
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

2012-08

Simplicial nonlinear principal component analysis

Hunt, Thomas

http://hdl.handle.net/10945/44891



SIMPLICIAL NONLINEAR PRINCIPAL COMPONENT

ANALYSIS

THOMAS HUNT AND ARTHUR J. KRENER

Abstract. We present a new manifold learning algorithm that takes a set of

data points lying on or near a lower dimensional manifold as input, possibly
with noise, and outputs a simplicial complex that fits the data and the man-

ifold. We have implemented the algorithm in the case where the input data

has arbitrary dimension, but can be triangulated. We provide triangulations
of data sets that fall on the surface of a torus, sphere, swiss roll, and creased

sheet embedded in R50. We also discuss the theoretical justification of our

algorithm.

1. Introduction

Given a large set of data points in a high dimensional space, the task of a manifold
learning algorithm is to discover a lower dimensional manifold that approximates
the data reasonably well. Principal component analysis may be interpreted as a
manifold learning algorithm when the set of high dimensional data points lie near
a lower dimensional affine subspace, in the sense that it can extract the affine
subspace from the data set. Nature does not always serve up inherently linear data
sets though. For example, a set of image vectors generated by photographing a
sculpture at different azimuth and altitude angles may intuitively be described by
two parameters related to the two angles, but this description is certainly nonlinear
[2]. In [1], the authors use principal component analysis to precondition stellar
spectra data before passing it to a neural network for classification, and note that
a nonlinear preprocessing scheme may help the neural network learn rare or weak
features of the data.

Isomap [6], Local Linear Embedding [3, 4], and Local Tangent Space Align-
ment [7] are recent approaches to reducing the dimension of artificially high di-
mensional data sets without destroying the geometric characteristics of the original
data. Isomap approximates the geodesic distance between every pair of data points
by summing the straight line Euclidean distances along the shortest rectilinear path
through the data that connects the two points. It then constructs an embedding of
the data into a lower dimensional Euclidean space by applying Multidimensional
Scaling to the set of pairwise geodesic distances so that the geodesic distances are
nearly preserved in the lower dimensional representation. Local Linear Embedding
approximates each data point as a weighted average of its neighbors, and then re-
duces the data set by mapping each data point to a lower dimensional space in such
a way that the set of nearest neighbors of a data point in the lower dimensional

2000 Mathematics Subject Classification. 62-04.
Key words and phrases. nonlinear dimensionality reduction, tangent space, manifold learning,

principal component analysis.

This work was supported by NSF DMS-1007399.

1

ar
X

iv
:1

20
7.

33
74

v2
  [

m
at

h.
N

A
] 

 3
0 

A
ug

 2
01

2



2 THOMAS HUNT AND ARTHUR J. KRENER

space is preserved under the mapping, and each data point in the lower dimensional
space is approximated by the same weighted average of its neighbors. Given data
that lies near the surface of a manifold, Local Tangent Space Alignment estimates
the tangent space at each point from its neighbors, and then generates a lower di-
mensional coordinate system in such a way that the tangent space associated with a
point in the lower dimensional space is still aligned with the tangent spaces associ-
ated with its neighbors. It appears that all three of these methods work best when
the input data lie on a manifold that admits a global coordinate system into which
the data can be mapped. In the case of Local Linear Embedding, the authors note
that is an open question how to modify their algorithm to handle input data that
lie on the surface of a sphere or torus [4, p. 148]. One of our design motivations
was to develop a manifold learning algorithm that can handle this type of data set.

We present Simplicial Nonlinear Principal Component Analysis (SNPCA), an
algorithm that shares some of the underlying motivation of Local Tangent Space
Alignment, but differs in that it is a manifold learning algorithm whose output is
a simplicial complex that acts as a lower dimensional description of the nonlinear
input data set. SNPCA reduces the data set in two senses. First, every simplex
vertex coincides with a surface data point, and typically there will be far fewer
simplex vertices than data points. Secondly, the subset of data points that lie near
a face of the simplex are fit by that face, whose dimension is typically much smaller
than the dimension of the data points. We have implemented our algorithm in the
case where the data can be fit with a complex of two-simplices, that is, when the
data can be triangulated. This is the case when the data lies near the surface of a
two dimensional manifold embedded in RN .

2. Algorithm overview for data that can be triangulated

We initially describe the algorithm for a set of data that can be triangulated, as
this is the case for which we have implemented the algorithm. The two fundamental
inputs into SNPCA are a set of data vectors {xi|xi ∈ RN}, and a characteristic
length `. The output of SNPCA is a simplicial complex represented by the set
{T , E ,V}, where V is the set of vertices in the triangulation, and E and T are
the sets of edges and triangles in the triangulation. Each triangle in T is a three
element set of vertices from V, and each edge in E is a two element set of vertices
from V. We assume that the data has been scaled so that changes in the different
coordinates of the data vectors are comparably measured. The algorithm is designed
so each vertex coincides with a data point in RN , but the number of vertices in V
is typically much less than the number of data points. There are no isolated edges
in E , meaning that every edge in E is a subset of some triangle in T . There are
also no isolated vertices in V, each point in V is a vertex of at least one edge and
one triangle.

The algorithm is composed of two distinct stages. The first is the advancing
front stage, where each successful iteration of the main loop yields a new triangle
that is added to the triangulation. In an iteration of the advancing front stage, the
algorithm first selects an active front edge, which is an edge in E that belongs to
exactly one triangle in T . A triangle edge can belong to at most two triangles. so
intuitively, a front edge is a triangle edge that is exposed. The algorithm attempts
to generate a new triangle composed of the active edge’s vertices and another vertex
which is typically new, but may be an existing vertex in E . If the new triangle is
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acceptable, then the triangulation is updated with the new triangle. Otherwise,
the front edge is unviable for the remainder of the advancing front stage and the
algorithm will not return to it until the second stage. The first stage terminates
when every front edge is unviable.

As one can see in the figures in §4, the advancing front stage typically generates
an incomplete triangulation of the data. This incomplete triangulation has seams,
which are sequences of front edge pairs, where the edges in each pair are both
nearly parallel and close to each other. The second stage of the algorithm is the
seam sewing stage, where the algorithm attempts to close the remaining gaps in
the triangulation. We now describe both stages in greater detail.

2.1. Advancing front stage for data that is locally two dimensional.

2.1.1. Generating a candidate triangle from the active front edge. To generate the
candidate triangle based on the active front edge, SNPCA requires the active edge’s
two vertices, the data points located near each of the two vertices, and the char-
acteristic length. Once the algorithm has generated the candidate triangle, it then
determines whether to add it to the triangulation based on the criteria in §2.1.2.
Given a front edge with vertices v1 and v2, the algorithm determines the best co-
ordinates in RN for a third vertex v3 so that the new triangle {v1, v2, v3} fits a
subset of the data, where the coordinates are best in the sense that they solve the
nonlinear constrained minimization problem (4), which we now describe.

Let v1 and v2 denote the two vertices belonging to the active front edge. We
define the empirical local direction covariance matrix associated with the vertex vj

as

(1) P (vj ,N (vj)) ≡ 1

|N (vj)|
∑

xi∈N (vj)

(xi − vj)(xi − vj)T

(xi − vj)T (xi − vj)

where vj and xi are column vectors of coordinates, N (vj) is a subset of data
falling in a neighborhood centered at the vertex vj , and |N (vj)| denotes the number
of data points in the neighborhood. Two possibilities for N (vj) are a Euclidean
neighborhood, or the k data points nearest vj .

The definition of the empirical local direction matrix is motivated by ideas from
principal component analysis. If the vertex vj and the data points in N (vj) lie
on the surface of a smooth two dimensional manifold, then each member of the
set of normalized directions {(xi − vj)/‖xi − vj‖2 | xi ∈ N (vi)} can be nearly
reconstructed from a two dimensional basis, although the set of directions almost
certainly spans a much higher dimensional space. Akin to principal component
analysis, the dominant eigenvectors of the covariance matrix P (vj ,N (vj)) furnish
a natural basis for the set of normalized directions, and the eigenvalues provide a
measure of how well each basis vector reconstructs the data.

Associated with P (vj ,N (vj)) is a Riemannian metric induced by the the matrix

(2) Qµ(vj ,N (vj)) ≡
(
P (vj ,N (vj)) + µI

)−1
, µ ≥ 0

where the user must set the parameter µ so that under this metric, the distance
from x to vj is large when x does not lie in the affine subspace associated with
dominant eigendirections of P (vj ,N (vj)). Without an efficient method to compute
the distance under the metric induced by Qµ(vj ,N (vj)), our algorithm would re-
quire an impractical amount of time to complete. Our assumption that the data
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can be fit with triangles implies that the numerical rank of Pµ(vj ,N (vj)) is much
less than the dimension of a data vector, so we only need the dominant eigen-
values and eigenvectors of P (vj ,N (vj)) to measure distances in the induced met-
ric. Suppose µ > 0 and Pµ(vj ,N (vj)) has k < N nonzero eigenvalues. Let Λ
denote the k × k diagonal matrix of nonzero eigenvalues, and let V denote the
N ×k matrix whose orthonormal columns are eigenvectors of Pµ(vj ,N (vj)) so that
Pµ(vj ,N (vj))V = V Λ. Let y ∈ Rk be the coordinate vector y ≡ V Tx in, then the
distance induced by Qµ(vj ,N (vj)) (2) can be computed as

(3) xT
(
Pµ(vj ,N (vj)) + µI

)−1
x = yT

(
Λ + µI

)−1
y +

1

µ

(
‖x‖22 − ‖y‖22

)
Computing the lefthand side of (3) in the naive but straightforward manner re-
quires O(N2) arithmetic operations. Forming y requires O(kN) arithmetic oper-
ations, and once we have formed y, forming the righthand side of (3) requires an
additional O(N) arithmetic operations. Of course, the righthand side requires the
eigen information in V and Λ, but these can be computed efficiently by a Krylov
subspace method since the structure of Pµ(vj ,N (vj)) allows us to compute the
matrix-vector product Pµ(vj ,N (vj))z as the linear combination of the normalized
directions xi−vj . This requires O(|N (vj)|N) arithmetic operations, where |N (vj)|
is the number of normalized directions, and typically |N (vj)| is much less than the
dimension of a data vector N .

Given the front edge with vertices v1 and v2, the algorithm attempts to generate
a new triangle with the vertices {v1, v2, v3}, where v3 is typically new, but may be
an existing vertex. The bulk of the computational expense required to generate the
new triangle is spent solving the constrained minimization problem (4) for the new
vertex. Let Qj denote Q(vj ,N (vj)), then the constrained optimization problem is

v∗ = argmin
S

(v − v1)TQ1(v − v1)(4a)

S : v in R3 such that


(v − vm)T (v − vm) = R2

c

(v − v1)TQ1(v − v1) = (v − v2)TQ2(v − v2)

nT (v − vm) ≥ 0

(4b)

The first constraint describes a Euclidean sphere of radius Rc centered at the
midpoint vm ≡ (v1+v2)/2 of the active front edge. We assume that the raw data has
been scaled so that all the points on this sphere represent more or less equal changes
in the characteristics of the data. The second constraint is the isosceles constraint,
so called because it forces the minimizer to be equidistant from both active edge
vertices, where the distance to the edge vertex vj is measured by the metric induced
by Qj . The shorter the Qj length of a displacement from vj , the more confident we
are that the data lies in that direction. Under the first two constraints in (4b), the
minimization problem can have two solutions. Setting the new vertex to one of these
minimizers would introduce a triangle that is redundant in the sense that it nearly
replicates the triangle that owns the active edge. The third constraint is designed
to remove this minimizer from consideration. Let v0 denote the third vertex in the
triangle that owns the active front edge, then n is the unit normal to the front edge
that lies in the plane of {v0, v1, v2}, and points away from v0. That is, it is the unit
vector in the direction of (vm − v0)− ((vm − v0)T (v2 − v1)/‖v2 − v1‖2)(v2 − v1).
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(a) First candidate vertex (b) Second candidate vertex

Figure 1. First and second candidate candidate vertices. Exist-
ing triangles are dark gray, candidate triangle is light gray

After solving the constrained optimization problem (4), the algorithm uses the
minimizer v∗ to generate at most two candidates for the vertex v3. The first candi-
date always exists, and is the data point nearest v∗, which may also be a vertex in
the existing triangulation. The purpose of the second candidate is to avoid generat-
ing an unnecessarily small triangle at some point in the future, which works against
the goal of fitting the data with as few triangles as possible. This can happen if
the first candidate vertex is close to a vertex belonging to some other front edge
that shares a vertex with the active front edge. In this event, the second candi-
date for v3 is the nearby vertex belonging to the front edge adjacent to the active
edge, provided that the distance between the two vertices is within a user supplied
tolerance. Without considering the second candidate, then the original candidate
triangle will have a front edge that forms a small angle with an adjacent front edge.
As a result, the algorithm will likely generate a future small triangle that owns the
two adjacent front edges with a small angle between them, and a third short edge.
Illustrations of the first and second candidate vertices are in Figure 1 in the case
where the data vectors are in R3.

The user must supply the radius of the constraint sphere Rc in (4b). In our
implementation, we set the constraint sphere radius based on the weighted average
of the Euclidean length of the active front edge, and the characteristic length. A
weighted average with a heavy emphasis on the active edge length is more likely
to result in an equilateral triangle, which is preferable if the active front edge is
not too short. If the active front edge is relatively short, then it is preferable to
generate an isosceles triangle with two long edges and a single short edge since
this triangle will fit more data than an equilateral triangle. In our implementation,
we set Rc =

√
3/2 times the weighted average of the active edge length and the

characteristic length, where both weights are 1/2. In the common case where the
active front edge length and the characteristic length are nearly equal, then this
constraint sphere radius will favor a Euclidean equilateral triangle with sides that
are approximately the characteristic length.
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In our implementation, we use a Euclidean neighborhood for N (vi). When
calculating P (vi,N (vi)), we set the radius of this neighborhood to the length of
the active edge {v1, v2} measured in the Euclidean metric.

Given the popularity and long history of least squares, one may ask why we did
not choose to minimize the sum of squares (v−v1)TQ1(v−v1)+(v−v2)TQ2(v−v2)
instead of the objective function (4a) in the constrained minimization problem. It
turns out that when Q1 = Q2 = Q, as may be the case when the data is planar, the
least squares solution is unacceptable. Suppose the origin is the midpoint of the
active front edge, so its vertices satisfy v2 = −v1. Then, (v− v1)TQ(v− v1) + (v−
v2)TQ(v−v2) = 2xTQx+2xTQx1, which is minimized on the constraint sphere (4b)
by the appropriately scaled eigenvector of Q associated with its smallest eigenvalue.
In this case, the least squares solution completely ignores the other two eigenvalues
of Q, so this information is essentially wasted. Furthermore, there is no reason to
believe that the minimizing eigenvector of Q is nearly perpendicular to the active
front edge, so the resulting triangle may be highly skewed.

2.1.2. Criteria for accepting the candidate triangle. The main idea behind deciding
whether to accept the candidate triangle is that the new triangle should not conflict
with the existing triangulation, which we now define. We can always translate the
triangles T 1 and T 2 so that without a loss of generality, we may assume that one
of the vertices of T 1 coincides with the origin in RN . Let T̄ 1 and T̄ 2 denote the
triangles in R2 obtained by orthogonally projecting the vertices of T 1 and T 2 into
the subspace containing the vertices of T 1. Note that T̄ 1 and T 1 represent the same
triangle, but their vertices are represented in different bases, while T̄ 2 and T 2 do
not represent the same triangle in general. The triangles T 1 and T 2 are said to
overlap if the intersection of the open interiors of T̄ 1 and T̄ 2 is nonempty. More
concretely, let H̄1 and H̄2 denote the open interiors of the triangles T̄ 1 and T̄ 2, that
is H̄2 ≡ {t1(w̄1 − w̄0) + t2(w̄2 − w̄0) | t1, t2 > 0; 0 < t1 + t2 < 1}, w̄i is a vertex of
T̄ 2, and H̄1 is defined analogously. T 1 and T 2 overlap if H̄1∩H̄2 is nonempty. The
triangles T 1 and T 2 are said to conflict if they overlap and the distance between T 1

and T 2 is within some tolerance. We included the open instead of closed interior
in the definition of overlap so that two triangles that share a common edge do not
necessarily conflict.

Figure 2 illustrates the two cases where a pair of triangles overlap but do not
conflict, and when a pair of triangles do conflict. The illustrations are for data
in R3 for the purpose of visualization, but the definitions of conflict and overlap
hold for data in a higher dimensional space. In both cases, triangle T 2 is the dark
triangle highest on the vertical axis, T 1 is the dark triangle in the x1-x2 plane, and
the lighter triangle is the triangle formed by orthogonally projecting the vertices of
T 2 into the plane containing T 1.

If the candidate triangle conflicts with an existing triangle in the triangulation,
then the algorithm rejects the candidate triangle and adds no new vertices or edges
to the triangulation in the current iteration of the main loop. The algorithm may
also fail to generate a new triangle if

• The matrix Qj could not be computed for some active front edge vertex vj

because the deleted neighborhood of vj contained no surface data points.
This indicates that the radius of the neighborhood N (vj) may be too small,
or the density of data points near vj is too low.
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(a) Over-
lapping

but non-

conflicting
triangles

(b) Conflicting triangles

Figure 2. Conflicting and nonconflicting triangles

• The distance from the minimizer v∗ to the nearest surface data point was
larger than a user supplied tolerance. This can happen when a front edge
lies near a boundary of the data set, such as the boundary of the creased
sheet.
• The constraint set S in (4b) was empty.

2.1.3. Generating the initial triangulation. The advancing front stage of the algo-
rithm requires an initial triangulation to get started. The algorithm generates the
first vertex v1 by setting its coordinates to those of some data point that is chosen
randomly unless the user specifies a specific initial point. The algorithm then finds
a second data point so that the distance from the initial vertex v1 to this data
point is as close to the characteristic length as possible, and sets the coordinates
of the second vertex v2 equal to the coordinates of the second data point. With
the edge defined by vertices v1 and v2, the algorithm now solves the constrained
minimization problem of (4) with the third constraint removed, which typically
has two solutions. The algorithm generates coordinates for two new vertices from
these minimizers by finding the two data points closest to the minimizers, and
then generates the initial triangulation containing four vertices, five edges, and two
triangles.

2.1.4. Selecting the active front edge in the advancing front stage. The algorithm
must select the active front edge at the beginning of each iteration of the advancing
front stage of the algorithm. In our implementation, we push any new front edges



8 THOMAS HUNT AND ARTHUR J. KRENER

onto a stack (FILO buffer) whenever a new triangle is created. Although an edge
may be a front edge when it is pushed onto the stack, it may get covered by a
triangle after some subsequent iteration of the advancing front stage. So, at the
beginning of the advancing front stage, the algorithm pops edges off the stack until
it encounters a front edge, which becomes the active front edge. This approach
appears to work fairly well in practice, although a more sophisticated active front
edge choosing algorithm may yield a better final triangulation.

2.2. Seam sewing stage for data that can be triangulated. The advancing
front stage of SNPCA typically produces a triangulation that does not completely
fit the data set, as one can see in §4. The seam sewing stage of the algorithm
attempts to complete the triangulation with a variation of the advancing front
stage algorithm. This stage requires the partial complex {T , E ,V} generated during
the advancing front stage, the set of Qj ’s associated with all vertices belonging to
a front edge, and a maximum allowable edge length parameter that is similar in
spirit to the characteristic length. Each successful iteration of the seam sewing
stage produces a new triangle from an active edge, but unlike the advancing front
stage, it never generates a new vertex.

2.2.1. Generating a new triangle from the active front edge. Let v1 and v2 denote
the vertices of the active front edge. The algorithm attempts to form a new triangle
{v1, v2, v3} by finding the existing vertex v3 that solves the discrete optimization
problem

v3 = argmin
V

(v − v1)TQ1(v − v1) + (v − v2)TQ2(v − v2)

where

{
‖v3 − v1‖2, ‖v3 − v2‖2 ≤ maximum allowable length

{v1, v2, v3} does not conflict with the existing triangulation

(5)

Note that the minimizer v3 comes from the finite set of existing vertices V, so the
first constraint reduces the problem to a search over a small subset of the vertex set.
Since this set is discrete, there is no reason to believe that the isosceles constraint
of (4b) can be satisfied. Consequently, we chose the objective function to simply
minimize the sum of the squares of the triangle edge lengths opposite the active
edge, measured in their respective induced metrics. We imposed the first constraint
so the seam sewing stage of the algorithm does not generate a new triangle that
bridges a void in the data. The algorithm marks the active front edge as unviable
if no vertex satisfies the constraints, and this information is used by the algorithm
when selecting the next active edge in subsequent iterations.

In practice, the seam sewing stage may fail to close holes in the triangulation, in
which case it it is up to the user to determine if the holes are spurious. If so, they
may be closed by omitting the restriction in (5) that the candidate triangle does
not conflict with the existing triangulation.

2.2.2. Selecting the active edge in the seam sewing stage. The algorithm that selects
the next active edge during the seam sewing stage of the algorithm is similar to
the one used during the advancing front stage. The major difference being that the
advancing front stage produced a single sequence of front edges that terminated as
soon as the edge stack became empty, whereas the seam sewing stage may produce
more than one such sequence. At the beginning of the seam sewing stage, each
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front edge is marked as viable, and a front edge is marked unviable if upon visiting
it, the algorithm determines that the minimization problem (5) has no solution.

To initialize a sequence of front edges, the algorithm finds the smallest angle
between two adjacent front edges, where at least one of the front edges is viable,
and then pushes one of the viable front edges into the edge stack. The algorithm
repeatedly pops edges out of the buffer until it finds a front edge that has not
been marked as unviable, and then sets the active front edge to this edge. It then
attempts to generate a new triangle by solving the minimization problem in (5), and
adds any new front edges to the edge stack. The sequence of front edges terminates
when the edge stack is empty, and the seam sewing stage terminates when there
are no front edges in the triangulation or every front edge is unviable.

2.3. Advancing front stage outline for data that can be fit with a complex
of d-simplices. In this section, we give an overview of the general case where the
data points are in RN , but are essentially locally d-dimensional. This means that
given any data point, the data points that fall in a sufficiently small neighborhood
of that data point lie near a d-dimensional affine subspace. In this setting, the
output of SNPCA is a simplicial d-complex whose simplices have at most d + 1
vertices. If the user does not know the essential dimension of the data beforehand,
it can be estimated at a data point by counting the number of dominant eigenvalues
of the empirical local direction covariance matrix computed at that data point.

Analogous to a front edge, a front face is a d− 1-simplex in the complex whose
vertices are a subset of exactly one d-simplex in the complex. The fundamental task
in the advancing front stage is to generate a new vertex from a front face, so that
the new vertex and front face form a new d-simplex that fits a subset of the data,
which is a generalization of generating a new triangle from a front edge in §2.1.1.
Let {v1, v2, . . . , vd} denote the active front face vertices that belong to the d-simplex
with vertices {v0, v1, v2, . . . , vd}, define the local direction covariance matrix and
Qµ(vj ,N (vj)) as in (1) and (2). The coordinates for the new vertex are generated
by first solving the following generalization of the constrained minimization problem
(4)

v∗ = argmin
S

(v − v1)TQ1(v − v1)

(6a)

S : v in RN such that


(v − vm)T (v − vm) = R2

c

(v − v1)TQ1(v − v1) = (v − vj)TQj(v − vj), 2 ≤ j ≤ n
nT (v − vm) ≥ 0

(6b)

where vm ≡ (v1 + v2 + · · ·+ vd)/d denotes the centroid the active front face, Qj is
shorthand for Qµ(vj ,N (vj)), and Rc denotes the radius of the constraint sphere.
The second constraint forces the minimizer v∗ to be equidistant from all front face
vertices where the distance to the jth vertex is measured with the metric induced
by Qj . The purpose of the third constraint in (6b) is to force the minimizer to fall
on the side of the active face opposite the interior vertex v0, which is the intuitively
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correct region to place the vertex. We take n to be the unit normal to the (d− 1)-
simplex that is the active front face, lies in the space spanned by the simplex that
owns the front face, and points away from v0.

The other main component of the advancing front stage is a means to determine
if a candidate d-simplex conflicts with an existing d-simplex in the complex, which
can be naturally generalized from the definition of conflicting triangles in §2.1.2.
Let S1 and S2 denote two simplices whose vertices are in RN , where as in the case
of triangles we may assume that S1 has one vertex at the origin. Let S̄1 and S̄2

denote the d-simplices in Rd obtained by orthogonally projecting the vertices of S1

and S2 into the subspace containing the vertices of S1. The simplices S1 and S2 are
said to overlap if the intersection of the open interiors of S̄1 and S̄2 is nonempty.
S1 and S2 are said to conflict if they overlap and the distance from S1 to S2 is
within some tolerance.

If the candidate d-simplex formed by the active front face and the new vertex
does not conflict with an existing d simplex in the complex, then the algorithm
accepts the new simplex. Just as in the case where the data could be triangulated,
the algorithm pushes all new front faces belonging to the new d-simplex onto a face
stack, and at the top of each iteration of the advancing front stage main loop, faces
are popped off the stack until the algorithm finds a front face.

3. Discussion

3.1. Interpreting the local direction covariance matrix. Although the SNPCA
algorithm operates on discrete data, we can gain intuition about its behavior by
investigating some of its components in a continuous setting. To this end, suppose
we have a smooth manifold x : R2 → R3 that can be parameterized locally by the
variables s and t. This is the limiting case where the data is distributed uniformly
over the manifold with respect to surface area, and the number of data points goes
to infinity. We define the continuous version of the local direction covariance matrix
as

(7) P (v̄,N ) ≡
∫
N

(x− v̄)(x− v̄)T

(x− v̄)T (x− v̄)
dS

/∫
N
dS

where v̄ is a point on the manifold, and N denotes the region in s-t parameter
space that maps to the region on the manifold lying inside the search sphere of
radius rs centered at the point v̄. The area element dS is given by the formula
dS = ‖∂x∂s (s, t) × ∂x

∂t (s, t)‖2ds dt, where s and t are the manifold parameters, and
‖·‖2 denotes the standard norm. The integral in the denominator is the surface area
of the manifold inside the search sphere, which serves as a normalization constant.

To elucidate the relationship between the continuous version of P (v̄,N ) and the
curvature of the underlying manifold, we will focus on the case where the underlying
manifold is a quadratic surface. Given a quadratic surface in R3 and a point on
the surface, there is always a translation of the surface and an orthonormal change
of variables corresponding to a rotation so that we may assume without a loss of
generality that the point under consideration is the origin, and the normal to the
surface is aligned with the x3 axis. Such a quadratic surface has the form

(8) 0 = xTMx+ x3
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where

M ≡

 M11 0 1
2M13

0 M22
1
2M23

1
2M13

1
2M23 M33

 and x =

x1

x2

x3


An expansion in the search sphere radius rs of the local direction covariance matrix
(7) of the quadratic surface (8) at the origin is

(9) P (0,N ) =

 1
2 + a11r

2
s 0 a13r

2
s

0 1
2 + a22r

2
s a23r

2
s

a13r
2
s a23r

2
s a33r

2
s

+ · · ·

where

a11 = − 1

32

(
(M11 +M22)2 + 4M2

11

)
a22 = − 1

32

(
(M11 +M22)2 + 4M2

22

)
a13 =

1

16
M13(3M11 +M22) a23 =

1

16
M23(M11 + 3M22)

a33 =
1

16
(3M2

11 + 2M11M22 + 3M2
22)

For the remainder of the discussion, we refer to the local direction covariance matrix
to leading order in (9) as P . Note that P is diagonal when rs = 0, and its eigen-
values are 1/2 and 0 with algebraic multiplicities two and one. When rs 6= 0, the
eigenvalues of P are perturbations off of 1/2 and 0 that depend on the curvature of
the quadratic surface and the size of the search radius rs. If a dominant eigenvalue
of P has an expansion of the form λ = 1/2+c1rs+c2r

2
s + · · · , then to leading order

λ = 1/2+a11r
2
s and λ = 1/2+a22r

2
s . By the same argument, the weak eigenvalue of

P to leading order is λ = a33r
2
s . Both these approximations to the dominant eigen-

values satisfy the characteristic polynomial of P with a residual of O(r4
s), where the

characteristic polynomial is computed from the leading order approximation (9).
The signed curvature at the origin1 of the curve formed by the intersection of the
quadratic surface (8) and the plane perpendicular to the tangent space containing
the vector [cos(θ) sin(θ) 0]T is κ(θ) = −2(M11 cos(θ)2 + M22 sin(θ)2). It follows
that the maximum and minimum curvatures are κ1 ≡ −2M11 and κ2 ≡ −2M22.
The two directions in the tangent space associated with the curvatures κ1 and κ2

are aligned with the x1 and x2 axes. Let κ̄ = (κ1 + κ2)/2 denote the mean curva-
ture at the origin. The eigenvalues of P in terms of the mean, maximum, minimum
curvatures, and search radius are

(10)

λ1(P ) =
1

2
− 1

32
(κ̄2 + κ2

1)r2
s + · · ·

λ2(P ) =
1

2
− 1

32
(κ̄2 + κ2

2)r2
s + · · ·

λ3(P ) =
1

32
(2κ̄2 + κ2

1 + κ2
2)r2

s + · · ·

When the search radius rs is zero, the eigenvectors associated with dominant
eigendirections of P are the first two columns of the identity matrix, and they
form a basis for the tangent space through the origin of the quadratic surface.
When rs 6= 0, then in general the eigenvectors of P no longer span the tangent
space, but they span a plane that nearly coincides with the tangent space. To
calculate an approximate eigenvector u1 of P associated with λ1(P ) (10), we may

1The signed curvature at x of the plane curve (x, y(x)) is κ = y′′(x)/(1 + y′(x)2)3/2
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safely assume that u1 has been scaled so that the first entry is u1
1 = 1, and the

other entries have Taylor expansions in the search radius rs. The coefficients in
the Taylor expansions can be calculated by the standard technique of zeroing the
coefficients of the leading order terms in rs of ‖(P − λ1(P )I)u1‖22.

The approximate eigenvectors of P are

(11)
u1 = e1 + 2a13r

2
se

3 + · · ·
u2 = e2 + 2a23r

2
se

3 + · · ·

where ei denotes the ith column of the identity matrix. These formulas indicate
that u1 and u2 are nearly aligned with the directions in which the curvature of the
quadratic surface is maximized and minimized. For both approximate eigenvectors,
‖(P − λi(P )I)ui‖2 = O(r4

s) after ui has been normalized in the two-norm.

3.2. Motivation for the vertex placement algorithm. We can adapt the con-
strained minimization problem (4) that underlies the new vertex placement algo-
rithm of §2.1.1 to a continuous setting by treating the underlying manifold as the
data. In this setting, the vertices v1 and v2 are points on the manifold, and the
matrices Q1 and Q2 are computed from the continuous version of the local direction
covariance matrix (7). The main requirement of the new vertex placement algo-
rithm is that the vertex must not be too far from the underlying surface. Otherwise,
the resulting triangle cannot possibly fit the data in a meaningful way. Here, too
far means a large distance as measured by either of the two metrics induced by Q1

and Q2. These metrics are built from curvature information local to the active edge
vertices, which can be estimated in the discrete setting where we just have points
on the underlying surface, but not the surface itself. With this in mind, the initial
vertex placement algorithm may be interpreted as simultaneously minimizing the
distances from the new vertex to the underlying surface as measured by the induced
metrics associated with each active edge vertex. There appears to be no reason to
favor one metric over the over, and the second constraint in (4b) ensures both are
given equal weight in the simultaneous minimization.

If one of the front edge vertices is the origin, then the objective function (4a)
is xTQx, where Q = (P + µI)−1 and µ is a user supplied small parameter. In
the context of the minimization problem that underlies the initial vertex placement
algorithm, it is helpful to think of xTQx as a penalty function that penalizes points
based on their distance to the underlying surface. Under this interpretation, a
point x that is not near the underlying surface is penalized in the sense that xTQx
is large. For a general point in space, the size of the penalty is determined by
the eigen structure of Q, which is intimately related to the curvature and tangent
space of the underlying surface. In the case of the quadratic surface (8), the exact
tangent space through the origin is the x1-x2 plane, and we define the approximate
tangent space to be the subspace spanned by u1 and u2 in (11). P and Q share the
same eigenvectors, so two of Q’s eigenvectors span the approximate tangent space,
and its third eigenvector is orthogonal to the the approximate tangent space. The
largest eigenvalue of Q is λmax(Q) = (µ + λmin(P ))−1 = O((µ + r2

s)
−1), which

is much larger than the other two eigenvalues assuming the user has not chosen
an overly large value of µ. Consequently, if x has a non-negligible component in
the direction perpendicular to the approximate tangent space, then the objective
function severely penalizes x in the sense that the value xTQx is dominated by
λmax(Q). The objective function should exhibit this behavior since points that are
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not near the approximate tangent space cannot be near the underlying surface. The
remaining two eigendirections of Q lie in the approximate tangent space, and these
eigendirections are nearly aligned with the directions of maximum and minimum
curvature of the quadratic surface as described in §3.1. The eigenvalues of Q in
these directions are

(12)
λ1(Q) =

(1

2
+ µ− 1

32
(κ̄2 + κ2

1)r2
s + · · ·

)−1

λ2(Q) =
(1

2
+ µ− 1

32
(κ̄2 + κ2

2)r2
s + · · ·

)−1

There is enough freedom in the derivation of the quadratic surface equation (8) that
we may assume for the sake of concreteness that |κ1| ≤ |κ2|, which then imposes
λ1(Q) ≤ λ2(Q). Thus, for two points with equal Euclidean norm that both lie
in the approximate tangent space, the objective function penalizes the point with
the greater component in the λ2(Q) direction more than it penalizes the other
point. The eigendirection associated with λ2(Q) nearly coincides with the direction
of greatest curvature in magnitude, which is |κ2|. It is in this direction that the
quadratic surface curves away from the exact tangent space most rapidly. The
approximate and exact tangent spaces are nearly aligned, so points with a larger
component in the direction of the maximum magnitude curvature will be farther
from the underlying quadratic surface than points with the same Euclidean norm,
but a smaller component in the direction of maximum magnitude curvature. The
curvature of the surface is encoded in Q through its eigenvalues (12), which allows
the objective function to penalize points in the approximate tangent space that are
far from the underlying surface by using the local curvature information as a proxy.

3.3. Conditions under which the minimization problem has a solution.
Although the constrained optimization problem (4) is not guaranteed to have a
solution, we can derive mild conditions under which it does so that the algorithm
user can be confident that the advancing front stage of the algorithm is robust.
We focus on the case where we are triangulating data in RN . We omit the third
constraint in (4b) whose purpose is to make the minimizer unique, so that the
simplified constraint set is the intersection of the constraint sphere and the surface
that describes the isosceles constraint. Without a loss of generality, we may assume
that v2 = −v1, so that the midpoint vm of the two active edge vertices falls on the
origin. First, consider the case where Q1 = Q2, then the isosceles constraint reduces
to 0 = vTQ1v1 which describes a plane through the origin. The constraint set in this
case is the intersection of the plane with a sphere centered at the origin. Therefore,
the constraint set is a non-empty compact subset of RN , which guarantees that a
minimizer of the constrained optimization problem exists.

Now, consider the more realistic case where Q1 6= Q2, but the tangent spaces
through v1 and v2 are nearly aligned in the sense that their canonical angles2 are
nearly zero, and the eigenvalues of Q1 and Q2 are nearly equal after they have been
sorted by magnitude. The isosceles constraint reduces to

(13) 0 = 4vTQ1v1 + 2vTEQv
1 + vTEQv

2Let U and V denote orthonormal matrices whose columns span two subspaces of equal di-
mension. The cosines of the canonical subspace angles are the singular values of UTV [5, p.

73].
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where EQ ≡ Q2−Q1. The first term in equation (13) describes the plane from the
isosceles constraint in the Q1 = Q2 case, and the other terms can be interpreted
as perturbations that introduce curvature into the isosceles constraint surface. By
continuity, if EQ is sufficiently small in norm, then the surface that satisfies the
isosceles constraint nearly coincides with the plane that describes the isosceles con-
straint in the Q1 = Q2 case. It follows that if EQ is sufficiently small, then the
constraint set described by the intersection of the constraint sphere with the isosce-
les constraint surface is a compact subset of RN , and therefore a minimizer to the
constrained minimization problem exists. We now show that the magnitude of EQ
is controlled by the alignment of the two tangent spaces, and the difference in the
eigenvalues of Q1 and Q2. If the data points reside on a smooth manifold, v1 and
v2 lie near each other on the manifold, and if there are a sufficient number of data
points in the neighborhoods of v1 and v2, then the alignment of the two tangent
spaces and difference in eigenvalues of Q1 and Q2 are governed by the curvature
of the underlying manifold. Furthermore, as v1 and v2 approach each other and
the density of data in their respective neighborhoods increases, the tangent spaces
approach perfect alignment and the differences between eigenvalues approach zero.
The symmetric matrices Q1 and Q2 can be diagonalized by orthonormal transfor-
mations, so let Q1 = U1Λ1(U1)T and Q2 = U2Λ2(U2)T where U i is an orthonormal
matrix and Λi is diagonal, and define EU ≡ (U1)TU2−I and EΛ ≡ Λ2−Λ1. We may
assume without a loss of generality that ‖EU‖2 is on the order of maxi(1−cos(θi)),
where θi denotes one of the canonical angles between the two tangent spaces, or the
canonical angle between the orthogonal complements of the tangent spaces. Thus,
‖EU‖ approaches zero as the two tangent spaces approach perfect alignment. By a
standard argument,

‖EQ‖2 ≤ ‖Λ1 − Λ2‖2 + 2‖Λ2‖2‖Eu‖2 + ‖Λ2‖2‖Eu‖22

which implies that ‖EQ‖2 is bounded by ‖Λ2 − Λ1‖2 and ‖EU‖2.

4. Results

We tested the SNPCA algorithm by running it on data sets that fall near the
surface of a sphere, torus, swiss roll, and creased sheet. All these manifolds can be
parameterized by two variables, and we embedded the data in a fifty dimensional
space as follows. To generate points in R3 that are distributed uniformly over the
manifold with respect to surface area, we sampled parameter values from the distri-
bution whose probability density function is the manifold area element normalized
by the manifold surface area. For example, the sphere of radius a has surface area
4πa2 and is parameterized by x(u, v) = a(cos(u) sin(v), sin(u) sin(v), cos(v)) where
0 ≤ u ≤ 2π and 0 ≤ v ≤ π. The area element is dS = a2 sin(v)du dv, so the distri-
bution from which we sample values of u and v for the sphere is f(u, v) = sin(v)/4π.
We then generated points in R3 on the manifold from these random parameter val-
ues. Finally, we randomly generated three orthogonal unit vectors in R50, and then
for each point on the manifold, we generated a data point in R50 by forming the
linear combination of three three orthonormal vectors with the manifold point co-
ordinates as weights. The vertex coordinates of the final triangulation are in R50,
so to produce the illustrations of the final triangulation, we undid the orthogonal
transformation so that the vertex coordinates were in R3.
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We chose these data sets based on attributes of the manifold that underlies the
data, namely the curvature and smoothness of the manifold, and the presence of a
boundary. The creased sheet is smooth with no curvature in every neighborhood
away from the crease location, and has a boundary. The sphere is smooth, has
uniform curvature, and no boundary The swiss roll is smooth, has varying curvature,
and a boundary. The torus is smooth, has varying curvature, and no boundary.

For each data set, we have included illustrations of the points in the data set, the
output of the advancing front stage, and the final triangulation produced by the
seam sewing stage. The error tables list the maximum error, the average error, and
the RMS error associated with each triangulation generated by SNPCA. The error
associated with the ith data point, denoted by di, is the shortest distance from the
data point to a point on the triangulation.
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# triangles # vertices characteristic length
1372 689 0.5

maxi di
1
n

∑
i di

√
1
n

∑
i d

2
i # data points n

0.082777 0.013134 0.014518 10000
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-4

0 

4 

-4
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4 

(a) Data

-4

0 

4 

-4

0 

4 

-4

0 

4 

(b) SNPCA seams
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0 

4 

-4

0 

4 

-4

0 

4 

(c) SNPCA sewn

Figure 3. A 2-sphere of radius 4 embedded in R50.



SIMPLICIAL NONLINEAR PRINCIPAL COMPONENT ANALYSIS 17

# triangles # vertices characteristic length
681 342 0.75

maxi di
1
n

∑
i di

√
1
n

∑
i d

2
i # data points n

0.10804 0.034369 0.040669 10000

-5

0 

5 

-5

0 

5 
-2

0 

2 
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-5
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5 
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(b) SNPCA seams
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5 
-2
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2 

(c) SNPCA sewn

Figure 4. A 2-torus with radii 4 and 1 embedded in R50.
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# triangles # vertices characteristic length
1245 639 0.5

maxi di
1
n

∑
i di

√
1
n

∑
i d

2
i # data points n

0.65358 0.088305 0.11857 10000
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2 

(b) SNPCA seams
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5 
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2 

(c) SNPCA sewn

Figure 5. The surface underlying this data set is a torus with
radii of 4 and 1, and we added error to the surface data points
before generating the set of data vectors. We generated the error
vectors in R3 by drawing each coordinate from the standard normal
distribution, and then scaling the error vector by a factor of .01. We
then generated the set of data vectors by our standard orthogonal
transformation. The final triangulation is not watertight, meaning
it has front edges.
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# triangles # vertices characteristic length
698 399 0.75

maxi di
1
n

∑
i di

√
1
n

∑
i d

2
i # data points n

0.59827 0.015952 0.031548 10000
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6 

(a) Data

-5

0 

5 

-5

0 

0 

6 

(b) SNPCA seams

-5

0 

5 

-5

0 

0 

6 

(c) SNPCA sewn

Figure 6. We parameterized the swiss roll by
(τ, κθ cos(θ), κθ sin(θ)), where 0 ≤ τ ≤ 6 and 0 ≤ θ ≤ 4π,
and set the curvature parameter κ = 1/2. The notches on the
boundary of the final triangulation account for the large value of
maxi di.
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# triangles # vertices characteristic length
1289 669 0.35

maxi di
1
n

∑
i di

√
1
n

∑
i d

2
i # data points n

0.10958 0.00083106 0.0055044 10000
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(a) Data
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0

4

(b) SNPCA seams
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-6
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6 
0

4

(c) SNPCA sewn

Figure 7. The creased sheet data fall on a surface that resembles
a creased sheet of 8.5×11 paper, where the crease angle .8 radians.
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