝜆𝑅𝐹)
 ≥ 60 % ≥ 80 % ≥ 90 %

3.3. FAILURE MODE EFFECTS, AND DIAGNOSTIC ANALYSIS

At initial phases of the safety lifecycle, an FMEA can be performed

in order to describe the item’s function, identify and classify the

hazardous events to determine the ASIL, which becomes assigned to the

SGs defined to avoid unreasonable risk. An FMEA tool is normally based

on complex spreadsheet or database where all the aforementioned data is

entered through the FMEA worksheets [33]. This kind of qualitative

analysis does not consider the failure rate or DC metrics [34]. Therefore,

the quantitative evaluation of the safety metrics is commonly supported

by an extended FMEA, named “Failure Mode Effects, and Diagnostic

Analysis” (FMEDA).

Table 11 shows a worksheet based on the microcontroller FMEDA

example given in the ISO 26262 part [28]. The Table 11 FMEDA uses

informative entry values for the sake of the calculation demonstration.

65

The part and subpart of the microcontroller analyzed are the CPU and its

ALU instance. The permanent and transient failure modes are considered

for the ALU subpart. The microcontroller has two SMs in place. The

mechanism number one (M1) is a monitor of the CPU that can detect

faults which cause the software to run out of sequence. The M2 is SBST

executed at key-on – i.e., vehicle startup – to detect latent faults. Any fault

detected by M1 or M2 activates an output signal of the microcontroller

and a system level requirement shall be specified to make proper use of

this signal – e.g., go to a safe state or alarm the driver. M1 can also detect

transient faults hence the CPU can be reset in order to resume the fault-

free state. If the error persists after reset, then the fault is considered

permanent. Thus the FMEDA has no LF entry for the transient failure

mode. No SPF entry appears in the example because there are SMs for all

failure modes. If a subpart without any SM is added to the FMEDA, then

its row would have 0% as DCP
RF, and the failure rate associated with the

SPF could be placed in the λP
RF column. This is possible because λP

SPF and

λP
RF are complementary with respect to the contribution to the SPFM and

LFM calculations given by (10) and (11), respectively.

Table 11 – Microcontroller FMEDA examples adapted from the ISO 26262.

Design (µC)
Permanent

Failures

Transient

Failures

 SPF/RF MPF SPF/RF

P
a
rt

S
u

b
p

a
rt

S
-R

 (
Y

 /
 N

)

F
M

a
(P

 /
 T

)

λP
 (

F
IT

)

F
P

S
F

 (
%

)

S
M

b
 (

R
ef

.)

D
C

P
R

F
 (

%
)

λP
R

F
(F

IT
)

S
M

 (
R

ef
.)

D
C

P
L

F
 (

%
)

λP
LF

 (
F

IT
)

λT
 (

F
IT

)

F
T

S
F
 (

%
)

S
M

 (
R

ef
.)

D
C

T
R

F
 (

%
)

λT
R

F
(F

IT
)

C
P

U

A
L

U
 Y P 25 20 M1 90 2 M2 60 7.2

Y T 15 20 M1 90 1.2

Totals Σ(λP) Σ(λP
RF) Σ(λP

LF) Σ(λT) Σ(λT
RF)

a The Failure Modes (FM) considered are Permanent (P) and Transient (T). The

initial letters are used to mark the entries associated with each FM.
b The example has two SMs with the reference names: M1, which can cover

permanent and transient residual faults; and M2 that detects latent faults.

After the Table 11 is complete with all relevant parts and subparts

of the microcontroller, then the summations Σ(λP) and Σ(λP
RF) can be used

66

in (10) to calculate the microcontroller’s SPFM associated with the

permanent failure mode. The same can be done with Σ(λT) and Σ(λT
RF) to

calculate the SPFM for transient faults. To find the LFM, the summation

Σ(λP
LF) together with Σ(λP) and Σ(λP

RF) can be used in (11). Notice that

such detailed analysis provided by FMEDA tools allows identifying

which parts or subparts that most contribute to the total failure rate or that

need a higher DC thus allowing to specify new requirements to achieve

the SPFM and LFM requisites.

The Appendix D in the ISO 26262 – Part 5 [32] shows the generic

hardware of an embedded system – e.g., power supply, clock, digital and

analog I/O, and specific to semiconductors there are: ALU, register bank,

interrupt handling, etc. For each generic element, the standard provides

the common SMs and their typical achievable DC for different failure

modes of the element. This start point information can be used as

guidance for the selection of the SM and the target DC to achieve in order

to comply with the SPFM and LFM derived from the ASIL. However, the

techniques mentioned in Appendix D are not exhaustive, and other SM

might be used. Additionally, there are constraints that the appendix cannot

entirely consider when evaluating the DC of a generic SMs – e.g., the

quality of the self-test executed by SBST, the periodicity that an SM shall

be triggered to diagnose LF. Therefore, any kind of SM can be used

provided evidence that corroborates the DC claimed.

3.4. RELATED WORK: FAULT INJECTION APPLICATION

Fault injection is broadly accepted to evaluate the response of a

circuit in the presence of faults [35]. Thus, it plays a key role as a method

to verify fault tolerance techniques integrated into the design of resilient

systems. ISO 26262 strongly recommends fault injection to evaluate the

completeness and correctness of the SMs for the higher ASILs – i.e., C

and D. The same level of recommendation, independent of the ASIL,

applies to the functional verification of the SMs. At SoC level, some SMs

may only be triggered by the injection of a fault in the system since an

external TB can not directly control SoC’s internal subparts’ inputs and

outputs. Additionally, constraints like “Fault Reaction Time” and “Fault

Tolerant Time Interval” must be verified to assure compliance with the

requirements. Figure 16 illustrates the mentioned SMs’ time constraints.

67

Figure 16 – SM’s time constraints. (Adapted from ISO 26262).

Yogitech S.p.A is a member of the technical committee for the ISO

26262, and it has announced to be the lead of the ISO 26262 Part 11 [36].

This company provides state-of-the-art solutions for semiconductor

safety design including fault injection campaign to verify DC. The

academic contributions [37] [38] [39] from the Yogitech staff give a

detailed introduction with regard the usage of fault injection to assess

safety at semiconductor level. On the other hand, DC verification based

on fault injection is not well promoted in the ISO 26262 standard.

Yogitech is a safety consultant company experienced on guiding the

customers throughout the safety certification process, therefore, its

published research permits to better understand how fault injection is used

within the safety context. Meanwhile, it serves as a reference material

until ISO 26262 – Part 11 is not officially released, which will bring more

details on fault injection and other particularities of safety application at

semiconductors level.

Yogitech indicates how the DC verification is performed using

fault injection in [37], but the hardware architectural metrics calculated

based on the IEC 61508 – not equal to the ISO 26262 metrics. The

certification body TÜV SÜD has approved the so-called

“fRMethodology” presented. A “sensitive zone” is an identified site of

the design in which the faults within its input cone converge, henceforth,

leading to the activation of failure mode – see the sensitive zone

illustration [38] in Figure 17. The design is partitioned into sensitive

zones, and their failure rates are calculated and stored in an FMEDA

database. The base failure rates of the gates within sensitive zone cones

are defined according to the failure mode – e.g., permanent in glue logic

during power-up/down or normal operation, transient in registers or logic.

The number of gates extracted from the IC description and their

elementary failure rates among other parameters – e.g., frequency of use

(only for transient) and DC – are stored in the database too. This

Normal
Operation

SM Diagnosis
(e.g., Diagnosis Routine)

SM Reaction
(Transition to Safe State)

Safe State

Time
Diagnostic Interval Time Fault Reaction Time

Fault Tolerant Time Interval

Propagated Fault Possible HazzardFault Detection

68

information is used to calculate the hardware architectural metrics of the

IEC 61508. Next, fault injection is used to validate the FMEDA database.

Evidence that the workload – i.e., TB and tests – used is appropriate needs

to be provided in order to guarantee the sensitive zones are properly

stimulated while injecting the faults. Coverage collection, the number of

faults injected, test’s run-time, and other profiling information are used to

check the confidence of the fault campaign results.

Figure 17 - Sensitive zone illustration (Source: [38]).

Prior the ISO 26262 release, Yogitech was already working on DC

assessment based on fault injection at semiconductor level [38]. In

collaboration with the Politecnico di Torino, a new tool was proposed

considering the requirements specified by IEC 61508 for safety-related

systems [39]. The tool is intended to work with any functional verification

environment, regardless the EDA tools available. The goal of the

presented solution is to enable the verification of SMs at different

abstraction levels by leveraging the functional simulators used in the

verification environment. For that reason, the fault models had to be

implemented according to the existing tools on each environment setup

due to the lack of fault injection support by the standard simulators

available at that time [40]. In the tool proposal, an example of the SEU

model is provided using the Functional Verification Language e (IEEE

1647) for verification flows containing the Incisive® Specman® Elite.

Figure 18 shows the Fault injection environment proposed in [39].

69

Figure 18 – Fault injection environment proposed in [39].

After the FMEA is available, the SMs are implemented, and the

sensitive zones are extracted, two other fault campaign elements are

defined: the observation and the diagnostic points. There are monitors for

these elements and also for the sensitive zones – in Figure 18, they are

referred as OBSE, DIAG, and SENS monitors, respectively. The faults

within the sensitive zone’s cone that do not trigger the SENS monitor are

irrelevant for the analysis since they do not perturb the functionality. On

the other hand, the number of faults, which propagate through the SENS

until the OBSE monitors, contribute to the fraction of dangerous faults.

Therefore, special registers or primary outputs of the design under test

(DUT) are commonly selected as observation points. The DIAG monitors

are typically located at the output of the SMs thus providing the

information of which faults were covered by the diagnostic functions

implemented in the DUT.

The golden – i.e., fault free – instance of the DUT is executed in

parallel to the faulty instance, and both share the same workload stimulus.

The workload selected is either device or mission oriented – i.e., for

generic usage of the device or a specific application, respectively. When

the former kind of workload is selected, then the number of faults to inject

can be reduced by not considering parts of the circuit that are not used by

the application. With the workload defined, the fault-free run is analyzed

in order to identify the most suitable moments to inject the faults – e.g.,

70

assure that the transient faults injected in a memory element precede a

read access hence the effect can propagate before being override by a

write command. The workload completeness is measured by the amount

of SENS and OBSE monitors that are excited at least once This is done

by enabling toggle coverage where the monitors are located [38].

For each fault, the simulation stops at the injection time, then the

fault model is executed, and the simulation run continues until the test

finishes. At the same time, the OBSE and DIAG monitors keep collecting

data that will be analyzed after all faults are injected in order to calculate

the DC. However, an exhaustive analysis is typically not feasible, hence

only a set of all faults can be injected. Therefore, it is important to select

the optimal fault candidates thus avoiding the injection of faults that have

no effect. The experiments show that the fault list generation based on the

workload profile reduced the number of faults to inject by 50%. The test

case used is a simple router with one input and three possible output

channels to where the data packets can be routed. Each channel has a

buffer working as a queue with 16 words of 8 bits. Table 12 shows that

the router design has 9,648 fault candidates [39]. After analyzing the

workload, the set of faults to be injected was reduced to only 4,886 faults.

Table 12 – Average fault injection time of the experiments on [39].

Design

description

Number

of faults

Average fault

injection time

Router (without optimization) 9,648 4.1s

Router (50% fault set reduction) 4,886 3.7s

32-bit RISC Processor 25,000 56.6s

Eleven hours of simulation time were necessary to inject all faults

while the optimized set of faults took about five hours to complete [39].

This overall time corresponds to 4.1 and 3.7 seconds, respectively, to the

average simulation time for each fault injection – see Table 12. Although

the overall time is drastically reduced, the optimization does not provide

a significant improvement on the average fault injection time. Additional

experiments with the tool presented have been done during the validation

of real safety critical design based on a 32-bit RISC processor. Table 12

shows that 25 thousand faults were selected to be injected – the original

number of fault candidates was not disclosed. In this example, the average

simulation time required for each fault injection was almost one minute.

Thus showing that the fault simulation time is independent to the

71

optimization presented. Another relevant consideration is that the tool

reuses the available functional verification tools in order to minimize the

flow setup time.

The Industrial Technology Research Institute (ITRI) in

collaboration with the National Tsing Hua University has also published

their experience on DC assessment based on fault injection [41]. While

discussing the related works, the paper reaches a common understanding

“that the description of the probabilistic hardware metrics in ISO 26262

is intrinsically not easy to follow”. Additionally, it highlights that other

researches in the literature do not disclose how the safety evaluation is

performed, which support the proof for claimed ASIL achieve. For

instance, the “safety analysis report” – with the component’s FMEDA –

of the ISO 26262 certified microprocessors from Texas Instruments Inc.

(TI) cannot be accessed without a non-disclosure agreement (NDA) [42].

More details about the TI’s safety evaluation are only available to

customers who require tailored safety analysis according to the target

application.

Given the lack of references, the ITRI limits its paper contribution

on reporting their experience on the functional safety assessment of a

MIPS-like microprocessor. Therefore, no kind of optimization or novel

methodology is proposed. However, its detailed description provides

deep insight on how the DC evaluation can be performed when

considering the permanent failure mode. The TetraMAX ATPG suite is

used to inject SAT faults in order to validate the initially estimated

hardware architecture metrics what refers to the permanent failure mode.

The paper provides a snippet from the SN 29500, which is used to perform

the base failure rate estimation of the microprocessor subparts. Table 13

contains the data from the SN 29500 snippet.

Table 13 – SN 29500 hardware failure rate estimation. (Adapted from [41])

Gates ≤ 1K ≤ 10K ≤ 100K ≤ 1M in °C

CMOS 25 50

CMOS 30 60

CMOS 50 70

CMOS 80 80

Each subpart of the MIPS-like component gets a base failure rate

derived from Table 13 according to their number of gates. However, the

72

2004 version of the SN 29500 standard provides more conservative

estimations than the reliability data found in more recent standards [28].

Therefore, deriving the failure rate for each subpart from Table 13 can

result in an overall failure rate too conservative. Alternatively, the SN

29500 could be used to calculate the overall base failure rate, which then

is allocated to the subparts according to their percentage of gates relative

to the whole component. Table 14 was prepared to highlight the

difference between the two mentioned approaches of estimating the base

failure rate. Even using the former calculation approach, the numbers are

still ten times more conservative than the failure rates utilized in a similar

example found in the ISO 26262 [28].

Table 14 – Two different approaches for calculating the base failure rate using

the conservative SN 29500 reliability data.

Block Gates Base Failure Rate (FIT)

Source data [41]
Estimated for

each subpart

Derived from the

overall estimation

Register File 1,209 30 a 1.066

Instruction memory 27,192 50 a 23.977

Decode unit 128 25 a 0.113

ALU 208 25 a 0.183

Data memory 27,186 50 a 23.972

Write-back unit 35 25 a 0.031

Pipeline register 746 25 a 0.658

 Totals 56,704 230 50 a

a failure rates calculated based on the SN 92500 data.

Another usage of fault injection in the safety context is the

evaluation of dependent failures [43]. For example, faults on the clock or

reset signals can result in a “common cause failure” (CCF) of the

redundant parts of a system. Therefore, the possible CCFs must be

identified since the associated faults can have a global impact on a large

area of the component [38]. Fault injection using higher level design

description can support the identification of CCF [44]. However, this is

out of the scope here.

73

3.5. CHAPTER REMARKS

This chapter presented how the fault injection appears in the ISO

26262 context. After the component’s FMEDA is complete, the subparts

base failure rates are allocated, and the expected SMs’ DC are defined, it

is possible to calculate the hardware architectural metrics. Fault injection

is then used to validate the FMEDA results by evaluating the DC

estimated. However, ISO 26262 does not provide technical details on how

this evaluation shall be performed. Additionally, this process is typically

tight to the design application and the verification environment available.

Therefore, details about the fault injection based on DC evaluations at

semiconductor level on real designs are not common in the literature since

it would disclose too much information about the design and the setup

used. In the next Chapter, the dedicated functional verification machine

is introduced. The DC evaluation approach proposed leverages this

dedicated platform to accelerate the fault injections. However, not all

faults can be accelerated without modifying the design description, so the

next chapter also describes the algorithm developed to select suitable

faults to run on the dedicated platform.

74

75

4. FAULT INJECTION CONCEPTS AND TECHNIQUES

As already mentioned, safety – main focus on this research – is just

one of the attributes that are encompassed by the dependability concept

[45]. The attributes together with the threats and means are the three

elements that compose the tree shown in Figure 19, which is traditionally

used to summarize the dependability concept even nowadays [46].

Figure 19 – Dependability tree. (Sources: [45] [46]).

In order to avoid unreasonable risk and hence provide functional

safety, SMs are added to the design as means of mitigating the

dependability threats, which are: faults, errors, and failures. Figure 20

illustrates how the threats correlate, and it also contains a synthesis of the

most common definition for fault, error, and failure found in the literature

[47] [45] [48] [13] [46].

Figure 20 – Summarized dependability threats explanation found on [47] [45]

[48] [13] [46].

The correlation between fault, error, and failure presented in

Figure 20 can be replicated for each abstraction level in order to

exemplify how faults in the component level can lead to vehicle failures,

as shown in Figure 21. Common practices of systematic faults prevention

Dependability Attributes

Threats

Means

Fault

Error

Failure

Fault Prevention

Fault Tolerance

Fault Removal

Fault Forecasting

Reliability

Safety

Availability

Confidentiality

Integrity

Maintainability

Secu
rity

Error

Deviation of the system
expected behaviour due to
the manifestation of a fault

Failure

Interruption of the correct
service delivered by the

system as result of the error

Fault

Physical defect, imperfection,
or a flaw that happens within

the HW, SW, or human
component of the system

76

are coding guidelines, specification review, code/functional verification

coverage, manufacturer tests, among others means. Memory protection

and SMs based on some kind of redundancy are examples of techniques

used to tolerate random faults during the operation lifetime. When there

is an error that could not be corrected, then it is important that the system

fails in a safe manner thus reaching a predictable, and safe state – e.g., a

redundant shut-off of the cruise control system [49].

Figure 21 – Dependability threats at different level (adapted from [50]).

4.1. TRANSIENT FAULTS

At digital semiconductor level, permanent and transient are the two

failures modes that most appear in the ISO 26262 hence also considered

here – as pointed out before. The history shows that the technology

scaling has a significant impact on the circuit vulnerability against single-

event-effects (SEE) caused by radioactive particles even for applications

operating at sea level [51]. Differently, of a hard error that results in

permanent damage, a soft-error is a reversible upset of a circuit element,

which is the consequence of a SEE fault, such as, SEU and SET – hence

the failure mode name “transient” that encompasses these kinds of faults.

Figure 22 shows the electron-hole pairs generated by the particle strike at

Systematic Failures

Failure Prevention
• Redundant Shut-off
• Fail-state concept

Fault Tolerance
• SMs, Redundancy
• Memory Protection

Hazard

Failure

Error

Fault

Failure

Error

Fault

Failure

Error

Fault

Fault Prevention
• Guidelines, Tests
• Review, Verification

Abstraction
Level

Th
re

at
s

M
ea

n
s

Random Failures

77

a sensitive node such as the drain of an OFF-transistor in a CMOS circuit

[52] [53] [54] [55]. Therefore, the charge collected by the particle strike

can generate a positive or negative voltage pulse depending whether the

particle hits an OFF-PMOS or an OFF-NMOS, respectively. Figure 22

illustrates a CMOS inverter with the input connected to the ground, hence

its output remains high until a SET fault hits the OFF-transistor of the

combinatorial gate producing a voltage glitch.

Figure 22 – Voltage glitch at the output of logical gate caused by a SET fault

(adapted from [52] [53] [54]).

The glitch duration, for example, can determine whether a SET can

become a soft-error via the fault effect capture by a storage element – e.g.,

memory cell, flip-flop, latch. Not all particles have the energy to cause

transient faults and not all SET can result in a soft-error since its

propagation can be masked due to logical, electrical or timing reasons –

e.g., SET propagation falls outside the flip-flop latching window [52]

[56]. On the other hand, an SEU fault corresponds to a particle that hits a

storage element directly instead and bit-flip (upset) its content. Therefore,

an SEU fault always results into a soft-error provided its effect deviates

the correct behavior of a sequential circuit element. For that reason, the

SEU term is often found in the literature being ambiguously used as a

synonym for soft-errors [51].

4.2. PERMANENT FAULTS

There are SEEs which may persist until the circuit is reset or even

cause irreversible damage, thus resulting in a hard-error – e.g., single

event latchup (SEL). In addition to radiation effects, manufacturing

N+N+
+ -++ -
-

- -

+ +
++

Drain Source
Gate

Parti
cle

Stri
ke

Transient
Glitch

Parti
cle

Stri
ke

78

defects and circuit aging are also related to permanent – and intermittent

– faults that can lead to hard-errors [35]. With the continuous technology

scaling, new IC designs do not only need to cope with the vulnerability to

transient faults, but also consider the device lifetime, which tends to wear-

out early, and the residual defects that escape manufacturing tests due to

the transistor density [57] [58] [59]. Among the permanent faults, the

most well-known fault model is SAT, which covers many physical

defects [60] [61]. Safety-related researches and the ISO 26262 standard

suggest that some techniques for SAT faults – e.g., N-detect and gate-

exhaustive – are used to detect other common permanent fault models like

bridging or stuck-open at transistor switch level [28] [37]. Therefore, any

optimization of the SAT fault injection can be beneficial to other SAT

based techniques.

SAT faults account for many transistor level faults that can be

modeled at GL by making an input, or an output of a gate stuck at a

constant value, either logic 0 (SA0) or logic 1 (SA1) [62]. Figure 23

illustrates a multiplexer (MUX) at GL in order to highlight the locations

where the SAT faults shall be considered according to the industry

compatible fault model [63]. This compatibility mode includes SAT

faults in the primary inputs (PI) and primary outputs (PO) of the circuit.

The MUX example presented has 15 fault sites (or nodes) thus

corresponding 30 SAT faults in total. In Figure 23, the circuit considered

has a MUX implemented connected directly to the PIs and POs, hence

eight SAT faults are associated with the primary ports of the circuit.

Figure 23 – MUX circuit with all possible SA0 and SA1 faults indicated.

g3

g2
g1

g4

A

B
Y

A

B
Y

Y
A

B

Fault type:
SA1 SA0

79

4.2.1. Fault activation and propagation concepts

Fault coverage corresponds to the number of faults that can be

detected by the manufacturing test, thus providing the quality of the

selected test set. However, even after the simplification achieved with

SAT fault model in comparison to transient faults, the number of faults to

be detected can be too many for a complex circuit. Collapsing and

testability analysis are optimizations used to reduce the SAT fault-set.

Testability analysis statically checks if there are SAT faults which always

produce the same output as a fault-free circuit – i.e., there is no possible

test that can detect these faults. For a fault to be testable, it must be

possible to activate and then propagate its effect to an observation point

– e.g., a primary output. A fault can be activated when there is a test

capable of driving the value opposite to the one which the fault node is

stuck-at. After activation, the fault effect must not be masked in order to

propagate until a detection point. Figure 24 illustrates the activation and

propagation concepts.

Figure 24 – Activation and propagation concepts.

In Figure 24, an SA0 fault occurs on one input of the AND gate,

and consequently, the gate’s output gets fixed to ‘0’. The SA0 effect at

the AND gate output can only be noticed when the inputs are set to ‘1’,

what would make a fault-free AND gate to output ‘1’, and not zero as

shown in the example. For this to happen, the fault must be activated by

driving ‘1’ to the gate’s input where the SA0 is located. Additionally, the

fault effect shall be able to propagate, which means that the stimuli to the

other inputs of the gate should not block the SA0 effect. On the other

hand, there are some cases which the activation or propagation are not

possible as shown in Figure 25.

AND
1

0
0

SA0 not
activated

AND
0

1
0

SA0 activated, but
not propagated

AND
1

1
0

SA0 activated
and propageted

SA0 propagation activation

80

Figure 25 – Untestable faults (adapted from [63]).

4.2.2. Fault collapsing and testability

The untestable faults correspond to possible faults in the circuit

model which no test that can make the fault detected at an observation

point. The reasons for that can be: SAT with the same value of a tied node,

hence never activate; a SAT located on an unused logic thus cannot

propagate to anywhere; and the existence of redundant logic, which can

block the propagation of the SAT fault. In the end, untestable can be

deleted from the list of faults to detect [63].

Figure 26 – Local fault collapsing rules at GL (adapted from [62]).

Q

Q
SET

CLR

D

Tied LogicUnused Logic

Q

Q
SET

CLR

D

Redundant Logic

1
 NOR

0

 OR

1

Ground UnconnectedpropagationSA0

AND AND

 OR OR

NAND NAND

 NOR NOR

NOT

NOT

NOT
BUF

BUF

BUF

1-N LINE 1-N LINE

RULES REDUCTION RULES REDUCTION

SAT pair SA0 SA1 collapsible faults

1-1 LINE
1-1 LINE

1-1 LINE

81

Also looking to reduce the fault set, collapsing techniques group

faults that produce identical (or equivalent) effect at the output thus being

indistinguishable from each other. In other words, there is no test that can

independently detect each fault from the equivalent group. For instance,

if one fault of the group is detected, then it means that all equivalent faults

are also detected. Collapsing can reduce the fault set by 50 to 60% [64].

Figure 26 illustrates the gate-oriented fault collapsing rules.

Figure 26 identifies which faults are collapsible – i.e., equivalent

faults are connected by a dashed line – within the basic element of a

circuit described at GL. One of the equivalent faults must be selected to

represent its group after collapsing. Therefore, after reduction of the faults

due to collapsing, the fault towards the circuit output is selected from the

equivalent group. The selected fault to represent its equivalent group is

called the prime fault.

4.2.3. Collapsing exercise and the backward propagation requisite

The rules in Figure 26 applicable to gates, highlight which faults

are logically equivalent. These rules are different from the “1-1 LINE”

rule, which collapses “redundant” faults added by the industry compatible

SAT fault model. For that reason, the gate-oriented collapsing starts with

the “1-1 LINE” being applied. The result of the “1-1 LINE” rule in the

MUX example is presented in Figure 27.

Figure 27 – Applying “1-1 LINE” collapsing rule in the MUX example.

After removing the “redundant” faults, each line segment in the

circuit – where “1-N lines” is equal to N+1 segments – has a fault pair

thus totalizing 18 SAT faults as shown in Figure 28. Next, the logic

collapsing rules can be applied to the MUX circuit thus further reducing

the fault set.

g3

g2
g1

g4

A

B
Y

A

B
Y

Y
A

B

Fault type:
SA1 SA0

Collapsed faults:
SA1 SA0

82

Figure 28 – Applying the logic collapsing rules in the MUX example.

Figure 29 shows that after collapsing, the final fault set for the

MUX example contains only ten faults, representing the 30 faults initially

considered.

Figure 29 – Final set of SAT faults after collapsing.

In Figure 29, it is important to notice also that the SAT fault pair

located in between the circuit’s PI and the line split, is prevented from

being collapsed by the “1-N LINE” rule provided in Figure 26. This rule

assures that the SAT fault model is observed, that is, the effect of the SA1

fault at g3.A shall not backward propagate and reach the gate g1. In other

words, the line driving a SAT fault node must be disconnected – or

isolated – as illustrated in Figure 29 [63]. The magnifier in this figure

highlights an analogy of an SA1 fault isolation done by disconnecting the

SAT fault input from the original driver and then connecting to VCC. The

fault isolation concept is relevant for the methodology presented.

g3

g2
g1

g4

A

B
Y

A

B
Y

Y
A

B

Fault type:
SA1 SA0

Collapsed faults:
SA1 SA0

g3

g2
g1

g4

A

B
Y

A

B
Y

Y
A

B

Fault type:
SA1 SA0

VCC

83

4.3. FAULT INJECTION TECHNIQUES

The semiconductor industry has extensively accepted fault

injection over the years, and its tradition comes either from the DfT field

or the know-how of robust circuit designs [40] [35]. Fault grading or fault

simulation is a well-known fault injection application, where the goal is

to determine the fault coverage of a given test set in order to guarantee

that most defective devices do not escape the manufacturing tests.

Another common usage of fault injection is for the verification of fault-

tolerant techniques used for hardening the circuit design. Today, there are

many fault injection solutions not just targeting this two most common

application, but different use cases also. For example, testbench (TB)

qualification (TB-Q) explores fault injection in order to expose bugs in

the checking – e.g., assertions, coverage bins, transactions – implemented

in the verification environment [65]. Functional safety is another use case,

where the ISO 26262 recommends fault injection with different semantics

across the safety lifecycle. In this former usage of fault injection, the goals

can be for instance evaluation of the hardware architectural metrics and

DC assessment as already discussed in this research.

The different fault injections techniques found in the literature are

commonly classified by the design representation type that underlies the

fault injection approach [66] [48] [35] [14] [67]. Therefore, the fault

injection can be based on:

 Hardware – it relies on the existence of the product prototype

where the faults are physically inserted by forcing faulty

conditions through the device pins or at specialized facilities

with access to radiation or laser equipment to reproduce

hostile environments;

 Software – applicable to data processing designs, where some

hardware faults can be imitated as software errors like

incorrect instruction code, wrong transaction sequence,

invalid message payload, etc.;

 Simulation – widely used technique, where a simulation tool

is employed to inject faults in the design model at different

abstraction levels (e.g., RTL and GL) thus not requiring a

prototype available;

 Emulation – commonly based on configurable devices like

FPGAs, with the objective of delivering performance rates

that are not feasible on simulation-based techniques;

84

 Hybrid – mixture of two or more techniques trying to

leverage and combine the best features of each of them. For

example, fault injection using on-chip debug access available

on the microprocessor to mimic hardware faults at software

level.

4.3.1. Fault injection aspects to consider for safety assessment

Different goals require support to different requirements that

associated with the target use-case. For example, hardware-based fault

injection is not suitable for TB-Q since it is available far too late for when

it is needed. Therefore, not all fault injection techniques are applicable in

the functional safety context. For functional verification of SMs for

example, different abstraction levels can be used. However, for the

evaluation of the hardware architectural metrics, the latest design model

before sign-off shall be used – e.g., GL netlist post-layout. The confidence

of the results achieved with a fault injection campaign is proportional to

the completeness of the stimulus used, the total of faults injected, and

level of detail of the design description [28]. On the other hand, the ISO

26262 does not require an exhaustive injection neither is entirely rigid

about the used abstraction level. So, there is some flexibility, but it can be

leveraged only if there is adequate justification. For example, fault

injection based on RTL is acceptable, provided sufficient correlation with

GL. However, this may be adequate for SM verification or initial DC

assessment only. For the final evaluation of the SPFM and LFM, an

auditor may not accept results based on RTL without an irrefutable

argumentation. Such argumentation may not be feasible if there are

solutions already available that provide more reliable results – e.g., that

inject more faults on the detailed design model. Therefore, the best-effort

concept is not just important for convincing a safety certification auditor.

It can also result in a commercial advantage for a company that invests in

a new solution, which might force the competition to accommodate the

state-of-the-art in order to avoid future liability.

In the functional safety context, the general requisites for fault

injection targeting SM verification and DC assessment at semiconductor

level, are:

 Feature the injection of fault models associated with the

permanent and transient failure modes including the

definition of their parameters – e.g., fault injection time and

fault duration;

85

 Support detailed design models, but also abstract descriptions

for early assessment – e.g., GL and RTL as mentioned in the

ISO 26262;

 Definition of different observation points in order to

distinguish faults detected by SMs from faults that propagate

through the functional output without prevention;

 Provide timing information with respect to fault observation

thus allowing to check if the fault tolerant time interval is

respected;

 Multiple fault injection thus enabling the verification of SM

that can handle more than one fault – e.g., Error Detection

and Correction (EDC) mechanisms;

 Usage of functional tests thus allowing an assessment closer

to the real application.

4.3.2. Optimizations and available tools

Considering the general requisites, there are optimizations for

reducing the overall time of fault injection campaigns, such as:

 Fault collapsing and testability analysis for SAT faults and

equivalent approaches for other fault models;

 Reusability of the functional tests and the existing

verification environment;

 Ranking of the most suitable test for the fault injection

campaign;

 Optimal fault injection time based on the application;

 Fault injection criteria to stop the injection run when it

occurs;

 Campaign threshold to conclude the campaign as soon as the

goal is reached;

 Distribution, parallelization, acceleration, and many others;

Recently, the major EDA vendors have noticed that fault-injection

solutions featuring these characteristics were missing in the market.

Tailored extension of existing tools started to be released in the EDA

business aiming to cope with the challenges of the functional safety

assessment. Incisive Functional Safety Simulator (IFSS) is a perfect

example [20] [21]. As an add-on to the vendor’s main HDL simulator,

IFSS provides specific features reflecting the standard requisites.

Competing with IFSS, there is Certitude, which was originally created for

86

TB-qualification based on fault mutation-technique, and now also support

to the ISO 26262 fault models [68] [65] [8].

IFSS is one of the tools used in this research. Since it is integrated

to an event-driven simulator, IFSS can benefit from the latest verification

methodologies and TB languages by reusing the existing functional

verification environment. It can be employed throughout the design

development due to the fault injection support at RTL and GL hence

suitable for a functional safety flow. Even more important is the reduction

of the fault campaign setup achieved by not requiring the generation of

test vectors or being restricted to structural GL netlist. These two

characteristics are common restrictions imposed by the most popular fault

simulation algorithm in commercial DfT tools, which takes advantage of

the GL netlist modularity to simulate only the parts affected by each fault,

concurrently [69] [40] [70]. Additional to concurrent fault simulation,

there are others DfT-oriented algorithms for performance improvement

compared to standard event-driven simulation, but still with limitations to

support behavioral models and transient faults. On the other hand, IFSS

can leverage the most sophisticated distributed resource management

(DRM) tools to run many faults simulation at the same time. However,

despite the simulation-based technique utilized, an exhaustive safety

assessment is practically impossible given the today’s design complexity

and the total of faults to consider. Statistical methods like fault sampling

permit to randomly select a feasible number of faults from the population

and yet obtain relevant metrics with sufficient accuracy [71]. The ISO

26262 suggests statistics for many other situations including fault

sampling, which are out of scope for this study and will not be covered.

4.4. FAULT SIMULATION ACCELERATION

4.4.1. FPGA Techniques

Emulation-based fault injection is typically proposed to overcome

the long runtime of techniques based on simulation [13] [14]. In order to

speed-up the fault injection run, FPGA-based techniques are often

proposed as they can efficiently emulate the circuit. In the FPGA-based

flow, the design must be synthesized to the specific target device, which

is later configured with the resulting bitstream – i.e., the “synthesis

image”. If the reproduction of the design copy containing a fault requires

modification of the design description, then the synthesis process

naturally becomes a bottleneck for the FPGA-based fault injection

87

emulation. Different approaches have been proposed over the years in

order to avoid this bottleneck thus enabling the benefit of emulation-

acceleration [72] [73] [74] [75]. The general ideas of these approaches

are:

 Substitution of GL cells by highly controllable blocks that

allows to enable or disable the error condition by fault

injection manager running on the platform with minimal

interaction of the computer host. This approach is suitable

when intrusion is not a concern;

 Dynamically partial reconfiguration featured in some FPGAs

is explored aiming to reduce the intrusiveness of the previous

approach. The fault injection controller is also implemented

in the FPGA or the emulation platform thus minimizing the

interaction with the host. However, these approaches rely on

the controllability provided by the FPGA configuration

resource, thus limiting the support to fault models;

 By manipulating the bitstream, it is possible to reconfigure

part of the circuit and replace it with its faulty version. In

order to do that, the design running in the FPGA must be

correctly stopped at the fault-injection instant and then

resumed after the bitstream portion has been overwritten. The

bitstream manipulation and reconfiguration must be executed

in the platform hence close or even inside of the FPGA due

to the communication bottleneck with the host. Additionally,

a full mapping between the synthesis image and the circuit

implemented in the FPGA must be disclosed by the

manufacturer to permit proper bitstream manipulation.

The application of FPGA-based approaches is mentioned in the

ISO 26262. They are suitable for SM verification for example in order to

maximize the performance of the fault campaign execution. However, the

validation of the hardware architectural metrics shall be done using the

most detailed model viable of the design. It might not be possible to show

sufficient correlation between the synthesized model running in the

FPGA and the latest GL netlist targeting another technology. Even if

feasible, the collection of correlation evidence to convince the auditor is

not a trivial task. Therefore, intrusive approaches like the replacement of

GL cells to enable fault injection should be avoided. Less intrusive

FPGA-based techniques can still be helpful as an additional methodology

to corroborate the results achieved.

88

4.4.2. Abstract Model Approaches

There are other acceleration approaches that explore the usage of

higher level description models to enable efficient fault analyses at the

system level [76] [77] [78]. Such methodology can be used to inject errors

at earlier stages of the development process to quantitatively assess SMs

selected to compose the design architecture. However, for more detailed

analysis, the abstracts models must be further refined in order to keep

sufficient level of details with respect to the actual design model.

Consequently, the effort of maintaining a parallel development flow just

for the high-level model with enough accuracy to the real implementation

must be considered. Similar as in FPGA-based approaches, yet sufficient

correlation between the models must be provided.

4.4.3. Hardware-Assisted Platform

4.4.3.1. Characteristics of the Available Platforms

Hardware-assisted platforms are proved by the major EDA

vendors as an acceleration solution for verification [10] [11] [12]. These

specialized machines are typically installed in secured and acclimatized

rooms given its valuable asset to the companies’ verification teams [79].

The most powerful model within the latest versions can emulate up to 9.2

billion gates, which can correspond to 40 billion transistors depending on

the design [80]. These platforms share some common features including

multi-users and simulation acceleration among others. It is not surprising

that these commercialized platforms also have in common the lack of

fault injection support since they were built targeting functional

verification speedup.

This research explores Palladium XP (PXP) from Cadence Design

Systems, Inc. in order to accelerate fault simulation. This hardware-

assisted verification platform can be employed for different verification

purposes in order improve the turnaround time [81]. In the following,

some of these purposes are listed:

 Virtual prototyping – mixed-accuracy abstract models are

emulated maybe together with RTL models eventually

available in order to enable architecture decision making or

closer software and hardware development and others;

 Co-simulation – runs thousand times faster than simulation

can be reached with the DUT mapped in the platform and the

89

TB residing in the host. Hence, it can still leverage the

capabilities of advanced verification languages.

 In-circuit emulation (ICE) – the full design is mapped into

the verification platform with the possibility of real-world

interaction devices through rate adapters for interfaces like

Ethernet, USB, and others.

A variation of the ICE mode exists, which supports the commonly

called the synthesizable TBs (STB) that runs together with the DUT in

the platform. The ICE mode with STB permits much higher simulation

acceleration since there is no communication with the host, which

naturally reduces the run performance.

Run-time debugging features available in any commercial

simulator are standard requirements for any acceleration solution. These

features can be: waveform generation; run-time control/access to signal

values; assertions; user customized logging; functional/code coverage

collection; and so on. Such standard features are not exclusive to one

hardware-acceleration platform they are supported by all of them.

However, regarding their utilization in the fault injection context, there

are specific characteristics that can be leveraged, which are not common

to all solutions.

4.4.3.2. The Application of the Hardware-Assisted Platform Used

Since PXP is a processor-based platform, it contains a distinctive

advantage towards the FPGA-based fault injection techniques discussed.

The same design representation – later referred as snapshot – that is used

by the simulation tool can also be mapped to run on PXP without

requiring any synthesis step as in the FPGA flow. The snapshot resulted

from the compilation of the HDL files is automatically mapped to the

PXP. Hot-swap between the simulator and accelerator platform enables

seamless execution of the snapshot on both domains. The processor-based

architecture of PXP also delivers equivalent performance regardless

design model being RTL and GL thus providing significant acceleration

for GL simulation. The development history of the three most important

hardware-assisted verification platforms indicates that PXP is the only

solution not based on FPGA, which seems to allow these unique features

[82] [83] [84].

Considering the functional safety context, all these characteristics

made PXP an appealing candidate for fault injection. However, the actual

feasibility of emulating faults using the hardware-assisted platform had to

90

be investigated. The potential benefit of using such kind of platforms for

fault injection has recently been acknowledged as suggested future work

[77] [85]. However, they either suggest an intrusive modification of the

design model to enable fault emulation or recommend the definition of

accurate fault models to be used with high-level abstractions models.

Actually, it has been found only one research that proposes a solution

based on the hardware-assisted platforms to accelerate fault simulation

[86] – continuation of the work presented in [87]. The approach

substitutes the flip-flop cells by equivalent saboteur cells that are used to

enable SEU fault injection. Different from other intrusive techniques, the

fault injection manager resides in the computers host thus resulting in

more communication with between the host and the platform.

There is no other similar approach, to the best of the author’s

knowledge, which leverages from hardware-assisted platforms to

accelerate the injection of the ISO 26262 models fault injection.

4.5. CHAPTER REMARKS

This chapter presented the main concepts of fault injection

including various techniques available in the literature. Additionally, the

hardware-assisted verification platforms were introduced and their

characteristics discussed. There are unique features available in the PXP

platform that are valuable for fault injection within the safety domain.

Related works based on the hardware-assisted platforms are scarce and

do not leverage the characteristics highlighter. In the next chapter the

approach developed in this research to accelerate the fault simulation is

presented.

91

5. LITERATURE REVIEW ON FAULT INJECTION

ACCELERATION

Fault injection is a widely accepted technique to assess design

robustness [88]. Moreover, the injection of faults plays a key role in the

manufacturing test domain [40]. Adding to that, fault injection is also

employed for functional safety assessment and TB-Qualification. Across

the use cases, there are many aspects that impact on fault injection

definition. The abstraction level will define the fault models that can be

applied and also the applicable optimization. For instance, the duration of

the campaign, and the level of details in the design description also have

influence in the number of faults to inject. Therefore, the phase of the

product lifecycle where the fault injection is considered contributes to the

decision regarding the applicable injection technique.

5.1. SCOPE OF THE LITERATURE REVIEW

With so many aspects associated with fault injection, innumerous

researches have been conducted addressing several challenges that are

intrinsic to each aspect. Therefore, it is important to draw the borderline

in order to be able to cover one, or a couple of the possible topics properly.

As already discussed, this Thesis’ goal is to propose a methodology to

accelerate fault injection considering the functional safety challenges. To

be more precise, the objective is to provide better performance than fault

simulation when assessing the hardware architectural metrics before sign-

off. Therefore, the design abstraction level focused here is the gate-level

netlist. RTL is also applicable, and it is planned to be covered in the

future. The targeted fault model is Stuck-at (SAT), but SET and SEU

faults are also discussed since they appear in the ISO 26262.

The literature review considers fault injection acceleration

solutions which match the provided scope definition. The functional

safety requirements drive the related work discussion. Given the broader

application of the proposed solution, it is possible that the presented

contribution can be leveraged for other use cases different than functional

safety. However, functional safety is focused by this Thesis.

5.2. FPGA-BASED ACCELERATION VIA INSTRUMENTATION

FPGA technology is vastly explored to accelerate fault injection

campaigns. In 2001, Civera et al. [89] [90] presented an instrumentation

92

approach in order to provide the controllability and observability required

to enable the fault injection emulation. In the next year, the more recent

published results have shown a slight increase in the area overhead – i.e.,

between 8% and 42% – imposed by the presented solution [91]. Figure

30 indicates the amount of instrumentation required per flip-flop to enable

the injection of SEU faults. The reported acceleration was up to 60 times

faster fault injection when compared to fault simulation.

Figure 30 – Instrumented flip-flop. (Source [91]).

Lopez-Ongil et al. [92] in 2007 proposed an approach also based

on instrumentation to enable the control of the design atomic parts in

order to inject the faults. However, the presented “time-multiplexed”

technique seems to be the main difference of this solution, which allows

having the fault-free and the faulty version of the design running in

alternate clock cycles. Figure 31 shows the flip-flop instrumentation

required to implement “time-multiplexed” solution. Another two

instrumentation techniques are presented with less area overhead, but

consuming more memory resources of the FPGA. The claimed

performance is about 106 SEU fault injections per second. However, such

performance is achieved by quadruplicating the FPGA area consumed by

the user design.

93

Figure 31 – Flip-flop instrumentation enabling the “time-multiplexed” technique.

(Source [92]).

Entrena et al. [72] in 2010 published the work presented by Lopez-

Ongil in 2007. The diagram block with the proposed approach is shown

in Figure 32

Figure 32 – Emulation platform diagram. (Source [72]).

94

In this version, SET faults are supported due to the modeling of

delays inside of the cells at gate-level netlist. A second design module is

generated with only the FF instrumented. The idea is to inject SET faults

using in delay-enabled module implemented using shift registers

resources available in the used FPGA. Whenever, a sequential element

captures the fault, then the design state – i.e., flip-flop logic values at a

given moment – is copied to the module version with the instrumented

flip-flops only. This second module can run faster since it has not

implemented the delay. Both modules run on the FPGA, and the

“emulation manager” – shown in Figure 32 – selects the module to

execute. To enable SET fault injection acceleration, the proposed solution

requires a massive instrumentation. Additionally, the fault injection

campaign is executed over two generated models, which are derived from

the original design description.

5.3. FPGA-BASED ACCELERATION VIA RECONFIGURATION

Kenterlis et al. [93] in 2006 presents a platform, which automates

the fault injection of SEU faults by using the JBits API to tweak the

bitstream image used to configure the FPGA. With the API and full

control of the bitstream generation, only bits actually disturbing

configurable logic blocks could be selected to inject the faults, thus

reducing the fault space. Even if the faults were injected on the occupied

FPGA resources, the proposed methodology still was more verifying the

device itself than the fault tolerant design configured in the FPGA. Hence,

the approach was overdoing the vendor’s work, which already provided

reliability experiments information at that time [94]. Additionally,

significant interaction with the host is required, and a faster

communication link had to be used in order to reduce the bottleneck. Up

to two order of magnitude have been observed between simulation and

the proposed solution. Kuuhn et al. [95] in 2013 presented a similar

approach, but instead of using the JBits API, a tool was developed to

make the link. The developed tool provides the correlation between the

fault selected at circuit description – e.g., VHDL, Verilog – level, and the

generated bitstream for the injection of the fault. However, the research

focus was fault tolerance hence no fault injection performance figures

were discussed.

Aguirre et al. [96] [97] presented a non-intrusive FPGA solution,

where the fault are injected by the manipulating the configuration

memory of the device. Instead of corrupting the bitstream, FT-

95

UNSHADES leverages the dynamic partial reconfiguration available in

some FPGAs to inject the faults. Figure 33 shows the implemented

approach. The fault-free and faulty version share the same inputs, and

their outputs compared in order to check if the injected fault has

propagated out of the design.

Figure 33 – FT-UNSHADES Emulation approach presented in [97].

Mogollon et al. [74] in 2011 presented the second version of the

FT-UNSHADES solution. The new release promises to have eliminated

the communication bottleneck by processing all data management in the

developed platform. Experiments showing performance ration about

100k faults per second are claimed. However, the presented results

achieve up to 1980 fault injection runs per second.

5.4. SIMULATION-BASED ACCELERATION VIA INSTRUMENTA-

TION

Rohani and Kerkhoff [98] in 2011 presented the experiment results

achieved with the proposed simulation-based approach. First, the design

is modified in order to add the saboteurs shown in Figure 34. These

96

saboteurs allow to inject two SET and the SEU transient faults, and it also

permits to instrument a delay fault model. Each saboteur has an enable

signal which is controlled through the simulator tool commands. A pre-

analysis is performed utilizing a mathematical tool to configure the fault

campaign by defining the fault target, injection time, and injection

duration. The detection is checked as post-process step by comparing the

logged data generate during the fault-free run after each fault simulation.

The authors claim between 27% and 67% CPU time reduction against

other two considered.

Figure 34 – (a) SET 01. (b) SET 10. (c) Delay fault. (d) SEU. (Adapted from

[98])

5.5. ACCELERATION VIA FAULT CAMPAIGN OPTIMIZATION

Ebrahimi et al. [99] in 2015 presents a fault injection solution

applicable to the fault campaign pre-analysis in order to avoid wasting

time by ineffective fault injection. The proposed solution does not

consider an injection technique per se. Instead, it highlights the potential

benefit achieved with sampling by using the proposed analytical analysis

thus providing campaign speedup factor up to thirteen. Such contribution

can be leveraged by the workload profiling technique mentioned in the

97

functional safety assessment methodology presented in [39]. In general,

the proposed approach applies to any fault injection technique.

5.6. ACCELERATION VIA COMPLEXITY ABSTRACTION

Bombieri et al. [100] in 2011 utilize Transaction-Level Modeling

vastly used for functional verification at the system level in order to

optimize the fault simulation. The proposed approach claims automatic

extraction of the TLM models from the RTL description. Additionally, an

ATPG implemented with TLM models is used to generate the stimulus

for the DUT automatically. Even stating initially that by using TLM, the

performance gain can get up to a factor of thousand when compared to

standard RTL simulation, the results show a speedup between 6.3 and

68.8 times faster runs. Moreover, an interesting contribution corresponds

to the possibility of reusing the test vectors generated by TLM-ATPG

back into the RTL simulation.

5.7. ACCELERATION VIA HARDWARE-ASSISTED VERIFICA-

TION PLATFORMS

Daveau et al. [87] in 2009 proposed a fault injection acceleration

methodology using the hardware-assisted verification platforms. In the

following year, Bailan et al. [86] seemed to have moved forward with the

research, and published more experimental results. Similar to other

approaches, the acceleration is based on the instrumentation of the flip-

flops to enable the controllability required by SEU fault injection. About

20% of area overhead in addition to the fault injection controller that also

runs on the platform. Given the massive parallelism implemented, a

significant fault injection runtime reduction is achieved. The selected

fault target is a Leon2 IP core which can be replicated 19 times into the

same hardware-assisted platform domain. Using the 16 domains, 304

faults could be injected at the same time. Figure 35 shows that to achieve

such parallelism, one controller per domain is required in addition to the

master controller running in the host.

To the best of the author’s knowledge, this research is the only fault

injection acceleration technique, which is similar to the MADC solution

that is proposed in this Thesis. Therefore, a discussion comparing the

results achieved is carried out in the experiments chapter.

98

Figure 35 – Fault injection platform architecture highlighting the implemented

parallelism in [86] [87].

5.8. COMMENTS ON THE REVIEWED RELATED WORK

The presented MADC solution is different from any work found in

the literature review, as it does not require changing the design description

neither to provide the required controllability/observability nor to

synthesize for a different technology than the targeted one. Table 15 lists

some comments on the related work considering their application to

functional safety.

Table 15 – Related work comments.

Related work Comments

Civera et al.
[89] [90]

Instrumentation required with significant area overhead;

performance gain not as high as more modern solutions.

99

Lopez-Ongil

et al. [92]

Entrena

et al. [72]

Massive instrumentation needed in order to provide

sufficient controllability and testability in order to enable

fault injection; given the amount of instrumentation, it

may not be possible to justify a safety assessment done

using such different model. A SET fault injection

solution is later presented. However, a massive

instrumentation is required, and the campaign is

executed over two modules extracted from the original

design description. Three thousand SET faults per

second was the performance achieved in the latest

version commented.

Kenterlis

et al. [93]

FPGA-based approach where the faults are emulated by

external manipulating the device configuration to mimic

the fault; it is questionable whether there is any value

injecting faults in the device instead of the user logic

configured in the device; Even if not requiring

modification of the design description, the safety

assessment is done in the synthesized model targeting a

device different from the actually aimed application;

Kuuhn

et al. [95]

Aguirre et al.

[96] [97]

 Mogollon et

al. [74]

FT-UNSHADES work is already in the second version

given its successful application in the aerospace and

academic domains. However, the external manipulation

of the FPGA’s configuration memory seems to limit

fault injection ration. Approaches like in [75] presented

by the author, which leverage the internal access to the

FPGA’s configuration memory could be used to improve

the performance. FT-UNSHADES supports the injection

of SEU and SET faults.

Rohani and

Kerkhoff [98]

Simulation-based approach combined with

instrumentation; the pre-analysis for the campaign

configuration is something applicable to any fault

injection solution, which can be considered;

Ebrahimi

et al. [99]

In general, it is applicable to any fault injection

technique; Applicable to the safety domain;

Bombieri

et al. [100]

The safety assessment would be performed based on a

high-level generated model, and not in the actual design

description.

100

Daveau

et al. [87]

Bailan

et al. [86]

Massive parallelism, which can be leveraged by MADC;

Outstanding fault injection runtime achieved; Based on

instrumentation, which is not desired from the safety

point of view;

5.9. CHAPTER REMARKS

In Chapter 3, the related work containing relevant description

about the fault injection application to the functional safety domain is

presented. In Chapter 0, some of the state-of-the-art fault injection

approaches are cited. However, the related work discussion up to Chapter

5 was not sufficient, given the generic aspect of the proposed acceleration

solution. Therefore, in this chapter, a more broad literature review is

performed in order to allow putting the Thesis’ contribution in perspective

to the state-of-the-art. Next chapters present the proposed methodology

details and the obtained results.

101

6. PROPOSED FAULT INJECTION ACCELERATION

STRATEGY

As already mentioned, the proposed approach is based on the PXP

hardware-assisted platform, which is originally intended for general

functional verification speedup. The methodology implemented leverages

this platform to accelerated fault injection campaign execution. In order

to inject faults, the approach uses the common simulation debugging

features that are supported by PXP and other hardware-assisted solutions

thus not being restricted to one vendor. However, PXP has unique

characteristics and features that are leveraged here in order to achieve

better turnaround time.

Typical emulation-based techniques and other intrusive

approaches can demand a significant effort to convince the auditor by

showing the correlation between the latest design model and the one used

for the safety assessment. Therefore, such techniques may not be

applicable for the hardware architecture metrics evaluation using the pre-

silicon design model. The proposed approach avoid any kind of design

modification since it can run the simulation and the emulation sharing the

same snapshot, i.e., the HDL design compilation image.

MADC is the shortening for Methodology to Accelerated the

Diagnostic Coverage assessment. MADC is split into three main parts in

order to explain the proposed methodology. These three parts are:

 Enablement: the faults that can be accelerated are identified.

Collapsing is used to extend fault-set of identified faults.

Testability is used to avoid injection of untestable fault on

simulation or emulation;

 Flow: includes the required data input, the used tools, the

storage and manipulation before and during the fault

injection, the tools used, and the generated results;

 Execution: control of the runs and fault detection were

implemented to enable fault injection using the hardware-

assisted platform;

6.1. MADC ENABLEMENT

Force, deposit, and release are common features found in

commercial RTL simulation tools. They permit to control internal signal

values directly from the simulator console. The force command makes a

design signal remain stuck at the value predefined, while the release can

102

undo this. Similar to the force behavior, the deposit command also sets an

internal design signal to a certain value. However, the value set by the

deposit is overridden by the normal operation of the circuit whenever the

signal is driven again. The same set of commands are possible on PXP,

and they can be used to insert a fault condition in the design without

modifying the description. The force command has similar characteristics

as the SAT faults. On the other hand, the deposit feature is analogous to

the SEU fault behavior. In the proposed methodology, the force command

is used in order to replicate the fault injection effect of a SAT fault without

modifying the design model.

As already seen, the effect of a SAT fault shall not propagate

backward. However, the force command is applicable to the whole line

thus generating an incompatible behavior towards the SAT fault model.

Figure 36 highlights the backward propagation problem when using the

force command to inject a SAT fault in the g3.A pin. On the other hand,

there are many faults in the design, which the back propagation has no

impact on any other part of the design – e.g., cell outputs. Therefore, a

structural analysis has been developed in order to identify those nodes

where the SAT faults can be injected regardless if the fault effect

backward propagates or not.

Figure 36 – Backward propagation problem associated with the force command.

Structural information extraction from the GL netlist is required to

identify the faults that can be executed in the hardware-assisted platform.

The extraction was implemented using two different synthesis tools in

order to compare and validate the information collected [101] [102].

Redundant tool flows when considering the tools’ confidence level

required in the ISO 26262 [103]. Additionally, an ATPG tool was utilized

to generate the fault list with SAT industry compatible fault model

g3

g2
g1

g4

A

B
Y

A

B
Y

Y
A

B

Force-
Fault
injection

Propagation
direction

SAT
fault

Backward
propagation

103

together with the fault equivalent groups and testability information

[104].

Figure 37 shows the MUX once more, but this time, the circuit is

not directly connected to the PIs and POs. Hence only the SAT faults in

the gates are considered. Figure 37 is used to explain which faults can

actually be selected for injection utilizing the force command, and how

the number of faults suitable for acceleration can be optimized leveraging

the collapsing and the testability information.

Figure 37 – SAT fault selection.

Naturally, faults located on cell outputs do not have the backward

propagation issue since the effect of the force command cannot overpass

the line driver. The remaining faults may be collapsible with the output

faults thus allowing to maximize the ratio of faults verified by

acceleration and those that can only be simulated. However, it is

important to select the appropriate set of prime faults – equivalent group

representatives – in order to guarantee the correctness of the fault

injection executed in the emulator. Table 16 contains the equivalent

groups (EGs) for the example of Figure 37, and the IDs of the prime faults

are highlighted in bold – i.e., faults 6, 8, 12, 14, 19, 21, and 22.

The “acceleratable” (ACC) set of faults starts with those eight

located on cell outputs (OUT). The ratio of ACC faults is then optimized

by using logical collapsing (COL). Faults on input cells may not appear

in any equivalent group but still fit for verified through acceleration. Such

case can occur when the fault resides in an input cell that is connected to

a 1-1 LINE (1-1L), and there is no fault instrumented in the driver side;

otherwise, the two faults would have been collapsed. Fault 14 fits this

situation hence it is the only fault on the 1-1L column that is added to

g3

g2
g1

05
06

07
08

09
10

15
16

11
12

13
14

03
04

01
02

g4
17
18

19
20

21
22

A

B
Y

A

B
Y

Y
A

B

Fault type:
SA1 SA0

Lines and connections:
Driver
Source1-N LINE

1-1 LINE

104

ACC list in Table 16. A similar case happens with faults on unconnected

pins of registers or other cells, which also are not collapsible but still can

be accelerated.

Table 16 – Fault list analysis for the MUX example.

Fault List Equivalent Groups Ratio Optimization

Id

N
o
d
e

T
y
p
e

I/
O

E
G

1

E
G

2

E
G

3

E
G

4

E
G

s

O
U

T

C
O

L

1
-1

L

A
C

C

S
E

L

1 g1.A sa0 I 8 8 8

2 g1.A sa1 I 21 21 21

3 g1.Y sa0 O 21 21 21

4 g1.Y sa1 O 8 8 8

5 g2.A sa0 I 21 21 21

6 g2.A sa1 I 6

7 g2.B sa0 I 21 21 21

8 g2.B sa1 I 8 8 8

9 g2.Y sa0 O 17 17 17

10 g2.Y sa1 O 21 21 21

11 g3.A sa0 I 21 21 21

12 g3.A sa1 I 12

13 g3.B sa0 I 21 21 21

14 g3.B sa1 I 14 14

15 g3.Y sa0 O 19 19 19

16 g3.Y sa1 O 21 21 21

17 g4.A sa0 I 17 17 17

18 g4.A sa1 I 21 21 21

19 g4.B sa0 I 19 19 19

20 g4.B sa1 I 21 21 21

21 g4.Y sa0 O 21 21 21

22 g4.Y sa1 O 22 22

22 faults 11 2 2 3 8 8 11 1 20 6

Faults: () selected by the optimization; () new to the acceleration set

105

From the 22 SAT faults in the MUX example, 20 can be

accelerated (ACC) as shown in Table 16. However, the faults that can

actually be injected must be located on a cell output, 1-1 line, or on a not

driven pin. Therefore, the representative faults of the equivalent groups

within the set of ACC faults need to be selected properly in order to avoid

the backward propagation issue. The faults that are selected (SEL) to be

injected via the hardware-assisted platform are marked in bold – i.e., 8,

14, 17, 19, 21 and 22. For that reason, the fault representatives of the EGs

that are selected for acceleration can be different from the original prime

faults.

To summarize the importance of the MADC fault selection, then

the backward propagation related to the SAT fault injection via force

command must be clear. Figure 38 shows a hypothetical circuit to explain

the effect of the force command on the line in order to define when this

effect can be used to mimic a SAT fault model. Considering this fault

model, then the forward propagation is the expected behavior hence not

represented in the circuit illustration. Although the backward propagation

is not a valid SAT fault behavior, yet there are many circuit locations

where it has no actual side effect thus allowing to employ the force

feature.

Figure 38 – Highlight the importance of the MADC fault selection.

The force command is used to inject one SAT fault in the input of

the cell g3 in Figure 38. Given the force semantics [105], then everything

between the drivers and the sources of the line gets affected. Since the

fault is injected close to the source (g3 input pin) of the line, then the force

behavior in the line can be seen as the backward propagation of the fault

effect. For the fault injected in the g3.A, the force effect goes backward

g1

g3

g4

SourceDriver

backward
propagation

invalid SAT
propagation

force fault
injection

g2
A

B

A

B

Y

106

until it gets to the driver (g1.Y output) thus not disturbing any other part

of the circuit. Therefore, this fault is a suitable candidate for acceleration.

Notice that backward propagation concern is not applicable to fault

located at the drivers.

As already mentioned, there are some situations where the fault

effect does not only propagates towards the driver, but it also affects other

cells. For example, the force applied to the g4 input pin in Figure 38

generates a side effect by disturbing the g3 cell as well. Therefore,

whenever a line connects one driver to multiple sources, then the force

command is not suitable for the injection of the SAT faults residing on

cell inputs. For those cases, MADC checks if there is any equivalent fault

located in a driver, which then can be selected for acceleration. Table 17

lists the faults located between the sources and the drivers illustrated in

Figure 38 and comments whether they can be selected for acceleration or

not.

Table 17 – Faults suitable for acceleration considering the hypothetical circuit

example.

Cell Pin Tie Is the fault suitable for fault acceleration?

g1 output (Y) driver Yes. Output faults are always suitable

g2 output (Y) driver Yes. Output faults are always suitable

g3 input (A) source Yes. Same effect as injecting an output fault

g3 input (B) source a No, since it would disturb g4 as well

g4 input (A) source a No, since it would disturb g3 as well

g4 input (B) source Yes, assuming it is unconnected.
a although this fault itself can not be accelerated, still it may be

collapsible with another fault located in the cell output.

6.1.1. Enablement Algorithm

The fault selection described using the Table 16 can be seen as a

three steps procedure. The first-step corresponds to the selection of the

faults located in the output. The second-step and third-step are related to

the ratio optimization of faults that can be accelerated. These procedure

steps are illustrated by the pseudo-algorithm shown in Figure 39. MADC

relies on the structural circuit analysis developed to explore the SAT fault

injection in the hardware-assisted platform by discovering the faults that

do not require isolation – i.e.; its effect does not backward propagate. The

107

“Algorithm 1” in Figure 39 represents this structural analysis, where the

function c.faults(out,SAT) prints the SAT (SA0 and SA1) faults on the

output of cell c, while c.faults(in,SA0) prints the SA0 faults on inputs of

c. The p.faults(SA1) prints the SA1 fault of the corresponding cell pin p.

The p.connections() returns the number or cell pins interconnected by the

wire that is also connected to pin p.

Figure 39 – Pseudo-algorithm for printing the suitable faults to execute in the

hardware-assisted platform.

As already mentioned, the pseudo-algorithm shown in Figure 39

starts with the execution of the first-step to print all SAT faults located at

cell outputs, which are suitable for acceleration by default. As a second-

step, the procedure prints the faults that are collapsible to the output faults

thus being indirectly enabled for acceleration. After considering the

equivalent groups to increase the ratio of classified faults via acceleration,

then another optimization step is executed.

108

The third-step searches for faults in the same condition as the ones

located at the g3.A and g4.B pins of the example in Figure 38. Therefore,

if the function p.connections() returns a value greater than two, then it

means that a g3.B or g4.A kind of fault has been found. In this case, the

fault is not selected for acceleration, and the next fault is analyzed. When

the p.connections() is equal to one, then the fault is located at an

unconnected input pin – similar to the g4.B example. To not print the

same fault twice, MADC algorithm checks if the fault has not been

collapsed or marked as untestable already. Faults located on an input pin

connected to a 1-1 line can also be selected – the same situation as for the

g3.A fault in Figure 38. The faults not collapsed before are printed by the

MADC algorithm.

The DiscoverFaultsToAccel procedure shown in Figure 39 prints

all faults to be classified using the hardware-assisted platform. However,

only the prime faults need to be executed. In order to avoid choosing a

fault with side effects, MADC selects from the equivalent group, always

one fault that is located on a cell output pin. The faults printed during the

third-step are the only faults residing in cell input pin that are executed

on the verification platform.

All faults not printed by the MADC algorithm can only be

simulated, or some kind of design instrumentation is required in order to

isolate the fault node from the rest of the circuit thus avoiding the

backward propagation problem. Since the goal is to use the same design

representation for the fault injection, then instrumentation is not

considered this Thesis.

It is important to notice that the information printed by the

structural analysis procedure illustrated in Figure 39 must permit the

mapping between the selected faults and the original fault list generated

by the ATPG tool. This information includes the original fault IDs, the

EGs indication, the direction (I/O), the fault type, and the fault node.

Table 18 demonstrates the fault list that should be generated by the

pseudo-algorithm presented in Figure 39 with the minimum content

necessary to allow identifying the faults that can have its classified via

fault injection acceleration and also permitting back annotate the results

into the original fault list. The shaded rows in Table 18 indicate the faults

that actually need to be injected to be able classify all 20 faults in the list.

Each equivalence group (EG) has one bolded fault IDs to indicate the

selection. Among those six fault IDs selected, five are located in the first

cell output of the EG. Notice that fault 01 would backward propagate thus

affecting gate g2 as well. Therefore, it is important to select fault in the

outputs whenever possible. Only fault 14 resides in a cell input since it is

109

not collapsed with an output port. Fault 14 is selected by the 1-1 LINE

rule.

Table 18 – Fault list generated by the “Algorithm 1”.

ID Type I/O EGs Node 3 sa0 O 21 g1.Y

1 sa0 I 8 g1.A 5 sa0 I 21 g2.A

4 sa1 O 8 g1.Y 7 sa0 I 21 g2.B

8 sa1 I 8 g2.B 10 sa1 O 21 g2.Y

14 sa1 I 14 g3.B 11 sa0 I 21 g3.A

9 sa0 O 17 g2.Y 13 sa0 I 21 g3.B

17 sa0 I 17 g4.A 16 sa1 O 21 g3.Y

15 sa0 O 19 g3.Y 18 sa1 I 21 g4.A

19 sa0 I 19 g4.B 20 sa1 I 21 g4.B

2 sa1 I 21 g1.A 21 sa0 O 21 g4.Y

 22 sa1 O 22 g4.Y

The handling of the PIs, POs, and untestable faults are not shown

in Figure 39 since they are not part of the MUX example illustrated in

Figure 37. However, they must be considered for the correct calculation

of the metrics hence they are covered by the MADC structural analysis.

6.1.2. The Ratio of Faults Suitable for Acceleration.

The number of faults that can be accelerated within a GL netlist is

given by FACCEL in (12). FACCEL consists of three addends: 𝟐 ∗ |𝑪| and the

summation of the functions 𝒇(𝒄) in (13) and 𝒈(𝒄, 𝒑) in (14), which are

associated with the steps in the Algorithm 1 in Figure 39.

𝑭𝑨𝑪𝑪𝑬𝑳 = 𝟐 ∗ |𝑪| + ∑ 𝒇(𝒄)

𝒄 ∈ 𝑪

+ ∑ ∑ 𝒈(𝒄, 𝒑)

𝒑 ∈ 𝑷𝒄 ∈ 𝑪

 (12)

𝑪 = {𝒄 | 𝒄 is a cell instance}, 𝑷 = {𝒑 | 𝒑 is an input pin of a given cell 𝒄}

110

𝒇 = {

𝟎, 𝒄 ∈ {𝑭𝑭, 𝑿𝑶𝑹, 𝑪𝒐𝒎𝒑𝒍𝒆𝒙}

𝟐, 𝒄 ∈ {𝑰𝑵𝑽, 𝑩𝑼𝑭}

|𝑷|, 𝒄 ∈ {𝑵/𝑶𝑹, 𝑵/𝑨𝑵𝑫}
 (13)

𝒈 = {

𝟎, (𝒑. 𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒊𝒐𝒏𝒔() > 𝟐) ⋁ (𝒄 ∈ {𝑰𝑵𝑽, 𝑩𝑼𝑭})

𝟏, 𝒄 ∈ {𝑵/𝑶𝑹, 𝑵/𝑨𝑵𝑫}

𝟐, 𝒄 ∈ {𝑭𝑭, 𝑿𝑶𝑹, 𝑪𝒐𝒎𝒑𝒍𝒆𝒙}
 (14)

The 𝟐 ∗ |𝑪| results in two times the number of cells belonging to 𝑪

– e.g., all cells in the netlist – thus corresponding to the amount of SA0

and SA1 faults located at the cell outputs. The function 𝒇(𝒄) is equal to

the number of collapsible input faults for each cell 𝒄 according to the

logical collapsible rules presented in Figure 26 except the “1-1 LINE”

rule. For instance, 𝒇(𝒄) equals to the number of inputs |𝑷| of 𝒄 when it is

an AND, OR, NAND, or a NOR gate. On the other hand, the function

𝒈(𝒄, 𝒑) is equal to the number of faults on the input pins 𝒑 of a cell 𝒄 that

are collapsible according to the “1-1 LINE” rule – i.e., the line where the

fault resides has no more than two connection ends. Therefore, the

summations ∑𝒇(𝒄) and ∑𝒈(𝒄, 𝒑) provide the total number of faults that

can also be accelerated due to the collapsing optimization. Table 19 shows

the results of applying (12) for the MUX example illustrated in Figure 37.

Table 19 – Results of each step of the MADC analysis

Faults that

can be:

Ratio of accelerated faults per step

No𝑭𝑨𝑪𝑪𝑬𝑳 𝟐 ∗ |𝑪| ∑𝒇(𝒄) ∑𝒈(𝒄, 𝒑)

Accelerated 0 8 16 20

Only simulated 22 14 6 2

Accel. Ratio 0.00% 36.36% 72.72% 90.91%

The accumulated result of each term in (12) is shown by the

“Accelerated” row in Table 19. After each term is calculated, the number

of faults that can be accelerated increases hence reducing the number of

faults that can only be simulated. For the MUX example shown in Figure

37, up to 90.91% of all faults can be accelerated by just selecting the

appropriate set of prime faults to be used for the injection campaign. In

other words, less than 10% of the faults require design model adaption to

provide the isolation essential for the SAT model. To keep MADC as a

111

zero intrusion solution, these two faults are simulated using IFSS – or any

fault simulator. Meanwhile, the hardware-assisted platform can accelerate

90.91% of the faults hence enabling the parallel execution of fault

injection on both engines thus reducing the overall execution time of the

fault campaign.

6.2. MADC FLOW

Figure 40 – MADC flow diagram.

The proposed MADC flow diagram is presented in Figure 40. In

addition to the design model (Design Source), the flow requires the

definition for the faults to be injected (Fault target) and also the definition

for the strobes (Strobes) that are the detection points. The fault definition

can be the instance path of a subpart of the design model. Currently,

MADC consider only SAT faults, but it can be extended to support other

fault models. A time different than zero or a specific condition – e.g.,

100ns after reset sequence – to trigger the injection can be set in order to

permit the evaluation of faults occurring during normal operation

conditions – i.e., random faults. The strobe information provided to

SimCompare

Stuck-at Fault
List Generation

Structural
Analysis

PG-SQL
Fault DB

Elaboration
Acceleration

Elaboration
Simulation

Good Run
Acceleration

Good Run
Simulation

Fault Run
Acceleration

Fault Run
Simulation

Fault Run
Acceleration

Fault Run
Simulation

Fault Run
Acceleration

Fault Run
Simulation

Accel.
Fault
List

Simul.
Fault
List

Regression
Management

Tool

Design
Source

FMEDA
annotation

A
cc

el
er

at
io

n

En
gi

n
e

 Fault target
 Strobes

 Fault
 classif.

112

MADC contains a list of detection points and their location meaning

towards the fault classification defined by the ISO 26262.

6.2.1. Mapping the campaign results to the standard classification

The inputs for the MADC flow follow similar semantics as for the

IFSS’s inputs, and they are translated by MADC to the PXP language and

interface in order to provide transparent integration between the two

engines. IFSS permits the definition of two strobe groups thus allowing a

more advanced fault classification than typically supported by standard

DFT fault simulators, such as detected, undetected or potentially detected.

The former classification causes an unknown value – i.e., “X value” or

“don’t care” – at an observation point hence not giving a definitive

answer about its detection. It must be remembered that the ISO 26262

compliance demands the assessment of faults that negatively impact the

SPFM and LFM, which are the SPFs or RFs and the LFs, respectively.

Whenever the required metrics are not achieved, SMs can be added to

detect these faults and turn their classification into DFs – or MPFD. Using

the IFSS terminology, the detection points can be grouped as functional

or checker strobes to support ISO 26262 fault classification. For instance,

as many faults as possible should be prevented from getting to a

functional strobe. In other words, the functional strobes correspond to

where the failure mode is considered activated. On the other hand, the

checker strobes are located in the observation points that indicate when a

fault was diagnosed.

The fault classification done by IFSS depends on which strobe

group was triggered by the fault propagation. A fault that only propagates

to a functional observation point is classified as dangerous undetected

(DU) according to the IFSS syntax. The faults detected by SMs hence

triggering the checker strobes can either be classified as safe detected

(SD) or dangerous detected (DD) whether they also propagate or not

through a functional strobe. Safe undetected (SU) is the classification of

faults that either remain latent or are masked by the circuit and hence no

observation point within the strobes groups is triggered. The mapping

between IFSS and ISO 26262 fault classifications is shown in Table 20.

A fault that propagates through functional output can be classified

as DF if an SM later detects the fault thus triggering a checker strobe

observing the error detection time specified. IFSS permits to specify this

time window between triggering of functional strobe until the detection

at checker strobe. Additionally, the simulation can be configured to stop

113

whenever a checker strobe is activated or the error detection time window

ends. The stopping feature can reduce the overall execution time of a fault

campaign by only running the test completely when strictly necessary –

e.g., safe-undetected (SU) faults are not detected at any observation point

hence the whole test is executed. However, the optimization achieved

with this feature varies according to the number of faults injected that can

quickly propagate to an observation point thus stopping the simulation.

Table 20 – IFSS and ISO 26262 fault classification mapping.

Fault that

propagates

Strobe Groups Fault Classification

Functional Checker IFSS ISO 26262

only to: X DU SPF/RF

to both: X X DD DF a

only to: X SD DF

to none. SU LF

a assuming the error detection time stipulated is observed.

6.2.2. The MADC interface definition

Additional to the fault list format, the MADC supports the IFSS

fault classification syntax thus allowing the translation to the ISO 26262

terminology. This includes the untestable (UT) faults that are classified

as SFs since they cannot violate an SG. The definition of functional and

checker strobes are also supported by the MADC flow as well as the set

of time window between the two groups in order to proper classify the

faults. The MADC support here means that the proposed methodology

enables equivalent features already provided in the simulator, on the

hardware-assisted platform.

The MADC controls the ATPG tool in order to generate the SAT

fault list with the collapsing and testability results. The synthesis tools are

used to collect the number of connections and the direction for each pin

where the faults are located. All this information is committed to a

PostgreSQL (PG) database that is used to store, sort, and filter the faults

in order to generate the lists with those suitable for acceleration according

to the algorithm shown in Figure 39. Another list is generated for the

faults that can only be simulated – in this case, the IFSS. Both lists contain

only the primes hence the minimum set of faults to be injected by each

114

engine. After injecting the selected faults, MADC collects the reports

generated by IFSS and the results achieved with PXP in order to annotate

the classification back to all faults stored in the PG database. Finally, the

resulting fault annotation can be translated into the ISO 26262

classification using the mapping from Table 20.

6.2.3. Link to the FMEDA

A technical FMEDA contains the relevant information needed for

the definition of the fault campaign inputs. The targeting area where to

inject the faults can be specified based on the part/subpart name found in

the spreadsheet first columns like in the example shown in Table 11. The

failure mode defines the fault model. Functional strobes can be mapped

to the part/subpart outputs. The SM references can be used to find the

observation points to be selected as checker strobes.

The MADC fault classification results provide the information

required to calculate the percentages that must be annotated back to the

FMEDA in order to allow the evaluation of the SPFM and LFM. The

failure rate fraction associated with the safe faults is entered in the

FMEDA as the percentage calculated in (15) where the number of

untestable faults (#𝑈𝑇) is divided by the size of the fault set. The amount

of dangerous undetected faults (#𝐷𝑈) is used in (16) to find the

percentage of the RFs failure rate that is covered by an SM. The same

happens with the total of safe undetected faults (#𝑆𝑈) in (17) that is equal

to the DCLF, which also corresponds to the LF failure rate percentage.

𝐹𝑆𝐹(%) =
#𝑈𝑇

(#𝑈𝑇 + #𝐷𝑈 + #𝑆𝑈 + #𝐷𝐷 + #𝑆𝐷)
× 100 (15)

𝐷𝐶𝑅𝐹(%) =
#𝐷𝑈

(#𝐷𝑈 + #𝑆𝑈 + #𝐷𝐷 + #𝑆𝐷)
× 100 (16)

𝐷𝐶𝐿𝐹(%) =
#𝑆𝑈

(#𝑆𝑈 + #𝐷𝐷 + #𝑆𝐷)
× 100 (17)

There are innumerous spreadsheet formats as well as requirement

management tools that provide support to FMEDAs. For that reason, one-

size-fits-all solution for interfacing all kind of FMEDA tools is

unrealistic. However, the precise definition of the MADC input and

115

output allows the development of an interface to any solution available in

order to automate the link to the FMEDA.

6.3. MADC FAULT INJECTION EXECUTION

As mentioned before, the fault injection is performed by two

different engines. Therefore, the MADC is split into two sub-flows for

the fault campaign execution. In the left side of the flow, there are the

steps perform the fault injection using the hardware-assisted platform

while on the right side of Figure 40, the three IFSS’s steps are shown.

Regardless the engine, three common steps are executed, which are:

 Elaboration: corresponds to the design model compilation

into a snapshot that is loaded by the tool when starting the

simulation.

 Good Run: fault-free execution of the snapshot to collect the

reference values on the functional and checker strobes

defined;

 Fault Run: fault injection execution until the test completes

or a checker strobe is triggered thus deviating from the

reference value.

As already mentioned, the snapshot generated for a standard

simulation can also be executed in the hardware-assisted platform.

However, the fault injection feature provided by IFSS is only enabled

within Incisive simulator flow. Since IFSS feature is not available in the

PXP flow, then the simulation snapshot can not be recognized by the

hardware-assisted platform. Therefore, two snapshots are generated from

the elaboration executed for each sub-flow (Elaboration Acceleration and

Simulation) as shown in Figure 40. In other words, the snapshot resulted

from the “Elaboration Acceleration” step can be simulated too, but

without the IFSS features enabled. However, the inverse is not true for

the snapshot output of the “Simulation Elaboration”, which cannot be

loaded in the hardware-assisted platform.

In the IFSS flow, the faults to be injected must be defined at

elaboration while the strobes are passed to the tool during the good run.

The strobe definition includes the instance path of each node selected as

an observation point, and the strobe type – i.e., function or checker.

During the fault-free run (Good Run Acceleration in Figure 40), IFSS

saves the traced data of the selected strobe signals. This trace information

is constantly compared during fault injection runs (Fault Run Simulation),

and a detection notification is issued if any discrepancy occurs. A similar

116

approach was implemented using the capability available in the hardware-

assisted platform to store waveform data of selected signals. After each

accelerated fault injection (Fault Run Acceleration), the waveform data is

compared with the one generated by the fault free-run (Good Run

Acceleration) using a simulator utility that informs the timestamp and the

signals of each existing mismatch. This post-run check procedure has a

drawback compared to IFSS, which can stop the simulation as soon as the

fault effect is detected at a checker strobe for example. Figure 41

highlights the possible impact on the overall campaign execution time by

the “stop at detection” and the “post-run check”.

Figure 41 – The possible negative impact on the MADC performance due to the

lack of support of “stop at detection” or because of the “post-run check”.

It is important to notice that the possible negative impact on the

performance of the MADC varies according to the fault campaign profile.

The profile encompasses of the stimulus quality, the fault set, and the

techniques used by the SMs being evaluated. Insufficient stimulus or

specific SMs may require most of the simulation runs to be executed for

longer periods thus reducing the performance difference between

simulation and emulation achieved by the “stop at detection” feature. On

the other hand, the acceleration provided by the hardware-assisted

platform often compensates the simulation gain achieved with “stop at

detection” even when many faults are shortly detected.

The control of when and which faults are injected is performed by

the implemented scripts with commands executed during the fault run for

each engine. The script created to control the fault injection on PXP

SI
M

U
LA

TI
O

N
EM

U
LA

TI
O

N

Tests always run
until the end

Fault
Run #1

Fault
Run #2

Fault
Run #3

 ...

Time overhead due to the
waveform comparison

Simulation ends
after detection

Fault
Run #1

Fault
Run #2

Fault
Run #3

Almost instant fault
classification

 ...
Fault

Run #4

Fault
injection

117

executes the good run (Good Run Acceleration in Figure 40) to generate

reference-data trace, which is stored in the host computer. Next, the

snapshot is reset, and a fault is injected by using the force command. The

trace data generated during the fault run (Fault Run Acceleration) is also

copied to the host where the simulator utility is used to compare the

waveform databases in order to classify the fault according to its detection

status. The communication between the hardware-assisted platform and

the host can become a bottleneck depending on network quality and the

amount of strobe data generated. Many flow steps executed in the PXP

fault injection script are not needed in the script created to control IFSS

since the fault injection and the classification are featured by the

simulator. The summary of the fault injection commands executed on

each engine is shown in Figure 42.

Figure 42 – The execution flow of the developed scripts for the simulation and

the emulation platform.

Reset the snapshot
Get the next fault

Run until the
injection time

Force the node
to SA0 or to SA1

Resumes the
simulation run

Extract and
compare traces

Enable the strobes
for trace collection

Report the fault’s
classification

Last fault

End
Dump the refe-
rence trace data

Execute the
fault free run

Y
N

Reset the snapshot
get the next fault

Run until the
injection time

Resumes the
simulation run

Stop simulation if
fault detected

Inject the SAT fault

Last fault

End

Y

N

StartStart

FA
U

LT
 IN

JE
C

TI
O

N
 S

IM
U

LA
TI

O
N

 S
C

R
IP

T
–

FL
O

W

FA
U

LT
 IN

JE
C

TI
O

N
 E

M
U

LA
TI

O
N

 S
C

R
IP

T
–

FL
O

W

118

An important optimization, applicable to simulation in general thus

including IFSS, is the possibility to leverage a computer farm available to

run multiple fault simulations in parallel. Similarly, PXP has many

“domains” which are resources where snapshots can be loaded thus

allowing parallel fault injection. The DRM for the distributed fault

simulation and usage multi PXP domain could not be investigated due to

the lack of resources available. These techniques can be explored later to

optimize the MADC execution flow.

6.4. CHAPTER REMARKS

This chapter presented the methodology to accelerate DC

assessment, which is the Thesis main contribution. The methodology

consists on leveraging the PXP hardware-assisted verification platform to

boost the performance of the fault injection campaign execution. To

enable that, the GL-netlist is analyzed by the algorithm developed, which

identifies the SAT faults that can be correctly emulated. This algorithm

enables a non-intrusive approach to emulate most of the faults, and also

observing the ISO 26262 guidelines. The remaining faults still have to be

simulated using IFSS. The MUX example is used again to explain the

proposed approach. In the next chapter, the results achieved using a more

meaningful design is discussed.

119

7. EXPERIMENTS AND RESULTS

7.1. CASE STUDY OVERVIEW

To confirm the MADC results, faults selected for acceleration – by

the proposed strategy – were also simulated and the equal fault detection

status was obtained with both engines. As already mentioned, the safety

related works available in the literature do not share details about the

implementations used probably to avoid infringing NDAs since the safety

analysis is closely related to the design. For instance, “MIPS-like” is the

term used to refer to the design underlying the safety analysis presented

in [41]. Another example can be found in [39] where the authors briefly

discuss the results achieved “during the validation of a real safety critical

system based on a 32-bit RISC processor” without further information on

the design. On the other hand, there are safety related works which cover

the topic at different abstraction levels thus not providing suitable test

cases to be explored in this Thesis. For example, the authors of the DBW

example used to introduce functional safety and the ISO 26262, perform

the safety analysis over an existing prototype [31]. In this research, an

open source design is used to show the MADC achieved results. The

design is based on an OpenRISC architecture as illustrated in Figure 43

[106] [107].

Figure 43 – OpenRISC block diagram (source [106]).

QMEM

Instruction
Memory

Management
Unit

Data Memory
Management

Unit

Instruction
Cache

Data
Cache

Store
Buffer

Wishbone IF
(Instruction)

Wishbone IF
(Data)

Debug
Unit

Tick
Timer
Unit

Programmable
Interruption

Controller

Power
Management

Unit

CPU

120

A leaf block of the OpenRISC design hierarchy was used as the

fault target due to its small number of faults, thus fitting to the purpose of

feasibility checking. The leaf block, in this case, is an unsigned carry

adder (CA) automatically inserted by the synthesis tool. The adder

composes the ALU (Arithmetic Logic Unit) of the OpenRISC CPU

shown in Figure 44.

Figure 44 – OpenRISC CPU.

7.2. USING MADC IN A COMBINATORIAL CIRCUIT

The OpenRISC adder contains 1,280 fault candidates from which

980 – i.e., 72.5% – are selected by MADC to be executed in the hardware-

assisted platform. After the collapsing and testability analysis, the set of

faults to run is reduced to 640 prime faults. Table 21 has the outcome of

“MADC analysis” showing that most of SAT faults can be accelerated.

Naturally, only prime faults need to be run, i.e., 288 or 45% of all prime

faults. The 288 faults were injected using both engines – PXP and IFSS –

in order to validate the proposed MADC solution. This validation check

consists in the comparison between the fault detection status and the

detection time achieved with each tool. This checking stage exposed

many challenges to be overcome by MADC.

OpenRISC
CPU

OR1200
Instruction
Decode and

Control

Except

Instruction
Fetch

GenPC

Special
Purpose R.

Register
File

Configuration
Registers

Load/Sore
Unit

Write-back
muxes

Operand
Muxes

Float Point
Unit

Multiplier/
Accumulator

Arithmetic
Logic Unit

PC
Next

PC

Freeze

121

Table 21 – MADC analysis results.

Faults that

can be:

MADC Analysis

Faults Ratio (%) Prime Ratio (%)

Accelerated 928 72.5 288 45.0

Simulated 352 27.5 352 55.0

Total 1,280 640

To allow the advanced classification available on IFSS, not just the

detection status had to be reported, but also the strobes that were triggered

in order to permit identification of the fault propagation through the

functional, or the checker strobes. Additionally, the detection time had to

be aligned with the time reported by the simulator. To achieve that, the

instants when the strobes occur had to match on both engines. Initially, it

was developed a script based approach to collect the strobe timestamps

from simulation, and then use them during acceleration. However, the

comparison overhead was prohibitive due to the amount of data handled

in ASCII format hence impacting on performance. Although inefficient,

the experience gained with the hardware-assisted platform was essential

to further develop the MADC flow especially regarding storage and

export of the trace data from the acceleration platform.

Similar to other acceleration solutions, PXP permits to probe

signals and stores the trace data in many formats. The format can be either

customized using specific tool language or predefined standard waveform

formats like value change dump (VCD). Naturally, PXP also supports the

waveform database format used by the Incisive simulators. An Incisive

utility named SimCompare permits to compare waveform databases.

Signals to compare, time difference tolerance, maximum errors and many

other comparison characteristics can be configured with SimCompare.

Within the MADC flow, the waveform database generated during Good

Run contains the same signals that are probed during the Fault Run, and

they are all compared. In the fault injection context, only the earliest

signals mismatch is interesting and no time difference tolerance is

considered. Next, there is an example on how MADC configures

SimCompare.

1. maxerrors 1
2. database g <reference waveform database>
3. database t <compared waveform database>

122

4. compare .
5. report -detail errorsonly \

 -style comparescan \
 -values -output simcompare.rpt

With this configuration, SimCompare stops the comparison at the

first mismatch and report the details to simcompare.rpt. The details

include the mismatching signals, their reference and compared values,

and the timestamp of the earliest discrepancy found. Leveraging the

SimCompare capability, it was possible to check if each detected fault in

PXP had the same detection time as reported in IFSS. From the 288

injected faults, only 46 were not detected as shown in Table 22. All other

faults presented same detection time on both engines thus achieving the

objective of validating the MADC for this initial test case. The detection

information resulted from SimCompare is parsed and annotated back in

the PG database as illustrated in Figure 40. The execution time required

for the simulation and by the hardware-assisted platform is shown in

Table 22 subdivided according to the fault detection status.

Table 22 – MADC performance results.

Status Faults Acceleration Simulation Ratio

Detected 242 (84.03%) 6,372.67s 1,285.67s ▼ 4.96

Undetected 46 (15.97%) 1,211.33s 3,954.33s ▲ 3.46

Total 288 7,584.00s 5,240.00s ▼ 1.45

The fault runs were executed sequentially on both platforms. The

overall time results on Table 22 shows that the overall execution time

achieved with the hardware-assisted platform was 1.45 times slower than

simulation. This negative performance is mainly related to the time

overhead for uploading the design to the acceleration platform and for

dumping the waveform data at the end of each fault injection.

Additionally, IFSS was configured to stop as soon as a fault is detected,

but such capability for the acceleration platform is not yet implemented,

and the post-run comparison based on SimCompare is the solution used

within MADC flow.

Considering only the undetected faults, which require the test to be

fully executed, the acceleration gain has been 3.46 in comparison to

simulation according to the results in Table 20. The acceleration factor

per fault achieved by the hardware-assisted platform with the undetected

123

faults portion (i.e., only 15.97% of the faults) is higher than the factor

reached by simulation considering the detected faults. In other words, if

the ratio of undetected faults increases, then the overall execution time

with the acceleration engine is likely to be better than with simulation.

It is important to notice that the overall performance gain is

associated with the detection profile of the fault set under consideration.

Additionally, the strobes were placed on the boundary of the fault target

instance. So, the location of the selected detection points means they are

sequentially close to where the faults are injected. Since an SM, external

to the ALU or even to the CPU, would result in strobes defined

sequentially more distant, thus requiring a longer run until detection

hence reducing the simulation performance associated with the group of

detected faults – that stops the simulation at detection.

7.3. USING MADC IN A SEQUENTIAL CIRCUIT

The unsigned carry adder taken as fault target is purely

combinatorial thus increasing the chances to rapidly detecting the injected

faults. The technique used by the SM must also be taken into account. For

instance, the evaluation of an SBST as an SM – that executes diagnostic

routines during boot up or periodically for example – would naturally

require longer simulations. Therefore, in such case, the usage of

acceleration could be extremely beneficial for the performance of the SM

evaluation.

7.3.1. Tick Timer - Peripheral

To validate such argument, a block with sequential elements at a

higher level of the OpenRISC architecture was selected for the evaluation

of the MADC fault target. The Tick Timer (TT) block illustrated in Figure

43 was chosen as the fault target of the injection campaign for a sequential

circuit. The Tick Timer unit provides a programmable counter at the clock

frequency that can be used to interrupt the CPU once after a counter

threshold is reached or periodically according to the configured time

interval. Even if the software application running on OpenRISC does not

use the Timer, a fault can still propagate out the Tick Timer block and

cause an unexpected CPU interruption, for example. For this to happen, a

fault may propagate through many registers until triggering an

interruption or any other disturbance to the CPU. Therefore, the detection

profile of the faults injected in the Tick Timer unit is expected to be

124

different from the one presented with the unsigned carry adder

(combinational circuit).

Again the structural analysis developed is utilized to select the

faults that are going to be injected using the hardware-assisted platform.

By providing the instance path of the Tick Timer unit, the SAT fault list

is generated using the ATPG tool and the fault node information is

collected via the synthesis tool. The node information corresponds to the

details of each cell pin where the faults reported by the ATPG tool are

located. These details are the number of ports connected to the pin (TIES),

the pin direction (IO), and the cell name (CELL) back annotated to the

PG database as illustrated in Figure 45. The prime fault ID (PRID), the

equivalent grouped ID (EQID), the fault type (TYPE), and the testability

(UTST) information are extracted from the reports generated by the

ATPG tool. Notice that the faults which share the same EQID are

members of the same equivalence group from where one fault, preferably

located in a cell output, is marked as selected (SEL) for acceleration – see

example highlighted in Figure 45. Although, faults residing in a cell input

can be picked for acceleration when the collapsing group contains only

two faults located in different cells – i.e., due to “1-1 LINE” collapsing

rule. For instance, from the first two faults sharing the same EQID in

Figure 45, the fault with PRID equals to five is selected instead to the

other fault which its IO value indicates output.

Figure 45 – MADC PG database content illustration.

Actually, any of the faults with EQID equals to nine in Figure 45

can be selected for acceleration. These faults are marked in Figure 46.

125

This flexibility can happen when the cell inputs where the faults are

located have no more than two connections indicated by an empty value

in the TIES column – i.e., faults with PRID equals to 9, 2052, and 2054.

However, this is not always the case as highlighted in Figure 47, where

some of the faults sharing the same EQID are located in cell input pins

with ties greater than two. If instead of using the fault from the highlighted

line, the fault with PRID equals to 3954 would have been injected using

the force command, then 30 other cells would be affected from the

moment the fault is inserted. At least one input of these 30 cells is tied to

the same line that the injected cell input is tied as well. The remaining tie

corresponds to line driver, which is naturally a cell output.

Figure 46 – Fault equivalence group number nine illustrated in Figure 46.

126

Actually, any of the faults with EQID equals to nine in Figure 45

can be selected for acceleration. This flexibility can happen when the cell

inputs where the faults are located have no more than two connections

indicated by an empty value in the TIES column – i.e., faults with PRID

equals to 9, 2052, and 2054. However, this is not always the case as

highlighted in Figure 47, where some of the faults sharing the same EQID

are located in cell input pins with ties greater than two. Figure 48 shows

how the faults with EQID equals to 135 are distribute in the TickTimer

circuit. If instead of using the fault from the highlighted line, the fault

with PRID equals to 3954 would have been injected using the force

command, then 30 other cells would be affected from the moment the

fault is inserted. At least one input of these 30 cells is tied to the same line

that the injected cell input is tied as well. The remaining tie corresponds

to line driver, which is naturally a cell output.

Figure 47 – Importance of the right fault selection from an equivalent group.

Figure 48 – Fault equivalence group number 135 illustrated in Figure 47.

The example highlighted in Figure 47 exposes how important is to

select the proper fault from each collapsed group in order to guarantee the

valid fault injection results. Consequently, this emphasizes the value in

127

the contribution of the proposed MADC which automatically generates a

list of the selected faults.

The Tick Timer Unit has 4,014 SAT fault candidates according to

the results from the ATPG tool. Additional 128 faults located in TIEUP

logic are marked as untestable hence not considered for acceleration. The

ratio of faults suitable for acceleration is shown in Table 23. The

percentages of faults that can be accelerated before and after collapsing

are similar to the numbers found for the unsigned carry adder shown in

Table 21.

Table 23 – Tick Timer fault candidates that are suitable for acceleration.

Faults that

can be:

MADC Analysis

Faults Ratio (%) Prime Ratio (%)

Accelerated 3,031 ~75.51 909 ~48.04

Simulated 983 ~24.49 983 ~51.95

Total 4,014 1,892

Table 24 compares the results from the CA and TT test cases

regarding the average run time required for each fault injection.

Table 24 – Runtime average per fault injection execution.

Engine
Run time per fault injection

CA Time/#Faults TT Time/#Faults

Acceleration 7,584s ~26.33s 22,025s ~24.23

Simulation 5,240s ~18.19s 56,042s ~61.65

#Faults / Ratio 288 ▼ 1.45 909 ▲ 2.54

For the CA test case, the average execution time of each fault run

was 1.45 times better than the acceleration. However, the experiments

done with the TT instance, which has less than four times the number of

faults in CA, already presented acceleration gain over simulation. As

explained earlier, this alteration in the results was expected due to the

fault injection profile. The TT block has registers thus making more

difficult to propagate the fault. This affects the number of faults that are

undetected, which for the TT test case corresponded to 74% of the

injected faults. Another factor that impacts the average injection time is

128

the test duration. The test duration for the TT example is four times longer

than the one used for the CA, in order to run at least up to the point where

the software running in the OpenRISC can initialize TT block. Given that

no SM is used, the outputs of the TT were selected as strobe points thus

not contributing to a longer detection time.

The acceleration achieved with the TT test case points to an

opposite direction from the numbers obtained in the first experiment due

to the profile differences between the two fault campaigns executed.

Table 24 shows that average execution time for the fault injection on TT

was 2.54 times faster when comparing with the injection of the same

faults via simulation. This result corroborates to the idea that the

campaign profile has a significant impact on the benefit potential of

MADC. Fault campaigns on complex designs with not so many shortly

detected faults, running complex TBs, with specific SMs – e.g., SBST –

are likely to benefit from the proposed MADC approach. The benefit

potential becomes more evident when separating the amount of time spent

on each fault injection step executed in the hardware-assisted platform.

Table 25 shows the average time required for loading the snapshot on

PXP, injecting the fault while running the test, and comparing the

waveform databases.

Table 25 – Runtime average of each acceleration step for the TT test case.

Engine
Total

Runtime

Injection

Time

Strobes

Check Time

Snapshot

Load Time

Acceleration
24.23s

7.87s

(32.47%)

10.76s

(44.42%)

5.6s

(23.11%)

Simulation
61.65s

61.65

(100%)
– –

Ratio ▲ 2.54 ▲ 7.83 – –

If equivalent fault injection features supported on IFSS – i.e., stop

at detection, and runtime comparison between good and fault run – would

be available on the hardware-assisted platform, then the time spent with

the strobes comparison could be saved. In the TT fault campaign, the

waveform databases comparison consumed almost half of the fault

injection run time as indicated in Table 25. Other approaches are being

investigated in order to cope with this bottleneck.

By only considering the actual time spent for a fault injection

execution on PXP, and comparing with simulation, the difference would

129

be almost eight times (▲ 7.83) faster for the TT test case as shown in

Table 25. However, even if the comparison time could be neglected, there

is also the time consumed for loading the snapshot in the acceleration

platform that must be considered. The loading time seems to be constant

and mostly associated with the size of the snapshot and the quality of the

network access to the area where the generated snapshot is located.

Therefore, additional to the campaign profile, the snapshot size and the

network quality needs to be counted when considering the trade-off

between acceleration and simulation. In case DRM is available, the

number of fault simulations in parallel that can be executed, must be

examined. The same applies to the possibility of using multiple PXP

domains for the fault injection – as it is used in [87].

7.3.2. Exception Handler – CPU Block

The Exception Handler (EH) test case corresponds to one of the

CPU blocks (Except) shown in Figure 44. The EH block has almost three

times more gates than the TT unit. The difference in the number of faults

between the EH and TT has similar ratio. The TT unit has 4,014 faults

almost a third of the 11,798 faults found in the EH instance. Table 26

summarizes the number of faults located in the analyzed CPU block.

Table 26 – Exception handler fault candidates that are suitable for acceleration.

Faults that

can be:

MADC Analysis

Faults Ratio (%) Prime Ratio (%)

Accelerated 10,030 85.01% 3,472 66.26%

Simulated 1,768 14.99% 1,768 33.74%

Total 11,798 5,240

The fault set for the EH test case presented higher collapsed ratio

if compared to the other two test cases. This fault set reduction due to

collapsing has a positive impact on the MADC algorithm, which could

then select more than 85% of all faults for acceleration. When considering

only the prime faults, then 66.26% of the faults are suitable for

acceleration. This percentage corresponds to a campaign where 3,742

faults run on the hardware-assisted platform meanwhile the other 1,768

are simulated.

130

Table 27 compares the runtime average for each fault injection

between the TT and the EH test cases. Once again, the size of the of the

block has influence on the campaign profiles thus highlighting even more

the performance gain achieved with acceleration in comparison to

simulation. It is important to notice that the runtime average per fault

injection using the hardware-assisted platform ranges between 24.23 and

26.33 considering the three test cases analyzed. With the runtime average

not increasing, then acceleration shows great advantage over simulation,

especially when there are many undetected faults among the MADC

selection thus requiring to execute the whole test.

Table 27 – Runtime average per fault injection execution.

Engine
Run time per fault injection

TT Time/#Faults EH Time/#Faults

Acceleration 22,025s ~24.23 88,408.4s ~25.46

Simulation 56,042s ~61.65 357,133.0s ~102.86

#Faults / Ratio 909 ▲ 2.54 3472 ▲ 4.04

Table 28 shows the runtime average comparison between

acceleration and simulation in total and the stepwise. The EH test case

shows almost 60% performance ratio increase (▲ 4.04) than in the TT

campaign. By analyzing the time spent on each step, and considering only

the injection runtime, then the acceleration difference goes as high as

12.54 times faster than simulation.

Table 28 – Runtime average of each acceleration step for the EH test case.

Engine
Total

Runtime

Injection

Time

Strobes

Check Time

Snapshot

Load Time

Acceleration
25.46s

8.20s

(32.21%)

11.82s

(46.43%)

5.44s

(21.36%)

Simulation
102.86s

102.86

(100%)
– –

Ratio ▲ 4.04 ▲ 12.54 – –

Basically the same percentage (60%), related to the performance

ratio increase, is achieved when comparing the gains resulted from the TT

(▲ 4.04) and the EH (▲ 12.54) test cases, when considering the fault

131

injection runtime only. The same workload and test duration were utilized

in both fault injection campaigns. The performance difference is believed

to be associated to the number of observations points selected for each

test case – all outputs of the corresponding module. The number of single

bits selected as strobe points for the EH test case is 271, which

corresponds to 8.21 times more bits than the 33 output signals found in

the TT block. By not comparing the strobe data generated during the run,

but instead at once as post-run process, then the amount of computation

to check if the fault was detected, done with MADC, is not affected as

much as for simulation.

7.4. OPENRISC TEST CASE

Together with the OpenRISC CPU, some peripherals, and a

Wishbone Bus compose the SoC illustrated in Figure 49. A former

version of the OpenRISC SoC already running on PXP was used to gain

experience with the hardware-assisted platform. Many peripherals like

PS2 and Ethernet Interface come along to that OpenRISC SoC version,

and they were used together with a Linux distribution which can execute

over the HDL of the design running on PXP and simulation as well. While

the Linux boot up on PXP takes few minutes, over simulation the same

procedure takes more than a couple of hours. Since such long test case

was not suitable for the fault simulation at beginning, then a bare metal

code application had to be used instead. However, only the source code

and the image was available without the toolchain to compile a new one.

Moreover, the toolchain available in the OpenRISC project website [106]

could not be used since the executable code generated was not aligned to

the outdated OpenRISC HDL version used. Therefore, all modules of the

OpenRISC SoC were updated to the latest version available in the

OpenRISC website repository. Hence the toolchain could be used to

generate the memory image for each modification in the software code.

This task was essential to get more familiar with the OpenRISC HDL

description.

132

Figure 49 – OpenRISC SoC.

The bare metal code executed by the OpenRISC generates image

data that is copied to the memory address range used by the VGA

Controller. A pseudo display window (VGA Display) is emulated in the

host – it could be a physical display connected directly to PXP instead –

where the VGA controller constantly updates with the image being

generated. Meanwhile, a pseudo terminal (UART xterm) also running on

the host shows the output printed by the program being executed in the

OpenRISC. Notice that Ethernet, PS2, and I2C peripherals are not used

in this application hence they were commented off from the OpenRISC

HDL description. A routine interacting with the Tick Timer was added to

the VGA bare metal code example used. At least two milliseconds of

simulation is required to initialize and configure the VGA and TT

modules, and start to execute few iterations of the image generation

routine. The good simulation for the TT experiment took 331s to execute

two milliseconds of the VGA test at GL. Given the long runtime, the VGA

test seemed to be a suitable candidate to explore the MADC potential.

SM based in software like SBST can be scheduled to execute when

the vehicle starts, during the operation phase or before turning off [108].

Use fault injection to assess the DC of such mechanism is recommended

by the ISO 26262 as already mention. However, an SM routine scheduled

to execute at power-off of the vehicle requires the simulation of at least

the complete start sequence, which may be prohibitive due to the given

simulation time needed, especially at GL. Therefore, the proposed MADC

UART
Controller

VGA Display
Controller

Memory
Flash

Memory
SRAM

Ethernet
Interface

PS2 Mouse /
Keyboard

Wishbone Bus

OpenRISC
CPU

Except

Instruction Fetch

GenPC

Special
Purpose R.

Register
File

Configuration
Registers

Load/Sore Unit

Write-back muxes

Operand Muxes

Float Point Unit

Multiplier/
Accumulator

Arithmetic Logic
Unit

PC
Next

PC

Freeze

UART
xterm

VGA
Display

PXP

HOST

Disabled
@ PXP

Enabled
@ PXP

Enabled
@ HOST

...

133

has significant contribution optimizing such scenarios. The complex

workload prepared for the safety RISC example cited in [39] resulted in

an average of 56.6s for each injected fault. Hence it is another candidate

for acceleration leveraging the presented MADC.

7.5. MADC PERFORMANCE COMPARISON

As already mentioned, a similar approach based on design

intrusion was proposed in a research developed at STMicroelectronics

Inc. (ST) [87]. The proposed approach has an area overhead equivalent to

eight gates per instrumented cell that is selected as fault target plus the

fault injection controller developed. The controller occupies almost three

times more resources on PXP than the tested IP itself – a Leon2 processor.

Only SEU faults are considered, but the authors claim that SAT fault

model is also supported by using the same instrumentation method. To

cope with the massive area overhead to instrument both fault models on

all cells, only few flip-flops are selected for the campaign, and they are

grouped whenever possible in order to share the instrumentation logic.

This optimization leads to area overhead minimization around 20% of the

fault target.

The results presented in the ST research are extracted from a fault

injection campaign composed of 65,380,350 SEU faults injected in 2,631

flip-flops at 24,850 different times. Given the small size of Leon2 IP, 19

instances could be mapped per PXP domain. Using 16 domains, the

developed approach could inject 304 fault in parallel. The full campaign

execution last ten hours, which corresponds to more than 1.8k faults per

second.

Table 29 brings the ST’s Leon2 and the EH test case fault injection

campaigns to a similar perspective in order to allow comparing the

performance results. The ST’s technique achieves minimized runtime

average per fault injection due to the substantial parallelism. Even

considering the same number of runs in parallel, the proposed MADC

would still result in a performance about 152 times lower than the

intrusive method from the research developed at ST. Although, there are

some difference in the campaigns that may explain such performance

discrepancy. For example, the Leon2 design is approximately four and an

half times smaller than the OpenRISC, which impacts in the snapshot

loading time to PXP. The gate count number is no considering the

OpenRISC memories since it is not clear whether they are accounted in

ST’s example. Additionally, by injecting many faults in the same node,

134

considerably reduces the amount of instrumentation required by the

proposed approach developed at ST. To inject faults in more candidate,

the area overhead would limit the number of possible instances per

domain, thus reducing the parallelism.

Table 29 – MADC comparison.

Characteristics
Campaigns

Ratio
ST EH

Design Leon2 OpenRISC –

#equ. nand 2 56,565 259,149 ~4.58

Fault target flip-flops All cells –

#candidates 2,631 10,030

#injections 65,380,350 3,471

#Parallelism 304 1 304a –

Time / Fault 0.0005506s 24.46s 0.08376s ~152.12

a assuming the same number of instance ´ domains used for the EH campaign.

The workload used in the research at ST’s executes the boot

sequence, the program initialization plus 59,283 cycles, which

corresponds to the fault injection time window. One million cycles are

executed in the EH test case. Without knowing how many cycles are

needed to boot up the Leon2 processor and initialize the program, it is not

possible to perform a fair comparison. However, the test duration must

also be considered when comparing the performance achieved in the two

researches.

The proposed non-intrusive approach presented in this Thesis has

room for improvement, especially considering the implemented

comparison technique which consumes up to 46.43% of the fault injection

runtime. In addition, similar parallelization approach leveraged in [87]

can boost MADC performance in many times. Another important aspect

of the MADC approach is that around 50% of the faults can be simulated

using a computer farm while the rest of the faults is accelerated in the

hardware-assisted platform thus giving another parallelism factor. Such

performance potential combined with the non-intrusive characteristic

makes MADC more suitable for the semiconductor industry when

targeting safety automotive applications.

135

7.6. CHAPTER REMARKS

This chapter presents the experiments performed to guarantee the

correctness of the results obtained with MADC regardless the achieved

optimization. A second experiment was presented in order to demonstrate

the potential benefit of employing MADC for the safety assessment of

SMs in complex semiconductor design where long simulation runs are

required, and hence acceleration can minimize the fault campaign

execution time. The test cases used are discussed, and the importance of

being an open-source design is highlighted.

Different from any other solution found in the literature, MADC

provides SAT fault injection acceleration without imposing the

modification of the design model to enable the fault campaign. Therefore,

the proposed solution fits the requirements specified in the ISO 26262 as

already discussed.

136

137

8. CONCLUSION

In this Thesis, we presented the MADC approach that enables the

acceleration of DC assessment by leveraging the most advanced

functional verification solutions including the latest fault simulator tools

that already target functional safety. The verification environment (e.g.,

TB) can be seamlessly reused for the stimulus generation and therefore

limitations from DfT oriented fault simulators (e.g., lack of TB support)

do not apply to MADC. Benefiting from the cutting-edge emulators like

those used in [86], MADC provides a non-intrusive solution, thus not

requiring any design modification, and hence it is more likely to satisfy

an ISO 26262 auditor. The intrusion characteristic is what makes MADC

different from any other fault injection acceleration solution. Especially

when comparing MADC to approaches based on FPGAs, where the

design model is synthesized to a different technology, and sometimes also

modified to enable acceleration. Moreover, the only solution using the

same technology as MADC – i.e., hardware-assisted platform – to

accelerate the fault injection campaigns, also relies on design

instrumentation in order to enable the flow.

MADC is part of a methodology being developed that extracts data

from an FMEDA to assess the initially estimated DC numbers. This

assessment must be done to provide enough confidence in the results. The

results are annotated back to the FMEDA, and the hardware architecture

metrics can be recalculated based on the actual design data. The

conservative estimations and the refined metrics shall match. Moreover,

to comply with the ISO 26262, it is fundamental considering the state-of-

the-art. Therefore, MADC is in evidence since it leverages the latest

verification solutions to allow a more thorough safety assessment by

reusing the functional verification environment and providing significant

acceleration.

An OpenRISC architecture has been used as test case for validating

the developed MADC flow. Negative performance results were observed

when injecting faults in a small combinatorial block of the OpenRISC

ALU. However, considerable acceleration gain was observed when

analyzing a larger block containing sequential cells. The existence of a

threshold defining whether the MADC can be leveraged is discussed. This

threshold seems to be influenced by the fault campaign profile. The

profile includes the ratio of undetected faults, the test length, the

sequential distance of the strobe points in relation to the fault injection

locations, the SMs being evaluated, among other aspects. The obtained

results using the MADC show great potential benefit when considering

138

its application to assess SMs based on software that naturally require long

runs regardless the proportion of undetected faults.

The results achieved could confirm the initial hypothesis that by

selecting higher instances within the OpenRISC design, an actual

acceleration gain can be obtained by employing MADC. Although, the

implemented mechanism to enable fault detection on the verification

platform imposes a significant bottleneck to the MADC performance, yet

positive results could be observed. Therefore, the proof-of-concept built

allowed to confirm the aimed contribution of this Thesis. Meanwhile, a

solution for the bottleneck is being investigated to maximize the potential

of the proposed MADC solution.

A comparison between MADC and the most similar research work

found in the literature was presented. The design model intrusion required

by the compared approach makes the usage justification of such solution

much more difficult, thus highlighting the MADC main contribution.

Despite the intrusion aspect, the fault injection performance was

compared. The massive parallelism implemented by the intrusive solution

allowed achieving remarkable performance results. MADC could not get

the same performance by considering if the same amount of parallelism

would have been implemented in this Thesis. However, many arguments

were discussed in order to provide a rational explanation for the

performance difference. From this discussion, it was possible to identify

some optimizations including the parallelism strategy, which can be

leveraged by MADC.

In this Thesis, the developed research targets the functional safety

for car applications. Therefore, a thorough introduction to the ISO 26262

standard, which drives the functional safety requirements in the

automotive segment, is presented. However, MADC as a generic fault

injection acceleration solution can be leveraged by other industry

segments. For example, in avionics, the functional safety standards make

MADC a possible solution. Additionally, the scope defined in the first

edition of the ISO 26262 will expand with the new release. Not just the

car mass restriction is going to be dropped, but the scope will include

motorcycles and different series production vehicles as well.

As future work, the MADC can be extended to be used to support

SEU faults or to accelerate fault injection at RTL. The deposit command

– standard simulator feature and also available in the hardware-assisted

platforms – can be used to mimic the SEU faults. The backward

propagation is not a problem for SEU injection since the fault model

applies to sequential elements outputs only. Fault injection at RTL can

only be done at outputs of processes or assignments since the SAT fault

139

model has no clear meaning at the behavioral level. Therefore, MADC

can be leveraged also to inject faults at RTL, thus allowing early

verification of the DC and hardware architectural metrics.

141

REFERENCES

[1] Infineon Technologies AG, “Sensor Solutions for Automotive, and

Industrial Applications,” 2015. [Online]. Available:

www.infineon.com/dgdl/Infineon-

Sensor_Solutions_for_Automotive_Industrial_and+Customer_Appl_B

R-2015.pdf?fileId=5546d4614937379a01495212845c039f. [Accessed:

10-Jan-2016].

[2] L. Reger, “1.4 The road ahead for securely-connected cars,” in 2016

IEEE International Solid-State Circuits Conference (ISSCC), 2016,

pp. 29–33.

[3] J. Gorzelany, “The Hottest 2016 New-Car Features,” 2016. [Online].

Available: www.forbes.com/forbes/welcome/#539c3c263e57.

[Accessed: 11-Jul-2016].

[4] R. Nazaretian and G. M. Molen, “Reducing Vehicle Weight and

Improving Security by Using Plastic Optical Fiber,” in 2015 IEEE

Vehicle Power and Propulsion Conference (VPPC), 2015, pp. 1–6.

[5] Freescale Semiconductor Inc., “Future Advances in Body

Electronics,” 2013. [Online]. Available:

www.nxp.com/files/automotive/doc/white_paper/BODYDELECTRW

P.pdf. [Accessed: 20-Jan-2016].

[6] International Organization for Standardization, “ISO26262 - Road

Veichles - Functional Safety,” 2012.

[7] Cadence Design Systems, “Incisive Functional Safety Simulator,”

2015.

[8] Synopsys, “Certitude.” [Online]. Available:

www.synopsys.com/Tools/Verification/FunctionalVerification/Pages/c

ertitude-ds.aspx. [Accessed: 15-Dec-2016].

[9] I. Synopsys, “Z01X Functional Safety Assurance,” 2016. [Online].

Available:

www.synopsys.com/Tools/Verification/FunctionalVerification/Pages/z

01x-functional-safety.aspx. [Accessed: 01-Jul-2016].

[10] Mentor Graphics, “Veloce2,” 2013. [Online]. Available:

www.mentor.com/products/fv/emulation-systems/veloce. [Accessed:

16-Jan-2016].

[11] Synopsys, “Zebu.” [Online]. Available:

www.synopsys.com/Tools/Verification/hardware-

verification/emulation/Pages/default.aspx. [Accessed: 16-Jan-2016].

[12] Cadence Design Systems, “Palladium XP.”

[13] M. Kooli and G. Di Natale, “A survey on simulation-based fault

injection tools for complex systems,” in Proceedings - 2014 9th IEEE

International Conference on Design and Technology of Integrated

Systems in Nanoscale Era, DTIS 2014, 2014.

142

[14] Y. S. Jeong, S. M. Lee, and S. E. Lee, “A Survey of Fault-Injection

Methodologies for Soft Error Rate Modeling in Systems-on-Chips,”

Bull. Electr. Eng. Informatics, vol. 5, no. 2, pp. 169–177, 2016.

[15] International Organization for Standardization, “ISO26262 - Road

Veichles - Functional Safety - Part 1: Vocabulary,” techreport, 2011.

[16] International Organization for Standardization, “ISO26262/CD - Road

Veichles - Functional Safety - Part 12: Adaptation for motorcycles,”

techreport, 2016.

[17] International Organization for Standardization, “ISO26262/CD - Road

Veichles - Functional Safety - Part 11: Application of concepts for

semiconductors,” techreport, 2016.

[18] L. Rierson, “History of DO-178,” in Developing Safety-Critical

Software: A Practical Guide for Aviation Software and DO-178C

Compliance, 1st editio., CRC Press, 2013, pp. 51–55.

[19] A. J. Kornecki and J. Zalewski, “Hardware certification for real-time

safety-critical systems: State of the art,” Annu. Rev. Control, vol. 34,

no. 1, pp. 163–174, 2010.

[20] A. G. Foord, W. G. Gulland, and C. E. Howard, “Ten Years of IEC

61508; Has It Made Any Difference?,” IChemE Symp., no. 156, pp.

232–237, 2011.

[21] MTL Instruments Group, “An introduction to Functional Safety and

IEC 61508,” MTL Instruments Gr., no. HCSS++, 2002.

[22] P. Koopman, “A Case Study of Toyota Unintended Acceleration and

Software Safety,” Pittsburgh, PA, 2014.

[23] B. Vlasic and M. Apuzzo, “Toyota Is Fined $1.2 Billion for

Concealing Safety Defects,” The New York Times, New York, NY, pp.

1–4, 14-Mar-2014.

[24] D. J. Smith and K. G. L. Simpson, Safety Critical Systems Handbook:

A Straightforward Guide to Functional Safety, IEC 61508 and Related

Standards, 3rd Edtion. Oxford: Elsevier Ltd, 2010.

[25] J. Schwarz and J. Buechl, “Preparing the future for functional safety of

automotive E/E-systems,” in 21st (ESV) International Technical

Conference on the Enhanced Safety of Vehicles, 2009, pp. 1–3.

[26] M. Schmidt, M. Rau, E. Helmig, and B. Bauer, “Functional Safety –

Dealing with Independency, Legal Framework Conditions and

Liability Issues,” 2011.

[27] “ISO 26262 Academy Guide,” in International Conference ISO

26262, 2016, pp. 1–22.

[28] International Organization for Standardization, “ISO26262 - Road

Veichles - Functional Safety - Part 10: Guidelines on ISO 26262,”

techreport, 2012.

[29] R. Mariani, “The impact of functional safety standards in the design

and test of reliable and available integrated circuits,” in 2012 17TH

143

IEEE EUROPEAN TEST SYMPOSIUM (ETS), 2012, vol. 2011, pp. 1–

1.

[30] International Organization for Standardization, “ISO26262 - Road

Veichles - Functional Safety - Part 2: Managment of functional

safety,” techreport, 2011.

[31] A. Altby and D. Majdandzic, “Design and implementation of a fault-

tolerant drive-by-wire system,” Chalmers University of Technology,

2014.

[32] International Organization for Standardization, “ISO26262 - Road

Veichles - Functional Safety - Part 5: Product development at the

hardware level,” techreport, 2011.

[33] DoD-US, “Procedures for Performing a Failure Mode, Effects and

Criticality Analysis,” Washington, 1998.

[34] M. Chaari, W. Ecker, C. Novello, B. Tabacaru, and T. Kruse, “A

model-based and simulation-assisted FMEDA approach for safety-

relevant E/E systems,” in Proceedings of the 52nd Annual Design

Automation Conference on - DAC ’15, 2015, pp. 1–6.

[35] L. Entrena, C. López-Ongil, M. García-Valderas, M. Portela-García,

and M. Nicolaidis, “Hardware Fault Injection,” in Soft Errors in

Modern Electronic Systems, M. Nicolaidis, Ed. Boston, MA: Springer

US, 2011, pp. 141–166.

[36] Yogitech Spa, “YOGITECH’s Smart Comparator for Lockstep

Solution using ARM® Cortex®-R5,” 2015.

[37] R. Mariani, T. Kuschel, and H. Shigehara, “A flexible microcontroller

architecture for fail-safe and fail-operational systems,” 2nd HiPEAC

Work. Des. Reliab., 2010.

[38] R. Mariani, G. Boschi, and F. Colucci, “Using an innovative SoC-level

FMEA methodology to design in compliance with IEC61508,” in 2007

Design, Automation & Test in Europe Conference & Exhibition, 2007,

pp. 1–6.

[39] A. Benso, A. Bosio, S. Di Carlo, and R. Mariani, “A Functional

Verification based Fault Injection Environment,” in 22nd IEEE

International Symposium on Defect and Fault-Tolerance in VLSI

Systems (DFT 2007), 2007, pp. 114–122.

[40] J.-L. Huang, J. C.-M. Li, and D. M. (Hank), “Logic and Fault

Simulation,” in VLSI Test Principles and Architectures: Design for

Testability, C.-W. Wu, L.-T. Wang, and X. Wen, Eds. Morgan

Kaufmann, 2006, pp. 105–159.

[41] Y.-C. Chang, L.-R. Huang, H.-C. Liu, C.-J. Yang, and C.-T. Chiu,

“Assessing automotive functional safety microprocessor with ISO

26262 hardware requirements,” in Technical Papers of 2014

International Symposium on VLSI Design, Automation and Test, 2014,

pp. 1–4.

144

[42] T. Instruments, “Safety Analysis Report,” Technical Documents, 2012.

.

[43] International Organization for Standardization, “ISO26262 - Road

Veichles - Functional Safety - Part 9: Automotive Safety Integrity

Level (ASIL)-oriented and safety-oriented analyses,” techreport, 2011.

[44] S. Reiter, M. Pressler, a. Viehl, O. Bringmann, and W. Rosenstiel,

“Reliability assessment of safety-relevant automotive systems in a

model-based design flow,” 2013 18th Asia South Pacific Des. Autom.

Conf., pp. 417–422, Jan. 2013.

[45] A. Avizienis, J. Laprie, B. Randell, and C. Landwehr, “Basic Concepts

and Taxonomy of Dependable and Secure Computing,” IEEE Trans.

Dependable Secur. Comput., vol. 1, no. 1, pp. 11–33, Jan. 2004.

[46] B. E. Hallett, G. Corradi, and S. Mcneil, “Xilinx Reduces Risk and

Increases Efficiency for IEC61508 and ISO26262 Certified Safety

Applications,” 2015.

[47] Y. Yu and B. W. Johnson, “Fault Injection Techniques: A Perspective

on the State of Research,” in Fault Injection Techniques and Tools for

Embedded Systems Reliability Evaluation, 1st ed., A. Benso and P.

Paolo, Eds. Boston, MA: Kluwer Academic Publishers, 2004, pp. 7–

18.

[48] H. Ziade, R. Ayoubi, and R. Velazco, “A Survey on Fault Injection

Techniques,” Int. Arab J. Inf. Technol., vol. 1, no. 2, pp. 171–186,

2004.

[49] S. Wagner, B. Schatz, S. Puchner, and P. Kock, “A Case Study on

Safety Cases in the Automotive Domain: Modules, Patterns, and

Models,” in 2010 IEEE 21st International Symposium on Software

Reliability Engineering, 2010, pp. 269–278.

[50] C. Ebert and A. Braatz, “Functional Safety with ISO 26262: principles

and practice,” Webinars on Functional Safety / ISO 26262, 2014.

[Online]. Available:

http://vector.com/portal/medien/cmc/events/Webinars/2014/Vector_W

ebinar_FunctionalSafety_Principles_and_Practice_20141117_EN.pdf.

[Accessed: 05-Oct-2015].

[51] T. Heijmen, “Soft Errors from Space to Ground: Historical Overview,

Empirical Evidence, and Future Trends,” in Soft Errors in Modern

Electronic Systems, M. Nicolaidis, Ed. Boston, MA: Springer US,

2011, pp. 1–25.

[52] P. E. Dodd, M. R. Shaneyfelt, J. a. Felix, and J. R. Schwank,

“Production and propagation of single-event transients in high-speed

digital logic ICs,” IEEE Trans. Nucl. Sci., vol. 51, no. 6, pp. 3278–

3284, Dec. 2004.

[53] D. Xueyan, W. Liyun, and L. Jinmei, “Effect of charge sharing on the

single event transient response of CMOS logic gates,” vol. 32, no. 9,

145

pp. 3–8, 2011.

[54] S. Sayil and J. Wang, “Coupling induced soft error mechanisms in

nanoscale CMOS technologies,” Analog Integr. Circuits Signal

Process., vol. 79, no. 1, pp. 115–126, Nov. 2013.

[55] M. Saremi, A. Privat, H. J. Barnaby, and L. T. Clark, “Physically

Based Predictive Model for Single Event Transients in CMOS Gates,”

vol. 63, no. 6, pp. 2248–2254, 2016.

[56] R. H.-M. Huang, D. K.-H. Hsu, and C. H.-P. Wen, “A Determinate

Radiation Hardened Technique for Safety-Critical CMOS Designs,” J.

Electron. Test., 2015.

[57] J. Abella, F. J. Cazorla, E. Quinones, A. Grasset, S. Yehia, P. Bonnot,

D. Gizopoulos, R. Mariani, and G. Bernat, “Towards improved

survivability in safety-critical systems,” in 2011 IEEE 17th

International On-Line Testing Symposium, 2011, pp. 240–245.

[58] J. Abraham, R. Iyer, D. Gizopoulos, D. Alexandrescu, and Y. Zorian,

“The future of fault tolerant computing,” in 2015 IEEE 21st

International On-Line Testing Symposium (IOLTS), 2015, vol. 5, pp.

108–109.

[59] C. Hernandez and J. Abella, “Timely Error Detection for Effective

Recovery in Light-Lockstep Automotive Systems,” IEEE Trans.

Comput. Des. Integr. Circuits Syst., vol. 34, no. 11, pp. 1718–1729,

Nov. 2015.

[60] F. Hapke, W. Redemund, A. Glowatz, J. Rajski, M. Reese, M.

Hustava, M. Keim, J. Schloeffel, and A. Fast, “Cell-Aware Test,”

IEEE Trans. Comput. Des. Integr. Circuits Syst., vol. 33, no. 9, pp.

1396–1409, 2014.

[61] M. Stanisavljević, A. Schmid, and Y. Leblebici, “Reliability, Faults,

and Fault Tolerance,” in Reliability of Nanoscale Circuits and

Systems, New York, NY: Springer New York, 2011, pp. 7–18.

[62] Z. Navabi, “Fault and Defect Modeling,” in Digital System Test and

Testable Design, Boston, MA: Springer US, 2011, pp. 63–101.

[63] Council Automotive Electronics, “AEC - Q100-007 Rev-B:FAULT

SIMULATION AND FAULT GRADING,” 2007.

[64] Y. Min and C. Stroud, “Introduction,” in VLSI Test Principles and

Architectures: Design for Testability, C.-W. Wu, L.-T. Wang, and X.

Wen, Eds. Morgan Kaufmann, 2006, pp. 1–36.

[65] S. Rahkonen, “Mutation-Based Qualification of Module Verification

Environments,” Tampere University of Technology, 2015.

[66] A. Benso and P. Paolo, Fault Injection Techniques and Tools for

Embedded Systems Reliability Evaluation, 1st ed., vol. 23. Boston,

MA: Kluwer Academic Publishers, 2004.

[67] R. Natella, D. Cotroneo, and H. S. Madeira, “Assessing Dependability

with Software Fault Injection : A Survey,” ACM Comput. Surv., vol.

146

48, no. 3, p. 44:1-44:55, 2016.

[68] Certress, “Certitude: Delivering Functional Qualification,” 2007.

[Online]. Available: http://www.iss.se/files/4/Certess_datasheet.pdf.

[Accessed: 07-May-2016].

[69] M. J. S. Smith, “Fault Simulation,” in Application-Specific Integrated

Circuits, no. 1st, Addison-Wesley Professional, 1997.

[70] Z. Navabi, “Fault Simulation Applications and Methods,” in Digital

System Test and Testable Design, Boston, MA: Springer US, 2011, pp.

103–142.

[71] A. Efody, “Whose fault is it? Advanced techniques for optimizing ISO

26262 fault analysis,” in Design & Verification Conference (DVCon),

2016, pp. 1–9.

[72] L. Entrena, M. Garcia-Valderas, R. Fernandez-Cardenal, A. Lindoso,

M. Portela, and C. Lopez-Ongil, “Soft Error Sensitivity Evaluation of

Microprocessors by Multilevel Emulation-Based Fault Injection,”

IEEE Trans. Comput., vol. 61, no. 3, pp. 313–322, 2012.

[73] J. Napoles, H. Guzman-Miranda, M. Aguirre, J. Tombs, J. Mogollon,

R. Palomo, and A. Vega-Leal, “A Complete Emulation System for

Single Event Effects Analysis,” in Programmable Logic, 2008 4th

Southern Conference on, 2008, vol. 41092, pp. 213–216.

[74] J. M. Mogollon, H. Guzmán-Miranda, J. Nápoles, J. Barrientos, and

M. A. Aguirre, “FTUNSHADES2: A novel platform for early

evaluation of robustness against SEE,” Proc. Eur. Conf. Radiat. its Eff.

Components Syst. RADECS, pp. 169–174, 2011.

[75] F. Ferlini, PLASER - Plataforma de Emulação de Soft Errors, 1st ed.

Novas Edições Acadêmicas, 2015.

[76] S. Misera, H. T. Vierhaus, and A. Sieber, “Fault Injection Techniques

and their Accelerated Simulation in SystemC,” in 10th Euromicro

Conference on Digital System Design Architectures, Methods and

Tools (DSD 2007), 2007, no. Dsd, pp. 587–595.

[77] J.-H. Oetjens, K. Grüttner, T. Kruse, C. Kuznik, H. M. Le, A.

Mauderer, W. Müller, D. Müller-Gritschneder, F. Poppen, H. Post, S.

Reiter, N. Bannow, W. Rosenstiel, S. Roth, U. Schlichtmann, A. von

Schwerin, B.-A. Tabacaru, A. Viehl, M. Becker, O. Bringmann, A.

Burger, M. Chaari, S. Chakraborty, R. Drechsler, and W. Ecker,

“Safety Evaluation of Automotive Electronics Using Virtual

Prototypes,” in Proceedings of the The 51st Annual Design

Automation Conference on Design Automation Conference - DAC ’14,

2014, pp. 1–6.

[78] S. Reiter, A. Viehl, O. Bringmann, and W. Rosenstiel, “White-Box

Error Effect Simulation for Assisted Safety Analysis,” in 2015

Euromicro Conference on Digital System Design, 2015, pp. 534–538.

[79] H. Mackey, “Sneak Peak: Inside NVIDIA’s Emulation Lab,” The

147

Official NVIDIA Blog, 2011. [Online]. Available:

https://blogs.nvidia.com/blog/2011/05/16/sneak-peak-inside-nvidia-

emulation-lab. [Accessed: 13-Feb-2015].

[80] P. McLellan, “NVIDIA: Ten Months of Emulation on Palladium,

Hours to Bring Up,” Breakfast Bytes - Cadence Blogs, 2016. .

[81] F. Schirrmeister, “Productivity, Predictability, and Use-Model

Versatility,” White Paper, 2013. [Online]. Available:

www.cadence.com/content/dam/cadence-

www/global/en_US/documents/tools/system-design-

verification/palladium-xp-ii-wp.pdf. [Accessed: 30-Apr-2016].

[82] L. Rizzatti, “Hardware Emulation: Three Decades of Evolution - Part

I,” Verification Horizons, Wilsonville, OR, pp. 26–27, 2015.

[83] L. Rizzatti, “Hardware Emulation: Three Decades of Evolution - Part

II,” Verification Horizons, Wilsonville, OR, pp. 40–42, Jun-2015.

[84] L. Rizzatti, “Hardware Emulation: Three Decades of Evolution - Part

III,” Verification Horizons, pp. 15–18, 2015.

[85] David Kaushinsky, “Emulation Based Approach to ISO 26262

Compliant Processors Design,” Verification Horizons, vol. 11, no. 2,

Wilsonville, OR, pp. 47–53, Jun-2015.

[86] O. Bailan, U. Rossi, A. Wantens, J.-M. Daveau, S. Nappi, and P.

Roche, “Verification of soft error detection mechanism through fault

injection on hardware emulation platform,” in 2010 International

Conference on Dependable Systems and Networks Workshops (DSN-

W), 2010, pp. 113–118.

[87] J. M. Daveau, A. Blampey, G. Gasiot, J. Bulone, and P. Roche, “An

industrial fault injection platform for soft-error dependability analysis

and hardening of complex system-on-a-chip,” IEEE Int. Reliab. Phys.

Symp. Proc., no. January 2016, pp. 212–220, 2009.

[88] L. Entrena, C. López-Ongil, M. García-Valderas, M. Portela-García,

and M. Nicolaidis, “Hardware Fault Injection,” in Soft Errors in

Modern Electronic Systems, Vol. 41., M. Nicolaidis, Ed. Boston, MA:

Springer US, 2011, pp. 141–166.

[89] P. Civera, L. Macchiarulo, M. Rebaudengo, M. S. Reorda, and A.

Violante, “Exploiting FPGA for accelerating fault injection

experiments,” in Proceedings Seventh International On-Line Testing

Workshop, 2001, pp. 9–13.

[90] P. Civera, L. Macchiarulo, M. Rebaudengo, M. Sonza Reorda, and M.

Violante, “Exploiting FPGA-based Techniques for Fault Injection

Campaigns on VLSI Circuits,” in Proceedings 2001 IEEE

International Symposium on Defect and Fault Tolerance in VLSI

Systems, 2001, pp. 250–258.

[91] P. Civera, L. Macchiarulo, M. Rebaudengo, M. S. Reorda, and M.

Violante, “An FPGA-based approach for speeding-up fault injection

148

campaigns on safety-critical circuits,” J. Electron. Test., vol. 18, no. 3,

pp. 261–271, 2002.

[92] C. Lopez-Ongil, M. Garcia-Valderas, M. Portela-Garcia, and L.

Entrena, “Autonomous Fault Emulation: A New FPGA-Based

Acceleration System for Hardness Evaluation,” IEEE Trans. Nucl.

Sci., vol. 54, no. 1, pp. 252–261, Feb. 2007.

[93] P. Kenterlis, N. Kranitis, A. Paschalis, D. Gizopoulos, and M.

Psarakis, “A Low-Cost SEU Fault Emulation Platform for SRAM-

Based FPGAs,” 12th IEEE Int. On-Line Test. Symp., pp. 235–241,

2006.

[94] A. Lesea, S. Drimer, J. Fabula, C. Carmichael, and P. Alfke, “The

Rosetta Experiment: Atmospheric Soft Error Rate Testing in Fiffering

Technology FPGAs,” IEEE Trans. Device Mater. Reliab., vol. 5, no.

3, pp. 317–328, Sep. 2005.

[95] J. M. Kuuhn, T. Schweizer, D. Peterson, T. Kuhn, and W. Rosenstiel,

“Testing reliability techniques for SoCs with fault tolerant CGRA by

using live FPGA fault injection,” in 2013 International Conference on

Field-Programmable Technology (FPT), 2013, pp. 462–465.

[96] M. Aguirre, J. Tombs, F. Muñoz, V. Baena, A. Torralba, A.

Fernández-León, F. Tortosa, and D. González-Gutiérrez, “An FPGA

based hardware emulator for the insertion and analysis of Single Event

Upsets in VLSI Designs,” in Radiation Effects on Components and

Systems Workshop (RADECS), 2004, pp. 1–5.

[97] M. a. Aguirre, V. Baena, J. Tombs, and M. Violante, “A New

Approach to Estimate the Effect of Single Event Transients in

Complex Circuits,” IEEE Trans. Nucl. Sci., vol. 54, no. 4, pp. 1018–

1024, Aug. 2007.

[98] A. Rohani and H. G. Kerkhoff, “A Technique for Accelerating

Injection of Transient Faults in Complex SoCs,” in 2011 14th

Euromicro Conference on Digital System Design, 2011, pp. 213–220.

[99] M. Ebrahimi, N. Sayed, M. Rashvand, and M. B. Tahoori, “Fault

injection acceleration by architectural importance sampling,” in 2015

International Conference on Hardware/Software Codesign and System

Synthesis (CODES+ISSS), 2015, pp. 212–219.

[100] N. Bombieri, F. Fummi, and V. Guarnieri, “Accelerating RTL

Fault Simulation through RTL-to-TLM Abstraction,” in 2011

Sixteenth IEEE European Test Symposium, 2011, pp. 117–122.

[101] Cadence Design Systems, “Encounter RTL Compiler,” 2013.

[102] Cadence Design Systems, “Genus Synthesis Solution,” 2015.

[103] International Organization for Standardization, “ISO26262 - Road

Veichles - Functional Safety - Part 8: Supporting processes,”

techreport, 2011.

[104] Cadence Design Systems, “Encounter True-Time ATPG,” 2011.

149

[105] IEEE Computer Society, 1364-2005 - IEEE Standard for Verilog

Hardware Description Language. New York, NY: IEEE Computer

Society, 2006.

[106] OpenCores.org, “OR1200 OpenRISC Processor,” 2012. [Online].

Available: http://opencores.org/or1k/OR1200_OpenRISC_Processor.

[Accessed: 05-Feb-2015].

[107] J. Baxter, “Open Source Hardware Development and the

OpenRISC Project,” KTH ROYAL INSTITUTE OF TECHNOLOGY,

2011.

[108] M. de Carvalho, P. Bernardi, E. Sanchez, M. S. Reorda, and O.

Ballan, “Increasing the Fault Coverage of Processor Devices during

the Operational Phase Functional Test,” J. Electron. Test., vol. 30, no.

3, pp. 317–328, 2014.

