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Abstract

Simulation of circuits and faults is an essential part in design and test validation tasks

of contemporary nano-electronic digital integrated CMOS circuits. Shrinking technology

processes with smaller feature sizes and strict performance and reliability requirements

demand not only detailed validation of the functional properties of a design, but also

accurate validation of non-functional aspects including the timing behavior. However, due

to the rising complexity of the circuit behavior and the steady growth of the designs with

respect to the transistor count, timing-accurate simulation of current designs requires a

lot of computational effort which can only be handled by proper abstraction and a high

degree of parallelization.

This work presents a simulation model for scalable and accurate timing simulation of

digital circuits on data-parallel graphics processing unit (GPU) accelerators. By providing

compact modeling and data-structures as well as through exploiting multiple dimensions

of parallelism, the simulation model enables not only fast and timing-accurate simulation

at logic level, but also massively-parallel simulation with switch level accuracy.

The model facilitates extensions for fast and efficient fault simulation of small delay faults

at logic level, as well as first-order parametric and parasitic faults at switch level. With the

parallelization on GPUs, detailed and scalable simulation is enabled that is applicable even

to multi-million gate designs. This way, comprehensive analyses of realistic timing-related

faults in presence of process- and parameter variations are enabled for the first time.

Additional simulation efficiency is achieved by merging the presented methods in a unified

simulation model, that allows to combine the unique advantages of the different levels

of abstraction in a mixed-abstraction multi-level simulation flow to reach even higher

speedups.

xi



Experimental results show that the implemented parallel approach achieves unprece-

dented simulation throughput as well as high speedup compared to conventional timing

simulators. The underlying model scales for multi-million gate designs and gives detailed

insights into the timing behavior of digital CMOS circuits, thereby enabling large-scale

applications to aid even highly complex design and test validation tasks.
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Zusammenfassung

Simulation ist ein wichtiger Bestandteil der Entwurfs- und Testvalidierung von heutigen

nano-elektronischen digitalen Schaltungen. Die Herstellungsprozesse von Technologien

mit geringen Strukturgrößen im Bereich weniger Nanometer unterliegen strengen An-

forderungen an die Zuverlässigkeit und Performanz der zu produzierenden Schaltungen.

Daher ist es schon während des Entwurfs eine Validierung der funktionalen Aspekte not-

wendig und überdies hinaus auch eine akkurate Validierung der nicht-funktionalen Aspek-

te einschließlich der Simulation des Zeitverhaltens. Aufgrund der steigenden Komplexität

des Schaltverhaltens und der stetig steigenden Zahl von Transistoren in den Schaltungen

benötigt akkurate Zeitsimulation jedoch enormen Rechenaufwand, welcher nur mit ge-

eigneter Modellabstraktion und einem hohen Grad an Parallelisierung bewältigt werden

kann.

In dieser Arbeit wird ein Simulationsmodell zur akkuraten Zeitsimulation digitaler Schal-

tungen auf massiv daten-parallelen Grafikbeschleunigern (sogenannten ”GPUs”) vorge-

stellt. Die Verwendung einer kompakten Modellierung und geeignete Datenstrukturen so-

wie die simultane Ausnutzung mehrerer Dimensionen von Parallelismus ermöglichen nicht

nur schnelle und zeitgenaue Simulation auf Logik-Ebene, sondern erstmals auch skalier-

bare massiv-parallele Simulation mit erhöhter Genauigkeit auf Schalter-Ebene.

Erweiterungen der Modellierung bieten schnelle und effiziente Fehlersimulation von kleins-

ten Verzögerungsfehlern auf Logik-Ebene, als auch parametrische und parasitische Feh-

ler in elektrischen Parametern erster Ordnung auf Schalter-Ebene. Die Parallelisierung

auf den GPU-Architekturen erlaubt darüber hinaus erstmals detaillierte Simulationen und

Analysen von realistischen Verzögerungsfehlern unter Prozess- und Parametervariationen

für Schaltkreise mit Millionen von Gattern.

xiii



Durch Vereinigung der implementierten Methoden in einem mehrere Ebenen umfassenden

Simulationskonzept mit gemischten Abstraktionen werden die Vorteile der verschiedenen

Abstraktionsebenen kombiniert, wodurch die Effizienz der Zeitsimulation gesteigert und

zusätzliche Beschleunigung erzielt werden kann.

Ergebnisse durchgeführter Experimente zeigen, dass der implementierte parallele Simula-

tionsansatz einen hohen Rechendurchsatz mit hohem Grad an Beschleunigung gegenüber

konventioneller Zeitsimulation erzielt. Das zugrundeliegende Simulationsmodell skaliert

für Schaltkreise mit Millionen von Gattern und gewährt detaillierte Einsicht in das Zeit-

schaltverhalten digitaler CMOS Schaltungen, wodurch umfassende Anwendungen zur Un-

terstützung auch für hochkomplexe Aufgaben beim Entwurf und Test nano-elektronischer

Schaltungen ermöglicht werden.
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Chapter 1

Introduction

In modern semi-conductor development cycles of nanometer CMOS integrated circuits,

the simulation of circuits is one of the most important and complex tasks for design and

test validation. Circuit simulation is used for design validation to analyze developed de-

signs with respect to validation targets to indicate the compliance with their specification

or customer requirements. In test validation on the other hand, fault simulation is utilized

to evaluate the defect coverage of test sets and new test strategies, as well as to assess

the quality of the tested products. For this, electronic design automation (EDA) tools for

design and test validation have to rely on repeated, compute-intensive circuit simulations

with extensive runtimes, which can pose a bottleneck, especially for designs with billions

of transistors [ITR15].

Simulation itself is best described as "performing experiments on a model" of the real (phys-

ical) world [Cel91, CK06]. The models for simulation typically provide a set of properties

and rules, that represents and explains parts of the complex real world behavior in an

abstract manner. Once an algorithm has been derived from the model, a simulation pro-

gram (simulator) can be efficiently utilized to perform and observe experiments repeatedly

on the model for any given input parameters. The output of the simulation then provides

data that can help to make predictions regarding the real world behavior. This way, knowl-

edge can be obtained to validate real world hypotheses without the need of costly (and

often destructive) experiments in the real world.

For example, in circuit simulation abstract models of the real physical silicon chips are

provided, that allow to run experiments to predict and observe the behavior of prototype
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designs and compare it to its specification. The designer can then draw conclusions from

the results to assess the provided functionality of the prototype design, the correctness as

well as other non-functional aspects (i.e., timing reliability, power) [WH11, Wun91].

Fault simulation is an extension of circuit simulation in which the behavior of arbitrary

defects in a real physical chip are abstracted to faults. Each fault describes the altered

chip behavior with respect to a given defect mechanism, which is reflected as abstract

deterministic misbehavior in the underlying circuit simulation model.

The abstraction of a simulation model itself is crucial to avoid dealing with the overall

complexity of the real physical world and to make an evaluation feasible at all. While

a high accuracy of a simulation model is generally desirable, it can make simulations

infeasible due to a high time- and space complexity of the evaluations. By constraining the

model to certain aspects and by using simplified assumptions, the costs of the simulations

can be lowered and evaluation can be focused on certain problems of interest. On the

other hand, too much abstraction reduces the accuracy of the models and also the viability

of the simulation and its results.

Challenges

With the continuing advancements in semiconductor manufacturing processes and shrink-

ing technologies of digital integrated CMOS circuits, traditional circuit and fault simula-

tion models have become insufficient. Nowadays, thorough design and test validation

as well as diagnosis require more and more accurate simulations and have thus become

complex and runtime-intensive tasks, since several aspects have lead to an increase in the

overall modeling and simulation effort:

Complexity of Circuit Size

Over the past decades, semiconductor manufacturing technologies and processes made

continuous advancements that still allow for an ongoing growth in complexity and higher

integration of modern integrated circuits [ITR15]. Although Moore’s Law [Moo65, Moo75]

was already predicted to end [RS11], newer process technologies, such as the fin-type field

effect transistor (FinFET), enable a scaling of structure sizes down to a few nanometers
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only and the production with higher transistor density [Kin05, Hu11]. For example, in

2017 NVIDIA announced a new generation of parallel GPU accelerators: The NVIDIA R©

VoltaTM architecture. The GV100 GPU chip of the family is manufactured in a 12nm

FinFET technology and comprises 21.1 billion transistors on a die of 815 mm2 in size

[NVI17d]. To validate such massive designs, scalable parallel simulation algorithms are

required that are able to cope with the increasing design complexity and its millions or

billions of transistors.

Complexity of Circuit Behavior

While technology scaling causes the circuits to grow in size and functionality, the be-

havior of standard cells and circuit structures is becoming more and more complex as

well [ITR15]. With the increasing demand for high-performance and low-power em-

bedded designs, chips are running today at their operational limit [SBJ+03, DWB+10,

KET16, GKET16]. Furthermore, the circuit structures become more and more prone

to process- [ZHHO04, QS10] and parameter variations (e.g., voltage and temperature

[BPSB00, BKN+03, TKD+07]), which can impact the reliability of the circuit and effec-

tiveness of tests if neglegted [PBH+11, HBH+10, CIJ+12]. Therefore, accurate simulation

models are required that deliver sufficiently high precision and detail to capture both

functional as well as non-functional aspects of the circuit with as little abstraction as pos-

sible. The circuit models must provide support for accurate representation of the temporal

behavior to reflect hazards and glitches, signal slopes and parametric and parasitic depen-

dencies. Also, pattern-dependent delays and multiple-input switching effects should be

considered as they can significantly alter the circuit delay [MRD92, SDC94, CS96]. How-

ever, such timing-accurate evaluations involve the vast processing of many real numbers

through complex arithmetic operations, which is several times more expensive in term

of computing complexity compared to untimed logic simulation [SJN94] and also much

harder to parallelize [BMC96].

Complexity of Defect Modeling

The complexity of a simulation quickly rises further as soon as the behavior of defects

in a circuit needs to be investigated in fault simulation. While classical fault models and
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simulation approaches have been extensively studied and optimized in the past [Wun10,

Wun91, WLRI87], modern semiconductor manufacturing processes have to deal with

several new fine-grained types of defects [LX12, RAH+14, HRG+14, ITR15]. Small de-

lay defects (SDD) [TPC11, RMdGV02], marginal devices [RAH+14, KCK+10, KKK+10]

and wear-out-related effects due to circuit aging [LGS09, APZM07, BM09, GSR+14] im-

pact the timing behavior of the circuit and require timing- and glitch-accurate evaluation

[Kon00, YS04, HS14], especially when considering process variations on top [PBH+11,

HBH+10, CIJ+12]. While certain validation tasks can utilize formal verification meth-

ods [DG05], the modeling and evaluation of low-level faults and parameters in explicit

simulation is much more intuitive and straight-forward [Lam05], especially when a vali-

dated formal model does not exist.

Moreover, the faulty behavior of many realistic defects often cannot be represented at

higher abstraction levels as their behavior strongly depends on the physical layout as

well as the low-level topology and technology of the standard cells [SMF85, FS88]. For

this, cell-aware test (CAT) approaches have been recently developed [HRG+14] that ex-

tensively rely on expensive low-level analog fault simulations with user-defined fault mod-

els (UDFM). Thus, it is important to efficiently simulate faults with little abstraction as

accurately and efficiently as possible [CCCW16].

Parallelism as a Remedy

Assume that a circuit of N nodes with a set F of faults needs to be simulated for a pattern

set T under different operating parameters P. In a naïve flow, a total of N×|F|×|T |×|P|

individual simulation problems have to be solved, each of which corresponds to complex

arithmetic evaluations of the timing behavior at a node. Thus, with growing design size,

the number of simulation problems quickly rises since the number of nodes, faults and test

patterns also increase.

Although circuit- and fault simulation are inherently parallelizable [IT88, BBC94, BMC96],

the parallelization has risen to a whole new level with the introduction of general purpose

computing on graphics processing unit (GPU) accelerators [OHL+08]. In contrast to con-

ventional processors (e.g., IBM Power9 architecture with 24 cores [STKS17]), the GPU-
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architectures provide thousands of compute cores on a single device for running millions

of threads concurrently [NVI17d]. With this amount of compute cores, the GPU-based sys-

tems attain unprecedented arithmetic computing throughput in the order of petaFLOPS1

on a single compute node, which has established well in high-performance computing for

speeding up many applications [NVI18c].

Many approaches that parallelize logic level simulation on GPUs for acceleration were

published [GK08, Den10, KSWZ10, CKG13, WLHW14, LTL18] that isolate and partition

the simulation problems for independent parallel execution by individual threads, but

only very few are able to consider actual timing. Analog simulation with GPU-support

[GCKS09, CRWY15, CUS19] and full GPU-accelerated SPICE implementations [HZF13,

HF16, vSAH18] have been proposed as well. However, existing parallel approaches for

either logic level or analog simulation are mainly optimized for speeding up single simu-

lation instances only. Since the number of simulation problems is continuing to rise, it is

of utmost importance that the approaches are not only efficiently parallelizable, but also

scalable by providing high-simulation throughput to make an evaluation of large designs

for more complex algorithms feasible.

Timing Modeling at Logic Level

For the calculation of the full signal switching histories in a circuit, traditional unit delay

models [Wun91] have become insufficient. Instead, timing-accurate simulation models

are required that are able to process real-valued gate delays for individual gate pins and

signal switches [IEE01a]. Since the execution of bare arithmetic floating-point instructions

has much higher latency compared to bit-wise logic operations of traditional untimed logic

simulation, timing-accurate simulation of a million-gate circuit for a test pattern set can

take hours or even days to complete [SHK+15].

On GPUs, long-latency processes and arithmetic operations can be hidden by the massive

computing throughput provided by the parallel computing cores [OHL+08]. For this,

massive parallelization needs to be exploited to effectively speed up extensive logic level

simulations with timing-accurate and variation-aware delay models for large designs and

test sets.
11 petaFLOP = 1015 floating point operations per second
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Switch Level Modeling and Algorithms

Timing-accurate and lower-level models are desirable for accurate simulation of digital

integrated CMOS circuits. While simulation at logic level lacks accuracy, SPICE simulation

lacks scalability even when accelerated by parallelization. As a trade-off, switch level

simulation was introduced [Bry87, Hay87, BBH+88, MV91] which drastically reduces the

complexity of the evaluation compared to full analog simulation. While not being as

accurate, switch level modeling reflects many properties of CMOS circuits and standard

cells that cannot be modeled at logic level. This has recently drawn attention in cell-aware

test (CAT) generation to reduce the analog fault simulation overhead [CCCW16, CWC17].

Yet, the simulation at switch level is still an order of magnitude slower compared to logic

simulation [SJN94] and therefore poses a strong bottleneck in validation tasks, which

makes it a prime-example for the acceleration on GPUs. However, to the best of the

author’s knowledge no algorithms to accelerate switch level simulations on GPUs exist.

Defect Modeling and Fault Simulation

Many defects types exhibit a varying faulty behavior based on the size or magnitude of the

defect parameter. The behavior of such a parametric defect can range from a hard func-

tional failure of the circuit, to a weak impact on the non-functional timing behavior that

only affects the circuit performance [RMdGV02, FGRC17]. With the continuously shrink-

ing circuit structures, the probability of such defects as well as their severity with respect to

the circuit reliability rises [ITR15], while at the same time the faults are becoming harder

to detect [LX12, TTC+15]. Thus, thorough test validation requires a fine-grained model-

ing of the defect parameters to capture deviations in both functional and non-functional

aspects of the circuit (e.g., small delays [YS04, LKW17, KKL+18]).

To reflect the behavior of more realistic defects found in CMOS cells, faults must be

modeled at the lower levels without introducing too much abstraction [FS88, CCCW16,

CWC17]. This vastly increases the computational overhead, as the defect mechanisms

not only get more complex, but also many simulations of different individual faults are

necessary (e.g., for fault coverage estimation). Thus, the need for parallelization of fault

simulation is unavoidable [IT88, Wun91]. With their large amount of parallel arithmetic
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compute cores, GPUs provide high arithmetic computing throughput that is promising to

simulate even large designs for many faults and test patterns with full timing-accuracy.

Multi-Level Simulation

The modeling and simulation at higher abstraction is fast, but the approaches are limited

in accuracy such that often timing and defects cannot be reflected properly [RAH+14].

On the other hand, lower level approaches can provide sufficient accuracy, but exhibit

significant runtime complexity and resource requirements, such that the approaches can-

not be used solely for a system-wide application (i.e., system-level test validation [Che18,

JRW14]). However, advantages from both higher- and lower-level abstractions can still

be taken into account at the same time by using multi-level techniques.

A multi-level simulation provides a combined simulation across multiple different levels of

abstractions [GMS88, MC95, RK08, KZB+10, HBPW14]. Accurate and compute-intensive

evaluations are typically restricted to a particular region of the circuit [HBPW14, KZB+10],

or single cells [CCCW16], whereas the remainder is processed using faster higher-level

simulations. Intermediate simulation data is usually exchanged at abstraction boundaries

by data aggregation and mapping to the respective higher- or lower-level inputs [JAC+13,

HBPW14, CCCW16]. Thus, compared to full simulations at the lowest abstraction, multi-

level simulations can provide a trade-off in terms of speed and accuracy and make certain

simulation scenarios even feasible at all [JAC+13, HKBG+09, CCCW16].

Applications

High-throughput timing-accurate circuit- and fault simulation is helpful to accelerate ap-

plications in a variety of areas, which heavily rely on extensive simulations.

Process variability and timing variation: With the increasing sensitivity of circuits to-

wards process- and parameter variation, the need for statistical evaluations for perfor-

mance and reliability assessment rises. Under variation, the circuit timing is severely

altered [BCSS08, GK09] which tampers with the effectiveness of tests [PBH+11]. By in-

cluding parameter dependencies in the delay processing, such as supply voltage and am-

bient temperature [DJA+08, SAKF08], or process variations [ABZ03, ZHHO04], statistical
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timing analyses [WW13] and statistical fault coverage analysis [SHM+05, CIJ+12] can be

realized by large-scale Monte-Carlo evaluations in highly parallel timing simulation.

Non-functional properties: The timing-accurate switching histories from the simula-

tion can be utilized to analyze non-functional properties in a design. Both, thermal de-

sign power [HGV+06] and IR-drop from switching activity hotspots [SBJ+03, MSB+15,

DED17a] impact the reliability of designs and tests [WYM+05, ZWH+18] and thus need

to be evaluated. Moreover, vulnerabilities with respect to single-event upsets [BKK+93]

and aging effects, such as bias temperature instability (BTI) [GSR+14] or hot-carrier injec-

tion (HCI) [LGS09, ZKS+15], can be investigated using timing-accurate signal histories.

Power estimation: The static and dynamic power-consumption of a design can be es-

timated from the circuit signals and switching activity [GNW10]. Power consumption

tampers with the functionality of the design not only during functional operation, but

also during the application of tests [WYM+05, AWH+15]. While previous approaches

relied on untimed logic simulation due to complexity reasons, the power of GPUs en-

able timing-accurate power estimation for many patterns in parallel. This way more-

accurate power-aware test schemes and test pattern selection can be developed [HSW+16,

HSK+17, ZWH+18].

Scan test: Timing-accurate simulation is necessary to validate delay tests for small delay

defects and marginalities, i.e., faster than at-speed test (FAST) [HIK+14, KKL+18]. How-

ever, in scan test each test pattern undergoes a long session of consecutive shift cycles

before the test can actually be applied and evaluation [GNW10]. During the shift-phase,

IR-drop-induced shift-errors from delayed signals [YWK+11] as well as skewed clocks

[Sho86] can cause errors during shift-in and shift-out phases of the test pattern applica-

tion. Again, with the high-throughput computing capabilities of GPUs, parallelization can

be utilized to accurately evaluate full test sets with millions of shift cycles concurrently.

Goal of this Thesis and Organization

The document at hand presents highly parallel simulation models and simulation algo-

rithms for fast and scalable timing simulation of nano-electronic digital integrated CMOS

circuits on graphics processing units (GPUs).
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The main contributions of this thesis are summarized in Fig. 1.1. Compact functional as

well as timing-accurate temporal modeling are combined with highly parallelized simula-

tion algorithms designed to run on GPU-architectures to exploit their massive computing

throughput. These building blocks provide the foundation for developing high-throughput

simulation algorithms for timing-accurate logic level and switch level simulation with par-

allel execution on the GPUs.

high-throughput
parallelization

compact
functional
modeling

efficient high-throughput parallel timing & fault simulation
of nano-electronic digital circuits

massively parallel graphics processing units (GPU)

efficient
simulation
algorithms

timing-accurate
temporal
abstraction

[HSW12]
[HIW15] [SHWW14]

small delay fault
simulation

[SHK+15]
[SKH+17]

[SW16]
[SW19a]

multi-level timing & fault simulation [SW19b]

transistor level
fault simulation

logic level
timing simulation

switch level
timing simulation

[SKW18]

Figure 1.1: Contributions of this work.

The presented simulation models and algorithms are further extended for fault simula-

tion of small delay faults at logic- as well as low-level parametric and parasitic faults at

switch level. These allow to fully exploit the massive parallelism found in circuit and fault

simulation on the GPU-architectures.

Finally, on top of these the extended simulation models and algorithms are ultimately

combined to form an efficient multi-level fault simulation flow that enables additional sim-

ulation throughput and simulation efficiency for the lower level fault simulation through

the use of mixed abstractions during simulation.

By simultaneously exploiting different dimensions of simulation parallelism, the presented

parallel simulation techniques achieve unprecedented simulation throughput on GPUs
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thereby enabling scalable timing and fault simulation of multi-million gate designs, which

effectively reduces simulation time from several hours or even days to minutes only.

The structure of this document is organized into three parts:

The first part (Chapter 2–4) introduces background on circuit- and fault modeling as well

as simulation. Furthermore, the part briefly summarizes the key aspects of data-parallel

many-core computing architecture of graphics processing units (GPU) and their program-

ming paradigm, along with an overview of state-of-the-art GPU-accelerated simulation

techniques.

The second part of this document handles the high-throughput time- and fault simulation,

which is the main contribution of the thesis and is composed of the following chapters:

Chapter 5 (”Parallel Logic Level Time Simulation on GPUs”) – presents the first timing-

accurate and variation-aware logic level time simulation on GPUs and outlines the

underlying algorithms, kernels and general data structures for multi-dimensional

parallelization with high simulation throughput.

Chapter 6 (”Parallel Switch Level Time Simulation on GPUs”) – introduces the first parallel

switch level time simulation for GPUs which utilizes first-order electrical parameters

found in CMOS circuits for a more accurate modeling of the functional and timing

behavior of CMOS standard cells.

Chapter 7 (”Waveform-Accurate Fault Simulation on GPUs”) – describes the extension of

the logic- and switch level simulation algorithm for fault modeling, syndrome com-

putation and parallelization for first-time detailed and comprehensive parallel sim-

ulation of timing-related faults.

Chapter 8 (”Multi-Level Simulation on GPUs”) – addresses a combination of the presented

parallel logic- and switch level algorithms in the first GPU-accelerated multi-level

simulator that effectively enhances the performance and efficiency of the lower-level

timing and fault simulation.

The third and last part (Chapter 9–13) discusses the evaluation of the aforementioned

presented simulation methodologies as well as example applications in five chapters.

Finally, the last chapter provides a summary of all the contributions of this thesis and

outlines directions for future work and possible extensions.
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Part I

Background





Chapter 2

Fundamental Background

This chapter summarizes the necessary background and fundamentals of circuit- and fault

modeling as well as simulation of digital integrated CMOS circuits as found in basic litera-

ture [Wun91, BA04, WWX06, WH11]. First, background on standard CMOS technology is

provided, followed by circuit- and delay fault modeling on different levels of abstraction.

Finally, simulation algorithms and multi-level simulation methods are briefly discussed.

2.1 CMOS Digital Circuits

Today’s semiconductor manufacturing processes of digital integrated circuits mainly rely

on complementary metal-oxide semiconductor (CMOS) technology. CMOS uses two types

of metal-oxide-semiconductor field-effect transistor (MOSFET) devices, namely NMOS and

PMOS transistors, that can basically be considered as voltage-controlled switches. NMOS

and PMOS transistors are utilized to form standard cells in standard cell libraries [Nan10,

Syn11] which are the foundation of contemporary semiconductor design. For more details

on the structure and mechanics of transistors as well as the manufacturing processes and

design of standard cells, the reader is referred to [WH11].

In modern semiconductor process technology nodes, conventional planar MOSFETs are

being replaced by the recent fin-type field-effect transistor (FinFET) technology [HLK+00,

Kin05, BC13]. The FinFET devices allow for scalable manufacturing of feature sizes be-

yond 20nm, since they have a more compact layout with a faster switching behavior com-

pared to traditional transistors [YMO15]. This enables the production of more complex
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designs with higher transistor density that can be further run at higher clock frequencies to

achieve even higher device performance. Although the physical structure of planar MOS-

FET and FinFET is different, their basic working principles and design flows are similar.

2.1.1 CMOS Switching and Time Behavior

In today’s nanometer regime, it is often of utmost importance that the designs meet a

certain performance requirement that is given by a minimum system clock frequency. The

highest frequency a design can reliably run with is usually determined by the length of the

critical path. The critical path accumulates all the propagation delays of standard cells and

interconnects on the longest sensitizable path from a primary or pseudo-primary input to

a primary or pseudo-primary output in the design.

In general, the delays of a standard cell are distinguished by propagation delays and rise/-

fall times as shown in Fig. 2.1, which depicts the typical input and output waveform of a

inverter cell in a small circuit (15nm FinFET technology [Nan14, BD15] powered with a

supply voltage of 0.8V). The maximum signal amplitude on the left axis has been normal-

ized. As shown, the signal switching processes do not occur instantly, but occur merely as a

function of the voltage over time as a result of parametric and parasitic electrical elements

in the circuit. The change of the voltage of a signal is typically modeled by differential

equations that describe electrical charging and discharging processes of capacitances in

the circuit [WH11].
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Figure 2.1: Rising/falling propagation delay (dr, df ) and rise/fall times or slopes (dlh,dhl)
of an INV_X1 CMOS inverter cell [Nan14, BD15]. (Adapted from [WH11])

The propagation delay is defined for rising (low-to-high) and falling (high-to-low) output

transition polarities (dr and df ) and describes the time it takes for a signal transition at

a cell input to propagate to the cell output. It is measured from the time point where

the input signal reaches the 50% mark of the maximum signal amplitude (i.e., 0.5 · VDD
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2.1 CMOS Digital Circuits

as halfway between VDD and GND potential) to the point where the output crosses 50%

of the maximum signal amplitude in response [WH11]. Moreover, as shown in Fig. 2.1,

signal transitions are not instantaneous, but follow a certain continuous transition ramp or

slope that are given by the rise-time dlh for rising and the fall-time dhl for falling transitions

as well. The rise-time (and fall time) of a signal transition is defined as the time it takes

to transition from 20% to 80% of the maximum signal amplitude (and vice versa), though

these thresholds can vary throughout the literature (e.g., 10%–90%) [WH11].

With the shrinking manufacturing process technologies and increasing complexity, it is

important to accurately estimate the possible timing of contemporary and future designs.

Thus, suitable models are required to reflect and consider CMOS-related timing effects as

early and as accurately as possible during the design phase.

One approach to estimate the delay of a circuit is the RC delay model [WH11], which

approximates the non-linear characteristics of transistors considering average resistances

and capacitances of the circuit nodes. In the RC delay model, the circuit netlist is trans-

formed into an electrical equivalent RC-circuit where all transistors and interconnects are

replaced by simple resistors and the interconnect- and gate capacitances in the fanouts are

replaced by (in the simplest case) lumped capacitances. A switching transistor causes a

change in the state of the RC-model elements by changing the corresponding resistance.

This triggers a transient at the output that is typically computed using the first-order

or second-order step response [Elm48, WH11]. Hence, in case of the rising transient of

Fig. 2.1 the step response vrise beginning at some time t0 can be modeled for the time

t > t0 after as

vrise(t) := (GND− VDD) · e
−(t−t0)

τ + VDD, (2.1)

where τ is the time constant computed as τ := R ·C, with R being the effective resistance

of the driving PMOS transistor and C being the load capacitance. The propagation delay

dr is then derived from the output signal vrise at the time it crosses 0.5 · VDD, which is

computed as dr := τ · log 2 [WH11]. Similarly, the falling transient vfall beginning at some

time t1 is calculated for t > t1 as

vfall (t) := (VDD− GND) · e
−(t−t1)

τ + GND, (2.2)
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2 Fundamental Background

in which case the resistance R for the time constant τ := R ·C corresponds to the effective

resistance of the conducting NMOS transistor, resulting in an estimated falling propagation

delay of df := τ · log 2. Both of the modeled rising and falling transients expressed by vrise

and vfall are illustrated in Fig. 2.2. The axes have been normalized by τ for the time and

by VDD for the voltage, respectively. For the sake of simplicity, it was assumed that the

internal resistances of NMOS and PMOS were equal.
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Figure 2.2: First-order step response for rising and falling transient modeling the continu-
ous charging/discharging process of an output load capacitance. (Adapted from [WH11].)

2.1.2 Circuit Performance and Reliability Issues

With the shrinking feature sizes in newer technologies, the semiconductor manufactur-

ing processes get more complex and increasingly prone to process variations and defects

[SSB05, PBH+11]. Since the structures, such as fins of FinFET transistors, have a size

of only a few nanometers, spot-defects by particles or statistical processes in the different

manufacturing steps, such as dopant fluctuations, are getting more and more frequent and

influential. These problems can severely alter the physical layout of the circuit structures

and lead to improper connections in the design. Moreover, transistor-related parameters,

such as the threshold voltage and electron mobility, can shift due to improper manufactur-

ing. The resulting defects, such as open and shorts in either fins or gates [LX12], as well as

variation artifacts [HTZ15] primarily impact the timing of the circuit [TTC+15, FGRC17]

and ultimately affect the device performance and reliability by introducing delay faults.

Certain parameter shifts in circuit structures exhibit small delays that sometimes indicate

circuit aging or the presence of a marginal device [KCK+10]. For example, when a design is

put under stress (i.e., high switching activity or mechanical stress) after deployment, struc-

tures in the circuit can fail due to device degradation and transistor aging [BM09]. These

wear-out mechanisms appear gradually as a result of continuing static and dynamic stress
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in the circuit, i.e., by certain stimuli or circuit activity, as well as environmental conditions,

such as temperature. Typical degradation mechanisms are Negative-Bias Temperature In-

stability (NBTI) [LGS09, GBRC09], Hot-Carrier Injection (HCI) [EFB81, GSR+14], Time-

Dependent Dielectric Breakdown (TDDB) [DGB+98] and electromigration (EM) [Cle01].

The effects of the degradation range from changes in electrical properties of the transistor

devices and interconnects [LQB08] that result in delay faults [BM09] up to hard fail-

ures, such as voids or bridges due to transported metal atoms from EM. Imminent wear-

out failures can be predicted using specialized hardware (e.g., aging monitors [APZM07,

LSK+18]), once the circuit has sufficiently aged or degraded. Wear-out can also be de-

layed or mitigated by reducing the stress patterns in the circuit to prolong the system

lifetime [ZBK+13].

Failures in the early-life phase of a design are related to infant mortality among circuits,

where marginal devices have passed the conventional manufacturing test, but soon break

after initial deployment. These failures are called early-life failures (ELFs). Marginal de-

vices are usually tested using so-called Burn-In tests [VH99], that strongly exercise the

circuit under extreme stress conditions to expose the ELF. The indicators of ELFs can be

located deep inside the circuitry which can be barely noticeable as small delay devia-

tions that are much smaller than the clock period and not testable under at-speed condi-

tions [KCK+10]. This lead to the recent development of Faster-than-At-Speed Test (FAST)

[HIK+14, KKS+15] to explicitly test for these hidden delay faults (HDF) to identify the

marginal devices.

Therefore, to assess and validate the timing of today’s designs as well as to thoroughly test

for timing-related defects, designers and testers have to rely on timing-accurate models of

the circuits and simulation algorithms for test and diagnosis [TPC11].

2.2 Circuit Modeling

Today’s multi-billion transistor circuit designs are typically not manufactured starting from

scratch using transistors, but rather starting from high-level specifications that describe

its behavior in an abstract manner [Wun91]. As shown in Fig. 2.3, the circuit design

undergoes different representations at various levels following a V-shaped model. During
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2 Fundamental Background

the top-down design phase, abstract high-level descriptions are refined step by step by

synthesis tools that systematically add more and more implementation details by mapping

to lower level structures [ABF90, BA04, WWX06]. For example, at the highest level of

abstraction, only the desired function is specified and the actual design itself is treated as

a black box since no physical implementation details are present. At this level, modeling

and simulation is fast and simple, but the accuracy is the lowest. When moving down

towards the lower abstraction levels, the required gates to realize the specified function

or even the layout of complete transistor netlists with physical and electrical properties

are determined. This drastically increases the modeling complexity and, of course, the

simulation effort, but ultimately leads to more accurate models and evaluations.
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Figure 2.3: Overview of abstraction levels of a circuit in the design and validation.

2.2.1 Electrical Level

The electrical level provides the highest accuracy among the commonly used simulation

models as it reflects the physical properties and behavior based on layout. The circuit

is modeled using netlists of electrical components and devices, such as transistor mod-

els, resistors, capacitors, inductors and voltage sources. Corresponding simulators usually

consider geometric information of the physical layout to reflect spatial dependencies of

power-grid structures and capacitances between neighboring interconnection lines. Inter-

nal node voltages and currents are typically calculated through compute-intensive nodal

analyses and differential equations using numerical integration methods. This way, highly

waveform-accurate transient analyses by electrical simulations can be provided which also

allow to predict the signal integrity as well as the power consumption in a circuit [WH11].
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Modeling and simulation at the electrical level is typically performed using SPICE [NP73],

which has established as industry golden standard. Common standard cell libraries [Nan10,

Syn11] already provide SPICE models of the implemented standard cells, which utilize

transistor device model cards that can include hundreds of parameters [DPA+17, Nan17].

However, the high detail and accuracy of the electrical level modeling comes at the cost of

vast runtime complexity and memory requirements.

2.2.2 Switch Level

Switch level modeling abstracts the electrical level behavior of the circuit by simplification

and linearization of the transistor switching behavior [Bry84, Bry87, Hay87, Kao92]. The

circuit is represented as an interconnected network of transistors and first-order electrical

components, i.e., resistors and capacitors, as shown in Fig. 2.4. Transistors are treated as

simple three-terminal devices that form discrete ideal switches, where the input at the gate

terminal controls the connection between drain and current terminal of the device. The

resistors in the model reflect the static functional behavior, and the capacitors (sometimes

referred to as wells) model the temporal behavior [Hay87]. Most switch level models

distinguish between signal strengths and consider bi-directional signal flows as well as

modeling of charges inside of the networks.

At switch level, signal values are typically represented as pairs 〈s, v〉 of signal strength s ∈

N and signal value v. The signal values are typically expressed in ternary (three-valued)

logic over the set E3 = {0, 1, X} [Hay86, BAS97] to distinguish between low (0), high (1)

and undefined (X) signals. The signal strength reflects the driving strength of the signal

source, which is used to resolve multiple drivers at a node or consider bidirectional signal
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Figure 2.4: Inverter cell with CMOS implementation and switch level representation,
where signal values are encoded as pairs 〈si, vi〉 of strength si and logic value vi [Hay87].
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flows as well as stored charges in the network. Signals of strength s = 0 are the strongest

signals and typically correspond to VDD or GND sources, whereas higher values of s indi-

cate weaker signals. Stronger signal values always override weaker ones. Signals of the

same strength, but with different values, result in an undefined value.

For the purpose of efficient switch level simulation of digital designs, a common practice

is to partition the transistor netlist of circuits and CMOS cells into smaller sub-networks

composed of ideal PMOS and NMOS transistor meshes, forming a channel-connected com-

ponent (CCC) [Bry87, DOR87, HVC97, BBH+88, BAS97, CCCW16]. The transistors within

a CCC are interconnected via their drain and source terminals to each other and connect

power supply VDD and ground GND sources and allow for a bidirectional signal flow within

the network. The outputs of a CCC are linked to an output domain that can lead to gate

terminals of transistors in succeeding CCCs. However, it is assumed that no current can

flow over the gate from one CCC into another.

Switch level evaluation algorithms are mainly based on nodal analyses and dependen-

cies that are formulated using linear equations. These equations are solved using relax-

ation techniques with sparse matrix vector products (SMVP) to first find a steady state

solution of the node voltages and the node charges inside of the network after each in-

put switch [Bry87]. In combination with timing analysis, node voltages are more ac-

curately represented as a function of time, usually modeled by piece-wise approxima-

tions [CGK75, Ter83, Kao92]. In general, switch level models are less accurate than elec-

trical level models, but they are able to reflect many important properties of CMOS tech-

nology which are not reflected in classical models based on two-valued Boolean or ternary

pseudo-Boolean logic. Due to the higher speed of switch level simulation, it has replaced

analog SPICE simulation in recent cell-aware test generation [CCCW16].

2.2.3 Logic Level

The logic level is the most dominant abstraction used in design and test validation of nano-

electronic digital circuits [WWX06, BA04]. At logic level the circuit behavior is described

as netlist of interconnected Boolean gates. The netlist of a circuit is typically modeled as

a directed graph G := (V,E). Each vertex v ∈ V corresponds to a node in the netlist,

which corresponds to a Boolean gate, flip-flop, or circuit input or output, and basically
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represents a functional abstraction of a physical standard cell that determines the logical

behavior. The edges (v, v′) ∈ E ⊆ V × V represent ideal interconnections from a source

node v ∈ V to a sink node v′ ∈ V in the netlist and allow for signal flows. Incoming edges

at a node refer to input pins at the corresponding gate, while outgoing edges indicate the

information transport from the node output pin to its successors.

Each edge e ∈ E is associated with a signal value that reflects the logical interpretation of

the voltage level of the corresponding signal, which are typically defined over two-valued

Boolean logic B2 = {0, 1} [Hay86]. The logic values in B2 correspond to discrete signal

states, where the logic symbol ’0’ corresponds to low voltage (i.e., ground voltage potential

GND) and the symbol ’1’ corresponds to a high voltage (i.e., power supply voltage potential

VDD). Multi-valued logic, such as ternary, four-valued, or even higher-order logic can

be utilized to reflect additional states (e.g., unknown due to uncertainties) and dynamic

behavior (e.g., transitions) of signals [Hay86]. The functional behavior of a node with k

incoming edges is modeled by a Boolean function φ : Bk
2 → B2 that maps the values of

the edges to an output value according to the function.

At logic level, various delay models can be considered to describe the temporal behavior

of a gate output signal with respect to input changes. Apart from zero-delay modeling,

which reflects the untimed simulation case, where input changes at time t can cause a

simultaneous change at the output, timing-aware delay models evolve around unit- and

multiple-delay representations to reflect propagation delays for gates (sometimes referred

to as transport delays) [ABF90]. Fig. 2.5 provides an overview of the timing-aware delay

models on the example of a small inverter gate [Wun91].

In unit delay it is assumed that all gates have a constant propagation delay d := 1 that

corresponds to one time unit. For input transitions at time t ∈ N, this can cause output

transitions to occur at time t′ := (t+d) = (t+1) in response. However, different gate types

typically have different delays. Moreover, gates usually have different delays for rising and

falling output transitions as well. Multiple-delay models reflect different transport delays

dr for rising and df for falling output transitions, which are applied accordingly.

Some delay models are able to consider propagation delays that are bounded by a min-

max interval [dmin, dmax] ⊂ R [Wun91, BGA07]. In interval-based delay modeling, the

actual delay of a gate is not known exactly, but it is estimated to be in the interval d ∈
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Figure 2.5: Overview of common (timing-aware) delay models in logic level simulation.
(Adapted from [Wun91])

[dmin, dmax]. This way, process variations and uncertainties that impact gate delays can

be reflected. However, during simulation with such a model the uncertainty of different

gates can quickly accumulate and lead to pessimistic simulation results [ABF90].

When the value at a gate output switches, the load capacitance associated with the stan-

dard cell implementation at the electrical level is (dis-) charged, which requires some time

until the transition is finished. In case a pulse at a gate input is too short, the output does

not have sufficient time to charge to the targeted potential, which can prevent the propa-

gation of the pulse, such that the output value is sustained. A so-called inertial delay can

describe the minimum pulse width ∆d ∈ R required to perform a full (dis-) charge of the

output. For example, in Fig. 2.5, signal A has two consecutive pulses at times t1 := 1 and

t2 := 3, which would lead to transitions at times t′1 := 2 and t′2 := 3 under unit delay. In

the last case, the required minimum pulse width is ∆d > 2, therefore the pulse is filtered

out since the pulse width given by (t′2 − t′1) = 2 does not meet the requirement.

Individual delays for each input pin of a gate can be considered in combination with rising

and falling distinction. So-called pin-to-pin delay models keep a delay value di for each

input pin i of a gate. An input transition at pin i at time t then propagates to the output

at time t′ := (t+ di) with the corresponding delay associated to the pin.

The logic level timing information is usually provided as standard delay format (SDF) files

[IEE01a] which are obtained during the synthesis of the design. Each SDF file typically

contain absolute and incremental delay specifications describing, specific delays for indi-

vidual ports (PORT), the propagation delay from an input to an output pin (IOPATH) as
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well as wire delays (INTERCONNECT) between gate instances. In addition to the propaga-

tion delays, inertial delays can be specified (via PULSEPATH) that describe the minimum

allowed pulse-widths at outputs for the application of pulse filtering [IEE01a, IEE01b].

2.2.4 Register-Transfer Level

At the register-transfer-level (RTL) the circuit module descriptions are mapped to a coarser

structural description composed of small interconnected components [Wun91]. The com-

ponents can be registers or memory to store data and operands, and combinational net-

works to perform operations. Interconnections and buses define the data-flow between

the individual components. The data exchange between memory elements is controlled

in a synchronized fashion by clock signals. RTL-descriptions are typically expressed as

data-flow in hardware-description languages, such as Verilog [IEE01b] or VHDL [IEE09].

While timing can be expressed in cycle granularity, fine-grained propagation delays are

not considered at this level, since no implementation details are available.

2.2.5 System-/Behavioral Level

At system level the circuits are modeled with the highest abstraction. Abstract functional

descriptions of circuit modules are typically expressed as algorithms and functions in

higher level programming languages, such as SystemC [IEE12], which are compiled and

run as separate processes. Since no details or requirements with respect to the actual im-

plementation of the design is implied, a reasoning about accurate timing is not possible.

2.3 Delay Faults

In test validation and diagnosis, fault models are used which abstract the effect of classes

of physical defects in a chip for representation and processing on a higher abstraction level

[Wun91]. As opposed to classical static fault models, such as stuck-at and bridging faults,

a circuit cannot be tested for delay faults by using a single test pattern only [WLRI87].

Instead, delay tests with a minimum of two patterns composed of an initialization and

propagation test vector are required. These patterns are applied in consecutive clock cycles

to launch signal transitions at (pseudo-)primary inputs. The output responses are then
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captured after the clock period has passed, which might reveal output signals that are not

yet stabilized.

A generalized way to model arbitrary faults in logic simulation is the so-called conditional

line flip (CLF) calculus [Wun10]. Each CLF has an activation condition cond, which is

an arbitrary user-defined Boolean formula to determine the activation of the fault at a

signal v. Once a CLF is active (condition cond is true), it flips (inverts) the value of v to

v′ := v⊕ [cond ]. As a simple example: A stuck-at-0 fault is represented in the CLF calculus

as v ⊕ [v] and a stuck-at-1 fault is represented as v ⊕ [v].

Transition Faults

The transition fault model [WLRI87] assumes a lumped defect at a gate input or output

pin that causes a delay at the associated signal line by an amount of time larger than

the test clock period (usually infinite), thereby omitting a transition. Transition faults

can be distinguished as slow-to-rise (STR) or slow-to-fall (STF) faults that affect rising

and falling transition polarities, respectively. They are usually considered as conditional

stuck-at faults, which can be efficiently implemented and simulated using parallel-pattern

stuck-at fault simulation by activating the fault upon signal changes of subsequent patterns

[Wun10, WLRI87]. Therefore, regarding the modeling and simulation, transition faults

are independent of the actual circuit timing and gate delays.

For example, let vi ∈ B2 be the value at a signal line after application of the initialization

vector, and let vi+1 ∈ B2 be the value after the subsequent propagation vector. The fault

activation at a signal line transitioning from vi to vi+1 upon the clock cycle is determined

by active ⇔ (vi⊕vi+1) ·ρ, where the term (vi⊕vi+1) indicates a change in the signal value

and ρ determines the activation of a STR (ρ := vi+1) or STF (ρ := vi+1) fault, respectively.

Note that transition faults always affect all sensitized paths in the output cone of the fault

site regardless of the actual timing. Therefore, the fault model fails to accurately represent

delay faults of smaller quantities, e.g., small resistive open defects.

Path-Delay Faults

The path-delay fault model [Smi85] was proposed to model distributed delay effects in the

circuit and assumes the accumulation of smaller lumped delays during signal propagation.
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In this model, a path of nodes {i, n1, n2, ..., nj , o} ⊆ V in the netlist graph G := (V,E)

from a (pseudo-)primary input i ∈ I to a (pseudo-)primary output o ∈ O of the netlist is

assumed to suffer from a path-delay fault if the accumulated delay along the associated

path exceeds the clock period. The fault is activated, iff the input signal transition is

propagated along all nodes of the path to the output. As a result, the signal at the single

affected output of the fault is expected to be erroneous. Like transition faults, path-delay

faults can be distinguished as STR and STF.

Similarly, the segment delay fault model was proposed [HPA96, MAJP00] to model dis-

tributed delays along sub-paths and hence combines transition fault and path-delay fault

behavior. A segment delay fault is modeled on a path segment of l connected gates

{n1, n2, ..., nl} ∈ V . If a signal transition enters the segment at node n1 and propagates

through all of its gates, the fault is activated at the segment output node nl from where it

behaves as a lumped transition fault.

The simulation of path-delay faults does not require timing information and can thus

be performed in untimed logic simulation or by sensitization analysis [PR08, Wun10].

ATPG-tools for path-delay faults typically constrain the set of relevant paths by topolog-

ical analyses with timing information to identify longest sensitizable paths through each

node [ED12]. By doing so, even small lumped delays at gates can be tested for, whose

fault size is larger than the slack of the tested path. However, not all faults can be tested

robustly [Lin87, Kon00, ED11] and longest path delays can shift due to process varia-

tions [CIJ+12]. Thus, certain faults with smaller delays might be missed, requiring more

accurate modeling and simulation of the faults.

Small (Gate-)Delay Faults

A small (gate) delay fault is considered as a manifestation at an input or output pin of a

node, that slows down the signal propagation through the respective pin by a small finite

amount of time [IT88, TPC11]. These faults are mainly caused by weak resistive opens in

the design [RMdGV02] and, in contrast to transition faults or path-delay faults, the delay

impact of a small gate delay fault is much smaller than the clock period [NG00].

Fig. 2.6 illustrates the behavior of a small delay fault at a gate output in a circuit. After

application of a delay test vector, transitions at the circuit inputs are launched which
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propagate through the input cone of the fault. Eventually, the fault site is reached and

the output transition at the fault site is delayed by the fault size. In the left example (a),

the delayed output response is propagated through the output cone of the circuit over

sensitized paths to three outputs. However, in the output response vector only two of

these outputs (2 and 3) show an error as the signals are captured before the last transition

happens. Despite the additional delay due to the fault, the latest signal transition at

the first output still arrives in time and a good response value is captured. If the small

delay fault was simulated using a simplified transition fault model, all of the outputs of

sensitized propagation paths would show an erroneous response. Hence, transition faults

typically overestimate the fault coverage of small delay faults with smaller sizes and they

are also too optimistic regarding the fault propagation and detection at outputs [IRW90].

In the right example (b) of Fig. 2.6, a non-robust propagation of a small delay fault in pres-

ence of reconvergence is illustrated. The reconvergent fault propagation causes a delayed

hazard at the output and the fault can only be detected within a small detection window

spanned by the hazard. This behavior is not captured by simple transition fault simulation

as the corresponding STF-transition fault (corresponding to a stuck-at-1 [WLRI87]) would

lead to a constant-1 output signal with no detection window during simulation.

Also, the CLF calculus [Wun10] is not suitable for expressing small delay faults in a prac-

tical way, due to the complexity of the temporal modeling. In general, for the fault acti-

vation a CLF assumes a single point in the circuit where it is conditionally activated and

from which the faulty value is distributed throughout the sensitized output paths. Hence,

similar to the transition delay faults, all sets of sensitized paths are affected, similar to

the transition delay faults, which does not hold for general small delay faults. One way

to fully cover a small delay fault behavior in the CLF calculus would be by introducing

multiple-CLF faults in the fan-out of the actual small delay fault site (e.g., CLFs injected

at reachable circuit outputs). Then, for each injected CLF all possible combinations of

related activation paths and propagation paths need to be encoded in the conditions (not

including false paths) to fully capture the timing violations that can occur for the small

delay fault. However, this introduces a tremendeous modeling complexity.

In [PB07], so-called segment-network faults were introduced which consider multiple seg-

ment delay faults [HPA96, MAJP00] as a (sub-) tree in the netlist starting from a common
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Figure 2.6: Examples of a small gate delay fault in a circuit: a) robust fault-propagation
to outputs over sensitized paths and b) non-robust propagation with output hazard.

root node. If a signal is propagated from the root node along a segment, a fault is activated

at the corresponding leaf node where the segment ends. While the activation results only

from a single root node, the fault modeling provides more control in the propagation of

the faults. No hazards are considered in the modeling which can invalidate the detection.

Therefore, in order to simulate smallest delay faults for test validation explicit timing-

accurate and glitch-aware simulation is required [CHE+08, BGA07].

Impact of Process Variations on the Fault Detection

Process variations cause inaccuracies during manufacturing, which can severely affect the

functional and timing behavior of a circuit [Nas01, PBH+11]. The source of variation

is typically distinguished as either of random or systematic nature. The background of

random variation usually has a quantum mechanical origin. Both, layout and material

properties of the circuits are influenced by statistical processes and numerous uncertain-

ties during chip manufacturing and affect electrical properties of the underlying structures.

Random variation can influence the switching behavior of gates and interconnects in a cir-

cuit (intra-die), for example, by line-edge roughness (LER) artifacts, and can also increase

the threshold voltage of transistors due to random dopant fluctuation (RDF). At logic level,

this type of variation is typically modeled by assuming independent random variables as

delays for each gate in a circuit [SSB05, BCSS08]. On the other hand, systematic variation

takes into account the spatial and parametric dependencies of different process corners
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between dies (inter-die), wafers (wafer-to-wafer) or lots (lot-to-lot). This type of varia-

tion can affect gates with high spatial correlation or gates of the same type in a similar

manner simultaneously [ABZ03, ZHHO04]. The sources of systematic variation relate to

irregular material properties as well as limitations of the fabrication processes themselves

(e.g., lithography, etching, polishing) that introduce a correlation between neighboring

structures or their corresponding nodes in the design [SSB05, ABZ03].

These process variations can have severe impact on the gate delays as well as the circuit

timing and ultimately affect the detection of delay faults [CIJ+12, SPI+14]. Therefore,

simulation algorithms must be timing-accurate and variation-aware to allow for modeling

of the impact of process variations on the delay for statistical timing analyses, variation-

aware fault grading and pattern generation [CIJ+12, ZKAH13, SPI+14].

2.4 Circuit and Fault Simulation

A simple way to simulate a circuit is by compiled-code simulation [WWX06, BA04]. In

compiled-code simulation the combinational netlist is translated into executable instruc-

tions for each node with all signal states being kept as variables. The circuit nodes are then

evaluated by executing the assigned operations over their input variables. For a successful

evaluation of each node, all of its input variables need to be determined first. Hence, the

processing of the nodes usually follows a topological order to allow for a hassle-free eval-

uation, which is obtained by a so-called levelization pre-process that partitions the nodes

into levels ordered by increasing topological distance (depth of the nodes) with respect to

the circuit inputs [Wun91].

A basic simulation flow for the simulation of a test pattern tp ∈ B
|I|
2 is shown in Algo-

rithm 2.1. During the process, first the input nodes I ⊂ V are assigned their correspond-

ing values of the input pattern, followed by the ordered computation of the internal node

signals until the outputs are reached. Due to the levelization, all input-dependencies of

the nodes have been resolved. This type of simulation is typically referred to as oblivious

simulation, since always every node of the circuit is evaluated upon the application of a

new test pattern [BBC94].
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Algorithm 2.1: Simulation flow of a plain oblivious logic simulation.
Input: netlist G = (V,E), test pattern tp with tp[i] value of input i ∈ I
Output: values vn for all n ∈ V

1 foreach node n ∈ V in topological order do
2 if n ∈ I then
3 Assign input value vn := tp[n].
4 else
5 Fetch values v1, v2, ..., vk of fanin(n) (direct predecessors of n).
6 Compute vn := φn(v1, v2, ..., vk).
7 end
8 end
9 return Stored values vn of all nodes n ∈ V .

2.4.1 Event-driven Simulation

Usually, when applying consecutive test patterns to a circuit, not all of the primary or

pseudo primary inputs of the circuits change and hence certain signals sustain their state.

With the oblivious simulation scheme, this causes a lot of unnecessary node evaluations

since these nodes do not require recomputation, yet all nodes are always evaluated re-

gardless of switching activity from signal changes [BA04, WWX06]. To provide a more

efficient evaluation in cases of little switching activity, event-driven simulation approaches

have been proposed [Wun91]. In event-driven simulation the evaluations are constrained

to nodes with active switching events at their inputs. Thus, the evaluation only follows the

path of events during simulation and thereby avoids (unnecessary) evaluation of nodes

with constant signals.

Traditional time simulators typically follow a synchronous event-driven time-wheel ap-

proach [Ulr69], which as proven well for simulation at logic level. A different simula-

tion approach for asynchronous event-driven simulation can be realized using the Chandy-

Misra-Bryant (CMB) algorithm [CM79, Bry77]. As opposed to a global synchronous time

schedule, the CMB algorithm assigns a time stamp to each event and utilizes message

passing to distribute events from node outputs to input FIFOs of successor nodes. The

evaluation of events at different nodes can be realized by individual processes concur-

rently, which can benefit from parallelization to provide speedup for simulating single

circuit instances [BMC96].

In event-driven approaches, the handling of events can get quite complex which quickly

increases the runtime overhead when considering more detailed delay models [Wun91].
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For example, in inertial delay modeling, many events scheduled during processing might

need to be reverted when processing later events in time. Also, the algorithms usually only

speed up simulation of single circuit instances by exploiting parallelism from independent

gates. They can not benefit from pattern parallelism [BBC94] through simultaneous eval-

uating multiple patterns in a data-parallel fashion, as they rely on sparse occurrences

of events. Since, gate level parallelism can diminish at deeper levels, this strongly lim-

its the simulation throughput and effectiveness of these approaches. Moreover, for the

implementation on GPUs these algorithms demand for highly complex control- and dy-

namic memory management to process all the event lists in the circuit. However, frequent

memory operations of the scheduling are expensive and will limit the effectiveness of an

acceleration on GPUs [OHL+08].

2.4.2 Fault Simulation

In fault simulation, a circuit is simulated under the behavior of a given defect to determine

whether the circuit behavior is altered by the fault [Wun91]. A naïve approach to simulate

faults is through serial processing of the provided fault lists. In serial fault simulation,

first a simulation of the circuit is performed to obtain the fault-free good-value simulation

results for a test pattern. The resulting output responses vo of all circuit (pseudo-)primary

outputs o ∈ O are considered as golden reference, or expected values of the fault-free

circuit, which are stored for comparison. The good-value simulation is usually followed by

repeated simulations of the pattern for various copies of faulty circuits in which different

faults have been injected. The injection of a fault is performed by modifying the circuit

description according to the abstracted fault behavior.

After simulation of a faulty circuit copy, the output responses of the faulty circuit v′o are

compared against the golden reference vo to compute an output syndrome syno by

syno := vo ⊕ v′o, (2.3)

where ⊕ corresponds to the bitwise XOR-operation of the response bits of the outputs

o ∈ O in good and faulty response. The output syndrome contains all the differences in

the faulty and the fault-free output response and thus indicates the fault detection of the
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applied test pattern. A fault f is considered as detected at an output o ∈ O, iff syno = 1

and therefore detected by the pattern. If ∀o ∈ O : syno = 0, then f is undetected.

Fault simulation is a challenging and compute-intensive task (i.e., especially when done

exhaustively for all possible faults of a circuit) due to the additional dimension of com-

plexity from the set of different faults. Often a process called fault dropping is applied,

in which the simulation of a test pattern set for a fault is stopped as soon the fault has

been detected by a certain number n of test patterns (n-detect). The fault is then immedi-

ately removed from the fault list and the simulation is continued for the next. While this

reduces the overhead of fault simulation, fault dropping in simulation cannot be applied

for debug an diagnosis. Especially in diagnosis, often so-called fault-dictionaries must be

computed which rely on exhaustive simulation of all faults for all patterns to obtain as

much syndrome information as possible.

Since the number of faults usually grows with the design size and technology, the in-

crease of the fault simulation performance has been subject of research in test ever since

[WEF+85, WLRI87, AKM+88]. Different ways of improving the performance and speed-

ing up fault simulations exist, that exploit parallelism from pattern-parallel simulation

and fault-parallel simulation and other optimizations, such as concurrent or deductive

fault simulation. For more information the reader is referred to general literature of semi-

conductor design and test [Wun91, WWX06].

2.5 Multi-Level Simulation

In design and test validation tasks it is often necessary to evaluate parts of the design

with higher accuracy. Although high accuracy is generally desirable for any task, the

continuing simulation of a circuit at the lowest level at all times can be troublesome, due

to the increasing order of magnitude of runtime complexity on lower levels [SN90].

In multi-level simulation a design is simulated on more than one level of abstraction

at the same time. This is achieved by utilizing mixed abstractions throughout the de-

sign during simulation and focusing the accurate and compute-intensive simulations to

smaller parts of the design which allows to reduce the overall runtime. Usually, the de-

sign is partitioned, such that common parts are evaluated with fast high-level simula-

31



2 Fundamental Background

tion, while critical components are processed at the lower abstraction levels with higher

accuracy [RK08, KZB+10, SKR10, JAC+13, HBPW14]. Simulators with mixed abstrac-

tions usually utilize hierarchical circuit descriptions with the design being represented

individually at each desired level of abstraction [SSB89, RGA87]. Those representations

are then selected interchangeably for the components during simulation based on the

desired accuracy, i.e., for the injection of low-level faults in mixed-level fault simula-

tion [GMS88, MC93, MC95]. By doing so, designers working on individual modules of

a circuit can focus the accuracy of the validation on their respective designs without the

need of processing the whole circuit at the lowest abstraction, which eventually results in

a much faster and more efficient simulation.

2.6 Summary

With increasing technology scaling and shrinking feature sizes, modern circuits become

increasingly complex in terms of design size and also prone to newer defect types that

often manifest in the timing behavior of the circuit (e.g., small delays). Hence, timing-

accurate simulation has become a necessity for design and test validation. However,

timing-accurate simulation itself is tremendously complex in terms of runtime, and clas-

sical approaches to tackle the afore-mentioned problems either lack accuracy (due to ab-

straction) or scalability (due to simulation effort).

In order to make accurate and large-scale design and test validation feasible, the simula-

tion algorithms have to be parallelized in a way to increase the throughput performance

for coping with an increasing number of gates, test patterns and faults in the designs. This

thesis investigates the parallelization of timing simulation on massively parallel graph-

ics processing unit (GPU) architectures and provides timing-accurate algorithms for high-

throughput simulation as well as multi-level approaches to further enhance the simulation

efficiency.
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Chapter 3

Graphics Processing Units (GPUs) –
Architecture and Programming Paradigm

This chapter introduces the basic concepts of contemporary data-parallel graphics pro-

cessing unit (GPU) accelerators. Both the general GPU-architecture as well as the under-

lying parallel programming paradigm will be outlined. For better comprehensibility, the

NVIDIA’s Compute Unified Device Architecture (CUDA) [NVI18b] programming model and

the NVIDIA Pascal GP100 GPU architecture [NVI17c] are used as an example. The GP100

GPU is manufactured in a 16 nm FinFET technology from TSMC featuring 15.3 Billion

transistors on a die of 610 mm2 size.

3.1 GPU Architecture

In recent years, general purpose programming on graphics processing units (GPUs) has

established well in the context of high-performance computing (HPC). Being used as co-

processors, GPUs allow to accelerate computations of many compute-intensive scientific

applications by exploiting massive parallelism [NVI18c, ND10, OHL+08]. While conven-

tional CPUs typically provide fewer (usually 8 to 24 [STKS17]), but more general and

latency-optimized processing cores, contemporary GPU accelerators consist of thousands

of simpler cores that provide high computational throughput due to massively parallel

execution of thousands to millions of threads. The execution of threads on the cores is

performed in a single-instruction-multiple-data (SIMD) fashion, in which the threads each

perform the same instruction at a time, but on different data in parallel [HP12].
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Fig. 3.1 depicts a block diagram of the NVIDIA GP100 GPU of the recent Pascal archi-

tecture [NVI17c]. The GPU provides 60 streaming multiprocessors (SM) which are parti-

tioned into six Graphics Processing Clusters (GPCs) that are further sub-divided into five

Texture Processing Clusters (TPCs) each. Each SM consists of 64 single-precision (SP) and

32 double-precision (DP) compute cores summing up to a total of 3,840 single-precision or

1,920 double precision cores. The GPC and TPC [NVI10] provide all key units for graph-

ics processing (e.g., for vertex, geometry and texture processing), however, the actual

rendering capabilities will not be used within the context of this work.
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Figure 3.1: Block diagram of the full NVIDIA GP100 Pascal GPU Architecture. (Adapted
from [NVI17c])

The SMs have access to a 4,096 KB Level-2 (L2) cache which is connected via eight 512-bit

memory controllers to a High Bandwidth Memory 2 (HBM2) DRAM global device memory

providing a memory bandwidth of up to 720 GB/s. A global thread scheduler is respon-

sible for the distribution of workload threads to the available SMs for processing. The
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communication with the host system is established via a PCI Express 3.0 interface. In case

multiple GPU devices are present in the host, a high-speed hub allows for high-bandwidth

communication between the devices via a proprietary interface (NVLink).

3.1.1 Streaming Multiprocessors

The Streaming Multiprocessors (SMs) are responsible for performing all the computations

and workload processing on the GPU. Each SM is composed of an array of simple compute

cores for executing arithmetic operations (CUDA cores). In the GP100, each SM provides

64 single-precision (SP) along with 32 double-precision (DP) processing cores as shown

in Fig. 3.2. In addition, the SM also contains several load/store units (LD/ST) for calcu-

lation of memory addresses and special function units (SFU) for executing transcendental

arithmetic functions, such as sin or square root [NVI17c].
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Figure 3.2: Block diagram of a NVIDIA Pascal GP100 Streaming Multiprocessor (SM) with
CUDA core. (Adapted from [NVI17c, NVI10])

Each SM is further divided into two processing blocks each of which contains a regis-

ter file as fast local memory, an instruction buffer of current instructions, a scheduler

for scheduling threads as SIMD-compliant thread groups, and two dispatch units that can

select individual instructions for the selected thread group to be executed in the CUDA
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cores. A CUDA core in an SM has access to a pipe-lined floating-point (FP) processing unit

compliant with the IEEE-754 floating-point standard [IEE08] as well as an integer (Int)

processing unit with their respective precision (32-bit for single-precision cores and 64-bit

for double-precision cores). Upon receiving instructions via the built-in dispatch port,

the CUDA cores fetch the required operands from the register file for execution. Be-

sides various basic and special arithmetic instructions, including a fast fused-multiply-

add (FMA) [IEE08, NVI10], the CUDA cores can also execute various bit-wise Boolean

operators. The set of available functions and features are dictated by the architectural

version or compute capability of the SMs, which can vary for different GPU architectures.

3.1.2 Thread Scheduling

With the large amount of computing resources, GPUs can achieve a high computational

performance by massively data-parallel execution of threads on the available cores. The

control and the scheduling of all threads is completely handled by the GPU architecture

itself.

The GPU reads host-CPU commands via the PCI Express host interface and copies data

and commands to the global memory. The global thread scheduler organizes the threads

as thread blocks and dispatches the blocks throughout the GPU to the different SMs. The

number of threads that can be scheduled on a SM per block depends on the amount of

available memory resources, such as local registers and shared memory, as well as the

amount of resources required by each thread. For the execution, the SMs partition the

thread blocks further into thread groups (also called warps) each of which is composed of

a set of up to 32 threads for parallel execution.

The SMs are responsible for scheduling the thread groups in the assigned thread blocks (up

to 32 thread blocks per SM [NVI18e]), as well as the distribution of the threads to the

CUDA cores and execution units. While the instructions of the threads of a thread group

are executed in a SIMD fashion in parallel, the different thread groups are selected and

executed alternately on the multi-processor in different clock cycles. In the GP100 archi-

tecture, up to 64 thread groups can be active at a time and each SM-block can issue a

maximum of two independent instructions per clock to the cores via the dispatch units.

Hence, up to four instructions can be issued in total per SM at a time.
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The integrated scheduler utilizes scheduling logic for optimizing the thread execution,

such as score-boarding and inter-group (inter-warp) scheduling to identify instructions

that are ready to use, as well as scheduling at thread block level by the global thread

scheduler. Active thread groups can be suspended when waiting for long-latency memory

operations, such that idle thread groups can be selected from the remaining threads for

further processing. In the underlying SIMD execution scheme, the threads of an active

thread group always execute identical instructions. However, conditional branches in the

execution flow can cause some threads of a group to diverge. The resulting branches of

diverging threads are executed serially on the SM. During execution of a branch, only the

associated threads are active while the other threads in the group are disabled. Eventually,

the execution flows converge after the different branches have been processed.

3.1.3 Memory Hierarchy

GPU devices typically provide a full memory hierarchy from fast, scarce local storage to

large, slower global DRAM memory, having several caches in between as shown in Fig. 3.3.

On the highest level, the GPU architectures provide a register file which is directly ad-

dressable by a thread running on a core for the use as private thread-local memory. In

the GP100 architecture the register file contains 65,536 32-bit registers per SM, which are

equally divided among all active threads running in a thread block.

On the next level of the hierarchy, each SM contains a shared memory and also a com-

bined texture and Level-1 (L1) cache [NVI18b]. The shared memory is a low-latency

programmable data storage comprising 64 KB in total. It is accessible by all threads of

Global Device Memory
(HBM2 DRAM)

L2 Cache

Shared Memory Texture / L1 Cache

Core
(SP/DP)

Private
Registers

Figure 3.3: GP100 memory hierarchy and thread access. (Adapted from [NVI17c, NVI10])
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the thread blocks scheduled in the SM. Within a thread block, the threads can utilize the

shared memory for communication and synchronization, as well as for sharing or exchang-

ing data. In the GP100 architecture, a thread block can access a maximum of 48 KB of

shared memory [NVI18e]. The combined texture/L1-cache in the SM is utilized for global

loads caching up to 24 KB of data and instructions. While the texture memory is for fast

cached read-only use, the L1-cache manages and gathers data requests from the threads

in the thread groups and also holds thread-local data.

A larger L2-cache on the GPU provides 4,068 KB of storage which is shared among all SMs.

It contains the cached accesses of the threads to local and global memory. Each cache line

maps to an aligned segment in the global device memory [NVI18b].

The global device memory resides on the lowest level in the memory hierarchy and typi-

cally comprises several gigabytes. Data and instructions can be copied between the host

system over the host interface into the global memory on the device. Once threads begin

to access the memory, the requested data is handed through the memory hierarchy. Data

exchange between host and devices is rather expensive compared to the execution of bare

arithmetic instructions, hence, memory transfers should be minimized and used scarcely

in order to sustain the computing performance [OHL+08, ND10]. The GP100 architecture

provides four HBM2 stacked DRAM memory dies with a total capacity of 16 GB [NVI17c].

The register files, shared memories, L1- and L2-caches, and the global device memory are

protected by a Single-Error Correct Double-Error Detect (SECDED) ECC-code [NVI18e].

3.2 Programming Paradigm

Contemporary GPU-based systems follow a heterogeneous programming model, where

the host CPU assign computing tasks to individual GPUs for computation and acceleration.

For efficient parallelization of a program, it has to be partitioned such that independent

problem workloads can be distributed over all the available computing resources on the

GPUs. The communication among the processors, the management and synchronization

of processes and threads, as well as the management of the memory accesses have to be

organized in a way, such that full utilization of the computing resources can be achieved

and the computational throughput is maximized. With the introduction of GPUs for gen-
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eral purpose programming, the era of the many-core processing has begun, which called

for a novel programming paradigm to allow the efficient management and handling of

many thousands to millions of threads on the GPU devices. This section briefly explains

the general GPU programming paradigm on the example of the Compute Unified Device

Architecture (CUDA) [NVI17a, NVI18b] which was originally launched by NVIDIA in the

year 2006. CUDA provides a parallel computing platform and corresponding program-

ming paradigm with a variety of programming constructs that allow for the organization

of threads, the synchronization of executions and the management of memory accesses

to the GPU device. It comprises extensions of the C/C++ programming language for the

implementation of parallel programs (kernels) which can be executed on the GPUs.

Fig. 3.4 illustrates a typical execution flow of a C/C++ CUDA program for execution on

a heterogeneous compute system with a GPU. As shown, the program structure forms

an alternating sequence of sequential code blocks executed on the host CPU and also

code blocks that called by the CPU but that are executed in parallel on the GPU. In the

following, the organization of threads in kernels as well as the management of memory

accesses within threads are explained. Although the CUDA platform is proprietary, the

basic principles are similar to other standards, such as OpenCL [Khr17]. More information

on the CUDA programming can be found in [NVI18b] and [NVI18a].
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Figure 3.4: Serial execution flow of a heterogeneous program with parallel GPU kernels.
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3.2.1 Thread Organization

In the GPU execution model, a thread represents the basic unit of execution in parallel

programs running on the GPU processing cores. Each thread of a parallel kernel works

on a specific problem instance and has a unique thread index, which is accessible via

an in-built threadIdx variable. The index variable itself is a three-dimensional vector,

which is used to arrange the threads for a structured execution of the parallel programs.

For example, two-dimensional arrangements of threads can be implemented to perform

matrix operations, where each thread handles the computation of a specific element.

All threads of a program are organized as thread blocks, which are one-, two- or three-

dimensional arrays of threads of a predetermined size. On the GPU, the threads of a thread

block are all processed on the same SM, while each SM can process a different block.

The threads within a thread block all have consecutive indices and can communicate via

shared memory and synchronize their execution, as well as accesses to the global memory.

According to the underlying programming paradigm, all threads are required to work

independently of each other, since independent threads allow for an arbitrary order of

execution providing better opportunities for scheduling of the threads on the SMs.

On the highest level of the execution of a parallel kernel in CUDA, thread blocks are

arranged in a thread grid. Thread grids represent one- to three-dimensional arrays of

thread blocks of a given size (and corresponding threads) which are distributed to the

SMs on the GPU by the global thread scheduler. Similar to the threads, each block has

a unique block index (blockIdx) to identify its coordinate in the grid. When a kernel

function is called for execution on the GPU, the dimension of the thread grid (in number

of thread blocks) as well as the dimensions of the thread blocks (in number of threads)

must be explicitly stated (in the form of <<<#blocks,#threadsPerBlock>>> as part of the

CUDA C/C++ syntax). At any time during the computation, a thread has access to its

own thread index (x, y, z) within the block, the coordinate of its block (xB, yB, zB) in the

thread grid, as well as the size of the blocks (Bx, By, Bz). This information can be utilized

by a thread during computation to determine its respective global coordinate (x + Bx ·

xB, y + By · yB, z + Bz · zB) in the thread grid. This way, the actual problem instance of

each thread can be identified which is required to generate problem-specific input data

or to compute global memory addresses. Since the available computing and memory
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resources are shared by all threads of the active running thread blocks, the dimensions of

thread blocks and the grid need to be chosen appropriately and input/output data has to

be carefully aligned in memory to fully utilize the processing cores.

3.2.2 Memory Access

The different memories in the GPU memory hierarchy have a different scope and serve dif-

ferent purposes. Fig. 3.5 illustrates the thread organization and the memory hierarchy of

the CUDA architecture. On top of the hierarchy, there is the thread-local private memory

sector. This comprises all the local registers in the SM required by the thread for execu-

tion. Registers are allocated by default and the amount of registers required per thread is

determined at compile time. The amount of assignable registers per SM and per thread is

usually limited (up to maximum of 255 per thread in GP100). However, additional local

memory can be obtained by register spilling in the device DRAM, which is served through

high latency L1- or L2-cache accesses. The lifetime of the private memory sector is on a

per-thread basis and is freed once the execution of a thread is finished.

The shared memory is a low-latency memory residing in each SM that is be explicitly

instantiated by applying a ”__shared__” qualifier to the targeted variables. Variables de-

clared as shared can only be accessed by threads of a thread block and only for as long as

the respective block is executed on the SM.

The global device memory is allocated by the host and is accessible by all threads of a kernel

(e.g., by a ”__device__” qualifier) through the L1- and L2-cache hierarchy. Its data persists

on the device during the whole application context and can be accessed by multiple kernels

in succession for as long as the CUDA application is running.

The caches also implement coalescing buffers that are able to merge and combine mem-

ory accesses of threads which allows for better utilization of memory transactions. By

appropriately aligning data in the global device memory, parallel memory accesses to sub-

sequent addresses by threads of a thread group can be coalesced. The coalescing bundles

the subsequent addresses to address ranges of the size of memory transactions to the

global memory. This way, global device memory requests of the threads can be served

efficiently with less memory transactions due to better utilization. The alignment of mem-

ory access patterns and the coalescing of the thread accesses is crucial, as misaligned or
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Figure 3.5: NVIDIA CUDA thread organization and accesses through the memory hierar-
chy on the hardware. (Adapted from [NVI18b])

arbitrary accesses by threads can cause a severe drop in the memory bandwidth and hence

the compute performance [NVI18a]. In general, accesses to the global device memory are

much more expensive compared to the execution of bare arithmetic instructions. Frequent

accesses by the host system (either reads or writes) to larger portions strongly limit the

computing performance and should be used as little as possible. More information on the

memory management and thread organization can be found in [NVI18b] and [NVI18a].

3.3 Summary

This section introduced the concepts of modern GPUs and their parallel programming

paradigm on the example of the NVIDIA CUDA platform [NVI17a]. GPUs provide pow-

erful computing capabilities for parallelized programs by vast computational throughput

through concurrent execution of thousands to millions of lightweight threads. This en-

ables high performance computing with massive speedups for many scientific applica-

tions [NVI18c]. Due to the SIMD execution scheme, uniform control flows of the kernels,

data-independent execution of the threads and regular and aligned memory access pat-

terns are important to achieve optimal performance. Care has to be taken when designing

algorithms due to the limited available memory resources and the harsh restrictions of

the underlying parallel programming paradigm. Modern compute servers utilize special

interfaces for better integration and support of GPUs [FD17, STKS17], allowing to reach

peak performances in the petaFLOP range on a single compute node [NVI18d].
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Chapter 4

Parallel Circuit and Fault Simulation on GPUs

This chapter provides an overview of state-of-the-art parallelized simulation approaches

for the execution on contemporary graphic processing unit (GPU) architectures.

4.1 Overview

The simulation of circuits and faults is a time-consuming task and generally poses a seri-

ous bottleneck in design and test validation flows, as well as diagnosis tasks. In the past

researchers have sought for ways to accelerate simulation and found that circuit simula-

tion is inherently parallelizable on multi-core multi-node architectures when partitioned

into independent problems. Common independent problems are related to structure (from

gates and faults, etc.), and data (from patterns, parameters, etc.). However, classical par-

allel approaches involved high communication and synchronization overhead, that caused

the effectiveness of the parallelization to diminish which limited the scope of applications.

With the computing power of GPUs [OHL+08, ND10] parallelization has reached a new

level and has drawn attention of researchers and developers [DM08, DWM09, Den10,

GK10b, CKG13]. The GPUs and their programming paradigm allowed to fully exploit the

inherent parallelism for massive acceleration while being cost-effective. For simulations

on these architectures, the circuit models must be sufficiently accurate and compact to

allow all data structures to fit on the devices. Furthermore, the algorithms need to exploit

the available computing resources on the GPU as well as their capabilities to enable an

efficient and scalable parallelization applicable to increasing simulation problem sizes.
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Hence, maximizing the computational throughput on the GPU architectures is the key for

scalable massively parallel simulation and their applications [LTL18].

In the following, approaches and key techniques for GPU-accelerated circuit- and fault

simulation are presented.

4.2 Parallel Circuit Simulation

SPICE [NP73] is often considered as golden standard for circuit modeling and simulation

in industry and academia due to its accuracy. However, the accuracy comes at the expense

of an extremely high runtime complexity which is usually several orders of magnitude

higher compared to simulations at logic level [SJN94]. Thus, several researchers sought

for parallelization methods to accelerate SPICE simulations and to reduce the runtime

overhead.

A first approach was presented in [GCKS09] that accelerated simulations at electrical

level in SPICE on GPUs. In this approach, the computationally intensive parts of the eval-

uations of SPICE, i.e., solving the linear equations systems, were off-loaded to the GPU.

The size and functionality of the kernels were chosen to fit the hardware resources on

the device, while the GPU memories were utilized as much as possible avoiding excessive

host-to-device communication and thereby effectively accelerating the simulation. The

technique was integrated for the use in a commercial SPICE simulation tool showing aver-

age speedups of 2.36×. However, despite the accuracy, a large-scale application for time

simulation of many test patterns is not feasible due to the high runtimes.

A fully implemented accelerated SPICE simulation approach on GPUs was presented in

[HZF13] and [HF16] that performs many SPICE simulations concurrently allowing for

the evaluation of different parameters and input stimuli in parallel. The approach uti-

lizes three-dimensional parametric look-up-tables to parameterize individual transistor

devices, and implements an iterative solver for the SPICE simulation. Convergence checks

of the solver are performed after a fixed number of iterations to prevent excessive thread-

divergence. Although speedups of up to 264× have been reported, the applicability and

scalability is limited to small netlists composed of a few transistors only, i.e., for the use in

a Monte-Carlo simulation of single standard-cells.
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The solving of linear equation systems from sparse matrices is an essential part of SPICE

simulations and many optimizations have been proposed for GPU-accelerated solvers that

utilize efficient LU-factorization. In [CRWY15] and [HTWS16] the authors show, for ex-

ample, that right-looking approaches can exploit parallelism from vector columns, sub-

matrices and vector operations simultaneously. The reported speedups reached up to two

orders of magnitude compared to conventional solvers. A recent work [vSAH18] that ac-

celerates SPICE can consider parameter variations in the transistor models for modeling

aging effects. The simulation is based on CUSPICE, which is a GPU-accelerated version of

ngspice [CUS19]. It achieved speedups of up to 218× on a recent GPU-architectures and

was able to simulate designs with more than 200,000 transistors (128-bit multiplier) in

18.5 hours.

Note that even with speedups achieved, GPU-accelerated SPICE implementations still ex-

hibit relatively high runtimes for small to medium-sized problem sizes. Current works

either focus on speeding up single simulation instances [GCKS09, vSAH18] or parallelize

over circuit instances [HF16] with no scalability in terms of design size. This is usually

related to limitations in the GPU memory or increased communication and synchroniza-

tion overhead, which limits the problem size and computational throughput, and hence

the applicability to larger simulation problems.

4.3 Parallel Gate Level Simulation

In order to cope with larger designs with millions of cells, with even more faults and

test patterns, simulators must exploit higher level modeling and simulation approaches

that are able to exploit massive parallelism from many dimensions simultaneously and

that provide high throughput in terms of solving many simulation problems. While GPU-

accelerated simulators for RT-level [QD11, BFG12] and system level [NPJS10] exist, they

are not suitable for timing-accurate simulation since they neither provide the capabilities

to model circuit structure nor the accuracy to reflect timing accurately. Circuit function-

ality and timing is usually evaluated at (logic) gate level and various research has been

conducted on parallelizing gate level simulation on GPUs.
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4.3.1 Logic Simulation

[GK08] presented a first accelerated logic simulation in two-valued Boolean logic on GPUs

which is also utilized for stuck-at fault simulation. It implements a forward simulation

approach by using compact look-up tables (LUTs) to compute gate functions, which are

stored in the cached read-only constant texture memory on the GPU. The simulation is

performed in a levelized manner by calling an evaluation kernel for each level. Only

the circuit data of the respective current level is required, thereby avoiding the need to

store the entire netlist in the (limited) GPU memory. A compact encoding allows each

thread to compute two gates simultaneously. The underlying algorithm exploits structural

parallelism by concurrent threads for the gates on a level and data-parallelism from parallel

simulation of patterns (pattern-parallelism) for each gate. This way, a speedup of over

238× in average was achieved over a commercial solution.

The evaluation of gates on levels in a levelized circuit by parallel threads is a common

method to exploit structural parallelism in circuits. This has been adopted in many other

publications [CDB09b, GK09, SRG+11] and this thesis as well.

In [CDB09b] a parallel cycle-based logic level simulator for GPUs was presented where

the netlist is partitioned into clusters each of which computes the gates in the cone of

influence of a circuit output. Each cluster is processed by an individual thread block,

where the threads of a block concurrently process the gates of the cluster in levelized

order. After each level, the threads of the block are synchronized. However, thread blocks

can work independently of each other. Truth tables of gates as well as intermediate signal

values are kept in the local shared memory, while inputs and outputs of the clusters are

stored in the device memory. Independent evaluation of clusters by different thread blocks

is achieved through duplication of the netlist gates that reside in the cone of influence

of multiple outputs. Experimental results demonstrated a speedup of 14.4× over the

sequential simulation of the algorithm. A similar approach using clustering-based method

was proposed in [SABM10].

The first GPU-accelerated event-driven logic level simulator was presented in [CDB09a].

It uses a more fine-grained partitioning of the netlist into so-called macro-gates, each of

which corresponds to a set of connected gates in the original netlist. A macro-gate is

designed to be evaluated on a single streaming multiprocessor on the GPU and a sensitivity
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list keeps track of any value changes at its inputs. In case the sensitivity list of a macro-

gate contains an event, it is scheduled for execution on a multiprocessor with all threads

processing the gates level by level. Speedups of 13× over a commercial approach were

reported, although, duplication of gates is required for independent evaluation of macro-

cells.

[SRG+11] proposes GPU-accelerated logic level simulation approach with a pipelined

evaluation of the circuit where alternate memory locations are used for accessing different

patterns. When the gates of a circuit level are simulated, the corresponding threads access

the patterns in alternate order for consecutive processing thereby allowing to hide write-

latencies when storing the output information to the GPU memory, before proceeding with

the next level. To avoid loss of intermediate signal values during simulation, additional

gates have to be introduced as placeholders that maintain the signal values, which causes

a high overhead in gates during evaluation. The authors reported speedups of roughly

10× compared to a serial execution.

The structural independence of gates is an important factor for efficient parallelization of

the simulation of a netlist. In order to achieve this, many algorithms rely on duplication

of structures, which often introduces a large overhead. While data-structures for the gates

are compact and optimized for fast access and execution, the afore-mentioned algorithms

only consider information of the functional behavior.

4.3.2 Timing-aware Simulation

The consideration of time in circuit simulation requires the modeling of the temporal

behavior for gates and signals. Depending on the timing model and abstraction, the timing

information requires a large amount of data to be stored and processed on the GPU.

[WLHW14] presented a parallelized static timing analysis (STA) to compute the worst-

case delay of a circuit on GPUs. The algorithm considers slopes of signals and computes

propagation delays using a two-dimensional interpolation over look-up-tables (LUTs) with

respect to input slope and output capacitance. Gates are processed in parallel for each

level and each streaming multiprocessor on the GPU processes only gates of the same type

in a data-parallel fashion. This way, the corresponding LUTs need to be fetched only once
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and are cached for more efficient access. The reported speedup of the STA is 12.85× over

a CPU-based implementation and three orders of magnitude over a commercial solution.

Other GPU-accelerated STA simulators have been proposed in [DM08] and [Den10] as

well. While the first one is simply based on a maximum operation, the latter approach

is based on sparse matrix-vector products (SMVP) showing speedups of 50×. Yet, STA

simulators usually only reveal a worst-case timing information without taking switching

activity from hazards and glitches into account or identification of false paths [MMGA19].

The authors of [GK09] presented the first GPU-accelerated Monte-Carlo-based statistical

static timing analysis (SSTA) to estimate the delay deviations and yield of a design. It

exploits structural-parallelism from data-independent gates on each level in the circuit, as

well as data-parallelism from simulation of Monte-Carlo instances in parallel. For this, par-

allel pseudo-random number generators (PPRNG) are implemented, such that each thread

can generate individual samples to compute the propagation delays of a gate. While

Monte-Carlo-based SSTA usually is a compute-intensive task, the presented approach

showed a significant boost in speed with an average speedup of 260× on a single GPU.

However, similar to STA, SSTA only provides probabilistic worst-case information.

In [ZWD11, WZD10], an event-driven parallel logic level time simulation on GPUs was

presented based on the parallel implementation of a message passing algorithm [CM79,

Bry77]. In general, the simulator performs three steps to propagate events through the

circuit each of which are handled by implemented kernels. First, event queues of signals

are handled to input pins of gates, where the events are then processed in temporal or-

der and stored in the respective output event queues of the gates. Individual threads are

responsible for fetching the input event queues and assigning them to FIFOs at each gate

input pin. Once assigned, the evaluation kernel processes the input events of each gate

independently in temporal order by individual threads and writes the output signal in the

gate output event queues. A memory paging mechanism is applied to manage the event

queues in pages on the GPU that are dynamically swapped during simulation. Although

complex dynamic memory management usually reduces the effectiveness of paralleliza-

tion [BBC94, SG91], the achieved speedups were reported to be 47.4× in average. Yet,

similar to other event-driven approaches the algorithm only accelerates the simulation of

single circuit instances and it does not benefit from simulation of patterns in parallel.
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In previous work [HSW12, HIW15] a novel and innovative logic level timing simulation on

GPUs was presented, which aims for higher simulation throughput by simulation of pat-

terns in parallel, rather than aiming for lower latency for single simulation instances. The

algorithm computes timing-accurate switching histories (waveforms) for each gate output

by processing input waveforms in a merge-sort fashion. To exploit both structural paral-

lelism and pattern parallelism, the threads of the kernels are organized as two-dimensional

grids of threads. Each thread of the grid computes the waveform of a distinct gate and a

test pattern concurrently, which offers high simulation throughput for the timing-accurate

evaluation of many patterns in parallel. Experimental results have shown speedups of two

to three orders of magnitude thereby effectively reducing the runtime of logic level time

simulation from several days to few minutes. Although the simulation is timing-accurate,

the delay modeling only considers static pin-to-pin propagation delays, which is not suffi-

cient anymore for today’s nano-scale electronic devices.

4.4 Parallel Fault Simulation

Fault simulation is a straight-forward application of the underlying logic simulator itself

by repeated simulation of the netlist with modified gates that have been injected faults.

However, many approaches exploit optimizations, such as structural reasoning, to avoid

exhaustive simulation of faults in repeated simulation runs [BA04].

[GK10a] presented a parallelized approach for the generation of fault dictionaries on

GPUs. The approach is based on a PPSFP-based algorithm [LH91] and implements a

parallelized critical path tracing (CPT) [AMM84]. Pattern-parallelism is exploited by en-

coding multiple patterns into words and performing bit-wise operations in threads, which

is further enhanced by the execution of multiple threads in parallel. During CPT, the im-

plemented algorithm traces back all gates of the netlist regardless of the input sensitivity

in order to unify the control flow of the parallel threads. The final detection information

of all patterns is then merged to a compact representation that indicates the detection of

the faults using parallel reduction kernels [NVI18a]. This way, fault detection information

of stuck-at faults is obtained for all simulated patterns without the need of fault dropping,

which important for logic diagnosis. In the GPU device memory only the data of the cur-
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rent gate to be processed is allocated which allows for simulation of larger designs, but

in turn causes higher communication overhead with the host. Results on a single-GPU

as well as on an eight-GPU setup have shown average speedups of 14.49× and 82.80×,

respectively.

The authors of [KSWZ10] presented another parallel fault simulation for the generic (yet

untimed) conditional line flip (CLF) fault model [Wun10] on GPUs, which implements an

efficient PPSFP-based method [WEF+85, WWX06]. The algorithm first performs a pattern-

parallel forward simulation to generate all good values followed by a backward-traversal

where the fanout-free regions are evaluated with respect to their sensitivity and parallel

fault propagation at the fanout stems. This way, a speedup of up to 16× over a serial

event-driven implementation was achieved.

The authors of [LXH+10] proposed a stuck-at fault simulator that also determines the n-

detectability. It implements a hybrid flow on the GPU with forward simulation to compute

the detectability of faults at reconvergent fanout stems and applies backward CPT to rea-

son about the detection of the remaining faults in the fanout-free regions [AMM84]. The

netlist as well as the good and faulty responses of the simulation are stored in the global

device memory. The netlist data is declared as constant to enable caching in the multi

processors with the help of the texture memory for faster and more efficient access. Dur-

ing execution, thread indices map to specific gates in the netlist such that each thread can

act independently without the need of additional host communication. The gates residing

on a level are partitioned into types with each type being evaluated concurrently by the

threads in a thread group. Furthermore, multiple patterns are processed in parallel by ex-

ploiting word- and additional thread-parallelism. All data is aligned in the global memory

to excite coalescing of the accesses. Results showed average speedups of 25× compared

to a commercial fault simulator.

In [LH10] and [LH11] a GPU-accelerated logic level simulator was developed that exploits

up to three dimensions of parallelism from patterns, faults and thread blocks. Stuck-at

faults are grouped into so-called compact fault sets, which are sets of faults with iden-

tical fanout region. For the simulation, the gates in each fanout region are indexed in

topological order and processed sequentially by a thread block with each thread in the

block processing a different pattern. While each thread block handles a compact fault set,
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all faults contained in the set are processed in parallel. By processing multiple compact

fault sets by different thread blocks, the simulation parallelism is increased on a thread-

block level. A parallel reduction kernel [NVI18a] is used to efficiently merge detection

information of the different test patterns to quickly determine the fault detection. The

parallel reduction allows to perform operations over all values in a field, such as sum-

mation or bit-wise operations of all values, in logarithmic time as opposed to linear time

with conventional approaches. Fault dropping is applied by terminating the simulation of

the current compact fault set after all of its contained faults were detected. Experimen-

tal results showed average speedups of 150× compared to a sequential execution of the

algorithm and 780× over a commercial solution [LH10].

In [AYY+14] a parallel path delay fault simulation approach for GPUs and conventional

multi-core architectures with SIMD processing units is presented, which allows to effi-

ciently determine all robustly and non-robustly detectable path delay faults [Smi85]. The

general methodology identifies the robustness and non-robustness of each path segment

in the circuit leading to a gate input or circuit output for several patterns. This information

is stored in tables which are then combined to reason about the detection type of possible

path delay faults. During the process, the simulator exploits pattern parallelism at bit-

level by processing multiple values per word operation, as well as pattern parallelism at

thread-level, where multiple threads handle the same gate, but for different sets of pat-

terns concurrently, thereby obeying the SIMD paradigm. Experimental results showed a

speedup of 47–68× over a commercial logic simulator. Yet, the approach considers neither

actual timing of the circuit nor explicit simulation of path delay faults.

The authors of [BB17] proposed GPU-accelerated fault simulator for the TRAX (Transition-

to-X) [BB12] fault model, which is a type of transition fault [WLRI87] that assumes signal

transitions to result in a misbehaved or undefined value (X). Similar to transition faults,

the TRAX faults require two-vector delay tests, each of which is evaluated by a thread in

parallel. Signal values of gates are encoded as four-valued logic value pairs for initial and

stable state. For the simulation, a good value simulation kernel first evaluates the circuit

for all tests in parallel. During the process, each concurrent thread serially processes for

a test pattern all the circuit gates in topological order, and the (intermediate) signals are

stored aligned and in order of the gates in the GPU device memory. A fault activation
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kernel then marks all gate locations with transitions in their corresponding value-pairs as

active faults for the respective test patterns. Finally, a fault simulation kernel then dynam-

ically performs pattern-parallel and fault-parallel simulation by mapping and scheduling

only active faults and their corresponding detecting patterns to individual threads for sim-

ulation. Compared to a commercial simulator for transition faults, the speedups of the

presented TRAX fault simulation approach achieved over 10× in average. Although the

authors claim, that TRAX reflects all possible transport-delay changes, it provides no indi-

cation of the actual detection of a fault for a given sample time, since no timing data is

involved.

For the fault detection, the previously introduced algorithms reason about the observa-

tion using sensitization conditions in the fanout-free regions but do not simulate all faults

explicitly. Also, none of the afore-mentioned algorithms considers circuit timing and there-

fore cannot reflect timing-accurate signal propagation and fault modeling. While this is

sufficient for simple fault models, such as stuck-at and transition faults, a fine-grained

and detailed simulation of delay faults (i.e., small delay faults) requires exact simulation

to reveal the actual switching times and possible hazards. Otherwise, important hazards

and glitches are missed, which might invalidate the actual fault detection [Kon00, HS14].

Furthermore, many of the logic level simulators exploit pattern parallelism by encoding

multiple patterns into machine words. Timing-accurate simulation cannot benefit from

this parallelism, since for each pattern usually different signal transitions occur for which

also different timing applies.

4.5 Summary

In general, the presented simulation techniques utilize the inherent parallelism found in

general circuit- and fault simulation by careful partitioning of structure and data (e.g.,

gates, patterns, faults, geometry and instances) to individual threads for concurrent exe-

cution. For the efficient simulation, these approaches had to overcome common issues of

GPU-parallelization:

Limited global device memory and local registers: All threads of a kernel share the

same global device memory and within streaming multiprocessors all resources are dis-
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tributed evenly to the scheduled threads. Compact data structures must be created to

keep the working set and memory footprint of each thread small enough to fit thousands

to millions of threads on the GPU.

Long latency global device memory access: Threads should work in cached local mem-

ory as much as possible, since accesses to the global device memory are time consuming.

Data should be aligned in memory and accesses by the threads should follow regular pat-

terns, such that coalescing of accesses can be exploited.

High thread synchronization overhead and thread divergence: Threads should work

independently of each other at all times, since frequent synchronization causes parallelism

to diminish. Kernels should be further implemented in a way such that branches in the

execution flow are minimized to reduce thread divergence.

High memory transfer overhead between host CPU and GPU device: Copying mem-

ory between CPU and GPU is time-consuming, thus data transfer should be minimized

or avoided whenever possible. Since global device memory persists for as long as an

application is running, initialized memory and intermediate results should be reused in

consecutive kernel calls. Furthermore, compacted data structures can help to reduce the

size of transactions.

While many untimed higher-level simulation approaches exist, only few timing-aware ap-

proaches have been developed. The consideration of accurate timing causes a dramatical

growth in simulation complexity [SJN94] when storing and processing timing annotations

and signal histories, which can quickly exceed the memory and computing capabilities of

GPU devices.

The core of this thesis closely follows the innovative parallelization concept of [HSW12,

HIW15], since it meets the high throughput requirements for a fast and scalable timing-

accurate simulation of nanoelectronic digital CMOS circuit designs. The concepts are gen-

eralized and extended for the application to switch level, fault simulation and eventually

for multi-level fault simulation.
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Chapter 5

Parallel Logic Level Time Simulation on GPUs

This chapter presents the basic time simulation model for high-throughput logic level time

simulation on graphics processing units (GPUs) based on [HSW12, HIW15]. It provides

the basic circuit modeling, along with the modeling of signals and time and considera-

tion of variations. The general simulation flow is outlined and the underlying algorithms

and parallel simulation kernels are presented. Furthermore, the high-throughput paral-

lelization schemes used throughout this thesis are explained which simultaneously exploit

parallelism from circuit nodes, test stimuli and parameter variations.

5.1 Overview

The complete flow of the GPU-accelerated logic level time simulation is shown in Fig. 5.1.

In general, the flow is composed of mainly two phases: An initialization (1–2) and a

simulation phase (3–5). During initialization, the node descriptions are set up by ex-

tracting and levelizing the combinational network of the netlist (1). The descriptions

are back-annotated with timing information (2) as obtained from standard delay for-

mat [IEE01a, IEE01b]. In the simulation phase, the input stimuli from pattern files that

include (binary) delay test vectors are assigned uploaded to the GPU pattern memory,

which are then converted to full stimuli waveforms for the assignment to the circuit in-

puts (3). Once, the circuit inputs have been assigned stimuli waveforms, the evaluation

kernel is called which processes the input waveforms at each node to compute a corre-

sponding output waveform (4). The evaluation procedure is implemented using parallel
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adapted kernels for simulating the switching behavior at logic level. During simulation,

the kernel further considers combinations of different circuit parameters to reflect process-

and parameter variations with impact on the delay behavior of the circuit. After the simu-

lation, the responses of the test patterns are obtained by sampling the output waveforms

and extracting the switching activity (5). The simulation terminates, when all input stim-

uli have been processed.

circuit
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(waveform processing)
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Figure 5.1: Overall flow-chart of the logic level time simulation. Parallel steps and kernels
are highlighted.

In the following, the modeling of the circuits and discrete signal values are presented.

Then the concept of time is integrated into the signal modeling to form time-continuous

and discrete-value signal histories. Afterwards, the delay processing is presented with

the basic simulation flow and simulation algorithm. Finally, the applied parallelization

concepts and kernel schemes are introduced to run the simulation algorithm under the

given modeling aspects with high throughput on the GPU architectures.

5.2 Circuit Modeling

In this thesis combinational circuits are considered for simulation. Each combinational

circuit implements a defined circuit function which provides a specific output for a given

input. A combinational circuit netlist is modeled as a directed acyclic graph G := (V,E),
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where V is a set of vertices which will be referred to as circuit nodes and E is a set of

directed edges. The nodes n ∈ V corresponds to either an input, an output or a gate of the

circuit, while each edge e ∈ E connects a pair of nodes and typically reflect signal lines or

interconnections in the circuit. Vertices I ⊆ V without incoming edges represent the input

nodes of the circuit G. Vertices O ⊆ V without outgoing edges represent the circuit outputs

nodes and for all output nodes o ∈ O at most one incoming edge may exist. Circuit nodes

n ∈ V with both ingoing and outgoing edges represent the gates of a circuit. An example

of the directed acyclic graph representation of a simple circuit netlist with five input and

two output nodes is shown in Fig. 5.2.
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Figure 5.2: Graph visualization of the combinational benchmark circuit c17.

The direction of an edge indicates the flow of a signal that transports information from

a sending node (called driver) to a receiving node (called receiver) of the circuit. The set

of receivers of a driving node n is referred to as direct successors of n. The set of driving

nodes of a receiver n is referred to as direct predecessors of n. For the sake of simplicity, this

work assumes that each driving node passes the same information to all of its receivers, if

not mentioned otherwise. If a CMOS cell has multiple outputs which produce different in-

formation (e.g., full-adder), the corresponding node can be substituted by a set of vertices

where each vertex represents the functional logic of one of the original cell outputs.

The values of input nodes can be assigned Boolean logic values from input stimuli vectors

which define value assignments vi ∈ B2 = {0, 1} for each circuit input i ∈ I. The values

vo ∈ (v1, v2, ..., vm) of the m output nodes o ∈ O of the circuit are considered as test

(output) response with respect to the currently applied input stimuli.
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For processing the netlist graph during simulation, the nodes are further partitioned into

levels in a levelization pre-process. During levelization, the nodes of the combinational

netlist are topologically ordered and partitioned into sets {L1, L2, ..., Lk} of levels Li ⊆ V

with ∀i 6= j : (Li ∩ Lj) = ∅. The order of the Li is based on the topological distance of

the nodes contained to either circuit inputs or outputs. This work utilizes an as-soon-as-

possible (ASAP) schedule for the ordering, that orders the circuit nodes according to their

depth. The depth of a node n ∈ V is defined as the maximum topological distance from all

input nodes i ∈ I to n, which is determined recursively as:

depth(n) :=


0 if (n is input node),

max ({depth(p) : p ∈ fanin(n)}) + 1 else.
(5.1)

Nodes of a certain depth k are then sorted into corresponding levels Lk, such that

∀n ∈ Lk : depth(n) = k. (5.2)

5.2.1 Gates

At logic level a gate is the basic functional entity that typically represents the logical

equivalent of a physical standard cell at the electrical level (or implementation in sili-

con). The functional behavior of each gate n of a circuit is modeled by a Boolean function

φn : Bk
2 → B2, which takes the signal values v1, v2, ..., vk ∈ B2 = {0, 1} sent by each

of its corresponding direct predecessors i1, i2, ..., ik as input via the input pins of n. The

result of the function vn := φn(v1, v2, ..., vk) is considered as the output signal value of n

which is then sent to the gate output pin from where it is distributed to all of its direct

successors. For brevity, a vector notation is used to group signal values, such as inputs

values or output responses, by v := (v1, v2, ..., vk).

Gates can be primitive if they implement a simple primitive Boolean operator such as AND,

NAND, OR, NOR, INV or BUF over its set of inputs. On the other hand, complex gates

implement functions comprised of different operations at the same time. Any Boolean

function can be broken down to a set of primitive Boolean operations, each of which has a

corresponding primitive gate. Furthermore, gates acting as constant drivers that tie signal
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lines to a constant value (e.g., TIEL for low ’0’ and TIEH for high ’1’) usually have no input

pin and are modeled as circuit input nodes with constant input assignments.

Let v := (v1, ..., vk) ∈ Bk
2 and v′ := (v′1, ..., v

′
k) ∈ Bk

2 and let vi and v′i refer to the i-th

component in each vector of Bk
2 . Then the operator ≤: Bk

2 ×Bk
2 → B2 is defined as

(v ≤ v′)⇔ (∀i ∈ {1, ..., k} : vi ≤ v′i). (5.3)

A gate n is inverting if its implemented Boolean function φn is monotonously decreasing

when for any two input vectors ∀v,v′ ∈ Bk
2 : (v ≤ v′) ⇔ (φn(v′) ≤ φn(v)) holds. In case

∀v,v′ ∈ Bk
2 : (v ≤ v′) ⇔ (φn(v) ≤ φn(v′)), the function φn is monotonously increasing

and n is considered as non-inverting. For example, types of inverting gates are NAND, NOR

and INV, while examples of non-inverting types are AND, OR and BUF.

Gate types are further distinguished according to their number of inputs (e.g., ’NAND2’ for

a two-input and ’NAND3’ for a three-input NAND gate), as well as their driving strength,

which are annotated in the cell type descriptor by appending ’X1’ for single, ’X2’ double

driving strength, and so on. Gates with higher driving strength, provide more current

throughput by implementing parallel transistors structures that allow drive signals with

higher fanout much faster and more reliably [Nan10]. As fanout of a gate the number of

its direct successors is considered during simulation at logic level [GNW10].

5.2.2 Delay

The simulation of the circuit timing requires the representation and modeling of the tem-

poral behavior of gates and cells in the circuit. At logic level the temporal behavior of

gates is expressed as transition propagation delay, which describes the time it takes to

transport the implication of a signal change at a sensitized input pin to the output pin

of a node. Propagation delays typically vary for each gate of a circuit and each gate pin

(pin-to-pin model) as well as the polarity of signal switches (rising/falling delay), due to

the physical layout structure and the underlying electrical behavior of the corresponding

standard cells.

Furthermore, often a so-called inertial delay is used where the behavior of changes at

node outputs is considered to follow an abstraction of the physical charging process of the
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output load of the corresponding gate. Under inertial delay, an output change at a gate

is performed only if the output signal will be stable for a pre-defined minimum time after

the switch. Therefore, inertial delays act like a filter to remove unreasonable pulses that

would be too short to appear at the gate output.

The simulation algorithm proposed in this thesis uses a pin-to-pin delay model [HIW15]

with individual delay parameters for expressing rising and falling propagation delay as

well as inertial delay for all input pins of every node in the circuit. In accordance with

common timing models used in industry practice [IEE01a, IEE01b], this work assumes the

following delay parameters:

• nominal propagation delays dif ∈ R and dir ∈ R for transitions at an input pin i that

cause falling and rising transition at the gate output, and

• minimum pulse-widths ∆dif ∈ R and ∆dir ∈ R for inertial delay pulse filtering of

falling and rising input glitches at a pin i, and

• variance parameter σi ∈ R to describe the delay deviation from the nominal propa-

gation delay in presence of delay variation (cf. Sec. 5.2.3).

The timing behavior is represented by time spec data structures, each of which contains

the delay parameters of a particular node. A time spec TSn of a node n is organized as a

set of tuples ts i := (di1, d
i
2, ...) that contain the delay parameters for one input pin i of the

node:

TSn := {(d11, d12, ...), (d21, d22, ...), ..., (dk1, dk2, ...)}. (5.4)

Thus, for transitions at an input pin i the associated delay tuple ts i describes the timing

behavior of a signal propagation to the output. While the amount of tuples specified for

each node depends on the number of inputs of n, the numbers of parameters in each tuple

is related to the underlying timing model and can be adapted depending on the required

accuracy of the timing model.

5.2.3 Variations

The delay modeling in this thesis further considers process variations and parameter vari-

ations during simulation. While here process variations are considered as passive random
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or systematic processes during manufacturing, the same modeling is also applicable to en-

vironmental parameters (e.g., temperature) and system parameter variations that are per-

formed online, such as supply voltage scaling and adaptive body biasing [TKD+07]. Based

on the active parameter corners of a produced die, the electrical properties might differ

and hence its electrical behavior. At logic level, these random and systematic process- and

parameter variations typically manifest as delay deviations and thus must be considered

during timing simulation [SSB05, BCSS08].

Definition 5.1. A circuit instance is a copy of a circuit design under the influence of specific

process parameters and operational conditions P := (p1, p2, ..., pu) ∈ Ru.

In this thesis, a circuit instance is identified by the vector P := (p1, p2, ..., pu) ∈ Ru itself.

Each of the parameters p ∈ P reflects a global process or system parameter. Further, it is

assumed that an instance Pnom ∈ Ru exists which corresponds to the nominal circuit in-

stance. Under the nominal parameters Pnom the circuit behavior does not exhibit influence

of any kind of variation therefore showing nominal timing and functional behavior.

Now, let P ∈ Ru be a circuit instance that is described by the parameter setting in Ru.

Further, let dnom ∈ R be the targeted nominal propagation delay at a gate pin of a node

n as specified in the corresponding time spec TSn. Then the parameterized delay under

variation shall be calculated according to the following formula:

d′ := dnom · (1 + θn(p1, p2, ..., pu)) (5.5)

where θn : Ru → R is the corresponding variation function of the node n which expresses

the relative delay deviation under the parameters P with respect to the nominal propaga-

tion delay dnom in the nominal instance Pnom. The delay d′ then represents the resulting

propagation delay in instance P after the variation has been applied. For Pnom the func-

tion θn should evaluate to θn(P ) = 0 such that d′ = dnom.

For random variation with normal distributed delays, the variation function θn is imple-

mented by Gaussian normal distribution kernel N (µ, σ2) which generates uniformly dis-

tributed random delays with mean µ := dnom and standard deviation σ ∈ R [SKH+17].

For systematic variation, the delay deviation of θn is deterministically expressed by user-

defined kernel functions θn : Ru → R, such as polynomials. This can cover both, system-
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atic process variations [SPI+14] as well as parameter variations with impact on the delay

[DAJ+11, DJA+08], such as supply voltage and temperature.

Multiple circuit instances can form a circuit population P ⊆ Ru that spans a particular

parameter sub-space.

Definition 5.2. A circuit population P := {P1, P2, ...} ⊆ Ru is a set of circuit instances

Pi ∈ Ru of a parameter space.

For example, a population can cover process corners (e.g., min-typ-max delays) of a design

or environmental conditions (e.g., temperature). Any P ∈ P then corresponds to a sample

instance in the corresponding parameter sub-space. The parameters of each instance in

a circuit population are usually unique such that for any two instances Pi, Pj ∈ P their

corresponding parameters differ Pi 6= Pj .

5.3 Modeling Signals in Time

In the underlying logic level circuit model, all output and inputs pins of a node as well

as interconnection lines are assumed to carry a signal value v ∈ B2 for an applied test

vector at any time point t ∈ R. Let n be a k-input node corresponding to a gate with

an associated Boolean function φn : Bk
2 → B2, and let I = {i1, i2, ..., ik} be the set of

node inputs. Moreover, let each input i ∈ I have an assigned stable signal value vi. The

momentaneous output signal state vn of the node n is given through its node function

vn := φn(v1, v2, ..., vk).

5.3.1 Events and Time

When a new test vector is applied to the circuit inputs, each change of a node input as-

signment from v to v′ can also change the corresponding node output states φn(..., v, ...) 6=

φn(..., v′, ...). These changes can propagate throughput the circuit to the (pseudo) primary

outputs. This work uses so-called events in order to model and process signal changes in

the circuit over time.

Definition 5.3. An event e is a signal change from a value v to a specific value v′ at a given

point in time t ∈ R over a duration ∆t ≥ 0.
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Each event is modeled as a tuple e := (a1, a2, ..., am) ∈ Rm of m ordered parameters,

which correspond to either time point of the event, signal values, transition duration, or

other parameters that control the shape of the signal change. The number of parameters

m ≥ 1 and semantics of each event depend on the underlying abstraction. For the sake of

simplicity, the first parameter in each event shall refer to the time t ∈ R of the occurrence.

Example 5.1. A signal transition at time t (from any state) to a stationary value v can

be modeled as time-value pair e = (t, v) to express signal step-functions [CHE+08]. Signal

slopes, such as linear transitions to value v, can be simply modeled by an event e′ = (t, v,∆t),

where ∆t corresponds to the transition duration (slope parameter).

5.3.2 Delay Processing

An event at time t at a sensitized node input can cause the output signal of the corre-

sponding node to change (event propagation). This output event typically occurs at a later

time point t′ := (t+ d) ≥ t due to the propagation delay d ∈ R of the node. If the node is

not sensitized, the output signal is not affected by the input transition. The delay model

used in this thesis utilizes an elemental delay processing that comprises multiple stages

during the processing of events at node inputs as illustrated in Fig. 5.3.

In the first stage, all events of the k input waveforms at the node n inputs are added the

respective propagation delays dir or dif of the time spec TSn that were assigned to their

respective gate pin i for the corresponding transition polarities (e.g., rising or falling). By

adding the propagation delay, the input events are transported to the node output and

possible event times are predicted. During this process, intermediate input waveforms
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Figure 5.3: Delay processing at a node [HIW15].

65



5 Parallel Logic Level Time Simulation on GPUs

are generated. At this stage, the new events are checked for race conditions as part of a

natural input pulse filter for filtering consecutive transitions that would result in a reversed

temporal order at the output while being propagated. For example in case of Fig. 5.3,

although t1 ≤ t4 the predicted output event times can be in reversed order with (t4 + d1f )

first then (t1 + d1r) in case the propagation delays are of different magnitude (e.g., d1r ≥

(t4− t1) +d1f ). If such a race condition is detected, the corresponding events are removed.

At the second stage, the signal transitions of the intermediate waveforms are passed in

temporal order to the Boolean function φn of the node n to determine the corresponding

output values vn. For this, the output function is evaluated at all points in time thereby

generating a new temporary response output waveform.

After evaluation, a pulse filter stage is responsible for filtering out hazards and glitches

in the temporary response output waveform. The pulse filter removes consecutive events

which do not conform with the specified minimum pulse-widths ∆dir and ∆dif for rising

and falling pulses. From an electrical point of view, these pulses are considered too short

to allow for a full charge or discharge of the underlying gate output capacitance and are

therefore rendered as invalid.

5.3.3 Waveforms

To represent full histories of the switching activity of a signal, a waveform data structure

is used that stores sequences of events in temporal order [HSW12, HIW15]. The model-

ing is compliant with the IEEE standard delay format (SDF) [IEE01a, IEE01b] for timing

accurate simulation and full representation of the circuit switching activity at logic level.

In the following, the modeling of signals and time is presented for Boolean logic, which is

extended in Chapter 6 for switch level voltage waveforms and ternary logic in Chapter 8.

Definition 5.4. A waveform wn describes the switching history of a signal n over time as

a sequence of K ∈ N temporally ordered events:

wn := {e1, e2, e3, ..., eK}. (5.6)

Each waveform shall be modeled as a list of K ∈ N events e1, ..., eK with the amount of

stored events being bound by a waveform capacity K. The waveform capacity typically
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varies from circuit node to circuit node as it strongly depends on the node switching

activity. All events ei ∈ w of a waveform w are temporally ordered in increasing ti ∈ ei.

Thus, if two events of a waveform ei, ej ∈ w have corresponding event times ti and tj with

ti < tj then their index positions i, j ∈ N in the waveform event lists are i < j.

For the sake of simplicity, this work assumes that ordinary events of actual signal switching

processes occur at times t ∈ R with 0 ≤ t < ∞. Events at (larger) negative time points,

i.e., t = −∞, are used to assign and control initial signal values at a node.

Definition 5.5. The waveform function w(t) of a waveform w of a node determines the

signal value vt ∈ B2 of w present at the node at time t:

w : R→ B2,w(t) := vt. (5.7)

For the evaluation of the function w(t), the events ei ∈ w are processed in temporal

order of their corresponding ti ∈ ei. Starting from the earliest event in the waveform,

the processing continues until all events up to and including time t have been handled.

The signal value vt ∈ B2 at time t is then determined by the latest event processed which

is eventually returned by w(t) = vt as result. The handling process of each event itself

depends on the semantics of all events which is specified by the modeling as well as

abstraction.

For example, one naïve way to model Boolean logic waveforms is by using a two-value

representation for events ei = (ti, vi), which explicitly describes signal transitions to dis-

crete values vi ∈ B2 at the given time ti ∈ R. The complete waveform is stored as a list

of ordered tuples w := {(t1, v1), (t2, v2), ..., (tK , vK)} with t1 < t2 < ... < tK and vi ∈ B2

[CHE+08]. In between two consecutive events ei and ei+1, signal values are assumed to

be constant vi for all t ∈ [ti, ti+1) which represents a piece-wise constant function. For the

evaluation of the waveform function w(t), the events ei ∈ w are processed as regular in

temporal order. The latest event ej = (tj , vj) ∈ w at event time tj with the highest list

index j = max{i : ei = (ti, vi) ∈ w, ti ≤ t} then determines the corresponding signal value

w(t) := vj .

This thesis adopts a sophisticated and compact representation for storing logic level switch-

ing information as proposed in [HSW12, HIW15]. When processing events in temporal
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order, the modeling implicitly utilizes the knowledge of the current signal state to deter-

mine the transition types of events, as the signal always transitions between the two logic

states high ’1’ and low ’0’ in B2. Hence, the target value of a transition does not have to

be explicitly stored for each event, but only the event time. This avoids redundancy in the

data structures and thereby reduces the amount of storage required per waveform.

In the B2-waveform representation of [HSW12, HIW15] events e ∈ w stored in a wave-

form w are of the form e = (t) with no transition value information attached. Instead,

it is assumed that all waveforms w start with a low ’0’ value and their signals are consid-

ered valid for the time interval 0 ≤ t < ∞ only. The time of the first event stored in the

waveform is allowed to be negative t = −∞ which describes the initialization of a signal

to ’1’ ∈ B2 and no other event is allowed to occur before. Similarly, the last event stored

in each waveform is always at time t = ∞. This last event takes place in infinity with no

more events to follow, thus indicating the end of a waveform as a sentinel.

All events ei = (ti) ∈ w with time 0 ≤ ti < ∞ are considered as ordinary events which

cause the current waveform signal to switch to the opposite of its current value. Hence,

vi+1 := (vi ⊕ 1) for vi, vi+1 ∈ B2, where ⊕ denotes the two-valued Boolean logic XOR

operation. Note that for every pair of two consecutive events in the waveform the previous

signal value is retained. As a result, the waveform function w(t) of B2-waveforms can be

simply computed as

w(t) := |{ei : ei = (ti) ∈ w, ti ≤ t}| mod 2. (5.8)

Examples of Boolean logic level waveforms representations following [HSW12, HIW15]

are shown in Fig. 5.4. Note that since each waveform is assumed to start with value ’0’, all

signals that have an initial value of ’1’ need to provide an initialization event e = (−∞),

that models the initial transition at time t = −∞ (see Fig. 5.4, ”A NAND B”). For constant

signals the corresponding waveform representations are w0 := {(∞)} for low and w1 :=

{(−∞), (∞)} for high values. Again, all waveforms are terminated by a sentinel event

e = (∞). Thus, assuming a waveform capacity of K events, waveforms that start with an

initial value of ’0’ can store a maximum of K − 1 transitions, while for waveforms with an

initial value of ’1’ only K − 2 transitions can be stored.
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Figure 5.4: Logic level waveforms (B2) of signals A and B before and after passing
through NAND and XOR nodes with a delay of 1 time unit [HSW12].

5.4 Algorithm

For the simulation of a circuit, the implemented logic level time simulator utilizes an

oblivious circuit simulation approach in which the waveform processing is performed for

each circuit node regardless of the presence of switching activity at its inputs (as opposed

to event-driven approaches). The waveform processing algorithm executed for every node

of the circuit computes the output waveforms at each circuit node including the (pseudo)

primary circuit outputs in (levelized) topological order. This simulation process has to

be repeated for each pattern stimuli applied. Thus, the remainder of this section first

describes the basic waveform processing algorithm. Then the parallelization concepts to

run the algorithm in parallel on GPUs are introduced.

5.4.1 Serial Algorithm

The overall procedure of the logic level waveform processing is composed of three parts as

shown in Algorithm 5.1. For any k-input node n ∈ V , the input to the algorithm is the node

description of n, the circuit instance parameters P ∈ Ru for variation (if applicable), the

input waveforms wi of all gate pins i ∈ I, as well as the time spec TSn := {ts1, ts2, ..., tsk}
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of n with the delay tuples ts i containing the nominal propagation delays for each of the

k input pins. Additionally, delays of interconnection wires can be considered which can

be treated in two ways. Either, each wire (1) is mapped to an interconnect buffer (BUF

gates) that is inserted in the netlist between the driving and receiving gate to which the

time spec can be directly assigned to, or (2) the wire is expressed in terms of propagation

delays at an input pin in the node time specs according to [HIW15]. In the latter case, no

additional growth or modification of the circuit netlist is required.

If no pulse widths are provided in the SDF source file, the minimum pulse-widths are set

to the gate propagation delays (df , dr). This is a valid assumption, since pulses should not

be shorter than the time required for the gate to perform the actual switching [IEE01b].

The general processing at a node is controlled through a sliding time window with a lower

and an upper bound in order to process the events of all node inputs in correct temporal

order. The lower bound refers to the time of the last event processed that caused a change

in the output, and the upper bound marks the time of the earliest next output change that

may be caused by an event at an input. The algorithm uses a small table for scheduling the

processing of local events in the input waveforms. Each line of the table holds for a certain

node input pin i ∈ I the current value of the input waveform vi, the event eicurr of the next

input switch, the predicted time ticurr of a possible transition at the node output caused by

this event, and the succeeding event einext in the input waveform along with the respective

predicted output time tinext. In the algorithm, the time window [tlast, t] spans the time of

the latest output event computed and t = mini∈I({ticurr}) refers to the predicted time of

the earliest next event at the node output.

When executed for a node n, the algorithm first computes the node- and instance spe-

cific propagation delays based on the provided time spec TSn and the circuit instance

parameters P . For random variation, the variation function θn executes a pseudo-random

number generator (PRNG) that is implemented in parallel on GPU similar to [GK09]. Each

PRNG requires a unique seed to draw individual sequences of uniformly distributed ran-

dom numbers. For this, simulation slots (corresponding to a parallel circuit copies) are

assigned instance IDs as base seed i ∈ N which is stored in the parameter memory on

the GPU device as part of the instance parameter vector P . By applying the Box-Muller

method, the generated random number sequences of θn are efficiently transformed to a
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Algorithm 5.1: Main logic-level node evaluation algorithm (single thread)
Input: Node n with instance parameters P , input waveforms wi for node input pins i ∈ I, time spec

TSn = {ts1, ..., tsk}.
Output: Event sequence of the output waveform of n.

1 // Initialize local variables data structures.
2 Create copy of time spec TSn and compute delay variation θn according to parameters P .
3 // A.1 load initial waveform events and determine values
4 foreach input i of node n do
5 Load first two ordinary events eicurr and einext from waveform wi. // skip events at −∞
6 Determine initial input signal waveform value vi := wi(−∞).
7 Compute time of event propagation ticurr := ticurr + di[¬vi] ∈ tsi and tinext := tinext + di[vi] ∈ tsi.
8 while (ticurr ≥ tinext) ∧ (tinext 6=∞) do
9 // race detection in consecutive input events

10 Skip pulse and load next two input events eicurr and einext from waveform.
11 Compute corresponding output event times ticurr and tinext. (cf. line 7)
12 end
13 end
14 // A.2 compute node output state and initialize output waveform
15 Initialize output state S := φn(v1, v2, ..., vk).
16 if (S = 1) then
17 Append new event e = (−∞) to output waveform. // sets initial value ’1’ in B2 logic
18 end
19 // A.3 bounds of time window
20 Set tlast := −∞.
21 Set upper bound of time window and time t of next event to process: t := mini∈I({ticurr}).
22 // B. process switching of input events in temporal order
23 while (t 6=∞) do
24 // B.1 pick input pin and consume event
25 Select pin i with ticurr = t.
26 Set ticurr := tinext and update input value vi := ¬vi. // negation in B2 logic
27 if (tinext 6=∞) then
28 Fetch next event einext from input waveform and compute tinext.
29 Perform race detection (lines 8–12) and update eicurr, e

i
next, t

i
curr and tinext accordingly.

30 end
31 // B.2 compute node state
32 Snext := φn(v1, v2, ..., vk).
33 if (S 6= Snext) then
34 // apply output filter by checking pulse width
35 if ((t− tlast) ≥ ∆di[vi] ∈ tsi) then
36 Set Slast := S, S := Snext. // update node state and backup old
37 Output new event e = (t).
38 Move lower time window bound tlast := t.
39 else
40 // pulse too short
41 Remove last event in output waveform and revert output state: S := Slast.
42 Update lower bound of time window tlast := t w.r.t. current last event e at output.
43 end
44 end
45 Move upper time window bound t to next event to process: t := mini∈I({ticurr}).
46 end
47 // C. set termination event
48 Output new sentinel event e = (∞).
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Gaussian normal distribution [Knu97b] which are then applied to the nominal time specs.

If no specific parameters P are provided, the algorithm continues with the nominal delays.

Then the first two ordinary events eicurr and einext of each input waveform are fetched and

the initial waveform values vi are determined. These are used to predict possible out-

put event times ticurr and tinext of both events after propagation (line 7) by selecting the

appropriate delay of the time spec tuple ts i ∈ TSn of the node n using the numerical inter-

pretation of the current signal logic value vi as index. The race condition filter is applied

(lines 8–12) to ensure the correct temporal order of the output events with respect to the

input events, in case the order is reversed (tnext < tcurr). When the filter is triggered, the

current events eicurr and einext are invalidated and the algorithm proceeds with the next

two events in the waveform.

After the initial events and input waveform values have been loaded, the output state S

of the node is computed and both the output waveform and the sliding time window are

initialized (line 15–21). The window is bound by the time of the last output change and

the time of the earliest next switch caused by the current input event to be processed. This

window will be used to apply the glitch filtering at the node output.

In the main loop (lines 23–46) the waveform processing is performed in temporal order

of the event. First, the input i is selected that corresponds to the predicted next output

switch t := tnext. The current input event is then consumed by setting the current event

time tcurr to the follow-up event tnext of the input waveform and toggling the input sig-

nal value (line 26). The algorithm then looks-up and pre-fetches the next event in the

respective input waveform (lines 27–30).

After the input event has been consumed, the new node output state Snext is computed. In

case the output state changes (Snext 6= S), the time window is checked for the minimum

pulse-width requirement (line 35) of the glitch-filter. If the time elapsed since the last

switch tlast is larger than the required minimum pulse-width ∆di, a new event e = (t)

is written to the output waveform and the lower bound of the sliding time window is

updated accordingly. The current state variable S is backed up in Slast and the new output

value is assigned as the current state S := Snext. If the time elapsed since the last output

switch is smaller than the minimum pulse-width, the output pulse filtering is active and

the previously added output event is deleted from the waveform with the corresponding
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node output state being restored from Slast (line 41). Also, since the last output switch

was reverted, the lower bound tlast of the time window needs to be set to the time of the

current latest event in the waveform (tlast := t) in order to ensure proper glitch-filtering

for the remaining events in the sequence. In case the new output state Snext is equal to the

current state S, the consumed input event does not cause a new output event and hence

the input switch can be ignored. Finally after processing of the input switch, the upper

bound of the time window [tlast, t] is moved to the next earliest output event (line 45).

Eventually, all input waveform events have been processed after reaching their sentinel

events (∞), which terminates the main loop of the waveform processing. The output

waveform is then terminated by adding the sentinel event accordingly (line 48).

Example

Fig. 5.5 illustrates the relation between the input and output events using the time win-

dow on the example of a small two-input NOR-gate with a rising delay of dr = 2 and

a falling delay of df = 3 units for each pin. The first input A has waveform wA :=

{(1), (4), (11), (16), (∞)} and the second input B has waveform wB := {(8), (∞)}. The

corresponding output waveform is wZN := {(−∞), (3), (7), (10), (∞)}. In this example,

the first event in wA at time t = 1 (rising transition) has already been processed, which

caused a falling transition (inverting gate) in the output waveform at time (t+dr) = 3 with

the current node output state being S = 0. Hence, the lower bound of the time window is

tlast = 3.

input waveforms

input A

input B

ecurr
A enext

A

ecurr
B

time

t last

∞0 2 3 41 5 118

output waveform

0 41 11 16

0 81 0 1 107
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df dfdr

3 4 8

tcurrA tcurrB
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output ZN
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+df
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∅
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time
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Figure 5.5: Logic level waveform processing at a two-input NOR-gate (inverting) with a
rising transition delay of dr = 3 and falling transition delay of df = 2 time units.
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In a next step, the output times of the current input events eAcurr = (4), eBcurr = (8) to

process at the two inputs are pre-computed, which are tAcurr = 4 + df = 7 and tBcurr = 8 +

dr = 10. Similarly, the times of the next events are computed as well to check for possible

race conditions at the input pins, which are tAnext = 11 + dr = 13 and tBnext =∞+ df =∞.

As no race detection occurred, the upper bound of the time window is updated (t := tAcurr)

and the input pin A is being selected for the event processing.

Now, the new input value of vA := wA(t) = 0 is computed and the node function is

evaluated to obtain the next state value Snext := φNOR2(vA, vB) = φNOR2(0, 0) = 1.

Since S 6= Snext, a new event e = (tAcurr) = (7) is added to the output waveform. The

lower bound tlast of the time window is set accordingly (tlast := tAcurr). The event eAcurr is

finally consumed by stepping forward to eAcurr := eAnext = (11) and fetching the new event

eAnext := (16) from the input waveform. After computing the new upper bound, the rising

transition event eBcurr = (8) at input B is processed, which causes a falling transition at

the node output at time tBcurr = 10. The remaining events (11) and (16) at input A do not

cause any output state changes and hence no additional events are added to the output

waveform. For brevity, the handling of initialization and sentinel events has been omitted

in this example.

5.4.2 Parallelization

For the parallelization, the oblivious simulation flow is divided into serial tasks some of

which are executed on the GPU and some of which are handled by the CPU on the

host system. The host CPU is only responsible for minor tasks such as initialization

and synchronization of the simulation process which is handled in a serial manner. All

compute-intensive tasks on the other hand are executed on the GPU in parallel. Each

GPU-task is executed as a kernel that can simultaneously exploit multiple different dimen-

sions of parallelism from both structure and data to maximize the simulation through-

put [HSW12, HIW15]. This is illustrated in Fig. 5.6, which shows the parallel evaluation

by a simulation kernel that processes different nodes of the circuit each of which is also

evaluated for different input stimuli at the same time.

The evaluation of a circuit for a particular stimuli or test pattern is referred to as a slot.

Within each slot, a subset of different nodes of the circuit is evaluated concurrently form-

74



5.4 Algorithm

data- 
parallelism

(n slots)

...

... ...

st
ru

ct
u
ra

l 
p
a
ra

lle
lis

m

waveform

parallel evaluation

1

2

k

1

n

(n ⨯ k)
threads

sl
o
t

Figure 5.6: Two-dimensional evaluation by utilizing structural parallelism from nodes and
data-parallelism from waveforms [HSW12, HIW15].

ing one dimension of parallelism, called structural parallelism. A second dimension is

provided by processing slots for different input data at the same time, and hence, the

processing of the nodes for different input data in parallel (data-parallelism).

Node-Parallelism

The first dimension of parallelism exploited is node-parallelism, a type of structural paral-

lelism from the evaluation of different nodes in the circuits that have mutual (data-) in-

dependence. Let fanin∗(n) be the transitive fanin (also called input-cone) and fanout∗(n)

the transitive fanout (output cone) of a node n ∈ G.

Definition 5.6. If two circuit nodes n1, n2 ∈ G with n1 6= n2 are neither in the input-

cone (({n1} ∩ fanin∗(n2)) ∪ ({n2} ∩ fanin∗(n1)) = ∅) nor in the output-cone of each

other (({n1} ∩ fanout∗(n2)) ∪ ({n2} ∩ fanout∗(n1)) = ∅), then n1 and n2 are mutually

data-independent.

While under data-dependency, the node providing the input to the other one must be eval-

uated first, otherwise the input remains unspecified and unable to be processed. Mutually

data-independent nodes on the other hand do not depend on the output data of each other

and hence the exact order of evaluation is not subject of matter and can be performed in

any order or even at the same time. On parallel architectures, this property is exploited to

evaluate data-independent nodes concurrently [SHWW14, HIW15].

Fig. 5.7 depicts the parallelization scheme of the simulation kernels executed for a single

simulation slot on the GPU. The evaluation of the nodes is performed in a (partially)
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ordered sequence obtained from levelization which ensures the provision of specified input

waveforms for all nodes on each level. For each level Li ⊆ V of the circuit (i = 1, ..., d),

the kernels are invoked by running ki := |Li| individual threads for each node in the

slot to be evaluated at the current level. The threads concurrently process the previously

computed input waveforms of their corresponding nodes independently of the others and

compute their respective output waveforms or process and aggregate data.
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Figure 5.7: Thread-organization for exploiting structural parallelism from levels of mutu-
ally data-independent nodes in a simulation slot.

Waveform-Parallelism

The implemented simulator further exploits the parallelism from data-centric aspects to

provide higher simulation throughput. For this, a two-dimensional parallelization scheme

is adopted [HSW12, HIW15] in which different nodes are processed concurrently that are

also evaluated for different stimuli at the same time (waveform-parallelism).

In each step of the simulation, the invoked parallel kernels start a two-dimensional grid

of n × k execution threads as illustrated in Fig. 5.8, where n is the number of waveform

stimuli and k is the number of gates for concurrent evaluation. As shown, within the

thread grid the threads in the vertical direction form a slot in which the different nodes of

a level are evaluated in parallel for a particular input stimuli. In the horizontal direction,

all threads evaluate the same node, but each thread operates on an individual simulation

slot each of which can provide a different input stimuli. The horizontal and vertical thread

grid dimensions depend on the number of available simulation slots, and the number of

nodes on the current level to be processed. While the number of gates usually varies

from level to level depending on the amount of available nodes, the number of simulation
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Figure 5.8: Two-dimensional thread-organization for simultaneous exploitation of struc-
tural parallelism and data-parallelism for k nodes and n slots.

slots remains constant throughout the simulation. Since each thread of a thread group

processes the exact same node function, the threads closely follow the same execution path

during the evaluation without excessive control flow divergence due to complex branching

in the kernels. Note that larger sets of independent test stimuli can be partitioned and

distributed to multiple GPU devices for execution, which allows for a further increase in

the simulation throughput.

Instance-Parallelism

The concept of exploiting data-parallelism in multi-dimensional kernels is further applied

to consider instance-parallelism during simulation by processing multiple circuit instances

of a population with unique gate delays in parallel [SKH+17, SW19a]. For this, the two-

dimensional thread organization of the parallel simulation is extended to allow simulation

of a different circuit instance in each simulation slot as illustrated in Fig. 5.9. Within each

simulation slot the corresponding threads then process the gates of a specified circuit

instance for the assigned waveform stimuli. In the example, the n simulation slots on the

GPU have been organized to systematically process m different stimuli for a population of

i different circuit instances.

Each simulation slot is assigned circuit instance specific parameters which are accessible

by the threads through a dedicated memory allocated on the GPU. The threads access

the respective parameters of their slot in order to parameterize the circuit data (i.e, node
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delays) and the simulation kernels in the beginning of each call. After loading the node

descriptions, each thread then calculates thread-local delays based on its parameters ac-

cordingly which are then used throughout the node evaluation.

Evidently, since the threads in each row of the thread grid compute the same node func-

tion, both the node-parallelism and the control flow uniformity of the underlying kernels

in this scheme are sustained and therefore remain untouched. Hence, the combination

of the data-parallelism types allows to increase the simulation throughput by maximizing

the utilization of the GPU resources and fully occupying the memory during simulation.

Again, since the stimuli-instance combinations are data-independent, this parallelization

scheme allows workload distribution to multiple parallel GPU devices as well.

5.5 Implementation

In the following, the overall simulation flow as well as the kernel organization of the

presented parallel logic level time simulation and their realizations are explained.

Fig. 5.10 depicts the general data flow of the parallel kernels implemented for the simu-

lation. In general, throughout the simulation, the circuit description is kept in the global

memory of the GPU (i.e., circuit description memory), which contains both the functional

and timing descriptions of each node in the circuit. The simulation state, containing all
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computed signals and simulation results, is kept in the global memory of the device as well

(i.e., waveform memory). The parallelized kernels take commands and parameters from

the host system as input (1), which are used to select and fetch node descriptions from the

circuit description (2) to process the selected nodes. During processing, the kernels fetch

the current simulation state as well as the assigned inputs from the memory and write the

computed result back into the simulation state again (3). The output of a kernel (4) can

range from a simple status indicator, over an abstracted mapping of the simulation state,

such as output response patterns or other simulation parameters (i.e., weighted switching

activity) to a return of the full simulation state. Certain outputs can be used as input of

consecutive simulation runs (5), such as state assignments in sequential state-elements

from pseudo-primary outputs to pseudo-primary inputs. Finally, both outputs as well as

inputs can be redirected to annotate or manipulate the circuit description (6).

In total, the following memories are allocated on the global device memory GPU prior to

the actual simulation:

1. circuit description memory to store the functional circuit and timing information,

2. pattern memory for storing compact input stimuli and output response information,

3. waveform memory for storing all signal waveforms (simulation state) which is the

largest portion,

4. parameter memory to assign instance parameters to the simulation slots, and

5. scratch memory to collect miscellaneous information (e.g., overflows) for temporary

use only.

Besides a uniformly organized kernel structure, it is necessary to avoid large working

sets, diverging control flows and arbitrary memory access patterns in the global mem-

ory [OHL+08, GK08]. All threads should work independently of each other in order to

avoid synchronization and they should require a minimum amount of resources (e.g.,

thread-local memory). For the efficient execution on GPUs, the type of data structures and

their organization in the memory poses a major hurdle. Therefore, another key-aspect is

the focus on compact data structures and the memory organization of both, the functional

as well as the timing-description of the circuit and the time-continuous waveform signals.
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Figure 5.10: General data flow of the kernels used during simulation on the GPU.

5.5.1 Waveform Allocation

To allow an efficient processing and storage of the waveforms on the GPU with simple

memory organization and regular memory access patterns, a buddy system memory allo-

cation technique is utilized [Kno65, Knu97a], that provides an efficient management for

the waveforms [HIW15]. In the buddy system the waveform memory is split into chunks

of fixed equal size, that are organized as a binary tree. Each leaf node of the tree cor-

responds to a chunk of consecutive memory addresses, while parent nodes represent the

union of the memory space of all its children. The leaf nodes of a parent node can be

merged to link the associated memory chunks in powers of two (2i at the i-th level) thus

forming a larger consecutive memory space. Similarly, all waveforms during simulation

are built from memory chunks.

The memory chunk of a leaf node is referred to a waveform register. All waveform regis-

ters have a fixed capacity κ ∈ N+ of events (waveform capacity). In this thesis, an initial

capacity of κ = 10 is utilized. Subsequent waveform registers are merged to form larger

waveforms according to the buddy tree system, in case the memory of a register is insuffi-
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cient to store all events. Hence, for allocations at leaf nodes in the tree (level 0), the event

capacity of a waveform is K = κ. For waveform allocations at the i-th level, the memory

chunks of 2i waveforms registers have been merged thus resulting in an event capacity of

K = (2i · κ) per waveform. While the allocations are kept for every level of the circuit,

each waveform registers can be freed after processing a certain level in the circuit. Once

a waveform is not read in the subsequent stages anymore, it is freed to provide memory

space for new allocations.

Waveforms are stored on the GPU in the dedicated waveform memory as illustrated in

Fig. 5.11. The waveform memory is split into parallel-waveform registers that form a con-

nected block of memory and contain the waveforms of a specific node of the circuit. The

parallel-waveform registers hold one instance of a waveform for each available simulation

slot. All waveforms are stored within a register in a way, such that the j-th parameter

of the i-th event in waveforms of subsequent slots are stored at consecutive memory ad-

dresses. Thus, while processing the waveforms, the 32 threads of each thread group on a

stream multi-processor utilize coalescing of the memory accesses addressing the current

parameters and merge the addresses into ranges for single memory transactions.
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Figure 5.11: Organization of the memory for storing waveform data. For node z two
memory chunks are merged into one waveform register (Kz = 2κ).

Obviously, the waveform memory occupies the largest portion of the global device mem-

ory. Given a specified portion of the global device memory on the GPU that will be ded-

icated to the sole purpose of storing waveforms and the amount of memory of the wave-

form registers required for allocating the waveforms of a (single) simulation instance,
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then the maximum number of possible simulation slots n ∈ N is determined [HIW15] by

finding the largest n such that

GlobalWaveformMemory ≥ n ·MemoryPerInstance. (5.9)

5.5.2 Kernel Organization

The high-throughput simulation flow uses a fixed set of kernels, each of which serves

a unique purpose and also has a different thread grid organization. These kernels are

categorized as one of the following four:

1. pattern-to-waveform conversion kernels,

2. waveform processing evaluation kernels,

3. waveform-to-pattern conversion kernels,

4. data manipulation/aggregation kernels.

The kernels of the first category (pattern-to-waveforms) are used to convert the binary test

stimuli sequences provided in a dedicated pattern memory to fully expanded waveforms

stored in the waveform memory on the GPU. These kernels are usually applied to the nodes

on the input level and drastically reduce the computing and memory overhead as no raw

waveform data has to be transferred between the host system and the device.

As for the second category (waveform processing), the kernels perform the actual waveform-

based time simulation and evaluation of nodes on a single level as presented in Algo-

rithm 5.1. The evaluation kernels are executed for each level of a circuit until all levels

have been processed. After simulation of a particular level L ⊆ V , the waveforms of all its

nodes n ∈ L are present in the GPU waveform memory which can be accessed for further

processing.

The third category (waveform-to-pattern) kernels provide the reverse operation of the

category-1 kernels by sampling waveform values of given nodes (e.g., circuit outputs)

and reducing them to compact test response vectors on the GPU. After the conversion, the

test responses can then be fetched by the host system with little memory overhead for

further processing.
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For the execution of kernels of the three categories above, the set of threads is partitioned

into a two-dimensional grid of two-dimensional blocks of threads. Each thread works in-

dependently on a different node and a different slot and no synchronization of threads

from different blocks is required. Also, in the kernels of the first and second category,

the threads within each thread group are independent as well. Thus, no synchroniza-

tion among or within the thread groups is required. Kernels of the third category, utilize

schemes based on one-dimensional reduction [NVI18a] in order to efficiently encode infor-

mation of multiple threads working on different slots into single data words. The shared

memory in each streaming multi-processor is used to collect the data of each thread and

to provide a consistent view [NVI17b]. The data of the thread group is then encoded in a

synchronized iterative reduction phase, before eventually written back by a thread. Thus,

synchronization is only required for threads within a thread group, but different thread

groups can still run independently of each other.

The kernels of the last category (data manipulation/aggregation) are used to extract and

quickly merge information (such as sampled values, overflows, event counts, etc...) from

waveforms in the memory. The parallel aggregation is utilized to reduce the overall latency

and to avoid excessive look-ups of individual numbers in the device memory by the host.

Kernels of this category are primarily used to perform fast overflow checking in waveforms

and collect waveform attributes of either all active waveform registers in a slot, or of

all slots in a particular waveform register. Depending on the kernel the extracted data

is merged into one- or two-dimensional fields, or even into a single scalar, and is then

stored in a separate memory on the GPU device. When the data is reduced to a one-

dimensional field or single scalar, the original two-dimensional high-throughput kernel

scheme cannot be applied, due to the high data-dependency over either the slots or the

waveform registers. Since the synchronization among threads of different thread blocks is

expensive, a different thread grid organization is applied.

For the reduction of the data, basically two different reduction kernels are offered: (1) hor-

izontal reduction and (2) vertical reduction as shown in Fig. 5.12.

During the horizontal reduction, waveform data of each node n ∈ G is aggregated usually

by addition (e.g., for event counting or determining overflows) into a single struct over

all available slots s that is accessible via the node index in a separate memory. The kernel
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Figure 5.12: One-dimensional (horizontal, vertical) and two-dimensional memory reduc-
tion for quick data aggregation and compaction.

is executed as a marching column of thread blocks, with each thread group of a block

summing up the data of a particular node by traversing over all the available slots in

bundles of 32 consecutive slots. Throughout the traversal, the acquired data of the slots

is held in the shared memory of the streaming multi-processors. Eventually, all slots have

been processed and a final one-dimensional reduction over the shared memory reduces

the 32 slot values of the thread group into a single struct to be stored for the node. The

memory then provides the merged data for each node individually. Similarly, the vertical

reduction aggregates the data of all nodes in the slots by a marching thread-block row. The

resulting data is then stored in the separate memory for each slot individually. By applying

another reduction over the results, a two-dimensional reduction is formed, which allows

to reduce the information to a single struct. In this work, the two-dimensional reduction

is primarily used for the fast overflow checking, which allows to determine the presence of

overflows by looking up a single scalar value.

For the kernel execution, the thread grid of each kernel is sub-divided into two-dimensional

sub-grids or thread blocks which are scheduled for execution on the streaming multi-

processors. Each instantiated thread block of a simulation kernel has a fixed dimension of

(blockDim.X, blockDim.Y ) ∈ N+ × N+ threads. The horizontal dimension of each thread

block was chosen as blockDim.X := 32 to match the number of maximum allowed threads

in a thread group, which maximizes the thread group occupancy on the streaming multi-
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processors. As for the vertical dimension blockDim.Y , the available resources distributed

evenly among all the threads according to the following formula:

blockDim.Y :=

⌊
#ResPerMultiProcessor

blockDim.X ×#ResPerThread

⌋
(5.10)

where #ResPerMultiProcessor corresponds to the overall available registers on the steam-

ing multi-processors and #ResPerThread corresponds to the registers required per thread.

For example, if a streaming multi-processor provides 65,536 local registers and a simula-

tion kernel requires 100 registers per thread, then the thread block dimensions are chosen

as (blockDim.X, blockDim.Y ) := (32, 20) according to Eq. (5.10). For these dimensions,

the resulting thread blocks consist of 20× 32 = 640 threads each.

Prior to calling a kernel on the GPU, both the dimensions of the thread blocks as well as the

dimensions (dimGrid .X , dimGrid .Y ) ∈ N+×N+ of the two-dimensional thread grid itself

need to be specified. Given the thread organization as shown in Fig. 5.8, the horizontal

X-dimension of the grid corresponds to the number of available simulation slots on the

GPU and the vertical Y -dimension corresponds to the number of nodes on the current

level under evaluation. Since the simulation kernels are executed for a given circuit level,

the grid is evenly subdivided into a two-dimensional grid of thread blocks as follows:

dimGrid .X :=

⌈
#Slots

blockDim.X

⌉
and dimGrid .Y :=

⌈
#NodesOnLevel

blockDim.Y

⌉
. (5.11)

The two-dimensional kernel processing allows to evaluate nodes for different stimuli

within a thread group in a SIMD fashion as shown in Fig. 5.8. In combination with

the aforementioned organization of the waveform memory, the waveform accesses of the

threads can be merged to create fully utilized memory transactions (32 × 4 = 128 Byte)

when processing the single-precision floating-point event parameters of waveforms. With

efficient coalescing and caching of memory accesses within each thread block, the overall

amount of global memory transactions is reduced, allowing to increase the computational

throughput [NVI17b].

The two-dimensional parallelization scheme is applied throughout the different kernels

used during the simulation, from test pattern conversion, through node evaluation and

signal sampling. The maximum amount of stimuli (simulation slots) that can be processed
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in a single simulation run is bound by the available global memory on the GPU device, as

well as the memory required to store the waveforms in a simulation slot. In case more

input stimuli are provided, than able to fit on the GPU memory, the set of stimuli is split

into chunks, which are processed serially on a single GPU. The indices of the stimuli pairs

simulated in a given simulation pass (pass = 0, 1, ...), depends on the pass number as well

as the the number of available slots #Slots on the GPU. The index of the stimuli in the

first slot (s = 0) is determined by (pass × #Slots) and the index of the last stimuli pair

processed (s = #Slots−1) is ((pass + 1 )×#Slots)−1. Again, if the host system contains

multiple GPU devices, the simulation parallelism can be further enhanced by distributing

the stimuli chunks over the devices to separate simulator instances. Thus, a larger global

memory and more GPU devices allow for higher degree of parallelism by processing more

stimuli concurrently. In contrast to the structural parallelism from the nodes, the effective

parallelism from the data remains constant throughout the simulation.

5.5.3 Simulation Flow

The overall time simulation flow is comprised of two major parts: A full-speed run, and a

monitored run, as shown in Fig. 5.13. Parallel tasks on the GPU are indicated as shaded

boxes, while tasks of white boxes are run on the serial host CPU.

The full-speed run provides a fast evaluation, while the monitored run takes measures to

ensure the integrity and completeness of all waveform information throughout the sim-

ulation. In the beginning, the circuit description and the test patterns are uploaded into

their dedicated memories on the GPU (step 1–2). Then a parallel kernel is called on

the GPU that transforms the test patterns into stimuli waveforms for the primary and

pseudo-primary inputs (3), after which the parallel level-by-level simulation of the circuit

is performed (4). In order to prevent loss of overflow information after freeing waveform

registers, the information of the presence of overflows is propagated through the circuit

via the waveforms. For this, the first event in each waveform is reserved as header in-

formation for holding the number of overflow occurrences in the current waveform and

those of its inputs. An overflow check kernel collects the information (5) propagated to

the output nodes and indicates whether information loss occurred and a calibration run is
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Figure 5.13: Overall simulation flow and call structure of the parallel time simulation with
full-speed run (left) and monitored run (right). Shaded boxes reflect parallel tasks.

necessary. If no overflow did occur, all output waveforms are consistent and are converted

back to test pattern responses for further processing on the GPU (6) or the host system (7).

In case overflows did show up, the monitored simulation procedure is called, which re-

peats the level-by-level simulation of the circuit for the previously assigned input stimuli.

In contrast to the full-speed run, an overflow check is performed after simulation of each

level (8–9) during the monitored simulation. As soon as overflows on a level have been de-

tected, the culprit waveform registers present in the memory are identified and increased

in size (10). Due to the increased waveform size, a costly reallocation of all upcoming

waveforms is necessary (11). The simulation of the level is then repeated, until all regis-

ters on the level eventually satisfy the required waveform sizes. After all levels have been

successfully simulated, the output responses can be fetched and processed.

In the beginning, all waveform registers have a small initial capacity K = κ and they

gradually grow in size due to a massive amount of overflows caused. Yet, throughout the
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simulation the total number of overflows saturates quickly, as the registers attain the ap-

propriate sizes to store all events [SHK+15]. The calibration of the waveforms reduces the

probability of new overflows and also the need for monitored simulation, thus allowing

for full-speed simulation runs. Once calibrated, the new capacities of the individual wave-

form registers are reused in subsequent simulation runs. After simulation, The capacities

of the waveform registers can be stored externally for later reuse. When a new simula-

tion instance is started, the capacities are read and assigned to the waveform registers for

initial allocation as part of the initialization, which allows to skip initial calibrations.

5.5.4 Test Stimuli and Response Conversion

Prior to the waveform processing of the circuit nodes, input stimuli waveforms are as-

signed to the circuit inputs in the simulator. The input stimuli waveforms are obtained

from delay test vector pairs as specified from either random or deterministic sources. In

each simulation slot, the processing of one delay test vector pair is performed.

In order to timing simulate a particular delay test, the input assignments of the test pair

must be translated into an equivalent input stimuli waveforms which are applied to their

corresponding inputs i ∈ I of the circuit. Providing the waveforms by the host system

itself is an expensive task and causes high memory overhead. Instead, the compact stimuli

bit-sequences of test pattern files are transferred to the dedicated pattern memory on the

GPU device, which are then expanded and converted to waveforms on the GPU for all the

inputs. Similarly, all output waveforms are evaluated at given sample times and translated

back to compact test responses for each test vector.

Input Stimuli Conversion

The test sets for simulation are considered as sequence of subsequent test vectors or test

vector pairs with corresponding assignments to the circuit inputs. All test vector assign-

ments of the sequence are stored as 64-bit Long integers, with each Long representing a

sequence of 64 consecutive 1-bit assignments to a specific circuit input. The assignments

of each Long are further subdivided into pairs for 32 slots, each pair of which holds a

delay test pair composed of a value v ∈ B2 as initialization vector value that is followed

by another value v′ ∈ B2 of the test vector sequence as propagation vector value.
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Algorithm 5.2 outlines the conversion process to obtain a valid stimuli waveform from a

delay test vector pair assignment at a circuit input pin i ∈ I composed of initialization

v ∈ B
|I|
2 and propagation vector v′ ∈ B

|I|
2 . First the waveform is initialized with the value

of the initial assignment in vi ∈ v (line 2–4). For the propagation vector value v′i ∈ v′ the

algorithm appends an event to the waveform at the specified transition time t (typically

t = 0), if the assignment changes (line 5). Note that the propagation vector v′ ∈ B
|I|
2 can

also be used as initialization vector of the next test vector pair.

Algorithm 5.2: Input waveform obtained from a delay test pair assignment (vi, v
′
i).

Input: delay test pair (vi, v
′
i) at a circuit input i ∈ I, transition time t

Output: logic level input assignment wi at input node i
1 Initialize empty waveform wi := ∅. // current value is ’0’
2 if (vi 6= 0) then
3 Append new event e = (−∞) to wi. // raise initial signal to ’1’
4 end
5 if (v′i 6= vi) then
6 Append new event e = (t) to wi. // toggle signal value at time t
7 end
8 Append new event e = (∞) to wi. // termination event
9 return wi

The algorithm is implemented by a two-dimensional kernel with each thread providing

a stimuli waveform of a test for an input node. The corresponding thread grid dimen-

sions (XP2W , YP2W ) ∈ N+ × N+ of the kernel were chosen according to the number of

simulation slots and the number of inputs of the circuit, such that

(XP2W , YP2W ) := (#Slots,#inputs). (5.12)

For conventional two-pattern delay test sets, the patterns are encoded in data structures

that use 64-bit Long integers to represent sequences of 32 consecutive initialization and

propagation vector pair assignments of a specific input which fits the size of a SIMD thread-

group. In each simulation slot the circuit is applied a single vector pair. The number of

delay tests stored in a Long integer corresponds to the number of threads in a thread

group. Thus, each thread group can process a Long exclusively. The threads of a thread

group access the respective vectors upon loading the data structure as shown in Fig. 5.14

and operate by using bit-wise operations involving shifting, masking and comparison. This

way, stimuli can be provided in a compact way in order to avoid costly memory transfers
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between the host system and the GPU device. Once transmitted, input stimuli can reside

in the GPU memory for reuse in subsequent simulation runs.
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Figure 5.14: Parallel pattern-to-waveform conversion by threads transforming pairs of ini-
tialization and propagation vectors into stimuli waveforms of the slots.

Output Response Sampling

After processing the circuit, all output waveforms of the output nodes are available in each

slot of the waveform memory. At this point the output waveforms can be copied from the

GPU device to the host system memory for further processing. However, the waveforms

can also be efficiently evaluated in parallel on the GPU in order to avoid large and costly

memory operations by parallel sampling and conversion to compact test response vectors.

The general output sampling for obtaining the value of a waveform wo of an circuit output

o ∈ O at a given sample time t implements the corresponding waveform function wo(t)

for the Boolean logic waveforms. The algorithm is shown in Algorithm 5.3. The waveform

value at a given time point t, is obtained by iterating over the events ei = (ti) ∈ wo until

the time window [ti, ti+1) 3 t is reached. In each iteration, the initial waveform value vo is

negated which reflects a signal toggle due to the event processing. The value vo at time ti

then represents the sampled value vo := wo(t) (= wo(ti)).

For the parallel sampling of the waveforms, a two-dimensional kernel is called with each

thread processing an output waveform of a node within a slot. The thread grid dimen-

sions (XW2P , YW2P ) ∈ N+ × N+ of the kernel are chosen according to the number of

simulation slots and the number of circuit outputs to process in order to exploit maximum

parallelism on the device:

(XW2P , YW2P ) := (#slots,#outputs). (5.13)
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Algorithm 5.3: Value sampling of a Boolean logic waveform.
Input: output waveform wo of output o ∈ O, sample time t
Output: test response wo(t)

1 Initial value of output waveform vo := 0.
2 Get first waveform event ei = (ti) ∈ wo with i = 0.
3 while (ti ≤ t) ∧ (ti 6=∞) do
4 vo := ¬(vo). // process event and toggle signal state.
5 Set i := i+ 1.
6 Get next event ei = (ti) ∈ wo.
7 end
8 return vo

The parallel output evaluation and the conversion into response vectors is shown in

Fig. 5.15, which depicts the waveform evaluation using sampled values within a single

thread group of the two-dimensional kernel scheme. The kernel evaluates the waveform

at two sample times ta ∈ R and tb ∈ R given as input parameters. Each thread that is

invoked then accesses and evaluates the response waveform w of its respective output and

slot. The obtained responses for both w(ta) and w(tb) of each waveform are then encoded

and stored in 64-bit Longs in the dedicated pattern memory. Note that by choosing sam-

pling times ta = −∞ and tb =∞ in a fault-free simulation, the resulting response vectors

in the memory correspond to those of an untimed zero-delay logic simulation.

Each active thread group evaluates waveforms with respect to two sample times for 32

different slots in parallel. Since all waveform events are accessed in order by each thread

and each thread accesses the same event index, the memory addresses by a thread group

form consecutive address ranges which allow to coalesce the accesses and maximize their

utilization. The signal values sampled by the threads are merged into 64-bit Long integers
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using parallel reduction over the shared memory on the SMs [NVI17a]. Eventually, the

first thread of the thread group writes the merged result into the pattern memory, which

can then be accessed in a compact way by the host system.

5.6 Summary

This chapter presented a simulation model for high-throughput logic level time simulation

on graphics processing units (GPUs). In this chapter, the basic modeling of the circuit and

signals in time using waveforms were presented including the organization of the data as

well as the kernel structures. Compact data structures and algorithms allow to efficiently

evaluate the circuit timing with industry-standard timing accuracy [IEE01a, IEE01b], such

as individual pin-to-pin delays, rise and fall times as well as pulse-filtering, as used in many

commercial simulators. The time simulation algorithm itself is based on a mergesort-based

processing of the input waveforms and involves a small working set and memory footprint,

which is especially suitable for GPUs. A small table keeps track of signal states and im-

mediate next events in input waveforms, which are evaluated in temporal order until all

input events have been processed. The parallel execution is performed on the GPUs by

utilizing multi-dimensional thread grids that organize the individual threads as arrays in

order to effectively exploit structural and data parallelism. As shown later in this thesis,

the modeling and kernel structures provide the foundation for switch level time simulation

(cf. Chapter 6) [SHWW14, SW19a], fault simulation (cf. Chapter 7) [SHK+15, SKH+17]

as well as for combined multi-level simulation with mixed abstractions (cf. Chapter 8)

[SKW18, SW19b].
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Chapter 6

Parallel Switch Level Time Simulation on GPUs

This chapter describes the extension of the presented parallel GPU-accelerated time simu-

lation of Chapter 5 for the application to switch level. First, the basic switch level circuit

model and the waveform representation are introduced, along with the required data

structures for efficiently processing and storing the switch level signal information. Then,

the simulation procedure and the signal evaluation are explained on a detailed example.

6.1 Overview

In CMOS technology many electrical effects exhibit impact on the timing behavior, which

are not sufficiently captured or not captured at all in logic level simulation using simple

static delay models. Although logic level time simulation with rising and falling delays can

provide timing-accurate results close to the real propagation delay of signal transitions at

single cell input pins [IEE01a], the output switching behavior of the cell can significantly

change depending on the applied input.

For example, many cells exhibit pattern-dependent (or data-dependent) delays, where a

signal transition at a cell input pin can result in different propagation delays of the cell

depending on the signal values applied at the side inputs [SDC94]. This is due to the fact

that the electrical driving capability (for charging or discharging the cell output) depends

on the states of the transistors in the cell, which in turn change with the applied inputs.

While the topology of the internal transistor netlist of the cells is typically neglected at
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logic level, pattern-dependent delays can be reflected in gate timing descriptions by using

conditional delays [IEE01a].

Fig. 6.1 illustrates a special case of pattern-dependent delays on the example of a three-

input NOR3_X2 cell, where multiple input signals switch at the same time causing a so-

called multiple-input switching (MIS) effect [MRD92, CGB01]. Here, all input pins of the

cell were initialized with zero volts in the beginning leading to a high output signal. Then

the voltage at the inputs was raised to high for one, two and three input pins respectively

with the output slope being measured between the interval of 90% to 10% of the voltage

range [WH11]. As shown, the more inputs change at a time the steeper the output slope

gets (lasting as high as 20.7ps over 10.8ps down to 7.6ps) and therefore the propagation

delay decreases as more transistors collectively discharge the output load in parallel. Note

that this speed-up in the output switching can vary depending on the timely proximity of

the simultaneous input transitions [CS96]. Also, the change in the signal slope also im-

pacts the timing behavior of succeeding cells, as the different PMOS and NMOS transistors

begin to switch at different times depending on the steepness [WH11].
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Figure 6.1: MIS effect on the 90/10 output slope of a NOR3_X2 cell [Nan10, ZC06] in
SPICE for simultaneous changes at one (Out-1), two (Out-2) and three (Out-3) inputs.

Since lower level information is typically not available in logic level simulation, many

effort has been put into representing pattern-dependent delays [SDC94], multiple-input

switching effects [MRD92, CGB01, CS96] and also to incorporate the parameter-dependent

switching behavior of different signal slopes [BJV06] into gate delay models. However,

conventional look-up table based approaches to calculate the non-linear delay behavior

[WH11] quickly become impractical due to a large amount of different parameters and

conditions that have to be considered (e.g., slope, output load, current charge at cell

output, signal values and latest arrival times at side inputs). The complexity rises even

further as soon as faults need to be simulated for test validation. Since electrical level
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simulation is costly in terms of runtime, recent test approaches [CCCW16] utilize switch

level simulation [Bry87] as trade-off in evaluation speed and accuracy [CWC17].

In this chapter, a highly-parallelizable time simulator is presented to evaluate timing of

combinational circuits at switch level. The simulator utilizes an intuitive modeling both

the functional as well as the timing behavior of CMOS cells, and is able to reflect the

aforementioned delay effects allowing to achieve more accurate time simulation on GPUs

with unprecedented simulation throughput.

6.2 Switch Level Circuit Model

At switch level, the circuit is typically modeled as a mesh of interconnected MOSFET

transistors, each of which is considered as ideal switch [BA04]. Conducting paths in the

mesh determine signal values, strengths and charges at signal nodes [Bry84, Hay87]. By

abstracting electrical properties of transistors and interconnects (e.g., voltage and current

characteristics of transistors, resistances and capacitances), node voltages as well as charg-

ing and discharging processes of signal nodes are reflected. This way signal strengths and

changes in signal values can be expressed in terms of discrete voltage steps or functions

of time [CGK75].

The switch level modeling in this thesis assumes an extended modeling of the combina-

tional circuits as introduced in Chapter 5 for simulation. As a pre-processing, the gates

of the circuit netlist are substituted by their respective CMOS standard cell descriptions,

which describe the interconnections of the PMOS and NMOS transistors in the cells. The

resulting transistor netlist of the circuit is then partitioned into primitives for simulation.

6.2.1 Channel-Connected Components

In switch level simulation, PMOS and NMOS transistors are typically viewed as three-

terminal devices in which a gate terminal controls the conductance between a drain and

a source terminal that form a bidirectional channel. For the partitioning, the transistor

netlist of the design is searched for channel-connected components (CCCs) [Bry84, HVC97]

as shown in Fig. 6.2. Each CCC connects the VDD and the GND source by meshes of PMOS

and NMOS transistors interconnected via their drain and source terminals. Within a CCC
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current can flow freely through the drain-source channels. However, no current is allowed

to enter or leave a CCC through the insulating dielectric oxide at the gate terminals and

currents are only drawn from the associated power supplies. All gate terminals of tran-

sistors are associated with CCC inputs and each CCC is assumed to drive a signal output

load associated with a node of its transistor mesh. The output is obtained by analyzing

the transistor states and hence the conducting paths in the mesh. Depending on the input

applied to the transistor gates, the output load of a CCC can be charged (or discharged)

through the VDD (or GND) power supply. The accumulated charge at the output load then

determines the output voltage and hence the signal value of the CCC.

Fig. 6.2 shows an AOI21 (And-Or-Inverter) cell [Nan10] in a small circuit composed of

three CCCs. A lumped output load capacitance Cload models the wire to the succeeding

CCC and its transistor gate capacitances. The voltage vo at the output load capacitor Cload

represents the output signal which is determined by the effective charge in the capacitor.

The capacitor can be charged or discharged depending on the state of the transistors in

the cell, which in turn is controlled by the input voltages applied at the respective gate

terminals.

Given an arbitrary starting node of a combinational circuit netlist, CCC are extracted by

traversing along the bidirectional drain-source channels of the transistors and resistive

paths from interconnects. Each traversal ends at any power supply VDD, ground GND

or gate terminal. Once, the traversal has terminated in all directions from the starting

node, the traversed net represents the extracted CCC. The net is removed from the netlist

and the extraction process is repeated at the remaining nodes until all nodes have been
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Figure 6.2: Channel-connected components in a small transistor-netlist. The red highlighted
CCC (left) represents an AOI21_X1 cell [Nan10] (right) with output load Cload .
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processed. Note that the majority of primitive standard cells found in academic digital

standard cell libraries [Nan10, Syn11] already form single CCCs. Yet, certain types of cells

(e.g. two-input XOR cell) comprise multiple CCCs [Nan10].

6.2.2 RRC-Cell Model

In this thesis, so-called Resistor-Resistor-Capacitor (RRC-) cells are used as basic switch

level simulation entities as shown in Fig. 6.3, which provide a simple and intuitive uni-

directional model for representing the functional behavior of CMOS technology standard

cells [SHWW14]. An RRC-cell covers an individual channel-connected component of the

circuit netlist and describes the interconnected PMOS and NMOS transistor mesh.

The description of an RRC-cell consists of a compact device description for each transis-

tor device contained in the respective CCC mesh as well as first-order electrical param-

eters of the channels and metal interconnects, which are the major contributor to the

cell functional behavior and timing [WH11]. The RRC-cell is further connected to power

supply and ground potentials. However, for the sake of simplicity, only one power sup-

ply VDD ∈ R and one ground potential GND ∈ R are assumed per cell. All RRC-cells

are assigned a cell type for which the mesh topology of the transistor interconnections

in each cell is uniquely determined. For a given cell type the inputs of the CCC, and

hence of the RRC-cell, are assigned to the respective gate terminals of the associated

transistors. The output terminal of the cell is associated with a lumped load capacitance

Cload which is modeled as the sum of the interconnect and gate capacitances in the cell

fanout [SHWW14].
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Figure 6.3: First-order equivalent circuit model of the AOI21_X1 cell and RRC-cell show-
ing the input-controlled voltage-divider (Ru, Rd) driving an output load Cload.
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Each transistor device D of the RRC-cell is viewed as a voltage-controlled resistor RD(v) ∈

R that determines the drain-source conductance of the transistor based on its applied gate

voltage v ∈ R. The representative resistor RD of device D is modeled by a threshold-

based binary switch that is controlled by the voltage level v present at the gate terminal

of D. A transistor assumes either a conducting state, which is modeled by a low drain-

source resistanceRon , or blocking state modeled as high drain-source resistanceRoff . Both

resistances are obtained from voltage- and current analysis of the underlying transistor

model cards. Given a threshold voltage Vth and a gate voltage v as input, the state of the

transistor D is described as follows:

RD(v) :=


Roff if (v < Vth),

Ron else.
(6.1)

Each transistor device is modeled using a 3-tuple D := (Vth, Roff , Ron) as part of the RRC-

cell description. The voltage Vth is defined as the input voltage potential at the transistor

gate terminal over either VDD (for PMOS types) or GND (for NMOS types) at which the

transistors change their state.

All PMOS (NMOS) transistors in a standard cell form pull-up (pull-down) networks that

connect the cell output terminal to the VDD (GND) sources with some resistance. From

the view of the output terminal, both pull-up network and pull-down network form a

voltage divider (Ru, Rd) that drives the output load Cload of the RRC-cell with a stationary

voltage, where Ru ∈ R and Rd ∈ R are the net-resistances of the pull-up and pull-down

network, respectively. Both parametric resistances of the transistors as well as interconnect

resistances can contribute to Ru and Rd. For a given cell input, the stationary voltage v ∈ R

of the RRC-cell [SHWW14] is computed as

v := s · V + GND, (6.2)

with V := (VDD − GND) as the voltage difference from VDD to GND and s ∈ R as the

voltage divider ratio (Ru, Rd) defined by

s :=
Rd

Ru +Rd
. (6.3)
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The computation ofRu andRd plays a major role during the RRC-cell evaluation as the sta-

tionary voltage has to be computed after any transistor changes its state. The CMOS stan-

dard cells found in current academic standard-cell libraries with design processes down

to 15nm [Syn15, Nan14] follow the duality principle of CMOS by the rule of conduction

complements [WH11], where the transistors in the networks are interconnected either as

series or in parallel, or in an arbitrary combination of both forming more complex meshes.

For these nets, Kirchhoff ’s laws for currents (KCL) and voltages (KVL) for parallel and se-

ries circuits can be applied to compute the equivalent mesh resistance Ru of the pull-up

and Rd of the pull-down network.

For example, in case of the AOI21_X1-cell of Fig. 6.3, the pull-up mesh resistance Ru is

actually a series of resistors

Ru = RX,P +R′ (6.4)

where R′ substitutes the parallel sub-network composed of device DP
A and DP

B , with

1

R′
=

1

RB,P
+

1

RA,P
=⇒ R′ =

RB,P ·RA,P

RB,P +RA,P
(6.5)

=⇒ Ru = RX,P +
RB,P ·RA,P

RB,P +RA,P
. (6.6)

Similarly, for the pull-down network Rd the equivalent resistance of the transistor series

DN
A and DN

B is computed first

R′′ = RB,N +RA,N (6.7)

which is then used to solve the parallel part by

Rd =
R′′ ·RX,N

R′′ +RX,N
=

(RB,N +RA,N ) ·RX,N

RB,N +RA,N +RX,N
. (6.8)

6.2.3 Switch Level Waveform Representation

The switching process at a cell output from one voltage to another takes time due to vari-

ous intrinsic and extrinsic capacitances (e.g., diffusion, wire and gate capacitances) which

have to be charged or discharged over time [WH11]. The transient response behavior
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of cells can be approximated with varying degree of accuracy. The response is typically

calculated from differential equations over non-linear models [NP73] with stepwise eval-

uation of the differential equations [CGK75]. Simplified models exist, with piecewise

linear assumptions [Kao92], stepwise constant I/V characteristics [VR91], or piecewise

exponential waveforms representing the first-order step response [BMA88] which make

evaluations less complex at the sacrifice of accuracy.

Transient Response Modeling

In the RRC-cell model (cf. Fig. 6.3), the voltage at the output load capacitor Cload is

considered as the output signal of the cell. In order to model a transient response, the

first-order electrical parameters of the cell are reduced to a lumped RC low-pass equivalent

circuit. The resulting RC circuit is composed of a lumped resistor that includes the effective

driving resistance of the voltage divider (Ru, Rd) and the lumped interconnect resistance

Rw ∈ R of the fanout, as well as the lumped output load capacitance Cload which can

include diffusion and fanout gate capacitances. When a transistor device in an RRC-cell

changes its state, the pull-up (Ru) or pull-down (Rd) resistance of the cell changes and

hence the voltage divider ratio s (cf. Eq (6.3)) that determines the stationary voltage v.

This causes the cell output capacitor Cload to (dis-)charge via the voltage divider from its

current level to voltage v with the effective resistance Reff := (s · Ru), which delivers

the time constant τ ∈ R which characterizes the transient response of the underlying RC

circuit:

τ := (Reff +Rw) · Cload. (6.9)

Note, that only first-order electrical parameters are considered in the RRC-model while

second-order capacitances (e.g., gate-source) are neglected. Hence, overshoots in the

signal voltages due to trapping of charges are not modeled [WH11]. Therefore, given an

arbitrary transistor switch at time ti ∈ R, the transient response of the RRC-cell output vo

can be derived from Kirchhoff’s Current Law (KCL) following a monotonous [RPH83]

exponential function vo(t) for time t ≥ ti:

vo(t) := (vo(ti)− v) · e−
∆t
τ + v, (6.10)
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where vo(ti) is the voltage at the capacitor Cload at the time ti and ∆t := (t − ti) is the

elapsed time after the switch. The voltage vo(t) then strives asymptotically towards the

stationary voltage v for t→∞ and will saturate eventually.

Between any two consecutive transistor switches at times ti and ti+1, all resistances of

transistors and nets in the RRC-cell, and hence the stationary voltage at the voltage divider,

remain constant. Therefore, based on Eq. (6.11), the monotonous curve within each

interval [ti, ti+1] of consecutive switches can be described entirely by a tuple composed of

three parameters ei = (ti, vi, τi) assuming that the value vo(ti) at the beginning is known.

Such a three-tuple will be referred to as a switch level event ei, whose components are:

• ti ∈ R: The time of the start of a new exponential curve expressed by the event ei as a

consequence of a transistor switch. This also marks the end of the previous segment

(ei−1).

• vi ∈ R: The targeted stationary voltage of the new curve expressed by ei, which is

derived from the resistances of the voltage divider, the supplying voltage VDD and

ground voltage GND.

• τi ∈ R: The signal slope of the new curve segment of ei corresponding to the time

constant calculated from the resistances at the voltage divider and the lumped load

capacitance.

Fig. 6.4 shows the result of a SPICE transient analysis compared to the approximation

of the signal with fitted ideal exponential curve segments. Compared to logic level time

simulation, these curves approximate the electrical output behavior quite well and are

able to contain sufficient information to express many of the delay effects found in CMOS.

Switch Level Waveform Modeling

The complete switching history of a signal over time is summarized as switch level wave-

form similar to the data structure presented in Chapter 5. Each waveform is modeled by a

list of temporally ordered events w̃ = {e1, e2, ..., ek} each of which stores the parameters

of an exponential curve segment. This way, multiple continuous signal transitions can be

modeled over time using a piecewise exponential approximation as depicted in Fig. 6.5.
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Besides the ordinary events, each waveform contains an initialization event (−∞, vinit,−)

at the head of the list that marks a constant initial voltage vinit of a cell output (the

latter ’−’ denotes a "don’t-care"-value). In addition, the event list is terminated by a termi-

nation event (∞,−,−) with time t = ∞ as sentinel to indicate the end of the waveform

data structure. The waveform signal is assumed to approach the stationary voltage v of

the last ordinary event processed. Hence, fully detailed signal information is processed

with smallest memory overhead, as no sampling of signal values is necessary, allowing for

an efficient time- and value-continuous evaluation even for longer signal histories.

Each switch level waveform w̃ is evaluated by a switch level waveform function w̃ : R→ R

that delivers the voltage value present at the given point in time t ≥ 0 in the waveform w̃.
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Following Eq. (6.10), the function is defined recursively as

w̃(t) := (w̃(ti)− vi) · e
−∆t
τi + vi, (6.11)

with

(ti, vi, τi) := max
j∈N
{(tj , vj , τj) ∈ w̃|tj < t}, (6.12)

where w̃(ti) expresses the signal value at the time of the previous transient event ei :=

(ti, vi, τi) ∈ w̃ in the waveform before t and ∆t := (t−ti) as the elapsed time in the current

exponential curve segment.

6.2.4 Modeling Accuracy

In contrast to the logic level simulation model, the presented switch level models all sig-

nals continuous in time and value using the presented voltage waveforms. Furthermore,

many of the aforementioned CMOS-related delay effects are reflected:

Signal slopes are implicitly covered by the first-order transient response (cf. Eq. (6.10))

of the RC-circuit equivalent that is built from the RRC-cell parameters.

Pattern-dependent delays are directly captured by the transistor mesh structure of each

RRC-cell type, since the transient response depends not on a single input, but on the

states of all transistors in the mesh.

Multiple-input switching is implicitly considered by the pattern-dependent delays, since

consecutive input events cause immediate updates in the output transient regardless

of the transition proximity.

Hazards and pulse filtering is implicitly performed at an RRC-cell output when an event

transient with a shallow signal slope is prematurely interrupted by a succeeding

event before the signal can fully reach the stationary voltage.

6.3 Switch Level Simulation Algorithm

The general RRC-cell evaluation algorithm [SHWW14] processes all input waveforms of

a single RRC-cell and generates a new output waveform that describes the output voltage
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over time. The algorithm determines all discrete transistor switching events from the

input waveforms to manipulate the cell internal states changes and transient responses to

produce a new output waveform.

6.3.1 RRC-Cell Simulation

Algorithm 6.1 proposes an efficient solution for tackling the evaluation of RRC-cells on

GPUs. It outlines the evaluation done by a single thread, which can operate freely and

data-independent of other threads. The algorithm assumes that all events in waveforms

are already sorted temporally in order to allow processing of the input waveforms within

a single pass using a merge-sort approach. A new output waveform is computed with

all events already sorted in order, hence sustaining the premise for subsequent RRC-cell

evaluations. By processing switches in a merge-sort fashion, only single reads and writes

are required per event and transistor switch processing, which only use cell-local data and

thus allow to keep the working set of the thread as small as possible.

The evaluation process is controlled by a time window [tmin, tmax] ⊆ R defined by two time

points. A time window slides over all the input events by moving the boundaries further

ahead as soon as inputs are processed. When the earliest switch has been processed, the

lower boundary tmin is increased, while the upper boundary tmax is moved forward as

soon as a new event is loaded from the memory. The local memory of a thread consists

mainly of two tables to track the state of the cell within [tmin, tmax]: the event table and the

device table. While the event table contains the current curve parameters of all the input

waveforms and describes the voltage change in the current time window, the device table

keeps track of all transistor states at time tmin and holds the switching times until tmax.

During simulation of an RRC-cell the events of all inputs are processed in temporal order.

To determine transistor switches for each curve segment [ti, ti+1) of an input waveform,

the algorithm looks for possible intersection points with a threshold value Vth of an as-

sociated transistor device D. Since each curve segment expressed by an event ei ∈ w̃ is

monotonous in value, either exactly one or no solution of an intersection point x ∈ [ti, ti+1)

exists, which is determined by:

x := ti − τi · log

(
Vth − vi
v(ti)− vi

)
. (6.13)
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Algorithm 6.1: Main RRC-cell evaluation algorithm (single thread)
Input: RRC-cell description of node n with device parameters D, output load Cload voltage potentials VDD

and GND, input waveforms wi for all inputs i ∈ I.
Output: Event sequence of the switch level output waveform of n.

1 // A.1 load initializing events
2 foreach line in event table do
3 Load initial event (ti, vi, τi) and ti+1 from memory
4 // Note: ti and τi undef. (cf. Sec. 6.2.3)
5 vi := vi and vi+1 := vi
6 end
7 // A.2 determine initial states of all internal transistors
8 foreach column k in device table do
9 RDk := RD(vi from event table), using Eq. (6.1)

10 tknext :=∞
11 end
12 // A.3 curve interval bounds until first switch
13 tmin := −∞ and tmax := min({ti+1 in event table})
14 // A.4 calculate Ru, Rd and store initial output event
15 Output initialization event e = (−∞, s · V + GND,−) // with s as the voltage divider ratio
16 // B. process switching of input events in temporal order
17 while (tmax 6=∞) do
18 // B.1 determine time of next event
19 tmin := tmax
20 // process event(s) at the time tmin and fetch data of next event
21 foreach line in event table with ti+1 = tmin do
22 Set vi := vi+1 and ti := ti+1

23 Load next τi, vi and ti+1 from memory
24 Calculate vi+1 using Eq. (6.11)
25 end
26 // update time of next event
27 tmax := min({ti+1 in event table})
28 // compute time of next transistor switches for all inputs
29 foreach column k in device table do

30 x := ti − τi · log
(
V k
th−vi
vi−vi

)
// determine threshold intersection time

31 if tmin < x ≤ tmax then
32 tknext := x
33 else
34 tknext :=∞
35 end
36 end
37 // B.2 update network resistance states Ru, Rd and add output events accordingly
38 foreach column k in device table with tknext <∞ in ascending order of tnext do
39 RDk := RD(ui+1 from event table), using Eq. (6.1)
40 Output new event e = (tknext, s · V + GND, s ·Ru · C)

41 tmin := tknext
42 end
43 end
44 // C. set termination event
45 Output new event e = (∞,−,−)
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In case the resulting intersection point lies within the time interval of the current curve

segment x ∈ [ti, ti+1), the input signal crosses the Vth voltage level which causes a switch

of the associated transistor and hence produces a new event in the output waveform. If

no such solution exists, the boundaries of the time window are shifted forward and the

event processing is continued for the next input segment until the waveform terminates.

Execution Example

The execution of the cell evaluation algorithm is demonstrated on a small step-by-step

example involving a two-input NOR cell with the input transitions as shown in Fig. 6.6.

The figure shows detailed timing and voltage information as computed by the RRC-cell

evaluation algorithm. The falling transition at one input and the rising transition at the

other create a hazard at the cell output. The intermediate output results after each step

of the evaluation as well as the internal states of both the event table and the device table

during evaluation are summarized in Table 6.1 and Table 6.2.
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For the sake of simplicity, all transistors are assumed to have an internal drain-source

resistance of Roff := 20MΩ in blocking and Ron := 2kΩ in conducting state. The supply

voltage is VDD = 1.1V over the ground level GND = 0V. The threshold voltages of

the PMOS and NMOS transistors have been chosen as V P
th := −0.3V and V N

th := 0.3V,

which corresponds to intersection points for the input signals at voltages 0.8V and 0.3V

respectively. Furthermore, the RRC-cell output terminal drives a lumped load capacitance

of Cload := 1fF.

The event table is shown in Table 6.1, which also summarizes the performed steps during

the evaluation of the example circuit in the first column. Each row in the table (Col. 2–6)

contains a line for each input of the cell. A line contains the signal voltage vi (Col. 2)

at the time the current event to be processed (Col. 3–5) starts. The data of the current

event ei contains the start time ti (Col. 3) of the curve segment, as well as the targeted

stationary voltage vi (Col. 4) and the time constant τi (Col. 5). Further, each line contains

the pre-fetched time ti+1 (Col. 6) of the next event. The boundaries of the sliding time

window are given in columns 7 and 8.

The device table is summarized in Table 6.2 in each row. It contains a column for each

transistor in the cell (Col. 2–5, four in total in the NOR2-cell example) with two lines for

each entry. While the line RD holds the resistance of the transistors at time tmin, the row

tnext contains the time of the next switch of the transistor within the interval of the sliding

window [tmin, tmax]. If the transistor does not switch within the interval, the value of tnext

is∞. Any actions taken after a step has been performed are shown in the last column.

Initialization (Step 1): In Algorithm 6.1 the initialization events of the input waveforms

of signals A and B are loaded into the columns 3–5 (ti, vi, τi) of the event table (Alg.

lines 1–15). The evaluation of the time window starts at tmin := ∞. These initialization

events are not ordinary events and they only describe the initial signal voltages (for t →

−∞), thus, the voltages vi and vi+1 (at time of the next event) are initialized by vi.

Meanwhile, the times ti+1 of the next events in each input waveform are loaded and the

upper bound of the time window tmax is updated accordingly and set to the minimum of

these times. The time window [tmin, tmax] is now fully specified, and within this initial

window all input waveforms sustain their initial signal value. These initial voltage values

are used to determine the initial states of all the transistors in the cell (line 8–11) in
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Table 6.1: Event table with waveform data during the evaluation of the NOR-cell example
(updates are highlighted).

Current Step(1) Input Event Table
tmin

(7) tmax
(8)

vi
(2) (ti(3), vi

(4), τi
(5)) ti+1

(6)

1 load initial events (ei = 0), A: 1.1V −∞ 1.1V – 10ps −∞ 10ps
initialize RD, tmin := −∞. B: 0.0V −∞ 0.0V – 20ps

2 advance input A (eA := 1), A: 1.1V 10ps 0.0V 2ps ∞ 10ps 20pstmin := 10ps, update tnext. B: 0.0V −∞ 0.0V – 20ps

3 process DP
A switch, 10.64ps 20ps→ generate output event.

4 process DN
A switch, 12.60ps 20ps→ generate output event.

5 advance input B (eB := 1), A: 1.1V 10ps 0.0V 2ps ∞ 20ps ∞tmin := 20ps, update tnext. B: 0.0V 20ps 1.1V 2ps ∞

6 process DN
B switch, 20.64ps ∞→ generate output event.

7 process DP
B switch, 22.60ps ∞→ generate output event.

8 tmin :=∞ ∞ ∞→ terminate.

Table 6.2: Device table with transistor states and threshold intersection times as well as
simulation output.

Current Step(1) Device Table Action Taken(6)

DP
A

(2) DP
B

(3) DN
A

(4) DN
B

(5)

1 RD: 20MΩ 2kΩ 2kΩ 20MΩ output (−∞, 0.0V, –)tnext: ∞ ∞ ∞ ∞

2 RD: 20MΩ 2kΩ 2kΩ 20MΩ
tnext: 10.64ps ∞ 12.60ps ∞

3 RD: 2kΩ 2kΩ 2kΩ 20MΩ output (10.64ps, 0.37V, 1.33ps)
tnext: ∞ ∞ 12.60 ∞ set tmin := 10.64ps

4 RD: 2kΩ 2kΩ 20MΩ 20MΩ output (12.60ps, 1.1V, 4.00ps)
tnext: ∞ ∞ ∞ ∞ set tmin := 12.60ps

5 RD: 2kΩ 2kΩ 20MΩ 20MΩ
tnext: ∞ 22.60ps ∞ 20.64ps

6 RD: 2kΩ 2kΩ 20MΩ 2kΩ output (20.64ps, 0.37V, 1.33ps)
tnext: ∞ 22.60ps ∞ ∞ set tmin := 20.64ps

7 RD: 2kΩ 20MΩ 20MΩ 2kΩ output (22.60ps, 0.0V, 2.00ps)
tnext: ∞ ∞ ∞ ∞ set tmin := 22.60ps

8 RD: 2kΩ 20MΩ 20MΩ 2kΩ output (∞,–,–)tnext: ∞ ∞ ∞ ∞
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order to fill the RD rows of the device table with the corresponding resistance values (cf.

Eq. (6.1)). In addition, the tnext row is initialized with ∞, since all input values remain

stable until the end of the time window tmax. The ratio of the voltage divider is then

computed from the transistor resistances according to the cell-internal transistor network

topology, after which the resulting output voltage of the cell is computed (line 15) and

a first output event can be written to the output waveform. Note that, like in the input

waveforms, this first output serves for initialization purposes only as it is not considered

as an ordinary curve segment.

Advance window (Step 2a): Everything until time tmax has been processed and the lower

bound of the time window tmin is moved forward to tmax (line 19). In line 21–25, the

earliest next events that defined the previous tmax are now loaded into the event table

(ti, vi, τi) again, as well as the time of the succeeding event ti+1 (row of input A in this

case). After fetching the next events, the upper bound tmax of the time window is updated

to ti+1 := 20ps (line 27). Since the sliding time window has progressed, a new output

voltage vi is calculated using Eq. (6.11) for time tmin.

Compute transistor switch times (Step 2b): As a next step, for each entry tnext in

the device table the time points of transistor threshold crossings has to be determined

for the current curve segments (lines 29–36). Since the represented exponential curve

segments are either (strong) monotonously increasing or decreasing, each curve can cross

a certain transistor threshold and cause it to switch states at maximum once per event.

Whenever there is no switch at a transistor in the current time window [tmin, tmax], then

the respective switching time is tnext =∞.

Generate output events in order (Step 3 and 4): The earliest transistor switch identified

at time tmax will be executed (multiple transistors can be processed if they occur at the

same time) and its associated resistance RD will be updated (lines 38–42). Each transistor

switch causes the internal resistances of the RRC-cell to change, such that the voltage

at the internal voltage divider shifts and the cell output will transition to a new level.

Thus, after updating the device table with the new transistor states, the resistances of

the transistor networks are updated and ratio of the voltage divider is calculated again

to obtain the new stationary voltage v as well as the time constant τ . As a result, a new

event e := (tnext, v, τ) is added to the output waveform (line 40) after which the lower
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bound tmin advances to tnext. In the example, the switch of device DP
A at time 10.64ps is

consumed first, since the input signal A crosses the threshold at 0.8V, and then the switch

of DN
A at 12.60ps is processed after reaching 0.3V.

Process remaining events (Step 5 to 7): All events in the time window [tmin, tmax] have

been processed and the event table is now updated similar to step 2a for row B. With

the rising input signal, the loaded event crosses the threshold voltages of the transistors in

reverse order within the time window [20ps,∞]. First, the NMOS transistor DN
B switches

after the input crosses 0.3V with the PMOS transistor DP
B following at 0.8V. In steps 6

and 7, the corresponding events are added to the output as shown in steps 3 and 4.

Step 8 (Termination condition): After tmax has reached∞, all events in the input wave-

forms have been processed which initializes the termination routine. The output waveform

is terminated by adding a termination event (∞,−,−). As a result, a voltage waveform

with a pulse is computed. Short pulses in the circuit might get filtered by subsequent

RRC-cell stages, due to the implicit pulse filtering introduced by the slopes of the signal

transitions.

The changes in the RRC-cell internal pull-down and pull-up network resistances as well

as the stationary voltage during the evaluation are shown in Fig. 6.7. Again, these pa-

rameters only have to be computed with the switching of transistor states. As shown,

the pull-up and pull-down resistances in the RRC-cell are piece-wise constant and they

mutually follow the duality principles of the rules of conducting complements in CMOS

[WH11]. Due to the different switching times of the PMOS and NMOS transistors, short

time frames exist (around 10.64–12.60ps and 21.64–22.60ps), where both meshes exhibit

a high conductance shorting VDD and GND. During this time, the RRC-cell output targets

an intermediate voltage level.
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6.4 Implementation

In order to enable an efficient simulation on GPUs the circuit netlist is partitioned into

RRC-cells which are levelized to resolve any data-dependencies during simulation of the

levels from circuit inputs to outputs. Similar to Chapter 5, structural parallelism is ex-

ploited by processing mutually data-independent RRC-cells after levelization in parallel.

In addition data-parallelism is provided from the delay test stimuli, as they are also con-

sidered independent. Thus, each thread is able to operate on an independent cell for

an input stimuli, such that the multi-dimensional GPU kernel organization can applied to

switch level as well. Note that the parallel threads, that compute an RRC-cell for different

stimuli, always compute the same functions but for different data, hence execution flow

uniformity is widely sustained. Since all threads act independently of each other, costly

synchronizations are avoided [OHL+08, GK08].

The RRC-cell parameters are extracted from detailed standard parasitics format (DSPF)

files, which are obtained from layout synthesis [IEE10], the structure of the respective

cell transistor netlists given in the standard-cell libraries [Nan10] as well as the SPICE

transistor model cards [ZC06, MMR+15, Nan17]. SPICE transient analyses are used to

extract the threshold voltages and the first-order parameters. All RRC-cell parameters

descriptions and waveform descriptions are expressed in 32-bit single-precision floating

point numbers and allow for a continuous parametrization with machine-precision.

Input Assignment

While circuit inputs can be manually assigned voltage waveforms, the presented simulator

generates input waveforms from delay test vectors provided by Automatic Test Pattern

Generation (ATPG) tools. During the process, all specified input assignments v ∈ B2 of the

test vectors are mapped to corresponding voltages by the following function:

valB : B2 → R, valB(v) :=


VDD if (v = 1),

GND else.
(6.14)

The generation of a switch level waveform w̃i from a delay test assigned to a circuit in-

put i ∈ I is shown in Algorithm 6.2. For common transition delay test patterns, this
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results in the provision of the initialization vector value vi ∈ B2 and the propagation vec-

tor v′i ∈ B2 of the tests. Each input can be assigned a time constant τi ∈ R that can be

derived from the driving RC-circuit [Elm48, WH11] to express an initial signal slope. For

τi → 0, the resulting signal transition closely resembles the logic transition with negligible

error [SKW18].

Algorithm 6.2: Mapping of a delay test vector to a switch level waveform.
Input: input assignments (vi, v

′
i) for circuit input i ∈ I, time constant τi

Output: switch level input assignment w̃i at input i
1 Initialize empty waveform w̃ := ∅.
2 Append new event e = (−∞, valB(vi),−) to w̃i. // initialization event (the last parameter is omitted)
3 if (v′i 6= vi) then
4 Append new event e = (0, valB(v′i), τi) to w̃i. // propagation vector event
5 end
6 Append new event e = (∞,−,−) to w̃i. // termination event
7 return w̃i

Stationary Voltage Computation

The computation of the pull-up and pull-down network resistances Ru and Rd is per-

formed thread-locally and immediately after a new transistor switch has occurred. The

general structure of these kernels is outlined on the example of the pull-up net resistance

Ru in Algorithm 6.3, which uses the current voltage levels at the cell inputs and Eq. (6.1)

to compute the resistance RD of each transistor device.

The formulas of the RRC-cell types are derived from the respective topology of the tran-

sistor netlists of the standard cells using from Kirchhoff’s Current Law (KCL). This is ap-

Algorithm 6.3: Kernel structure for computing the pull-up resistance Ru.
Input: RRC-Cell n with device descriptions D, voltage levels V := {vA, vB , vX , ...} at each input A,B,X, ...
Output: equivalent resistance Ru

1 switch cellType(n) do
2 case NOR2 do
3 Ru := RA,P (vA) +RB,P (vA)
4 end
5 case AOI21 do
6 R′ :=

(
RB,P (vB) ·RA,P (vA)

)
/
(
RB,P (vB) +RA,P (vA)

)
7 Ru := RX,P (vX) +R′

8 end
9 ...

10 end
11 return Ru
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plicable to most CMOS standard-cells (e.g., AND, NAND, XOR, AOI22,...) found in digital

standard cell libraries [Nan10, Syn11] including their driving strengths variants. In a sim-

ilar fashion, the kernel for computing the pull-down net resistance Rd is computed. All

of the operations in the kernel require extensive use of floating-point operations as well

as transcendental functions. Yet, they can be efficiently handled by the high arithmetic

computing throughput of the GPUs.

6.5 Summary

In this chapter, the first high-throughput GPU-accelerated switch-level timing simulation

of CMOS circuits was presented [SHWW14, SW19a]. The simulation utilizes RRC-cells to

model the functional and timing behavior of CMOS cells with transistor granularity based

on first-order electrical effects found in CMOS technology. A sophisticated waveform rep-

resentation models voltage waveforms to represent continuous charging and discharging

processes of the cells. This way, transition ramps, pattern-dependent delays, multiple in-

put switching effects and implicit glitch-filtering are reflected during simulation, which

achieve a more accurate representation of the timing behavior than compared to conven-

tional timing simulation at logic level.
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Chapter 7

Waveform-Accurate Fault Simulation on GPUs

This chapter presents an extension of the GPU-accelerated parallel timing simulation for

simulation of small delay faults [SHK+15, SKH+17] at logic level and parametric faults at

switch level [SW16, SW19a]. A highly parallel waveform-accurate evaluation of the faults

is enabled by exploiting additional parallelism from faults (fault-parallelism) with efficient

fault injection and sophisticated syndrome calculation.

7.1 Overview

The overall flow of the implemented parallel fault simulation approach is outlined in

Fig. 7.1. The flow itself is mainly composed of two parts involving a pre-processing (Step 1–

3) and the simulation (Step 4–6), which are applicable to all of the simulation methods

presented in this thesis.

During the pre-processing, the netlist is read in, topologically ordered and being assigned

its respective circuit parameters (i.e., timing or first order parameters) (1). The provided

fault set is collapsed (2) by removing equivalent faults in order to reduce the overall sim-

ulation overhead. The remaining fault set is then partitioned into suitable fault groups

for parallel simulation (3) by a grouping heuristic as presented in [SKH+17]. During the

actual simulation (Step 4–7), the obtained fault groups are processed one after another.

First, the faults are injected into the circuit (4). Then, the main waveform-processing ker-

nel is called (6) that performs a timing-accurate simulation of the faulty circuit copies.

The waveform-processing is followed by an output evaluation kernel (7) that computes
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Figure 7.1: Overall flow-chart of the fault simulation. Shaded steps are parallelized.

the syndromes for determining the fault detection. Reference responses of a good-value

simulation for comparison can be provided externally (e.g., from fast untimed logic-level

simulation). Yet, for some fault models, both fault- and good-value simulation can be

performed simultaneously without introducing any additional overhead [SHK+15].

In the following, the general modeling of timing-related faults at logic-level and para-

metric faults at switch level, as well as their general injection methods are introduced,

followed by the syndrome calculation for determining and assessing the fault detection.

Finally, the fault grouping algorithm for parallel fault simulation on GPUs is presented.

7.2 Fault Modeling

Here, a fault describes the deviation from the nominal functional or timing behavior of

a structure in the circuit due to a delay- or parametric defect. The modeling of faults

as such is based on manipulation of the nominal circuit parameters. Independent of the

abstraction level and regardless of the implemented fault model, all faults are represented

in this work as a tuple:

f = (loc, {δ0, δ1, ...}). (7.1)
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composed of a fault location (loc) and a set of fault parameters {δ0, δ1, ...}, that describe

the fault size. The fault location loc describes the position of a fault and can refer either

to a particular pin of a node at logic level or address a specific parameter in an RRC-cell

at switch level. The fault size refers to the actual fault effect at the given fault location.

The number of parameters in the fault size description and their semantics varies for the

different abstraction levels and fault models as presented in the following.

7.2.1 Small Gate Delay Fault Model

A small (gate) delay fault is typically considered as a lumped manifestation at a gate

pin that introduces an additional delay [IRW90, RMdGV02, CHE+08] and delays signal

propagation by a specified time. Although the additional delay is considered much smaller

than the global clock period (as opposed to transition faults [WLRI87]), the fault can lead

to errors when propagating along long paths under at-speed operating conditions.

In this work, a small (gate) delay fault is represented according to Eq. (7.1) by a tuple:

f := (loc, {δr, δf}) (7.2)

where the location loc can refer to either input or output pin of any node, δr ∈ R is the

rising delay and δf ∈ R is the falling delay of the fault. Small delay faults can be specified

to affect both transition polarities at the same time (δr = δf > 0), or a single polarity only

(rising or falling for which the delay of other is set to zero).

Since the time spec delay annotations describe the delay of a node for its input pins only (cf.

Chapter 5), small delay faults at output pins of a node n ∈ V cannot be modeled directly.

Instead, small delay faults at node outputs therefore need to be mapped to the input pin

time spec tuples tsi := (dir, d
i
f ) ∈ TSn resulting in a multiple fault distributed over the node

inputs. A small delay fault at a node output affects all events caused by incoming signal

transitions at its inputs, thus, it behaves as if the fault is present at all inputs. Let t1 be the

time of an event at an input with propagation delay d ∈ R that causes an output event at

time t2 = (t1 + d). Assume a small delay fault of size δ ∈ R at the output, that delays the

output event to t′2 = (t2 + δ). Then t′2 = (t2 + δ) = (t1 + d) + δ = (t1 + δ) + d = (t′1 + d),

where t′1 = (t1 + δ) corresponds to the input event that is delayed by the fault size δ. As
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shown, the behavior of the fault at the output and the mapping to the input faults are

identical since they lead to the same transition times.

In case the small delay fault has different rising and falling delays, the mapping to the

input pins has to take into account the (non-)inverting property of a node type as shown

in Fig. 7.2. If the target node is of an inverting type (e.g., NOT, NAND, NOR), the rising

and falling delays of the output fault description have to be swapped for the mapping to

the input pin time spec. As opposed to non-inverting types (e.g., BUF, AND, OR), rising

(falling) transitions in the input of inverting nodes always cause a falling (resp. rising)

transition at the output, due to the inversion property.
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Figure 7.2: Mapping of a small delay fault f := (o, {δr, δf}) at a node output o the input
pin time specs of a non-inverting AND- (left) and inverting NAND-gate (right).

7.2.2 Switch-Level Fault Models

The implemented switch level simulation approach allows to model low-level paramet-

ric and parasitic low-level faults based on the first-order electrical parameters of RRC-

cells [SW16]. In this work, cell-internal resistive opens and bridges in either the pull-up

or pull-down network topology are considered, as well as capacitive and voltage-related

faults. For many of these faults models, the low-level defect information and their mech-

anisms can be directly employed into the simulation model with little or no abstrac-

tion at all. Therefore, the common modeling restrictions that are typically faced on

logic level and which require severe abstraction of functional and timing behavior can

be avoided [Wad78, CHE+08, Wun10]. Methods for layout-aware extraction of relevant

defects and the logical and topological abstractions to fault types at either logic or elec-

trical level have been proposed in inductive fault analysis (IFA) [SMF85, FS88, STO95].

In the following, different fault models of the RRC-cell-based switch level simulation and

their realization will be presented.

118



7.2 Fault Modeling

Resistive Opens and Shorts

The impact of faults in the resistive parameters of a cell depends on the location and

parametric size of the fault. Their behavior range from a simple resistive open (wire)

impacting the timing [RMdGV02] up to a (transistor) open fault, that can also change

the functional behavior of the affected cell [Wad78, HM91]. In certain CMOS cell types,

transistor and cross-wire opens can disconnect meshes within the pull-up or pull-down

network topology which can cause floating outputs [HM91, Kon00, HS15]. The activation

of such faults can be invalidated by hazards in the circuit [Sin16], which therefore requires

timing-accurate and glitch-aware simulation methods for validation.

In this work, a resistive fault in a RRC-cell is described by a tuple f := (loc, {∆Rf}) com-

posed of a fault location loc and a fault size ∆Rf ∈ R. The fault location refers to a resistive

parameter R ∈ R of the RRC-cell description, which can be a blocking resistance (Roff ) or

conducting resistance (Ron) of one of the transistor devices D := (Vth, Roff , Ron), or point

to a static resistance (from vias or wires) within an RRC-cell. The deviation ∆Rf ∈ R

of the selected parameter is given in Ohms, which changes the targeted parameter to

R′ := (R+ ∆Rf ). This allows for modeling of the following common fault types:

• transistor open fault, if loc refers to the conducting resistance Ron of a transistor

device D and ∆Rf > 0,

• shorted transistor fault, if loc refers to the blocking resistance Roff of a transistor

device D and ∆Rf < 0,

• cross-wire open fault, if loc refers to a low-ohmic static resistance and ∆Rf > 0, and

• cross-wire bridge, if loc refers to a high-ohmic static resistance and ∆Rf < 0.

As for the bridges, the RRC-cell transistor meshes have to be extended by additional wires

that connect mesh-internal nodes via static resistors. In the fault-free case, these intercon-

nections have no significant influence on the timing or functional output (R ≈ ∞ Ohms).

However, if the resistance is lowered by a bridge fault (R′ ≈ 0 Ohms), both the functional

and timing behavior of the cell can be impacted.
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Capacitive Faults

Defects with additional metal in interconnect wires or polysilicon at receiving gate termi-

nals can cause an increase in the cell fanout capacitance. Compared to resistive faults in

cells, capacitive faults do not affect the functional behavior but rather contribute to the

temporal behavior of cells [Elm48, RPH83].

In this work, a capacitive fault is modeled by a tuple f := (loc, {∆Cf}), that introduces

a lumped parasitic capacitance ∆Cf ∈ R+ to the RRC-cell output load capacitance Cload ,

such that C ′load := (Cload + ∆Cf ). The changes of the load capacitance C ′load cause an

increase in the time constant τ (cf. Eq. (6.9)) which impacts the timing of the output

transient (cf. Eq. (6.11)) by flattening the slope.

In [CHE+08], resistive and capacitive first-order electrical parameters were used to calcu-

late small delay faults of fixed size. However, the delay introduced by the capacitive faults

at switch level is also pattern-dependent, since the time constant (and hence the resulting

delay) can vary for different side inputs. Hence, by explicit modeling of capacitive faults

a more realistic timing behavior of lumped capacitive faults in CMOS circuits is reflected.

Voltage-related Faults

Transistor aging effects, such as NBTI or HCI [LGS09, GSR+14] impact the switching

delay of a transistor by shifting its threshold voltage. Furthermore, fluctuations in the

power supply grid of a circuit (e.g., caused by IR-drop and ground bounce) [SGYW05]

cause significant delays. In this work, the RRC-cell voltage parameters allow for modeling

of voltage-related faults.

A voltage-related fault is represented as a tuple f := (loc, {∆Vf}), where the fault loca-

tion loc refers to a voltage parameter of an RRC-cell (e.g., VDD, GND or the threshold Vth

of transistor) and ∆V ∈ R refers to the deviation of the respective voltage level in Volts.

In case the fault location loc refers to a transistor threshold voltage Vth, f is considered

an aging fault that models a shift in the threshold voltage thereby delaying the transistor

switching. For NMOS transistors, Vth is usually positive and therefore must be increased

by ∆Vf to inject the fault (V ′th := Vth +∆Vf ). The threshold of PMOS transistors is usually

negative and injection is performed by decreasing Vth (V ′th := Vth −∆Vf ).
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Similarly, power supply faults in VDD and GND parameters of an RRC-cell are modeled.

A drop in VDD (or increase in GND) can delay the transistor switching, as all transistor

thresholds are specified with respect to their associated ground potential. In addition,

power supply faults can also lead to a functional fault, as the output strength of the signal

is lowered.

7.2.3 Fault Injection

The injection of any of the presented faults is conducted by modifying the node- or timing-

descriptions according to the behavior specified by the underlying fault models. For the

injection of a fault, the corresponding values in the node-description memory at the fault

location are adjusted prior to the actual simulation run. During the injection process, all

nodes with an active fault injected are marked as faulty. The presence of injected faults is

completely transparent to the evaluation kernels as they do not interfere with the control

flow of any thread during execution.

After the simulation of a fault has been completed, the node descriptions of the fault

sites currently marked as faulty are reverted back to their original specification and their

marks are removed. Once the original circuit description has been restored, the simulator

is ready for the next fault simulation run. This fault injection scheme requires only a

small amount of compact memory operations and allows to keep the communication and

synchronization between host and device at a minimum [SKH+17, SW16].

In conventional commercial event-driven and compiled-code simulation, the timing de-

scriptions are typically provided as external files, whose annotations are globally assigned

to the netlist during the instantiation of the simulation instance. Any changes in the anno-

tations require the set up procedure of a new instance, which is a costly procedure since it

can introduce whole re-runs of the netlist optimization pre-processing and re-compilations

of the simulator code. However, with the oblivious plain simulation scheme followed by

the presented timing simulation, the timing descriptions residing in the node descrip-

tion memory on the GPU can be modified without the need of rebuilding the simulation

model. Any modifications of node descriptions are allowed at both global scale (for all

nodes) and local scale (for single nodes) with negligible overhead. This is a key-feature of
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the implemented fault simulator [SKH+17, SW16] as the injection of any of the faults of

the presented faults models requires only node-local changes in the netlist.

7.3 Syndrome Computation and Fault Detection

Once the simulation of the faulty circuit is finished, the time-continuous waveforms of all

circuit output nodes are resident in the waveform memory. In order to reason about the

detection of faults, a mapping of the waveforms to logic symbols is required to analyze the

output and to distinguish right (faulty) from wrong responses (fault-free). For the sake of

simplicity, the symbol w denotes either logic level or switch level waveforms.

7.3.1 Signal Interpretation

The value range of all modeled waveform types (either logic or switch level) can be consid-

ered as bounded by a lower bound VL ∈ R, that represents the low state in digital circuits,

as well as an upper bound VH ∈ R, which corresponds to the high state of the signal (i.e.,

’0’ and ’1’ at logic- or GND and VDD at switch level). At logic level, these bounds together

already reflect the value domain B2 themselves. While at switch level voltages close to

GND or VDD can be considered as low and high respectively, other voltages do not show

a definite high or low behavior as succeeding cells can interpret the signal differently. For

those values, the output behavior is usually considered as undefined (X) [Hay86].

This work uses a threshold-based characterization to logically interpret (continuous) volt-

age waveforms to distinguish between high, low and undefined. A threshold interval

[VthL, VthH ] ⊂ [VL, VH ] is defined, that separates the value domain into value domains

of a defined logic symbol. Signal values that fall within [VL, VthL) (or (VthH , VH ]) are con-

sidered as low (resp. high) due to amplification of voltage levels at cell outputs in CMOS

technology [WH11]. Values in the range of [VthL, VthH ] are intermediate and have no clear

defined state in digital circuits and are therefore considered as undefined (symbol ’X ’) and

possibly erroneous. These thresholds can be obtained by characterization of the transfer

functions of the CMOS cells which describe the input/output relation [WH11].
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The mapping of a (waveform) value v ∈ R to a discrete logic symbol of the ternary logic

domain E3 = {0, 1, X} [Hay86] is described by a function:

valE : R3 → E3, valE(v, VthL, VthH) :=


1 if (v > VthH),

0 else if (v < VthL),

X else.

(7.3)

7.3.2 Discrete Syndrome Computation

To determine the presence of deviations or errors at the outputs of a faulty circuit the cor-

responding waveforms are first captured at a given sample time tsamp ∈ R. The captured

faulty values are compared against the fault-free circuit to determine the output difference

(or syndrome) caused by the fault. In this work, syndrome waveforms [SKH+17, SW19a]

are utilized that allow to continuously determine the detection of a fault over time.

Definition 7.1. A syndrome waveform syn expresses the difference of a time-continuous

output waveform w with respect to the fault-free potential at any given point t in time.

At logic level, this reference potential represents the output of the good-value simulation,

i.e., the high or the low state. At switch level, the corresponding voltage potentials (VDD

and GND) are used as a reference. The difference in the output responses at a time point

t ∈ R then determines the syndrome waveform value syn(t) ∈ E3 = {0, 1, X} similar to

Eq. (7.3), which is considered

• faulty, if the syndrome value is syn(t) = 1,

• fault-free, if syn(t) = 0, and

• unknown for syn(t) = X.

Syndrome waveforms are obtained directly from the output waveforms by a transforma-

tion process within a single pass over the waveform events. The transformation procedure

compares the values of a waveform w with the fault-free reference responses, denoted as

w(∞). It is assumed that the fault-free responses always have a clear high or low signal

value w(∞) ∈ {VH , VL}, which are defined by a high potential (VH ∈ R) and low poten-

tial value (VL ∈ R) as reference. The corresponding syndrome syn(t) is then acquired by
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mirroring the values of w(t) at the center potential level 1
2 · (VH + VL) according to the

reference value w(∞), such that

syn(t) :=


valE(w(t), VL, VH) if

(
w(∞) ≤ 1

2 · (VH + VL)
)
,

valE(VH −w(t) + VL, VL, VH) else.
(7.4)

When applied to logic simulation over B2 = {0, 1}, syn(t) corresponds to the Boolean

difference of the waveform value w(t) and the reference value for any time t, therefore

syn(t) ≡ (w(t) ⊕ w(∞)). In case of a small gate delay fault of finite size δf < ∞ the

fault free response can be directly acquired from the faulty waveform itself by sampling

w(tsamp) at time tsamp →∞. In the switch level simulation, the syn(t) function performs

a logical interpretation of the absolute voltage difference of the signal with respect to the

level of the fault-free potential. Over E3 = {0, 1, X}, the presence of undefined values (X)

at outputs will lead to a pessimistic unknown syndrome (w(t) =̂ X)⇒ (syn(t) = X).

7.3.3 Fault Detection

With the use of the computed output syndromes, each fault can be classified as detected,

undetected and possibly detected. For a given sample time tsamp , the classification of a

fault f is performed by looking-up each syndrome syno(tsamp) of all reachable circuit

outputs o ∈ O(f) in its output cone O(f) ⊆ O. In general, a fault is considered as

detected at an output o ∈ O(f), if the corresponding syndrome is syno(t) = 1 at time t

and undetected, if syno(t) = 0. If neither of the above cases applies the syndrome is

considered as unknown, which cannot provide reliable information regarding the fault

detection. Thus, the fault classification based on the captured syndrome responses is

realized as follows:

• detected (DT) iff at least one output o ∈ O(f) in the output cone of f shows a faulty

syndrome (∃o ∈ O(f) : syno(tsamp) = 1),

• undetected (UD) iff all output o ∈ O(f) in the output cone of f show only fault-free

syndromes (∀o ∈ O(f) : syno(tsamp) = 0),
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• possibly detected (PD) iff a non-empty subset of outputs o ∈ O(f) in the output cone

of f show an unknown (′X ′) syndrome while no other output is considered faulty

(∃o ∈ O(f) : syno(tsamp) = X) ∧ (∀o ∈ O(f) : syno(tsamp) 6= 1).

Setup-/Hold- Times

The waveform information obtained can be used to identify possible wrong signal captures

of signal values in the associated storage elements due to violations in the setup- and hold-

times. In the standard delay format [IEE01a] these times are provided for any storage-

element cells through the SETUP and HOLD timing properties. Each of the properties defines

a time margin in an interval before (for SETUP) or after (HOLD) the sample time tsamp in

which the data-input signal must sustain a stable value in order to be properly captured.

A violation in a setup- or hold-time of a storage element occurs, if the input signal is not

stable, i.e., due to a signal value transition, which is assumed to cause uncertainty in the

capturing process. Thus, the stability of a signal within a time interval [tS , tH ] ⊆ R with

lower bound tS := (tsamp − tsetup) and upper bound tH := (tsamp + thold ) must be checked

in order to identify these violations. The times tsetup ∈ R and thold ∈ R are added to the

node description memory as part of the description of each output node.

A setup-time violation So ∈ B2 at an output o ∈ O(f) is raised (So = 1) iff

So ⇔ (∃t ∈ [tS , tsamp ] : syno(t) 6= syno(tsamp)). (7.5)

For determining hold-violations, the signal value at the lower bound tsamp is used as a

reference and the traversal of the waveform events is continued until time tH is reached.

Similarly, a hold-time violation Ho ∈ B2 is then indicated once an event ei with tsamp ≤

ti ≤ tH is found, such that the syndrome value changes:

Ho ⇔ (∃t ∈ [tsamp , tH ] : syno(t) 6= syno(tsamp)). (7.6)

Regarding the impact of the setup- and hold-time violations on the output capturing, all

captured outputs o ∈ O(f) with either So = 1 and Ho = 1 will be pessimistically consid-

ered as unknown ’X ’ and possibly erroneous [SW19a].
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7.4 Fault-Parallel Simulation

The high-throughput parallelization scheme is extended for the simulation of structurally

independent faults which is applicable to both logic and switch level simulation [SHK+15,

SKH+17, SW16]. The simulation effort is further reduced by applying fault collapsing to

reduce the initial fault set by removing timing equivalent faults. A fault grouping heuristic

is then applied to partition the remaining faults into fault groups for parallel injection

and simulation. An efficient syndrome calculation kernel allow for comprehensive and

exhaustive fault analysis.

7.4.1 Fault Collapsing

Prior to the waveform-accurate simulation, the number of fault locations is reduced by

using structural fault collapsing of the fault list. For this, equivalence classes need to be

identified, which are sets of faults that lead to identical output behavior in the simulation

model [SKH+17]. Hence, the simulation of only one representative fault is necessary in

order to evaluate all faults of an equivalence class. In this work, two faults f1 and f2

are timing equivalent (f1 ≡ f2), iff the waveforms at the circuit outputs on the sensitized

propagation paths match for all possible input stimuli.

At logic level, the equivalence rules based on the transition fault model [WLRI87] can

be applied and adapted for small delay faults as follows. Let F be the exhaustive set

of small delay faults in a circuit (i.e., all input pins and output pins of each node) with a

specified rising delay δr and falling delay δf for each fault fi := (loci, {δr, δf}) ∈ F . In case

the faults affect both transition polarities by the same delay amount (δr = δf ), then the

timing equivalence of each fault f1, f2 ∈ F in the fault set can be determined as follows:

(1) If a node has a single predecessor as input, then the fault f1 at the node input and

the fault f2 at the node output are timing equivalent (f1 ≡ f2).

(2) If a node has a single successor as output, then the fault f1 at the output and the

fault f2 at the input of the fanout-node are timing equivalent (f1 ≡ f2).

Regarding the first rule, assume a node compliant with the premise of rule (1) with

propagation delay of d ∈ R and let e1 = (t1) be an input event at time t1. The cor-
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responding event at the node output e2 = (t2) then takes place at time t2 = (t1 + d).

Further assume a small delay fault f1 of size δ := δr = δf (both polarities) at the node

input, then the input transition is delayed taking place at time t′1 := (t1 + δ). Simi-

larly, a fault f2 at the node output could delay the output event at time t2 by the same

amount δ, such that t′2 := (t2 + δ). For f1 the resulting time of the output event is

t′1 + d = (t1 + δ) + d = (t1 + d) + δ = (t2 + δ) = t′2. Therefore, both faults produce the

same output events for all input combinations, hence being timing equivalent (f1 ≡ f2).

In case the second rule (2) applies, the faulty output event from fault f1 arrives at time

t′1 = (t1 + δ), at the input of the successor. The succeeding node processes the input event

at t′1 by adding the propagation delay specified in the time spec to generate the interme-

diate waveform (cf. Chapter 5) that predicts a output event at time t2 = (t′1 + d). Note

that the predicted time is equal to the output caused by fault f2 at the successor which is

t′2 = t1 + (d+ δ) = (t1 + δ) + d = t′1 + δ = t2.

The above rules are further extended to collapse faults with different rising and falling

delays based on the inverting and non-inverting properties of the nodes. If the node type

is inverting and complies with the premise of rule (1), a small delay fault fault f1 =

(i, {δr, δf}) with a rising delay δr and falling delay δf at the input pin i of a node behaves

identical to a fault f2 = (o, {δf , δr}) at its output pin o, as the output signal has the inverted

polarity of the input signal when propagated. If a node is non-inverting and complies with

the premise of rule (1), then any fault f1 = (i, {δr, δf}) at the input pin i is equivalent to

a fault f2 at the output pin o with fault size f2 = (o, {δr, δf}) having the same delay with

respect to each transition polarity. This is also applicable to the second rule (2) above, as

a single fanout interconnection can be viewed as an interconnect buffer node, which also

has a non-inverting property.

All of the above rules obey a transitive relationship, which allows chaining of multiple

equivalence rules to maximize the size of the equivalence classes of a fault set F :

∀f1, f2, f3 ∈ F : (f1 ≡ f2) ∧ (f2 ≡ f3)⇒ (f1 ≡ f3). (7.7)

Without loss of generality, the fault closest to the circuit outputs is used as the repre-

sentative fault of the equivalence. Hence, since the equivalence rules consider only the
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relation between directly connected fault locations, all representative fault locations of a

circuit G = (V,E) can be determined with linear time complexity O(|V |).

In contrast to logic level, fault collapsing of parametric faults at switch level is not as triv-

ial [SW16, SW19a]. While the modeled small delay faults affect signals only in terms of

the time by shifting the transitions according to the fault size, the presented parametric

faults at switch level can also affect the slope of the signals. These changes in the slopes

can cause further differences in the waveform shapes of succeeding nodes when propa-

gating through the circuit, due to different rising and falling delays. This makes it difficult

to identify equivalent faults from different RRC-cells that lead to the exact same output

waveforms as required by the timing equivalence criteria. However, some timing equiva-

lences of resistive parametric faults can be identified on a RRC-cell-internal level [SW19a]

allowing to perform a fault collapsing based on the structure of the resistor networks

[BKL+82, LNB83].

Resistive parametric faults f1 and f2 of the same size ∆Rf ∈ R, can be marked as equiva-

lent iff the resistances R1 ∈ R and R2 ∈ R of the associated fault locations are connected

such that all direct paths from GND or VDD to the node output pin always pass both lo-

cations. Hence, in the RRC-cell model any current flowing from or to the node output

always passes through both or none of the locations. Therefore, the faults lead to the

same electrical output behavior as an injection in R1 or in R2 delivers an identical total

resistance:

(R1 + ∆Rf ) +R2 = R1 + (∆Rf +R2). (7.8)

Hence, any two faults fi and fj located at a resistive parameters Ri, Rj ∈ R of an RRC-cell

are timing equivalent (fi ≡ fj) iff for any path in the equivalence circuit mesh from either

VDD or GND to the cell output, Ri, Rj both lie on the path or none of them at all [SW19a].

7.4.2 Fault Groups

For fault-parallel simulation the simulator employs a parallelization scheme based on the

simultaneous injection of output-independent faults [IT88]. Let O(f1), O(f2) ⊆ O be the

reachable outputs in the transitive fanout of two faults f1, f2 ∈ F of a fault set F , then

the two faults are considered output-independent, if they do not share any output logic
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(O(f1) ∩ O(f2) = ∅). Output-independent faults have no mutual influence by adding

or masking themselves, since the fault effects propagate to distinct parts of the circuit.

For determining the detection of each fault, only the reachable outputs in the respective

output cones need to be investigated. Therefore, the faults can be injected and evaluated

in the same simulation instance allowing for a parallel simulation. In the following, a set

of mutually output-independent faults will be referred to as a fault group denoted as FG .

Definition 7.2. A fault group FG ⊆ F is a set of mutually output-independent faults of a

fault set F , such that:

∀fi, fj ∈ FG : (fi 6= fj)⇒ O(fi) ∩O(fj) = ∅. (7.9)

The optimal selection of fault groups can be viewed as a minimum graph coloring problem,

or chromatic number problem, that is applied to an output-dependence graph. In this graph

each fault is represented by a node and two nodes are connected iff the associated faults

share common output logic. Hence, each edge directly indicates that the associated faults

are ineligible for a parallel injection. During the coloring, each node is assigned a color,

such that no edge connects two nodes of identical color. Each color then represents a

specific fault group and all nodes of the same color belong to the same fault group.

In order to achieve maximum fault parallelism and simulation throughput, it is favorable

to keep the fault groups large and the total group count low to process as many faults

in parallel as possible with the least amount of simulation runs. The minimum graph

coloring problem has the additional requirement that the number of colors used is also

minimal. The graph coloring problem as such has been proven to be NP-complete, with its

optimization being NP-hard [Kar72] which is not applicable to fault sets of designs with

millions of faults.

7.4.3 Grouping Algorithm

To enable a fast and efficient computation of fault groups for both sparse and exhaus-

tive fault sets even for larger problem sizes, a greedy fault grouping heuristic [SHK+15,

SKH+17] is applied. Unlike [IT88], the heuristic follows a breadth-first grouping ap-

proach. This way an efficient grouping for exhaustive as well as sparse fault sets is en-
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abled. The general flow of the algorithm is outlined in Fig. 7.3, which starts with an empty

set of fault groups. Given a particular set of faults F as input, first the algorithm extracts

the spatial information of each fault to determine all fault locations in the circuit. First,

all fault locations of F are scheduled in an as-late-as-possible (ALAP) manner by sorting

them in reversed topological order from outputs to inputs (1).

determine reachable outputs

1.    schedule fault locations

for each
fault f

do

done

look up start group index FG

if
group FG

shares outputs 
with f

yes

no

no

yes

4a.  pick next FG

4b.  new group FG

if FG
last group

add fault f to group FG

update reachable outputs

propagate group index

2.

3.

5.

7.

6.

fault
groups

fault-
set

Figure 7.3: Flow-chart of the greedy fault grouping heuristic.

Each fault f ∈ F is processed one after another within a loop by assigning it to a suitable

fault group. For this, the reachable outputs in the output cone of a fault are compared

to those of the combined output cones of the faults in each obtained fault group. The

reachable outputs O(f) ⊆ O of a fault f are determined by traversing through the netlist

towards the circuit outputs O and stored in a hash-set (2), that provides fast look-ups of

outputs for quick comparisons with other faults and groups. In addition, for each fault
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group FG a hash-set is stored that holds the union of reachable outputs of each fault

contained O(FG) :=
⋃

f∈FG{O(f)}. Initially, the hash-set of a fault group is empty, and

reachable outputs are added and updated only when a fault is being assigned to the group.

During the grouping of a fault f , a start group index start(f) ∈ N is utilized (3), which

points to the first fault group FG i (i = 1, 2, 3, ...) to be compared with. The computation

of the index of a particular fault f is performed by looking up the highest group index

max_group : V → N of any reachable output o ∈ O(f) in the output cone of the fault.

Initially, the group index of every output node o ∈ O in the circuit is initialized with

max_group(o) := 0. For a particular fault f at any location, the start group index is then

computed by

start(f) := max{max_group(o) : o ∈ O(f)}+ 1. (7.10)

The outputs in o ∈ O(f) are then compared with the reachable outputs of the fault group

starting from idx := start(f) to identify any common output logic. As soon as a shared

output is detected, the index is increased (idx := idx + 1) and the next group in the list is

taken (4a), and again checked for any shared outputs. In case none of the existing fault

groups is disjoint with f , a new group is created for the fault (4b). If the reachable out-

puts O(f) of a fault f and the reachable outputs O(FG) of a fault group FG are disjoint

(∀o ∈ O(f) : o /∈ O(FG)), then f can be assigned to FG (5). Whenever a fault f is added

to a group, the reachable outputs of the fault are added to the reachable outputs of the

fault group (6), and the group index idx is assigned to all output nodes o ∈ O(f) in its

output cone by max_group(o) := idx (7). The reversed topological order of the processing

from outputs to inputs allows to use the start group index start(f) to skip unnecessary

comparisons with groups as the transitive structural dependencies of all previously sched-

uled fault locations in the support cone are sustained.

The application of the fault grouping algorithm is illustrated in Fig. 7.4. Given a fault

set, the faults are sorted in reverse topological order from outputs to inputs (a) with the

output-dependencies shown in the output-dependence graph (b). As all circuit outputs

are initialized with a group index 0, fault f1 is assigned to the first group FG1 (Eq. (7.10))

and the group index is assigned to the reachable outputs in O(f). In the next step, the

fault f2 is processed. Due to the output dependence of f2 and f1, the start group index
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of f2 is start(f2) = 1, thus the comparison with the first group is omitted and the fault

is assigned to a new group FG2. For fault f3, no output dependence so far has been

discovered start(f3) = 1 and after comparing the reachable outputs the fault is assigned

to group FG1 along with fault f1. Regarding f4 and f5, both of the faults share outputs

common with f2 (Fig. 7.4a) allowing to skip FG1 and FG2. Furthermore, the ranges of

the reachable outputs of the two faults are denoted as O(f4) and O(f5), respectively. Since

both faults do not share common output logic (O(f4)∩O(f5) = ∅) they can be scheduled

in the same fault group FG3.
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FG2={     }
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a) b) c) d)

Figure 7.4: Fault grouping example: a) fault set F := {f1, f2, f3, f4, f5} in reverse topo-
logical order, b) output-dependencies, c) group indices and d) resulting fault groups.

Once all fault groups have been extracted, the simulator can process the fault groups in

consecutive simulation runs. During each run, all faults f ∈ FG of a fault group are

simultaneously injected into the circuit with all associated fault locations being marked

faulty. Once the timing simulation is complete, the detection of each fault f ∈ FG is

determined by checking only the set of reachable outputs O(f) of the respective faults.

After finishing the evaluation, the node descriptions of the marked locations are reverted

back to their original specification thereby removing all injected faults from the circuit.

7.4.4 Parallel Fault Evaluation

The calculations of the syndrome is performed by a two-dimensional kernel as shown in

Fig. 7.5, which illustrates the syndrome computation for the switch level simulation.

Each thread in the grid computes the syndrome symbol (’0’, ’1’ or ’X ’) for a particular

output and stimuli at a given sample time tsamp . The threads first access the output wave-

forms of their respective node in the waveform memory and sample the voltage w(tsamp)

132



7.4 Fault-Parallel Simulation

k

..
.

1

waveform memory
o
u
tp

u
t 

w
a
v
e
fo

rm
s

(0.7V)

(1.1V)

syndrome memory

d
et

ec
te

d

u
n
-

d
et

ec
te

d

p
os

si
b

ly
d
et

ec
te

d

(0.0V)

(0.0V)

(0.0V)

(0.0V)

(0.0V)

(0.5V)

1

X

0

X

0

0

0

0

slot 1 2 n... stimuli 1 2 n...

thread
(1,k)

thread
(1,2)

slot 1 slot 2 slot n...

thread
(2,1)

thread
(2,k)

thread
(2,2)

thread
(n,1)

thread
(n,k)

thread
(n,2)

syndrome calculation kernel
thread grid (n ⨯ k)

syndrome calculation kernel
thread grid (n ⨯ k)

1
.1

V
0

.7
V2

0
.0

V

output
k

output
1

output
2

1 (1.1V) 0 (0.0V) 0 (0.0V)
reference
responses

(pattern memory)
0 (0.0V) 1 (1.1V) 1 (1.1V)

0 (0.0V) 0 (0.0V)

...

stimuli 1 2 n...

k

1
2

0
.0

V
1

.1
V

0
.0

V

0
.0

V
1

.1
V

0
.5

V thread
(1,1)

1 (1.1V)

(0.0V)
0

1

n

..
.

..
.

...

Figure 7.5: Parallel syndrome calculation for switch level waveforms in a two-dimensional
kernel with additional syndrome memory.

at time tsamp . In the next step, each thread accesses the reference response w(∞) ∈ R in

the pattern memory on the GPU. In case of the switch level simulation, the logic symbol

is mapped to the corresponding voltage value using Eq. (6.14). The high (VH) and low

(VL) voltage potentials have been chosen as 1.1V and 0.0V respectively. Similarly, the

thresholds for distinguishing clear high and low signal values from unknown ’X ’es were

chosen as VthH = 0.8V and VthL = 0.3V. The syndrome syn(tsamp) is then computed

according to Eq. (7.4) and stored as binary encoded symbol in the dedicated syndrome

memory. The syndrome memory then allows to look-up and determine the fault detection

for each stimuli individually.

Since during the evaluation all waveforms remain untouched in the waveform memory

on the GPU, the signal capturing of waveform signals can be performed multiple times

in succession at varying points in time without the need for additional simulation runs.

Also, each output node can be assigned an individual offset with respect to the capture

time tsamp , which allows for modeling of clock skew due to unbalanced signal propagation

in the clock-distribution tree.
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7.5 Summary

In this chapter, an extension of the high-throughput timing simulation model was pre-

sented to enable timing-accurate parallel fault simulation on GPUs. Fault models have

been presented for small gate delay fault simulation at logic level [SHK+15, SKH+17], as

well as parametric and parasitic faults at switch level [SW16, SW19a]. Fault-parallelism

is exploited to cope with the additional problem complexity from the faults. For this, the

timing-equivalence was defined for the aforementioned fault models and a fault grouping

heuristic was presented that identifies groups of output-independent faults of a fault-set

for parallel injection and efficient simulation. A highly-parallel and comprehensive syn-

drome evaluation then allows to reveal timing-accurate detection information for each

fault directly from the waveforms.
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Chapter 8

Multi-Level Simulation on GPUs

This chapter presents the first multi-level fault simulation approach on GPUs [SKW18,

SW19b] which selectively trades off speed against accuracy by mixing abstractions in order

to maximize the simulation efficiency. The approach utilizes similarities in data structures

and kernel organization of the presented simulation models and their implementations

and provides a transparent transition between the abstraction levels.

8.1 Overview

In timing simulation, high abstraction modeling provides higher simulation speedup, but

the modeling capabilities with respect to both functional and timing behavior are limited,

which ultimately constrains the simulation accuracy. However, often it is not necessary to

simulate the full circuit with the lowest abstraction [MC93]. Therefore, mixing abstrac-

tions is a way to speed-up and increase the efficiency of the simulation.

Assume a multi-level simulator that utilizes both lower and higher abstraction levels (e.g.,

switch and logic level nodes) simultaneously. Further assume a given mixed-abstraction

scenario x ∈ [0, 1] that describes the ratio of circuit nodes at switch level, i.e., from full

logic (x = 0) to full switch level simulation (x = 1). Let TML(x) ∈ R be the runtime of

the multi-level simulation for the scenario x, and let Tref ∈ R be the reference runtime

required to run a full simulation at the lower abstraction level, i.e., switch level with

Tref := TML(1).
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Definition 8.1. (multi-level simulation efficiency) The multi-level simulation efficiency of a

mixed-abstraction scenario x ∈ [0, 1] processed in a multi-level simulator ML is defined as

eff ML : [0, 1]→ R, eff ML(x) :=
Tref

TML(x)

(
=
TML(1)

TML(x)

)
. (8.1)

Example 8.1. For example, given a simulation problem x that requires time Tref = 10s for

evaluation at a targeted lower abstraction level and time TML(x) = 1s for the evaluation in a

multi-level simulator ML. The simulation efficiency of the multi-level approach is computed

by eff ML(x) = 10s/1s = 10, i.e., the multi-level simulator can solve in the same time ten

times the amount of simulation problems compared to the full low level simulation.

In the context of GPUs, the mixing of abstractions during multi-level simulation generally

conflicts with the underlying many-core programming paradigm on the SIMD architec-

tures [OHL+08]. High- and low-level simulations typically utilize different data-structures

and algorithms, each of which involves its own working set with varying memory foot-

print. This complicates the parallelization and portability of the individual algorithms to

the GPUs eventually causing inefficiencies for the use in a multi-level simulation environ-

ment due to diverging execution flows.

The presented time simulator is extended to form a mixed-abstraction multi-level fault

simulation, that allows to switch accuracy wherever and whenever required. While this

work focuses on combining the presented logic level and switch level time simulation

(cf. Chapter 5 and 6), the general concepts can be extended for incorporating additional

abstraction levels. Throughout the simulation, the different abstractions are processed

interchangeably on the GPU by utilizing unified data structures and kernels. The key

features of the multi-level simulator are:

• scalable, flexible and extensible waveform-accurate parallel multi-level time simula-

tion with full accuracy and time trade-off,

• mixed-abstraction simulation with efficient memory reuse and low overhead switch-

ing between abstractions for efficient consecutive simulations runs,

• and full transparency of abstraction levels in the kernels causing no additional con-

trol flow divergence during evaluation.
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8.2 Multi-Level Circuit Modeling

In the multi-level simulation, the circuit netlist is modeled as an abstraction-independent

graph, which stores the general structure of the circuit including interconnections of the

circuit nodes. For each node, abstraction-dependent functional and timing descriptions

are assumed to be available for all abstraction levels. However, during simulation the

description of only one abstraction level is used at a time per node. All output waveforms

inherit the same abstraction level as their respective nodes.

In the following, the general approach for switching between different abstractions during

simulation and the simulation flow is explained.

8.2.1 Region of Interest

The implemented multi-level simulation uses the concept of regions of interest (ROI) in

order to switch abstraction levels in critical regions throughout the simulation [SKW18].

While the simulator is expected to run with the highest abstraction to maximize speed

(logic level), nodes in the circuit netlist G can be activated to perform as ROI by assuming

a lower abstraction level through swapping of their abstraction-dependent descriptions.

Definition 8.2. A region of interest (ROI) is a connected sub-graph H ⊆ G of a netlist G

with nodes of lower abstraction (switch level) compared to adjacent nodes.

The activation of ROIs at single or multiple nodes then allows to locally lower the ab-

straction and gradually increase the modeling accuracy over the circuit. Different ROI

activation schemes allow to change the accuracy during simulation:

• spots representing a single circuit node (e.g., standard cell),

• paths as sequence of nodes from an input to an output of the circuit,

• cones that cover a complete input or output cone, or cone of influence of a node, or

• areas to model a connected sub-graph of the circuit netlist (e.g., module).

For example, ROI spots at single nodes can be utilized in order to introduce more accurate

descriptions in case of complex-cells or injection-points for low-level fault modeling, which
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otherwise would not be represented with sufficient accuracy at higher abstraction levels,

or not represented at all. Paths can be activated, such as longest or critical paths required

for investigation (i.e., paths that are likely to cause errors under a resistive open delay

fault). ROI-cones enable provision of more accurate stimuli to a node and also enable

low-level signal propagation to outputs. Similarly, the activation of ROI-areas lowers the

abstraction in connected regions of the circuit (e.g., sub-module).

The multi-level circuit modeling can be utilized to simultaneously inject and simulate

faults of mixed abstractions. When simulating a fault, it is injected into the node descrip-

tion corresponding to the abstraction level of the fault. The node description with faults

are then used actively during the simulation until the faults are removed. This way, all of

the logic- and switch level fault models presented in Chapter 7 are supported.

8.2.2 Changing the Abstraction

When activating or removing a ROI in the netlist, the original netlist graph G = (V,E) is

modified [MC95] in the process to generate a substitute graph G′ := (V ′, E′) that includes

the ROI. Let Vn ⊆ V be a set of nodes of one abstraction connected to direct predecessors

i ∈ I ⊆ V and direct successors o ∈ O ⊆ V in the graph such that (I ∪ O) ∩ Vn = ∅. All

nodes n ∈ Vn are connected to the predecessors via edges Ei :=
⋃

i∈I{(i, n) ∈ E} and to

the successors via Eo :=
⋃

o∈O{(n, o) ∈ E}. Further, let En :=
⋃

i,o∈Vn{(i, o) ∈ E} be the

set of edges that connect nodes internally in Vn. Then Gn := (Vn, En ∪Ei ∪Eo) forms the

connecting sub-graph of Vn embedded in G.

Now, let G′n := (V ′n, E
′
n∪E′i∪E′o) be sub-graph of n in the other abstraction composed of a

set of nodes V ′n, with internal E′n ⊆ V ′n×V ′n, in-going E′i ⊆ I×V ′n and outgoing E′o ⊆ V ′n×O

edges. The swapping from one abstraction to another is performed by substitution of the

corresponding sub-graphs Gn and G′n in the original netlist G, to generate the substitute

graph G′ = (V ′, E′) where V ′ := {V \ Vn} ∪ V ′n and E′ := {E \ En} ∪ E′n.

8.2.3 Mixed-abstraction Temporal Behavior

In mixed-level simulation of the circuit, all nodes are evaluated by the waveform pro-

cessing algorithm of their respective abstraction which computes output waveforms in the

corresponding abstractions. Therefore, waveforms of different abstractions can coexist
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during simulation. Each time a waveform encounters a node of a different abstraction, it

crosses an ROI boundary. To allow the receiving node to process the waveform, the wave-

form needs to be transformed to the abstraction of the node during the input processing.

This work utilizes two transformations to map between high-level waveforms with discrete

logic values and low-level waveforms with continuous voltages as presented in [SKW18].

These transformations map the events from logic- to switch and back from switch- to logic

level accordingly.

Ternary Logic Waveforms

As mentioned earlier, switch level waveforms are continuous in value and for certain val-

ues an undefined logic behavior is interpreted which can propagate through the circuit.

The logic level waveforms are therefore extended to support ternary logic E3 = {0, 1, X}

over a pseudo-Boolean algebra in order to model undefined values [Hay86].

For this, all events e ∈ w of a logic level waveform are distinguished between ordinary

events and special events. With the exception of the initialization and sentinel event at

t = −∞ and t =∞, all ordinary events e are considered to occur only at times 0 ≤ t <∞.

For the extension the special events e := (t) ∈ w are allowed negative event times t < 0. By

consideration of the sign bit [IEE08] additional signal transition rules can be formulated

for the waveforms. The sign of an event time t is accessed via the sign-function sgn :

R→ {0, 1}, where sgn(t) delivers 1, if the sign bit of the corresponding event time is set (t

negative), or 0 otherwise (number is positive). The absolute value |t| of t ∈ e is considered

as actual event time for temporal evaluation. Within each waveform all events are stored

in temporal order according to their (absolute) event time |t|. Hence, for any two events

ei, ej ∈ w with |ti| > |tj |, the respective indices in for the ordering are i > j.

In case sgn(t) = 1 holds for an event e = (t) with time t, e is declared a special event

which triggers an irregular transition, that switches between undefined (’X ’) and high (’1’)

or low (’0’) values. All transitions between the different values are illustrated in the follow-

ing state diagram of Fig. 8.1 from which the waveform function w is derived. Initially, each

waveform has a low (’0’) initial value (init). For each following event ei with sgn(ti) = 0

the signal state then transitions in temporal order between high (’1’) and low (’0’). In case

sgn(ti) = 1, the signal transitions to the unknown state (’X ’) at time |ti|, which can be left
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to either high or low depending on the next event in the order. Since the IEEE floating

point standard [IEE08] distinguishes between −0 (sign-bit set) and 0 (sign-bit not set),

transitions to unknown at time t = 0 are supported as well. For constant signals the corre-

sponding waveform representations are w0 := {(∞)} for low, w1 := {(−∞), (−∞), (∞)}

for high and wX := {(−∞), (∞)} for unknown values.

0 X 1
sgn(ti)=1 sgn(ti)=1

sgn(ti)=1sgn(ti)=0

sgn(ti)=0

sgn(ti)=0

init

Figure 8.1: State transitions of events ei = (ti) in ternary E3 logic waveforms.

A more complex waveform using the ternary logic representation is illustrated in Fig. 8.2.

As shown, the new waveform modeling can express all possible transitions in the three-

valued E3 logic domain in a compact way. If no undefined values are present during sim-

ulation, the processing of the waveforms is similar to the previous approach in [HSW12,

HIW15] except for signal waveforms with an initial value of ’1’ for which an additional

event at t = −∞ has to be stored.
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Figure 8.2: Example of an arbitrary waveform over the ternary logic value domain E3.

8.2.4 Simulation Flow

The overall flow of the multi-level simulation approach combining both logic and switch

level is shown in Fig. 8.3. After reading in the design (i.e., as netlist), the abstraction-

independent combinational network of the netlist is extracted, topologically ordered and

annotated with abstraction-dependent timing data (1). Once the circuit data is prepared,

the user can define the regions of interest (ROI). The ROIs can be defined by specifying
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individual nodes for simulation with switch level accuracy (2), or by providing a fault

set, where the individual fault locations provided are used as ROIs. Similar to faults,

the defined ROIs can be grouped (3) for parallel simulation using the presented grouping

heuristic (cf. Chapter 7).

fault
set
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extraction & levelizationnetlist 1

define regions of interest2

netlist 
&

timing

group regions3

input
stimuli

reference
responses

transparent multi-level
time simulation

5

output evaluation6

switch levellogic level

output
responses

ROI
groups

mark current regions4a

fault injection4b

Figure 8.3: Overall flow-chart of the implemented multi-level fault simulation for com-
bined logic- and switch level simulation. Shaded tasks are parallelized.

The ROI groups are then processed individually in subsequent simulation runs (step 4–

6). While processing a ROI, the simulator first marks all nodes of the current ROIs as

active (4a). During this process, the timing descriptions of all activated ROI nodes are up-

dated accordingly. Once the timing descriptions are set, the simulator is ready to perform

the fault injection (4b), which allows for injection of logic level faults as well as transistor

level parametric faults. The provided input stimuli set is then assigned to the circuit inputs

and all nodes of the design are processed in topological order from inputs to outputs (5).

Eventually, all output waveforms of the circuit have been computed and are ready for

evaluation (6). In case of a fault simulation, reference responses provided via the response

pattern memory are used to compute the output syndromes. After the evaluation, the ROI

marks of all active nodes are cleared and the descriptions are restored.
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8.3 Transparent Multi-Level Time Simulation

The input to the algorithm is a levelized netlist G with each node being described at either

logic or switch level, along with a set of input stimuli that are assigned to all primary and

pseudo-primary inputs of the circuit stored in the waveform memory. The execution of

the algorithm itself is performed again in topological order level by level from inputs to

outputs and for each node the multi-level evaluation algorithm is called. The multi-level

evaluation at a circuit node is outlined in Algorithm 8.1 [SKW18, SW19b].

Algorithm 8.1: Transparent multi-level simulation algorithm (single thread).
Input: Node n, input waveforms wi for each input pin i ∈ I
Output: Event sequence of the output waveform wn

1 // Initialize local variables and data structures.
2 Create copy of node description and determine abstraction of node n.
3 // A. initialization
4 foreach node input i ∈ I do
5 Look-up abstraction level of input waveform wi.
6 Set-up corresponding data structures and determine initial waveform value vi.
7 Get first event ei of wi and put into event schedule E.
8 end
9 Compute initial state S of n and Initialize output waveform wn.

10 // B. event processing
11 while Events to process in schedule E do
12 // B.1 consume next event
13 Remove earliest event ei from E.
14 if node n is ROI then
15 Transform ei to switch level event and compute input value vi.
16 Compute new switch level state S of n. // switch level kernel
17 else
18 Transform ei to logic level event and compute input value vi.
19 Compute new logic level state S of n. // logic level kernel
20 end
21 // B.2 output update
22 if S causes output change on n then
23 Compute output event and add to wn.
24 end
25 Get next event ei of input waveform wi and put into E.
26 end
27 // C. finalization
28 Append sentinel event at time∞ to wn.
29 return Output waveform wn.

When a node n is processed, first the abstraction of the node is determined and the func-

tional and timing description are loaded accordingly (line 2). Then the input waveform wi

of each input i ∈ I of the current node n (line 4) are fetched and the abstraction level that

is encoded in the header of each waveform wi is determined. Depending on the waveform
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type, the respective data structures for holding the current events of a waveform are set

up as well as the initial waveform value of each waveform is calculated (line 4–8). The

first event ei in each input waveform wi is fetched and put into the local event table E

for scheduling, which keeps the immediate next event to be processed for each node in-

put. After determining the initial signal value vi := wi(−∞) of each input waveform wi,

the initial state S of the node output of n is determined and the output waveform wn is

initialized (line 9). The initialization of the output waveform comprises the annotation of

the abstraction level as well as writing the initial node output value of n corresponding to

the computed initial state S.

The event processing loop (line 11–26) then processes all the events scheduled in the

event table E in temporal order from earliest to latest. The earliest next event ei is con-

sumed (line 13) by removing it from the schedule. Since each event ei indicates a change

in the associated input signal value, the implications of the value change need to be trans-

formed to the targeted abstraction level of the current node under evaluation. In case n is

marked as a region of interest (ROI), the input signal value needs to be mapped to switch

level (line 15) and the new switch level state of n is computed by calling the switch level

evaluation kernel (line 16). Otherwise, the input signal is mapped to logic level (line 18)

which is then processed using the logic level evaluation kernel (line 19).

If an input event ei causes a change in the output state of the cell, a new switching event e

is appended to the output waveform wn (line 23), which is a switch level event in case n

is marked as ROI and a logic level event, if otherwise. After the event has been processed,

the next event of the current input waveform wi is fetched and scheduled into the event

table E. The loop terminates when all events in the event table have been processed and

the output waveform is terminated.

8.3.1 Waveform Transformation

The waveform transformation is performed by mapping the respective events from one

abstraction level to representative events of the other type during simulation before they

are put into the event schedule. This way at most one transformation per input waveform

event is required at each node during the evaluation. If the abstraction level of an input
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waveform matches the one of the node under evaluation, the event processing algorithm

can proceed regularly without the need of explicit waveform transformation overhead.

In the following, the two waveform transformations are explained in more detail.

Logic-to-Switch Level Transformation

Logic level waveforms are transformed to switch level by mapping the discrete logic value

domain E3 to stationary voltages at switch level. Given the voltage levels of the power

supply VDD and ground GND potential to represent high and low logic values, undefined

values are mapped to the intermediate voltage level X → 1
2 · (VDD + GND) [Hay86].

All events ei ∈ w of the original logic level waveform description are then translated by

substituting each event ei = (ti) one after another by switch level events e′i. Based on the

targeted logic value of a logic level event ei and a chosen time constant τε, the stationary

voltage is selected as follows to obtain the switch level event e′i:

(ti) 7→ e′i :=


(t′i,VDD, τε) if (ti rising),

(t′i,GND, τε) else if (ti falling),

(t′i,
1
2 · (VDD + GND), τε) else,

(8.2)

where t′i is the time of the new event e′i in the corresponding switch level waveform w̃.

The time t′i is computed according to Eq. (6.13), where the original ti is replaced by

the new t′i and the equation is solved for x = ti, such that the resulting curve segment

of e′ crosses 1
2 · (VDD + GND) Volts at the time of the source logic level transition ti. For

τε → 0, the shape of e′i closely resembles an instantaneous event with a steepness similar

to transitions in the visualized logic level waveforms. The absolute error ε = |t′i − ti| of

the resulting t′i can be estimated by using Eq. (6.13), where t′i := ti − τε · log (0.5). Since

for the last term | log(0.5)| < 1, it follows that the absolute error ε < τε. Thus, for very

small τε → 0 the resulting curve is getting steeper and the shape is well expressing the

logic level transition.

The RC-parameters of the input ports can be utilized to fit the curve segment of each

resulting event e′i := (t′i, v
′
i, τ
′
i) by adjusting the time point t′i and the slope τ ′i of the

transition. Again, the curve parameters can be fitted using the log function in Eq. (6.13)
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to determine the time of an intersection with the threshold. According to the general

definition of the output transition time [IEE01a], switches at logic level occur at a time

point ti when the underlying signal at the electrical level passes the threshold at Vth = 1
2 ·

(VDD + GND) Volts (50% of VDD). Assuming a rising (falling) transition from a waveform

value w̃(ti) = GND (VDD) to the stationary voltage v′i = VDD (GND), the inner term of

the log-function delivers

Vth − v′i
w̃(ti)− v′i

=
1
2 · (VDD + GND)− v′i

w̃(ti)− v′i
=

(VDD + GND)− 2 · v′i
2 · (w̃(ti)− v′i)

(rising) =⇒ (VDD + GND)− 2 · VDD
2 · (GND− VDD)

=
−VDD + GND

2 · (−VDD + GND)
=

1

2
, (8.3)

(falling) =⇒ (VDD + GND)− 2 · GND
2 · (VDD− GND)

=
VDD− GND

2 · (VDD− GND)
=

1

2
. (8.4)

Hence, from Eq. (8.3) for the rising transition and Eq. (8.4) for the falling transition

parameters the inner log-term shortens to

Vth − v′i
w̃(ti)− v′i

=
1

2
= 0.5, (8.5)

which can be applied to Eq. (6.13) to finally determine the time t′i of a corresponding

switch level curve with time constant τ ′i that crosses the 50% voltage threshold at the

given intersection point ti:

ti
!

= t′i − τi · log (0.5) =⇒ t′i := ti + τi · log (0.5) .

This way, the transformed events can reflect the transient response over RC-elements in

the circuit, which allows for a more realistic representations of the input waveforms at the

current node under evaluation [SKW18].

Fig. 8.4 illustrates the transformation of a binary logic level waveform (”source”), for a

small time constant τε := 10−5 (”τε trans.”) as well as for time-adjusted events based

on RC-characteristics (”RC 50%”). As shown, the τε-curve overlaps the logic level repre-

sentation without any noticeable error. In the latter case, the events exhibit the shape of

exponential curves that cross the 50% voltage threshold at the exact times of the logic
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level transitions. In addition, different RC-characteristics were chosen for the rising and

falling transition, which resulted in different time offsets and slopes.

GND

50%

VDD

 0  10  20  30  40  50  60  70  80

O
u
tp

u
t 
[V

]

time [a.u.]

source
τ

ε
 trans.

RC 50%

Figure 8.4: Multi-level transformation of a logic level source waveform to switch level.
The RC-characteristics vary for the rising and falling transition [SKW18].

Switch-to-Logic Level Transformation

For the switch level waveform transformation a threshold-based signal characterization

from continuous voltage to discrete ternary logic values is applied based on Eq. (7.3).

Two thresholds for low (VthL ∈ R) and high (VthH ∈ R) values are chosen to partition

the voltage range [GND,VDD] ⊆ R into distinct intervals [GND, VthL), [VthL, VthH ] and

(VthH ,VDD] each corresponding to the value range of a logic symbol in E3. The voltage

intervals are assumed to be disjoint and in order to map each voltage value to a unique

logic symbol such that

GND < VthL <
1

2
· (VDD + GND) < VthH < VDD. (8.6)

Algorithm 8.2 outlines the general switch to logic level transformation of a waveform.

Starting from the initial waveform value v ∈ E3 at t = −∞ (line 1), the algorithm loops

over the events of the switch level signal (line 5) as obtained from the event table in

temporal order (cf. Chapter 6). Eq. (6.13) is used to determine possible intersection

points within each of the curve segment. Each crossing of a threshold level VthL ∈ R and

VthH ∈ R at time ti then causes a change in the interpreted logic value v of the signal.

Therefore the intersection points at times ti can be directly mapped to corresponding logic

level events. Again, for any transition to undefined, or from undefined to high state, the

negative event time annotation is applied (line 8) in order to be compliant with the state

transition diagram over the ternary logic E3 = {0, 1, X} (cf. Fig. 8.1).
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Algorithm 8.2: Threshold-based switch to logic level waveform transformation.
Input: switch level waveform w̃, thresholds VthL and VthH
Output: logic level waveform w

1 Compute initial logic state v := valE(w̃(−∞), VthL, VthH).
2 Initialize output waveform w with v. // v : 0 7→ ∅, X 7→ {(−∞)}, 1 7→ {(−∞), (−∞)} (cf. Fig. 8.1)
3 Remember last state vlast := v.
4 // loop over threshold intersection points (using Eq. (6.13)):
5 foreach threshold intersection point ti of events ei ∈ w̃ in temporal order do
6 Compute new logic state v := valE(w̃(ti), VthL, VthH).
7 if ((v = X) ∨ ((vlast = X) ∧ (v = 1))) then
8 Append new event e = (−ti) to w. // transition to ’X ’ or from ’X ’ to ’1’ (cf. Fig. 8.1)
9 else

10 Append new event e = (ti) to w.
11 end
12 vlast := v.
13 end
14 Append sentinel e = (∞) to w.
15 return w.

Fig. 8.5 illustrates the low-level signal transformation from an arbitrary continuous volt-

age waveform to a Boolean logic (a) and a ternary logic (b) waveform using a thresh-

old interval. For the Boolean logic transformation a single threshold has been chosen at

Vth := 1
2 ·(VDD+GND) corresponding to 50% of the VDD to GND voltage level. The thresh-

olds of the ternary logic transformation were chosen as VthL := 33% and VthH = 66% in

the example. As shown, within these regions signal uncertainties are assumed (X).

8.4 Multi-Level Data Structures and Implementation

The implemented multi-level timing simulation approach processes logic level (cf. Chap-

ter 5) and switch level (cf. Chapter 6) abstractions simultaneously and interchangeably

throughout the simulation. Therefore the kernels on the GPU need to process node de-

scriptions and waveform representations of both abstraction types present in the circuit

The presented time simulation models at logic and switch level allows for reuse of the

implemented data structures and their memory organization to enable an efficient and

transparent mixed-abstraction simulation.
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Figure 8.5: Threshold-based waveform transformation of an arbitrary continuous signal
to a logic waveform [SKW18].

8.4.1 Multi-Level Node Description

In order to distinguish the abstraction of a node, a ROI-flag ROI ∈ {0, 1} is added to each

node description, which indicates the level of abstraction as shown in Fig. 8.6. If the flag

is cleared (ROI = 0) the node is simulated at logic level. If the flag of a particular node is

set (ROI = 1), it is simulated with switch level accuracy. Upon execution of a node kernel

by a thread, first the ROI flag and the type information is loaded from the node description

memory. This information is utilized to select the evaluation kernel corresponding to the

ROI flag, and to set up the data structures for loading the remaining portion of the node

description that include the pointers to the input successors and the functional- and timing

information.

ROInode description
(memory)

input IDs... functional-/timing description

header description part

1switch level switch level parameters

0logic level logic timing data

type

type

type

Figure 8.6: Generic multi-level node description struct in memory with logic- and switch
level implementations. The ROI flag and type indicator is located in a common header.
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Regarding the allocation of the node description in the memory, let size_of swl(n) ∈ N be

the amount of memory of the switch level node description of a node n (e.g., in bytes),

and let size_of log(n) ∈ N be the size of the corresponding description at logic level. The

resulting portion of memory size_of ML(n) ∈ N that needs to be allocated in total for

storing either switch or logic level description of a node in the multi level simulation is the

maximum of both, hence

size_of ML(n) := max
(

size_of swl(n), size_of log(n)
)
. (8.7)

While the memory allocated for each node description increases, the resulting node de-

scription memory is smaller than storing both descriptions at the same time. In order to

perform the ROI activation process of any ROI or their composites, the associated node

descriptions in the node description memory are swapped prior to the actual simulation of

the circuit. Each swap transaction comprises the modification of the ROI flag in the node

description memory, as well as the update of the node description payload describing the

actual functional and timing behavior at the respective abstraction. The graph informa-

tion about the waveform registers of the inputs and the output signal does not have to be

changed as the positions of the waveforms in the waveform memory remain untouched.

The swap of a description consists of memory transactions of a few hundred bytes only,

which allows for a fast activation and deactivation of ROIs.

8.4.2 Multi-Level Netlist Graph

In certain cases, a node description on the higher level has to be substituted by multiple

nodes of the lower level. For example, the transistor netlist of a single logic level AND-gate

[Nan10] contains two channel-connected components that correspond to a NAND and an

INV RRC-cell. Hence, for those cases, a one-by-one substitution scheme cannot be applied

and a substitution of sub-graphs with different numbers of nodes must be performed.

This work employs expansion and collapsing for graph structures that require different

amounts of nodes in the abstractions. For this, a fully expanded netlist graph G∗ is con-

structed that assumes the netlist graph being maximally expanded and with all nodes n

substituted by their corresponding larger sub-graphs Gn. This sub-graph is levelized and
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embedded into the netlist prior to simulation to determine the waveform registers to store

the waveforms in the GPU memory. Assuming the sub-graph Gn has depth d, all of its

nodes are scheduled on levels Li through Li+d in their respective topological order. The

corresponding node n is always scheduled on the highest level Li+d in the graph G∗.

Both node expansion and node collapsing are illustrated in Fig. 8.7, where nodes are trans-

formed between switch and logic level. In this example, a logic level node n (AND gate) is

represented by a set of two nodes n′ and n′′ at switch level corresponding to a NAND and

INV RRC-cell. Note, that the switch level sub-graph has an additional edge that points to

the predecessor waveform of node n′. While the waveform register of n′ is the same as

of n, node n′′ requires allocation of a new waveform register in the memory for storing

the additional signal history. Yet, the required memory is freed at latest after processing

the head level (j + 1), since there are no further references to the waveforms by other

nodes in the graph, but only by nodes in the corresponding sub-graph. While the node n

is active on logic level, the memory space for node n′′ is marked as empty in the netlist.

Empty nodes do not execute any function but remain in the netlist, which allows to avoid

reorganization of the graph structure which would otherwise cause costly reassignment of

the associated waveform registers.

8.4.3 Multi-Level Waveforms

Fig. 8.8 depicts the generic waveform data structure in memory for a waveform with

a capacity of K ∈ N entries. The memory for the waveform is divided into a header

information field of H ∈ N entries and the payload for storing the actual waveform events

(K −H entries in total). Similar to the node descriptions, a ROI-flag ROI ∈ {0, 1} in the

waveform header indicates the abstraction level of the waveform in multi-level simulation,

which is directly inherited from the head node that computes it.

In the example, a value of ROI = 0 indicates logic level abstraction, where all events events

are stored in consecutive entries within the remaining payload area. For ROI = 1, a switch

level waveform is assumed, where the following payload entries are grouped in packs

of three for storing the event 3-tuples of the presented switch level simulator. Since the

payload data is grouped, the switch level waveforms store less events compared to logic

level waveforms within the same amount of memory, which can cause additional wave-
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Figure 8.7: Example transformation of a node between two types of abstractions using
node expansion and node collapsing.
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Figure 8.8: Generic waveform data structure with logic and switch level implementation.
The ROI flag is located in the header.

form overflows. However, the waveform calibration (cf. Chapter 5) will simply increase

the waveform register size in case overflows occur during simulation.

8.4.4 Parallelization

The applied parallelization scheme of the multi-level simulation kernel is depicted in

Fig. 8.9, which reflects the general two-dimensional parallelization of the presented high-

throughput time simulation (cf. Chapter 5). As shown, the evaluation threads of a node

process input waveform sets of either abstraction, which are transformed during the pro-

cess, and the resulting output waveforms in the output waveform set have the same ab-

straction as the node itself. Each thread in the horizontal direction of the grid evaluates

the same node (of either switch or logic level abstraction) and all threads in the horizontal

dimension are processed in the same thread groups in parallel but for different stimuli.
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Figure 8.9: Transparent parallelization of the multi-level simulation kernel. Threads pro-
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During the waveform processing, the different types of the waveforms are completely

transparent to the evaluation kernel, as all events are transformed to the abstraction level

of each node before the events are processed. Therefore, although the abstraction levels

can vary from node to node throughout the circuit, no additional control flow divergence

is caused during execution, since the threads of a thread group always execute the same

simulation algorithm and transformations.

8.5 Summary

This chapter presented the first timing-accurate multi-level fault simulation approach for

GPUs [SKW18, SW19b] combining fast simulation at logic level with low-level simulation

at switch level. It provides a trade-off in speed versus accuracy that is finely controlled by

the activation of user-defined regions of interest (ROIs) that allow to locally lower the ab-

straction level. By carefully exploiting similarities in data structures and modeling of both

abstraction levels, the mixed-abstraction multi-level simulation enables higher simulation

efficiency in terms of simulation throughput and modeling accuracy than compared to a

full switch level simulation, while being completely transparent to the kernels.
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Chapter 9

Experimental Setup

This chapter briefly describes the general setup of all the experiments performed in this

work. It summarizes the relevant information of the benchmark circuits and software

used, and provides an overview of the used hardware as well as the specifications of the

used GPU accelerators. The general experimental evaluation part is split into four main

sections over the following next chapters:

Chapter 10 provides results of the implemented logic and switch level time simulation,

Chapter 11 presents logic and switch level fault simulation results, and

Chapter 12 investigates the application for timing-accurate power estimation,

Chapter 13 discusses the presented multi-level simulation with mixed abstractions.

9.1 Benchmarks

This work utilizes commonly used circuits from ISCAS’89 [BBK89] and ITC’99 [ITC99]

benchmarks for evaluation purposes and comparison, in addition to industrial benchmark

designs provided by NXP Semiconductors (see Appendix A). All designs have been synthe-

sized down to physical layout using the academic NanGate 45nm open cell library [Nan10]

in a commercial synthesis tool flow. For all circuits, full-scan design is assumed, such that

each input and output (either primary or pseudo-primary) is accessible. During the syn-

thesis process, all sequential elements have been removed from the netlist, which were
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replaced by pseudo-primary inputs and pseudo-primary outputs thus leaving only the com-

binational structure of the designs. The timing information of the resulting designs was

extracted through standard delay format (SDF) [IEE01a] and detailed standard parasitics

format (DSPF) files [IEE10], which are used as timing annotations at logic and switch

level simulation respectively.

9.2 Host System

All simulation experiments were conducted on a host system equipped with different

GPUs of the PascalTM architecture [NVI17c] and its predecessor KeplerTM [NVI14] from

NVIDIA R© as used in [SW19a, SKW18, SKH+17, SW16, SHK+15, SHWW14].

Table 9.1 shows the specifications of each of the used devices. All devices vary in their

chip family (Col. 2), available global device memory (Col. 3) and peak memory band-

width (Col. 4), number of processing cores (Col. 5) and maximum clock frequency (Col. 6).

The last column shows the compute capability of the respective architectures which iden-

tifies the available features of the SMs [NVI18b].

The GPU-accelerators were mounted in a host system composed of two Intel R© Xeon R©

E5-2687W v2 processors clocked at 3.4GHz with access to 256GB main memory. The

TeslaTM series devices are designed for high-performance computing tasks and provide

a larger amount of global memory which also supports ECC-protection. The GeForceTM

family devices are targeted for gaming applications providing much higher clock frequen-

cies. The more recent PascalTM architecture outperforms its KeplerTM predecessor with its

additional cores and high memory throughput, thus allowing for a much higher degree

Table 9.1: Specifications of the GPU devices on the targeted host system.

Device Name(1) Family(2) Global Peak Memory
Cores(5) Maximum CUDA

Memory(3) Bandwidth(4) Clock(6) Arch.(7)

Tesla K40c Kepler (GK110B) 12GB 288GB/s 2880 745MHz sm_35
GeForce GTX 1080 Pascal (GP104) 8GB 320GB/s 2560 1.73GHz sm_61
GeForce GTX 1080 Ti Pascal (GP102) 11GB 484GB/s 3584 1.67GHz sm_61
Tesla P100 Pascal (GP100) 16GB 732GB/s 3584 1.33GHz sm_60

156



9.3 Simulation Environment

of parallelization and higher simulation throughput. Note that, although originally the

GP100 GPU architecture specifies 60 SMs the devices only use up to 56 SMs [NVI17c].

For all devices of the sm_35, sm_60 and sm_61 architectures the number of maximum

processor registers per thread block is 65,536 registers with a limitation of 256 assignable

registers per thread. The thread group sizes are 32 threads per group (also called warp).

On each SM a maximum of 64 active thread groups can be scheduled totalling up to

2048 active theads. The maximum size of a thread block for scheduling is 1024 threads.

This information is used to adjust the thread block and thread grid dimensions for each

simulation kernel during compilation. Both host systems used in the experiments were

running a CentOS 6 linux distribution with CUDA version 9.1.

9.3 Simulation Environment

All experiments were performed in a diagnostic simulation environment which was im-

plemented in Java 1.8. The general tasks of the simulation environment provide reading

in and processing netlists as well as summarizing and evaluating the simulation data ob-

tained. The actual simulation kernels running on the GPU-accelerators were written in

CUDA C [NVI18b].

Within the main Java process, the CUDA C binaries are executed as a child process. The

Java simulation environment then issues commands via communication over standard in-

put and standard output streams to the process, such as calls for individual simulation ker-

nels or requests for memory operations (e.g., cudaMemcpy or cudaMemcpu commands). For

exchanging larger amounts of data (i.e., such as netlist information) between host system

and GPU devices, mapped-memory files are used that are accessible by both the Java and

the CUDA process. The data consistency between both the copies of the memory-mapped

files and the memories allocated on the GPU-accelerators is guaranteed by comparison of

generation values prior to each transaction of either host or device code.

All GPU-executable CUDA binaries were compiled using the NVIDIA R© CUDA compiler

driver nvcc from CUDATM version 9.1 for each of the respective architectures and host

systems used.
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9.4 Data Representation

In order to ease the readability of the experimental results, the order of magnitude of

numbers that express certain counts or amounts are expressed using letter symbols. The

following Table 9.2 summarizes the notations used in the number representations (Col. 1)

and the corresponding order of magnitudes or multiplier (Col. 2). As an example, the

notation of "42k" equals to 42× 103 = 42, 000.

9.5 Performance Metrics

In order to provide a consistent metric for the assessment and comparison of the measured

simulation performance across different platforms and simulation tools, the simulation

throughput is given in million node evaluations per second (MEPS) [SW19a].

Given the number of nodes of a design #nodes, the number of pattern pairs in the test set

under evaluation #pattern_pairs and the runtime of the simulation Tsim for processing

the provided test set, the throughput performance of a simulation sim in MEPS is defined

as the fraction of million node evaluations and the simulation time:

MEPSsim :=
#nodes ×#pattern_pairs

Tsim × 106
. (9.1)

The throughput metric allows both, the assessment of the performance and scalability of

the simulation with respect to the size of a given design in number of nodes, as well as

with respect to different numbers of pattern pairs under evaluation.

For relative runtime comparisons of different simulations running on the same host sys-

tem, the simulation speedup (denoted by ’X’) can be derived from the throughput metric.

Given simulation throughput from two simulators MEPS sim and MEPS ref running on the

Table 9.2: Number symbols and represented order of magnitude (multiplier).

Symbol(1) Magnitude(2)

k ×103

M ×106

B ×109
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same host system, the speedup of the simulation sim over ref is obtained by

SpeedUp(sim, ref ) :=
MEPS sim

MEPS ref

(9.1)
=

Tref

Tsim
. (9.2)

Similar to [HIW15, SKH+17, SW19a], a commercial event-driven simulator for timing-

accurate evaluation of circuits at logic level was used to provide the baseline reference

runtimes. The commercial simulation has been executed on the same host to obtain the

respective reference runtimes for comparison. Each reference simulation was running se-

rially, due to the lack of parallelization features. All runtimes stated in the following only

reflect the bare simulation time for processing the provided test-set and do not include

reading-in, optimizing and compilation of the netlist and timing annotations. Further-

more, the commercial reference simulation does not evaluate the computed waveforms,

due to costly file operations, which would otherwise further bias the comparison and put

the reference simulation in a disadvantageous position [HSW12, HIW15].
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Chapter 10

High-Throughput Time Simulation Results

This chapter evaluates the presented high-throughput simulation approach for the appli-

cation to logic level and switch level as proposed in Chapter 5 and Chapter 6.

The presented GPU-accelerated logic and switch level simulation were investigated in

terms of throughput performance and simulation accuracy. For both logic- and switch

level simulation, the test stimuli generated from the commercial ATPG tool were applied.

Comparisons were made across device generations with varying amount of compute cores,

global device memory and system clock.

In the following, first the logic level simulation results are presented, followed by the

switch level simulation results.

10.1 Logic Level Timing Simulation Performance

In the logic level simulation the netlists of the designs under evaluation are annotated tim-

ing information from SDF-files [IEE01a] as obtained from synthesis. Throughout the eval-

uation, both results from uninitialized simulation runs with uncalibrated waveform regis-

ter sizes (cf. Chapter 5), as well as simulation runs with fitting waveform register sizes are

compared. For each circuit node an initial waveform register capacity of κ := 10 events was

chosen. While the uninitialized runs represent the worst case simulation scenario involv-

ing lots of monitored calibration runs, the simulation runs with fitting waveform register

sizes represent the best case simulation without the need of register calibration [HIW15].
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10 High-Throughput Time Simulation Results

10.1.1 Runtime Performance

Detailed information about the runtimes and the throughput performance of a fault-free

simulation at logic level are provided in Table 10.1. For each circuit listed (Col. 1),

column 2 and 3 show the number of pattern pairs of the generated n-detect pattern

set (n = 10) to process as well as the number of pattern pairs (slots) that can be pro-

cessed in parallel on the GPU (cf. Section 5.4.2). Despite the availability of 16GB of

global memory, the thread grid dimensions have been limited to the respective test pat-

tern sets in case the number of provided pattern pairs (cf. Col. 2) is smaller than the

number of available slots on the GPU (cf. Col. 3). This avoids spawning and schedul-

ing of thread blocks with unnecessary threads on the GPU multi-processors and hence

allows to save runtime. In case the number of test patterns to process is larger than the

available simulation slots on the GPU, the stimuli are processed as bunches in consecutive

simulation runs. Column 4 contains the reference runtime of the simulation using the

unparallelized event driven commercial solution for processing the provided pattern set

with the base throughput performance in MEPS given in column 5. Next, the initial worst

case performance of the proposed GPU-accelerated simulation is shown with the absolute

runtime given in column 6, the throughput performance in MEPS given in column 7 and

the speedup compared to the unparallelized commercial reference simulation in column 8.

Finally, columns 9 through 11 present the best case simulation runtime performance of the

GPU-accelerated simulation.

As shown, the simulation time of the unparallelized commercial simulation (Col. 4) quickly

rises from seconds for very small circuits up to minutes for the medium-sized circuit and

even up to hours or even days for circuits with more than a million nodes. The measured

simulation throughput ranged from a maximum of 2.60 MEPS (circuit b17) to as little as

0.39 MEPS (circuit p3726k) with an average of 1.15 MEPS per circuit. However, the ex-

periments showed that for larger circuit sizes with more than a million nodes (i.e., p951k

to p3881k), the general throughput reduces down to 0.57 MEPS in average due to costly

memory operations.

As for the implemented GPU-accelerated simulation, the worst case runtime (Col. 6) ranges

from milliseconds to a few hours with a simulation throughput (Col. 7) ranging from

14.9 (p3847k) up to 207.9 MEPS (p35k). Compared to the reference simulation times,
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10.1 Logic Level Timing Simulation Performance

Table 10.1: Logic level simulation performance (NVIDIA Tesla P100 accelerator).

Circuit(1)
Pattern- Logic Level Simulation (Fault-Free)

Pairs Event-Driven Worst (GPU) Best (GPU)
source(2) max.(3) Time(4) MEPS(5) Time(6) MEPS(7) X(8) Time(9) MEPS(10) X(11)

s38417 348 53.1k 3.11s 2.13 408ms 16.2 8 12ms 551.0 260
s38584 563 44.8k 5.29s 2.45 428ms 30.3 13 18ms 721.0 294
b14 904 147.0k 5.30s 1.62 426ms 20.2 13 12ms 716.1 442
b17 2135 59.6k 35.13s 2.60 876ms 104.3 41 60ms 1522.2 586
b18 3174 18.5k 6:42m 0.99 2.86s 139.2 141 261ms 1523.8 1542
b19 4651 9728 0:17h 1.14 7.92s 146.9 130 696ms 1672.2 1469
b20 1097 90.4k 14.41s 1.40 611ms 33.0 24 23ms 876.8 627
b21 1154 88.6k 16.60s 1.34 559ms 39.7 30 22ms 1009.9 755
b22 1190 62.9k 25.39s 1.31 618ms 53.6 42 31ms 1069.0 819
p35k 4096 21.2k 2:22m 1.38 1.04s 188.9 137 114ms 1724.5 1249
p45k 2417 25.3k 49.96s 2.13 738ms 144.4 68 68ms 1567.4 735
p77k 1979 24.4k 3:02m 0.76 4.81s 29.0 38 158ms 883.4 1156
p81k 795 13.6k 2:12m 0.83 1.13s 96.8 118 63ms 1742.5 2110
p89k 2460 15.3k 2:26m 1.64 1.36s 175.9 108 133ms 1804.2 1103
p100k 2809 14.9k 3:17m 1.37 1.62s 166.6 122 159ms 1699.0 1242
p141k 2043 8128 5:34m 1.09 2.54s 143.4 132 227ms 1602.6 1473
p267k 3181 6048 0:14h 0.81 3.34s 207.9 257 573ms 1212.6 1498
p330k 5928 5248 0:38h 0.74 9.79s 173.6 235 2.28s 746.9 1009
p418k 3676 3424 0:29h 0.92 20.66s 78.3 86 3.00s 538.9 586
p500k 5012 3200 0:49h 0.89 25.09s 105.3 118 3.07s 859.5 962
p533k 3417 2336 1:07h 0.57 30.02s 77.0 135 3.04s 761.8 1331
p951k 7063 1024 3:00h 0.71 2:45m 46.6 66 11.95s 644.3 905
p1522k 17980 1440 8:21h 0.65 5:04m 64.2 99 23.66s 827.2 1273
p2927k 22107 768 18:17h 0.56 0:18h 33.7 61 58.25s 634.7 1131
p3188k 26502 576 42:02h 0.50 1:02h 20.3 41 2:07m 591.3 1185
p3726k 15512 480 39:24h 0.39 0:40h 22.8 59 1:38m 558.4 1434
p3847k 31653 480 40:12h 0.65 1:44h 14.9 24 3:08m 496.7 768
p3881k 12092 352 23:53h 0.52 0:44h 16.8 33 1:47m 413.4 797

the GPU-accelerated approach was able to increase the simulation speed in the range

from 8× to 257× (Col. 8). For smaller circuits, the speedups are lower compared to the

medium-sized circuits due to under-utilization of the resources. However, also for the

larger circuits, the speedup decreases again, due to the increasing calibration manage-

ment, which is handled by the (serial) host system as well as due to the serialization of

the stimuli set processing.

In the best case simulation scenario (Col. 9–11), the simulation runtimes (Col. 9) ranged

from milliseconds to few minutes only even for the multi-million node designs. The

speedups obtained by the GPU-acceleration (Col. 11) ranged from 260× (circuit s38417)

up to 2110× (p81k) and the maximum simulation throughput (Col. 10) increased up to

1804.2 MEPS (p89k). The average throughput over all circuits was 1034.7 MEPS. Again,
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10 High-Throughput Time Simulation Results

due to under-utilization of the computing resources, the simulation throughput of the

smaller circuits is much lower compared to the larger ones.

10.1.2 Simulation Throughput

The simulation data of Table 10.1 suggests that the throughput saturates the larger the cir-

cuits and test sets get. Thus, for any larger simulation problem the simulation throughput

is expected to be constant. The general trend of the simulation performance is illustrated

in Fig. 10.1, which shows the simulation throughput with respect to the size of the circuit

in number of nodes. Each point in the graph reflects the measured throughput in MEPS

for the worst- and best-case simulation scenarios. The lines show the average of the data

points for the two simulation scenarios (dashed line for worst- and full stroke for best-

case). While the trend of the worst-case simulation is strongly decreasing for increasing

circuit size due to increased waveform reallocation overhead, the trend line of the best case

simulation is flattening and expected to saturate, due to the limited computing resources

available on the GPU devices.

At this point, further increase in throughput can generally be achieved by either using

GPU devices with an increased number of parallel computing resources and memory, or

by using multiple GPU devices in parallel on the host system. Since the stimuli parallelism

assumes that the individual test stimuli in the provided test sets are mutually independent,

and for the larger circuits the stimuli are processed in many consecutive simulation runs

(cf. Table 10.1), the test sets can simply be divided and distributed evenly among the

different devices for a stimuli-parallel execution across GPUs.

The simulation throughput of the proposed high-throughput logic level simulation was

further explored for different GPU architectures. For this, the simulation was re-run on

a host system equipped different accelerators with all executable binaries having been

compiled and executed for each device architecture respectively. Fig. 10.2 depicts the

general simulation performance across the devices.

The left graph depicts the throughput performance in the proposed MEPS metric for both

worst-case (dotted lines) as well as best-case simulation runs (full strokes). The devices

on the X-axis are sorted in increasing order of the compute capability. As shown, the

simulation throughput rises with each new architecture, which relates to the increasing
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Figure 10.1: Logic level simulation throughput for worst- and best-case simulation. Both,
the X and Y axis are log-scale. Full lines denote averages.
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Figure 10.2: Simulation throughput (left) and speedup (right) of the logic level simulation
executed on individual GPU devices with different specifications (cf. Table 9.1). Full
strokes represent best-case and dashed lines represent worst-case simulation results.

numbers of available cores and device memory as well as the increasing clock speed. The

more recent PascalTM architecture outperforms its KeplerTM predecessor allowing for a

much higher degree of parallelization and thus for higher simulation throughput. Yet,

regarding the calibration runs, the simulation time is dominated by memory calibration

and allocation resulting in lower speedups. In average, a throughput increase of over

505 MEPS (double the base speedup) was observed from the oldest to the newest device

used in the experiment, with a maximum throughput gain of roughly 1133 MEPS for
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10 High-Throughput Time Simulation Results

circuit b19. For the worst case simulation runs, the throughput is seemingly constant with

little gain, due to the high waveform register calibration overhead.

The right-hand side of Fig. 10.2 shows the measured speedup of the simulation compared

to the serial commercial logic level simulator. The improvement in speedup over the device

architectures is similar.

10.2 Switch Level Timing Simulation Performance

Input to the switch level simulator is the synthesized netlist, the pre-characterized tran-

sistor parameters and annotations of electrical parameters from the layout stored in the

detailed standard parasitics format (DSPF) [IEE10]. For the transistor model cards, the

45nm predictive technology model (PTM) was used [ZC06, Nan17] as utilized by the

standard cell library cells [Nan10]. The resistive parameters and the threshold voltages

of the transistors have been manually extracted via the IV-characteristics [WH11] from

SPICE simulations using a sweep of the gate-source voltages Vgs ∈ [0V,1.1V] with the

drain-source voltages set to Vds := 1.1V.

The resulting transistor descriptions with threshold voltage, blocking and conducting drain-

source resistance were DP := (−0.3021V,12.81MΩ,1145.1Ω) for the PMOS and DN :=

(0.3220V,28.51MΩ,1550.6Ω) for the NMOS-type transistors respectively, which were used

throughout the experiments with the presented switch level simulation. From the DSPF

file the electrical parameters of the interconnections (both resistances and capacitances)

were extracted. These parameters were assumed as lumped at the RRC-cell node outputs.

10.2.1 Runtime Performance

The measured runtimes are compared to simulation at logic level as shown in Table 10.2.

In the table, column 2 to 3 contain the size of the input stimuli set in pairs as well as

the maximum pattern pairs able to process concurrently on the GPU device (16GB global

device memory). Column 4 and 5 show the simulation runtime at logic level of the serially

executed commercial event-driven approach and the presented GPU-accelerated parallel

simulation. As previously, runtimes are split into worst and best case over column 6
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through 11 with the simulation runtime, the throughput performance in MEPS and the

speedup over the event-driven approach given for each case.

As shown, the switch level simulation runtimes range from 513ms (circuit s38417) up

to 5.5 hours (circuit p3847k) in the worst case, corresponding to a speedup of over 25×

over the event-driven approach in average. The simulation throughput decreases for the

larger designs due to the increased calibration overhead. In the best case simulation, the

throughput performance increased by an average factor of over 5× thereby reducing the

general runtimes to a maximum of few minutes.

For the million-node designs (circuits p951k–p3881k) the parallelization showed to be

more effective, due to a better utilization of the accelerator hardware during computation.

Despite the higher modeling accuracy, the simulation speed of the implemented switch

level simulation is only one order of magnitude slower (average of roughly 9×) compared

to the presented GPU-accelerated simulation at logic level.

Note that in the proposed high-throughput parallel simulation model, the amount of mem-

ory for storing a switch level event is three times higher compared to storing a logic level

event. Hence, although the initial capacity for each waveform register was chosen the

same (κ = 10 events), less stimuli pairs can be simulated in parallel (Col. 3).

10.2.2 Throughput performance

Fig. 10.3 illustrates the measured simulation throughput with respect to the circuit size.

Again, each point reflects the obtained simulation performance in MEPS of a circuit. Bold

points represent the best case and clear points represent the worst case. Similarly, the

lines reflect the average trends of the simulation data.

As shown, the simulation throughput of the worst case scenario is in average 24.6 MEPS

and quite scattered. However, it quickly decreases for the larger designs, due to increas-

ing calibration overhead. In the best case simulation scenario, the throughput remains

roughly constant around 128 MEPS. For the million-node designs, the simulations showed

a simulation throughput of even 145 MEPS in average, leading to the highest speedups ob-

tained in the experiments. Here, the throughput is expected to be saturated and constant

due to a full utilization of the computing resources. In contrast to the logic level appli-

cation, the runtime of the switch level algorithm is strongly dominated by floating point
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Table 10.2: Switch level simulation performance (NVIDIA Tesla P100 accelerator).

Pattern- Logic-Level Switch-Level
Circuit(1) Pairs Event- GPU(4) Worst (GPU) Best (GPU)

source(2) max.(3) Driven(4) Time(6) MEPS(7) X(8) Time(9) MEPS(10) X(11)

s38417 348 17.7k 3.11s 12ms 513ms 12.9 7 52ms 127.1 60
s38584 563 14.9k 5.29s 18ms 646ms 20.1 9 87ms 149.2 61
b14 904 49.0k 5.30s 12ms 685ms 12.5 8 100ms 85.9 53
b17 2135 19.9k 35.13s 60ms 2.91s 31.4 13 671ms 136.1 53
b18 3174 6144 6:42m 261ms 15.24s 26.1 27 3.56s 111.9 114
b19 4651 3040 0:17h 696ms 39.61s 29.4 26 10.40s 111.9 99
b20 1097 30.1k 14.41s 23ms 1.34s 15.0 11 227ms 88.8 64
b21 1154 29.5k 16.60s 22ms 1.43s 15.5 12 256ms 86.8 65
b22 1190 21.0k 25.39s 31ms 1.83s 18.1 14 370ms 89.6 69
p35k 4096 7040 2:22m 114ms 4.29s 45.8 34 1.48s 132.6 96
p45k 2417 8416 49.96s 68ms 2.53s 42.2 20 869ms 122.7 58
p77k 1979 8128 3:02m 158ms 9.81s 14.2 19 1.96s 71.3 94
p81k 795 4512 2:12m 63ms 3.17s 34.6 42 711ms 154.4 187
p89k 2460 5088 2:26m 133ms 5.25s 45.7 28 1.51s 159.1 98
p100k 2809 4960 3:17m 159ms 7.40s 36.5 27 2.07s 130.4 96
p141k 2043 2688 5:34m 227ms 10.31s 35.3 33 2.67s 136.5 126
p267k 3181 2016 0:14h 573ms 15.15s 45.9 57 5.17s 134.4 166
p330k 5928 1856 0:38h 2.28s 43.01s 39.5 54 12.77s 133.2 180
p418k 3676 1120 0:29h 3.00s 50.74s 31.9 35 10.02s 161.6 176
p500k 5012 1056 0:49h 3.07s 1:32m 28.7 33 19.14s 138.0 155
p533k 3417 768 1:07h 3.04s 1:20m 28.7 51 18.55s 124.6 218
p951k 7063 352 3:00h 11.95s 6:22m 20.1 29 44.88s 171.6 241
p1522k 17980 512 8:21h 23.66s 0:18h 17.2 27 2:13m 146.9 226
p2927k 22107 256 18:17h 58.25s 0:45h 13.6 25 3:56m 156.6 279
p3188k 26502 192 42:02h 2:07m 2:54h 7.2 15 9:14m 136.2 273
p3726k 15512 160 39:24h 1:38m 2:07h 7.2 19 7:57m 115.7 297
p3847k 31653 160 40:12h 3:08m 5:24h 4.8 8 0:11h 133.9 208
p3881k 12092 128 23:53h 1:47m 1:18h 9.4 19 4:56m 150.6 291

operations rather than control flow or initialization overhead, resulting in a somewhat

constant throughput performance over all circuits.

Fig. 10.4 shows the achieved switch level simulation throughput on different GPU devices

for different circuits as well as the achieved speedup compared to the event driven logic

level simulation. Points connected by dashed lines represent the initial worst case runtime

and full lines represent the best case times with calibrated waveform registers, respectively.

The red lines represent the average over the shown circuits.

Again, while for the worst case scenario, the simulation time is dominated by the wave-

form calibration overhead resulting in an average simulation throughput ranging from 10

to 45.9 MEPS for the circuits shown. In the best case simulation, an average performance

gain of 100 MEPS was observed throughout the devices with the highest throughput mea-

sured for circuit p951k with 171.6 MEPS on the Tesla P100 accelerator. Throughout the
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Figure 10.3: Switch level simulation throughput performance with average trend.
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Figure 10.4: Switch level simulation throughput (left) and simulation speedup (right) on
different GPU devices.

experiments, the Tesla P100 device showed the highest average performance of all devices

under investigation. Although the maximum clock (1.33GHz) of the Tesla P100 accelera-

tor is lower than that of the GeForce GTX 1080 Ti (1.67GHz), its larger global memory of

16GB (compared to 11GB) still allows for higher utilization and more parallelism.

Regarding the speedup, a similar behavior was observed with an average gain of roughly

110× over all devices. While the gain in speedup is in general lower for the smaller

circuits due to under-utilization of the hardware, the larger circuits can profit from the

larger amount of available global device memory and higher parallelism.
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10.3 Switch Level Behavior

To assess the accuracy of the presented switch level simulation (SWIFT), the waveform

results are compared to electrical simulation (SPICE) and logic level simulation (LOGIC).

Here, the focus of the evaluation is solely the quality of the model for representing elec-

trical behavior.

In the following, transition ramps and the impact of pattern-dependent delay effects due

to multiple input switching (MIS) on the signal propagation are investigated on a small

three-input NAND3_X1 cell as shown in Fig. 10.5. Initially, all cell inputs are high (non-

controlling) and the output is low. In consecutive simulation runs, the input signals were

set to low forming a falling transition at one, two and three input pins simultaneously. The

switching at an input causes the associated PMOS transistors to conduct, which charges

the output load of the cell (rising transition). The additional output transition delay re-

sulting from Miller-effects (over/undershoot due to dynamic capacitances within the cell)

is compensated by applying a constant delay offset to the output transition in the switch

level waveform.
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b) Output waveform of three-input NAND cell in SWIFT.

Figure 10.5: Pattern-dependent slope of a three-input NAND3_X1 cell output [Nan10,
ZC06] under single and multiple simultaneous (falling) transitions at the input pins.

Fig. 10.5 depicts the resulting output waveforms in SPICE and SWIFT. As shown, the

slope of the output signal gets steeper, the more inputs are switching, since the PMOS

are arranged in parallel and the effective conductance of the charging is proportional to
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10.3 Switch Level Behavior

the number of conducting transistors. Since SWIFT always computes the resistance of the

transistor networks based on all transistor states, it is able to reflect the pattern-dependent

conductance, and hence, the aforementioned MIS-effect. Note that conventional simula-

tion at logic level does not reflect this kind of behavior.

In the next experiment, the signal propagation over multiple states was observed. For this

experiment, an artificial circuit as depicted in Fig. 10.6 was synthesized to layout. The

circuit is composed of a chain of 16 two-input NAND cells (U1 to U16) with identical

properties, which are connected in a way, such that the outputs of each cell are connected

to both input pins of their respective successors. As input stimulus, a rising transition is

provided, which propagates through the chain.

0  1
U1 U2 U3 U4 U5 U6 U7 U8

U9 U10 U11 U12 U13 U14 U15 U16

Figure 10.6: Test circuit comprising a chain of 16 two-input NAND cells (U1 to U16) for
the observation of pattern-dependent delay effects during signal propagation.

Fig. 10.7 shows the waveforms of intermediate signals obtained from electrical simu-

lation (SPICE), logic level simulation (LOGIC) and the presented switch level simula-

tion (SWIFT) [SW19a]. As shown, SWIFT is able to reflect the pattern-dependent delay

effect, which is completely ignored during logic level simulation. These effects are observ-

able in both SPICE and SWIFT simulation at the outputs of all even stages (signals U2,

U4,..., U16). Since at these stages, both inputs of the cells have a falling transition, the

output load of the cells is charged via two conducting PMOS transistors in parallel. There-

fore, the slopes of the (rising) output signals is steeper (Fig. 10.7-b) and -d)) compared to

a single input switch. By ignoring these effects, the logic level simulation introduces small

errors at all (even) stages which accumulate during propagation through the design up to

a delay deviation of roughly 30 percent of the reference delay from SPICE. As shown be-

fore, these deviations are even more severe for three- or even four-input cells. In SWIFT,

the transition ramps as well as the transition points in time correlate well with the SPICE

result also in presence multiple input switches.
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a) Signal waveforms at stage 5: Falling transition.
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b) Signal waveforms at stage 6: Rising transition with MIS effect.
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c) Signal waveforms at stage 15: Falling transition.
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d) Signal waveforms at stage 16: Rising transition with MIS effect.

Figure 10.7: Waveforms compared for electrical (SPICE), logic (LOGIC) and the presented
switch level timing simulation (SWIFT) of a signal transition propagating through a chain
of two-input NAND cells [SW19a].

10.4 Summary

In this chapter, the proposed high-throughput parallel simulation was investigated for the

application to logic level (cf. Chapter 5) and switch level timing simulation (cf. Chapter 6).

On current GPU-accelerator devices, the presented simulation schemes allow to occupy the

available streaming multi-processor computing resources and fully utilize the memories,

providing constant simulation throughput and being able to scale even for designs with

millions of nodes and thousands of test stimuli.
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10.4 Summary

Experimental results have shown, that the proposed parallel logic level simulator allows

for speedups of up to three orders of magnitude compared to a unparallelized commercial

solution, which significantly reduces the runtime of timing-accurate simulations at logic

level. Despite the higher modeling complexity, the proposed switch level model also al-

lows for speedups of up to two orders of magnitude compared to unparallelized logic level

simulation. Experiments have shown that the simulation model is able to capture signifi-

cant electrical behavior, such as transition ramps and multiple input switching effects, in

an efficient and accurate manner.

The timing-accurate evaluation is crucial in many fields, such as delay fault simulation,

power estimation, low-power test and circuit diagnosis that heavily rely on simulations

with accurate switching activity information. With the power of parallelization on GPU-

architectures, the simulation throughput allows to vastly increase the simulation speed

and to reduce the overall runtime of the evaluations. The parallel simulation is highly

scalable and thus opens new opportunities for a wide range of applications that are appli-

cable to simulation problems at a larger scale.
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Chapter 11

Application: Fault Simulation

This chapter evaluates the extensions of the logic level and switch level simulation for the

use in a fault simulation environment. Both small delay faults (at logic level) as well as

parametric faults (at switch level) are investigated as presented in [SHK+15, SKH+17]

and [SW16, SW19a].

Given an initial fault universe, equivalent faults are first removed using the fault collapsing

instructions as provided in Section 7.4.1 for both small delay faults and transistor-level

faults, respectively. The presented fault grouping algorithm (cf. Section 7.4.3) is then

applied to partition the collapsed fault set into fault groups for parallel injection and simu-

lation. The effectiveness (eff fsim) of the fault grouping is defined as the fraction of the size

of the fault set for simulation divided by the number of obtained fault groups:

eff fsim :=
#FaultsInFaultSet

#ObtainedFaultGroups
. (11.1)

Except where otherwise mentioned, the fault universes of the simulations are chosen as

follows. As fault universe for the small delay faults a spatially exhaustive fault set is de-

fined that considers fault locations for each pin of a cell (input and output pin) [SKH+17].

For each fault location, two small delay faults are assumed, which affect either the rising

or the falling transition. Given the nominal circuit clock frequency from topological timing

analysis, the size of each small delay fault is finite and chosen half between the slack of

the longest and shortest path through the associated fault site.
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11 Application: Fault Simulation

The fault universe of the switch level parametric faults considers a high resistive open

fault at each transistor as well as a high capacitive fault in the output load capacitance of

each cell in the circuit [SW19a].

11.1 Fault Grouping Results

Table 11.1 summarizes the results of the fault collapsing and fault grouping for all the

benchmark circuits. Column 2 and 3 show the initial size of the small delay fault universe

defined previously as well as the remaining number of faults after fault collapsing. Col-

umn 4 contains the number of fault groups obtained after fault grouping of the collapsed

fault set with the fault grouping efficiency (eff fsim) given in column 5. Similarly, column 6

through 9 summarize the results for the switch level parametric faults.

As shown in column 2 and 3, the fault collapsing was able to reduce the size of the initial

small delay fault universe by 38 percent in the worst (p330k) to 49 percent in the best

case (p35k) with an average reduction of approximately 41.7 percent for all the circuits

listed. The grouping heuristic was able to partition the collapsed fault set into fault groups

with a fault grouping efficiency ranging between 1.9 in the worst (p35k) and 219.8 in the

best case (p533k) as shown in column 4 (48.9 in average). For each circuit, eff fsim directly

provides the average number of faults that are processed during the simulation of the fault

groups. It also indicates the degree of the available fault parallelism as well as speedup

of the proposed parallel fault simulation approach over a naïve serial simulation without

fault collapsing. For the circuit p35k, the grouping seems to be less effective, possibly

due to a high number of reconvergent fanout fault locations causing a large number of

output cones from distinct fault sites to overlap. Yet, even in case of p35k with an average

group size of 1.9 faults per fault group, almost 50 percent (≈54k) of the simulation runs

can be saved compared to the naïve simulation. On the other hand, circuit p533k has

fewer reconvergences and more mutually data-independent nodes allowing to reduce the

number of overall simulation runs substantially by approximately 99.5 percent with a

fault grouping efficiency of over 219. The runtime of the grouping heuristic for the small

delay fault sets ranged from less than a second to tens of minutes for the million-node

designs [SKH+17], which also includes the fault collapsing. This is a negligible amount of
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11.1 Fault Grouping Results

Table 11.1: Fault collapsing and grouping statistics for small delay faults at logic
level [SKH+17] and parametric faults at switch level [SW19a].

Small Delay Faults Transistor-Level Faults
Circuit(1) Faults Groups(4) eff fsim

(5) Faults Groups(8) eff fsim
(9)

initial(2) collapsed(3) initial(6) collapsed(7)

s38417 80.9k 46.1k 1744 26.5 68.7k 59.5k 2084 28.5
s38584 104.6k 59.5k 2010 29.6 88.0k 75.4k 2610 28.9
b17 215.1k 127.5k 15.6k 8.2 178.3k 150.3k 18.5k 8.1
b19 1.28M 770.1k 36.5k 21.1 1.06M 891.1k 39.6k 22.5
b20 94.6k 58.2k 11.1k 5.2 78.3k 65.7k 12.7k 5.2
b21 99.3k 60.9k 11.2k 5.5 82.1k 68.9k 12.7k 5.4
p35k 221.3k 113.9k 59.7k 1.9 183.6k 158.7k 82.4k 1.9
p45k 203.1k 118.6k 9272 12.8 171.5k 145.6k 13.4k 10.9
p77k 344.3k 205.5k 64.9k 3.2 287.5k 242.7k 72.3k 3.4
p81k 678.0k 380.4k 16.8k 22.7 555.9k 477.1k 20.3k 23.5
p89k 471.1k 266.6k 13.7k 19.4 391.9k 333.1k 16.1k 20.7
p100k 456.1k 275.9k 9272 29.8 383.4k 324.2k 13.4k 24.3
p141k 829.5k 472.6k 42.5k 11.1 695.0k 592.8k 55.8k 10.6
p267k 996.8k 591.9k 9710 61.0 846.2k 716.8k 14.2k 50.6
p330k 1.36M 842.7k 64.1k 13.1 1.15M 969.2k 85.4k 11.3
p418k 2.00M 1.12M 18.6k 60.2 1.68M 1.44M 22.7k 63.6
p500k 2.46M 1.41M 21.3k 66.0 2.05M 1.76M 24.3k 72.3
p533k 3.32M 2.03M 9248 219.8 2.77M 2.33M 10.7k 217.5
p951k 4.62M 2.53M 13.5k 187.9 3.92M 3.40M 20.2k 168.3
p1522k 5.13M 2.94M 65.7k 44.8 4.32M 3.65M 77.8k 47.0
p2927k 7.77M 4.46M 32.3k 137.9 6.49M 5.56M 37.0k 150.1
p3188k 13.73M 8.42M 1.29M 6.5 11.48M 9.72M 524.5k 18.5
p3726k 17.26M 9.88M 159.7k 61.9 14.31M 12.19M 201.8k 60.4
p3881k 16.66M 9.79M 82.1k 119.3 14.04M 12.02M 111.2k 108.1

time that is spent for pre-processing compared to the (dominating) simulation effort that

is required to process the individual groups serially.

As for the switch level parametric fault set (Col. 6–9), the fault collapsing is less efficient,

since fault equivalences are only identified within each individual cell, but not across

different cells. As shown, the amount of faults in the initial fault universe could only

be reduced by an average of 14.9 percent. The grouping heuristic was able to partition

the faults into groups with a grouping efficiency between 1.9 to 217.5 (Col. 9) with an

average efficiency of 48.4 over all circuits. Due to the topological dependencies of all

fault locations involved, the grouping results and the obtained fault grouping efficiencies

of the switch level fault set (Col. 9) are similar to those of the small delay fault set for

the individual circuits. The runtimes of the fault grouping of the switch level fault set are

larger than those for the small delay fault sets [SW19a, SKH+17]. Since more groups have

to be checked for mutual data-independence of the faults, the runtimes now range from
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11 Application: Fault Simulation

seconds to a few hours. Yet, in comparison to the switch level simulation overhead, this

time is still negligible.

11.2 Small Delay Fault Simulation

Table 11.2 compares the fault coverage of both transition fault (TF) and small delay

fault (SD) from spatially-exhaustive fault simulation of the collapsed fault set and the fault

groups from Table 11.1. Given the nominal circuit frequency, the size of the small delay

fault at a particular location is finite and chosen half between the slacks of the longest and

shortest paths through the associated fault site obtained from topological timing analysis.

As test stimuli the ATPG-generated 10-detect transition delay fault pattern sets are used.

In the table, column 2 contains the number of collapsed faults in the fault set under

investigation. All faults are evaluated for all stimuli in the test set, thus, no fault dropping

is used during the process, which allows to obtain detection information for each fault

and every stimuli. Columns 3 and 4 contain the number of detected transition faults (”TD

det.”) as well as the amount of small delay faults (”⊇SD und.”) that have not been

detected at these respective locations. Similarly, the number of total detected small delay

faults (”SD det.”) and the portion of corresponding transition faults (”⊇TD und.”) that

went undetected are reported in column 5 and 6.

As shown in the table, the transition fault coverage (Col. 3) is high in general with

98.2 percent coverage in average for the circuit listed. However, a significant portion

Table 11.2: Fault detection of transition delay (TD) and small delay (SD) faults at same
fault locations [SKH+17].

Circuit(1) Faults Transition (TD) Small Delay (SD)
collapsed(2) TD det.(3) ⊇ SD und.(4) SD det.(5) ⊇ TD und.(6)

s38417 46138 45965 12198 33777 10
s38584 59530 57838 20242 37734 138
b17 127490 124979 60557 64443 21
b19 770082 764557 216023 549854 1320
p35k 113946 111820 39172 72702 54
p45k 118608 118287 34138 84242 93
p77k 205478 188221 78187 110500 466
p89k 266576 264314 95266 169049 1
p100k 275948 274753 66758 208199 204
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11.2 Small Delay Fault Simulation

of small delay faults (up to 48 percent and over 31 percent in average) at the exact

same locations could not be detected, which confirms the well-known fact, that transi-

tion faults over-estimate the small delay fault coverage since the small delays faults are

harder to detect [IRW90]. As expected, the coverage of the investigated small delay faults

(Col. 5) is with 67.2 percent in general much lower compared to the transition faults

[YS04]. Interestingly, there are also numerous cases where a small delay fault (of finite

size) was detected at a fault location, but a corresponding transition fault (with infinite

delay [WLRI87]) went undetected. Here, the small delay faults propagated along recon-

vergent fanout structures, causing glitches to appear at the outputs. Along reconvergent

paths these faults are sometimes only detectable for smaller (finite) fault sizes and only

within a short time window due to test invalidation [FM91]. Although rare, these cases

are especially important for diagnosis purposes, validation and failure analysis to maxi-

mize the diagnostic resolution, thereby emphasizing the importance of fast and accurate

simulation of small delay faults.

11.2.1 Variation Impact

The small delay fault simulation has been evaluated under random variation in a Monte-

Carlo experiment for a population of 100 distinct circuit instances [SKH+17]. In the

experiment, node delays are modeled using a Gaussian distribution N (µ, σ2) with mean µ

set to the nominal node delay dnom and standard deviation σ = 0.2 · µ. The sample time

of the circuit instances has been set to 1.5× of the longest path delay of the nominal

instance avoid excessive timing failures due to close margins. Again, spatially exhaustive

and collapsed small delay fault sets are assumed, with the sizes of the small delay faults

chosen at half of the slack interval based on the nominal instance timing.

Table 11.3 reports the impact of the random variation on the small delay fault detection

compared to the report of the nominal instance simulation. For each circuit, the faults are

classified as either gain types or loss types (Col. 2). In column 3 a fault detection is consid-

ered a gain, if the fault is detected in one of the random instances, but not in the nominal

case. Analogously, a fault detection is loss type, if the fault is detected in the nominal case,

but went undetected in at least one of the random instances. Column 4 through 13 further

categorize all gains and losses based on their impact, or amount of occurrences, through-
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11 Application: Fault Simulation

out the circuit population from occurrences in at least ten percent (Col. 4) to occurrences

in all of the random circuit instances (Col. 13).

As shown, fault detection gains and losses occur for all circuits throughout the entire

circuit population. For example, in circuit s38417 a total of 1802 faults have been reported

as undetected in the nominal case, but were detectable in at least one random instance. The

detection cases stated in each column are super-sets of the cases stated in the columns to

their right. Hence, out of the 1802 gain cases in s38417, 1124 (872) cases occurred in

more than 10 percent (20 percent) of the circuit population instances and so on. Since

the sizes of the faults were chosen according to the nominal instance delays, more faults

showed losses compared to gains. On the other hand, detection gains showed more impact

throughout the entire population, possibly due to hazards and glitches in the nominal

instances which caused the faults to be closely missed.

The variation impact on the fault detection has been observed on almost 10 percent of the

faults in the collapsed fault universe in average over all the circuits which ranges up to

16 percent (circuit s38584). Therefore, in order to properly reason about the small delay

faults as well as their robustness of the detection, variation should be taken into account

during evaluation [SPI+14]. Note, that the runtime of the parallel delay calculation of

each gate negligible [SKH+17], which allows to generate and evaluate many variation

instances in parallel on the GPU without noticable overhead. The commercial solution on

the other hand does not support changes in the delay and the simulation instance must be

reset and newly re-built with instance-specific SDF files for each instance, which results in

costly initialization overhead.

11.3 Switch Level Fault Simulation

To provide reasonable parametric faults for the proposed switch level fault simulation (in

the following referred to as SWIFT [SW19a]), all fault sets were generated from topologi-

cal timing analysis of the netlist. During the process the latest arriving transition time over

all test patterns was extracted for each output and the nominal clock period was extracted

from the highest latest transition time to which a safety margin of 10 percent was added.

Then, all outputs showing transitions with a slack of less than 25 percent were selected
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11.3 Switch Level Fault Simulation

Table 11.3: Fault detection losses and gains in the nominal circuit instance due to random
variation (Monte-Carlo experiment with 100 random circuit instances) [SKH+17].

Circuit(1) Det. Affected Variation Instances (% of Total)
Type(2) >0%(3) >10%(4) >20%(5) >30%(6) >40%(7) >50%(8) >60%(9) >70%(10) >80%(11) >90%(12) all(13)

s38417 gain 1802 1124 872 688 514 358 232 132 50 12 0
loss 3246 1764 930 292 80 6 0 0 0 0 0

s38584 gain 3322 1680 1124 776 444 216 108 62 32 6 0
loss 6392 3792 2720 1762 710 96 2 0 0 0 0

b17 gain 5254 3150 2344 1744 1240 708 404 176 76 28 2
loss 6806 3460 2180 1216 564 164 52 12 0 0 0

p35k gain 3752 2052 1392 980 682 430 258 140 58 26 10
loss 4274 1844 1098 684 448 260 134 64 14 0 0

p45k gain 3068 1928 1452 1068 718 404 158 54 18 8 2
loss 7404 2564 1514 692 264 46 2 2 0 0 0

p89k gain 11532 6242 4486 3162 2040 1042 506 264 136 46 6
loss 16716 7226 4458 1944 798 260 14 4 0 0 0

p100k gain 8838 5662 4134 3074 2130 1120 510 218 102 56 24
loss 10904 5058 3132 1736 660 120 16 0 0 0 0

and traced back to the circuit inputs. Out of all nodes residing in the traced input cones

1000 RRC-cells were randomly selected as fault locations for resistive and capacitive para-

metric faults [SW19a]. To investigate the impact of the parameter size, the faults at each

location were simulated for multiple sizes. Again, as input stimuli the 10-detect transition

delay test set is used and no fault dropping is performed.

11.3.1 Resistive Open-Transistor Faults

In a first experiment, resistive-open faults were assumed at all transistors in the set of

extracted fault locations and switch level fault collapsing and grouping was performed.

Four fault sizes were chosen and simulated at each location: 10kΩ, 50kΩ, 100kΩ and

1MΩ. These fault sizes lie within the range of the conducting and blocking resistance of

the associated transistors, which were extracted from SPICE experiments [ZC06, Nan17].

Fig 11.1 summarizes the detection results for the simulated resistive open faults and shows

the coverage of detected (DT, full strokes) as well as possibly detected faults (PD, dashed

lines) in percent of total for each fault size simulated. The figure is split into two parts,

with the righthand side representing a magnification of the left side 0–5% area for better

comprehensibility. The total number of faults simulated for each fault size is shown above.

The threshold interval [VthL, VthH ] for the PD-classification was chosen with boundaries
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Figure 11.1: Resistive open-transistor fault simulation results for 1000 cells.

VthL := 0.3V and VthH := 0.8V. Faults that are neither shown as DT or PD are considered

as undetected (UD) by the test set.

As shown, faults of size 10kΩ were rarely detected (below 1 percent in average) and are

only shown in the magnified part. Here, the fault effect falls within the range of a few cell

delays only, which is usually covered by the clock margin. Yet, many faults are possibly

detected, which indicate imminent timing violations. For larger fault sizes (50kΩ and

100kΩ) many faults previously being possibly detected turn detectable and even more

faults become visible. As expected, for the largest fault size (1MΩ) investigated, the ratio

of detected faults is the highest. These faults severely impact the timing, but do not affect

the functional behavior of the cells because the fault size is still much lower than the

critical resistance that would turn the fault into a stuck-open transistor [VMG93].

Given the clock margin, the behavior of the 1MΩ faults in time is similar to transition

faults, since all affected signal transitions within the clock interval are being suspended.

Similar to the small delay fault simulation, the average runtime for simulating a fault

group in SWIFT is close to the best-case simulation runtime.

To assess the fault modeling capability of SWIFT, the output signals of faulty RRC-cells are

investigated and compared against electrical simulation. In Fig. 11.2 the output signals of

a two-input NOR-cell before and after injection of parametric faults with varying sizes are

visualized. Initially, the input signals of the cell are set to (high, low), which produces an
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11.3 Switch Level Fault Simulation

initial output of 0V of the cell. Then all inputs are set to (low, low), causing the output

load to charge to 1.1V . Eventually, the inputs are switched to (low, high), which causes

the output load to discharge again to 0V .

In the first case of Fig. 11.2 (a), a resistive open-transistor fault was injected into the

NMOS transistor of the second input the parallel pull-down network, which causes a slow

falling transition upon the second input switch. As expected, the drain current through

the affected transistor becomes smaller for higher ohmic resistances, until the transistor

eventually becomes unable to effectively discharge the load (10MΩ), such that the output

level sustains high. In the second case (b), the faults were injected into the corresponding

PMOS transistor the serial pull-up network. These faults strongly affect affect the rising

transition of the hazard at the output of the cell. The larger the injected fault size becomes,

the slower the output transition is performed and the pull-up network becomes incapable

of charging the output load capacitance in time, before the second input switch occurs.

For the electrical simulation reference (SPICE), the NOR-cell description of the standard

cell library [Nan10] was modified by adding a parameterizable resistor at the drain-pin of

the affected transistor in order to model the open faults. As shown, the behavior of the

faults modeled in SWIFT shows a fairly high similarity compared to SPICE.

11.3.2 Capacitive Faults

Capacitive faults were assumed at each extracted fault location. The fault sizes have been

chosen as multiples of the typical net load average found in the DSPF files from synthesis

(i.e., 10pF for the circuits used). Again, four fault sizes were simulated at each location:

50fF, 100fF, 250fF and 1pF, which are injected into the output load capacitance of the

RRC-cells. As opposed to the previous resistive faults, the capacitive faults were grouped

without performing structural collapsing. The results of the capacitive fault simulation is

summarized in Fig 11.3 similar to the previous figure.

As shown, the fault detections gradually increase for larger fault sizes. For the largest

size (1pF), the faults were either DT or UD for most of the circuits, except for b18 and

p77k. Compared to the others, those circuits have a comparably higher depth and there-

fore larger slacks at the fault locations. Hence, few faults still remain PD.
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Figure 11.2: Behavior of a resistive open-transistor fault in a) NMOS- and b) PMOS-
transistors of a NOR-cell in presence of an input hazard [SW19a].

The fault behavior of the capacitive faults in simulation is visualized in Fig. 11.4. For

any finite fault size, the capacitive faults strongly affect the timing behavior of the cells.

While transitions at the outputs of the cells can be severely slowed, the faults do not alter

the functional behavior (stationary voltage), since the affected output capacitor gets still

charged over the pull-up and pull-down nets and eventually provides the correct output

level after a certain time.

As shown in the figure, the capacitive faults simultaneously affect both rising and falling

transitions at the cell output, which was observed in both SWIFT and SPICE simulations.

Although the fault size is a discrete constant value, the delay deviation introduced by

the capacitive faults can strongly vary in presence of pattern dependent delays, since the

time constant τ that describes the output slope still depends on the driving resistance (cf.
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Figure 11.3: Capacitive fault simulation results for 1000 cells.

Eq. (6.9)). This ”dynamic” fault effect is not captured by conventional logic level time

simulation approaches based on SDF descriptions appropriately, therefore demanding for

evaluation using lower level simulation approaches.

11.4 Summary

In this chapter, both high-level timing-accurate small delay fault simulation at logic level

[SHK+15] as well as low-level parametric fault simulation at switch level [SW16] was

presented. It was shown that conventional and simpler fault models that rely on untimed

simulation, such as transition delay faults [WLRI87], cannot capture the subtle effects of

small gate delay and parametric faults. As a consequence, these untimed models typically

result in a pessimistic overestimation of the fault coverage. With newer technology nodes

and increasing design complexity it has become necessary to cover even smallest delay

deviations as accurately as possible [HIK+14, KKS+15]. Yet, timing-accurate evaluation

involves high computational complexity, which needs to be tackled using data-parallel

GPU architectures.

Both presented high and low-level fault simulation approaches utilize the presented high-

throughput time simulation model with node- and stimuli parallelism in combination with

a fast fault grouping heuristic to exploit additional parallelism from faults. In addition to

the significant speedup of the simulation approaches of up two to three orders of mag-
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a) Rising signal transition affected by capacitive faults.
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Figure 11.4: Behavior of capacitive faults at the NOR-cell output affecting a) a single rising
transition, b) a hazard [SW19a].

nitude, the fault grouping heuristic showed a reduction of the simulation overhead by

98% in average compared to a naïve serial simulation of faults. Therefore the presented

approaches enable exhaustive fault simulation without the need of fault dropping even

for larger designs. In addition, instance-parallelism was exploited in Monte-Carlo exper-

iments allowing to investigate and compare the impact of random variation on the fault

detection in detail [SKH+17, SW19a] which is important for fault grading and variation-

aware test pattern generation [SPI+14].
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Chapter 12

Application: Power Estimation

In this chapter, the presented high-throughput time simulation (cf. Chapter 5) is used to

analyze the circuit switching activity for the application in power estimation.

Excessive power consumption from non-functional switching activity can lead to reliability

issues (such as high thermal design power and IR-drop) when not considered during func-

tional operation and test [YYHI12, WYM+05, WMK+08]. Typical validation approaches to

tackle power-related problems often rely on untimed (zero-delay) logic simulation, since

full timing-aware simulation has a high runtime complexity. However, untimed simulation

misses the switching activity caused by hazards and glitches in the designs and therefore

cannot deliver accurate results.

The presented high-throughput GPU-accelerated parallel timing simulation allows to re-

veal the full switching activity including hazards and glitches with unprecedented simu-

lation speed. In the following, a comprehensive analysis of the switching activity in the

circuits is performed, by comparing results from untimed and timing-accurate simulation

to emphasize the necessity of more accurate simulations.

12.1 Circuit Switching Activity Evaluation

Fig. 12.1 summarizes the switching activity results of the benchmark circuits for the pro-

vided 10-detect transition fault test pattern set. Each node evaluation corresponds to the

computation of a waveform or a given test stimuli which is considered a simulation case.

All simulation cases were categorized based on the transition count tc of the respective
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12 Application: Power Estimation

signal waveforms. The categories are divided into glitch-free cases comprised of static

constant signals with tc = 0 and robust single transitions with tc = 1, signals with glitches

comprising static-0 and static-1 glitches with tc = 2 as well as dynamic glitches with mul-

tiple transitions for tc > 2. The percentage of the occurrences with respect to the overall

node evaluations are given in parentheses.

Roughly 50 percent of the overall node evaluations show constant signals without any

transitions. The static-0/1 and dynamic glitches make up almost 20 percent of the overall

cases in average for all the circuits investigated. For these cases, untimed logic level simu-

lation will report either zero switching activity (for all static cases and dynamic cases with

even transition count and tc > 0) or a single transition (dynamic cases with odd transi-

tion count and tc > 2 only), as only the information of the initialization and propagation

vector responses are available.

As shown, the glitch-accurate timing simulation results reveal a large gap between un-

timed simulation. This difference in the computed switching activity information can

have severe impact on the results of power-related applications as shown in the following.

12.1.1 Weighted Switching Activity for Power Estimation

The weighted switching activity (WSA) of a circuit and a given test stimuli set was cal-

culated as a measure for estimating test power consumption [GNW10, YYHI12]. In this

work, the WSA wsa(n, p) corresponding to a node n and test stimuli p was computed as

wsa(n, p) := tcn,p · fanout(n), (12.1)

where tcn,p is the transition count of the obtained waveform at the node in the timing-

accurate simulation of the stimuli and fanout(n) is the number of direct successor nodes

in the fanout of n.

The resulting WSA values were compared for both untimed and timing-accurate simu-

lation of the generated 10-detect stimuli test set [HSW+16]. Fig. 12.2 shows the WSA

average difference (∆avg .) from timed and untimed simulation per stimuli as well as the

maximum difference (∆max .) observed among all stimuli applied.
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Figure 12.1: Switching activity in waveforms obtained by timing-accurate logic level sim-
ulation classified as constant signals (tc = 0), single transitions (tc = 1), static (tc = 2)
and dynamic glitches (tc > 2). The total amount of simulation cases is given by Σ.

As shown, the average WSA difference obtained from timing-accurate simulation exceeded

130 percent per stimuli in average over all circuits. For circuit p3726k this difference

is even as high as 454.6 percent mainly because of reconvergent signal propagation in

the circuit. As for the maximum WSA difference of the applied test stimuli, the average

over all circuits exceeds more than 200 percent with a global maximum of 857.5 percent

difference for circuit p77k. Thus, in order to obtain reasonably accurate results a timing-

accurate evaluation is mandatory.

12.1.2 Distribution of Switching Activity

Fig. 12.3 illustrates the distribution of switching activity over time after each test pattern

has been applied. The time interval (x-axis) of the evaluation has been chosen with respect

to the latest stabilization time of each circuit. The interval was divided into 32 equidistant

slices in each of which the time-slice evaluation kernel was called to count the signal

events contained. The resulting distribution of the events is shown on the left y-axis

(stroked lines), which is given in percent with respect to the overall event count in the

circuit. The right y-axis (dashed lines) indicates the cumulative distribution of the events

until including each time slice.
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Figure 12.3: Distribution of the switching activity in a time-sliced evaluation over a clock
interval with 32 slices [HSW+16].

As shown, for all the circuits more than 50% of the overall events do occur within the first

five time slices of the clock interval. After that, most signals stabilize and little switching

activity sustains mostly only in the regions of the longest paths. This emphasizes that

power should be determined with higher granularity rather than averaging over clock

intervals, since accurate peak power information is especially important for IR-drop anal-

yses [YYHI12, JAC+13] and power-related test applications [AWH+15].

12.1.3 Correlation of Clock Skew Estimates

In the following, the difference between the use of timing-accurate and untimed (zero-

delay) simulation for estimating the impact of regional switching activity on the clock

190



12.1 Circuit Switching Activity Evaluation

distribution was investigated. Fig. 12.4 shows an example of a scan chain of three scan

flip flops (SFFs) in a circuit with a part of the clock distribution tree in the lower section.

The clock distribution tree forwards the global clock signal from a clock pin along branches

of clock buffers to the clock inputs clk of the individual SFFs in the scan chain. During scan

shift cycles, when the clock signal reaches a SFF, the SFF copies the state of its predecessor

from the value at its own input and forwards it to the input of the succeeding element in

the chain as well as to the functional logic paths. During the shift, the state changes of

all scan flip flops cause switching activity at aggressor nodes along the functional logic

paths of the circuit. This switching activity is assumed to cause delays of the clock signals

associated to the SFFs due to IR-drop which eventually might lead to scan-shift errors. In

the following, the experiment will be briefly described, a more detailed description of the

setup and the modeling is given in [HSK+17].

Any clock bufferB in the clock distribution tree will experience an extra delay wsa_imp(B)

that is expressed as a function of the sum of the weighted switching activity (WSA) caused

by its surrounding nodes [HSK+17]. These so-called aggressor nodes represent all cells

in the layout that fall within a specified range of the clock buffer, each of which can be

weighted by an influence factor. The overall delay impact imp(i) :=
∑

B∈P wsa_imp(B)

on the clock distribution to a SFF i then modeled as the sum of the extra delays of each

individual clock buffer B ∈ P on the path P from the global clock pin to the clock input clk

of the associated SFF. For a given shift cycle, the skew between two consecutive SFFs (i−1)

and i in the scan chain is then estimated by computing the difference of the delay impact

of both SFFs [HSK+17] using

skew(i) := imp(i)− imp(i− 1), (12.2)

where SFF i is the receiving and SFF (i − 1) is the sending scan flip-flop. In case the

computed skew(i) has a large positive (negative) value, the clock delay of the receiving

flip-flop is assumed higher (lower), which might eventually cause hold-time (setup-time)

violations leading to scan-shift errors. If the skew estimate is close to zero (skew(i) ≈ 0),

the clock distribution to both flip-flops SFF i and SFF (i − 1) is assumed to be evenly

balanced [HSK+17].
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Figure 12.4: Clock-skew in the clock tree caused by accumulation of unbalanced regional
switching activity in the circuit.

For the experiments, a commercial synthesis flow was used to synthesize the ITC’99 bench-

mark designs down to layout using the Synopsys SAED 90nm library [GBW+09] and a

commercial ATPG tool was used to generate transition fault test patterns. From the layout

data, the clock tree was extracted with all nodes of aggressor regions for each clock buffer

in the design leading to scan flip-flops. Based on this, the skew estimate was calculated

for all shift cycles required to process the generated test pattern sets. Details about the

synthesis and simulation results as well as the algorithm can be found in [HSK+17].

Fig. 12.5 illustrates the correlation of the obtained skew estimate from timing-accurate

and untimed (zero-delay) simulation at logic level for circuit b14. While the x-axis shows

the computed skew of a scan flip-flop obtained from a simulation with full timing informa-

tion (including all static and dynamic hazards) and the y-axis shows the respective result

from untimed simulation (without information about hazards). The evaluation was per-

formed for 406 test stimuli applied within 87,505 shift cycles, which resulted in roughly

13.7 million update events out of which 3.0 million showed non-zero skew [HSK+17].

The color of each point in the graph indicates the number of simulation cases (log-scale)

that occurred with the associated correlation. The point at (0, 0) has been omitted in order

to improve visibility. As shown in the example of circuit b14, some of the cases show a

very high skew in the timing simulation, while they have close to zero skew in the un-

timed simulation. Any setup- and hold-time violations associated with these cases hence

go undetected in the untimed evaluation [HSK+17]. Vice versa, any simulation case that
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Figure 12.5: Correlation of the computed skew from timing-accurate (x-axis) and untimed
(zero-delay, y-axis) simulation for circuit b14.

shows a high skew in the untimed but zero skew in the timing-accurate simulation, might

over-estimate the presence of violations.

Similarly, Fig. 12.6 shows the skew correlation for circuit b18. Note, that the general

number of simulation cases is much larger. For b18, 1563 test stimuli were applied in

4,319,768 shift cycles. During the shifts, 9.23 billion update events were evaluated for

the scan flip flops out of which 1.68 billion showed non-zero skew [HSK+17]. Although

many simulation cases are also clustered along the diagonal indicating a high correlation,

many simulation cases show near to zero skew in untimed simulation while in the skew

obtained from timing-accurate simulation is spread in a broader fashion.

Hence, static and dynamic hazard-aware timing-accurate simulation is crucial for more

accurate estimations of IR-drop and the clock skew [HSK+17]. However, without the help

of GPU-acceleration and the possible high-throughput parallelization with up to three

orders of magnitude speedup, obtaining and evaluating such a vast amount of data points

would be infeasible for these large designs, due to the high runtime complexity of the

mandatory timing simulation.
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Figure 12.6: Correlation of the computed skew from timing-accurate (x-axis) and untimed
(zero-delay, y-axis) simulation for circuit b18.

12.2 Summary

Fast timing-accurate simulation at logic level is crucial for accurate validation of the circuit

timing as well as many power-related applications. For these applications, the proper cap-

turing of glitches and hazards provides detailed insights of the internal switching behavior

and contributes to a large portion to the overall simulation accuracy [HSK+17, HSW+16].

The experiments have shown that glitches and hazards occur frequently in the investigated

circuits, whose impact on the simulation results cannot be captured using traditional un-

timed (zero-delay) logic level simulation approaches.
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Chapter 13

Application: Multi-Level Simulation

This chapter evaluates the multi-level simulation approach presented in Chapter 8 similar

to [SKW18, SW19b] and further investigates the proposed high-throughput simulation in

terms of scalability and simulation efficiency.

In order to evaluate the multi-level simulation, the used benchmark designs have been

simulated for varying mixed-abstraction scenarios with different amounts of active regions

of interest (ROIs). Throughout the experiments, only single nodes are considered as ac-

tivation points for ROIs. For each node in the circuit, both logic level description and

switch level description are available. As input stimuli, the well-known ATPG-generated

10-detect transition delay test set is used.

13.1 Multi-Level Simulation Runtime

Fig. 13.1 summarizes the simulation performance of the multi-level simulation for the

different circuit sizes. On the left side, the simulation throughput in MEPS is reported,

while the right side presents the average time (milliseconds) spent per pattern pair.

As shown, the multi level simulation achieved more than 1000 MEPS for a full logic level

simulation with 740 MEPS in average. The peak simulation throughput for simulations

at full switch level was 174 MEPS with an average of over 132 MEPS for all circuits

investigated, thereof being roughly one magnitude slower compared to the logic level

case. Regarding the average per-pattern runtimes, the simulation times ranged from less

than 0.1ms to 25ms for the largest design investigated. As indicated by the trend lines,
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Figure 13.1: Multi-level simulation throughput in MEPS (left) and average simulation
time per stimuli (right) for different ROI scenarios [SW19b].

the average runtimes per pattern scale with the size of the circuit, while the throughput

performance shows a constant trend since the GPU is already fully utilized.

As shown, the observed runtimes of the multi-level timing simulation range from 20ms (for

circuit s38417) up to 10 minutes (p3874k). Also, for the medium-sized circuits the simu-

lations were finished within few seconds only. For all experiments, the obtained runtimes

were faster than the commercial event-driven solution.

However, compared to the native logic level simulation (cf. Table 10.1), a full logic level

simulation using the mixed-level abstraction simulator was observed to be 40 percent

slower in average. One explanation is the overhead of the additional checks for abstrac-

tion types as well as the waveform conversion mechanics during simulation. As a second

reason for the runtime increase in logic level simulation is the increased amount of multi-

processor registers determined by the compiler, that are required by the evaluation kernel

threads. In contrast to the pure logic level simulation with 47 processor registers re-

quired per execution thread, the mixed-abstraction level simulation needed 86 registers

per thread, which is as much as the evaluation kernel in the switch level simulation. As

a consequence, the thread block dimensions of the kernel had to be adapted, which also

lowered the thread-group occupancy1 of the streaming multi-processors [NVI18b]. Yet, for

the million-node designs the average runtimes of the simulators deviate by approximately

2 percent, thus being virtually equal.

1Obtained from CUDA Occupancy Calculator (Version 7.5) [NVI17a].
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13.2 Multi-Level Trade-Off

As for the full switch level simulation, the mixed-abstraction implementation showed to

be 5 percent slower in average compared to its native counterpart (cf. Table 10.2). For the

million node-circuits, the average runtimes in the mixed-abstraction simulator were even

reported to be 2 percent faster. Hence, at this magnitude the overhead can be considered

as negligible, since it falls within the range of the random runtime fluctuations.

13.2 Multi-Level Trade-Off

With the mixed abstraction descriptions, the multi-level simulation allows for a flexible

trade-off in simulation efficiency based on the amount of active ROIs. In the following,

the efficiency of multi-level simulation is investigated for mixed switch and logic level

scenarios.

13.2.1 Speedup

In Fig. 13.2 the left y-axis illustrates the speedup of the multi-level simulation over the

unparallelized commercial event-driven solution for all circuits and ROI scenarios in more

detail. The logic level simulation speedup ranges from 155× to over 1600×, while the

speedups of the switch level simulation are between 33× (s38417) and 314× (p3726k).

In general, the obtained speedups tend to be higher for larger circuit designs since the

available computing resources on the GPUs can be better utilized. The red line is associ-

ated with the right y-axis of the figure, which indicates the ratio of the speedups obtained

from full switch level simulation to full logic level simulation in the multi-level simulator.

As shown the ratio ranges from 3× up to 8× with an average of 6× for all circuits.

13.2.2 Runtime Savings

In the following, the runtime savings of the multi-level simulation are investigated. For

each ROI a single node location is assumed. In each simulation run ROIs are activated

at random nodes in the circuit. The corresponding multi-level simulation scenario x :=

|#active_ROIs|/N ∈ [0, 1] is thus determined by the fraction of active ROIs among the

N circuit nodes which ranges from full logic- (zero nodes x = 0) to full switch level

simulation (all nodes x = 1). Thus, given a certain ROI-scenario x, the respective savings
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Figure 13.2: Multi-level simulation speedup (left-axis) and Full-Switch-to-Full-Logic
level (S/L) simulation speedup ratio (right axis) [SW19b].

are calculated as

savings(x) := 100% ·
(

1− TML(x)

Tswl

)
, (13.1)

where TML(x) ∈ R corresponds to the mixed-abstraction simulation and Tswl := TML(1) ∈

R corresponds to the respective reference runtime of the full switch level simulation.

Fig. 13.3 illustrates the savings in runtime for the mixed-abstraction simulation compared

to a full simulation at switch level. The x-axis represents the different ROI scenarios with

decreasing amount of active low-level nodes. The runtime savings savings(x) are given in

percent on the y-axis for different mixed-abstraction scenarios x.

As shown, the achieved runtime savings scale linearly with the active number of ROIs

between the full switch and full logic level scenario. The average savings of the mixed-

abstraction simulations range from 20 percent with 75 percent of active nodes to over

70 percent in the single active node case in average. Yet, for certain simulation tasks,

such as timing validation, a sparse activation of ROI nodes is already sufficient. For small

amounts of ROIs, the runtime savings fluctuate based on the random location chosen.

Especially for the smaller circuits s38417 and s38584 these fluctuations showed a higher

runtime impact, due to an increasing overhead for the generation and propagation of

waveforms with grown complexity.

Given a mixed-abstraction simulation scenario x ∈ [0, 1] as described above, the effi-

ciency of the multi-level simulation eff ML(x) will be described according to Eq. (8.1)

with the targeted-abstraction reference simulation time corresponding full switch level
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Figure 13.3: Runtime savings of the multi-level approach compared to a full switch level
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simulation Tswl . Hence, the resulting formula represents to the speedup of the multi-level

approach over a full switch level simulation.

In [SKW18], an experiment was performed in which ROIs were activated on nodes along

circuit paths with a slack of less than 20 percent of the nominal delay. The resulting

amount of active ROIs in each circuit ranged from as little as 0.08 percent (p3881k) up to

48.5 percent (p35k). In average only 9.9 percent of the nodes in each circuit needed to

be activated for the simulation at switch level during the timing validation, while in more

than 50 percent of the cases the portion of nodes that needed to be activated was only

6.7 percent. Especially for all the million-node designs, the ratio of ROI activation was

less than 1 percent. Therefore, the application greatly benefits from the runtime savings

of the sparse ROI activation in the mixed-abstraction simulation [SKW18].

13.2.3 Simulation Efficiency

The implemented multi-level simulation approach allows to gain additional efficiency dur-

ing parallel fault simulation of a grouped fault set through sparse simultaneous ROI ac-

tivation. Fig. 13.4 shows the distribution of the sizes of the fault groups obtained in

Table 11.1-Col. 9 as well as the cumulative count of faults processed with respect to the

collapsed switch level fault set [SW19a].
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The early leftmost groups contain the most faults, most of which are located directly

or close to the circuit outputs. These faults have a high probability of mutual output-

independence, since each output itself is output-independent to others, and the output

cones of fault sites in these regions are small. By processing 25 percent of the overall fault

groups in simulation, already 90 percent of the total faults in each circuit can be evaluated.

As the grouping progresses, the fault groups get smaller due to increasing overlap of the

output cones of the fault sites. For the first 50 percent of the fault groups at least ten faults

are processed in average per group. The sizes of the fault groups following after drop to

a few faults only. The faults of these groups are typically associated with locations along

the structurally longest paths, which cannot be grouped efficiently, since the faults have

a high probability of sharing common outputs. Yet, the size of each of the obtained fault

groups was always less than 10% of the nodes in the respective circuits.

In this work, a single-fault-single-ROI activation is assumed, where single node ROIs are

activated at all fault locations of the fauls in a fault group. The efficiency of a multi-level

fault simulation using the mixed abstraction simulator now becomes evident from the

runtime savings of the ROI-scenario previously shown in Fig. 13.3. For each fault group,

the savings obtained in the mixed abstraction simulation generally correspond to the sav-

ings obtained from the simulation of the corresponding ROI-scenario of the same sparsity.

This is due to the fact that the fault injection scheme itself introduces no additional costs

[SKH+17, SW19a], while the transfers of the node descriptions of the active ROIs needs

to be performed nonetheless.
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13.3 Summary

The multi-level fault simulation efficiency (eff MLfsim) for processing a grouped fault set F

is then defined enclosed as

eff MLfsim(F) :=
1

|F|
·
∑

FGi∈F

(
eff ML

(
|FG i|
N

))
, (13.2)

where |F| the size of the fault set in fault groups, and |FG i| the size of the i-th fault group

in number of faults contained over the size N of the circuit in number of nodes. Hence,

with the number of ROIs needed to be activated for each fault group being less than 10%

of the circuit nodes, average savings ranging from 60% for the larger and 70% for the

smaller groups (i.e., down to a minimum of 1 fault) are possible.

13.3 Summary

This chapter investigated the simulation performance and simulation efficiency of mixed-

abstraction scenarios in the presented multi-level timing simulator [SKW18].

The simulator uses switch- and logic-level descriptions concurrently for a flexible trade-off

in terms of simulation speed and accuracy. The abstraction of the design is lowered on de-

mand in so-called regions of interest (ROIs), by swapping the associated node descriptions.

Multi-level waveform data structures and waveform transformations allow for simultane-

ous use of switch and logic level waveforms at the same time throughout the evaluation

of the circuit. Experiments showed runtime savings of over 80 percent while using the

mixed-abstraction simulation compared to full evaluation at switch level.

The multi-level simulation allows designers to validate their specific designs with the de-

sired timing-accuracy at lower levels in a higher-level environment independent of the

availability and accessibility of low-level implementations of the other parts in the system.

Also, the use of mixed-abstractions during simulation allows for highly efficient and flex-

ible low-level fault simulation by activating ROIs for providing low-level injection points

for parametric faults. This way a more efficient and faster evaluation is enabled, allowing

to aid in everyday design and test validation tasks.
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Conclusion

The simulation of circuits as well as of faults therein is an essential tool in today’s design

and test validation tasks of nano-scaled integrated digital CMOS circuits. The increasing

proneness to manufacturing process variations and the growing complexity of low level

parametric and parasitic defect mechanisms of the steadily shrinking technology nodes

severely tamper with the performance and the reliability of the designs. Thus, thorough

validation under consideration of accurate timing has become a necessity, not only to

validate the functional performance, but also to investigate switching-activity-related non-

functional properties and to observe the impact of variation on faults. Yet, conventional

timing simulation even at logic level is a compute-intensive task.

Data-parallel graphics-processing unit (GPU) hardware accelerators provide a large array

of multi-processing cores and are able to process thousands of threads concurrently. With

the enormous computing throughput in the teraFLOP-range on a single die, affordable

high performance computing for scientific applications is enabled, which has already been

utilized to accelerate many EDA applications.

In this thesis, highly parallel simulation models were developed that enable fast and ef-

ficient timing-accurate simulation of digital CMOS designs on GPU architectures. During

simulation, parallelism is exploited from nodes, stimuli, faults and circuit instances under

variation instances to maximize the simulation throughput. The presented modeling was

applied to logic level, which enabled fast and timing-accurate simulation of small delay

faults under variation with access to full signal switching histories. Furthermore, the mod-

eling was applied to switch level to provide a more accurate modeling of the functional

and time behavior of CMOS-cells based on first-order electrical effects as well as to enable

low-level parametric fault simulation.
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Conclusion

Experimental results have shown speedups of two to three orders of magnitude over a

commercial event-driven time simulation at logic level, and showed that the presented

method scales for million node designs. Ultimately, additional simulation efficiency was

achieved by utilizing multi-level fault simulation on the GPU with mixed-abstraction sce-

narios with variable trade-off in simulation speed and modeling accuracy.

Ongoing and Future Research

Accurate timing simulation allows for a large variety of applications and can support the

development of novel test schemes and algorithms for evaluation of functional and non-

functional design aspects.

Delay faults and low-level parametric fault models can be explored to guide and validate

test-pattern generation [EFD07, ED12, SCPB12] under consideration of parameter vari-

ations [CIJ+12, SPI+14]. The evaluation of delay deviations can be used to investigate

aging mechanisms and techniques for performance monitoring, early-life and wear-out

failure prediction [LGS09, KCK+10, LKW17] and recently FAST [HIK+14, KKS+15].

The high-throughput time simulation on GPUs allows to execute large-scale power simu-

lations for guiding test schemes to ensure high test reliability and confidence [HSK+17,

HSW+16]. Regions with excessive switching activity can be effectively identified [ETD10,

DED+17b] that might otherwise exceed the power specifications of the design, and ef-

ficient IR-drop simulations can be implemented [YYHI12, MSB+15] that heavily rely on

switching activity information. The impact of these non-functional properties on the func-

tional properties could be investigated in a closed-loop to provide more accurate results.

Further applications can be explored in the area of circuit debug and diagnosis. Here,

extensive simulation can be utilized to investigate machine-learning supported fault clas-

sification approaches [RGW16] in combination with location-based diagnosis [HW07] for

a better understanding of faulty syndromes and quick identification of their root-causes.

The ongoing development of current GPU architectures (upcoming NVIDIA V100 GPU with

more than 5000 cores [NVI17d]) provides a promising foundation for exploring larger

simulation problems and more complex evaluations. The dimensions of parallelism can be

extended (e.g., execution of test-programs or tasks in parallel), such that new application

can benefit from more and individual dimensions to achieve the best speedup.
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Appendix A

Benchmark Circuits

An overview of all the benchmark circuits considered throughout the evaluation is given

in Table A.1.

In the table, the first two columns list the name of the benchmark set as well as the

name of the circuit design. The size of the circuit in total number of nodes (cells and

input/output pins) after synthesis is given in the third column. The number of input

and output nodes (primary and pseudo-primary) are listed separately in column 4 and 5.

In the sixth column, the maximum combinational depth of the circuit is shown, which

corresponds to number of levels in the topologically ordered netlist. The last column

provides the number of test pattern pairs that have been applied to the benchmark circuits,

except where otherwise mentioned.

For the test patterns, n-detect transition delay test pattern pairs were chosen (n = 10),

which are commonly used for timing-related applications and delay fault simulation that

depend on switching activity in the circuit. These pattern sets have been generated for the

circuits using a commercial automated test pattern generation (ATPG) tool. The transition

fault coverages of the obtained test sets are shown in the last column (”TF-Cov.”). For all

the circuits listed, the transition fault coverage was over 99.6% in average.
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A Benchmark Circuits

Table A.1: Benchmark circuit and test set statistics.

Circuit Nodes Comb. Test Set Stimuli
Benchmark(1)

Name(2) Depth(6) Pattern- TF-
Total(3) Inputs(4) Outputs(5) Pairs(7) Cov.(8)

ISCAS’89 s38417 19.0k 1664 1742 48 348 100.0%
s38584 23.1k 1464 1730 70 563 99.80%

ITC’99

b14 9506 277 299 79 904 100.0%
b17 42.8k 1452 1512 120 2135 99.11%
b18 125.3k 3357 3364 195 3174 99.91%
b19 250.2k 6666 6713 203 4651 99.69%
b20 18.4k 522 512 88 1097 99.89%
b21 19.3k 522 512 88 1154 99.94%
b22 27.8k 767 757 88 1190 99.90%

NXP

p35k 48.0k 2912 2229 74 4096 99.92%
p45k 44.1k 3739 2550 57 2417 99.93%
p77k 70.5k 3487 3400 466 1979 95.61%
p81k 138.1k 4029 3952 51 795 99.95%
p89k 97.5k 4632 4557 85 2460 99.99%
p100k 96.2k 5902 5829 108 2809 99.85%
p141k 178.1k 11290 10502 79 2043 99.85%
p267k 218.4k 17332 16621 55 3181 99.98%
p330k 286.9k 18010 17468 61 5928 99.93%
p418k 440.3k 30430 29809 174 3676 99.96%
p500k 527.0k 30768 30840 179 5012 99.69%
p533k 676.6k 33373 32610 112 3417 99.87%
p951k 1.09M 91994 104714 153 7063 99.84%
p1522k 1.09M 71392 68035 508 17980 99.90%
p2927k 1.67M 101844 95159 388 22107 99.36%
p3188k 2.85M 154897 143393 618 26502 99.27%
p3726k 3.56M 160485 147660 438 15512 98.99%
p3847k 2.96M 179316 174149 913 31653 99.21%
p3881k 3.69M 242983 294796 178 12092 99.82%
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Appendix B

Result Tables

The following pages contain additional tables with detailed raw simulation data obtained

from the performed experiments.

Logic Level Switching Activity Results

Table B.1 investigates the switching activity of the benchmark circuits for the provided

10-detect transition fault test pattern set as summarized in Fig. 12.1.

Column 2 (”Node Evals.”) shows the total number of node evaluations of the circuit

(#nodes ×#stimuli). Each node evaluation corresponds to the computation of a wave-

form at a node for a given test stimuli. The resulting simulation cases were categorized

based on the transition count tc in the respective signal waveforms obtained. The num-

ber of total occurrences in each category have been summarized in column 3 through 6.

The categories are divided into glitch-free cases comprised of static constant signals with

tc = 0 (Col. 3) and robust single transitions with tc = 1 (Col. 4), signals with glitches com-

prising static-0 and static-1 glitches with tc = 2 (Col. 5) as well as dynamic glitches with

multiple transitions for tc > 2 (Col. 6). The percentage of the occurrences with respect to

the overall node evaluations are given in parentheses.

Weighted Switching Activity Results

Table B.2 compares the WSA values from both untimed and timing-accurate simulation

with the generated 10-detect stimuli test set as summarized in Fig. 12.2.
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Table B.1: Characterization of the switching activity from each waveform obtained during
timing-accurate simulation at logic level.

Node- Simulation Cases
Circuit(1)

Evals.(2) Glitch-Free with Glitches
Static(3) Transition(4) Static(5) Dynamic(6)

s38417 6.61M 3.27M (49.5%) 2.65M (40.0%) 498.5k (7.5%) 194.5k (2.9%)
s38584 12.98M 7.26M (55.9%) 4.65M (35.8%) 855.7k (6.6%) 210.4k (1.6%)
b14 8.59M 3.96M (46.0%) 2.29M (26.6%) 1.28M (14.9%) 1.07M (12.5%)
b17 91.33M 59.47M (65.1%) 20.91M (22.9%) 6.25M (6.8%) 4.70M (5.1%)
b18 397.72M 252.95M (63.6%) 84.30M (21.2%) 26.93M (6.8%) 33.54M (8.4%)
b19 1.16B 740.70M (63.6%) 245.37M (21.1%) 78.22M (6.7%) 99.54M (8.6%)
b20 20.17M 8.87M (44.0%) 5.37M (26.6%) 3.01M (14.9%) 2.92M (14.5%)
b21 22.22M 9.87M (44.4%) 5.89M (26.5%) 3.32M (14.9%) 3.15M (14.2%)
b22 33.14M 14.72M (44.4%) 8.76M (26.4%) 4.90M (14.8%) 4.76M (14.4%)
p35k 196.60M 104.69M (53.3%) 73.61M (37.4%) 13.96M (7.1%) 4.34M (2.2%)
p45k 106.58M 59.88M (56.2%) 35.01M (32.8%) 7.81M (7.3%) 3.88M (3.6%)
p77k 139.57M 75.92M (54.4%) 37.99M (27.2%) 9.19M (6.6%) 16.48M (11.8%)
p81k 109.78M 62.84M (57.2%) 34.66M (31.6%) 7.30M (6.6%) 4.98M (4.5%)
p89k 239.96M 148.44M (61.9%) 70.76M (29.5%) 14.44M (6.0%) 6.32M (2.6%)
p100k 270.15M 150.11M (55.6%) 81.18M (30.0%) 23.80M (8.8%) 15.05M (5.6%)
p141k 363.78M 193.49M (53.2%) 119.19M (32.8%) 32.18M (8.8%) 18.93M (5.2%)
p267k 694.84M 390.26M (56.2%) 238.76M (34.4%) 46.90M (6.7%) 18.93M (2.7%)
p330k 1.70B 876.46M (51.5%) 562.45M (33.1%) 152.17M (8.9%) 109.68M (6.4%)
p418k 1.62B 935.28M (57.8%) 524.80M (32.4%) 104.88M (6.5%) 53.51M (3.3%)
p500k 2.64B 1.45B (55.0%) 780.44M (29.5%) 200.70M (7.6%) 207.50M (7.9%)
p533k 2.31B 1.15B (49.7%) 750.15M (32.4%) 211.67M (9.2%) 201.47M (8.7%)
p951k 7.70B 4.21B (54.7%) 2.67B (34.7%) 479.95M (6.2%) 336.07M (4.4%)
p1522k 19.57B 11.61B (59.3%) 5.83B (29.8%) 1.21B (6.2%) 918.60M (4.7%)
p2927k 36.97B 19.92B (53.9%) 11.63B (31.4%) 2.99B (8.1%) 2.44B (6.6%)
p3188k 75.56B 43.54B (57.6%) 20.48B (27.1%) 6.00B (7.9%) 5.53B (7.3%)
p3726k 55.25B 33.03B (59.8%) 12.37B (22.4%) 4.15B (7.5%) 5.70B (10.3%)
p3881k 44.64B 24.69B (55.3%) 13.96B (31.3%) 3.15B (7.1%) 2.84B (6.4%)

The total WSA obtained over all stimuli in the test set are given in column 2 for untimed

and column 3 for timing-accurate simulation, respectively. Column 4 (”∆avg .”) shows the

average difference of the computed WSA values from timed and untimed simulation per

stimuli. The maximum difference observed among all stimuli applied is listed in the last

column (”∆max .”).

Resistive Open Transistor Fault Simulation Results

Table B.3 summarizes the detection results of the simulated resistive-open fault simulation

shown in Fig. 11.1.

A total of four different fault sizes ∆Rf were investigated throughout the experiment:

10kΩ, 50kΩ, 100kΩ and 1MΩ. The number of faults of the simulation is given in column 2.
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Table B.2: Weighted Switching Activity (WSA) from untimed (zero-delay) and timing-
accurate simulation at logic level in comparison.

Total WSA Per Stimuli
Circuit(1) WSA Difference

Untimed(2) Timed(3) ∆avg .(4) ∆max (5)

s38417 4.32M 6.17M +42.5% +62.9%
s38584 7.96M 10.51M +31.4% +50.1%
b14 5.36M 14.50M +170.3% +389.8%
b17 42.56M 86.46M +102.8% +201.7%
b18 187.86M 672.53M +257.7% +393.1%
b19 548.25M 1.86B +239.1% +338.8%
b20 12.93M 37.32M +188.4% +328.8%
b21 14.17M 40.58M +186.2% +341.8%
b22 21.10M 60.91M +188.4% +301.3%
p35k 118.23M 167.28M +41.4% +68.7%
p45k 61.30M 97.74M +59.9% +157.9%
p77k 82.59M 383.59M +362.8% +857.5%
p81k 61.22M 103.00M +68.1% +98.7%
p89k 131.87M 186.11M +41.0% +73.9%
p100k 157.18M 296.76M +88.8% +148.0%
p141k 217.97M 379.76M +74.0% +104.5%
p267k 403.05M 593.48M +47.1% +69.5%
p330k 1.06B 2.01B +90.6% +109.8%
p418k 903.24M 1.43B +58.2% +74.1%
p500k 1.49B 3.61B +142.8% +184.4%
p533k 1.54B 3.34B +118.0% +162.8%
p951k 4.40B 7.35B +66.8% +83.6%
p1522k 10.86B 21.71B +100.0% +149.3%
p2927k 20.80B 45.54B +119.0% +143.1%
p3188k 40.94B 92.69B +126.8% +181.9%
p3726k 26.16B 145.07B +454.6% +482.4%
p3881k 25.72B 53.77B +109.1% +135.8%

The total runtime as well as the average simulation runtime per group for processing the

four fault sets for all provided test stimuli are presented in column 3 and 4. Column 5

and 6 report the number of cases of detected (DT) and possibly detected (PD) faults for the

fault size of 10kΩ. Similarly, the detection results for the sizes 50kΩ, 100kΩ and 1MΩ are

given in column 7 to 8, 9 to 10 and 11 to 12, respectively, The percentage of the detection

cases with respect to the number of simulated faults is given below.

Capacitive Fault Simulation Results

The results of the capacitive fault simulation as shown in Fig. 11.3 is summarized in

Table B.4 similar to the previous Table B.3. Again a total of four fault sizes ∆Cf were

investigated: 50fF, 100fF, 250fF and 1pF.
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Table B.3: Resistive open-transistor fault simulation results for max. 1000 cells [SW19a].

Faults Runtime Fault Size (∆Rf )
Circuit(1)

collapsed(2) 10kΩ 50kΩ 100kΩ 1MΩ

Total(3) Group(4) DT(5) PD(6) DT(7) PD(8) DT(9) PD(10) DT(11) PD(12)

s38417 2259×4 2:29m 85ms 130 140 1434 230 1890 45 2199 0
(5.8%) (6.2%) (63.5%) (10.2%) (83.7%) (2.0%) (97.3%) (0.0%)

s38584 619×4 1:48m 97ms 0 67 179 18 356 12 557 0
(0.0%) (10.8%) (28.9%) (2.9%) (57.5%) (1.9%) (90.0%) (0.0%)

b14 2526×4 13:50m 127ms 0 20 571 97 1403 24 2341 0
(0.0%) (0.8%) (22.6%) (3.8%) (55.5%) (1.0%) (92.7%) (0.0%)

b17 2543×4 1:14h 930ms 0 1 196 36 1020 77 2312 0
(0.0%) (0.0%) (7.7%) (1.4%) (40.1%) (3.0%) (90.9%) (0.0%)

b18 2616×4 8:19h 6.80s 0 0 437 50 972 50 2497 0
(0.0%) (0.0%) (16.7%) (1.9%) (37.2%) (1.9%) (95.5%) (0.0%)

b19 2629×4 11:39h 17.90s 0 0 102 19 847 44 2481 0
(0.0%) (0.0%) (3.9%) (0.7%) (32.2%) (1.7%) (94.4%) (0.0%)

b20 2502×4 38:28m 298ms 0 0 338 58 1361 24 2381 0
(0.0%) (0.0%) (13.5%) (2.3%) (54.4%) (1.0%) (95.2%) (0.0%)

b21 2545×4 26:20m 368ms 0 0 369 66 1386 26 2410 0
(0.0%) (0.0%) (14.5%) (2.6%) (54.5%) (1.0%) (94.7%) (0.0%)

b22 2516×4 34:59m 554ms 0 0 362 67 1397 32 2408 0
(0.0%) (0.0%) (14.4%) (2.7%) (55.5%) (1.3%) (95.7%) (0.0%)

p35k 2390×4 4:25h 2.30s 0 46 970 134 1712 21 2201 0
(0.0%) (1.9%) (40.6%) (5.6%) (71.6%) (0.9%) (92.1%) (0.0%)

p45k 2308×4 1:04h 1.15s 6 22 1181 44 1545 69 2191 0
(0.3%) (1.0%) (51.2%) (1.9%) (66.9%) (3.0%) (94.9%) (0.0%)

p77k 2685×4 6:47h 2.51s 0 0 53 23 453 25 1678 6
(0.0%) (0.0%) (2.0%) (0.9%) (16.9%) (0.9%) (62.5%) (0.2%)

p81k 2355×4 32:13m 1.60s 2 8 1288 25 1644 46 2336 0
(0.1%) (0.3%) (54.7%) (1.1%) (69.8%) (2.0%) (99.2%) (0.0%)

p89k 2393×4 3:20h 2.62s 0 5 213 66 1445 11 2287 0
(0.0%) (0.2%) (8.9%) (2.8%) (60.4%) (0.5%) (95.6%) (0.0%)

p100k 2541×4 2:07h 4.26s 3 6 1497 30 1780 85 2500 0
(0.1%) (0.2%) (58.9%) (1.2%) (70.1%) (3.3%) (98.4%) (0.0%)

p141k 2313×4 3:20h 4.48s 0 0 782 86 1403 72 2202 0
(0.0%) (0.0%) (33.8%) (3.7%) (60.7%) (3.1%) (95.2%) (0.0%)

p267k 2275×4 2:55h 7.36s 6 4 1216 115 1492 83 2198 0
(0.3%) (0.2%) (53.5%) (5.1%) (65.6%) (3.6%) (96.6%) (0.0%)

p330k 2573×4 11:42h 14.88s 9 8 1659 36 2038 125 2560 0
(0.3%) (0.3%) (64.5%) (1.4%) (79.2%) (4.9%) (99.5%) (0.0%)

p418k 2460×4 16:48h 12.92s 0 1 405 88 1361 43 2378 0
(0.0%) (0.0%) (16.5%) (3.6%) (55.3%) (1.7%) (96.7%) (0.0%)

p500k 2562×4 24:32h 27.53s 0 0 494 111 1288 38 2340 0
(0.0%) (0.0%) (19.3%) (4.3%) (50.3%) (1.5%) (91.3%) (0.0%)

p533k 2615×4 10:43h 55.41s 0 0 813 147 1692 35 2548 0
(0.0%) (0.0%) (31.1%) (5.6%) (64.7%) (1.3%) (97.4%) (0.0%)

Multi-Level Simulation Results

In Table B.5 the impact of ROI activations on the runtime of the multi-level simulation

is summarized. Again, column 2 lists the runtime of the serial event-driven time simu-

lation at logic level using the commercial simulation. The columns 3 through 13 then

report the runtimes of the presented GPU-accelerated mixed-abstraction simulation for

different ROI scenarios. Starting with zero active ROIs (Col. 3), which corresponds to a

simulation at logic level, the amount of ROIs is increased gradually over the consecutive
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Table B.4: Capacitive fault simulation results for max. 1000 cells [SW19a].

Faults Runtime Fault Size (∆Cf )
Circuit(1)

collapsed(2) 50fF 100fF 250fF 1pF
Total(3) Group(4) DT(5) PD(6) DT(7) PD(8) DT(9) PD(10) DT(11) PD(12)

s38417 1000×4 1:24m 103ms 280 137 657 71 849 9 858 0
(28.0%) (13.7%) (65.7%) (7.1%) (84.9%) (0.9%) (85.8%) (0.0%)

s38584 302×4 1:03m 110ms 69 41 155 13 198 2 245 0
(22.8%) (13.6%) (51.3%) (4.3%) (65.6%) (0.7%) (81.1%) (0.0%)

b14 1000×4 6:15m 143ms 48 22 225 30 654 23 943 0
(4.8%) (2.2%) (22.5%) (3.0%) (65.4%) (2.3%) (94.3%) (0.0%)

b17 1000×4 34:01m 1.08s 17 6 82 15 423 24 939 0
(1.7%) (0.6%) (8.2%) (1.5%) (42.3%) (2.4%) (93.9%) (0.0%)

b18 1000×4 3:42h 8.00s 9 4 95 18 358 39 969 3
(0.9%) (0.4%) (9.5%) (1.8%) (35.8%) (3.9%) (96.9%) (0.3%)

b20 1000×4 17:37m 338ms 25 6 132 18 518 23 926 0
(2.5%) (0.6%) (13.2%) (1.8%) (51.8%) (2.3%) (92.6%) (0.0%)

b21 1000×4 12:20m 436ms 33 4 148 18 519 36 944 0
(3.3%) (0.4%) (14.8%) (1.8%) (51.9%) (3.6%) (94.4%) (0.0%)

b22 1000×4 16:54m 652ms 30 14 149 15 494 32 931 0
(3.0%) (1.4%) (14.9%) (1.5%) (49.4%) (3.2%) (93.1%) (0.0%)

p35k 1000×4 2:03h 2.53s 93 29 420 52 842 13 890 0
(9.3%) (2.9%) (42.0%) (5.2%) (84.2%) (1.3%) (89.0%) (0.0%)

p45k 1000×4 35:07m 1.25s 129 48 424 77 853 0 858 0
(12.9%) (4.8%) (42.4%) (7.7%) (85.3%) (0.0%) (85.8%) (0.0%)

p77k 1000×4 2:41h 2.68s 0 0 18 8 134 43 650 3
(0.0%) (0.0%) (1.8%) (0.8%) (13.4%) (4.3%) (65.0%) (0.3%)

p81k 1000×4 14:52m 1.78s 266 31 548 96 918 0 918 0
(26.6%) (3.1%) (54.8%) (9.6%) (91.8%) (0.0%) (91.8%) (0.0%)

p89k 1000×4 1:30h 2.86s 23 10 119 33 541 48 911 0
(2.3%) (1.0%) (11.9%) (3.3%) (54.1%) (4.8%) (91.1%) (0.0%)

p100k 1000×4 54:53m 4.90s 64 36 236 33 936 1 951 0
(6.4%) (3.6%) (23.6%) (3.3%) (93.6%) (0.1%) (95.1%) (0.0%)

p141k 1000×4 1:38h 5.07s 46 16 223 40 757 37 880 0
(4.6%) (1.6%) (22.3%) (4.0%) (75.7%) (3.7%) (88.0%) (0.0%)

p267k 1000×4 1:27h 8.53s 89 61 314 68 864 1 865 0
(8.9%) (6.1%) (31.4%) (6.8%) (86.4%) (0.1%) (86.5%) (0.0%)

p330k 1000×4 4:43h 16.10s 105 45 300 37 942 5 954 0
(10.5%) (4.5%) (30.0%) (3.7%) (94.2%) (0.5%) (95.4%) (0.0%)

p418k 1000×4 7:49h 14.31s 10 2 91 26 481 34 941 0
(1.0%) (0.2%) (9.1%) (2.6%) (48.1%) (3.4%) (94.1%) (0.0%)

p500k 1000×4 12:37h 37.47s 7 1 147 23 493 40 946 0
(0.7%) (0.1%) (14.7%) (2.3%) (49.3%) (4.0%) (94.6%) (0.0%)

p533k 1000×4 4:54h 1:05m 8 9 192 22 725 57 984 0
(0.8%) (0.9%) (19.2%) (2.2%) (72.5%) (5.7%) (98.4%) (0.0%)

columns: First in absolute numbers (Col. 4–6) followed by relative amounts with respect

to all nodes in the design (Col. 7–12). Eventually, ROIs at all nodes in the design are acti-

vated corresponding to a simulation at full switch level (Col. 13). All runtimes shown are

given as average over three repeated simulations with randomly activated ROIs in each

run [SKW18].
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Table B.5: Multi-level simulation runtime for evaluating different amounts of regions of
interest (ROIs) active at random nodes from lowest to highest.

Comm. Full Mixed Abstraction Full
Circuit(1) Event- Logic- Active ROIs (#Nodes) Active ROIs (% of total Nodes) Switch-

Driven(2) Level(3) 1(4) 10(5) 100(6) 1%(7) 5%(8) 10%(9) 25%(10) 50%(11) 75%(12) Level(13)

s38417 3.11s 20ms 51ms 46ms 48ms 55ms 53ms 56ms 67ms 75ms 82ms 94ms
s38584 5.29s 28ms 66ms 64ms 74ms 55ms 75ms 67ms 85ms 104ms 112ms 138ms
b14 5.30s 20ms 33ms 27ms 42ms 31ms 44ms 53ms 55ms 76ms 89ms 115ms
b17 35.13s 107ms 155ms 161ms 147ms 179ms 207ms 247ms 315ms 423ms 549ms 654ms
b18 6:42m 436ms 568ms 590ms 580ms 650ms 884ms 939ms 1.18s 1.84s 2.46s 3.21s
b19 0:17h 1.14s 1.34s 1.35s 1.36s 1.84s 2.30s 2.67s 3.57s 5.09s 6.80s 8.89s
b20 14.41s 30ms 48ms 62ms 58ms 61ms 83ms 88ms 116ms 151ms 192ms 236ms
b21 16.60s 38ms 56ms 59ms 61ms 70ms 80ms 88ms 112ms 165ms 219ms 257ms
b22 25.39s 47ms 79ms 89ms 77ms 82ms 124ms 125ms 166ms 251ms 300ms 373ms
p35k 2:22m 199ms 247ms 249ms 288ms 272ms 347ms 386ms 509ms 694ms 901ms 1.14s
p45k 49.96s 137ms 212ms 203ms 210ms 236ms 233ms 279ms 339ms 472ms 592ms 711ms
p77k 3:02m 281ms 352ms 339ms 367ms 438ms 629ms 692ms 693ms 967ms 1.31s 1.87s
p81k 2:12m 108ms 234ms 262ms 233ms 338ms 289ms 375ms 487ms 587ms 710ms 880ms
p89k 2:26m 230ms 311ms 328ms 304ms 403ms 435ms 499ms 619ms 852ms 1.15s 1.38s
p100k 3:17m 290ms 379ms 392ms 371ms 458ms 511ms 637ms 866ms 1.11s 1.43s 1.75s
p141k 5:34m 367ms 603ms 604ms 508ms 670ms 815ms 924ms 1.16s 1.57s 2.00s 2.43s
p267k 0:14h 867ms 1.20s 957ms 976ms 1.09s 1.49s 1.68s 2.05s 2.73s 3.50s 4.36s
p330k 0:38h 1.56s 1.89s 1.94s 1.97s 2.16s 2.69s 3.06s 4.36s 5.98s 8.06s 10.18s
p418k 0:29h 1.63s 1.98s 2.13s 1.82s 2.28s 2.67s 2.88s 3.86s 5.37s 7.04s 9.31s
p500k 0:49h 4.05s 4.55s 5.11s 4.09s 5.67s 6.41s 6.01s 8.64s 11.61s 15.21s 18.97s
p533k 1:07h 2.75s 3.79s 4.47s 3.83s 3.66s 5.92s 5.54s 8.19s 10.50s 13.94s 17.58s
p951k 3:00h 16.99s 18.72s 18.54s 15.27s 19.46s 21.13s 20.28s 26.87s 33.85s 40.20s 48.03s
p1522k 8:21h 29.87s 24.79s 31.78s 31.67s 36.46s 43.58s 49.32s 59.23s 1:18m 1:42m 2:01m
p2927k 18:17h 52.79s 54.63s 55.59s 55.06s 1:07m 1:30m 1:44m 1:47m 2:24m 3:08m 3:52m
p3188k 42:02h 2:23m 2:22m 1:55m 2:00m 2:39m 3:05m 3:31m 3:56m 5:23m 7:08m 8:55m
p3726k 39:24h 1:31m 1:27m 1:42m 1:25m 3:29m 6:36m 4:30m 3:33m 4:56m 6:24m 7:31m
p3847k 40:12h 2:40m 3:00m 2:34m 3:31m 3:39m 3:39m 3:49m 4:31m 7:03m 8:06m 0:10h
p3881k 23:53h 1:13m 1:43m 1:43m 1:19m 1:27m 1:38m 2:20m 2:30m 3:07m 3:54m 5:08m
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List of Symbols

G := (V,E) circuit graph representation of netlist

I,O inputs/output nodes of a circuit

n, a, b, z circuit nodes

L,Li level in a circuit graph

φ Boolean node function

i, j, k common indices for counting and indexing

D transistor device

DP
A , D

N
A PMOS (DP

A) and NMOS (DN
A ) transistor device associated with gate A

R resistor/resistance in Ohms

RD, Ron , Roff resistor/resistance of a transistor device; on/off resistance

RA,P , RA,N resistance of PMOS (RA,P ) or NMOS (RA,N) transistor at A

Ru, Rd RRC-cell internal pull-up resistance, pull-down resistance

Cload output load capacitance in Farad

t, ti time, time point

tsamp signal sampling time, clock period

TS ,TSn time spec delay description of a node n

ts, tsi delay description of a node pin i

∆t elapsed time, time offset

δ, δf (small) delay fault size; fault parameter

d, dji (gate) delay; i-th delay parameter of the j-th pin of a gate

τ time constant
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List of Symbols

P circuit population

P, Ps circuit instance (parameter vector)

p, pi single circuit instance parameter

e, ei event, parameter set describing a signal switch; the i-th event in a waveform

K total waveform event capacity

κ waveform base register capacity

s simulation slot

F fault set

FG fault group

f, fi fault

loc fault location

S, Si state (node output)

T test set

v, vo, v(t) (logic or switch level) signal value; output voltage, voltage level at time t

v stationary voltage

V, Vth voltage potential; transistor threshold voltage

VDD power supply voltage potential

GND ground voltage potential

w logic level waveform, (general) waveform

w̃ switch level waveform

w(t), w̃(t) waveform evaluation function

x ∈ [0, 1] mixed-abstraction scenario, i.e., logic (x = 0) to full switch level (x = 1)

T, T (x) simulation runtime; based on scenario x

X unknown or undefined value
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Index

channel-connected component, 20, 95

circuit

population, 64

coalescing, 41

CUDA, 39

device table, 104, 107

equivalence class, 126

representative, 127

equivalent circuit, 15

event, 64

sentinel, 68

switch-level, 101

event table, 104, 107

fault

collapsing, 126

injection, 30, 121

location, 117

path-delay, 24

size, 117

small gate delay, 25

transition, 24

fault dropping, 31

fault group, 129

hold-time, 125

violation, 125

inductive fault analysis, 118

kernel, 82

level, 60

levelization, 60

MEPS, 158

multi-level simulation, 7, 31

efficiency, 136

n-detectability, 31

netlist, 20, 58

NMOS transistor, 95

node, 59

parallelism

data-, 75

instance-, 77

node-, 75

pattern-, 46

structural, 46, 75

waveform-, 76

PMOS transistor, 95

process variation, 27

random, 27

systematic, 27
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Index

propagation delay, 14

pseudo-random number generator, 70

random variation, 63

RC delay model, 15

reduction, 51, 83

region of interest, 137

ROI, 137

activation, 149

flag, 148

RRC-Cell, 97

setup-time, 125

violation, 125

simulation

event-driven, 29

oblivious, 28

simulation run

full-speed, 86

monitored, 86

slot, 74, 76

standard delay format, 22

stationary voltage, 98

step response, 15

SWIFT, 180

syndrome, 30

syndrome waveform, 123

systematic variation, 63

thread, 40

thread block, 84

thread grid, 40

time constant, 15, 100

time spec, 62

time-wheel, 29

transient response, 15
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