40,432 research outputs found

    The genetic code for cities – is it simpler than we thought?

    Get PDF
    September 200

    Asymptotic geometry of Banach spaces and uniform quotient maps

    Full text link
    Recently, Lima and Randrianarivony pointed out the role of the property (ÎČ)(\beta) of Rolewicz in nonlinear quotient problems, and answered a ten-year-old question of Bates, Johnson, Lindenstrauss, Preiss and Schechtman. In the present paper, we prove that the modulus of asymptotic uniform smoothness of the range space of a uniform quotient map can be compared with the modulus of (ÎČ)(\beta) of the domain space. We also provide conditions under which this comparison can be improved

    The city as a socio-technical system a spatial reformulation

    Get PDF

    Exploiting Metric Structure for Efficient Private Query Release

    Get PDF
    We consider the problem of privately answering queries defined on databases which are collections of points belonging to some metric space. We give simple, computationally efficient algorithms for answering distance queries defined over an arbitrary metric. Distance queries are specified by points in the metric space, and ask for the average distance from the query point to the points contained in the database, according to the specified metric. Our algorithms run efficiently in the database size and the dimension of the space, and operate in both the online query release setting, and the offline setting in which they must in polynomial time generate a fixed data structure which can answer all queries of interest. This represents one of the first subclasses of linear queries for which efficient algorithms are known for the private query release problem, circumventing known hardness results for generic linear queries

    Off the Beaten Path: Let's Replace Term-Based Retrieval with k-NN Search

    Full text link
    Retrieval pipelines commonly rely on a term-based search to obtain candidate records, which are subsequently re-ranked. Some candidates are missed by this approach, e.g., due to a vocabulary mismatch. We address this issue by replacing the term-based search with a generic k-NN retrieval algorithm, where a similarity function can take into account subtle term associations. While an exact brute-force k-NN search using this similarity function is slow, we demonstrate that an approximate algorithm can be nearly two orders of magnitude faster at the expense of only a small loss in accuracy. A retrieval pipeline using an approximate k-NN search can be more effective and efficient than the term-based pipeline. This opens up new possibilities for designing effective retrieval pipelines. Our software (including data-generating code) and derivative data based on the Stack Overflow collection is available online

    Exact Computation of a Manifold Metric, via Lipschitz Embeddings and Shortest Paths on a Graph

    Full text link
    Data-sensitive metrics adapt distances locally based the density of data points with the goal of aligning distances and some notion of similarity. In this paper, we give the first exact algorithm for computing a data-sensitive metric called the nearest neighbor metric. In fact, we prove the surprising result that a previously published 33-approximation is an exact algorithm. The nearest neighbor metric can be viewed as a special case of a density-based distance used in machine learning, or it can be seen as an example of a manifold metric. Previous computational research on such metrics despaired of computing exact distances on account of the apparent difficulty of minimizing over all continuous paths between a pair of points. We leverage the exact computation of the nearest neighbor metric to compute sparse spanners and persistent homology. We also explore the behavior of the metric built from point sets drawn from an underlying distribution and consider the more general case of inputs that are finite collections of path-connected compact sets. The main results connect several classical theories such as the conformal change of Riemannian metrics, the theory of positive definite functions of Schoenberg, and screw function theory of Schoenberg and Von Neumann. We develop novel proof techniques based on the combination of screw functions and Lipschitz extensions that may be of independent interest.Comment: 15 page

    Simplicial Nonlinear Principal Component Analysis

    Get PDF
    We present a new manifold learning algorithm that takes a set of data points lying on or near a lower dimensional manifold as input, possibly with noise, and outputs a simplicial complex that fits the data and the manifold. We have implemented the algorithm in the case where the input data can be triangulated. We provide triangulations of data sets that fall on the surface of a torus, sphere, swiss roll, and creased sheet embedded in a fifty dimensional space. We also discuss the theoretical justification of our algorithm.Comment: 21 pages, 6 figure

    Studying cities to learn about minds: some possible implications of space syntax for spatial cognition

    Get PDF
    What can we learn of the human mind by examining its products? The city is a case in point. Since the beginning of cities human ideas about them have been dominated by geometric ideas, and the real history of cities has always oscillated between the geometric and the ‘organic’. Set in the context of the suggestion from cognitive neuroscience that we impose more geometric order on the world than it actually possesses, and intriguing question arises: what is the role of the geometric intuition in how we understand cities and how we create them? Here I argue, drawing on space syntax research which has sought to link the detailed spatial morphology of cities to observable functional regularities, that all cities, the organic as well as the geometric, are pervasively ordered by geometric intuition, so that neither the forms of the cities nor their functioning can be understood without insight into their distinctive and pervasive emergent geometrical forms. The city is often said to be the creation of economic and social processes, but here it is argued that these processes operate within an envelope of geometric possibility defined by the human mind in its interaction with spatial laws that govern the relations between objects and spaces in the ambient world

    Monotone Maps, Sphericity and Bounded Second Eigenvalue

    Get PDF
    We consider {\em monotone} embeddings of a finite metric space into low dimensional normed space. That is, embeddings that respect the order among the distances in the original space. Our main interest is in embeddings into Euclidean spaces. We observe that any metric on nn points can be embedded into l2nl_2^n, while, (in a sense to be made precise later), for almost every nn-point metric space, every monotone map must be into a space of dimension Ω(n)\Omega(n). It becomes natural, then, to seek explicit constructions of metric spaces that cannot be monotonically embedded into spaces of sublinear dimension. To this end, we employ known results on {\em sphericity} of graphs, which suggest one example of such a metric space - that defined by a complete bipartitegraph. We prove that an Ύn\delta n-regular graph of order nn, with bounded diameter has sphericity Ω(n/(λ2+1))\Omega(n/(\lambda_2+1)), where λ2\lambda_2 is the second largest eigenvalue of the adjacency matrix of the graph, and 0 < \delta \leq \half is constant. We also show that while random graphs have linear sphericity, there are {\em quasi-random} graphs of logarithmic sphericity. For the above bound to be linear, λ2\lambda_2 must be constant. We show that if the second eigenvalue of an n/2n/2-regular graph is bounded by a constant, then the graph is close to being complete bipartite. Namely, its adjacency matrix differs from that of a complete bipartite graph in only o(n2)o(n^2) entries. Furthermore, for any 0 < \delta < \half, and λ2\lambda_2, there are only finitely many Ύn\delta n-regular graphs with second eigenvalue at most λ2\lambda_2

    Average Distance Queries through Weighted Samples in Graphs and Metric Spaces: High Scalability with Tight Statistical Guarantees

    Get PDF
    The average distance from a node to all other nodes in a graph, or from a query point in a metric space to a set of points, is a fundamental quantity in data analysis. The inverse of the average distance, known as the (classic) closeness centrality of a node, is a popular importance measure in the study of social networks. We develop novel structural insights on the sparsifiability of the distance relation via weighted sampling. Based on that, we present highly practical algorithms with strong statistical guarantees for fundamental problems. We show that the average distance (and hence the centrality) for all nodes in a graph can be estimated using O(ϔ−2)O(\epsilon^{-2}) single-source distance computations. For a set VV of nn points in a metric space, we show that after preprocessing which uses O(n)O(n) distance computations we can compute a weighted sample S⊂VS\subset V of size O(ϔ−2)O(\epsilon^{-2}) such that the average distance from any query point vv to VV can be estimated from the distances from vv to SS. Finally, we show that for a set of points VV in a metric space, we can estimate the average pairwise distance using O(n+ϔ−2)O(n+\epsilon^{-2}) distance computations. The estimate is based on a weighted sample of O(ϔ−2)O(\epsilon^{-2}) pairs of points, which is computed using O(n)O(n) distance computations. Our estimates are unbiased with normalized mean square error (NRMSE) of at most Ï”\epsilon. Increasing the sample size by a O(log⁥n)O(\log n) factor ensures that the probability that the relative error exceeds Ï”\epsilon is polynomially small.Comment: 21 pages, will appear in the Proceedings of RANDOM 201
    • 

    corecore