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Abstract

We considermonotoneembeddings of a finite metric space into low-dimensional normed space.
That is, embeddings that respect the order among the distances in the original space. Our main interest
is in embeddings into Euclidean spaces. We observe that any metric onnpoints can be embedded into
ln2, while (in a sense to be made precise later), for almost everyn-point metric space, every monotone
map must be into a space of dimension�(n) (Lemma 3).

It becomes natural, then, to seek explicit constructions of metric spaces that cannot be monotonically
embedded into spaces of sublinear dimension. To this end, we employ known results onsphericity
of graphs, which suggest one example of such a metric space—that is defined by a complete bi-
partite graph. We prove that an�n-regular graph of ordern, with bounded diameter has sphericity
�(n/(�2 + 1)), where�2 is the second largest eigenvalue of the adjacency matrix of the graph, and
0< �� 1

2 is constant (Theorem 4). We also show that while random graphs have linear sphericity,
there arequasi-randomgraphs of logarithmic sphericity (Lemma 7).

For the above bound to be linear,�2 must be constant. We show that if the second eigenvalue of
ann/2-regular graph is bounded by a constant, then the graph is close to being complete bipartite.
Namely, its adjacency matrix differs from that of a complete bipartite graph in onlyo(n2) entries
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(Theorem 5). Furthermore, for any 0< �< 1
2, and�2, there are only finitely many�n-regular graphs

with second eigenvalue at most�2 (Corollary 4).
© 2005 Elsevier Inc. All rights reserved.

Keywords:Embedding; Finite metric space; Graphs; Sphericity; Eigenvalues; Bipartite graphs; Second
eigenvalue

1. Introduction

Euclidean embeddings of finite metric spaces have been extensively studied, with the
aim of finding an embedding that does not distort the metric too much. We refer the reader
to the survey papers of Indyk[11] and Linial [13], as well as Chapter 15 of Matoušek’s
Discrete Geometry book [16]. Here we focus on different types of embeddings. Namely,
those that preserve the order relation of the distances. We call such embeddingsmonotone.
There are quite a few applications that make this concept natural and interesting, since there
are numerous algorithmic problems whose solution depends only on the order among the
distances. Specifically, questions that concern nearest neighbors. The notion of monotone
embeddings suggests the following general strategy toward the resolution of such problems.
Namely, embed the metric space at hand monotonically into a “nice” space, for which good
algorithms are known to solve the problem. Solve the problem in the “nice” space—the same
solution applies as well for the original space. “Nice” often means a low-dimensional normed
space. Thus, we focus on the minimal dimension which permits a monotone embedding.

In Section 2 we observe that any metric onnpoints can be monotonically embedded into
ann-dimensional Euclidean space, and that the bound on the dimension is asymptotically
tight. The embedding clearly depends only on the order of the distances (Lemma 1). We
show that for almost every ordering of the

(
n
2

)
distances amongnpoints, the host space of a

monotone embedding must be�(n)-dimensional. Similar bounds are given for embeddings
into l∞, and some bounds are also deduced for other norms.

Next we consider embeddings that are even less constrained. Given a metric space(X, �)
and some thresholdt, we seek a mappingf that only respects this threshold. Namely,
‖f (x) − f (y)‖<1 iff �(x, y)<t . The input to this problem can thus be thought of as a
graph (adjacency indicating distances below the thresholdt). The minimal dimensiond,
such that a graphG can be mapped this way intold2 is known as thesphericityof G, and de-
notedSph(G). Reiterman et al. [20] and Maehara [15] show that the sphericity ofKn,n is at
leastn. This is, then, an explicit example of a metric space which requires linear dimension
to be monotonically embedded intol2. Other than that, the best lower bounds previously
known to us are logarithmic. In Section 3 we prove a novel lower bound, namely that for
0 < �� 1

2, Sph(G) = �( n
�2+1), for anyn-vertex�n-regular graph, with bounded diameter.

Here�2 is the second largest eigenvalue of the graph. We also show examples of quasi-
random graphs of logarithmic sphericity. This is somewhat surprising since quasi-random
graphs tend to behave like random graphs, yet the latter have linear sphericity.

In our search for further examples of graphs of linear sphericity, we investigate in Section
4 families of graphs whose second eigenvalue is bounded by a constant (for which the
aforementioned lower bound is linear). We show that such graphs are close to being complete
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bipartite, in the sense that one needs to modify onlyo(n2) entries in the adjacency matrix
to get the latter from the former. As a corollary, we get that for 0< � < 1

2, and�2, there
are only finitely many�n-regular graphs with second eigenvalue at most�2.

2. Monotone maps

2.1. Definitions

LetX=([n], �) be a metric space onnpoints, such that all pairwise distances are distinct.
Let ‖ · ‖ be a norm onRd . We say that� : X → (Rd , ‖ · ‖) is amonotone mapif for every
w, x, y, z ∈ X, �(x, y) < �(w, z) ⇔ ‖�(x) − �(y)‖ < ‖�(w) − �(z)‖.

We denote byd(X, ‖ · ‖) the minimalt such that there exists a monotone map fromX to
(Rt , ‖ · ‖). We denote byd(n, ‖ · ‖) = maxX d(X, ‖ · ‖), the smallest dimension to which
everyn point metric can be mapped monotonically.

The first thing to note is that we are actually concerned only with theorder among the
distances between the points in the metric space, and not with the actual distances. Let
(X, �) be a finite metric space, and let� be a linear order on

(
X
2

)
. We say that� and(X, �)

areconsistentif for everyw, x, y, z ∈ X, �(x, y) < �(w, z) ⇔ (x, y) <� (w, z).
We start with an easy, but useful observation.

Lemma 1. Let X be a finite set. For every linear order relation� on
(
X
2

)
, there exists a

distance function� on X, that is consistent with�.

Proof. Let {�ij }(i,j)∈(X2) be small, non-negative numbers, ordered as per�. Define�(i, j) =
1+ �ij . It is obvious that� induces the desired order on the distances ofX, and, that if the
�’s are small, the triangle inequality holds.�

When we later (Section2.3) use this observation, we refer to it as astandard�-construction,
where� = max�ij . It is not hard to see that this metric is Euclidean, that is, the resulting
metric can be isometrically embedded intol2, see Lemma 3 below.

We say that an order relation� on
([n]

2

)
is realizablein (Rd , ‖ · ‖) if there exists a metric

space(X, �) onnpoints which is consistent with�, and a monotone map� : X → Rd . We
say that� is a realization of�. (Thus,d(n, ‖ · ‖) is the minimald such that any linear order
on

([n]
2

)
is realizable in(Rd , ‖ · ‖).)

We denote byJ = Jn then×n all ones matrix, and byPSDn the cone of real symmetric
n × n positive semidefinite matrices. We omit the subscriptn when it is clear from the
context.

Finally, for a graphG, andU,V subsets of its vertices, we denote bye(U, V ) = |{(u, v) ∈
E(G) : u ∈ U, v ∈ V }|, ande(U) = |{(u, u′) ∈ E(G) : u, u′ ∈ U}|.

2.2. Monotone maps intol∞

Lemma 2. The minimal dimension required to monotonically embed n points intol∞ is
bounded by: n

2 − 1�d(n, l∞)�n.
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Proof. It is well known that any metricXonnpoints can be embedded intoln∞ isometrically,
henced(n, l∞)�n.

For the lower bound, we define a metric space(X, �) with 2n + 2 points that cannot be
realized inln∞. By Lemma1, it suffices to define an ordering on the distances. In fact, we
define only a partial order, any linear extension of which will do. The 2n+2 points come in
n + 1 pairs,{xi, yi}i=1,...,n+1. If z /∈ {xi, yi}, we let�(xi, yi) > �(xi, z), �(yi, z). Assume
for contradiction that a monotone map� into ln∞ does exist. For each pair(x, y) define
j (x, y) to be some indexi for which |�(x)i − �(y)i | is maximized, that is, an indexi for
which |�(x)i − �(y)i | = ‖�(x) − �(y)‖∞.

By the pigeonhole principle there exist two pairs, say(x1, y1) and(x2, y2), for which
j (x1, y1) = j (x2, y2) = j . It is easy to verify that our assumptions on the four real numbers
�(x1)j , �(x2)j , �(y1)j , �(y2)j , are contradictory. Thusd(n, l∞)� n

2 − 1. �

2.3. Monotone maps intol2

Lemma 3. The minimal dimension required to monotonically embed n points intol2 is
bounded by: n

2 �d(n, l2)�n.Furthermore, for every�>0,and every large enough n,almost

no linear orders� on
([n]

2

)
can be realized in dimension less thann2+� .

Note 1. The upper bound is apparently folklore. As we could not find a reference for it, we
give a proof here.

The second part of the lemma relies on a bound on the number ofsign-patternsof a
sequence of real polynomials. Letp1, . . . , pm be real polynomials inl variables of (total)
degreed, and letx ∈ Rl be a point where none of them vanish. The sign-pattern atx is
(sgn(p1(x)), . . . , sgn(pm(x))). Denote the total number of different sign-patterns that can
be obtained fromp1, . . . , pm by s(p1, . . . , pm). A variation of the Milnor–Thom theorem
[17] due to Alon et al. [1]:

Theorem 1(Alon et al.[1] ). Letp1, . . . , pm be real polynomials as above. Then for any
integer k between 1 and m:

s(p1, . . . , pm)�2kd · (4kd − 1)l+
m
k
−1.

Proof. Let � be a linear order on
([n]

2

)
. Let � be a real symmetric matrix with the following

properties:

• �ii = 0 for all i.
• 1

n
> �ij > 0, for all i �= j .

• The numbers�i,j are consistent with the order�.

Since the sum of each row is strictly less than one, all eigenvalues of� are in the open interval
(−1,1). It follows that the matrixI − � is positive definite. Therefore, there exists a matrix
V such thatVV t = I − �. Denote theith row ofV by vi . Clearly, thevi ’s are unit vectors,
and〈vi, vj 〉 = −�i,j for i �= j . Therefore,‖vi − vj‖2

2 = 〈vi, vi〉 + 〈vj , vj 〉 − 2〈vi, vj 〉 =
2 + 2�i,j . It follows that the map�(i) = vi is a realization of�, and the upper bound is



Y. Bilu, N. Linial / Journal of Combinatorial Theory, Series B 95 (2005) 283–299 287

proved. In fact, one can add another point without increasing the dimension, by mapping it
to 0, and perturbing the diagonal.

For the lower bound, it is implicit in[15,20] (see Theorem 2 below) that ifX is the metric
induced byKn,n, thend(X, l2)�n.

For the second part of the lemma, setn = c · d, for some constantc, and l = n · d.
Consider a pointx ∈ Rl , and think of it as ann×d matrix. Denote theith row of this matrix
by xi . As before,x realizesan order� on

([n]
2

)
if the distances‖xi − xj‖ are consistent

with �.
For two different pairs,(i1, j1) and(i2, j2), define the polynomial

p(i1,j1),(i2,j2)(x) = ‖xi1 − xj1‖2 − ‖xi2 − xj2‖2.

The list containsm = ((n2)
2

)
polynomials of degree 2. Note that there is a 1:1 correspon-

dence between orders on
([n]

2

)
and sign-patterns ofp1, . . . , pm, thus no more thans =

s(p1, . . . , pm) orders may be realized inld2 .
Takek = �n2, for some large constant�. By Theorem1 logs is approximately 2cd2 logd.

By contrast, that total number of orders is
(
n
2

)!, so its log is aboutc2d2 logd. If c is bigger
than 2, almost all order relations cannot be realized.�

Note 2. In fact, the same proof shows that for any positive integer t, almost all orders on(
n
2

)
require linear dimension to be realized, and in particular thatd(n, l2t ) = �(n) (where

the constant of proportionality depends only on t): Simply repeat the argument above with
polynomials of degree2t rather than quadratic polynomials.

2.4. Other norms

We conclude this section with two easy observations about monotone maps into other
normed spaces. The first gives an upper bound on the dimension required for embedding
into lp:

Lemma 4. The minimal dimension required to monotonically embed n points intolp is
bounded by: d(n, lp)�

(
n
2

)
.

Proof. By Lemma3, any metric space onn points can be mapped monotonically intol2.
It is known (see [5] and also Chapter 15 of [16]) that anyl2 metric onn points can be
isometrically embedded into

(
n
2

)
-dimensionallp. The composition of these mappings is a

monotone mapping of the metric space into
(
n
2

)
-dimensionallp. �

The second observation gives a lower bound for arbitrary norms. We first note the fol-
lowing:

Lemma 5. Let‖·‖ be an arbitrary n-dimensional norm and letx1, . . . , x5n be points inRn,
such that‖xi−xj‖ > 1 for all i �= j .Then there exits a pair(xi, xj ) such that‖xi−xj‖�2.
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Proof. Denote byv the volume ofB, the unit ball in(Rn, ‖ · ‖). The translatesxi + 1
2B are

obviously non-intersecting, so the volume of their union is(5
2)

nv. Assume for contradiction
that all pairwise distances are less than 2, then all these balls are contained in a single
ball of radius less than52. But this is impossible, since the volume of this ball is less than
(5

2)
nv. �

Note that thel∞ norm shows that indeed an exponential number of points is required for
the lemma to follow. We do not know, however, the smallest base of the exponent for which
the claim holds. The determination of this number seems to be of some interest.

Corollary 1. There exists an n-point metric space(X, �) such that for any norm‖ · ‖,
d(n, ‖ · ‖) = �(logn).

Proof. We construct a distance function on 5n + 1 points which cannot be realized in any
n-dimensional norm. By Lemma1 it suffices to define a partial order on the distances.
Denote the points in the metric space 0, . . . ,5n. Let the distance between 0 and any other
point be smaller than any distance between any two pointsi �= j > 0. Consider a mono-
tone map� of the metric space inton-dimensional normed space. Assume, w.l.o.g., that
min1� i<j �5n ‖�(i)−�(j)‖ = 1. By the previous lemma there exists a pair of points,i, j �=
0, such that‖�(i)−�(j)‖ > 2. But for� to be monotone it must satisfy‖�(0)−�(i)‖ < 1
and‖�(0) − �(j)‖ < 1, contradicting the triangle inequality.�

3. Sphericity

So far we have concentrated on embeddings of a metric space into a normed space, that
preserve the order relations between distances. However, in the examples that gave us the
lower bounds forl∞ and for arbitrary norms, we actually only needed to distinguish between
“long” and “short” distances. This motivates the introduction of a broader class of maps,
that need only respect the distinction between short and long distances. More formally, let
X = ([n], �) be a metric space. Itsproximity graphwith respect to some threshold�, is a
graph onnvertices, with an edge betweeni andj iff �(i, j)��. An embedding of a proximity
graph, is a mapping� of its vertices into normed space, such that‖�(i) − �(j)‖ < 1 iff
(i, j) is an edge in the proximity graph (we assume that no distance is exactly 1). The
minimal dimension in which a graph can be so embedded (in Euclidean space) was first
studied by Maehara [14] under the namesphericity, and denotedSph(G). Following this
terminology, we call such an embeddingspherical.

The sphericity of graphs was further studied by Maehara and Frankl [7], Maehara [15],
and Reiterman et al. [19–21]. Breu and Kirkpatrick have shown in [3] that it is NP-hard to
recognize graphs of sphericity 2 (also known asunit disk graphs) and graphs of sphericity
3. We refer the reader to [19] for a survey of results regarding this parameter, and mention
only a few of them here.

Theorem 2. Let G be graph on n vertices with minimal degree�. Let �n be the least
eigenvalue of its adjacency matrix.
1. Sph(Km,n)�m + n

2 − 1 [14].
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2. Sph(G) = O(�2
n logn) [7].

3. Sph(G) = O((n − �) log(n − �)) [19].
4. Sph(Kn,n)�n [15,20].
5. All but a 1

n
fraction of graphs onn > 37vertices have sphericity at leastn15 − 1 [19].

6. Sph(G)� log�(G)
log(2r(G)+1) , where�(G) is the independence number of G, and r(G) is its

radius[20].

The first thing to note is that any lower bower on the sphericity of some graph onn
vertices is also a lower bound ond(n, l2). In particular, the fact thatSph(Kn,n)�n proves
the lower bound in Lemma 3. (Similarly, any upper bound on the former also applies to the
latter.)

In this section we are interested in graphs of large sphericity. The above results tell us that
they exist in abundance, yet that graphs of very small maximal degree or very large minimal
degree have small sphericity (the maximal degree is an upper bound on|�n|, hence by (2)
the sphericity is small if all degrees are small). Other than the complete bipartite graph, the
above results do not point out an explicit graph with super-logarithmic sphericity.

3.1. Upper bound on margin

Following Frankl and Maehara [7], consider an embedding of a proximity graph where
there is a large margin between short and long distances. In such a situation, the Johnson–
Lindenstrauss Lemma [12] would yield a spherical embedding into lower dimension: It
allows reducing the dimension at the cost of some distortion. If the distortion is small
with respect to the margin, the short and long distances remain separated. Alas, we show
that for most regular graphs this margin is not large enough for the method to be
useful:

Theorem 3. Let G be a�n-regular graph, with second eigenvalue�2>
2
n
. Let � be an

embeddingofGasaproximity graph.Denotea=maxu∼v ‖�(u)−�(v)‖2
2,andb=minu�∼v ‖

�(u) − �(v)‖2
2. Thenb − a = O( �2+�

�n ).

Proof. Denotem = min{1 − a, b − 1}, and for a vertexi, denotevi = �(i). The largest
valuemcan attain, over all embeddings�, is given by the following quadratic semidefinite
program3 (and is attained when 1− a = 1− b):

max m

s.t. ∀ (i, j) ∈ E(G), ‖vi − vj‖2�1− m,

∀ (i, j) /∈ E(G), ‖vi − vj‖2�1+ m.

3 For reference on semidefinite programming see[8].
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Its dual turns out to be

min 1
2trA

s.t. A ∈ PSD,
∀ (i, j) ∈ E(G), Aij �0,
∀ (i, j) /∈ E(G), i �= j, Aij �0,
∀ i,

∑
j=1,...,n

Aij = 0,
∑
i �=j

|Aij | = 1.

Equivalently, we can drop the last constraint, and change the objective function to
min trA∑

i �=j |Aij | . Next we construct an explicit feasible solution for the dual program, and

conclude from it a bound onm.
LetM be the adjacency matrix ofG. DefineA = I +�J −	M. To satisfy the constraints

we need

A ∈ PSD,

	���0,

1+ �n − 	�n = 0.

The last condition implies� = 	� − 1
n
, so it follows that	��, and the constraint on	 is

	� 1
�n .

Now, since we assume that the graph is�n-regular, its Perron eigenvector is�1, correspond-
ing to eigenvalue�n. Therefore, we can consider the eigenvectors ofM to be eigenvectors
of J andI as well, and hence also eigenvectors ofA. If � �= �n is an eigenvalue ofM, then
1 − 	� is an eigenvalue ofA, corresponding to the same eigenvector. Denote by�2 the
second largest eigenvalue ofM, then in order to satisfy the conditionA ∈ PSDit is enough
to set	 = 1

�2
, in which case all the constraints are fulfilled.

We conclude that

m � trA∑
i �=j |Aij | =

n(1+ �)

�n2(	 − �) + ((1− �)n2 − n)�

=
n + �n

�2
− 1

�n(n+�n
�2

− 1) + ((1− �)n − 1)( �n
�2

− 1)
< 4

1+ �
�2

�n
�2

= 4
�2 + �

�n
.

In particular,b − a = O(�2+�
�n ). �

In order to derive a non-trivial result from the Johnson–Lindenstrauss Lemma, we need
that 1

m2 logn = o(n), and in particular thatm = 
(
√

logn/n). The above shows that this

can happen only if�2 = 
(�
√

n logn). On the other hand, Frankl and Maehara show that

their method does give a non-trivial bound when�n = o(
√

n
logn

). Consequently, we get

that a�n-regular graph (think of� as constant) cannot have both�2 = o(
√

n logn) and

�n = o(
√

n
logn

). This is a bit more subtle than what one gets from the second moment

argument, namely, that the graph cannot have both�2 = o(
√

n) and�n = o(
√

n).
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3.2. Lower bound on sphericity

Theorem 4. Let G be a d-regular graph with diameter D and�2, the second largest eigen-
value of G’s adjacency matrix, at leastd − 1

2n. Then Sph(G) = �( d−�2
D2(�2+O(1))

).

In the interesting range whered� n
2, and�2�1 the bound isSph(G) = �( d−�2

D2�2
).

In proving the theorem will need the following lemma (see[10, p. 175]):

Lemma 6. Let X be a real symmetric matrix, thenrank(X)� (trX)2∑
i,j X2

i,j

.

Proof. It will be useful to consider the following operation on matrices. LetA be ann× n

symmetric matrix, and denote by�a the vector whoseith coordinate isAii . DefineR(A) to
be then × n matrix with all rows equal to�a, andC(A) = R(A)t . Define

Ă = 2A − C(A) − R(A) + J.

First note that the rank of̆A and that ofA can differ by at most 3. Now, consider the case
whereA is the Gram matrix of some vectorsv1, . . . , vn ∈ Rd . Then all diagonal entries of
Ă equal one, and the(i, j) entry is 2〈vi, vj 〉 − 〈vi, vi〉 − 〈vj , vj 〉 + 1 = 1− ‖vi − vj‖2.

Applying Lemma6 to Ă, we conclude that

rank(Ă)� n2

n + ∑
i �=j (1− ‖vi − vj‖2)2

. (1)

Letv1, . . . , vn ∈ Rd be an embedding ofG. By the discussion above it is enough to show
that

∑
i �=j

(1− ‖vi − vj‖2)2 = O

(
D2n2 �2

d − �2

)
. (2)

By the triangle inequality‖vi − vj‖�D for any two vertices. So the LHS of (2) is bigger
by at most a factor ofD2 than∑

(i,j)/∈E

(‖vi − vj‖2 − 1) +
∑

(i,j)∈E

(1− ‖vi − vj‖2)

=
∑

(i,j)/∈E

‖vi − vj‖2 −
∑

(i,j)∈E

‖vi − vj‖2 −
(
n

2

)
+ nd. (3)

We can bound this sum from above, by solving the following SDP:

max
∑

(i,j)/∈E

(Vii + Vjj − 2Vij ) + ∑
(i,j)∈E

(−Vii − Vjj + 2Vij ) −
(
n
2

) + nd

s.t. V ∈ PSD,

∀ (i, j) ∈ E, Vii + Vjj − 2Vij �1,

∀ (i, j) /∈ E, Vii + Vjj − 2Vij �1.
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The dual problem is

min 1
2trA

s.t. A ∈ PSD,
∀ (i, j) ∈ E, Aij � − 1,
∀ (i, j) /∈ E, i �= j, Aij �1,
∀ i ∈ [n], ∑

j=1,...,n
Aij = 0.

LetM by the adjacency matrix of the graph, and setA = (�d −n)I + J − �M, where��2
will be determined shortly. This takes care of the all constraints except forA ∈ PSD. Note
that sinceM is regular, its eigenvectors are also eigenvectors ofA. Moreover, ifMu = �u
for a non-constantu, thenAu = (�d − n − ��)u (andA�1 = �0). So take� = n

d−�2
, and by

our assumption on�2, ��2.
NowA gives an upper bound on (3):

1

2
trA = 1

2
n(�d − n + 1) = 1

2
n2 d

d − �2
− 1

2
n2 + 1

2
n = 1

2
n2 �2

d − �2
+ 1

2
n.

This, by (1), shows that the dimension of the embedding is�
(

d−�2
D2(�2+O(1))

)
. �

3.3. A quasi-random graph of logarithmic sphericity

It is an intriguing problem to construct new examples of graphs of linear sphericity. Since
random graphs have this property, it is natural to search among quasi-random graphs. There
are several equivalent definitions for such graphs (see [2]). The one we adopt here is:

Definition 3.1. A family of graphs is calledquasi-randomif the graphs in the family are
(1+ o(1)) n

2-regular, and all their eigenvalues except the largest one are (in absolute value)
o(n).

Counter-intuitively, perhaps, quasi-random graphs may have very small sphericity.

Lemma 7. Let G be the family of graphs with vertex set{0,1}k, and edges connecting
vertices that are at Hamming distance at mostk

2. ThenG is a family of quasi-random
graphs of logarithmic sphericity.

Proof. The fact that the sphericity is logarithmic is obvious—simply map each vertex to
the vector in{0,1}k associated with it. To show that all eigenvalues except the largest one
areo(2k) we need the following facts about Krawtchouk polynomials (see[23]). Denote
by K

(k)
s (i) = ∑s

j=0(−1)j
(
i
j

)(
k−i
s−j

)
the Krawtchouk polynomial of orders over Zk

2. For

simplicity we assume thatk is odd.

1. For anyx ∈ Zk
2 with |x| = i,

∑
z∈Zk

2|z|=s
(−1)〈x,z〉 = K

(k)
s (i).

2.
∑l

s=0 K
(k)
s (i) = K

(k−1)
l (i − 1).

3. For anysandk, maxi=0,...,n |K(k)
s (i)| = K

(k)
s (0) = (

k
s

)
.
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Observe thatG is a Cayely graph for the groupZk
2 with generator set{g ∈ Zk

2 : |g|� k
2}. Since

Zk
2 is abelian, the eigenvectors of the graphs are independent of the generators, and are simply

the characters of the group written as the vector of their values. Namely, corresponding to
eachy ∈ Zk

2 we have an eigenvectorvy , such thatvy
x = (−1)〈x,y〉. For everyy, vy

0 = 1, so
to figure out the eigenvalue corresponding tovy , we simply need to sum the value ofvy on
the neighbors of 0. Note that fory = 0 we get the all 1s vector, which corresponds to the
largest eigenvalue. So we are interested iny’s such that|y| > 0. By the first two facts above
we have

�y =
∑

g∈Zk
2,|g|� k

2

(−1)〈y,g〉 =
k−1

2∑
s=0

K(k)
s (|y|) = K

(k−1)
k−1

2
(|y| − 1).

By the third fact, this is at most
(k−1

k−1
2

) ≈ 2k−1√
k−1

= o(2k−1). �

4. Graphs with bounded�2

Theorem4 suggests families of graphs that have linear sphericity. Namely, for 0< �� 1
2,

and�2 > 0, the theorem says that�n-regular graphs with second eigenvalue at most�2 have
linear sphericity. In this section we characterize such graphs. We prove that for� = 1

2 such
graphs are nearly complete bipartite, and that for other values, only finitely many graphs
exist.

It is worth noting that graphs with bounded second eigenvalue have been previously
studied. The apex of these works is probably that of Cameron, Goethals, Seidel and Shult,
who characterize in [4] graphs with second eigenvalue at most 2.

4.1. n/2-Regular graphs

In this section we consider the familyG of n/2-regular graphs, and second largest eigen-
value�2 bounded by a constant. We prove that, asymptotically, they are nearly complete
bipartite.

Definition 4.1. LetG andH be two graphs onn vertices. We say thatG andH areclose, if
there is a labeling of their vertices such that|E(G)$E(H)| = o(n2).

Theorem 5. EveryG ∈ G is close toKn/2,n/2, where n is the number of vertices in G.

Note 3. By applying the theorem to the complement graph, if �n = O(1), then G is close
to the disjoint union of two cliques, Kn/2∪̇Kn/2.

We need several lemmas. The first is the well-known Expander Mixing Lemma (cf.[2]).
The second is a special case of Simonovitz’s Stability Theorem [22], for which we give
a simple proof here. The third is a commonly used corollary of Szemeredi’s Regularity
Lemma. We shall also make use of the Regularity Lemma itself (see e.g. [6]).
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Lemma 8. Let G be ann2-regular graph on n vertices with second largest eigenvalue�2.
Then every subset of vertices with k vertices has at most1

4k
2 + 1

2�2k internal edges.

Lemma 9. Let R be a triangle-free graph on n vertices, with n2/4− o(n2) edges. Then R
is close toKn/2,n/2. Furthermore, all but o(n) of the vertices have degreen2 ± o(n).

Proof. Denote bydi the degree of theith vertex inR, and bym the number of edges. Then

∑
(i,j)∈E(R)

(di + dj ) =
∑

i∈V (R)

d2
i � 1

n


 ∑

i∈V (R)

di




2

= 4m2

n
.

Thus, there is some edge(i, j) ∈ E(R) such thatdi + dj � 4m
n

= n− o(n). Let �i and�j

be the neighbor sets ofi andj. Sincei andj are adjacent, andRhas no triangles, the sets�i

and�j are disjoint and independent. If we delete theo(n) of vertices inV \(�i ∪ �j ) we
obtain a bipartite graph. We have deleted onlyo(n2) edges, so the remaining graph still has
n2/4− o(n2) edges. But this means that|�i |, |�j | = n

2 − o(n), and that the degree of each
vertex in these sets isn2 ± o(n). �

Recall that the Regularity Lemma states that for every� > 0 andm ∈ N there is anM,
such that the vertex set of every large enough graph can be partitioned intok subsets, for
somem�k�M with the following properties: All subsets except one, the “exceptional”
subset, are of the same size. The exceptional subset contains less than an�-fraction of the
vertices. All but an�-fraction of the pairs of subsets are�-regular.

The regularity graph with respect to such a partition and a thresholdd, has thek subsets
as vertices. Two subsets,U1 andU2 are adjacent, if they are�-regular, ande(U1, U2) >

d|U1|2 = d|U2|2.

Lemma 10(Diestel[6] , Lemma 7.3.2). Let G be a graph on n vertices, d, � ∈ (0,1], and
s be s.t.�� (d−�)2s

2s+1 . Let R be an�-regularity graph of G, with (non-exceptional) sets of size
at least s� , and threshold d. If R contains a triangle, then G contains a complete tripartite
subgraph, with each side of size s.

Corollary 2. If G ∈ G, and R is as in the lemma,with s = 10�2, then R is triangle free. In

this case, if R hask2

4 − o(k2) edges, then R is close to complete bipartite.

Proof. If R contains a triangle, thenG contains a complete tripartite subgraph, withs
vertices on each side. LetU be the set of vertices in this subgraph. Thene(U) = 3s2 =
300�2

2, but by Lemma8, e(U)�250�2
2, a contradiction. The second part now follows from

Lemma 9. �

Proof of Theorem 5. We would like to apply the Regularity Lemma to graphs inG, and
have� = o(1), andk = 
(1) as well ask = o(n). Indeed, this can be done. SinceM
depends only onm and�, choosed = o(1), andm = 
(1), such that theM given by the
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lemma satisfies n
(M+1) � s

� . AsM depends only onmand�, M
� can be made small enough,

even with the requirements ond andm.
Let R be the regularity graph for the partition given by the Regularity Lemma, with

thresholdd as above. Denote byk the number of sets in the partition, and their size byl
(sok · l = n(1 − �), for some���). We shall show thatR is close to complete bipartite,
and thatG is close to the graph obtained by replacing each vertex inRwith l vertices, and
replacing each edge inRby aKl,l .

Call an edge inG (i) “irregular” if it belongs to an irregular pair; (ii) “internal” if it
connects two vertices within the same part; (iii) “redundant” if it belongs to a pair of edge
density smaller thand, or touches a vertex in the exceptional set. Otherwise (iv), call it
“good”.

Recall that� = o(1), so onlyo(k2) pairs of sets are not�-regular. Thus,G can have only
o(l2k2) = o(n2) irregular edges. Also,d = o(1), so the number of redundant edges is
k2 · o(l2) + o(l) n

2 = o(n2). Finally, the number of internal edges is at most1
2l

2k, hence

there aren
2

4 − o(n2) good edges.
The number of edges between two sets is at mostl2, soRmust have at least

n2 − o(n2)

4l2
= k2

4
− o(k2)

edges. The corollary implies that it is close to complete bipartite. By Lemma9, the degree
of all but o(k) of the vertices inR is indeedk

2 ± o(k). This means that every edge inR
corresponds tol2−o(l2) good edges inG (as the number of edges inR is also no more than
k2

4 + o(k2)).
To see thatG is close to complete bipartite, let us count how many edges need to be mod-

ified. First, deleteo(n2) edges that are not “good”. Next, add all possibleo(n2) new edges
between pairs of sets that have “good” edges between them. AsR is close to complete bipar-
tite, we need to delete or add all edges betweeno(k2)pairs. Each such step modifiesl2 edges,
altogethero(l2k2) = o(n2)modifications. Finally, divide theo(n) vertices of the exceptional
set evenly between the two sides of the bipartite graph, and add all the required edges, and the
tally remainso(n2). �

Note 4. In essence, the proof shows that a graph with no dense induced subgraphs is close
to complete bipartite. This claim is similar in flavor to Bruce Reed’s Mangoes and Blue-
berries theorem[18]. Namely, that if every induced subgraphG′ of G has an independent
set of size12|G′| − O(1), then G is close to being bipartite. The conclusion in Reed’s the-
orem is stronger in that only a linear number of edges need to be deleted to get a bipartite
graph.

Note 5. In fact, the proof gives something a bit stronger. Lettr (n) be the number of
edges in an n-vertex complete r-partite graph, with parts of equal size. Using the gen-
eral Stability Theorem[22] instead of Lemma9, the same proof shows that if a graph
hastn − o(n2) edges and no dense induced subgraphs, then it is close to being complete
r-partite.
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4.2. �n-Regular graphs

In Theorem5 we required that the degree isn/2. We can deduce from the theorem that
this requirement can be relaxed:

Corollary 3. Let G be a family of d-regular graphs, with d� n
2 (n being the number of

vertices in the graph) and bounded second eigenvalue, then everyG ∈ G is close to a
complete bipartite graph.

Proof. Let M ∈ Mn be the adjacency matrix of such ad-regular graph, and denotēM =
J −M, whereJ is the all ones matrix. Consider the graphH corresponding to the following
matrix:

N =
(

M M̄

M̄t M

)
.

ClearlyH is ann-regular graph on 2n vertices. Denote by(x, y) the concatenation of two
n-dimensional vectors,x, y, into a 2n-dimensional vector. Letv be an eigenvector ofM
corresponding to eigenvalue�. It is easy to see thatv is also an eigenvalue of̄M: If v = �1
(and thus� = d) it corresponds to eigenvaluen − �, otherwise to(−�).

Thus,(v, v) and(v,−v) are both eigenvectors ofN. If v = �1 they correspond to eigen-
valuesn, 2d − n, respectively, otherwise to 0, 2�. Since thev’s are linearly independent, so
are the 2n vectors of the form(v, v) and(v,−v): Consider a linear combination of these
vectors that gives 0. Both the sum and the difference of the coefficients of each pair have to
be 0, and thus both are 0. So we know the entire spectrum ofN, and see, sinced� n

2, that
Theorem5 holds for it.

LetH ′ be a complete bipartite graph that is close toH. SinceH differs fromH ′ by o(n2)

edges, the same holds for subgraphs over the same set of vertices. In particular,G is close
to the subgraph ofH ′ spanned by the firstn vertices. Obviously, every such subgraph is
itself complete bipartite. �

Corollary 4. For every0 < � < 1
2 and c, there are only finitely many�n-regular graphs

with �2 < c.

Proof. Consider such a graph withn large. By the previous corollary it is close to complete
bipartite. Since it is also regular, it must be close toKn

2 , n
2
, which contradicts the constraint

� < 1
2. �

4.3. Graphs with both�2 and�n−1 bounded by a constant

Theorem5 can loosely be stated as follows: A regular graph with spectrum similar to
that of a bipartite graph (�1 being close ton/2 and�2 being close to 0) is close to being
complete bipartite. We conclude this section by noting that if we strengthen the assumption
on how close the spectrum of a graph is to that of a bipartite graph, we get a stronger result
as to how close it is to a complete bipartite graph.
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Theorem 6. LetG be a family ofn2-regular graphs on n vertices, with both�2 and�n−1
bounded by a constant. Then everyG ∈ G is close to aKn

2 , n
2
, in the sense that such a graph

can be obtained from G by modifying a linear number of edges forO(
√

n) vertices of G,
andO(

√
n) edges for the rest.

Proof. First note that it follows that�n(G) = −n
2 + O(1). TakeG ∈ G, and letA be its

adjacency matrix. Clearlytr(A2) = n2

2 . If �n−1(G) = −O(1), then

n2

2
= tr(A2) = �2

1 + �2
n +

∑
i=2,...,n−1

�2
i .

Since�1 = n
2

�2
n = n2

2
−

(n

2

)2 −
∑

i=2,...,n−1

�2
i .

As �2, . . . , �n−1 = O(1) we have

�2
n = n2

4
+ O(n).

And since�n is negative, and is smaller than�1 in absolute value:

�n = −n

2
+ O(1).

Let x be an eigenvector corresponding to�n. Suppose, w.l.o.g. that‖x‖∞ = 1 and that
xv = 1. DenoteA = {u : xu� − (1− 1√

n
)}, andB = {w : xw �(1− 1√

n
)}. The eigenvalue

condition onv entails
n

2
− O(1) = −

∑
u:(u,v)∈E

xu.

Thus, there is a vertexu such thatxu� − (1− O( 1
n
)). It is not hard to verify thatv must

haven
2 − O(

√
n) neighbors inA, and thatumust haven2 − O(

√
n) neighbors inB.

Now denoteA′ = {u : xu� − 1
2}, andB ′ = {w : xw � 1

2}. Again, it is not hard to check
that each vertex inA must haven

2 − O(
√

n) neighbors inB ′, and vice versa. Thus, delete
theO(

√
n) vertices that are neither inA nor inB. For each remaining vertex inA (similarly

in B), its degree is at mostn2, and at leastn2 −O(
√

n). It hasn
2 −O(

√
n) neighbors inB, so

the number of its neighbors inA, and the number of its non-neighbors inB is O(
√

n). By
deleting and addingO(

√
n) edges to each vertex, we get a complete bipartite graph.�

Note 6. Alternatively, we could have definedG as a family ofn2-regular graphs with�2
bounded, and�n(G) = −n

2 + O(1). It’s interesting to note that in this case it follows that
�n−1 is bounded.ForG ∈ G, ifG is bipartite, then it is completebipartite,and�n−1(G) = 0.
Otherwise, �(G) > 2,and by a theorem of Hoffman[9] �n(G)+ �n−1(G)+ �1(G)�0.By
our assumption,�n(G)+�1(G) = O(1),andsince�n−1(G) < 0 (otherwise theeigenvalues
won’t sum up to0), it follows that�n−1(G) = −O(1).
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5. Conclusion and open problems

The only explicit examples known so far for graphs that have linear sphericity areKn,n

and small modifications of it. We conjecture that more complicated graphs, such as the Paley
graph, also have linear sphericity. Note that the lower bound presented here only shows a
bound of�(

√
n). It is also interesting to know if the bound can be improved, either as a

pure spectral bound, or with some further assumptions on the structure of the graph.
What is the largest sphericity,d = d(n), of ann-vertex graph? We know thatn

2 �d�n−1.
Can this gap be closed? For a seemingly related question, the smallest dimension required
to realize a sign matrix (see[1]) the answer is known to ben2 ± o(n). We have also seen a
similar gap ford(n, l2) andd(n, l∞). Can this be closed? Can some kind of interpolation
arguments generalize the bounds we know for these two numbers to bounds ond(n, lp) for
p > 2?

Finally, we have seen thatn2-regular graphs with bounded second eigenvalue areo(n2)-
close to complete bipartite. However, the only example we know of such graphs are con-
structed by taking a complete bipartite graph, and changing a constant number of edges for
each vertex. These graphs areO(n)-close to being complete bipartite. Are there examples
of such families which are further from complete bipartite graphs, or can a stronger notion
of closeness be proved?
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