47 research outputs found

    NEW TYPE OF NEARLY MONOTONIC PASSBAND FILTERS WITH SHARP CUTOFF

    Get PDF
    New type of nearly monotonic rational function with one pair of zeros on imaginary axis has been proposed. By using these new functions with zeros as a parameter, it is possible to make tradeoff between minimum stopband attenuation and selectivity of the amplitude characteristic. In order to present efficiency of the proposed filter, comparison with allpole filter monotonic in the passband and inverse Chebyshev filter is presented. Also, design example for the seventh order new type lowpass filter is given

    Chained-Function Filter Synthesis Based on the Modified Jacobi Polynomials

    Get PDF
    A new class of filter functions with pass-band ripple which derives its origin from a method of determining the chained function lowpass filters described by Guglielmi and Connor is introduced. The closed form expressions of the characteristic functions of these filters are derived by using orthogonal Jacobi polynomial. Since the Jacobi polynomials can not be used directly as filtering function, these polynomials have been adapted by using the parity relation for Jacobi polynomials in order to be used as a filter approximating function. The obtained magnitude response of these filters is more general than the magnitude response of published Chebyshev and Legendre chained function filter, because two additional parameters of modified Jacobi polynomials as two additional degrees of freedom are available. It is shown that proposed modified Jacobi chained function filters approximation also includes the Chebyshev chained function filters, the Legendre chained function filter, and many other types of filter approximations, as its special cases

    A Comparison of Papoulis and Chebyshev Filters in the Continuous Time Domain

    Get PDF
    The subject of this paper is the revisit of the Chebyshev (equiripple) and Papoulis (monotonic or staircase) low-pass filter in order to compare. It can be stated the fair comparison of Papoulis and Chebyshev filters cannot be found in the available literature. At the beginning, it is shown that ripple parameter may be used in order the Chebyshev filter to obtain a magnitude response having less passband ripple than the standard Chebyshev response. At the same time, the passband edge frequency is preserved at 3 dB. Further, the unified approach to design odd and even degree Papoulis filters is explained. For the purpose of comparison, the Chebyshev filter as a counterpart of the Papoulis filter is introduced. Thus obtained Chebyshev filter has the same stop band insertion loss, group delay and transient response as Papoulis filter. However, its passband performance is much better. It is shown that Chebyshev filter counterpart offers a better solution than Papoulis filter in all applications, except in ones applications where is required that passband attenuation to have a staircase shape

    An RC active filter design handbook

    Get PDF
    The design of filters is described. Emphasis is placed on simplified procedures that can be used by the reader who has minimum knowledge about circuit design and little acquaintance with filter theory. The handbook has three main parts. The first part is a review of some information that is essential for work with filters. The second part includes design information for specific types of filter circuitry and describes simple procedures for obtaining the component values for a filter that will have a desired set of characteristics. Pertinent information relating to actual performance is given. The third part (appendix) is a review of certain topics in filter theory and is intended to provide some basic understanding of how filters are designed

    Nove klase funkcija za sintezu dvokanalne hibridne banke filtara

    Get PDF
    This PhD discusses the research related to the approximation and implementation of the twochannel hybrid filter banks. Special attention is paid to the analogue part, i.e. analysis part of the hybrid filter banks. Two approximations of the filter bank pair for analysis have been proposed. The first approximation of the transfer function of the low-pass filter is based on the simple adaptation of the orthogonal Jacobi polynomials in order to obtain the Pseudo-Jacobian polynomials. In relation to other known approximations, the Pseudo-Jacobian polynomial one has two prime parameters, which can adjust the characteristics of the filter in wide ranges. This approximation can be successfully applied for the realization of a complementary bank of filters. It is known that recursive double-complementary digital filter banks can be implemented with all-pass filters, and research has shown that double-complementary filter banks can also be realized in the analogue domain. The realization of the proposed filter bank has been done in two steps. In the first step, with the complementary decomposition, the prototype transfer function is obtained by two all-pass filters, while in the second step, by their addition or subtraction, transfer functions of lowpass and highpass filters are obtained. The advantage of such a system is that the same hardware can be used for realization of both low frequency and high frequency transfer functions. Monte Carlo simulation of the realization of a double complementary analog filter pair based on a parallel connection of two analogue all-pass filters showed that all-pass realization is characterized by a small sensitivity of the attenuation characteristics to the component tolerances in the filter pass-band, while the sensitivity in the stop-band is substantially higher compared to the case of a standard cascade realization of the low-pass filter and the high-pass filter. By a suitable selection of the analysis filter bank and the synthesis filter bank, a condition for suppressing the effects arising from the overlapping of the spectrum in banks for analysis and synthesis can be fulfilled. The all-pass complementarity of an analogue filter bank points to the fact that amplitude distortion, which is introduced by the analog bank of the analysis filters, can be completely suppressed, so that the non-linearity of the group delay characteristics is the predominant distortion. In order to achieve a near perfect reconstruction of the signal, a new realization of the group delay corrector was proposed, which makes it possible for the group delay to be constant in a flat sense, i.e. with a number of flatness at the origin. An analysis of the sensitivity has shown that the sensitivity of the correction of the group waveform in the filter pass-band that is proportional to the square of the Q -factor of the pole. In other words, the group delay corrector is very sensitive to the component tolerances

    New Class of Functions for the Synthesis of Chain Filters

    Get PDF
    ΠΠΏΡ€ΠΎΠΊΡΠΈΠΌΠ°Ρ†ΠΈΡ˜Π° ΠΈ ΠΈΠΌΠΏΠ΅ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΡ˜Π° Π»Π°Π½Ρ‡Π°Π½ΠΈΡ… Ρ„ΠΈΠ»Ρ‚Π°Ρ€Π° јС ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚ Π°Π½Π°Π»ΠΈΠ·Π΅ ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ° ΠΏΡ€Π΅Π·Π΅Π½Ρ‚ΠΎΠ²Π°Π½ΠΈΡ… Ρƒ Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜ΠΈ. НајваТнији Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈ ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ° су ΠΏΡ€ΠΈΠΊΠ°Π·Π°Π½ΠΈ Ρƒ Ρ‡Π΅Ρ‚ΠΈΡ€ΠΈ ΠΏΠΎΠ³Π»Π°Π²Ρ™Π°: Π‘ΠΈΠ½Ρ‚Π΅Π·Π° филтарских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡ˜Π° Jacobi-jeΠ²ΠΈΠΌ ΠΏΠΎΠ»ΠΈΠ½ΠΎΠΌΠΈΠΌΠ°, ΠœΠΎΠ΄ΠΈΡ„ΠΈΠΊΠΎΠ²Π°Π½Π° JacobijeΠ΅Π²Π° Π»Π°Π½Ρ‡Π°Π½Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡ˜Π°, Π‘ΠΈΠ½Ρ‚Π΅Π·Π° полиномских Π»Π°Π½Ρ‡Π°Π½ΠΈΡ… Ρ„ΠΈΠ»Ρ‚Π°Ρ€Π° ΠΈ Π Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΡ˜Π°. Π£ Π—Π°ΠΊΡ™ΡƒΡ‡ΠΊΡƒ су сумирани најваТнији Π½Π°ΡƒΡ‡Π½ΠΈ доприноси ΠΈ ΠΏΡ€Π°Π²Ρ†ΠΈ Π±ΡƒΠ΄ΡƒΡ›ΠΈΡ… ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ°. Π“Π»Π°Π²Π½ΠΈ Π΄Π΅ΠΎ прСдстављСнС Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜Π΅ ΠΏΠΎΠ΄Π΅Ρ™Π΅Π½ јС Ρƒ ΠΏΠ΅Ρ‚ ΠΏΠΎΠ³Π»Π°Π²Ρ™Π°. Π£ Π΄Ρ€ΡƒΠ³ΠΎΠΌ ΠΏΠΎΠ³Π»Π°Π²Ρ™Ρƒ, Π½Π°ΠΊΠΎΠ½ ΡƒΠ²ΠΎΠ΄Π°, појам Π°ΠΏΡ€ΠΎΠΊΡΠΈΠΌΠ°Ρ†ΠΈΡ˜Π΅ амплитудскС карактСристикС полиномских Ρ„ΠΈΠ»Ρ‚Π°Ρ€Π° ΠΎΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»Π½ΠΈΠΌ ΠΏΠΎΠ»ΠΈΠ½ΠΎΠΌΠΈΠΌΠ° јС ΠΏΡ€ΠΎΡˆΠΈΡ€Π΅Π½ ΠΈ Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Ρƒ ΠΎΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»Π½ΠΈΡ… JacobijeΠ²ΠΈΡ… ΠΏΠΎΠ»ΠΈΠ½ΠΎΠΌΠ°. ΠˆΠ΅Π΄Π½ΠΎΡΡ‚Π°Π²Π½ΠΎΠΌ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ˜ΠΎΠΌ ΠΎΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»Π½ΠΈΡ… Jacobi-jΠ΅Π²ΠΈΡ… ΠΏΠΎΠ»ΠΈΠ½ΠΎΠΌΠ° добијСни су ΠΏΠΎΠ»ΠΈΠ½ΠΎΠΌΠΈ Π½Π°Π·Π²Π°Π½ΠΈ ΠœΠΎΠ΄ΠΈΡ„ΠΈΠΊΠΎΠ²Π°Π½ΠΈ-Jacobi-jΠ΅Π²ΠΈ ΠΏΠΎΠ»ΠΈΠ½ΠΎΠΌΠΈ, ΠΏΠΎΠ³ΠΎΠ΄Π½ΠΈ Π·Π° Π°ΠΏΡ€ΠΎΠΊΡΠΈΠΌΠ°Ρ†ΠΈΡ˜Ρƒ амплитудскС карактСристикС Π°Π½Π°Π»ΠΎΠ³Π½ΠΈΡ… Ρ„ΠΈΠ»Ρ‚Π°Ρ€Π° пропусника ниских Ρ„Ρ€Π΅ΠΊΠ²Π΅Π½Ρ†ΠΈΡ˜Π°. Π’Ρ€Π΅Π±Π° Π½Π°ΠΏΠΎΠΌΠ΅Π½ΡƒΡ‚ΠΈ Π΄Π° ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠΎΠ²Π°Π½ΠΈ JacobijeΠ²ΠΈ ΠΏΠΎΠ»ΠΈΠ½ΠΎΠΌΠΈ нису ΠΎΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»Π½ΠΈ. Ако јС стСпСн Ρ„ΠΈΠ»Ρ‚Π°Ρ€Π° Π·Π°Π΄Π°Ρ‚, ΠΎΠ±Π° ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° JacobijΠ΅Π²ΠΎΠ³ ΠΏΠΎΠ»ΠΈΠ½ΠΎΠΌΠ° (Ξ± ΠΈ Ξ²) су слободни ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈ који сС ΠΌΠΎΠ³Ρƒ користити Π·Π° ΠΊΠΎΠ½Ρ‚ΠΈΠ½ΡƒΠΈΡ€Π°Π½ΠΎ подСшавањС амплитудскС ΠΈΠ»ΠΈ Ρ„Π°Π·Π½Π΅ карактСристикС Ρ„ΠΈΠ»Ρ‚Ρ€Π°. Π’ΠΎ Ρ‡ΠΈΠ½ΠΈ Π΄Π° су добијСнС Ρ„Ρ€Π΅ΠΊΠ²Π΅Π½Ρ†ΠΈΡ˜ΡΠΊΠ΅ карактСристикС Ρ„Π»Π΅ΠΊΡΠΈΠ±ΠΈΠ»Π½ΠΈΡ˜Π΅ ΠΎΠ΄ Π°ΠΏΡ€ΠΎΠΊΡΠΈΠΌΠ°Ρ†ΠΈΡ˜Π° стандардним ΠΎΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»Π½ΠΈΠΌ ΠΏΠΎΠ»ΠΈΠ½ΠΎΠΌΠΈΠΌΠ° ΠΊΠ°ΠΎ ΡˆΡ‚ΠΎ су Π°ΠΏΡ€ΠΎΠΊΡΠΈΠΌΠ°Ρ†ΠΈΡ˜Π΅ са ChebysheveΠ²ΠΈΠΌ ΠΈΠ»ΠΈ LegendrΠΎΠ² ΠΏΠΎΠ»ΠΈΠ½ΠΎΠΌΠΈΠΌΠ°. Π’Ρ€Π΅Π±Π° Π½Π°ΠΏΠΎΠΌΠ΅Π½ΡƒΡ‚ΠΈ Π΄Π° ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° Π°ΠΏΡ€ΠΎΠΊΡΠΈΠΌΠ°Ρ†ΠΈΡ˜Π° ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠΎΠ²Π°Π½ΠΈΠΌ-JacobijeΠ²ΠΈΠΌ ΠΏΠΎΠ»ΠΈΠ½ΠΎΠΌΠΈΠΌΠ°, ΠΏΠΎΠ³ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ·Π±ΠΎΡ€ΠΎΠΌ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Π°Ρ€Π° JacobijeΠ²ΠΈΡ… ΠΏΠΎΠ»ΠΈΠ½ΠΎΠΌΠ°, Π³Π΅Π½Π΅Ρ€ΠΈΡˆΠ΅ ΠΌΠ½ΠΎΠ³Π΅ Π½Π°ΠΏΡ€Π΅Π΄ ΠΏΠΎΠΌΠ΅Π½ΡƒΡ‚Π΅ Π°ΠΏΡ€ΠΎΠΊΡΠΈΠΌΠ°Ρ†ΠΈΡ˜Π΅ полиномских Ρ„ΠΈΠ»Ρ‚Π°Ρ€Π°, ΠΊΠ°ΠΎ Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€: Butterworth-ΠΎΠ², Chebyshevev, Chebysh-Π΅Π²Π΅Π², Legendr-ΠΎΠ² ΠΈ ΡšΠΈΡ…ΠΎΠ²Π΅ Π΄Π΅Ρ€ΠΈΠ²Π°Ρ‚Π΅ којС су ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠΈΠ»ΠΈ Ku ΠΈ Drubin, ΠΈΡ‚Π΄. Описана Ρ‚Π΅Ρ…Π½ΠΈΠΊΠ° синтСзС Π°Π½Π»ΠΎΠ³Π½ΠΈΡ… Ρ„ΠΈΠ»Ρ‚Π°Ρ€Π° ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠΎΠ²Π°Π½ΠΈΠΌ JacobijeΠ²ΠΈΠΌ ΠΏΠΎΠ»ΠΈΠ½ΠΎΠΌΠΈΠΌΠ°, ΡƒΡ‡ΠΈΡšΠ΅Π½Π° јС још Π΅Ρ„ΠΈΠΊΠ°ΡΠ½ΠΈΡ˜ΠΎΠΌ додавњСм ΠΊΠΎΠ½Π°Ρ‡Π½ΠΈΡ… Π½ΡƒΠ»Π° прСноса Ρƒ прСносну Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡ˜Ρƒ Ρ„ΠΈΠ»Ρ‚Ρ€Π°. Као ΡˆΡ‚ΠΎ јС Π΄ΠΎΠ±Ρ€ΠΎ ΠΏΠΎΠ·Π½Π°Ρ‚ΠΎ, ΠΊΠΎΠ½Π°Ρ‡Π½Π΅ Π½ΡƒΠ»Π΅ прСноса Π½Π° Ρ€Π΅Π°Π»Π½ΠΈΠΌ Ρ„Ρ€Π΅ΠΊΠ²Π΅Π½Ρ†ΠΈΡ˜Π°ΠΌΠ°, Ρ‚Ρ˜. Π½Π° ΠΈΠΌΠ°Π³ΠΈΠ½Π°Ρ€Π½ΠΎΡ˜ оси, Π½Π΅ΠΌΠ°Ρ˜Ρƒ ΡƒΡ‚ΠΈΡ†Π°Ρ˜Π° Π½Π° Ρ„Π°Π·Π½Ρƒ карактСристику Ρ„ΠΈΠ»Ρ‚Ρ€Π°. ΠœΠ΅Ρ’ΡƒΡ‚ΠΈΠΌ ΠΎΠ½Π΅ сС ΠΌΠΎΠ³Ρƒ Ρ‚Π°ΠΊΠΎ ΠΎΠ΄Ρ€Π΅Π΄ΠΈΡ‚ΠΈ Π΄Π° карактСристика ΡΠ»Π°Π±Ρ™Π΅ΡšΠ° ΠΈΠΌΠ° ChebyshΠ΅Π²Π΅Π² ΠΊΠ°Ρ€Π°ΠΊΡ‚Π΅Ρ€ Ρƒ нСпропусном опсСгу. НавСдСни су ΠΏΠΎΠ΄Π°Ρ†ΠΈ ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠ°Ρ˜Ρƒ ΠΏΠΎΠ»ΠΎΠ²Π° ΠΎΠ²Π΅ класС Ρ„ΠΈΠ»Ρ‚Π°Ρ€Π° Ρƒ s-Ρ€Π°Π²Π½ΠΈ Π·Π° ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Π°Ρ€ JacobijeΠ² ΠΈΡ… ΠΏΠΎΠ»ΠΈΠ½ΠΎΠΌΠ°, који Π΄Π°Ρ˜Ρƒ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ½ΠΎ ΠΌΠΎΠ½ΠΎΡ‚ΠΎΠ½Ρƒ амплитудску карактСристику Π·Π° стСпСн Ρ„ΠΈΠ»Ρ‚Ρ€Π° ΠΎΠ΄ Ρ‚Ρ€ΠΈ Π΄ΠΎ дСсСт. Π˜Π·Π²Ρ€ΡˆΠ΅Π½ΠΎ јС Π΄Π΅Ρ‚Π°Ρ™Π½ΠΎ ΠΏΠΎΡ€Ρ’Π΅ΡšΠ΅ Π΄ΠΎΠ±ΠΈΡ˜Π΅Π½ΠΈΡ… Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚Π° са ΠΏΠΎΠ·Π½Π°Ρ‚ΠΈΠΌ ΠΊΡ€ΠΈΡ‚ΠΈΡ‡Π½ΠΎ ΠΌΠΎΠ½ΠΎΡ‚ΠΎΠ½ΠΈΠΌ прСносним Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡ˜Π°ΠΌΠ°, ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ јС Π΄Π° ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° класа ΠΏΠΎΠ»ΠΈΠ½ΠΎΠΌΠ° Π½ΡƒΠ΄ΠΈ ΠΈ Π±ΠΎΡ™Π° Ρ€Π΅ΡˆΠ΅ΡšΠ° ΠΎΠ΄ стандардних Π°ΠΏΡ€ΠΎΠΊΡΠΈΠΌΠ°Ρ†ΠΈΡ˜Π°. На ΠΊΡ€Π°Ρ˜Ρƒ ΠΎΠ²Π΅ Π³Π»Π°Π²Π΅ ΠΈΠ·Π²Ρ€ΡˆΠ΅Π½ΠΎ јС ΠΈ ΠΏΠΎΡ€Π΅Ρ’Π΅ΡšΠ΅ Π½ΠΎΠ²Π΅ класС Ρ„ΠΈΠ»Ρ‚Π°Ρ€Π° са ΠΊΠΎΠ½Π°Ρ‡Π½ΠΈΠΌ Π½ΡƒΠ»Π°ΠΌΠ° прСноса ΠΈ ΠΈΠ½Π²Π΅Ρ€Π·Π½ΠΎΠ³ Chebyshevev Ρ„ΠΈΠ»Ρ‚Ρ€Π°. Показано јС Π΄Π° синтСза Ρ„ΠΈΠ»Ρ‚Π°Ρ€Π° ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠΎΠ²Π°Π½ΠΈΠΌ JacobijeΠ²ΠΈΠΌ ΠΏΠΎΠ»ΠΈΠ½ΠΎΠΌΠΈΠΌΠ° са ΠΊΠΎΠ½Π°Ρ‡Π½ΠΈΠΌ Π½ΡƒΠ»Π°ΠΌΠ° прСноса Π½ΡƒΠ΄ΠΈ Π±ΠΎΡ™Π΅ пСрформансС ΠΎΠ΄ ΠΈΠ½Π²Π΅Ρ€Π·Π½ΠΈΡ… Chebyshevevih Ρ„ΠΈΠ»Ρ‚Π°Ρ€Π°. Π£ Ρ‚Ρ€Π΅Ρ›Π΅ΠΌ ΠΏΠΎΠ³Π»Π°Π²Ρ™Ρƒ описана јС Π½ΠΎΠ²Π° класа прСносних Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡ˜Π° Π·Π° синтСзу Π»Π°Π½Ρ‡Π°Π½ΠΈΡ… Ρ„ΠΈΠ»Ρ‚Π°Ρ€Π°. ОвС Π»Π°Π½Ρ‡Π°Π½Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡ˜Π΅, Π½Π°Π·Π²Π°Π½Π΅ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠΎΠ²Π°Π½Π΅ Jacobijeve Π»Π°Π½Ρ‡Π°Π½Π΅ Ρ„ΠΈΠ½ΠΊΡ†ΠΈΡ˜Π΅ (mJCF),добијСнС су ΠΊΠ°ΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠΎΠ²Π°Π½ΠΈΡ… JacobijevΠΈΡ… ΠΏΠΎΠ»ΠΈΠ½ΠΎΠΌΠ° Π½ΠΈΠΆΠ΅Π³ стСпСна, Π½Π°Π·Π²Π°Π½Π΅ seed Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡ˜Π΅. ΠžΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ˜Π° прСноснС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡ˜Π΅ сС ΠΌΠΎΠΆΠ΅ Π·Π°Π²Ρ€ΡˆΠΈΡ‚ΠΈ Ρ‚Π°ΠΊΠΎ Π΄Π° свС seed Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡ˜Π΅ Π±ΡƒΠ΄Ρƒ са истим ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈΠΌΠ°. Π£ Ρ‚ΠΎΠΌ ΡΠ»ΡƒΡ‡Π°Ρ˜Ρƒ Ρƒ Chebysheveve Π»Π°Π½Ρ‡Π°Π½Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡ˜Π΅ (CCF) ΠΈ LegendrΠΎΠ²e Π»Π°Π½Ρ‡Π°Π½Π΅ Ρ„ΡƒΠ½ΠΊΠΈΡ˜Π΅ (LCF) су ΡΠΏΠ΅Ρ†ΠΈΡ˜Π°Π»Π½ΠΈ ΡΠ»ΡƒΡ‡Π°Ρ˜Π΅Π²ΠΈ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠΎΠ²Π°Π½ΠΈΡ… JacobijevΠΈx Π»Π°Π½Ρ‡Π°Π½ΠΈΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡ˜Π°. Π‘ΠΎΡ™ΠΈ Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈ сС ΠΌΠΎΠ³Ρƒ Π΄ΠΎΠ±ΠΈΡ‚ΠΈ Π°ΠΊΠΎ сС Π·Π° Π·Π°Π΄Π°Ρ‚ΠΈ стСпСн Ρ„ΠΈΠ»Ρ‚Ρ€Π°, ΠΏΠΎΡ€Π΅Π΄ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°ΠΈΡ˜Π΅ Π±Ρ€ΠΎΡ˜Π° seed Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡ˜Π°, ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·ΠΈΡ€Π° сС ΠΈ свака seed Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡ˜Π° која ΠΌΠΎΠΆΠ΅ Π΄Π° ΠΈΠΌΠ° Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π΅ JacobijevΠΈΡ… ΠΏΠΎΠ»ΠΈΠ½ΠΎΠΌΠ°. Π£ Ρ‚ΠΎΠΌ ΡΠ»ΡƒΡ‡Π°Ρ˜Ρƒ јС Π±Ρ€ΠΎΡ˜ ΠΌΠΎΠ³ΡƒΡ›ΠΈΡ… ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΡ˜Π° Π²Π΅Π»ΠΈΠΊΠΈ ΠΏΠ° јС ΠΏΠΎΠ³ΠΎΠ΄Π½ΠΎ Π½Π°Ρ˜ΠΏΡ€Π΅ ΠΈΠ·Π²Ρ€ΡˆΠΈΡ‚ΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ˜Ρƒ са истим ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈΠΌΠ°, Π° Π·Π°Ρ‚ΠΈΠΌ ΠΎΠ΄Π°Π±Ρ€Π°Ρ‚ΠΈ Ρ˜Π΅Π΄Π½Ρƒ seed Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡ˜Ρƒ којом Ρ›Π΅ сС ΠΈΠ·Π²Ρ€ΡˆΠΈΡ‚ΠΈ Π½Π°ΠΊΠ½Π°Π΄Π½ΠΎ подСшавањС Π½Π΅ΠΊΠ΅ ΠΎΠ΄ карактСристика Ρƒ устаљСном ΠΈΠ»ΠΈ ΠΏΡ€Π΅Π»Π°Π·Π½ΠΎΠΌ ΡΡ‚Π°ΡšΡƒ. Излагања Ρƒ Ρ‡Π΅Ρ‚Π²Ρ€Ρ‚ΠΎΠΌ ΠΏΠΎΠ³Π»Π°Π²Ρ™Ρƒ односС сС Π½Π° синтСзу полиномских Π»Π°Ρ‡Π°Π½ΠΈΡ… Ρ„ΠΈΠ»Ρ‚Π°Ρ€Π°. ПосСбна паТња јС поклоњСна Π»Π°Π½Ρ‡Π°Π½ΠΈΠΌ Ρ„ΠΈΠ»Ρ‚Ρ€ΠΈΠΌ са Π΄Π²Π΅ seed Ρ„ΡƒΠ½ΠΊΠΈΡ˜Π΅.Π€Π°ΠΊΡ‚ΠΎΡ€ Π΄ΠΎΠ±Ρ€ΠΎΡ‚Π΅ ΠΊΠΎΡšΡƒΠ³ΠΎΠ²Π°Π½ΠΎ комплСксног ΠΏΠ°Ρ€Π° ΠΏΠΎΠ»ΠΎΠ²Π°, Ρ„Π°ΠΊΡ‚ΠΎΡ€ Π½Π°Π³ΠΈΠ±Π° ΠΈ максимална врСдност ΠΏΠΎΠ²Ρ€Π°Ρ‚Π½ΠΈΡ… Π³ΡƒΠ±ΠΈΡ‚Π°ΠΊΠ° су ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅Π½ΠΈ Π·Π° ΠΏΠΎΡ€Π΅Ρ’Π΅ΡšΠ΅ прСносних Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡ˜Π°. Π€ΡƒΠ½ΠΊΡ†ΠΈΡ˜Π΅ Ρ†ΠΈΡ™Π° су ΠΏΠΎΠ²Ρ€Π°Ρ‚Π½ΠΈ Π³ΡƒΠ±ΠΈΡ†ΠΈ. На ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΈΠΌΠ° прСносних Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡ˜Π° сСдмог, осмог, Π΄Π΅Π²Π΅Ρ‚ΠΎΠ³ ΠΈ дСсСтог Ρ€Π΅Π΄Π° Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€Π°Π½ΠΈ су Ρ€Π΅Π°Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈ Π°ΠΏΡ€ΠΎΠΊΡΠΈΠΌΠ°Ρ†ΠΈΡ˜Π΅. Показано јС Π΄Π° сС Ρ€Π΅Π΄ΡƒΠΊΡ†ΠΈΡ˜Π° ΠΏΠΎΠ²Ρ€Π°Ρ‚Π½ΠΎΠ³ ΡΠ»Π°Π±Ρ™Π΅ΡšΠ° ΠΌΠΎΠΆΠ΅ остварити прСносним Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡ˜Π°ΠΌΠ° вишСг Ρ€Π΅Π΄Π° Π±Π΅Π· Π²Π΅Π»ΠΈΠΊΠ΅ ΠΏΡ€ΠΎΠΌΠ΅Π½Π΅ Q-Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° ΠΏΠΎΠ»Π° ΠΈ ΠΊΠΎΠ΅Ρ„ΠΈΡ†ΠΈΡ˜Π΅Π½Ρ‚Π° Π½Π°Π³ΠΈΠ±Π°. Ова Ρ‚Π΅Ρ…Π½ΠΈΠΊΠ° јС ΠΏΡ€Π²ΠΈ ΠΏΡƒΡ‚ ΠΏΡ€ΠΈΠΌΠ΅ΡšΠ΅Π½Π° Π΄Π°Π²Π½Π΅ 1967 Π·Π° Ρ€Π΅Π΄ΡƒΠΊΡ†ΠΈΡ˜Ρƒ Q-Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° ΠΊΡ€ΠΈΡ‚ΠΈΡ‡Π½ΠΎΠ³ ΠΏΠ°Ρ€Π° ΠΏΠΎΠ»ΠΎΠ²Π°. ΠšΠΎΠ½Π°Ρ‡Π½ΠΎ, излагања Ρƒ ΠΏΠ΅Ρ‚ΠΎΡ˜ Π³Π»Π°Π²ΠΈ сС односС Π½Π° пасивну LC лСсвичасту Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΡ˜Ρƒ Π»Π°Π½Ρ‡Π°Π½ΠΈΡ… Ρ„ΠΈΠ»Ρ‚Π°Ρ€Π°. ПослСдњи ΠΊΠΎΡ€Π°ΠΊ Ρƒ ΠΏΡ€ΠΎΡ˜Π΅ΠΊΡ‚ΠΎΠ²Π°ΡšΡƒ Ρ„ΠΈΠ»Ρ‚Π°Ρ€Π° Ρ˜Π΅ΡΡ‚Π΅ Ρ„ΠΎΡ€ΠΌΠΈΡ€Π°ΡšΠ΅ ΠΏΡ€ΠΎΡ‚ΠΎΡ‚ΠΈΠΏΠ° Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½ΠΎΠ³ ΠΊΠΎΠ»Π° којС слуТи ΠΊΠ°ΠΎ основа Π·Π° Ρ„ΠΈΠ·ΠΈΡ‡ΠΊΡƒ Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΡ˜Ρƒ (ΠΈΠΌΠΏΠ»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΡ˜Ρƒ) Ρ„ΠΈΠ»Ρ‚Ρ€Π°. НаимС, Ρ€Π΅Π°Π»ΠΈΠ·Π°ΠΈΡ†Ρ˜Π° нископропусних ΠΏΡ€ΠΎΡ‚ΠΎΡ‚ΠΈΠΏΠΎΠ²Π° Ρ„ΠΈΠ»Ρ‚Π°Ρ€Π° засновна јС Π½Π° Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚ΠΈΠΌΠ° са концСнтрисаним ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈΠΌΠ° двоприступнС пасивнС лСсвичастС LC ΠΌΡ€Π΅ΠΆΠ΅. Π€ΠΈΠ»Ρ‚Π°Ρ€ сС ΠΏΠΎΠ±ΡƒΡ’ΡƒΡ˜Π΅ Ρ€Π΅Π°Π»Π½ΠΈΠΌ Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€ΠΎΠΌ који ΠΈΠΌΠ° ΡƒΠ½ΡƒΡ‚Ρ€Π°ΡˆΡšΡƒ отпорност, Π° Π½Π° Π΄Ρ€ΡƒΠ³ΠΎΠΌ приступу Π·Π°Ρ‚Π²ΠΎΡ€Π΅Π½ јС ΠΎΡ‚ΠΏΠΎΡ€Π½ΠΈΠΊΠΎΠΌ. Π£ΠΏΡ€Π°Π²ΠΎ ΠΎΠ²Π΅ ΠΊΠΎΠ½Ρ„ΠΈΠ³ΡƒΡ€Π°Ρ†ΠΈΡ˜Π΅ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Ρ™Π°Ρ˜Ρƒ Π²Π΅Π·Ρƒ ΠΈΠ·ΠΌΠ΅Ρ’Ρƒ филтарскС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡ˜Π΅ ΠΈ Ρ„ΠΈΠ·ΠΈΡ‡ΠΊΠ΅ Ρ€Π΅Π°Π»ΠΈΠ·Π°ΠΈΡ˜Π΅ Ρ„ΠΈΠ»Ρ‚Ρ€Π°. ΠŸΠΎΡΠΌΠ°Ρ‚Ρ€Π°Ρ˜Ρƒ сС прототипски Ρ„ΠΈΠ»Ρ‚Π°Ρ€ пропусник ниских Ρ„Ρ€Π΅ΠΊΠ²Π΅Π½Ρ†ΠΈΡ˜Π° ΠΈ Ρ„ΠΈΠ»Ρ‚Π°Ρ€ пропусник опсСга Ρ„Ρ€Π΅ΠΊΠ²Π΅Π½Ρ†ΠΈΡ˜Π° ΠΈ ΡšΠΈΡ…ΠΎΠ²Π° ΠΈΠΌΠΏΠ»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ†Ρ˜Π° ΠΏΠΎΠΌΠΎΡ›Ρƒ Π΅Π»Π΅ΠΌΠ΅Π½Π°Ρ‚Π° са конСнтрисаним ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Π°Ρ€ΠΈΠΌΠ°. ПосСбна паТња јС посвСћСна Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΡ˜ΠΈ Π»Π°Π½Ρ‡Π°Π½ΠΎΠ³ Ρ„ΠΈΠ»Ρ‚Ρ€Π° пропусника ниских Ρ„Ρ€Π΅ΠΊΠ²Π΅Π½Ρ†ΠΈΡ˜Π° заснованог Π½Π° каскади ΡΠ΅ΠΊΡ†ΠΈΡ˜Π° Π²ΠΎΠ΄ΠΎΠ²Π°

    Radar tracking waveform design in continuous space and optimization selection using differential evolution

    Full text link

    A Search for Cosmic Microwave Background Anisotropies on Arcminute Scales with Bolocam

    Get PDF
    We have surveyed two science fields totaling one square degree with Bolocam at 2.1 mm to search for secondary CMB anisotropies caused by the Sunyaev- Zel'dovich effect (SZE). The fields are in the Lynx and Subaru/XMM SDS1 fields. Our survey is sensitive to angular scales with an effective angular multipole of l_eff = 5700 with FWHM_l = 2800 and has an angular resolution of 60 arcseconds FWHM. Our data provide no evidence for anisotropy. We are able to constrain the level of total astronomical anisotropy, modeled as a flat bandpower in C_l, with frequentist 68%, 90%, and 95% CL upper limits of 590, 760, and 830 uKCMB^2. We statistically subtract the known contribution from primary CMB anisotropy, including cosmic variance, to obtain constraints on the SZE anisotropy contribution. Now including flux calibration uncertainty, our frequentist 68%, 90% and 95% CL upper limits on a flat bandpower in C_l are 690, 960, and 1000 uKCMB^2. When we instead employ the analytic spectrum suggested by Komatsu and Seljak (2002), and account for the non-Gaussianity of the SZE anisotropy signal, we obtain upper limits on the average amplitude of their spectrum weighted by our transfer function of 790, 1060, and 1080 uKCMB^2. We obtain a 90% CL upper limit on sigma8, which normalizes the power spectrum of density fluctuations, of 1.57. These are the first constraints on anisotropy and sigma8 from survey data at these angular scales at frequencies near 150 GHz.Comment: 68 pages, 17 figures, 2 tables, accepted for publication in Ap
    corecore