12,639 research outputs found

    Robust nearest-neighbor methods for classifying high-dimensional data

    Get PDF
    We suggest a robust nearest-neighbor approach to classifying high-dimensional data. The method enhances sensitivity by employing a threshold and truncates to a sequence of zeros and ones in order to reduce the deleterious impact of heavy-tailed data. Empirical rules are suggested for choosing the threshold. They require the bare minimum of data; only one data vector is needed from each population. Theoretical and numerical aspects of performance are explored, paying particular attention to the impacts of correlation and heterogeneity among data components. On the theoretical side, it is shown that our truncated, thresholded, nearest-neighbor classifier enjoys the same classification boundary as more conventional, nonrobust approaches, which require finite moments in order to achieve good performance. In particular, the greater robustness of our approach does not come at the price of reduced effectiveness. Moreover, when both training sample sizes equal 1, our new method can have performance equal to that of optimal classifiers that require independent and identically distributed data with known marginal distributions; yet, our classifier does not itself need conditions of this type.Comment: Published in at http://dx.doi.org/10.1214/08-AOS591 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Classification with the nearest neighbor rule in general finite dimensional spaces: necessary and sufficient conditions

    Get PDF
    Given an nn-sample of random vectors (Xi,Yi)1in(X_i,Y_i)_{1 \leq i \leq n} whose joint law is unknown, the long-standing problem of supervised classification aims to \textit{optimally} predict the label YY of a given a new observation XX. In this context, the nearest neighbor rule is a popular flexible and intuitive method in non-parametric situations. Even if this algorithm is commonly used in the machine learning and statistics communities, less is known about its prediction ability in general finite dimensional spaces, especially when the support of the density of the observations is Rd\mathbb{R}^d. This paper is devoted to the study of the statistical properties of the nearest neighbor rule in various situations. In particular, attention is paid to the marginal law of XX, as well as the smoothness and margin properties of the \textit{regression function} η(X)=E[YX]\eta(X) = \mathbb{E}[Y | X]. We identify two necessary and sufficient conditions to obtain uniform consistency rates of classification and to derive sharp estimates in the case of the nearest neighbor rule. Some numerical experiments are proposed at the end of the paper to help illustrate the discussion.Comment: 53 Pages, 3 figure

    Context-aware Captions from Context-agnostic Supervision

    Full text link
    We introduce an inference technique to produce discriminative context-aware image captions (captions that describe differences between images or visual concepts) using only generic context-agnostic training data (captions that describe a concept or an image in isolation). For example, given images and captions of "siamese cat" and "tiger cat", we generate language that describes the "siamese cat" in a way that distinguishes it from "tiger cat". Our key novelty is that we show how to do joint inference over a language model that is context-agnostic and a listener which distinguishes closely-related concepts. We first apply our technique to a justification task, namely to describe why an image contains a particular fine-grained category as opposed to another closely-related category of the CUB-200-2011 dataset. We then study discriminative image captioning to generate language that uniquely refers to one of two semantically-similar images in the COCO dataset. Evaluations with discriminative ground truth for justification and human studies for discriminative image captioning reveal that our approach outperforms baseline generative and speaker-listener approaches for discrimination.Comment: Accepted to CVPR 2017 (Spotlight

    Efficient Localization of Discontinuities in Complex Computational Simulations

    Full text link
    Surrogate models for computational simulations are input-output approximations that allow computationally intensive analyses, such as uncertainty propagation and inference, to be performed efficiently. When a simulation output does not depend smoothly on its inputs, the error and convergence rate of many approximation methods deteriorate substantially. This paper details a method for efficiently localizing discontinuities in the input parameter domain, so that the model output can be approximated as a piecewise smooth function. The approach comprises an initialization phase, which uses polynomial annihilation to assign function values to different regions and thus seed an automated labeling procedure, followed by a refinement phase that adaptively updates a kernel support vector machine representation of the separating surface via active learning. The overall approach avoids structured grids and exploits any available simplicity in the geometry of the separating surface, thus reducing the number of model evaluations required to localize the discontinuity. The method is illustrated on examples of up to eleven dimensions, including algebraic models and ODE/PDE systems, and demonstrates improved scaling and efficiency over other discontinuity localization approaches

    Efficient Classification for Metric Data

    Full text link
    Recent advances in large-margin classification of data residing in general metric spaces (rather than Hilbert spaces) enable classification under various natural metrics, such as string edit and earthmover distance. A general framework developed for this purpose by von Luxburg and Bousquet [JMLR, 2004] left open the questions of computational efficiency and of providing direct bounds on generalization error. We design a new algorithm for classification in general metric spaces, whose runtime and accuracy depend on the doubling dimension of the data points, and can thus achieve superior classification performance in many common scenarios. The algorithmic core of our approach is an approximate (rather than exact) solution to the classical problems of Lipschitz extension and of Nearest Neighbor Search. The algorithm's generalization performance is guaranteed via the fat-shattering dimension of Lipschitz classifiers, and we present experimental evidence of its superiority to some common kernel methods. As a by-product, we offer a new perspective on the nearest neighbor classifier, which yields significantly sharper risk asymptotics than the classic analysis of Cover and Hart [IEEE Trans. Info. Theory, 1967].Comment: This is the full version of an extended abstract that appeared in Proceedings of the 23rd COLT, 201

    Survey of data mining approaches to user modeling for adaptive hypermedia

    Get PDF
    The ability of an adaptive hypermedia system to create tailored environments depends mainly on the amount and accuracy of information stored in each user model. Some of the difficulties that user modeling faces are the amount of data available to create user models, the adequacy of the data, the noise within that data, and the necessity of capturing the imprecise nature of human behavior. Data mining and machine learning techniques have the ability to handle large amounts of data and to process uncertainty. These characteristics make these techniques suitable for automatic generation of user models that simulate human decision making. This paper surveys different data mining techniques that can be used to efficiently and accurately capture user behavior. The paper also presents guidelines that show which techniques may be used more efficiently according to the task implemented by the applicatio

    On Classification with Bags, Groups and Sets

    Full text link
    Many classification problems can be difficult to formulate directly in terms of the traditional supervised setting, where both training and test samples are individual feature vectors. There are cases in which samples are better described by sets of feature vectors, that labels are only available for sets rather than individual samples, or, if individual labels are available, that these are not independent. To better deal with such problems, several extensions of supervised learning have been proposed, where either training and/or test objects are sets of feature vectors. However, having been proposed rather independently of each other, their mutual similarities and differences have hitherto not been mapped out. In this work, we provide an overview of such learning scenarios, propose a taxonomy to illustrate the relationships between them, and discuss directions for further research in these areas

    Supervised Classification: Quite a Brief Overview

    Full text link
    The original problem of supervised classification considers the task of automatically assigning objects to their respective classes on the basis of numerical measurements derived from these objects. Classifiers are the tools that implement the actual functional mapping from these measurements---also called features or inputs---to the so-called class label---or output. The fields of pattern recognition and machine learning study ways of constructing such classifiers. The main idea behind supervised methods is that of learning from examples: given a number of example input-output relations, to what extent can the general mapping be learned that takes any new and unseen feature vector to its correct class? This chapter provides a basic introduction to the underlying ideas of how to come to a supervised classification problem. In addition, it provides an overview of some specific classification techniques, delves into the issues of object representation and classifier evaluation, and (very) briefly covers some variations on the basic supervised classification task that may also be of interest to the practitioner
    corecore