
Title Exploiting metric structure for efficient private query release

Author(s) Huang, Z; Roth, A

Citation
The 25th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2014), Portland, OR., 5-7 January 2014. In Conference
Proceedings, 2014, p. 523-534

Issued Date 2014

URL http://hdl.handle.net/10722/201110

Rights
Proceedings of the 25th Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2014. Copyright © Association for
Computing Machinery.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/38052103?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Exploiting Metric Structure for Efficient Private Query Release

Zhiyi Huang∗ Aaron Roth†

Abstract

We consider the problem of privately answering queries de-

fined on databases which are collections of points belonging

to some metric space. We give simple, computationally effi-

cient algorithms for answering distance queries defined over

an arbitrary metric. Distance queries are specified by points

in the metric space, and ask for the average distance from the

query point to the points contained in the database, accord-

ing to the specified metric. Our algorithms run efficiently in

the database size and the dimension of the space, and oper-

ate in both the online query release setting, and the offline

setting in which they must in polynomial time generate a

fixed data structure which can answer all queries of interest.

This represents one of the first subclasses of linear queries for

which efficient algorithms are known for the private query

release problem, circumventing known hardness results for

generic linear queries.

1 Introduction

Consider an online retailer who is attempting to rec-
ommend products to customers as they arrive. The re-
tailer may have a great deal of demographic informa-
tion about each customer, both from cookies and from
data obtained from tracking networks. Moreover, the
retailer will also have information about what other, de-
mographically similar customers have purchased in the
past. If the retailer can identify which cluster of cus-
tomers the new arrival most resembles, then it can likely
provide a useful set of recommendations. Note that this
problem reduces to computing the average distance from
the new arrival to past customers in each demographic
cluster, where the distance metric may be complex and
domain specific.1

For legal reasons (i.e. to adhere to it’s stated pri-
vacy policy), or for public relations reasons, the retailer

∗Stanford University. Email: hzhiyi@stanford.edu. This work

was done while the author was a graduate student at University

of Pennsylvania. Supported in part by a Simons Graduate
Fellowship for Theoretical Computer Science (No. 252128).
†University of Pennsylvania. Supported in part by an NSF

CAREER award, NSF grant CNS-1065060, and a Google Focused
Research award. Email: aaroth@cis.upenn.edu.

1Note that the most natural metric for this problem may not be
defined by an `p norm, but may be something more combinatorial,
like edit distance on various categorical features.

may not want the recommendations given to some cus-
tomer i to reveal information about any specific past
customer j 6= i. Therefore, it would be helpful if the re-
tailer could compute these distance queries while guar-
anteeing that these computations satisfy differential pri-
vacy. Informally, this means that the distances com-
puted from each new customer to the demographic clus-
ters should be insensitive in the data of any single user
in the database of past customers.

Distance queries are a subclass of linear or predicate
queries, which are well studied in the differential privacy
literature [2, 7, 8, 13, 19]. For example, the data analyst
could answer k such queries from an `-dimensional met-
ric space, on a database of size n using the private mul-
tiplicative weights mechanism of Hardt and Rothblum
[13] with error that scales as O(poly(log(k), `)/

√
n).2

However, none of these mechanisms is computationally
efficient, and even for the best of these mechanisms, the
running time per query will be exponential in `, the di-
mension of the space. What’s more, there is strong ev-
idence that there do not exist computationally efficient
mechanisms that can usefully and privately answer more
than O(n2) general predicate queries [7, 21]. A ma-
jor open question in differential privacy is to determine
whether there exist interesting subclasses of predicate
queries for which efficient algorithms do exist.

In this paper, we show that distance queries us-
ing an arbitrary metric are one such class. We give
simple, efficient algorithms for answering exponentially
many distance queries defined over any metric space
with bounded diameter. In the online query release set-
ting, our algorithms run in time nearly linear in the di-
mension of the space and the size of the private database
per query. Our algorithms remain efficient even in the
offline query release setting, in which the mechanism
must in one shot (and with only polynomial running
time) privately generate a synopsis which can answer

2All of the mechanisms for answering predicate queries [2, 7,
8, 11, 12, 13, 19] are defined over discrete domains X and have an

error dependence on log |X|. In contrast, these queries are defined

over continuous `-dimensional domains, and so it is not clear
that this previous work even applies. However, metric queries

are Lipschitz, and so these mechanisms can be run on a discrete

grid with roughly nΩ(`) points, giving a polynomial dependence
on ` in the error bounds, but an exponential dependence on ` in

the running time.

all of the (possibly exponentially many) queries of in-
terest. This represents one of the first high dimensional
classes of predicate queries which are known to have
computationally efficient private query release mecha-
nisms which can answer large numbers of queries.

Our Techniques: At a high level, our mechanism is
based on the reduction from online learning algorithms
to private query release mechanisms developed in a
series of papers [11, 12, 13, 19]. Specifically, we use the
fact that an online mistake-bounded learning algorithm
for learning the function F : C → R, which maps queries
f ∈ C to their answers f(D) on the private database
D generically gives the existence of a private query
release mechanism in the interactive setting, where the
running time per query is equal to the update time of
the learning algorithm.

We observe that if the queries are metric distance
queries over some continuous `p metric space X , then
F : X → R is a convex, Lipschitz-continuous function.
Motivated by this observation, we give a simple mistake-
bounded learning algorithm for learning arbitrary con-
vex Lipschitz-continuous functions over the unit interval
[0, 1] by approximating F by successively finer piece-
wise linear approximations. Our algorithm has a natu-
ral generalization to the `-dimensional rectangle [0, 1]`,
but unfortunately the mistake bound of this generaliza-
tion necessarily grows exponentially with `.

Instead, we further observe that if X = [0, 1]` and is
endowed with the `1 metric, then F can be decomposed
into ` 1-dimensional functions, each defined over the
unit interval [0, 1]. Hence, for the `1 metric, our learning
algorithm can be extended to [0, 1]` with only a linear
increase in the mistake bound. In other words, the `1
metric is an easy metric for differential privacy. In fact,
for `1 distance queries, our algorithm achieves per-query
error O(poly(log(k), `)/n4/5), improving on the worst-
case error guarantees given by inefficient generic query
release mechanisms like [13].

Finally, we show that our algorithm can be used
to answer distance queries for any metric space that
can be embedded into `1 space using a low sensitivity
embedding. A sensitivity s embedding maps any pair
of databases that differ in 1 element into a pair of
projected databases that differ in at most s elements.
Oblivious embeddings, such as the almost-isometric
embedding from `2 into `1 are 1-sensitive [10, 16].
On the other hand, generic embeddings, such as the
embedding from an arbitrary metric space into `1 from
Bourgain’s theorem [4, 18] can have sensitivity as high
as n.

We observe, however, that for our purposes, the
embedding does not need to preserve distances between

pairs of database points, or between pairs of query
points, but rather only between database points and
query points. Therefore, we are able to prove a variant
of Bourgain’s theorem, which only preserves distances
between query points and database points. This gives a
1-sensitive embedding from any metric space into log k
dimensional `1 space, with distortion log k, which works
for any collection of k distance queries. In particular,
this gives us an efficient offline algorithm for answering
k distance queries defined over an arbitrary bounded
diameter metric that has multiplicative error O(log k)
and additive error O(polylog(k)/n4/5). Our use of
metric embeddings is novel in the context of differential
privacy, and we believe that they will be useful tools
for developing efficient algorithms in the future as we
identify other privacy-friendly metrics in addition to `1.

Related Work: Differential privacy was developed in a
series of papers [1, 5, 6], culminating in the definition by
Dwork et al. [6]. It is accompanied by a vast literature
which we do not attempt to survey.

Dwork et al. [6] also introduced the Laplace mech-
anism, which together with the composition theorems
of Dwork, Rothblum, and Vadhan [8] gives an efficient,
interactive method for privately answering nearly n2 ar-
bitrary low-sensitivity queries on a database of size n to
non-trivial accuracy. On the other hand, it has been
known since Blum, Ligett, and Roth [2] that it is infor-
mation theoretically possible to privately answer nearly
exponentially many predicate queries to non-trivial ac-
curacy, but the mechanism of [2] is not computationally
efficient. A series of papers [2, 7, 8, 11, 12, 13, 19] has
extended the work of [2], improving its accuracy, run-
ning time, and generality. The state of the art is the
private multiplicative weights mechanism of Hardt and
Rothblum [13]. However, even this mechanism has run-
ning time that is linear in the size of the data universe,
or in other words exponential in the dimension of the
data. Finding algorithms with error bounds similar to
[13] while running in time polynomial in the size of the
database and the data dimension has been a major open
question in the literature since at least [2], who explic-
itly ask this question.

Unfortunately, a striking recent result of Ullman
[21], building on the beautiful work of Dwork, Naor,
Reingold, Rothblum, and Vadhan [7], shows that assum-
ing the existence of one way functions, no polynomial
time algorithm can answer more than O(n2) arbitrary
predicate queries. In other words, the Laplace mecha-
nism of [6] is nearly optimal among all computationally
efficient algorithms for privately answering queries at a
comparable level of generality. This result suggests that
to make progress on the problem of computationally effi-

cient private query release, we must abandon the goal of
designing mechanisms which can answer arbitrary pred-
icate queries, and instead focus on classes of queries that
have some particular structure that we can exploit.

Before this work, there were very few efficient al-
gorithms for privately releasing classes of “high dimen-
sional” predicate queries with worst case error guaran-
tees. Most closely related to our work are the results
of Feldman et al. [9], which gave efficient algorithms
for releasing Euclidean k-medians queries in a constant
dimensional unit ball. Note that when we restrict our
attention to Euclidean metric spaces, our queries corre-
spond to 1-median queries. In contrast to [9], we can
handle arbitrary metrics, and our algorithms are effi-
cient also in the dimension of the metric space. Blum,
Ligett, and Roth [2] gave efficient algorithms for two
low dimensional classes of queries: constant dimensional
axis aligned rectangles, and large margin halfspaces3.
Blum and Roth [3] gave an efficient algorithm for re-
leasing predicate queries defined over predicates with
extremely sparse truth tables, but such queries are very
rare.

Only slightly more is known for average case error.
Gupta et al. [11] gave a poly-time algorithm for releasing
the answers (to linear, but non-trivial error) to conjunc-
tions, where the error is measured in the average case on
conjunctions drawn from a product distribution. Hardt,
Rothblum, and Servedio [14] gave a poly-time algorithm
for releasing answers to parity queries, where the error
is measured in the average case on parities drawn from
a product distribution. Although it is known how to
convert average case error to worst-case error using the
private boosting technique of Dwork, Rothblum, and
Vadhan [8], the boosting algorithm itself is not compu-
tationally efficient when the class of queries is large, and
so cannot be applied in this setting where we are inter-
ested in poly-time algorithms. For the special case of
privately releasing conjunctions in ` dimensions, Thaler,
Ullman, and Vadhan [20], building on the work of Hardt,
Rothblum, and Servedio [14], give an algorithm that

runs in time O(2
√
`), improving on the generic bound

of O(2`). Finding a poly-time algorithm for releasing
conjunctions remains an open problem.

Metric embeddings have proven to be a useful
technique in theoretical computer science, particularly
when designing approximation algorithms. See [15] for
a useful survey. The specific embeddings that we use
in this paper are the nearly isometric embedding from

3Note that halfspace queries are in general high dimensional,
but the large-margin assumption implies that the data has intrin-
sic dimension only roughly O(logn), since the dimensionality of

the data can be reduced using the Johnson-Lindenstrauss lemma
without affecting the value of any of the halfspace predicates.

`2 into `1 using random projections [10, 16], and a
variant of Bourgain’s theorem [4, 18], which allows the
embedding of an arbitrary metric into `1. Our use of
metric embeddings is slightly different than its typical
use in approximation algorithms. Typically, metric
embeddings are used to embed some problem into a
metric in which some optimization problem of interest
is tractable. In our case, we are embedding metrics into
`1, for which the information theoretic problem of query
release is simpler, since a d dimensional `1 metric can
be decomposed into d 1-dimensional metric spaces. On
the one hand, for privacy, we have a stronger constraint
on the type of metric embeddings we can employ: we
require them to be low sensitivity embeddings, which
map neighboring databases to databases of bounded
distance (in the hamming metric). The embedding
corresponding to Bourgain’s theorem does not satisfy
this property. On the other hand, we do not require that
the embedding preserve the distances between pairs of
database points, or pairs of query points, but merely
between query points and database points. This allows
us to prove a variant of Bourgain’s theorem that is 1-
sensitive. We think that metric embeddings may prove
to be a useful tool in the design of efficient private
query release algorithms, and in particular, identifying
other privacy friendly metrics, and the study of other
low sensitivity embeddings is a very interesting future
direction.

2 Preliminaries

2.1 Model Let (X , d) be an arbitrary metric space.
Let D ∈ Xn be a database consists of n points in the
metric space. For the sake of presentation, we will focus
on metric spaces with diameter 1 in the rest of this
paper. This is simply a matter of scaling: all of our
error bounds hold for arbitrary diameter spaces, with a
linear dependence on the diameter.

We will consider the problem of answering distance
queries while preserving the privacy of the elements in
the database, where each query is a point y ∈ X in the
metric space and the answer for a given query y is the
average distance from y to the elements in the database,
i.e.,

∑
x∈D

1
nd(x, y). Let k denote the number of queries

and Q ∈ X k be the set of distance queries asked by the
data analyst. We will let D(Q) ∈ Rk denote the exact
answer to the queries in Q with respect to database D.
We will usually use xi’s to denote data points and yj ’s
to denote query points.

Query Release Mechanisms We will consider
two settings for query release in this paper: The first
setting is the interactive setting, where the queries
are not given upfront but instead arrive online. An
interactive query release mechanism needs to provide

an answer for each query as it arrives. The answer
can depend on the query, the private database, and
the state of the mechanism, but not on future queries.
An interactive query release mechanism is said to be
efficient if the per-query running time is polynomial in
the description size of the database. (E.g., if we consider
an `-dimensional `p metric, then it shall be polynomial
in n and the dimension `.)

The second setting is the non-interactive setting.
A non-interactive query release mechanism takes the
database as input and outputs an algorithm that can an-
swer all queries without further access to the database.
We say a non-interactive query release mechanism is effi-
cient if both the running time of the mechanism and the
running time per query of the algorithm it constructs
are polynomial in n and `.

2.2 Differential Privacy Let ‖D1 − D2‖H denote
the Hamming distance between two databases D1 and
D2 (i.e., the number of entries that are different in D1

and D2). Two databases are adjacent if the Hamming
distance between them is 1 (i.e. they differ in a single
element). Let n = |D| be the size of the database.
We will consider the by now standard privacy solution
concept of “differential privacy” [6].

Definition 1. A mechanism M is (ε, δ)-differentially
private if for all adjacent databases D1 and D2,
any set of queries Q, and for all subsets of possi-
ble answers S ⊂ Rk, we have Pr [M(D1,Q) ∈ S] ≤
exp(ε) Pr [M(D2,Q) ∈ S] + δ. If δ = 0, then we say
that M is ε-differentially private.

A function f : Xn → R is said to have sen-
sitivity ∆ with respect to the private database if
maxD1,D2

|f(D1)− f(D2)| ≤ ∆, where the max is taken
over all pairs of adjacent databases.

When we talk about the privacy of interactive mech-
anisms, the range of the mechanism is the entire tran-
script of queries and answers communicated between
the data analyst and the mechanism (see [8, 13] for a
more precise formalization of the model). An interactive
mechanism is (ε, δ)-differential private if the probability
that the transcript falls into any chosen subset differs by
at most an exp(ε) multiplicative factor and a δ additive
factor for any two adjacent databases.

Given a mechanism, we will measure its accuracy in
terms of answering distance queries:

Definition 2. (Accuracy) A mechanism M is
(α, β)-accurate if for any database D and any set
of queries Q, with probability at least 1 − β, the M
answers every query up to additive error α, i.e.,
Pr [‖M(D,Q)−D(Q)‖∞ ≤ α] ≥ 1− β.

3 Releasing `1-Distance Queries

In this section, we consider `1 distance queries. Let
X ⊂ [0, 1]` and d = ‖.‖1 such that the diameter of X
(with respect to `1) is at most 1. We present private,
computationally efficient mechanisms for releasing the
answers to `1 distance queries in both the interactive
and offline setting. These mechanisms for releasing `1
distances will serve as important building blocks for our
results for other metrics. First, let us formally state our
results. (Recall that k is the number of queries.)

Theorem 3.1. There is an interactive (ε, δ)-
differentially private mechanism for answering distance
queries w.r.t. (X , ‖.‖1) that is (α, β)-accurate with

α = O

(
`9/5polylog(δ−1, k, β−1)

(nε)4/5

)
.

There is also an interactive ε-differentially private
mechanism that is (α, β)-accurate for

α = O

(
`7/3polylog(k, β−1)

(nε)2/3

)
.

Both mechanisms run in time O(`n) per query.

Theorem 3.2. There is an non-interactive (ε, δ)-
differentially private mechanism for answering distance
queries w.r.t. (X , ‖.‖1) that is (α, β)-accurate with

α = O

(
`9/5polylog(δ−1, n, `, β−1)

(nε)4/5

)
.

There is also an non-interactive ε-differentially private
mechanism that is (α, β)-accurate for

α = O

(
`7/3polylog(n, `, β−1)

(nε)2/3

)
.

Both mechanisms run in time O
(
`3n2α−1

)
.

Remark 1. Note that the non-interactive mechanism
has no dependence on the number of queries asked, in
either the accuracy or the running time. It in one shot
produces a data structure that can be used to accurately
answer all `1 queries.

Proof Overview: To prove Theorem 3.1, we will use
the connection between private query release and online
learning, which was established in [19, 13, 12, 17]. We
will review this connection in Section 3.1. Based on
this connection, it suffices to provide an online learning
algorithm that learns the function mapping queries to
their answers w.r.t. the database using a small number
of updates. So we will shift our viewpoint by viewing the

database as a 1-Lipschitz and convex function that maps
the query points to real values in [0, 1]. The structure
of the `1 metric allows us to reduce the problem to
learning ` different one dimensional 1-Lipschitz and
convex functions, for which we propose in Section 3.2
an online learning algorithm that only needs O(α−1/2)
updates to achieve an additive error bound α. Finally,
we combine these ingredients to give an interactive
differentially private mechanism for releasing answers
for `1 distance queries in Section 3.3 to prove Theorem
3.1. Roughly speaking, the interactive mechanism
will always maintain a hypothesis function that maps
queries to answers and it will update the hypothesis
function using the online learning algorithm whenever
the hypothesis function makes a mistake. Finally, we
show that there is an explicit set of O(`2/α) queries such
that asking these queries to the interactive mechanism
is sufficient to guarantee that the hypothesis function
is accurate with respect to all queries. So Theorem 3.2
follows because the non-interactive mechanism can first
ask these queries to the interactive mechanism and then
release the hypothesis function.

Remark 2. We note that once we reduce the problem
to releasing 1-dimensional Lipschitz queries, there are
other techniques that we could have used: for example,
we could use the interval release algorithm of [2], or the
private multiplicative weights mechanism of [13] after
an appropriate discretization of the universe. However,
these approaches would inherit inferior error bounds of
O(1/

√
n) in comparison to the bound of O(1/n4/5) that

we achieve, in addition to inferior dependencies on the
dimension `. By exploiting convexity, we give improved
bounds, which become more important later on when we
reduce the general problem of metric query release to the
problem of `1 distance query release: because the metric
embeddings that we will use only blow up the final error
bounds, it is important to get as little error as possible
when solving the “base” problem.

3.1 Query Release from Iterative Database
Construction In this section, we introduce (a variant
of) the Iterative Database Construction (IDC) frame-
work in [12], which generalizes the median mecha-
nism and the multiplicative weights mechanism [19, 13].
Roughly speaking, the IDC framework considers the
database D as a mapping FD : X 7→ R from queries
to their answers evaluated on D, i.e., ∀y ∈ X , FD(y) =
D(y). It first learns an approximate version of this map-
ping privately by making a small number of queries to
the mapping, and then answers all queries by the data
analysts using the approximate mapping. Our variant
of IDC allows the learning algorithm to also learn the

subgradient of FD
4 (denoted as ∂FD) in addition to the

value of FD in the learning stage. Note that each coor-
dinate of the subgradient of FD is O(1/n) sensitive in
the private database D. Concretely, our variant of IDC
is defined as follows.

Definition 3. ([19, 13, 12]) Given an error bound
α > 0 and an error tolerance 1 > c > 0, an itera-
tive database construction algorithm with respect to `1
distance queries plays the following game with an adver-
sary in a sequence of rounds (t = 1, 2, . . .):

1. The algorithm maintains a hypothesis function F̂t :
X → R for each round t on which it can evaluate
queries. F̂1 is initialized to be some default function
at the beginning of round 1.

2. In each round t ≥ 1, the adversary (adaptively)
chooses a query yt ∈ X , at which point the algo-
rithm predicts a query value F̂t(yt). If |F̂t(yt) −
FD(yt)| > α, then we say the algorithm has made a
mistake. At this point, the algorithm receives `+ 1
values a0, a1, . . . , a` ∈ R s.t.

a0 ∈ [FD(yt)− cα, FD(yt) + cα]

and, ∀i ∈ [`],

ai ∈ [∂iFD(yt)− cα, ∂iFD(yt) + cα] .

The algorithm then updates its hypothesis function
to obtain F̂t+1 using this information.

Definition 4. (Mistake Bound) An iterative
database construction algorithm has a mistake bound
m : R+ 7→ N+, if for any given error bound α, no
adversary can (adaptively) choose a sequence of queries
to force the algorithm to make m(α) + 1 mistakes.

Lemma 3.1. ([19, 13, 12]) If there is an iterative
database construction algorithm for releasing `1 distance
queries with mistake bound m(α) and error tolerance c,
then there is an (ε, δ)-differentially private mechanism
in the interactive setting that is (α, β)-accurate, for α
satisfying

cα =
1

nε
3000

√
` ·m(α) log(4/δ) log(k/β) .

There is also an ε-differentially private mechanism in
the interactive setting that is (α, β)-accurate, for α
satisfying

cα =
1

nε
3000 ` ·m(α) log(k/β) .

4As we apply this framework to the `1 case, the subgradient
of FD is well-defined. When FD is not differentiable at the query

point, we assume that the learning algorithm learns an arbitrary
subgradient.

Moreover, the per-query running time of the mechanism
equals (up to constant factors) the running time of
the per-round running time of the iterative database
construction algorithm.

Representing `1 Databases as Decomposable
Convex Functions Consider a database D where the
universe is the `-dimensional unit cube X = [0, 1]`

endowed with the `1 metric. Then the function mapping
queries y ∈ X to their answers takes the form: FD(y) =
1
n

∑
x∈D ||x−y||1, which is a 1-Lipschitz convex function

of y.5 We wish to proceed by providing an iterative
database construction for `1 distance queries using these
properties. Observe that because we are working with
the `1 metric, we can write:

FD(y) =
∑̀
i=1

F
(i)
D (y), where F

(i)
D (y) =

1

n

∑
x∈D
|xi − yi| .

Observe that each function F
(i)
D (y) is 1-Lipschitz and

convex, and has a 1-dimensional range [0, 1]. Therefore,
to learn an approximation to FD(y) up to some error α,

it suffices to learn an approximation to each F
(i)
D (y) to

error α/`. This is the approach we take.

3.2 Learning 1-Lipschitz Convex Functions In
this section we study the problem of iteratively con-
structing an arbitrary continuous, 1-Lipschitz, and con-
vex function G : [0, 1] 7→ [0, 1] up to some additive er-
ror α1 with noisy oracle access to the function. Here,
the oracle can return the function value G(x) and the
derivative G′(x) given any x ∈ [0, 1] up to an additive
error of α1/4. Here, we assume the derivative G′ is well
defined in [0, 1]: If G is not differentiable at x, then we
assume the derivative G′(x) is (consistently) defined to
be any value between the left and right derivatives at x.

Learning 1-D Functions with an Accurate Or-
acle We will maintain a hypothesis piece-wise linear
function Ĝ(x) via the algorithm given in Figure 1. It
remains to analyze the number of updates needed by
this algorithm in order to learn a piece-wise linear func-
tion Ĝ that approximates G everywhere up to additive
error α1.

For any 1-Lipschitz (possibly non-convex) function
G and any error bound α1 > 0, the algorithm in Figure
1 will make at most 1/α1 mistakes. This is because
the Lipschitz condition implies that the tangent line at
each update point x∗t is a good approximation (up to
error α1) in the neighborhood [x∗t − α1, x

∗
t + α1], and

hence the update points are at least α1 away from each

5It follows from that for each x ∈ D, ||x − y||1 is 1-Lipschitz
and convex.

other. Further, it is easy to construct examples where
this bound is tight up to a constant. By using the
convexity of function G, we can improve the mistake
bound to O(1√

α1
).

Lemma 3.2. For any 1-Lipschitz convex function G
and any given error bound α1 ∈ (0, 1), the algorithm
in Figure 1 will make at most 3√

α1
updates.

Proof. Consider any two update points x∗t and x∗t′ . Let
us assume w.l.o.g. that t < t′. Then, by our assumption,
the tangent line at x∗t does not approximate the function
value of f at x∗t′ up to an additive error of α. Therefore,
we get that

α1 < G(x∗t′)− (G′(x∗t)(x
∗
t′ − x∗t) +G(x∗t))

= G(x∗t′)−G(x∗t)−G′(x∗t)(x∗t′ − x∗t)
≤ G′(x∗t′)(x

∗
t′ − x∗t)−G′(x∗t)(x∗t′ − x∗t)

= (G′(x∗t′)−G′(x∗t))(x∗t′ − x∗t) ,(3.1)

where the second inequality is by the convexity of f .
Next, consider a maximal set of update points in

sorted order: −1 ≤ x̂1 < · · · < x̂T ≤ 1. Since G is
convex and 1-Lipschitz, we have that −1 ≤ G′(x̂1) <
· · · < G′(x̂T) ≤ 1. Therefore, we get that

2 · 1 ≥ (G′(x̂T)−G′(x̂1))(x̂T − x̂1)

=
∑T−1
t=1 (G′(x̂t+1)−G′(x̂t))

∑T−1
i=1 (x̂t+1 − x̂t)

≥
(∑T−1

t=1

√
(G′(x̂t+1)−G′(x̂t))(x̂t+1 − x̂t)

)2
≥

(∑T−1
t=1

√
α1

)2
.

Here, the first inequality is by G′(xt) ∈ [−1, 1] and
xt ∈ [0, 1] for t = 1, . . . , T ; the second inequality is a
simple application of the Cauchy-Schwartz inequality;
the last inequality is by equation (3.1). So by the
above inequality, the number of mistakes is at most

T ≤
√
2√
α1

+ 1 < 3√
α1

.

Learning 1-D Functions with a Noisy Oracle
Note that the domain of the function is [0, 1]. So if the
tangent line at x′ approximates the function value at x
up to additive error α1

2 , i.e.,

G(x)−G(x′) +G′(x′)(x− x′) ≤ α1

2
,

then a noisy version of the tangent line

Ḡ(x′) + Ḡ′(x′)(x− x′) ,

where
Ḡ(x′) ∈ [G(x′)− α1

4
, G(x′) +

α1

4
]

Learning a 1-Lipschitz and Convex Function

Maintain Ĝ(x) = maxk{ak · x+ bk} where ak ∈ [−1, 1] and bk ∈ R define a set of linear functions.

Initial Step: Let a0 = 0 and b0 = 0.

Update Step t ≥ 1: While the update generator returns a distinguishing point x∗t , we shall add the tangent
line at x∗t with respect to function g to the set of linear functions, i.e., at = G′(x∗t) and bt = G(x∗t)−G(x∗t)

′ ·x∗t .

Figure 1: An algorithm for learning a 1-Lipschitz and convex one-dimensional function by approximating it with
a piece-wise linear function. The algorithm always predicts according to Ĝ. When it makes a mistake, it is given
an update point x∗t together with G(x∗t) and G′(x∗t).

and
Ḡ′(x′) ∈ [G′(x′)− α1

4
, G′(x′) +

α1

4
] ,

will approximate the value at x up to additive error α1.
Hence, the mistake bound of the algorithm in Figure
1 for learning a 1-Lipschitz and convex function up to
additive error α1 using a noisy oracle is no more than
the mistake bound for learning the same function up to
additive error α1

2 with an accurate oracle. Hence, the
mistake bound is still of order O(1√

α1
).

Lemma 3.3. For any 1-Lipschitz convex function g and
any given error bound α1 ∈ (0, 1), the algorithm in
Figure 1 will make at most O(1√

α1
) updates with an α1

4 -

noisy oracle.

Learning Decomposable Functions Suppose
we want to learn an `-dimension decomposable convex

function FD =
∑`
i=1 F

(i)
D up to additive error α, where

each F
(i)
D is convex and 1-Lipschitz. Then, it suffices

to learn the 1-Lipschitz convex functions F
(i)
D for each

coordinate up to error α1 = α
` . So as a simple corollary

of Lemma 3.3, we have the following lemma:

Lemma 3.4. For any function FD : [0, 1]` → R such
that:

1. FD(y) =
∑`
i=1 F

(i)
D (yi) where each F

(i)
D : [0, 1] →

[0, 1] is 1-Lipschitz and convex, and:

2. For every y ∈ [0, 1]` and every i ∈ [`]: F
(i)
D (y) and

(F
(i)
D (y))′ are 1/n-sensitive in D

there is an iterative database construction algorithm for
FD using a collection of 2` functions S with respect to
an error tolerance 1/(4`) that has a mistake bound of
m(α) = O(`3/2/α1/2).

Proof. Let α1 = α
` . Consider the following algorithm:

1. The algorithm maintains a hypothesis function

F̂t =
∑`
i=1 F̂

(i)
t by maintaining ` one-dimension

piecewise-linear hypothesis functions F̂
(i)
t : [0, 1] 7→

[0, 1] for each i ∈ [`] via the one-dimension learning
algorithm with error tolerance α1, and letting F̂t =∑`
i=1 F̂

(i)
t .

2. If the algorithm makes a mistake on query yt ∈
[0, 1]`, then the algorithm asks query yt to each of
the one-dimensional learning algorithms. On any of
the one-dimensional learning algorithms i on which
a mistake is made, the algorithm queries two values:

F
(i)
t (yti) and (F

(i)
t)′(yti), tolerating additive error

up to α1/(4), and updates the hypothesis F̂
(i)
t ,

i = 1, . . . , `, accordingly using the one dimensional
learning algorithm. Note that this leads to at most
|S| = 2` queries per update.

Note that whenever the above algorithm makes a
mistake, at least one of the one-dimensional algorithms
must also make a mistake (since otherwise the total
error was at most `α1 = α), and therefore we can charge
this mistake to the mistake bound of at least one of the
one-dimensional learning algorithms. By Lemma 3.3,

the number of times that the hypothesis function F̂
(i)
t

in each coordinate admits additive error at least α1 is
at most O(1/

√
α1). So the above iterative database

construction algorithm has mistake bound O(`/
√
α1) =

O(`3/2/α1/2).

3.3 Proofs of Theorem 3.1 and Theorem 3.2

Proof. [Theorem 3.1] Since the `1 distance function in
each coordinate has range [0, 1] and is 1-Lipschitz, we

get that F
(i)
t and the derivative (F

(i)
t)′ are O(1/n)-

sensitive. So by Lemma 3.4, there is an iterative
database construction algorithm for releasing answers
to `1 distance queries that uses a set S of 2` O(1/n)-
sensitive queries with error α1, and the algorithm has
mistake bound O(`3/2/α1/2).

By plugging the parameters of the above iterative
database construction algorithm to Lemma 3.1, we get
that there is an (ε, δ)-differentially private mechanism
in the interactive setting that is (α, β)-accurate for

releasing distance queries with respect to metric space
([0, 1]`, ‖.‖1), for α satisfying

α

`
= O

(
1

nε

√
`5/2

α1/2
log(4/δ) log(k/β)

)
.

Solving the above we get that

α = O

(
`9/5 log4/5(4/δ) log4/5(k/β)

n4/5ε4/5

)
.

We also get that there is an ε-differentially private
mechanism in the interactive setting that is (α, β)-
accurate, for α satisfying

α

`
= O

(
1

nε

`5/2

α1/2
log(k/β)

)
.

Solving the above we get that

α = O

(
`7/3 log2/3(4/δ) log2/3(k/β)

n2/3ε2/3

)
.

The analysis of the running time per query is
straightforward and hence omitted.

Proof. [Theorem 3.2] Consider running the online query
release mechanism with accuracy α′ = α/2. To give
an offline mechanism, we simply describe a fixed set of
`/α′ queries that we can make to each of the ` one-

dimensional learning algorithms maintaining F̂
(i)
D that

guarantees that for each y ∈ [0, 1],

|F̂ (i)
D (y)− F (i)

D (y)| ≤ α/` .

Once we have this condition, we know that for any
y ∈ [0, 1]`:

|F̂D(y)− FD(y)| ≤ α .

The queries are simple: we just take our query set to
be a grid: T = {0, α′/`, 2α′/`, 3α′/`, . . . , 1}. By the
guarantees of the 1-dimensional learning algorithm, we

have that for every y ∈ T , |F̂ (i)
D (y) − F (i)

D (y)| ≤ α′/`.

Moreover, by the fact that F̂
(i)
D is 1-Lipschitz, and for

every y ∈ [0, 1], d(y, T) ≤ α′/`, we have that for every
y ∈ [0, 1],

|F̂ (i)
D (y)− F (i)

D (y)| ≤ 2α′/` = α/` ,

which is the condition we wanted. In total, we make
2`2/α queries, and the theorem follows by instantiating
the guarantees of the online mechanism with k = 2`2/α.

4 Releasing Arbitrary Distance Queries

In this section, we will show how to answer distance
queries with respect to other metric spaces. We will
reduce the problem to answering to `1 distance queries
via metric embeddings. An embedding from a metric
space (X , d) to another metric space (Y, d′) is a mapping
π : X × X ∗ 7→ Y, where π(x,X) is the embedding of x
w.r.t. a subset of points X ⊆ X . The usefulness of an
embedding is measured by how much the embedding
distorts the distance between any pair of points in X.

Note that for the purpose of answering distance
queries, the usual definition of distortion is too strong in
the sense that the it considers the worst-case distortion
for every pair of points in the metric space while we
only need to preserve the distance between every data-
query pair. Therefore, we will consider the following
weaker notion of expansion, contraction, and distortion.
(Recall that D and Q are the set of data points and the
set of query points respectively.)

Definition 5. The expansion of an embedding π from
(X , d) to another metric space (Y, d′) is

max
X⊆X ,x∈D,y∈Q

d′(π(x,X), π(y,X))

d(x, y)
.

The contraction of the embedding is

max
X⊆X ,x∈D,y∈Q

d(x, y)

d′(π(x,X), π(y,X))
.

The distortion of an embedding is the product of its
expansion and contraction.

In the rest of this section, we will always choose
X = D and hence omit the second parameter of the
embedding (i.e., π(x) = π(x,D)) when appropriate for
brevity. We will let the target metric (Y, d′) to be the `1
metric ([0, 1]`, ‖.‖1) and scale the embedding such that
the expansion is 1.

4.1 1-Sensitive Metric Embeddings Suppose we
have an embedding from (X , d) to ([0, 1]`, ‖.‖1) with
expansion 1 and contraction C. In some cases, the
dimension ` of the target `1 space may depend on the
contraction C. We will embed both the data points and
the query points into ([0, 1]`, ‖.‖1) and release distance
queries via the the mechanism for `1. Concretely,
consider mechanisms Mε,δ and Mε given in Figure 2.

We first consider the accuracy of the mechanisms:
they lose a multiplicative factor due to the embedding
and an additive factor due to answering the `1 queries
privately. So we have the following:

Releasing distance queries via embedding into `1

Input: Database D. Set of queries Q. 1-sensitive embedding π from (X , d) to ([0, 1]`, ‖ · ‖1).

1. Construct a proxy database D′ for releasing `1 distances by letting π(x) ∈ D′ for all x ∈ D.

2. For every y ∈ Q, let the (ε, δ)-differentially private mechanism (resp., ε-differentially private mechanism)
for `1 answer 1

n

∑
x∈D ‖π(x)− π(y)‖1, and release it as the answer to query y.

Figure 2: An (ε, δ)-differentially private mechanism Mε,δ (resp., ε-differentially private mechanism Mε) for
releasing distance queries via embedding into `1

Theorem 4.1. If π has expansion 1 and contraction C,
and we use the (ε, δ)-differentially private mechanism
for `1 in Figure 2, then with probability at least 1− β,

∀y ∈ Q : 1
C

∑
x∈D d(x, y)−Õ

(
`9/5

n4/5ε4/5

)
≤Mε,δ(D, y)

≤
∑
x∈D d(x, y) + Õ

(
`9/5

n4/5ε4/5

)
,

If we instead use the ε-differentially private mechanism
for `1, then with probability at least 1− β,

∀y ∈ Q : 1
C

∑
x∈D d(x, y)−O

(
`7/3

n2/3ε2/3

)
≤Mε(D, y)

≤
∑
x∈D d(x, y) +O

(
`7/3

n2/3ε2/3

)
,

Remark 3. If the embedding is nearly isometric, i.e.,
we can achieve contraction 1+α for any small α > 0 by
embedding into an `(α)-dimension `1 space, then we will
choose the optimal additive error bound αε,δ and αε for
(ε, δ)- and ε-differential privacy respectively such that

αε,δ = Õ
(
`(αε,δ)

9/5

n4/5ε4/5

)
and αε = Õ

(
`(αε)

7/3

n2/3ε2/3

)
.

Proof. Let us prove the error bound for ε-differential
privacy. The proof of the error bound for (ε, δ)-
differential privacy is similar. We will view the em-
bedding π as from (X, d) to (π(X), ‖.‖1). Since the
embedding π has expansion 1, the image π(X) of X has
diameter 1 as well. Let M `1

ε denote the ε-differentially
private mechanism for releasing answers to the `1 dis-
tance queries. Then we have that

Mε(y,D) = M `1
ε (π(y), D′)

≤
∑
x∈D ‖π(x)− π(y)‖1 + Õ

(
`7/3

n2/3ε2/3

)
≤

∑
x∈D d(x, y) + Õ

(
`7/3

n2/3ε2/3

)
.

The proof of the lower bound is similar, hence omitted.

Next we will turn to the privacy guarantee of
the mechanism. Since we are using either an (ε, δ)-
differentially private mechanism or an ε-differentially

private mechanism for releasing answers to the `1 dis-
tance queries with respect to the proxy database D′,
it suffices to ensure that the embeddings of neighboring
databases remain neighboring databases. In general, the
embedding of some point x may be defined in terms of
other data points y, which would violate this condition.
Formally, we want our embeddings to be 1-sensitive:

Definition 6. An embedding π from (X , d) to
([0, 1]`, ‖.‖1) is 1-sensitive if changing a data point
xi ∈ D will only change the embedding π(xi,D) of xi
and will not affect the embedding π(xj ,D) of other
xj ∈ D for any j 6= i.

Theorem 4.2. If the embedding π is 1-sensitive, and
if we use the (ε, δ)-differentially private mechanism
(resp., ε-differentially private mechanism) for releasing
answers to the `1 distance queries, then the mechanism
Mε,δ (resp., Mε) is (ε, δ)-differentially private (resp., ε-
differentially private).

Proof. For any two neighboring databases D1 and D2,
the resulting proxy databases D′1 and D′2 in Figure 2
will either be the same or be neighboring databases
since the embedding π is 1-sensitive. Since we are using
an ε-differentially private mechanism for releasing `1
distances over the proxy databases, we get that for any
set of queriesQ and for any subset S of possible answers,

Pr[Mε(D1,Q) ∈ S] = Pr[M `1
ε (D′1, π(Q)) ∈ S]

≤ exp(ε) Pr[M `1
ε (D′2, π(Q)) ∈ S]

= exp(ε) Pr[Mε(D2,Q) ∈ S] .

So mechanism Mε is ε-differentially private. The proof
for (ε, δ)-differential privacy is similar.

Remark 4. In principle, we can also consider s-
sensitive embeddings for small s. However, we are not
aware of any useful embeddings of this kind. So we will
focus on 1-sensitive embeddings.

Remark 5. If the embedding π is independent of the
set Q of queries, then the mechanisms in Figure 2 can

be made interactive or non-interactive by using the in-
teractive or non-interactive mechanisms respectively for
releasing answers to the `1 distance queries. If the em-
bedding is a function of the query set, then the mech-
anism will be non-interactive, because potentially all of
the queries may be needed to construct the embedding of
the database.

4.2 Releasing Euclidean Distance via an Obliv-
ious Embedding An embedding is oblivious if the em-
bedding function π is defined independent on the data
points. Any oblivious embedding is 1-sensitive.

Let us consider releasing distance queries with re-
spect to Euclidean distance. From the metric embed-
ding literature we know that there exists an almost iso-
metric embedding from `2 to `1.

Lemma 4.1. (E.g., [10, 16]) There is an embedding π
from ([0, 1]`, ‖.‖2) to ([0, 1]`

′
, ‖.‖1) with expansion 1,

contraction 1 + α, and `′ = O
(
` log(1/α)

α2

)
. Further,

this embedding can be probabilistically constructed in
polynomial time by defining each coordinate as a random
projection.

Since the above embedding is based on random
projections, it is oblivious and hence 1-sensitive. So we
can plug this embedding into our framework in Figure
2 and the following theorem follows from Theorem 4.1,
Remark 3, Theorem 4.2, and Remark 5.

Theorem 4.3. Suppose (X , ‖.‖2) is a subspace of the
`2 space with diameter at most 1. Then there are poly-
time interactive and non-interactive (ε, δ)-differentially
private mechanisms for answering `2 distance queries

that are (αε,δ, β)-accurate for αε,δ = Õ
(

`9/23

n4/23ε4/23

)
.

There are also poly-time interactive and non-interactive
ε-differentially private mechanisms for answering `2
distance queries that are (αε, β)-accurate for αε =

Õ
(

`7/17

n2/17ε2/17

)
.6 7

4.3 Releasing Distances for General Metric via
Bourgain’s Theorem In this section, we will con-
sider releasing distance queries with respect to an ar-
bitrary metric (X , d) by embedding it into an `1 metric.
Bourgain’s theorem (e.g., [4, 18]) suggests that for any
m points in the metric space, there is an embedding

6The omitted poly-log factors depends on `, n, and β−1 (and
δ−1 for (ε, δ)-differential privacy) in the offline setting. In the
interactive setting, this factor also depends on log k. We remark

again that in the offline setting, the constructed data structure
can answer all `2 queries.

7We remark that Lemma 4.1 also holds for `p metrics for
p ∈ (1, 2) (e.g., [10]). So the results stated in Theorem 4.3 also
apply to `p metrices for p ∈ (1, 2). Details are omitted.

into an O(log2m)-dimensional `1 space with distortion
O(logm). Unfortunately, this embedding is not oblivi-
ous and does not have low sensitivity. However, recall
that for the purpose of releasing distance queries, we
only need to preserve the distances between all data-
query pairs. In other words, it is okay to have the
distances between data points (and likewise, between
query points) to be highly distorted. Further, we show
that for this weaker notion of embedding, there is a vari-
ant of Bourgain’s theorem using an embedding that is
oblivious to the data points, and hence 1-sensitive.

Concretely, we will consider the embedding given
in Figure 3. The idea is to define the embedding only
using the query points and we will show this is enough
to preserve the distances from any point in the metric
space to the query points with high probability.

Theorem 4.4. (1-Sensitive Bourgain) Let π be the
embedding in Figure 3. For any data point x ∈ X and
any query point y ∈ Q, with probability at least 1− 1

n2k ,
1

64 log kd(x, y) ≤ ‖π(x)− π(y)‖1 ≤ d(x, y).

The proof of the above theorem is very similar to
one of the proofs for Bourgain’s original theorem. The
expansion bound is identical. The contraction bound
will only guarantee the embedded distance of two pair
of points x ∈ D and y ∈ Q satisfies d′(π(x), π(y)) ≥
O(1

log k)(d(x, y)−d(x,Q)). We observe that the additive

loss of O(1
log k)d(x,Q) can be avoided by using an

additional O(log k+log n) dimensions in the embedding.
We include the proof below for completeness.

Proof. Expansion: By triangle inequality,

|πij(x)− πij(y)| =
1

K log k
|d(x, Sij)− d(y, Sij)|

≤ 1

K log k
d(x, y) .

Summing over 0 ≤ i ≤ log k and 1 ≤ j ≤ K we have

log k∑
i=0

K∑
j=1

|πij(x)− πij(y)| ≤ d(x, y) .

Contraction: Let us first define some notation. Let ri
and r′i denote the smallest radius such that the closed
ball (with respect to metric (X, d), similar hereafter)
B(x, ri) and B(y, r′i) respectively contains at least 2i−1

query points. Let r∗i = max{ri, r′i}. We will have that
r∗i is non-decreasing in i. Let i′ denote the largest
index such that r∗i′ + r∗i′−1 ≤ d(x, y). Redefine r∗i′ to

be d(x, y) − r∗i′−1. We have r∗i′ ≥
d(x,y)

2 . We will need
to following lemmas.

1-sensitive variant of Bourgain: Embedding an arbitrary metic space (X, d) into `1

Pre-processing: For 1 ≤ i ≤ log k and 1 ≤ j ≤ K, where K is chosen to be 512(log k + log n), choose a
random subset Sij of the query points by picking each query point y independently with probability 2−(i−1).

Embedding: Given x in the metric space (X, d), embed it into {πij(x)}0≤i≤log k,1≤j≤K in the O(K log k)-
dimension `1 space by letting πij(x) = 1

K log kd(x, Sij).

Figure 3: A randomized 1-sensitive embedding of an arbitrary metric space (X, d) into an O(log2 k+ log k log n)-
dimension `1 space with O(log k) distortion

Lemma 4.2. For any 1 < i ≤ i′, we have∑K
j=1 |πij(x) − πij(y)| ≥ 1

32 log k

(
r∗i − r∗i−1

)
with prob-

ability at least 1− 1
n2k log k .

Proof. Suppose r∗i = ri (the other case is similar).
Consider the open ball Bo(x, r∗i) and the closed ball
B(y, r∗i−1). By definition, the number of query points
in Bo(x, r∗i) is less than 2i−1, and the number query
points in B(y, r∗i−1) is at least 2i−2. Since for each
1 ≤ j ≤ K, the set Sij pick each query point
independently with probability 2−(i−1), the probability
that Sij ∩Bo(x, r∗i) = ∅ is at least (1−2−(i−1))2

i−1 ≥ 1
4 ,

while the probability that Sij ∩ B(y, r∗i−1) 6= ∅ is at

least 1 − (1 − 2−(i−1))2
i−2 ≥ 1 − e−

1
2 . In sum, with

probability at least 1
4 (1 − e−

1
2) > 1

16 , we have both
Sij ∩ Bo(x, r∗i) = ∅ and Sij ∩ B(y, r∗i−1) 6= ∅, which
indicates that d(x, Sij) ≥ r∗i and d(y, Sij) ≤ r∗i−1 and
therefore

(4.2) |πij(x)− πij(y)| ≥ 1

K log k
(r∗i − r∗i−1) .

Further, by the additive form of Chernoff-Hoeffding
theorem, we get that with probability at least 1−2−

K
64 <

1− 1
n2k log k , (4.2) holds for at least K

32 i’s. So we conclude

that with probability at least 1− 1
n2k log k ,

K∑
j=1

|πij(x)− πij(y)| ≥ 1

32 log k

(
r∗i − r∗i−1

)
.

Lemma 4.3.
∑K
j=1 |π1j(x)− π1j(y)| = 1

log k r
∗
1.

Proof. It is easy to see that r′1 = 0 because y itself
is a query point and r∗1 = r1 = d(x,Q). Note that
for every j, S1j equals the set of query points. So we
always have d(x, S1j) = d(x,Q) = r∗1 and d(y, S1j) = 0.
Therefore, |π1j(x) − π1j(y)| = 1

K log k r
∗
1 for 1 ≤ j ≤ K,

and summing up completes the proof.

By Lemma 4.2 and union bound, with probability
at least 1− 1

n2k , we have∑K
j=1 |πij(x)− πij(y)| ≥ 1

32 log k

(
r∗i − r∗i−1

)

for all 1 < i ≤ i′. By Lemma 4.3 we have∑K
j=1 |π1j(x)− π1j(y)| ≥ 1

log k r
∗
1 .

Summing them up we get that∑log k
i=1

∑K
j=1 |πij(x)−πij(y)| ≥ 1

32 log k r
∗
i′ ≥ 1

64 log kd(x, y) .

As a corollary of Theorem 4.4 and union bound we
have

Corollary 4.1. Let π be the embedding in Figure 3.
Then with probability at least 1 − 1

n , we have that for
any data point x ∈ D and any query points y ∈ Q,

1
64 log kd(x, y) ≤ ‖π(x)− π(y)‖1 ≤ d(x, y).

Hence, there exists an embedding of an arbitrary
metric to an `1 metric with distortion O(log k) that is
1-sensitive because it is oblivious to the data points.
The dimension of the resulting `1 metric is O(log2 k +
log k log n). We remark that the expansion guarantee
may fail with some small probability, in which case
the diameter of our embedding may be greater than 1.
This would appear to require us to move to an (ε, δ)-
privacy guarantee, but it does not: when computing `1
distances between points x, y, we can instead compute
min(1, |π(x)− π(y)|1). In the high probability event in
which the expansion guarantee of the embedding holds,
this will be exactly equal to the true distance between
the embeddings of the points x and y. In the small
probability event in which the expansion guarantee fails,
the resulting queries will remain 1/n sensitive in the
private data. So by combining Theorem 4.1, Theorem
4.2, and Theorem 4.4 we have the following theorem.

Theorem 4.5. For any metric space (X , d), there is an
non-interactive (ε, δ)-differentially private mechanism
Mε,δ for answering any k distance queries w.r.t. (X , d),
such that with high probability, for any query y ∈ Q,

O
(

1
log k

)
1
n

∑
x∈D d(x, y)− Õ

(
1

n4/5ε4/5

)
≤Mε,δ(y)

≤ 1
n

∑
x∈D d(x, y) + Õ

(
1

n4/5ε4/5

)
.

There is also an non-interactive ε-differentially private
mechanism Mε, such that with high probability, for any
query y ∈ Q,

O
(

1
log k

)∑
x∈D d(x, y)− Õ

(
1

n2/3ε2/3

)
≤Mε(y)

≤
∑
x∈D d(x, y) + Õ

(
1

n2/3ε2/3

)
.

Both mechanisms run in time poly(n, k).

References

[1] Avrim Blum, Cynthia Dwork, Frank McSherry, and
Kobbi Nissim. Practical privacy: the sulq framework.
In Proceedings of the 24th ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Sys-
tems, pages 128–138. ACM, 2005.

[2] Avrim Blum, Katrina Ligett, and Aaron Roth. A
learning theory approach to non-interactive database
privacy. In Proceedings of the 40th annual ACM
Symposium on Theory of Computing, pages 609–618.
ACM, 2008.

[3] Avrim Blum and Aaron Roth. Fast private data
release algorithms for sparse queries. arXiv preprint
arXiv:1111.6842, 2011.

[4] Jean Bourgain. On Lipschitz embedding of finite
metric spaces in Hilbert space. Israel Journal of
Mathematics, 52(1):46–52, 1985.

[5] Irit Dinur and Kobbi Nissim. Revealing informa-
tion while preserving privacy. In Proceedings of the
22nd ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, pages 202–210.
ACM, 2003.

[6] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and
Adam Smith. Calibrating noise to sensitivity in private
data analysis. In Proceedings of the 3rd Conference
on Theory of Cryptography, pages 265–284. Springer,
2006.

[7] Cynthia Dwork, Moni Naor, Omer Reingold, Guy N.
Rothblum, and Salil Vadhan. On the complexity of
differentially private data release: efficient algorithms
and hardness results. In Proceedings of the 41st annual
ACM Symposium on Theory of Computing, pages 381–
390. ACM, 2009.

[8] Cynthia Dwork, Guy N. Rothblum, and Salil Vadhan.
Boosting and differential privacy. In Proceedings of
the 51st Annual IEEE Symposium on Foundations of
Computer Science, pages 51–60. IEEE, 2010.

[9] Dan Feldman, Amos Fiat, Haim Kaplan, and Kobbi
Nissim. Private coresets. In Proceedings of the 41st
Annual ACM Symposium on Theory of Computing,
pages 361–370. ACM, 2009.

[10] Tadeusz Figiel, Joram Lindenstrauss, and Vitali D.
Milman. The dimension of almost spherical sections of
convex bodies. Acta Mathematica, 139(1):53–94, 1977.

[11] Anupam Gupta, Moritz Hardt, Aaron Roth, and
Jonathan Ullman. Privately releasing conjunctions and
the statistical query barrier. In Proceedings of the
43rd annual ACM Symposium on Theory of Comput-
ing, pages 803–812. ACM, 2011.

[12] Anupam Gupta, Aaron Roth, and Jonathan Ullman.
Iterative constructions and private data release. In
Proceedings of the 9th Conference on Theory of Cryp-
tography, pages 339–356. Springer, 2012.

[13] Moritz Hardt and Guy N. Rothblum. A multiplicative
weights mechanism for privacy-preserving data analy-
sis. In Proceedings of the 51st IEEE Annual Sympo-
sium on Foundations of Computer Science, pages 61–
70. IEEE, 2010.

[14] Moritz Hardt, Guy N. Rothblum, and Rocco A. Serve-
dio. Private data release via learning thresholds. In
Proceedings of the 23rd Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 168–187. SIAM,
2012.

[15] Piotr Indyk. Algorithmic applications of low-distortion
geometric embeddings. In Proceedings of the 42nd
IEEE Symposium on Foundations of Computer Sci-
ence, pages 10–33. IEEE, 2001.

[16] Piotr Indyk. Stable distributions, pseudorandom gen-
erators, embeddings, and data stream computation.
Journal of the ACM, 53(3):307–323, 2006.

[17] Prateek Jain and Abhradeep Thakurta. Mirror descent
based database privacy. Approximation, Randomiza-
tion, and Combinatorial Optimization: Algorithms and
Techniques, pages 579–590, 2012.

[18] Nathan Linial, Eran London, and Yuri Rabinovich.
The geometry of graphs and some of its algorithmic
applications. Combinatorica, 15(2):215–245, 1995.

[19] Aaron Roth and Tim Roughgarden. Interactive pri-
vacy via the median mechanism. In Proceedings of the
42nd ACM Symposium on Theory of Computing, pages
765–774. ACM, 2010.

[20] Justin Thaler, Jonathan Ullman, and Salil Vadhan.
Faster algorithms for privately releasing marginals.
Automata, Languages, and Programming, pages 810–
821, 2012.

[21] Jonathan Ullman. Answering n2+o(1) counting queries
with differential privacy is hard. In Proceedings of the
45th annual ACM symposium on Symposium on theory
of computing, pages 361–370. ACM, 2013.

